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Foreword for the First Edition

Computers are everywhere.
This fact, of course, is no surprise to anyone who hasn’t been living in a cave during the 

past 25 years or so. And you probably know that computers aren’t just on our desktops, in 
our kitchens, and, increasingly, in our living rooms, holding our music collections. They’re 
also in our microwave ovens, our regular ovens, our cell phones, and our portable digital 
music players.

And if you’re holding this book, you probably know a lot, or are interested in learning 
more about, these embedded computer systems.

Until not too long ago, embedded systems were not very powerful, and they ran spe-
cial-purpose, proprietary operating systems that were very different from industry-standard 
ones. (Plus, they were much harder to develop for.) Today, embedded computers are as 
powerful as, if not more powerful than, a modern home computer. (Consider the high-end 
gaming consoles, for example.)

Along with this power comes the capability to run a full-fledged operating system such 
as Linux. Using a system such as Linux for an embedded product makes a lot of sense. A 
large community of developers are making this possible. The development environment 
and the deployment environment can be surprisingly similar, which makes your life as a 
developer much easier. And you have both the security of a protected address space that a 
virtual memory-based system gives you and the power and flexibility of a multiuser, multi-
process system. That’s a good deal all around.

For this reason, companies all over the world are using Linux on many devices such as 
PDAs, home entertainment systems, and even, believe it or not, cell phones!

I’m excited about this book. It provides an excellent “guide up the learning curve” for the 
developer who wants to use Linux for his or her embedded system. It’s clear, well-written, 
and well-organized; Chris’s knowledge and understanding show through at every turn. It’s 
not only informative and helpful; it’s also enjoyable to read.

I hope you learn something and have fun at the same time. I know I did.

Arnold Robbins
Series Editor
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Foreword for the 
Second Edition

Smart phones. PDAs. Home routers. Smart televisions. Smart Blu-ray players. 
Smart yo-yos. OK, maybe not. More and more of the everyday items in our homes 
and offices, used for work and play, have computers embedded in them. And those 
computers are running GNU/Linux.

You may be a GNU/Linux developer used to working on desktop (or notebook) 
Intel Architecture systems. Or you may be an embedded systems developer used 
to more traditional embedded and/or real-time operating systems. Whatever your 
background, if you’re entering the world of embedded Linux development, Doro-
thy’s “Toto, I’ve a feeling we’re not in Kansas anymore” applies to you. Welcome to 
the adventure!

Dorothy had a goal, and some good friends, but no guide. You, however, are bet-
ter off, since you’re holding an amazing field guide to the world of embedded Linux 
development. Christopher Hallinan lays it all out for you—the how, the where, 
the why, and also the “what not to do.” This book will keep you out of the school 
of hard knocks and get you going easily and quickly on the road to building your 
product.

It is no surprise that this book has been a leader in its market. This new edition is 
even better. It is up to date and brings all the author’s additional experience to bear 
on the subject.

I am very proud to have this book in my series. But what’s more important is 
that you will be proud of yourself for having built a better product because you read 
it! Enjoy!

Arnold Robbins
Series Editor
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Preface

  

Although many good books cover Linux, this one brings together many dimensions 
of information and advice specifically targeted to the embedded Linux developer. 
Indeed, some very good books have been written about the Linux kernel, Linux 
system administration, and so on. This book refers to many of the ones I consider to 
be at the top of their categories.

Much of the material presented in this book is motivated by questions I’ve re-
ceived over the years from development engineers in my capacity as an embedded 
Linux consultant and from my direct involvement in the commercial embedded 
Linux market.

Embedded Linux presents the experienced software engineer with several unique 
challenges. First, those with many years of experience with legacy real-time operat-
ing systems (RTOSs) find it difficult to transition their thinking from those environ-
ments to Linux. Second, experienced application developers often have difficulty 
understanding the relative complexities of a cross-development environment.

Although this is a primer, intended for developers new to embedded Linux, I am 
confident that even developers who are experienced in embedded Linux will benefit 
from the useful tips and techniques I have learned over the years.

PRACTICAL ADVICE FOR THE PRACTICING EMBEDDED DEVELOPER

This book describes my view of what an embedded engineer needs to know to get 
up to speed fast in an embedded Linux environment. Instead of focusing on Linux 
kernel internals, the kernel chapters in this book focus on the project nature of the 
kernel and leave the internals to the other excellent texts on the subject. You will 
learn the organization and layout of the kernel source tree. You will discover the 
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binary components that make up a kernel image, how they are loaded, and what 
purpose they serve on an embedded system.

In this book, you will learn how the Linux kernel build system works and how 
to incorporate your own custom changes that are required for your projects. You 
will learn the details of Linux system initialization, from the kernel to user space 
initialization. You will learn many useful tips and tricks for your embedded project, 
from bootloaders, system initialization, file systems, and Flash memory to advanced 
kernel- and application-debugging techniques. This second edition features much 
new and updated content, as well as new chapters on open source build systems, 
USB and udev, highlighting how to configure and use these complex systems on 
your embedded Linux project.

INTENDED AUDIENCE

This book is intended for programmers who have working knowledge of program-
ming in C. I assume that you have a rudimentary understanding of local area net-
works and the Internet. You should understand and recognize an IP address and 
how it is used on a simple local area network. I also assume that you understand 
hexadecimal and octal numbering systems and their common usage in a book such 
as this.

Several advanced concepts related to C compiling and linking are explored, so 
you will benefit from having at least a cursory understanding of the role of the linker 
in ordinary C programming. Knowledge of the GNU make operation and seman-
tics also will prove beneficial.

WHAT THIS BOOK IS NOT

This book is not a detailed hardware tutorial. One of the difficulties the embedded 
developer faces is the huge variety of hardware devices in use today. The user manual 
for a modern 32-bit processor with some integrated peripherals can easily exceed 
3,000 pages. There are no shortcuts. If you need to understand a hardware device 
from a programmer’s point of view, you need to spend plenty of hours in your fa-
vorite reading chair with hardware data sheets and reference guides, and many more 
hours writing and testing code for these hardware devices!

This is also not a book about the Linux kernel or kernel internals. In this book, 
you won’t learn about the intricacies of the Memory Management Unit (MMU) 

  



Preface  xxix

 

used to implement Linux’s virtual memory-management policies and procedures; 
there are already several good books on this subject. You are encouraged to take 
advantage of the “Suggestions for Additional Reading” sections found at the end of 
every chapter.

CONVENTIONS USED

Filenames, directories, utilities, tools, commands, and code statements are presented 
in a monospace font. Commands that the user enters appear in bold monospace. 
New terms or important concepts are presented in italics.

When you see a pathname preceded by three dots, this refers to a well-known 
but unspecified top-level directory. The top-level directory is context-dependent but 
almost universally refers to a top-level Linux source directory. For example, .../
arch/powerpc/kernel/setup_32.c refers to the setup_32.c file located in the 
architecture branch of a Linux source tree. The actual path might be something like 
~/sandbox/linux.2.6.33/arch/power/kernel/setup_32.c.

HOW THIS BOOK IS ORGANIZED

Chapter 1, “Introduction,” provides a brief look at the factors driving the rapid 
adoption of Linux in the embedded environment. Several important standards and 
organizations relevant to embedded Linux are introduced.

Chapter 2, “The Big Picture,” introduces many concepts related to embedded 
Linux upon which later chapters are built.

Chapter 3, “Processor Basics,” presents a high-level look at the more popular 
processors and platforms that are being used to build embedded Linux systems. We 
examine selected products from many of the major processor manufacturers. All the 
major architecture families are represented.

Chapter 4, “The Linux Kernel: A Different Perspective,” examines the Linux 
kernel from a slightly different perspective. Instead of kernel theory or internals, we 
look at its structure, layout, and build construction so that you can begin learning 
your way around this large software project and, more important, learn where your 
own customization efforts must be focused. This includes detailed coverage of the 
kernel build system.
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Chapter 5, “Kernel Initialization,” details the Linux kernel’s initialization pro-
cess. You will learn how the architecture- and bootloader-specific image components 
are concatenated to the image of the kernel proper for downloading to Flash and 
booting by an embedded bootloader. The knowledge you gain here will help you 
customize the Linux kernel to your own embedded application requirements.

Chapter 6, “User Space Initialization,” continues the detailed examination of the 
initialization process. When the Linux kernel has completed its own initialization, 
application programs continue the initialization process in a predetermined manner. 
Upon completing Chapter 6, you will have the necessary knowledge to customize 
your own userland application startup sequence.

Chapter 7, “Bootloaders,” is dedicated to the bootloader and its role in an em-
bedded Linux system. We examine the popular open-source bootloader U-Boot and 
present a porting example. We briefly introduce additional bootloaders in use today 
so that you can make an informed choice about your particular requirements.

Chapter 8, “Device Driver Basics,” introduces the Linux device driver model and 
provides enough background to launch into one of the great texts on device drivers, 
listed in “Suggestions for Additional Reading” at the end of the chapter.

Chapter 9, “File Systems,” describes the more popular file systems being used in 
embedded systems today. We include coverage of the JFFS2, an important embed-
ded file system used on Flash memory devices. This chapter includes a brief intro-
duction to building your own file system image, one of the more difficult tasks the 
embedded Linux developer faces.

Chapter 10, “MTD Subsystem,” explores the Memory Technology Devices 
(MTD) subsystem. MTD is an extremely useful abstraction layer between the Linux 
file system and hardware memory devices, primarily Flash memory.

Chapter 11, “BusyBox,” introduces BusyBox, one of the most useful utilities for 
building small embedded systems. We describe how to configure and build BusyBox 
for your particular requirements, along with detailed coverage of system initializa-
tion unique to a BusyBox environment. Appendix C, “BusyBox Commands,” lists 
the available BusyBox commands from a recent BusyBox release.

Chapter 12, “Embedded Development Environment,” takes a detailed look at 
the unique requirements of a typical cross-development environment. Several tech-
niques are presented to enhance your productivity as an embedded developer, in-
cluding the powerful NFS root mount development configuration.
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Chapter 13, “Development Tools,” examines many useful development tools. 
Debugging with gdb is introduced, including coverage of core dump analysis. Many 
more tools are presented and explained, with examples including strace, ltrace,
top, and ps, and the memory profilers mtrace and dmalloc. The chapter con-
cludes with an introduction to the more important binary utilities, including the 
powerful readelf utility.

Chapter 14, “Kernel Debugging Techniques,” provides a detailed examination 
of many debugging techniques useful for debugging inside the Linux kernel. We 
introduce the use of the kernel debugger KGDB and present many useful debugging 
techniques using the combination of gdb and KGDB as debugging tools. Included 
is an introduction to using hardware JTAG debuggers and some tips for analyzing 
failures when the kernel won’t boot.

Chapter 15, “Debugging Embedded Linux Applications,” moves the debugging 
context from the kernel to your application programs. We continue to build on the 
gdb examples from the previous two chapters, and we present techniques for multi-
threaded and multiprocess debugging.

Chapter 16, “Open Source Build Systems,” replaces the kernel porting chapter 
from the first edition. That chapter had become hopelessly outdated, and proper 
treatment of that topic in modern kernels would take a book of its own. I think 
you will be pleased with the new Chapter 16, which covers the popular build sys-
tems available for building complete embedded Linux distributions. Among other 
systems, we introduce OpenEmbedded, a build system that has gained significant 
traction in commercial and other open source projects.

Chapter 17, “Linux and Real Time,” introduces one of the more interesting chal-
lenges in embedded Linux: configuring for real time via the PREEMPT_RT option. 
We cover the features available with RT and how they can be used in a design. We 
also present techniques for measuring latency in your application configuration.

Chapter 18, “Universal Serial Bus,” describes the USB subsystem in easy-to-
understand language. We introduce concepts and USB topology and then present 
several examples of USB configuration. We take a detailed look at the role of sysfs 
and USB to help you understand this powerful facility. We also present several tools 
that are useful for understanding and troubleshooting USB.

Chapter 19, “udev,” takes the mystery out of this powerful system configuration 
utility. We examine udev’s default behavior as a foundation for understanding how 
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to customize it. Several real-world examples are presented. For BusyBox users, we 
examine BusyBox’s mdev utility.

The appendixes cover the GNU Public License, U-Boot configurable com-
mands, BusyBox commands, SDRAM interface considerations, resources for the 
open source developer, and a sample configuration file for one of the more popular 
hardware JTAG debuggers, the BDI-2000.

FOLLOW ALONG

You will benefit most from this book if you can divide your time between this book 
and your favorite Linux workstation. Grab an old x86 computer to experiment on 
an embedded system. Even better, if you have access to a single-board computer 
based on another architecture, use that. The BeagleBoard makes an excellent low-
cost platform for experimentation. Several examples in this book are based on that 
platform. You will benefit from learning the layout and organization of a very large 
code base (the Linux kernel), and you will gain significant knowledge and experi-
ence as you poke around the kernel and learn by doing.

Look at the code and try to understand the examples produced in this book. 
Experiment with different settings, configuration options, and hardware devices. 
You can gain much in terms of knowledge, and besides, it’s loads of fun. If you 
are so inclined, please log on and contribute to the website dedicated to this book, 
www.embeddedlinuxprimer.com. Feel free to create an account, add content and 
comments to other contributions, and share your own successes and solutions as you 
gain experience in this growing segment of the Linux community. Your input will 
help others as they learn. It is a work in progress, and your contributions will help it 
become a valuable community resource.

GPL COPYRIGHT NOTICE

Portions of open-source code reproduced in this book are copyrighted by a large 
number of individual and corporate contributors. The code reproduced here has 
been licensed under the terms of the GNU Public License (GPL).

Appendix A contains the text of the GNU Public License.
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The move away from proprietary embedded operating systems is causing 
quite a stir in the corporate boardrooms of many traditional embedded 

operating system (OS) companies. For many well-founded reasons, Linux is 
being adopted as the operating system in many products beyond its traditional 
stronghold in server applications. Examples of these embedded systems include 
cellular phones, DVD players, video games, digital cameras, network switches, 
and wireless networking gear. It is quite likely that Linux is already in your home 
or automobile. Linux has been commonly selected as the embedded operating 
system in devices including set-top boxes, high-definition televisions, Blu-ray 
DVD players, automobile infotainment centers, and many other devices en-
countered in everyday life.

1.1 Why Linux?

Because of the numerous economic and technical benefits, we are seeing strong 
growth in the adoption of Linux for embedded devices. This trend has crossed virtu-
ally all markets and technologies. Linux has been adopted for embedded products in 
the worldwide public switched telephone network, global data networks, and wire-
less cellular handsets, as well as radio node controllers and backhaul infrastructure 
that operates these networks. Linux has enjoyed success in automobile applications, 
consumer products such as games and PDAs, printers, enterprise switches and rout-
ers, and many other products. Tens of millions of cell phones are now shipping 
worldwide with Linux as the operating system of choice. The adoption rate of em-
bedded Linux continues to grow, with no end in sight.

Here are some of the reasons for the   growth of embedded Linux:

• Linux supports a vast variety of hardware devices, probably more than any 
other OS.

• Linux supports a huge variety of applications and networking protocols.

• Linux is scalable, from small consumer-oriented devices to large, heavy-iron, 
carrier-class switches and routers.
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• Linux can be deployed without the royalties required by traditional proprietary 
embedded operating systems.

• Linux has attracted a huge number of active developers, enabling rapid support 
of new hardware architectures, platforms, and devices.

• An increasing number of hardware and software vendors, including virtually all 
the top-tier chip manufacturers and independent software vendors (ISVs), now 
support Linux.

For these and other reasons, we are seeing an accelerated adoption rate of Linux in 
many common household items, ranging from high-definition televisions to cellular 
handsets.

1.2 Embedded Linux Today

It may come as no surprise that Linux has experienced significant growth in the em-
bedded space. Indeed, the fact that you are reading this book indicates that Linux has 
touched your life. It is difficult to estimate the market size, because many companies 
continue to build their own embedded Linux distributions.

LinuxDevices.com, the     popular news and information portal founded by Rick Leh-
rbaum, now owned by Ziff Davis, conducts an annual survey of the embedded Linux 
market. In its latest survey, it reports that Linux has emerged as the dominant operat-
ing system used in thousands of new designs each year. In fact, nearly half the respon-
dents reported using Linux in an embedded design. The next most popular operating 
system reportedly was used by only about one in eight respondents. Commercial op-
erating systems that once dominated the embedded market were reportedly used by 
fewer than one in ten respondents. Even if you find reason to dispute these results, no 
one can ignore the momentum in the embedded Linux marketplace today.

1.3 Open Source and the GPL

One of the fundamental factors driving the adoption of Linux is the fact that it is open 
source. For a fascinating and insightful look at the history and culture of the open 
source movement, read Eric S. Raymond’s book, referenced at the end of this chapter.

The Linux kernel is licensed under the terms    of the GNU GPL1 (General Pub-
lic License), which leads to the popular myth that Linux is free. In fact, the second 

1 See http://www.gnu.org/licenses/gpl.html for complete text of the license.
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paragraph of the GNU GPL Version 3 declares: “When we speak of free software, we 
are referring to freedom, not price.” Most professional development managers agree: 
You can download Linux without charge, but development and deployment with any 
OS on an embedded platform carries an (often substantial) cost. Linux is no different 
in this regard.

The GPL is remarkably short and easy to read. Here are some of its most important 
characteristics:

• The license is self-perpetuating.

• The license grants the user freedom to run the program.

• The license grants the user the right to study and modify the source code.

• The license grants the user permission to distribute the original code and his 
modifications.

• The license is viral. In other words, it grants these same rights to anyone to 
whom you distribute GPL software.

When software is released under the terms of the GPL, it must forever carry that 
license.2 Even if the code is highly modified, which is allowed and even encouraged by 
the license, the GPL mandates that it must be released under the same license. The 
intent of this feature is to guarantee freedom of access to the software, including modi-
fied versions of the software (or derived works, as they are commonly called).

No matter how the software was obtained, the GPL grants the licensee unlimited 
distribution rights, without the obligation to pay royalties or per-unit fees. This does 
not mean that vendors can’t charge for their GPL software—this is a reasonable and 
common business practice. It means that once in possession of GPL software, it is per-
missible to modify and redistribute it, whether or not it is a derived (modified) work. 
However, as dictated by the GPL, the authors of the modified work are obligated to 
release the work   under the terms of the GPL if they decide to do so. Any distribution 
of a derived work, such as shipment to a customer, triggers this obligation.

1.3.1 Free Versus Freedom

Two popular phrases are often repeated in the discussion about the free nature of open 
source: “free as in freedom” and “free as in beer.” (The author is particularly fond of 
the latter.) The GPL exists to guarantee “free as in freedom” of a    particular body of 

2 If all the copyright holders agreed, the software could in theory be released under a new license. This would be a very unlikely
scenario indeed, especially for a large software base with thousands of contributors.
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software. It guarantees your freedom to use it, study it, and change it. It also guarantees 
these freedoms for anyone to whom you distribute your modified code. This concept 
has become fairly widely understood.

One of the misconceptions frequently heard is that Linux is “free as in beer.” You 
can obtain Linux free of cost. You can download a Linux kernel in a few minutes. 
However, as any professional development manager understands, certain costs are as-
sociated with any software to be incorporated into a design. These include the costs of 
acquisition, integration, modification, maintenance, and support. Add to that the cost 
of obtaining and maintaining a properly configured toolchain, libraries, application 
programs, and specialized cross-development tools compatible with your chosen archi-
tecture, and you can quickly see that it is a nontrivial exercise to develop the needed 
software components and development environment necessary to develop and deploy 
your embedded Linux-based   system.

1.4 Standards and Relevant Bodies

As Linux continues to gain market share in the desktop, enterprise, and embedded 
market segments, new standards and organizations have emerged to help influence the 
use and acceptance of Linux. This section introduces the standards you might want to 
familiarize yourself with.

1.4.1 Linux Standard Base

Probably the single most relevant standard   for a Linux distribution maintainer is the 
Linux Standard Base (LSB). The goal of the LSB is to establish a set of standards 
designed to enhance the interoperability of applications among different Linux dis-
tributions. Currently, the LSB spans several architectures, including IA32/64, Power 
Architecture 32- and 64-bit, AMD64, and others. The standard is divided into a core 
component and the individual architectural components.

The LSB specifies common attributes of a Linux distribution, including object for-
mat, standard library interfaces, a minimum set of commands and utilities and their 
behavior, file system layout, system initialization, and so on.

You can learn more about the LSB   at the link given at the end of this chapter.
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1.4.2 Linux Foundation

According to its website, the Linux Foundation “is   a non-profit consortium dedicated 
to fostering the growth of Linux.” The Linux Foundation sponsors the work of   Linus 
Torvalds, the creator of Linux. The Linux Foundation sponsors several working groups 
to define standards and participate in the development of features targeting many im-
portant Linux platform attributes. The next two sections introduce some of these ini-
tiatives.

1.4.3 Carrier-Grade Linux

A significant number of the world’s largest networking and telecommunications equip-
ment manufacturers are either developing or shipping carrier-class equipment running 
Linux as the operating system. Significant features of carrier-class equipment include 
high reliability, high availability, and rapid serviceability. These vendors design prod-
ucts using redundant hot-swap architectures, fault-tolerant features, clustering, and 
often real-time performance.

The Linux Foundation Carrier Grade Linux workgroup   has produced a specifica-
tion defining a set of requirements for carrier-class equipment. The current version of 
the specification covers seven functional areas:

 • Availability—Requirements that provide enhanced availability, including 
online maintenance operations, redundancy, and status monitoring

 • Clusters—Requirements that facilitate redundant services, such as cluster 
membership management and data checkpointing

 • Serviceability—Requirements for remote servicing and maintenance, such as 
SNMP and diagnostic monitoring of fans and power supplies

 • Performance—Requirements to define performance and scalability, symmetric 
multiprocessing, latencies, and more

 • Standards—Requirements that define standards to which CGL-compliant 
equipment shall conform

 • Hardware—Requirements related to high-availability hardware, such as blade 
servers and hardware-management interfaces

 • Security—Requirements to improve overall system security and protect the 
system from various     external threats
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1.4.4 Mobile Linux Initiative: Moblin

Several mobile handsets (cellular phones) available      on the worldwide market have been 
built around embedded Linux. It has been widely reported that tens of millions of 
handsets have been shipped with Linux as the operating system platform. The only cer-
tainty is that more are coming. This promises to be one of the most explosive market 
segments for what was formerly the role of a proprietary real-time operating system. 
This speaks volumes about the readiness of Linux for commercial embedded applica-
tions.

The Linux Foundation sponsors a workgroup originally called the Mobile Linux 
Initiative, now referred to as Moblin. Its purpose is to accelerate the adoption of Linux 
on next-generation mobile handsets and other converged voice/data portable devices, 
according to the Linux Foundation website. The areas of focus for this working group 
include development tools, I/O and networking, memory management, multimedia, 
performance, power management, security, and storage. The Moblin website can be 
found at http://moblin.org. You can try out a Moblin release, such as   Fedora/Moblin, 
found at http://fedoraproject.org/wiki/Features/FedoraMoblin, or the Ubuntu Moblin 
remix found on the author’s Dell Mini 10 Netbook.

The embedded Linux landscape is continuously evolving. As this second edition 
was being prepared, the Moblin and Maemo project merged to become MeeGo. 
You can learn more about MeeGo, and even download a MeeGo image to try out, at 
http://meego.com/.

1.4.5 Service Availability Forum

If you are engaged in building products for environments in which high reliability, 
availability, and serviceability (RAS) are important, you should be aware of the Service 
Availability Forum (SA Forum). This organization is playing a leading role in defining 
a common set of interfaces for use in carrier-grade and other commercial equipment 
for system management. The SA Forum website is at www.saforum.org.
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1.5 Summary

Embedded Linux has won the race. Indeed, you probably have embedded Linux in 
your car or home. This chapter examined the reasons why and developed a perspective 
for the material to come:

• Adoption of Linux among developers and manufacturers of embedded prod-
ucts continues to accelerate.

• Use of Linux in embedded devices continues to grow at an exciting pace.

• Many factors are driving the growth of Linux in the embedded market.

• Several standards and relevant organizations are influencing embedded Linux.

1.5.1 Suggestions for Additional Reading

The Cathedral and the Bazaar
Eric S. Raymond
O’Reilly Media, Inc., 2001

Linux   Standard Base Project
http://www.linuxfoundation.org/collaborate/workgroups/lsb

Linux   Foundation
http://www.linuxfoundation.org/
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Often the best path to understanding a given task is to have a good grasp 
of the big picture. Many fundamental concepts can present challenges to 

the newcomer to embedded systems development. This chapter takes you on 
a tour of a typical embedded system and the development environment with 
specific emphasis on the concepts and components that make developing these 
systems unique and often challenging.

2.1 Embedded or Not?

Several key attributes are associated with embedded systems. You wouldn’t necessar-
ily call your desktop PC an embedded system. But consider a desktop PC hardware 
platform in a remote data center that performs a critical monitoring and alarm task. 
Assume that this data center normally is not staffed. This imposes a different set 
of requirements on this hardware platform. For example, if power is lost and then 
restored, you would expect this platform to resume its duties without operator in-
tervention.

Embedded systems come in a variety of shapes and sizes, from the largest 
multiple-rack data storage or networking powerhouses to tiny modules such as your 
personal MP3 player or cellular handset. Following are some of the usual character-
istics   of an embedded system:

• Contains a processing engine, such as a general-purpose microprocessor.

• Typically designed for a specific application or purpose.

• Includes a simple (or no) user interface, such as an automotive engine igni-
tion controller.

• Often is resource-limited. For example, it might have a small memory foot-
print and no hard drive.

• Might have power limitations, such as a requirement to operate from batter-
ies.

• Not typically used as a general-purpose computing platform.

• Generally has application software built in, not user-selected.
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• Ships with all intended application hardware and software preintegrated.

• Often is intended for applications without human intervention.

Most commonly, embedded systems   are resource-constrained compared to the 
typical desktop PC. Embedded systems often have limited memory, small or no hard 
drives, and sometimes no external network connectivity. Frequently, the only user in-
terface is a serial port and some LEDs. These and other issues can present challenges to 
the embedded system developer.

2.1.1 BIOS Versus Bootloader

When power is first applied to the desktop computer, a software program called the 
BIOS immediately takes control of the processor. (Historically, BIOS was an acronym 
meaning Basic Input/Output Software, but  the term has taken on a meaning of its own 
as the functions it performs have become much more complex than the original imple-
mentations.) The BIOS might actually be stored in Flash memory (described shortly) 
to facilitate field upgrade of the BIOS program itself.

The BIOS is a complex set of system-configuration software routines that have 
knowledge of the low-level details of the hardware architecture. Most of us are unaware 
of the extent of the BIOS and its functionality, but it is a critical piece of the desktop 
computer. The BIOS first gains control of the processor when power is applied. Its 
primary responsibility is to initialize the hardware, especially the memory subsystem, 
and load an operating system from the PC’s hard drive.

In a typical embedded system (assuming that it is not based on an industry-
standard x86 PC hardware platform), a bootloader   is the software program that per-
forms the equivalent functions. In your own custom embedded system, part of your 
development plan must include the development of a bootloader specific to your board. 
Luckily, several good open source bootloaders are available that you can customize for 
your project. These are introduced in Chapter 7, “Bootloaders.”

Here are some of the more important tasks your    bootloader performs on power-up:

• Initializes critical hardware components, such as the SDRAM controller, I/O 
controllers, and graphics controllers.

• Initializes system memory in preparation for passing control to the operating 
system.

• Allocates system resources such as memory and interrupt circuits to peripheral 
controllers, as necessary.
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• Provides a mechanism for locating and loading your operating system image.

• Loads and passes control to the operating system, passing any required startup 
information. This can include total memory size, clock rates, serial port speeds, 
and other low-level hardware-specific configuration data.

This is a simplified summary of the tasks that a typical embedded-system boot-
loader performs. The important point to remember is this: If your embedded system 
will be based on a custom-designed platform, these bootloader functions must be sup-
plied by you, the system designer. If your embedded system is based on a commercial 
off-the-shelf (COTS) platform such as an ATCA chassis,1 the bootloader (and often 
the Linux kernel) typically is included on the board. Chapter 7 discusses bootloaders 
in more detail.

2.2 Anatomy of an Embedded System

of a typical embedded system. This is a simple example Figure 2-1 is a block diagram    
of a high-level hardware architecture that might be found in a wireless access point. 
The system is architected around a 32-bit RISC processor. Flash memory is used for 
nonvolatile program and data storage. Main memory is synchronous dynamic ran-
dom-access memory (SDRAM) and might contain anywhere from a few megabytes to 
hundreds of megabytes, depending on the application. A real-time clock module, often 
backed up by battery, keeps the time of day (calendar/wall clock, including date). This 
example includes an Ethernet and USB interface, as well as a serial port for console 
access via RS-232. The 802.11 chipset or module implements the wireless modem 
function.

Often the processor in an embedded system   performs many functions beyond the 
traditional core instruction stream processing. The hypothetical processor shown in 
Figure 2-1 contains an integrated UART for a serial interface and integrated USB and 
Ethernet controllers. Many processors contain integrated peripherals. Sometimes they 
are referred to as system on chip (SOC). We look at several examples of integrated 
processors in Chapter 3, “Processor Basics.”

1 ATCA platforms are introduced in Chapter 3.
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FIGURE 2-1 Embedded system

2.2.1 Typical Embedded Linux Setup

Often the first question posed by the newcomer to embedded Linux is, just what do 
you need to begin development? To answer that question, Figure 2-2 shows a typical 
embedded Linux development     setup.

Figure 2-2 is a common arrangement. It shows a host development system, running 
your favorite desktop Linux distribution, such as Red Hat, SUSE, or Ubuntu Linux. 
The embedded Linux target board is connected to the development host via an RS-232 
serial cable. You plug the target board’s Ethernet interface into a local Ethernet hub 
or switch, to which your development host is also attached via Ethernet. The develop-
ment host contains your development tools and utilities along with target files, which 
normally are obtained from an embedded Linux distribution.
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FIGURE 2-2 Embedded Linux development setup

For this example, our primary connection to the embedded Linux target is via the 
RS-232 connection. A serial terminal program is used to communicate with the target 
board. Minicom is one of the most commonly used serial terminal applications and 
is available on virtually all desktop Linux distributions.2 The author has switched to 
using screen as his terminal of choice, replacing the functionality of minicom. It of-
fers much more flexibility, especially for capturing traces, and it’s more forgiving of 
serial line garbage often encountered during system bringup or troubleshooting. To use 
screen in this manner     on a USB-attached serial dongle, simply invoke it on your serial 
terminal and specify the speed:

$ screen /dev/ttyUSB0 115200

2.2.2 Starting the Target Board

When power is first applied, a bootloader supplied with your target board takes imme-
diate control of the processor. It performs some very low-level hardware initialization, 
including processor and memory setup, initialization of the UART controlling the 
serial port, and initialization of the Ethernet controller. Listing 2-1 displays the char-
acters received from the serial port, resulting from power being applied to the target. 

2 You may have to install minicom from your distribution’s repository.  On Ubuntu, for example, you would execute sudo
apt-get install minicom to install minicom on your desktop.

Host Development System Ethernet Hub

RS-232

Embedded

Linux Target

Serial Terminal

+Ethernet eth0: NAC address 00:0s:0c:00:82:fB

IP: 192:168:0.64/255.255.255.0, Gateway: 0.0.0.0

Default server: 192.168.0.3, DNX server: 0.0.0.0

RedBoot (tm) bootstrap and debug environment (RCM)

Red Hat certified release, version 1.92  built

Platform: ADI Coyote (XScale)

IDE/Parallel Port CPLD Version: 1.0

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000 0x04000000, 0x0001f560 0x03fd1000

FLASH: 0x500000000  0x51000000, 128

RedBoot>
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For   this example, we have chosen a target board from Freescale Semiconductor, the 
PowerQUICC III MPC8548 Configurable Development System (CDS). It contains 
the MPC8548 PowerQUICC III processor. It ships from Freescale with the U-Boot 
bootloader   preinstalled.

LISTING 2-1 Initial Bootloader Serial Output

U-Boot 2009.01 (May 20 2009 - 09:45:35)

CPU:   8548E, Version: 2.1, (0x80390021)

Core:  E500, Version: 2.2, (0x80210022)

Clock Configuration:

       CPU:990  MHz, CCB:396  MHz,

       DDR:198  MHz (396 MT/s data rate), LBC:49.500 MHz

L1:    D-cache 32 kB enabled

       I-cache 32 kB enabled

Board: CDS Version 0x13, PCI Slot 1

CPU Board Revision 0.0 (0x0000)

I2C:   ready

DRAM:  Initializing

    SDRAM: 64 MB

    DDR: 256 MB

FLASH: 16 MB

L2:    512 KB enabled

Invalid ID (ff ff ff ff)

    PCI: 64 bit, unknown MHz, async, host, external-arbiter

               Scanning PCI bus 00

PCI on bus 00 - 02

    PCIE connected to slot as Root Complex (base address e000a000)

PCIE on bus 3 - 3

In:    serial

Out:   serial

Err:   serial

Net:   eTSEC0, eTSEC1, eTSEC2, eTSEC3

=>

When power is applied to the MPC8548CDS board, U-Boot performs some low-
level hardware initialization, which includes configuring a serial port. It then prints 
a banner line, as shown in the first line of Listing 2-1. Next the CPU and core are 
displayed, followed by some configuration data describing clocks and cache configura-
tion. This is followed by a text string describing the board.
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 When the initial hardware configuration     is complete, U-Boot configures any hard-
ware subsystems as directed by its static configuration. Here we see I2C, DRAM, 
FLASH, L2 cache, PCI, and network subsystems being configured by U-Boot. Finally, 
U-Boot waits for input from the console over the serial port, as indicated by the =>
prompt.

2.2.3 Booting the Kernel

Now that U-Boot has initialized the hardware, serial port, and Ethernet network inter-
faces, it has only one job left in its short     but useful life span: to load and boot the Linux 
kernel. All bootloaders have a command to load and execute an operating system im-
age. Listing 2-2 shows one of the more common ways U-Boot is used  to manually load 
and boot a Linux kernel.

LISTING 2-2 Loading the Linux Kernel

=> tftp 600000 uImage

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.103; our IP address is 192.168.0.18

Filename ‘uImage’.

Load address: 0x600000

Loading: #################################################################

         #############################################################

done

Bytes transferred = 1838553 (1c0dd9 hex)

=> tftp c00000 dtb

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.103; our IP address is 192.168.0.18

Filename ‘dtb’.

Load address: 0xc00000

Loading: ##

done

Bytes transferred = 16384 (4000 hex)

=> bootm 600000 - c00000

## Booting kernel from Legacy Image at 00600000 ...

   Image Name:   MontaVista Linux 6/2.6.27/freesc

   Image Type:   PowerPC Linux Kernel Image (gzip compressed)

   Data Size:    1838489 Bytes =  1.8 MB

   Load Address: 00000000

   Entry Point:  00000000
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LISTING 2-2 Continued

   Verifying Checksum ... OK

## Flattened Device Tree blob at 00c00000

   Booting using the fdt blob at 0xc00000

   Uncompressing Kernel Image ... OK

   Loading Device Tree to 007f9000, end 007fffff ... OK

Using MPC85xx CDS machine description

Memory CAM mapping: CAM0=256Mb, CAM1=0Mb, CAM2=0Mb residual: 0Mb

...

< Lots of Linux kernel boot messages, removed for clarity >

...

freescale-8548cds login:  <<--- Linux login prompt

 

 

 

The tftp command at the start   of Listing 2-2 instructs U-Boot to load the kernel 
image uImage into memory over the network using the TFTP3 protocol. The kernel 
image, in this case, is located on the development workstation (usually the same ma-
chine that has the serial port connected to the target board). The tftp command is 
passed an address that is the physical address in the target board’s memory where the 
kernel image will be loaded. Don’t worry about the details now; Chapter 7 covers U-
Boot in much greater detail.

The second invocation of the tftp command loads a board configuration file called   
a device tree. It is referred to by other names, including fl at device tree and device tree 
binary or dtb. You will learn more about this file in Chapter 7. For now, it is enough for 
you to know that this file contains board-specific information that the kernel requires 
in order to boot the board. This includes things such as memory size, clock speeds, 
onboard devices, buses, and Flash layout.

Next, the bootm (boot from memory image) command   is issued, to instruct U-Boot 
to boot the kernel we just loaded from the address specified by the tftp command. 
In this example of using the bootm command, we instruct U-Boot to load the kernel 
that we put at 0x600000 and pass the device tree binary (dtb) we loaded at 0xc00000 to 
the kernel. This command transfers control to the Linux kernel. Assuming that your 
kernel is properly configured, this results in booting the Linux kernel to a console     com-
mand prompt on your target board, as shown by the login prompt.

Note that the bootm command is the death knell for U-Boot. This is an important 
concept. Unlike the BIOS in a desktop PC, most embedded systems are architected 

3 This and other servers you will be using are covered in detail in Chapter 12, “Embedded Development Environment.”
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in such a way that when the Linux kernel takes control, the bootloader ceases to exist. 
The kernel claims any memory and system resources that the bootloader previously 
used. The only way to pass control back to the bootloader is to reboot the board.

One final observation is worth noting. All the serial output in Listing 2-2 up to and 
including this line is produced by the U-Boot bootloader:

Loading Device Tree to 007f9000, end 007fffff ... OK

 

The rest of the boot messages are produced by the Linux kernel. We’ll have much more 
to say about this later, but it is worth noting where U-Boot leaves off   and where the 
Linux kernel image takes over.

2.2.4 Kernel Initialization: Overview

When the Linux kernel begins   execution, it spews out numerous status messages 
during its rather comprehensive boot process. In the example being discussed here, 
the Linux kernel displayed approximately 200 printk4 lines before it issues the login 
prompt. (We omitted them from the listing to clarify the point being discussed.) List-
ing 2-3 reproduces the last several lines of output before the login prompt. The goal of 
this exercise is not to delve into the details of the kernel initialization (this is covered 
in Chapter 5, “Kernel Initialization”). The goal is to gain a high-level understanding 
of what is happening and what components are required to boot a Linux kernel  on an 
embedded system.

LISTING 2-3 Linux Final Boot Messages

...

Looking up port of RPC 100005/1 on 192.168.0.9

VFS: Mounted root (nfs filesystem).

Freeing unused kernel memory: 152k init

INIT: version 2.86 booting

...

freescale-8548cds login:

Shortly before issuing a login prompt on the serial terminal, Linux    mounts a root 
file system. In Listing 2-3, Linux goes through the steps required to mount its root 
file system remotely (via Ethernet) from an NFS5 server on a machine with the IP 

4 printk() is the function in the kernel responsible for displaying messages to the system console.

5 NFS and other required servers are covered in Chapter 12.
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address 192.168.0.9. Usually, this is your development workstation. The root file sys-
tem contains the application programs, system libraries, and utilities that make up a 
Linux system.

The important point in this discussion should not be understated: Linux requires a 
file system. Many legacy embedded operating systems did not require a file system. This 
fact is a frequent surprise to engineers making the transition from legacy embedded 
OSs to embedded Linux. A file system consists of a predefined set of system directories 
and files in a specific layout on a hard drive or other medium that the Linux kernel 
mounts as its root file system.

Note that Linux can mount a root file system from other devices. The most com-
mon, of course, is to mount a partition from a hard drive as the root file system, as is 
done on your Linux laptop or workstation. Indeed, NFS is pretty useless when you 
ship your embedded Linux widget out the door and away from your development en-
vironment. However, as you progress through this book, you will come to appreciate   
the power and flexibility of NFS root mounting as a development environment.

2.2.5 First User Space Process: init

Another important point should be made before we move on. Notice in Listing 2-3 
this line:

INIT: version 2.86 booting

Until this point, the kernel itself was executing code, performing the numerous initial-
ization steps in a context known   as kernel context. In this operational state, the kernel 
owns all system memory and operates with full authority over all system resources. The 
kernel has access to all physical memory and to all I/O subsystems. It executes code in 
kernel virtual address space, using a stack created and owned by the kernel itself.

When the Linux kernel has completed its internal initialization and mounted its 
root file system, the default behavior is to spawn an application program called init.
When the kernel starts init, it is said to be running in user space or user      space context. 
In this operational mode, the user space process has restricted access to the system and 
must use kernel system calls to request kernel services such as device and file I/O. These 
user space processes, or programs, operate in a virtual memory space picked at random6

and managed by the kernel. The kernel, in cooperation with specialized memory-
management hardware in the processor, performs virtual-to-physical address transla-
tion for the user space process. The single biggest benefit of this architecture is that an 

6 It’s not actually random, but for purposes of this discussion, it might as well be. This topic will be covered in more detail later.
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error in one process can’t trash the memory space of another. This is a common pitfall 
in legacy embedded OSs that can lead to bugs that are some of the most difficult to 
track down.

Don’t be alarmed if these concepts seem foreign. The objective of this section is to 
paint a broad picture from which you will develop more detailed knowledge as you 
progress through the book. These and other concepts are covered in great detail in later 
chapters.

2.3 Storage Considerations

One of the most challenging aspects of embedded Linux development is that most em-
bedded systems have limited physical resources. Although the Core™ 2 Duo machine 
on your desktop might have 500GB of hard drive space, it is not uncommon to find 
embedded systems with a fraction of that amount. In many cases, the hard drive typi-
cally is replaced by smaller and less expensive nonvolatile storage devices. Hard drives 
are bulky, have rotating parts, are sensitive to physical shock, and require multiple 
power supply voltages, which makes them unsuitable for many embedded systems.

2.3.1 Flash Memory

Nearly everyone is familiar with Compact Flash and SD cards used in a wide variety of 
consumer devices, such as digital cameras and PDAs (both great examples of embed-
ded systems). These modules, based on Flash memory technology, can be thought of 
as solid-state hard drives, capable of storing many megabytes—and even gigabytes—of 
data in a tiny footprint. They contain no moving parts, are relatively rugged, and oper-
ate on a single common power supply voltage.

Several manufacturers of Flash memory exist. Flash memory comes in a variety of 
electrical formats, physical packages, and capacities. It is not uncommon to see embed-
ded systems with as little as 4MB or 8MB of nonvolatile storage. More typical storage 
requirements for embedded Linux systems range from 16MB to 256MB or more. An 
increasing number of embedded Linux systems have nonvolatile storage into the giga-
byte range.

Flash memory can be written to and erased under software control. Rotational 
hard drive technology remains the fastest writable medium. Flash writing and erasing 
speeds have improved considerably over time, although Flash write    and erase time is 
still considerably slower. You must understand some fundamental differences between 
hard drive and Flash memory technology to properly use the technology.
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Flash memory is divided into relatively large erasable units, referred to as erase 
blocks. One of the defining characteristics of Flash memory is how data in Flash is 
written and erased. In a typical NOR7 Flash memory chip, data can be changed from 
a binary 1 to a binary 0 under software control using simple data writes directly to the  
cell’s address, one bit or word at a time. However, to change a bit from a 0 back to a 
1, an entire erase block must be erased using a special sequence of control instructions 
to the Flash chip.

A typical NOR Flash memory device contains many erase blocks. For example, a 
4MB Flash chip might contain 64 erase blocks of 64KB each. Flash memory is also 
available with nonuniform erase block sizes, to facilitate flexible data-storage layouts. 
These are commonly called boot block     or boot sector Flash chips. Often the bootload-
er is stored in the smaller blocks, and the kernel and other required data are stored   in 
the larger blocks. Figure 2-3 illustrates the block size layout for a typical top boot Flash.

FIGURE 2-3 Boot block Flash architecture

7 There are several types of Flash technologies. NOR Flash is one of the most commonly used in small embedded systems.
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To modify data stored in a Flash memory array, the block in which the modified 
data resides must be completely erased. Even if only 1 byte in a block needs to be 
changed, the entire block must be erased and rewritten.8 Flash block sizes  are relatively 
large compared to traditional hard-drive sector sizes. In comparison, a typical high-
performance hard drive has writable sectors of 512 or 1024 bytes. The ramifications 
of this might be obvious: Write times for updating data in Flash memory can be many 
times that of a hard drive, due in part to the relatively large quantity of data that must 
be erased and written back to the Flash for each update. In the worst case, these write 
cycles can take several seconds.

Another limitation of Flash memory   that must be considered is Flash memory cell 
write lifetime. A NOR Flash memory cell has a limited number of write cycles before 
failure. Although the number of cycles is fairly large (100,000 cycles per block is typi-
cal), it is easy to imagine a poorly designed Flash storage algorithm (or even a bug) 
that can quickly destroy Flash devices. It goes without saying that you should avoid   
configuring your system loggers to output to a Flash-based device.

2.3.2 NAND Flash

NAND Flash is a relatively     new Flash technology. When NAND Flash hit the market, 
traditional Flash memory such as that described in the preceding section was called 
NOR Flash. These distinctions relate to the internal Flash memory cell architecture. 
NAND Flash devices improve on some of the limitations of traditional (NOR) Flash 
by offering smaller block sizes, resulting in faster and more efficient writes and gener-
ally more efficient use of the Flash array.

NOR Flash devices interface to the microprocessor in a fashion similar to many mi-
croprocessor peripherals. That is, they have a parallel data and address bus that are con-
nected directly9 to the microprocessor data/address bus. Each byte or word in the Flash 
array can be individually addressed in a random fashion. In contrast, NAND devices 
are accessed serially through a complex interface that varies among vendors. NAND 
devices present an operational model more similar to that of a traditional hard drive 
and associated controller. Data is accessed in serial bursts, which are far smaller than 
NOR Flash block size. Write cycle lifetime for NAND Flash is an order of magnitude 
greater than for NOR Flash, although erase times are significantly smaller.

8 Remember, you can change a 1 to a 0 a byte at a time, but you must erase the entire block to change any bit from a 0 to a 1.

9 Directly in the logical sense. The actual circuitry may contain bus buffers or bridge devices and so on.
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In summary, NOR Flash can be directly accessed by the microprocessor, and code 
can even be executed directly out of NOR Flash. (However, for performance reasons, 
this is rarely done, and then only on systems in which resources are extremely scarce.) 
In fact, many processors cannot cache instruction accesses to Flash, as they can with 
DRAM. This further degrades execution speed. In contrast, NAND Flash is more suit-
able for bulk storage in file system format than raw binary executable code   and data 
storage.

2.3.3 Flash Usage

An embedded system designer has   many options in the layout and use of Flash mem-
ory. In the simplest of systems, in which resources are not overly constrained, raw 
binary data (perhaps compressed) can be stored on the Flash device. When booted, a 
file system image stored in Flash is read into a Linux ramdisk block device, mounted 
as a file system, and accessed only from RAM. This is often a good design choice when 
the data in Flash rarely needs to be updated. Any data that does need to be updated is 
relatively small compared to the size of the ramdisk. It is important to realize that any 
changes to files in the ramdisk are lost upon reboot or power cycle.

Figure 2-4 illustrates a common Flash memory organization that is typical of a 
simple embedded system in which nonvolatile storage requirements of dynamic data 
are small and infrequent.

FIGURE 2-4 Typical Flash memory layout
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file system image,10 which holds the root file system. Typically, the Linux kernel and 
ramdisk file system images are compressed, and the bootloader handles the decompres-
sion task during the boot cycle.

For dynamic data that needs to be saved between reboots and power cycles, another 
small area of Flash can be dedicated, or another type of nonvolatile storage11 can be 
used. This is a typical configuration for embedded systems that have requirements to 
store configuration data, as might be found in a wireless access point aimed at the con-
sumer market, for example.

2.3.4 Flash File Systems

The limitations of the simple Flash layout scheme just described can be overcome by 
using a Flash file system   to manage data on the Flash device in a manner similar to 
how data is organized on a hard drive. Early implementations of file systems for Flash 
devices consisted of a simple block device layer that emulated the 512-byte sector 
layout of a common hard drive. These simple emulation layers allowed access to data 
in file format rather than unformatted bulk storage, but they had some performance 
limitations.

One of the first enhancements to Flash file systems    was the incorporation of wear 
leveling. As discussed earlier, Flash blocks are subject to a finite write lifetime. Wear-
leveling algorithms are used to distribute writes evenly over the physical erase blocks of 
the Flash memory in order to extend the life of the Flash memory chip.

Another limitation that arises from the Flash architecture is the risk of data loss 
during a power failure or premature shutdown. Consider   that the Flash block sizes are 
relatively large and that average file sizes being written are often much smaller relative 
to the block size. You learned previously that Flash blocks must be written one block at 
a time. Therefore, to write a small 8KB file, you must erase and rewrite an entire Flash 
block, perhaps 64KB or 128KB in size; in the worst case, this can take several seconds 
to complete. This opens a significant window to risk of data loss due to power failure.

One of the more popular Flash file systems in use today is    JFFS2, or Journaling 
Flash File System 2. It has several important features aimed at improving overall per-
formance, increasing Flash lifetime, and reducing the risk of data loss in the case of 
power failure. The more significant improvements in the latest JFFS2 file system in-
clude improved wear leveling, compression and decompression to squeeze more    data 

10 We discuss ramdisk file systems in more detail in Chapter 9, “File Systems.”

11 Real-time clock modules and serial EEPROMs are often choices for nonvolatile storage of small amounts of data.
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into a given Flash size, and support for Linux hard links. This topic is covered in detail 
in Chapter 9 and in Chapter 10, “MTD Subsystem,” when we discuss the Memory 
Technology Device (MTD) subsystem.

2.3.5 Memory Space

Virtually all legacy embedded operating   systems view and manage system memory as 
a single large, flat address space. That is, a microprocessor’s address space exists from 
0 to the top of its physical address range. For example, if a microprocessor had 24 
physical address lines, its top of memory would be 16MB. Therefore, its hexadecimal 
address would range from 0x00000000 to 0x00ffffff. Hardware designs commonly 
place DRAM starting at the bottom of the range, and Flash memory from the top 
down. Unused address ranges between the top of DRAM and bottom of Flash would 
be allocated for addressing of various peripheral chips on the board. This design ap-
proach is often dictated by the choice of microprocessor. Figure 2-5 shows a typical 
memory layout for a simple embedded system.

FIGURE 2-5 Typical embedded system memory map
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In traditional embedded systems based on legacy operating systems, the OS and all 
the tasks12 had equal access rights to all resources in the system. A bug in one process 
could wipe out memory contents anywhere in the system, whether it belonged to it-
self, the OS, another task, or even a hardware register somewhere in the address space. 
Although this approach had simplicity as its most valuable characteristic, it led   to bugs 
that could be challenging to diagnose.

High-performance microprocessors   contain complex hardware engines called 
Memory Management Units (MMUs). Their purpose is to enable an operating system 
to exercise a high degree of management and control over its address space and the 
address space it allocates to processes. This control comes in two primary forms: access
rights and memory translation. Access rights  allow an operating system to assign specific 
memory-access privileges to specific tasks. Memory translation   allows an operating 
system to virtualize its address space, which has many benefits.

The Linux kernel takes advantage of these hardware MMUs to create   a virtual 
memory operating system. One of the biggest benefits of virtual memory is that it can 
make more efficient use of physical memory by presenting the appearance that the sys-
tem has more memory than is physically present. The other benefit is that the kernel 
can enforce access rights to each range of system memory that it allocates to a task or 
process, to prevent one process from errantly accessing memory or other resources that 
belong to another process or to the kernel itself.

The next section examines in more detail how this works. A tutorial on the com-
plexities of virtual memory systems is beyond the scope of this book.13 Instead, we 
examine the ramifications of a virtual memory system as it appears to an embedded 
systems developer.

2.3.6 Execution Contexts

One of the very first chores that Linux performs is to configure the hardware MMU on 
the processor and the data structures used to support it, and to enable address transla-
tion. When this step is complete, the kernel runs in its own virtual memory space. The 
virtual kernel address selected by the kernel developers       in recent Linux kernel versions 
defaults to 0xC0000000. In most architectures, this is a configurable parameter.14 If we 

12 In this discussion, the word task is used to denote any thread of execution, regardless of the mechanism used to spawn, man-
age, or schedule it.

13 Many good books cover the details of virtual memory systems. See the last section of this chapter for recommendations.

14 However, there is seldom a good reason to change it.
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looked at the kernel’s symbol table, we would find kernel symbols linked at an address 
starting with 0xC0xxxxxx. As a result, any time the kernel executes code in kernel space, 
the processor’s instruction pointer (program counter) contains values in this range.

In Linux, we refer to two distinctly separate operational contexts, based on the 
environment in which a given thread15 is executing. Threads executing entirely within 
the kernel are said to be operating in kernel context. Application programs are said to 
operate in user space context. A user space process can access only memory it owns, and 
it is required to use kernel system calls to access privileged resources such as file and 
device I/O. An example might make this more clear.

Consider an application that opens a file and issues a read request, as shown in 
Figure 2-6. The read function call begins in user space, in the C library read() func-
tion. The C library then issues a read request to the kernel. The read request results in 
a context switch from the user’s program to the kernel, to service the request for the 
file’s data. Inside the kernel, the read request results in a hard-drive access requesting 
the sectors containing the file’s data.

FIGURE 2-6 Simple file read request

15 The term thread is used here in the generic sense to indicate any sequential flow of instructions.
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Usually the hard-drive read request is issued asynchronously to the hardware itself. 
That is, the request is posted to the hardware, and when the data is ready, the hardware 
interrupts the processor. The application program waiting for the data is blocked on a 
wait queue until the data is available. Later, when the hard disk has the data ready, it 
posts a hardware interrupt. (This description is intentionally simplified for the pur-
poses of this illustration.) When the kernel receives the hardware interrupt, it suspends 
whatever process was executing and proceeds to read the waiting data from the drive.

To summarize this discussion, we have identified two general execution contexts—
user space and kernel space. When an application program executes a system call that 
results in a context switch and enters the kernel, it is executing kernel code on behalf 
of a process. You will often hear this referred to as   process context within the kernel. In 
contrast, the interrupt service routine (ISR) handling the IDE drive (or any other ISR, 
for that matter) is kernel code that is not executing on behalf of any particular process. 
This is typically called interrupt context.

Several limitations exist in this operational context, including the limitation that 
the ISR cannot block (sleep) or call any kernel functions that might result in blocking. 
For further reading on these concepts, consult the references at the end of this chapter.

2.3.7 Process Virtual Memory

When a process is spawned—for example, when      the user types ls at the Linux com-
mand prompt—the kernel allocates memory for the process and assigns a range of 
virtual-memory addresses to the process. The resulting address values bear no fixed 
relationship to those in the kernel, nor to any other running process. Furthermore, 
there is no direct correlation between the physical memory addresses on the board and 
the virtual memory as seen by the process. In fact, it is not uncommon for a process to 
occupy multiple different physical addresses in main memory during its lifetime as a 
result of paging and swapping.

Listing 2-4 is the venerable “Hello World,” modified to illustrate the concepts just 
discussed. The goal of this example is to illustrate the address space that the kernel as-
signs to the process. This code was compiled and run on an embedded   system contain-
ing 256MB of DRAM memory.
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LISTING 2-4 Hello World, Embedded Style

#include <stdio.h>

int bss_var;        /* Uninitialized global variable */

int data_var = 1;   /* Initialized global variable */

int main(int argc, char **argv)

{

  void *stack_var;            /* Local variable on the stack */

  stack_var = (void *)main;   /* Don’t let the compiler */

                              /* optimize it out */

  printf(“Hello, World! Main is executing at %p\n”, stack_var);

  printf(“This address (%p) is in our stack frame\n”, &stack_var);

  /* bss section contains uninitialized data */

  printf(“This address (%p) is in our bss section\n”, &bss_var);

  /* data section contains initializated data */

  printf(“This address (%p) is in our data section\n”, &data_var);

  return 0;

}

Listing 2-5 shows the console output that this program produces. Notice that the 
process called hello thinks it is executing somewhere in high RAM just above the 
256MB boundary (0x10000418). Notice also that the stack address is roughly halfway 
into a 32-bit address space, well beyond our 256MB of RAM (0x7ff8ebb0). How can 
this be? DRAM is usually contiguous in systems like these. To the casual observer, it 
appears that we have nearly 2GB of DRAM available for our use. These virtual ad-
dresses were assigned by the kernel and are backed by physical RAM somewhere within 
the 256MB   range of available memory on our embedded board.

LISTING 2-5 Hello Output

root@192.168.4.9:~# ./hello

Hello, World! Main is executing at 0x10000418

This address (0x7ff8ebb0) is in our stack frame

This address (0x10010a1c) is in our bss section

This address (0x10010a18) is in our data section

root@192.168.4.9:~#
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One of the characteristics of a virtual memory system is that when available physi-
cal RAM goes below a designated threshold, the kernel can swap out memory pages 
to a bulk storage medium, usually a hard disk drive (if available). The kernel examines 
its active memory regions, determines which areas in memory have been least recently 
used, and swaps out these memory regions to disk to free them for the current pro-
cess. Developers of embedded systems often disable swapping on embedded systems 
because of performance or resource constraints. For example, it would be ridiculous in 
most cases to use a relatively slow Flash memory device with limited write life cycles as 
a swap device. Without a swap device, you must carefully design your applications to 
exist within the limitations      of your available physical memory.

2.3.8 Cross-Development Environment

Before we can develop applications    and device drivers for an embedded system, we 
need a set of tools (compiler, utilities, and so on) that will generate binary executables 
in the proper format for the target system. Consider a simple application written on 
your desktop PC, such as the traditional “Hello World” example. After you have cre-
ated the source code on your desktop, you invoke the compiler that came with your 
desktop system (usually GNU gcc) to generate a binary executable image. That image 
file is properly formatted to execute on the machine on which it was compiled. This 
is referred to as   native compilation. In other words, using compilers on your desktop 
system, you generate code that will execute on that desktop system.

Note that native does not imply an architecture. Indeed, if you have a toolchain 
that runs on your target board, you can natively compile applications for your target’s 
architecture. In fact, one great way to stress-test a new embedded kernel and custom 
board is to repeatedly compile the Linux kernel on it.

Developing software in a cross-development environment requires that the compil-
er running on your development host output a binary executable that is incompatible 
with the desktop development workstation on which it was compiled. The primary 
reason these tools exist is that it is often impractical or impossible to develop and com-
pile software natively on the embedded system because of resource (typically memory 
and CPU horsepower) constraints.

Numerous hidden traps to this approach often catch the unwary newcomer to em-
bedded development. When a given program is compiled, the compiler often knows 
how to find include files, and where to find libraries that might be required for the 
compilation to succeed. To illustrate these concepts, let’s look again at the “Hello 
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World” program. The example reproduced in Listing 2-4 was compiled with the fol-
lowing command line:

gcc -Wall -o hello hello.c

In Listing 2-4, we see an include file, stdio.h. This file does not reside in the same 
directory as the hello.c file specified on the gcc command line. So how does the 
compiler find them? Also, the printf() function is not defined in the file hello.c.
Therefore, when hello.c is compiled, it will contain an unresolved   reference for this 
symbol. How does the linker resolve this reference at link time?

Compilers have built-in defaults for locating include files. When the reference to 
the include file is encountered, the compiler searches its default list of locations to find 
the file. A similar process exists for the linker to resolve the reference to the external 
symbol printf(). The linker knows by default to search the C library (libc-*) for 
unresolved references, and it knows where to find the reference on your system. Again, 
this default behavior is built into the toolchain.

Now assume you are building an application targeting a Power Architecture embed-
ded system. Obviously, you will need a cross-compiler to generate binary executables 
compatible with the Power Architecture processor. If you issue a similar compilation 
command using your cross-compiler to compile the preceding hello.c example, it is 
possible that your binary executable could end up being accidentally linked with an 
x86 version of the C library on your development system, attempting to resolve the 
reference to printf(). Of course, the results of running this bogus hybrid executable, 
containing a mix of Power Architecture and x86 binary instructions,16 are predictable: 
crash!

The solution to this predicament   is to instruct the cross-compiler to look in non-
standard locations to pick up the header files and target specific libraries. We cover 
this topic in much more detail in Chapter 12. The intent of this example was to il-
lustrate the differences between a native development environment and a development 
environment targeted at cross-compilation for embedded systems. This is but one of 
the complexities of a cross-development environment. The same issue and solutions 
apply to cross-debugging, as you will see starting in Chapter 14, “Kernel Debugging 
Techniques.” A proper cross-development environment is crucial to your success and 
involves much more than just compilers, as you will see in Chapter 12.

16 In fact, it wouldn’t even compile or link, much less run. We’re just trying to illustrate the point!
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2.4 Embedded Linux Distributions

What exactly is a Linux distribution? After  the Linux kernel boots, it expects to find 
and mount a root file system. When a suitable root file system has been mounted, start-
up scripts launch a number of programs and utilities that the system requires. These 
programs often invoke other programs to do specific tasks, such as spawn a login shell, 
initialize network interfaces, and launch a user’s applications. Each of these programs 
has specific requirements (often called dependencies)   that must be satisfied by other 
components in the system. Most Linux application programs depend on one or more 
system libraries. Other programs require configuration and log files, and so on. In sum-
mary, even a small embedded Linux system needs many dozens of files populated in an 
appropriate directory structure on a root file system.

Full-blown desktop systems have many thousands of files on the root file system. 
These files come from packages that    are usually grouped by functionality. The pack-
ages typically are installed and managed using a package manager. Red Hat’s Package 
Manager (rpm) is a popular example and is widely used to install, remove, and update 
packages on a Linux system. If your Linux workstation is based on Red Hat, including 
the Fedora series, typing rpm -qa at a command prompt lists all the packages installed 
on your system. If you are using a distribution based on Debian, such as Ubuntu, typ-
ing dpkg -l has the same result.

A package can consist of many files; indeed, some packages contain hundreds of 
files. A complete Linux distribution can contain hundreds or even thousands of pack-
ages. These are some examples of packages you might find on an embedded Linux 
distribution, and their purpose:

 • initscripts contains basic system startup and shutdown scripts.

 • apache implements the popular Apache web server.

 • telnet-server contains files necessary to implement telnet server functional-
ity, which allows you to establish telnet sessions to your embedded target.

 • glibc implements the Standard C library.

 • busybox contains compact versions of dozens of popular command-line utili-
ties commonly found on UNIX/Linux systems.17

This is the purpose   of a Linux distribution, as the term has come to be used. A typi-
cal Linux distribution comes with several CD-ROMs full of useful programs, libraries, 

17 This package is important enough to warrant its own chapter. Chapter 11, “BusyBox,” covers BusyBox in detail.
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tools, utilities, and documentation. Installation of a distribution typically leaves the 
user with a fully functional system based on a reasonable set of default configura-
tion options, which   can be tailored to suit a particular set of requirements. You may 
be familiar with one of the popular desktop Linux distributions, such as Red Hat or 
Ubuntu.

A Linux distribution for embedded targets differs in several significant ways. First, 
the executable target binaries   from an embedded distribution will not run on your 
PC, but are targeted to the architecture and processor of your embedded system. (Of 
course, if your embedded Linux distribution targets the x86 architecture, this state-
ment does not necessarily apply.) A desktop Linux distribution tends to have many 
GUI tools aimed at the typical desktop user, such as fancy graphical clocks, calcula-
tors, personal time-management tools, e-mail clients, and more. An embedded Linux 
distribution typically omits these components in favor of specialized tools aimed at 
developers, such as memory analysis tools, remote debug facilities, and many more.

Another significant difference between desktop and embedded Linux distributions 
is that an embedded distribution typically    contains cross tools, as opposed to native 
tools. For example, the gcc toolchain that ships with an embedded Linux distribu-
tion runs on your x86 desktop PC but produces binary code that runs on your target 
system, often a non-x86 architecture. Many of the other tools in the toolchain are 
similarly configured: They run on the development host (usually an x86 PC) but are 
designed to emit or manipulate objects targeted at foreign architectures such as ARM 
or Power Architecture.

2.4.1 Commercial Linux Distributions

Several vendors of    commercial embedded Linux distributions exist. The leading 
embedded Linux vendors have been shipping embedded Linux distributions for 
years. It is relatively easy to find information on the leading embedded Linux ven-
dors. A quick Internet search for “embedded Linux distributions” points to several 
compilations. One particularly good compilation can be found at http://elinux.org/
Embedded_Linux_Distributions.

2.4.2 Do-It-Yourself Linux Distributions

You can choose to assemble all the   components you need for your embedded project 
on your own. You have to decide whether the risks are worth the effort. If you find 
yourself involved with embedded Linux purely for the pleasure of it, such as for a 
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hobby or college project, this approach might be a good one. However, plan to spend a 
significant amount of time assembling all the tools and utilities your project needs and 
making sure they all interoperate.

For starters, you need a toolchain. gcc and binutils are available from www.fsf.org 
and other mirrors around the world. Both are required to compile the kernel and user-
space applications for your project. These are distributed primarily in source code form, 
and you must compile the tools to suit your particular cross-development environment. 
Patches are often required to the most recent “stable” source trees of these utilities, 
especially when they will be used beyond the x86/IA32 architecture. The patches usu-
ally can be found at the same location as the base packages. The challenge is to discover 
which collections of patches you need for your particular problem or architecture.

As soon as your toolchain is working, you need to download and compile many ap-
plication packages along with the dependencies they require. This can be a formidable 
challenge, since many packages even today do not lend themselves to cross-compiling. 
Many still have build or other issues when moved away from their native x86 environ-
ment where they were developed.

Beyond these challenges, you    might want to assemble a competent development 
environment, containing tools such as graphical debuggers, memory analysis tools, 
system tracing and profiling tools, and more. You can see from this discussion that 
building your own embedded Linux distribution can be quite challenging.

2.5 Summary

This chapter covered many subjects in a broad fashion. Now you have a proper per-
spective for the material to follow. In later chapters, this perspective will be expanded 
to help you develop the skills and knowledge required to be successful in your next 
embedded project.

• Embedded systems share some common attributes. Often resources are lim-
ited, and user interfaces are simple or nonexistent and are often designed for a 
specific purpose.

• The bootloader is a critical component of a typical embedded system. If your 
embedded system is based on a custom-designed board, you must provide a 
bootloader as part of your design. Often this is just a porting effort of an exist-
ing bootloader.
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• Several software components are required to boot a custom board, including 
the bootloader and the kernel and file system image.

• Flash memory is widely used as a storage medium in embedded Linux systems. 
This chapter introduced the concept of Flash memory. Chapters 9 and 10 
expand on this coverage.

• An application program, also called a process, lives in its own virtual memory 
space assigned by the kernel. Application programs are said to run in user 
space.

• A properly equipped and configured cross-development environment is crucial 
to the embedded developer. Chapter 12 is devoted to this important subject.

• You need an embedded Linux distribution to begin developing your embed-
ded target. Embedded distributions contain many components, compiled and 
optimized for your chosen architecture.

2.5.1 Suggestions for Additional Reading

Linux Kernel Development, 3rd Edition
Robert Love
Addison-Wesley, 2010

Understanding the Linux Kernel
Daniel P. Bovet and Marco Cesati
O’Reilly & Associates, Inc., 2002

Understanding the Linux Virtual Memory Manager
Bruce Perens
Prentice Hall, 2004
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This chapter presents some basic information to help you navigate the huge 
array of embedded processor choices. We look at some of the processors 

on the market and the types of features they contain. Stand-alone processors 
are highlighted first. These tend to be the most powerful processors and require 
external chipsets to form complete systems. Next we present some of the many 
integrated processors that are supported under Linux. Finally, we look at some 
of the common hardware platforms in use today.

Dozens of embedded processors are available to choose from in a given embed-
ded design. For the purposes of this chapter, we limit the discussion to those 
that contain a hardware memory-management unit and, of course, to those that 
are supported under Linux. One of the fundamental architectural design aspects 
of Linux is that it is a virtual memory operating system.1 Employing Linux on 
a processor that does not contain an MMU gives up one of the more valuable 
architectural features of the kernel and is beyond the scope of this book.

3.1 Stand-Alone Processors

Stand-alone processors   are processor chips that are dedicated exclusively to the 
processing function. As opposed to integrated processors, stand-alone processors 
require additional support circuitry for their basic operation. In many cases, this 
means a chipset or custom logic surrounding the processor to handle functions such 
as DRAM controller, system bus addressing configuration, and external peripheral 
devices such as keyboard controllers and serial ports. Stand-alone processors often 
offer the highest overall CPU performance.

Numerous processors exist in both 32-bit and 64-bit implementations2 that have 
seen widespread use in embedded systems. These include the IBM Power Architec-
ture 970/970FX, the Intel Pentium M, and the Freescale MPC74xx Host Processors, 

1 Linux supports some basic processors that do not contain MMUs, but this is not considered a mainstream use of Linux.

2 32-bit and 64-bit refer to the native width of the processor’s main facilities, such as its execution units, register file, and 
address bus.
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among others. The Intel Atom family of processors has found a niche in embedded 
applications.

The following sections describe processors from each of the major manufacturers 
of stand-alone processors. These processors are well supported under Linux and have 
been used in many embedded Linux designs.

3.1.1 IBM 970FX

The IBM 970FX processor    core is a high-performance 64-bit-capable stand-alone pro-
cessor. The 970FX is a superscalar architecture. This means that the core can fetch, is-
sue, and obtain results from more than one instruction at a time. This is done through 
a pipelining architecture, which provides the effect of multiple streams of instruction 
simultaneously under ideal circumstances. The IBM 970FX contains up to 25 stages 
of pipelining, depending on the instruction stream and operations contained therein.

Some of the key features of the 970FX are as follows:

• A 64-bit implementation of the popular Power Architecture

• Deeply pipelined design, for very-high-performance computing applications

• Static and dynamic power-management features

• Multiple sleep modes, to minimize power requirements and maximize battery 
life

• Dynamically adjustable clock rates, supporting lower-power modes

• Optimized for high-performance, low-latency storage management

The IBM 970FX has been incorporated into a number of high-end server blades 
and computing platforms, including IBM’s own    Blade Server platform.

3.1.2 Intel Pentium M

Certainly one of the most popular    architectures, x86 in both 32- and 64-bit flavors has 
been employed for embedded devices in a variety of applications. In the most com-
mon form, these platforms are based on a variety of commercial off-the-shelf (COTS) 
hardware implementations. Numerous manufacturers supply IA32/64 single-board 
computers and complete platforms in a variety of form factors. Section 3.2 discusses 
the more common platforms in use today.

The Intel Pentium M has been used in a wide variety of laptop computers and has 
found a niche in embedded products. Like the IBM 970FX processor, the Pentium M 
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is a superscalar architecture. These characteristics make it attractive in embedded ap-
plications:

• The Pentium M is based on the popular x86 architecture and thus is widely 
supported by a large ecosystem of hardware and software vendors.

• It consumes less power than other x86 processors.

• Advanced power-management features enable low-power operating modes and 
multiple sleep modes.

• Dynamic clock speed capability enhances battery-powered operations such as 
standby.

• On-chip thermal monitoring enables automatic transition to lower power 
modes to reduce power consumption in overtemperature conditions.

• Multiple frequency and voltage operating points (dynamically selectable) are 
designed to maximize battery life in portable equipment.

Many of these features are especially useful for embedded applications. It is not 
uncommon for embedded products to require portable or battery-powered configura-
tions. The Pentium M has enjoyed popularity in this application   space because of its 
power- and thermal-management features.

3.1.3 Intel Atom™

The Intel Atom™ has enjoyed    success in Netbooks and a range of embedded systems. 
The Intel Atom™ family of processors features low power consumption and binary 
compatibility with older 32-bit Intel processors, enabling a wide range of off-the-shelf 
software solutions. Like the other stand-alone processors described in this section, the 
Atom™ is paired with companion chipset(s) to build a complete solution. The N270 
and Z5xx series of processors have been widely used in low-power products. The au-
thor’s Dell Mini 10, on which portions of this second-edition manuscript were written, 
contains the Intel Atom™ Z530 processor.

More information about Intel Atom™ processors    can be found via the URL given 
in the last section of this chapter.

3.1.4 Freescale MPC7448

The Freescale MPC7448 contains   what is referred to as a fourth-generation Power 
Architecture core, commonly called G4.3 This high-performance 32-bit processor is 

3 Freescale literature now refers to the G4 core as the e600 core.
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commonly found in networking and telecommunications applications. Several compa-
nies manufacture blades that conform to ATCA, an industry-standard platform speci-
fication, including this and other similar stand-alone Freescale processors. Section 3.3 
examines these platforms.

The MPC7448 has enjoyed popularity in a wide variety of signal-processing and 
networking applications because of its advanced feature set:

• Operating clock rates in excess of 1.5GHz

• 1MB onboard L2 cache

• Advanced power-management capabilities, including multiple sleep modes

• Advanced AltiVec vector-execution unit

• Voltage scaling for reduced-power configurations

The MPC7448 contains a Freescale technology called   AltiVec to enable very fast 
algorithmic computations and other data-crunching applications. The AltiVec unit 
consists of a register file containing 32 very wide (128-bit) registers. Each value within 
one of these AltiVec registers can be considered a vector of multiple elements. AltiVec 
defines a set of instructions to manipulate this vector data effectively in parallel with 
core CPU instruction processing. AltiVec operations include such computations as 
sum-across, multiply-sum, simultaneous data distribute (store), and data gather (load) 
instructions.

Programmers have used the AltiVec hardware to enable very fast software computa-
tions commonly found in signal-processing and network elements. Examples include 
fast Fourier Transform, digital signal processing such as filtering, MPEG video encod-
ing and decoding, and fast generation of encryption protocols such as DES, MD5, and 
SHA1.

Other chips in the Freescale lineup    of stand-alone processors include the MPC7410, 
MPC7445, MPC7447, MPC745x, and MPC7xx family.

3.1.5 Companion Chipsets

Stand-alone processors     such as those just described require support logic to connect to 
and enable external peripheral devices such as main system memory (DRAM), ROM 
or Flash memory, system buses such as PCI, and other peripherals, such as keyboard 
controllers, serial ports, IDE interfaces, and the like. This support logic often is ac-
complished by companion chipsets, which may even be purpose-designed specifically 
for a family of processors.
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For example, the Pentium M is supported by one such chipset, called the 855GM. 
The 855GM chipset is the primary interface to graphics and memory—thus the suffix 
GM. The 855GM has been optimized as a companion to the Pentium M. Figure 3-1 
illustrates the relationship between the processor and chipsets in this type of hardware 
design.

FIGURE 3-1 Processor/chipset relationship

Note the terminology that has become common for describing these chipsets. The 
Intel 855GM is an example of what is commonly referred to as    a northbridge chip 
because it is directly connected to the processor’s high-speed front-side bus (FSB). An-
other companion chip that provides I/O and PCI bus connectivity is similarly referred 
to as the   southbridge chip because of its position in the architecture. The southbridge 
chip (actually, an I/O controller) in these hardware architectures is responsible for pro-
viding interfaces such as those shown in Figure 3-1, including Ethernet, USB, IDE, 
audio, keyboard, and mouse controllers.

On the Power Architecture side, the Tundra Tsi110 Host Bridge for Power Ar-
chitecture is an example of a chipset that supports the stand-alone Power Architec-
ture processors. The Tsi110 supports several interface functions for many common 
stand-alone Power Architecture processors. The Tundra chip   supports the Freescale 
MPC74xx and the IBM PPC 750xx family of processors. These processors can use the 
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Tundra chip to provide direct interfaces to the following peripherals:

• Dual data rate (DDR) DRAM, integrated memory controller

• Ethernet (the Tundra provides four Gigabit Ethernet ports)

• PCI Express (supports two PCI Express ports)

• PCI/X (PCI 2.3, PCI-X, and Compact PCI [cPCI])

• Serial ports

• I2C

• Programmable interrupt controller

• Parallel port

Many manufacturers of chipsets exist, including VIA Technologies, Marvell, Tun-
dra (now IDT), nVidia, Intel, and others. Marvell and Tundra primarily serve the 
Power Architecture market, whereas the others specialize in Intel architectures. Hard-
ware designs based on one of the many stand-alone processors, such as Intel x86, IBM, 
or Freescale Power Architecture, need to have a companion chipset to interface with 
system devices.

One of the advantages    of Linux as an embedded OS is rapid support of new chip-
sets. Linux currently supports the chipsets mentioned here, as well as many others. 
Consult the Linux source code and configuration utility for information on your cho-
sen chipset.

3.2 Integrated Processors: Systems on Chip

The preceding section highlighted stand-alone processors. Although they are used for 
many applications, including some high-horsepower processing engines, the vast ma-
jority of smaller embedded systems employ   some type of integrated processor, or sys-
tem on chip (SOC). Scores of SOCs exist to choose from. This section examines a few 
from the industry leaders and looks at some of the features that set each group apart.

Several major processor architectures exist, and each architecture has examples of 
integrated SOCs. Power Architecture has been a traditional leader in many network-
ing- and telecommunications-related embedded applications, and MIPS may have the 
market lead in lower-end consumer-grade equipment.4 ARM is used in many cellular 
phones. These architectures and, of course, IA32/64 represent the major architectures 

4 These are the author’s opinions and are based on market observation, not scientific data.
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in widespread use in embedded Linux systems. However, as you will see in Chapter 4, 
“The Linux Kernel: A Different Perspective,” Linux supports more than 20 different 
hardware architectures today.

3.2.1 Power Architecture

Power Architecture is the modern term that refers to the family of technology and 
products conforming   to the various versions of the Power Architecture Instruction 
Set Architecture. Many good documents describe Power Architecture in great detail. 
Consult the last section of this chapter as a starting point.

Power Architecture processors have found their way into embedded products of 
every description. From automotive, consumer, and networking applications to the 
largest data and telecommunications switches, Power Architecture is one of the most 
popular and successful architectures for embedded applications. Because of this popu-
larity, there exists a large array of hardware and software solutions from numerous 
manufacturers targeted at Power Architecture.

3.2.2 Freescale Power Architecture

Freescale Semiconductor   has a large range of Power Architecture processors with in-
tegrated peripherals. Freescale Power Architecture processors have enjoyed enormous 
success in the networking market segment. This lineup of processors has wide appeal in 
a large variety of network equipment, from the low end to the high end of the product 
space.

By anyone’s measure, Freescale has enjoyed tremendous success in the embedded 
market. Part of this success goes as far back as the venerable 68K family of products, 
which still capture market share today in the form of Coldfire processors. More re-
cently, Freescale has enjoyed success with its PowerQUICC product  line. The Power-
QUICC architecture has been shipping for more than a decade. It is based on a Power 
Architecture core of a particular version integrated with a QUICC engine (also called 
a communications processor module or CPM in the Freescale literature). The QUICC 
engine is an independent RISC processor designed to offload the communications 
processing from the main Power Architecture core, thus freeing the Power Architecture 
core to focus on control and management applications. The QUICC engine is a com-
plex but highly flexible communications peripheral controller.
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In its current incarnation, PowerQUICC encompasses five general groups. Al-
though somewhat dated, the PowerQUICC I family (8xx) lives on. PowerQUICC 
II (82xx) is still quite popular, as is PowerQUICC II Pro (83xx). PowerQUICC III 
(85xx) is hugely popular in networking and other gear.

PowerQUICC III gave rise to the new   QorIQ family of processors, which employ 
the high-performance e500 core in single-core and multicore implementations. QorIQ 
processors promise to be market-leading multicore processing engines with powerful 
features that make them suitable for high-speed networking and other     commercial and 
industrial applications.

3.2.3 Freescale PowerQUICC I

The PowerQUICC I family   includes the original Power Architecture-based Power-
QUICC implementations and consists of the MPC8xx family of processors. These in-
tegrated communications processors operate at 50 to 133MHz and feature the embed-
ded Power Architecture 8xx core. The PowerQUICC I family has been used for ATM 
and Ethernet edge devices, such as routers for the small office/home office (SOHO) 
market, residential gateways, ADSL and cable modems, and similar applications.

The CPM or QUICC engine incorporates two unique and powerful communi-
cations controllers. The   Serial Communication Controller (SCC) is a flexible serial 
interface that can implement many serial-based communications protocols, including 
Ethernet, HDLC/SDLC, AppleTalk, synchronous and asynchronous UARTs, IrDA, 
and other bitstream data.

The Serial Management Controller    (SMC) is a module capable of similar serial-
communications protocols. It includes support for ISDN, serial UART, and SPI pro-
tocols.

Using a combination of these SCCs and SMCs, you can create flexible I/O com-
binations. An internal time-division multiplexer even allows these interfaces to imple-
ment channelized communications such as T1 and E1 I/O.

Table 3-1 summarizes a small sampling of the PowerQUICC I product line.
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TABLE 3-1 Freescale PowerQUICC I Highlights

Feature MPC850 MPC860 MPC875 MPC885

Core PPC 8xx PPC 8xx PPC 8xx PPC 8xx

Clock rates Up to 80MHz Up to 80MHz Up to 133MHz Up to 133MHz

DRAM controller Yes Yes Yes Yes

USB Yes No Yes Yes

SPI controller Yes Yes Yes Yes

I2C controller Yes Yes Yes Yes

SCC controllers 2 4 1 3

SMC controllers 2 2 1 1

Security engine No No Yes Yes

Dedicated Fast Ethernet controller      No No 2 2

3.2.4 Freescale PowerQUICC II

The next step up in the Freescale Power Architecture product   line is PowerQUICC 
II. PowerQUICC II incorporates the company’s G2 Power Architecture core derived 
from the 603e embedded Power Architecture core. These integrated communications 
processors operate at 133 to 450MHz and feature multiple 10/100Mbps Ethernet 
interfaces, security engines, ATM and PCI support, and more. The PowerQUICC II 
encompasses the MPC82xx products.

PowerQUICC II adds two new types of controllers to the QUICC engine. The 
FCC is a full-duplex fast serial communications controller. The FCC supports high-
speed communications such as 100Mbps Ethernet and T3/E3 up to 45Mbps. The 
MCC is a multichannel controller capable of 128KB 64KB channelized data.

Table 3-2 summarizes the highlights of selected PowerQUICC II processors.

TABLE 3-2 Freescale PowerQUICC II Highlights

Feature MPC8250 MPC8260 MPC8272 MPC8280

Core G2/603e G2/603e G2/603e G2/603e

Clock rates 150 to 200MHz 100 to 300MHz 266 to 400MHz 266 to 400MHz

DRAM controller Yes Yes Yes Yes

USB No No Yes Via SCC4

SPI controller Yes Yes Yes Yes

I2C controller Yes Yes Yes Yes

SCC controllers 4 4 3 4
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TABLE 3-2 Continued

Feature MPC8250 MPC8260 MPC8272 MPC8280

SMC controllers 2 2 2 2

FCC controllers 3 3 2 3

MCC controllers      1 2 0 2

3.2.5 PowerQUICC II Pro

Based on the Freescale Power Architecture   e300 core (evolved from the G2/603e), 
the PowerQUICC II Pro family operates at 266 to 667MHz and features support for 
Gigabit Ethernet, DDR SDRAM controllers, PCI, high-speed USB, security accelera-
tion, and more. These are the MPC83xx family of processors. The PowerQUICC II 
and PowerQUICC II Pro families of processors have been designed into a wide variety 
of equipment, such as LAN and WAN switches, hubs and gateways, PBX systems, and 
many other systems with similar complexity and performance requirements.

The PowerQUICC II Pro contains three family members without the QUICC 
engine and two that are based on an updated version of the QUICC engine. The 
MPC8358E and MPC8360E both add a new Universal Communications Controller, 
which supports a variety of protocols.

Table 3-3 summarizes the highlights of selected members of the PowerQUICC II 
Pro family.

TABLE 3-3 Freescale PowerQUICC II Pro Highlights

Feature MPC8343E MPC8347E MPC8349E MPC8360E

Core e300 e300 e300 e300

Clock rates 266 to 400MHz 266 to 667MHz 400 to 667MHz 266 to 667MHz

DRAM controller Y-DDR Y-DDR Y-DDR Y-DDR

USB Yes 2 2 Yes

SPI controller Yes Yes Yes Yes

I2C controller 2 2 2 2

Ethernet 10/100/1000 2 2 2 Via UCC

UART 2 2 2 2

PCI controller Yes Yes Yes Yes

Security engine Yes Yes Yes Yes

MCC 0 0 0 1

UCC      0 0 0 8
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3.2.6 Freescale PowerQUICC III

At the top of the PowerQUICC family    are the PowerQUICC III processors. These 
operate between 600MHz and 1.5GHz. They are based on the e500 core and sup-
port Gigabit Ethernet, DDR SDRAM, RapidIO, PCI and PCI/X, ATM, HDLC, 
and more. This family incorporates the MPC85xx product line. These processors have 
found their way into high-end products such as wireless base station controllers, opti-
cal edge switches, central office switches, and similar equipment.

Table 3-4 highlights some of the PowerQUICC III family members.

TABLE 3-4 Freescale PowerQUICC III Highlights

Feature MPC8540 MPC8548E MPC8555E MPC8560

Core e500 e500 e500 e500

Clock rates Up to 1.0GHz Up to 1.5GHz Up to 1.0GHz Up to 1.0GHz

DRAM controller Y-DDR Y-DDR Y-DDR Y-DDR

USB No No Via SCC No

SPI controller No No Yes Yes

I2C controller Yes Yes Yes Yes

Ethernet 10/100 1 Via Gigabit Ethernet Via SCC Via SCC

Gigabit Ethernet 2 4 2 2

UART 2 2 2 Via SCC

PCI controller PCI/PCI-X PCI/PCI-X PCI PCI/PCI-X

RapidIO Yes Yes No Yes

Security engine No Yes Yes No

SCC — — 3 4

FCC — — 2 3

SMC — — 2 0

MCC      — — 0 2

3.2.7 Freescale QorIQ™

Pronounced “core eye queue,” QorIQ is Freescale’s newest technology based on Power 
Architecture. Many   chips in the QorIQ family are multicore processors based on the 
e500 and e500mc cores. Freescale currently describes three platforms in the QorIQ 
family on its public website.5 That information is summarized here.

5 www.freescale.com/QorIQ
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The P1 series includes the P1011/P1020 and the P1013/P1022. These processors 
contain the e500 Power Architecture      core, and each has a specialized set of peripherals 
aimed at the networking, communications, and control plane applications. They have 
one or two cores, and they have a remarkably low power profile capable of roughly 3.5 
watts. Table 3-5 summarizes the major highlights of the P1 series.

TABLE 3-5 Freescale QorIQ P1 Series Highlights

Feature P1011 P1020 P1013 P1022

Core e500 e500 e500 e500

Clock rates Up to 800MHz Up to 800MHz Up to 1055MHz Up to 1055MHz

Number of cores 1 2 1 2

USB 2.0 2.0 2.0 2.0

SPI controller Yes Yes Yes Yes

I2C controller Yes Yes Yes Yes

Ethernet 3 × Gigabit Ethernet 3 × Gigabit Ethernet 2 × Gigabit Ethernet 2 × Gigabit Ethernet

DUART 2 2 2 2

PCI 2 × PCI Express 2 × PCI Express 3 × PCI Express 3 × PCI Express

SATA — — 2 × SATA 2 × SATA

Security engine Yes Yes Yes Yes

SD/MMC Yes Yes Yes Yes

The P2 series consists of the P2010 and P2020. This series also contains one or two cores. 

They offer a higher level of   performance than the P1 series, with core speeds up to 1.2 GHz, 

and they have larger cache arrays. They have typical power requirements in the 6-watt range. 

Table 3-6 lists the highlights of the P2 series.

TABLE 3-6 Freescale QorIQ P2 Series Highlights

Feature P2010 P2020

Core e500 e500

Core speed Up to 1.2GHz Up to 1.2GHz

Number of cores 1 2

USB 2.0 2.0

SPI controller Yes Yes

I2C controller Yes Yes

Ethernet 3 × Gigabit Ethernet 3 × Gigabit Ethernet

DUART 2 2

PCI 3 × PCI Express 3 × PCI Express
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TABLE 3-6 Continued

Feature P2010 P2020

Serial RapidIO 2 × SRIO 2 × SRIO

Security engine Optional Optional

SD/MMC Yes Yes

The P4 series consists of the P4040 and P4080. This series has processors up to eight 

cores, and it is based on a special   multicore optimized e500 core called e500mc. These cores 

have hardware support for a hypervisor, private back-side caches, and floating point support. 

Unique to this family is the Data Path Acceleration Architecture (DPAA) for very-high-speed 

data plane applications. This family of processors also has enhanced debug and tracing capa-

bilities. Table 3-7 shows the highlights from the P4 series.

TABLE 3-7 Freescale QorIQ P4 Series Highlights

Feature P4040 P4080

Core e500mc e500mc

Core speed Up to 1.5GHz Up to 1.5GHz

Number of cores 4 8

USB 2 × 2.0 2 × 2.0

SPI controller Yes Yes

I2C controller Yes Yes

Ethernet 8 × 10/100/1000 8 × 10/100/1000

10 Gigabit Ethernet 2  —

DUART 2 2

PCI 3 × PCI Express V2 3 × PCI Express V2

Serial RapidIO 2 2

Security engine Yes Yes

SD/MMC Yes Yes

3.2.8 AMCC Power Architecture

Some of the examples later   in this book are based on the AMCC Power Architecture 
440EP Embedded Processor. The 440EP is a popular integrated processor found in 
many networking and communications products. The following list highlights some 
of the features     of the 440EP:
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• On-chip dual data rate (DDR) SDRAM controller

• Integrated NAND Flash controller

• PCI bus interface

• Dual 10/100Mbps Ethernet ports

• On-chip USB 2.0 interface

• Up to four user-configurable serial ports

• Dual I2C controllers

• Programmable Interrupt Controller

• Serial Peripheral Interface (SPI) controller

 • Programmable timers

• JTAG interface for debugging

This is indeed a complete SOC. Figure 3-2 is a block diagram of the AMCC Power 
Architecture 440EP Embedded Processor. With the addition of memory chips and 
physical I/O hardware, a complete high-end embedded system can be built around this 
integrated microprocessor with minimal interface circuitry.

Courtesy AMCC Corporation

FIGURE 3-2 AMCC PPC 440EP Embedded Processor
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Many manufacturers offer reference hardware platforms to enable a developer to 
explore the capabilities of the processor or other hardware. The examples in Chapter 
14, “Kernel Debugging Techniques,” and Chapter 15, “Debugging Embedded Linux 
Applications,” were executed on the AMCC Yosemite board, which    is the company’s 
reference platform containing the 440EP, shown in Figure 3-2.

Numerous product configurations are available with Power Architecture processors. 
As shown in Figure 3-2, the AMCC 440EP contains sufficient I/O interfaces for many 
common products, with very little additional circuitry. Because this processor contains 
an integrated floating-point unit (FPU), it is ideally suited for products such as net-
work-attached imaging systems, general industrial control, and networking equipment.

AMCC’s Power Architecture product lineup includes several configurations pow-
ered by two proven cores. Its 405 core products are available in configurations with and 
without Ethernet controllers. All 405 core   configurations include integrated SDRAM 
controllers, dual UARTs for serial ports, I2C for low-level onboard  management com-
munications, general-purpose I/O pins, and integral timers. The AMCC 405 core in-
tegrated processors provide economical performance on a proven core for a wide range 
of applications that do not require a hardware FPU.

The AMCC 440-based core products raise the performance level and add periph-
erals. The 440EP featured in some of our examples includes a hardware FPU. The 
440GX adds two triple-speed 10/100/1000Mbps Ethernet interfaces (in addition to 
the two 10/100Mbps Ethernet ports) and TCP/IP hardware acceleration for high-
performance networking applications. The 440SP adds hardware acceleration for 
RAID 5/6 applications. All these processors have mature Linux support. Table 3-8 
summarizes the highlights of the AMCC 405xx family.

TABLE 3-8 AMCC Power Architecture 405xx Highlights

Feature 405CR 405EP 405GP 405GPr

Core PPC 405 PPC 405 PPC 405 PPC 405

Core speeds 133 to 266MHz 133 to 333MHz 133 to 266MHz 266 to 400MHz

DRAM controller SDRAM/133 SDRAM/133 SDRAM/133 SDRAM/133

Ethernet 10/100 No 2 1 1

GPIO lines 23 32 24 24

UARTs 2 2 2 2

DMA controller 4 channel 4 channel 4 channel 4 channel

I2C controller Yes Yes Yes Yes

PCI host controller No Yes Yes Yes

Interrupt controller Yes Yes Yes Yes

See the AMCC website, www.amcc.com/embedded, for complete details.
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Table 3-9 summarizes     the features of the AMCC 440xx family of processors.

TABLE 3-9 AMCC Power Architecture 440xx Highlights

Feature 440EP 440GP 440GX 440SP

Core PPC 440 PPC 440 PPC 440 PPC 440

Core speeds 333 to 667MHz 400 to 500MHz 533 to 800MHz 533 to 667MHz

DRAM controller DDR DDR  DDR DDR

Ethernet 10/100 2 2 2 Via Gigabit Ethernet

Gigabit Ethernet No No 2 1

GPIO lines 64 32 32 32

UARTs 4 2 2 3

DMA controller 4 channel 4 channel 4 channel 3 channel

I2C controller 2 2 2 2

PCI host controller Yes PCI-X PCI-X 3 PCI-X

SPI controller Yes No No No

Interrupt controller     Yes Yes Yes Yes

3.2.9 MIPS

You might be surprised to learn that 32-bit processors based on the MIPS architecture 
have been shipping for more   than 20 years. The MIPS architecture was designed in 
1981 by a Stanford University engineering team led by Dr. John Hennessey, who later 
went on to form MIPS Computer Systems, Inc. That company has morphed into the 
present-day MIPS Technologies, whose primary role is the design and subsequent li-
censing of MIPS architecture and cores.

The MIPS core has been licensed by many companies, several of which have become 
powerhouses in the embedded processor market. MIPS is a Reduced Instruction Set 
Computing (RISC) architecture with both 32-bit and 64-bit implementations ship-
ping in many popular products. MIPS processors are found in a large variety of prod-
ucts, from high-end to consumer devices. It is public knowledge that MIPS processors 
power many popular, well-known consumer products, such as Sony high-definition 
television sets, Linksys wireless access points, and the popular Sony PlayStation game 
console.

The MIPS Technology website lists 73 licensees that currently are engaged in man-
ufacturing products using MIPS processor cores. Some of these companies are house-
hold names, including Sony, Texas Instruments, Cisco’s Scientific Atlanta (a leading 
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manufacturer of cable TV set-top boxes), Motorola, and others. One of the largest     and 
most successful of these is Broadcom Corporation.

3.2.10 Broadcom MIPS

Broadcom is a leading supplier of SOC solutions for markets such as cable TV set-top 
boxes, cable modems, HDTV, wireless   networks, Gigabit Ethernet, and Voice over IP 
(VoIP). Broadcom’s SOCs have been very popular in these markets. We mentioned 
earlier that you likely have Linux in your home even if you don’t know it. If you do, it 
probably is running on a Broadcom MIPS-based SOC.

In 2000, Broadcom acquired SiByte Inc., which resulted in the communications 
processor product lineup the company is currently marketing. These processors cur-
rently ship in single-core, dual-core, and quad-core configurations. The company still 
refers to them as SiByte processors.

The single-core SiByte processors include the BCM1122 and BCM1125H. They 
are both based on the MIPS64 core and operate at clock speeds of 400 to 900MHz. 
They include on-chip peripheral controllers such as the DDR SDRAM controller, 
10/100Mbps Ethernet, and the PCI host controller. Both include an SMBus serial 
configuration interface, PCMCIA, and two UARTs for serial port connections. The 
BCM1125H includes a triple-speed 10/100/1000Mbps Ethernet controller. One of 
the more striking features of these processors is their power dissipation. Both feature a 
4W operating budget at 400MHz operation.

The dual-core SiByte processors include the BCM1250, BCM1255, and BCM1280. 
Also based on the MIPS64 core, these processors operate at clock rates from 600MHz 
(BCM1250) to as high as 1.2GHz (BCM1255 and BCM1280). These dual-core chips 
include integrated peripheral controllers such as DDR SDRAM controllers; various 
combinations of Gigabit Ethernet controllers; 64-bit PCI-X interfaces; and SMBus, 
PCMCIA, and multiple UART interfaces. Like their single-core cousins, these dual-
core implementations feature low power dissipation. For example, the BCM1255   fea-
tures a 13W power budget at 1GHz operation.

The quad-core SiByte processors include the BCM1455 and BCM1480 communi-
cations processors. As with the other SiByte processors, these are based on the MIPS64 
core. The cores can be run from 800MHz to 1.2GHz. These SOCs include integrat-
ed DDR SDRAM controllers, four separate Gigabit Ethernet MAC controllers, and 
64-bit PCI-X host controllers. They also contain SMBus, PCMCIA, and four serial 
UARTs.
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Table 3-10 summarizes selected Broadcom SiByte processors.

TABLE 3-10 Broadcom SiByte Processor Highlights

Feature BCM1125H BCM1250 BCM1280 BCM1480

Core SB-1 MIPS64 Dual SB-1 MIPS64 Dual SB-1 MIPS64 Quad SB-1 MIPS64

Core speeds 400 to 900 MHz 600 to 1000 MHz 800 to 1200 MHz 800 to 1200 MHz

DRAM controller Y-DDR Y-DDR Y-DDR Y-DDR

Serial interface 2 to 55Mbps 2 to 55Mbps 4 UART 4 UART

SMBus interface 2 2 2 2

PCMCIA Yes Yes Yes Yes

Gigabit Ethernet  2 3 4 4
(10/100/1000Mbps)

PCI controller Yes Yes PCI/PCI-X PCI/PCI-X

Security engine No No No —

High-speed I/O  1 1 3 3
(HyperTransport)     

3.2.11 Other MIPS

As we pointed out earlier, nearly    100 current MIPS licensees are shown on the MIPS 
Technologies licensees web page, at www.mips.com/content/Licensees/ProductCatalog/
licensees. Unfortunately, it is not possible to cover them all here. Start your search at 
the MIPS technologies website for a good cross-section of the MIPS processor vendors.

For example, ATI Technologies uses a MIPS core in its Xilleon set-top box fam-
ily of chipsets. Cavium Networks’ Octeon family uses MIPS64 cores in a variety of 
multicore processor implementations. Integrated Device Technology, Inc. (IDT), has 
a family of integrated communications processors called Interprise, based on the MIPS 
architecture. PMC-Sierra, NEC, Toshiba, and others have integrated processors based 
on MIPS. All of these and more are well supported under Linux.

3.2.12 ARM

The ARM architecture   has achieved a very large market share in the consumer elec-
tronics marketplace. Many popular and now ubiquitous products contain ARM 
cores. Some well-known examples include the Sony PlayStation Portable (PSP), Apple 
iPhone, Blackberry Storm, TomTom GO 300 GPS, and the Motorola Droid mobile 
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phone. Processors containing ARM cores power the majority of the world’s digital 
cellular phones, according to the    ARM Corporate Backgrounder at www.arm.com/
miscPDFs/3822.pdf.

The ARM architecture was developed by ARM Holdings, plc and is licensed to 
semiconductor manufacturers around the globe. Many of the world’s leading semi-
conductor companies have licensed ARM technology and currently are shipping inte-
grated processors based on one of several ARM cores.

3.2.13 TI ARM

Texas Instruments uses ARM cores   in the DaVinci, OMAP, and other families of in-
tegrated processors. These processors contain many integrated peripherals intended to 
be used as single-chip solutions for various consumer products, such as cellular hand-
sets, PDAs, and similar multimedia platforms. In addition to the interfaces commonly 
found on integrated processors, such as UARTs and I2C, the OMAP devices contain a 
wide range of special-purpose interfaces, including the following:

• LCD screen and backlight controllers

• Buzzer driver

• Camera interface

• MMC/SD card controller

• Battery-management hardware

• USB client/host interfaces

• Radio modem interface logic

• Integrated 2D or 3D graphics accelerators

• Integrated security accelerator

• S-Video outputs

• IrDA controller

• DACs for direct TV (PAL/NTSC) video output

• Integrated DSPs for video and audio processing

Many popular cellular handsets and PDA devices have been marketed based on 
the TI OMAP platform. Because they are based on an ARM core, these processors are 
supported by Linux today. Table 3-11 compares some   of the more recent ARM-based 
processors from TI.
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TABLE 3-11 TI ARM Highlights

Feature OMAP-L138 DaVinci 6467 OMAP3515/03 OMAP3530

ARM core ARM926EJ-S ARM926EJ-S ARM Cortex A8 ARM Cortex A8

Clock rates 300MHz Up to 365MHz Up to 720MHz 550MHz

DRAM controller DDR2 DDR2 DDR2 Yes

Onboard DSP 300MHz C674x 300MHz C64X+ —  C64X+ Video/image 
accelerator subsystem

UARTs 3 3 3 3

USB USB 1.1 host USB 2.0 host USB 2.0 host USB 2.0 host
USB 2.0 OTG USB 2.0 client USB 2.0 client USB 2.0 client

I2C controller/bus 2 1 Yes Yes

MMC-SD interface 2 — Yes Yes

Camera interface See video ports See video ports Yes Yes

Video ports 2 in, 2 out 2 in, 2 out S-Video or CVBS S-Video or CVBS

Video acceleration  — 2 HD video-imaging POWERVR SGX Imaging Video
hardware  coprocessors display controller Accelerator (IVA 2+)

Audio codec support AC976 interface AC97 interface Via DSP Via DSP

LCD controller Yes Yes Yes Yes

Display controllers LCD Controller  LCD Controller Dual output 3-layer Dual output 3-layer
and Video in/out and Video in/out display processor display processor

3.2.13.1 BeagleBoard

If you have been around embedded Linux for any length of time, you have undoubt-
edly heard of the BeagleBoard. Its popularity stems from its low price point, easy avail-
ability, and broad community support. The popular U-Boot bootloader is supported 
on the board, making kernel integration easier. The BeagleBoard is based on the TI 
OMAP3530. It has provisions to connect keyboard and display, SD cards   for kernel 
and root file system, a serial connection for a console, and a dual-mode USB 2.0 port.

The BeagleBoard is a great platform for experimentation and learning, as well as a 
perfect development platform for various OMAP-related development projects. The 
only drawback of the BeagleBoard was the lack of an Ethernet port. Fortunately, this 
problem was remedied by a company called Tin Can Tools. It developed a companion 
board called the BeagleBuddy Zippy Ethernet Combo Board. In addition to adding an 
Ethernet port, it adds another SD/MMC interface, a battery-backed real-time clock, 
an I2C expansion        interface, and another serial port. You can find more information at 
www.tincantools.com/product.php?productid=16147&cat=255&page=1.

6 These chips have internal support for connection to AC97 audio streams. Beyond that, realize that the integrated DSPs can 
run a wide variety of audio and video codecs.
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3.2.14 Freescale ARM

The success of the ARM architecture is made more evident by the fact that leading 
manufacturers of competing architectures have licensed ARM technology. As a prime 
example, Freescale Semiconductor   has licensed ARM technology for its line of i.MX 
application processors. These popular ARM-based integrated processors have achieved 
widespread industry success in multimedia consumer devices such as portable game 
platforms, PDAs, and cellular handsets.

The Freescale ARM product portfolio currently includes nine families of appli-
cation processors. They range from the i.MX21 through the i.MX51 series. All the 
i.MX products can be found at www.freescale.com/webapp/sps/site/homepage.
jsp?code=IMX_HOME.

The i.MX21 features an ARM9 core, and the i.MX31 has an ARM11 core. Like 
their TI counterparts, these SOCs contain many integrated peripherals required by 
portable consumer electronics devices with multimedia requirements. The i.MX21/31 
contains some of the following integrated interfaces:

 • Graphics accelerator

 • MPEG-4 encoder

• Keypad and LCD controllers

 • Camera interface

 • Audio multiplexer

• IrDA infrared I/O

 • SD/MMC interface

• Numerous external I/O, such as PCMCIA, USB, DRAM controllers, and 
UARTs for serial port connection

The i.MX35 family of processors is used in automotive, consumer, and industrial 
applications. They feature ARM11 cores running at 532 MHz with many integrated 
features similar to the i.MX21/31 families. Here   are some examples of i.MX35 inte-
grated peripherals:

• LCD controller (all but i.MX351)

• OpenVG graphics accelerator (i.MX356/7)

• High-speed Ethernet controller

• CAN bus controller

• USB 2.0 host and OTG plus PHY
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• SD/MMC interface

• I2C controller

• UARTs, SPI, and SSI/I2S

The i.MX37 family of processors currently consists of the single i.MX37 Applica-
tions Processor. It is ideally suited for portable multimedia applications. The i.MX37 
features the ARM1176JZF-S ARM core; an image-processing unit; and integrated 
support for H.264, VC-1, MPEG-2, and MPEG-4 decoders. It has all the usual con-
nectivity, including SD/MMC, USB, UART, audio in/out, GPIO, keypad controller, 
and more. More information on this processor is available at www.freescale.com/web
app/sps/site/taxonomy.jsp?code=IMX37_FAMILY.

The i.MX51 family of processors currently consists of five products, ranging from 
the i.MX512 to the i.MX516. According to Freescale’s summary page for i.MX51, 
these processors are targeted at consumer, industrial, and automotive applications. 
They feature CPU speeds from 600MHz to 800MHz. These chips, like their brethren, 
have a high level of integration. They feature various hardware accelerators such as 
integrated video accelerators, integrated hardware-based codecs, and security accelera-
tors. These   processors all contain some combination of the usual array of I/O, includ-
ing USB, Ethernet, video in/out, SD/MMC, and UARTS.

3.2.15 Other ARM Processors

More than 100 semiconductor companies are developing integrated solutions based on 
ARM technology—far too many to list here. Many offer specialized application pro-
cessors serving vertical markets such as the handset market, storage area networking, 
network processing, the automotive market, and many more. These       companies include 
Altera, PMC-Sierra, Samsung Electronics, Philips Semiconductor, Fujitsu, and more. 
See the ARM Technologies website at www.arm.com for additional ARM licensees and 
information.

3.3 Other Architectures

We have covered the major architectures in widespread use in embedded Linux systems. 
However, for completeness, you should be aware of other architectures that Linux sup-
ports. A recent Linux snapshot revealed over 20 architecture branches (subdirectories).

The Linux source tree contains ports for Sun Sparc and the Xtensa from Tensilica, 
to name a couple. Spend a few minutes looking through the architecture branch of the 
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Linux kernel to see the range of architectures for which Linux has been ported. Beware, 
however, that not all these architectures might be up to date in any given snapshot. You 
can be reasonably certain that the major architectures are fairly current, but the only 
way to be certain is to follow the development in the Linux community or to consult 
with your favorite embedded Linux vendor. Appendix E, “Open Source Resources,” 
contains a list of resources you can consult to help stay current with Linux develop-
ments.

3.4 Hardware Platforms

The idea of a common hardware reference platform is not new. The venerable PC/104 
and VMEbus are two examples of hardware platforms that have withstood the test of 
time in the embedded market.7 More recent successful platforms include CompactPCI 
and its derivatives.

3.4.1 CompactPCI

The CompactPCI (cPCI) hardware platform is based on PCI electrical standards and 
Eurocard physical specifications. cPCI has the following    general features:

• Vertical cards of 3U or 6U heights

• A latch system for securing and ejecting cards

• Front- or rear-panel I/O connections are supported

• High-density backplane connector

• Staggered power pins for hot-swap support

• Support by many vendors

• Compatibility with standard PCI chipsets

You can view highlights of and obtain specifications for the cPCI architecture at 
the PCI Industrial Computer Manufacturers Group (PICMG) cPCI web  page at 
www.picmg.org/compactpci.stm.

3.4.2 ATCA

A successor to the successful cPCI, Advanced Telecommunications Computing Archi-
tecture is the name given to the   architecture and platforms designed around the PIC-
MG 3.x series of specifications. Many top-tier hardware manufacturers are shipping or 

7 VMEbus isn’t really a hardware reference platform per se, but based on Eurocard physical standards, its level of compatibility 
among multiple vendors qualifies it for the label.
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developing new ATCA-based platforms. The primary applications for ATCA platforms 
are carrier-class telecommunications switching and transport equipment, and high-end 
data-center server and storage equipment.

ATCA platforms are leading the industry trend away from in-house proprietary 
hardware and software platforms. Many of the largest equipment manufacturers in the 
telecommunications and networking markets have been slowly moving away from cus-
tom, in-house-designed hardware platforms. This trend is also evident in the software 
platforms, from operating systems to so-called middleware such as high-availability 
and protocol stack solutions. Downsizing and time-to-market pressures are two key 
factors driving this trend.

ATCA is defined by several PICMG specifications, summarized in Table 3-12.

TABLE 3-12 ATCA PICMG 3.x Specification Summary

Specification Description

PICMG 3.0  Mechanical specifications, including interconnects, power, cooling, and base system man-
agement

PICMG 3.1 Ethernet and Fiber Channel switching fabric interface

PICMG 3.2 Infiniband switching fabric interface

PICMG 3.3 StarFabric interface

PICMG 3.4 PCI Express interface

PICMG 3.5 RapidIO interface

The platforms described in this section are the most relevant in any discussion of embed-

ded Linux platforms today. Especially with    ATCA, the industry is increasingly moving toward 

COTS technology. Both ATCA and Linux are playing increasingly important roles in this 

industry trend.

3.5 Summary

• Linux supports many stand-alone processors. The most widely supported are 
IA32/IA64 and Power Architecture. These stand-alone processors are used 
as building blocks to create very-high-performance computing engines. This 
chapter presented several examples from Intel, IBM, and Freescale.

• Integrated processors, or systems on chip (SOCs), dominate the embedded 
Linux landscape. Many vendors and several popular architectures are used in 
embedded Linux designs. Several of the most popular were presented in this 
chapter by architecture and manufacturer.
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• An increasingly popular trend in larger systems is to move away from propri-
etary hardware and software platforms and toward commercial off-the-shelf 
(COTS) solutions. Two popular platforms in widespread use in embedded 
Linux systems are cPCI and ATCA.

3.5.1 Suggestions for Additional Reading

PowerPC 32-bit architecture reference manual
Programming Environments Manual for 32-Bit Implementations of the PowerPC 
Architecture—Revision 2
Freescale Semiconductor,   Inc.
www.freescale.com/files/product/doc/MPCFPE32B.pdf

PowerPC 64-bit architecture reference manual
Programming Environments Manual for 64-Bit Microprocessors—Version 3.0
International Business   Machines, Inc.
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F7E732FF811F783187
256FDD004D3797/$file/pem_64bit_v3.0.2005jul15.pdf

Short summary of Power Architecture
A Developer’s Guide to the POWER Architecture
Brett Olsson, Processor Architect, IBM Corp.
Anthony Marsala, Software   Engineer, IBM Corp.
http://www-128.ibm.com/developerworks/linux/library/l-powarch

Intel XScale overview   page
www.intel.com/design/intelxscale/

Intel Atom   overview page
www.intel.com/design/intarch/atom/index.htm

Power.org home   page
www.power.org/home

BeagleBoard   resources
www.beagleboard.org
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If you want to learn about kernel internals, many good books on kernel design 
and operation are available. Several are presented in the last section, in this 

as well as other chapters. However, very little has been written about how the 
kernel is organized and structured from a project perspective. What if you’re 
looking for the right place to add some custom support for your new embedded 
project? How do you know which files are important for your architecture?

At first glance, it might seem an almost impossible task to understand the Linux 
kernel and how to configure it for a specific platform or application. In a re-
cent Linux kernel snapshot, the Linux kernel source tree consists of more than 
28,0001 files that contain somewhere between 10 and 11 million2 lines of code, 
depending on how you count actual lines of code.3 And that’s just the beginning. 
You still need tools (the most obvious being a compiler) and a root file system 
containing many Linux applications to build a usable system.

This chapter introduces the Linux kernel and covers kernel organization and 
how the source tree is structured. We then examine the components that make 
up the kernel image and discuss the kernel source tree layout. Following this, we 
present the details of the kernel build system and the files that drive the kernel 
configuration and build system. The chapter concludes by examining the re-
quirements for a complete embedded Linux system.

4.1 Background

Linus Torvalds wrote    the original version of Linux while he was a student at the 
University of Helsinki in Finland. His work began in 1991. In August of that year, 
Torvalds posted this now-famous announcement on comp.os.minix:

1 Interestingly, that is 8,000 more files than were present during the preparation of the first edition of this book!

2 That is 4 million more lines of code than reported in the first edition!

3 Roughly, this number was derived by counting raw lines from header files, C and assembler source, makefiles, and Kconfig 
files. Scripts were not included.
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From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and profession-
al like gnu) for 386(486) AT clones.  This has been brewing since april, and is 
starting to get ready.  I’d like any feedback on things people like/dislike in 
minix, as my OS resembles it somewhat(same physical layout of the file-system (due 
to practical reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This im-
plies that I’ll get something practical within a few months, and I’d like to know 
what features most people would want.  Any suggestions are welcome, but I won’t 
promise I’ll implement them :-)

              Linus (torvalds@kruuna.helsinki.fi)

PS.  Yes - it’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks, as that’s all I have :-(.

Since that initial release, Linux has matured into a full-featured operating system 
with robustness, reliability, and high-end features that rival those of the best commer-
cial operating systems. By some estimates, more than half of the Internet servers on the 
Web are powered by Linux servers. It is no secret that the online search giant Google 
uses a large collection of low-cost PCs running a fault-tolerant version of Linux to 
implement its popular search engine.

4.1.1 Kernel Versions

You can obtain the source code for a Linux kernel and complementary components in 
numerous places. Your local bookstore might have several versions as companion CD-
ROMs in books about Linux. You can also download  the kernel itself or even complete 
Linux distributions from numerous locations on the Internet. The official home for 
the Linux kernel is   www.kernel.org.  You will often hear the terms mainline source or 
mainline kernel, referring to the source trees found at kernel.org.
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For quite some time now, Linux version 2.6 has been   the current version. Early in 
the development cycle, the developers chose a numbering system designed to differen-
tiate between kernel source trees intended for development and experimentation and 
source trees intended to be stable, production-ready kernels. The numbering scheme 
contains a major version number, a minor version number, and a sequence number. 
Before Linux version 2.6, if the minor version number is even, it denotes a production 
kernel; if it is odd, it denotes a development kernel. For example:

• Linux 2.4.x—Production kernel

• Linux 2.5.x—Experimental (development)

• Linux 2.6.x—Production kernel

Currently, the Linux 2.6 kernel has no separate development branch. All new fea-
tures, enhancements, and bug fixes are funneled through a series of gatekeepers who 
ultimately filter and push changes to the top-level Linux source trees maintained by 
Andrew Morton and Linus Torvalds.

It is easy to tell what kernel version you are working with. The first few lines of the 
top-level makefile4 in a kernel source tree detail the exact kernel version represented by 
a given instance. It looks like this for the   2.6.30 kernel release:

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 30

EXTRAVERSION =

NAME=Man-Eating Seals of Antiquity

Later in the same makefile, these macros are used to form a version-level macro, 
like this:

KERNELVERSION=$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)

This macro is used in several places in the kernel build system to indicate the kernel 
version. Its use has diminished in more recent kernels to a few locations in the scripts di-
rectory. It has been replaced by a more complete descriptive string called KERNELRELEASE.
This string contains the kernel version as well as a tag that correlates to a source control 
revision level that comes from git, the source control system adopted for Linux.

4 We’ll talk about the kernel build system and makefiles shortly.
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KERNELRELEASE is   used in several places within the kernel source tree. This macro 
is also built into the kernel image so that it can be queried from the console. You can 
check the kernel release string from a command prompt on a running Linux system 
like this:

$ cat /proc/version

Linux version 2.6.13 (chris@pluto) (gcc version 4.0.0 (DENX ELDK 4.0

4.0.0)) #2 Thu Feb 16 19:30:13 EST 2006

One final note about kernel versions: You can make it easy to keep track of the 
kernel version in your own kernel project by   customizing the EXTRAVERSION field. For 
example, if you are developing enhancements for some new kernel feature, you might 
set EXTRAVERSION to something like this:

EXTRAVERSION=-foo

Later, when you use cat /proc/version, you would see Linux version 2.6.13-
foo, and this would help you distinguish between development versions of your own 
kernel.

4.1.2 Kernel Source Repositories

The official home of the Linux kernel source code is www.kernel.org. There you can 
find both current and historical versions of the Linux kernel, as well as numerous 
patches. The primary FTP repository, found at ftp.kernel.org, contains subdirectories 
going all the way back to Linux version 1.0. kernel.org is the primary   focus of the on-
going development activities within the Linux kernel.

If you download a recent Linux kernel from kernel.org, you will find files in the 
source tree for over 20 different architectures and subarchitectures. Several other devel-
opment trees support the major architectures. One of the reasons is simply the sheer 
volume of developers and changes to the kernel. If every developer on every architec-
ture submitted patches to a single source tree, the maintainers would be inundated 
with changes and patch management and would never get to do any feature develop-
ment. As anyone involved with kernel development will tell you, it’s already very busy!

Several other public source trees exist outside the mainline kernel.org source, mostly 
for architecture-specific development. For example, a developer working on the MIPS 
architecture might find a suitable kernel   at www.linux-mips.org. Normally, work done 
in an architecture tree is eventually submitted to the mainline kernel maintainers. 
Most architecture developers try to sync with the mainline kernel often, to keep up 
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with new developments whenever possible. However, it is not always straightforward 
to get one’s patches included in the mainline kernel. Indeed, there will always be differ-
ences between architecture kernel trees and mainline at any given point in time.

If you are wondering how to find a kernel for your particular application, the best 
way to proceed is to obtain the latest stable Linux source tree. Check to see if support 
for your particular processor exists, and then search the Linux kernel mailing lists for 
any patches or issues related to your application. Also find the mailing   list that most 
closely matches your interest, and search that archive as well.

Appendix E, “Open Source Resources,” contains several good references and sourc-
es of information related to kernel source repositories, mailing lists, and more.

4.1.3 Using git to Download a Kernel

The simplest way to download the latest Linux kernel is to use git. This utility has 
become the tool of choice for source    control management in the Linux kernel com-
munity. The repositories of most modern desktop distributions contain a version of 
git. For example, on Ubuntu,5 enter the following command to install git on your 
desktop or laptop PC:

$ sudo apt-get install git-core6

After git has been properly installed on your system, you can use the git clone
command to clone a git source tree:

$ git clone

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git linux-2.6

This results in a new directory beneath the current directory where this command 
was entered, named linux-2.6. It contains the cloned tree from kernel.org. Many good 
tutorials and web pages are devoted to learning git. You might       start with this tutorial 
on Jeff Garzik’s website: http://linux.yyz.us/git-howto.html.

4.2 Linux Kernel Construction

The next few sections explore the layout, organization, and construction of the Linux 
kernel. Armed with this knowledge, you will find it much easier to navigate this large, 

5 Consult the documentation for your Linux distribution for how to install git on your system.

6 Note that your distribution might call it something different. Unfortunately, the name git conflicts with another package of 
the same name, the GNU Interactive Tools!
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 complex source code base. Over time, significant improvements have been made to the 
organization of the source tree, especially in the architecture branch, which contains 
support for numerous architectures and machine types.

4.2.1 Top-Level Source Directory

This book often refers to the    top-level source directory. In every case, we are referring to 
the highest-level directory contained in the kernel source tree. On any given machine, 
it might be located anywhere, but on a desktop Linux workstation, it is often found 
in /usr/src/linux-x.y.z, where x.y.z represents the kernel version. Throughout 
the book, we use the shorthand .../ to represent the top-level kernel source directory.

The top-level kernel source directory contains the following subdirectories. (We 
have omitted the nondirectory entries in this listing, as well as directories used for 
source control, for clarity and brevity.)

arch/           firmware/  kernel/   scripts/

block/          fs/        lib/      security/

crypto/         include/   mm/       sound/

Documentation/  init/      net/      usr/

drivers/        ipc/       samples/  virt/

 

Many of these directories contain several additional levels of subdirectories con-
taining source code, makefiles, and configuration files. By far the largest branch of the 
Linux kernel source tree is found under .../drivers. Here you can find support for 
the various Ethernet network cards, USB controllers, and the numerous hardware de-
vices that the Linux kernel supports. As you might imagine, the .../arch subdirectory 
is the next largest, containing support for more than 20 unique processor architectures.

Additional files found in the top-level Linux subdirectory include the top-level 
makefile, a hidden configuration file (dot-config, introduced in Section 4.3.1, “The 
Dot-Config”), and various other informational files not involved in the build itself. 
Finally, two important build targets are found in the top-level kernel source tree after 
a successful build: System.map and the kernel proper, vmlinux. Both are described   in 
the next section.

4.2.2 Compiling the Kernel

Understanding a large body of software such as Linux can be a daunting task. It is too 
large to simply “step through” the code to follow what is happening. Multithreading 
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and preemption add to the complexity of analysis. In fact, even locating the entry point 
(the first line of code to be executed upon entry to the kernel) can be challenging. One 
of the more useful ways to understand the structure of a large binary image is to exam-
ine its build components.

The output of the kernel build system    produces several common files, as well as 
one or more architecture-specific binary modules. Common files are always built re-
gardless of the architecture. Two of the common files are     System.map and vmlinux.
The former is useful during kernel debug and is particularly interesting. It contains a 
human-readable list of the kernel symbols and their respective addresses. The latter is 
an architecture-specific ELF 7 file in executable format. It is produced by the top-level 
kernel makefile for every architecture. If the kernel was compiled with symbolic debug 
information, it will be contained in the vmlinux image. In practice, although it is an 
ELF executable, this file is virtually never booted directly, as you will see shortly.

Listing 4-1 is a snippet of output resulting from executing make in a recent kernel 
tree configured for the ARM XScale architecture. The kernel source tree was config-
ured for the ADI Engineering Coyote reference board based on the Intel IXP425 net-
work processor using the following command:

$ make ARCH=arm CROSS_COMPILE=xscale_be- ixp4xx_defconfig

This command does not build the kernel; it prepares the kernel source tree for the 
XScale architecture, including an initial default configuration for this architecture and 
processor. It builds a default configuration (the dot-config file) that drives the kernel 
build, based on the defaults found in the ixp4xx_defconfig file. We have more to say 
about the configuration process in Section 4.3, “Kernel Build System.”

In Listing 4-1, only the first few and last few lines of the   build output are shown 
for this discussion.

LISTING 4-1 Kernel Build Output

$ make ARCH=arm CROSS_COMPILE=xscale_be- zImage

  CHK     include/linux/version.h

  UPD     include/linux/version.h

  Generating include/asm-arm/mach-types.h

  CHK     include/linux/utsrelease.h

  UPD     include/linux/utsrelease.h

  SYMLINK include/asm -> include/asm-arm

7 Executable and Linking Format, a de facto standard format for binary executable files.
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LISTING 4-1 Continued

  CC      kernel/bounds.s

  GEN     include/linux/bounds.h

  CC      arch/arm/kernel/asm-offsets.s

  .

  . <hundreds of lines of output omitted here>

  .

  LD      vmlinux

  SYSMAP  System.map

  SYSMAP  .tmp_System.map

  OBJCOPY arch/arm/boot/Image

  Kernel: arch/arm/boot/Image is ready

  AS      arch/arm/boot/compressed/head.o

  GZIP    arch/arm/boot/compressed/piggy.gz

  AS      arch/arm/boot/compressed/piggy.o

  CC      arch/arm/boot/compressed/misc.o

  AS      arch/arm/boot/compressed/head-xscale.o

  AS      arch/arm/boot/compressed/big-endian.o

  LD      arch/arm/boot/compressed/vmlinux

  OBJCOPY arch/arm/boot/zImage

  Kernel: arch/arm/boot/zImage is ready

  ...

To begin, notice the invocation of the build. Both    the desired architecture (ARCH=arm)
and the toolchain8 (CROSS_COMPILE=xscale_be-) are specified on the command line. 
This forces the make utility to use the XScale toolchain9 to build the kernel image and 
to use the arm-specific branch of the kernel source tree for architecture-dependent 
portions of the build. We also specify a target called zImage. This target is common 
to many architectures and is described in Chapter 5, “Kernel Initialization.” Modern 
kernels today build the proper default targets without specifying the make target, so 
you might not need to specify zImage or any other targets.

The next thing you might notice is that the actual commands used for each step 
have been hidden and replaced with a shorthand notation. The motivation behind this 
was to clean up the build output to draw more attention to intermediate build issues, 
particularly compiler warnings. In earlier kernel source trees, each compilation or link 
command was output to the console verbosely, which often required several lines for 

8 Of course, your toolchain prefix might be different.

9 Actually, this simply prepends the value of CROSS_COMPILE to CC, LD, AR, and so on in the makefiles.
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each step. The end result was virtually unreadable, and compiler warnings slipped by 
unnoticed in the noise. The new system is definitely an improvement, because any 
anomaly in the build process is easily spotted. If you want or need to see the complete 
build step, you can force verbose output by defining V=1 on the make command line:

$ make ARCH=arm CROSS_COMPILE=xscale_be- V=1 zImage

We have omitted most of the actual compilation and link steps in Listing 4-1 for 
clarity. (This particular build contained more than 1,000 individual compile, link, and 
other commands. That would have made for a long    listing indeed.) After all the inter-
mediate files and library archives have been built and compiled, they are put togeth-
er in one large ELF build target called vmlinux. Although it is architecture-specific, 
vmlinux is a common target. It is produced for all supported Linux architectures, and 
it lands in the top-level kernel source directory for easy reference.

4.2.3 The Kernel Proper: vmlinux

Notice this line in Listing 4-1:

LD vmlinux

 The vmlinux file is the    actual kernel proper. It is a fully stand-alone, monolithic ELF 
image. That is, the vmlinux binary contains no unresolved external references.. When 
caused to execute in the proper context (by a bootloader designed to boot the Linux 
kernel), it boots the board on which it is running, leaving a completely functional ker-
nel. (Actually, this vmlinux ELF target is rarely used directly. It is almost always used 
in compressed form, which is produced from the final steps shown in Listing 4-1. We 
will have much more to say about this soon.)

In keeping with the philosophy that to understand a system you must first under-
stand its parts, let’s look at the construction of the vmlinux kernel object. Listing 4-2 
reproduces the actual link stage of the build process that resulted in the vmlinux ELF 
object. We have formatted it with line breaks (indicated by the UNIX line-continuation 
character, \) to make it more readable, but otherwise it is the exact output produced 
by the vmlinux link step in the build process from Listing 4-1. If you were building   
the kernel by hand, this is the link command you would issue from the command line.
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LISTING 4-2 Link Stage: vmlinux

$ xscale_be-ld -EB  -p --no-undefined -X  -o vmlinux \

-T arch/arm/kernel/vmlinux.lds    \

arch/arm/kernel/head.o            \

arch/arm/kernel/init_task.o       \

init/built-in.o                   \

--start-group                     \

  usr/built-in.o                  \

  arch/arm/kernel/built-in.o      \

  arch/arm/mm/built-in.o          \

  arch/arm/common/built-in.o      \

  arch/arm/mach-ixp4xx/built-in.o \

  arch/arm/nwfpe/built-in.o       \

  kernel/built-in.o               \

  mm/built-in.o                   \

  fs/built-in.o                   \

  ipc/built-in.o                  \

  security/built-in.o             \

  crypto/built-in.o               \

  block/built-in.o                \

  arch/arm/lib/lib.a              \

  lib/lib.a                       \

  arch/arm/lib/built-in.o         \

  lib/built-in.o                  \

  drivers/built-in.o              \

  sound/built-in.o                \

  firmware/built-in.o             \

  net/built-in.o                  \

--end-group                       \

.tmp_kallsyms2.o

4.2.4 Kernel Image Components

From Listing 4-2, you can see that the vmlinux image consists of several composite bi-
nary images. Right now, it is not important to understand the purpose of each compo-
nent. What is important is to understand the top-level view of what components make 
up the kernel. The first line of the link command in Listing 4-2 specifies the output 
file (-o vmlinux). The second line specifies the linker script file (-T vmlinux.lds), a 
    detailed recipe for how the kernel binary image should be linked.10

10 The linker script file has a peculiar syntax. The details can be found in the documentation for the GNU linker.
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The third and subsequent lines in Listing 4-2 specify the object modules that form 
the resulting binary image. Notice that the first object specified is head.o. This object 
was assembled from .../arch/arm/kernel/head.S, an architecture-specific assem-
bly language source file that performs very low-level kernel initialization. If you were 
searching for the first line of code to be executed by the kernel, it would make sense 
to start your search here, because it will ultimately be the first code found in the 
binary image created by this link stage. We examine kernel initialization in detail in 
Chapter 5.

The next object, init_task.o, sets up initial thread and task structures that the ker-
nel requires. Following this is a large collection of object modules, each having a com-
mon name: built-in.o. You will notice, however, that each built-in.o object comes 
from a specific part of the kernel source tree, as indicated by the path component 
preceding the built-in.o object name. These are the binary objects that are included 
in the kernel image. An illustration might help make this more clear.

Figure 4-1 illustrates the binary makeup of the vmlinux image. It contains a section 
for each line of the link stage. It is not to scale because of space considerations, but you 
can see the relative sizes of each functional component. Some components are tiny. For 
example, sound and firmware are each 8 bytes in this build, because    they are empty 
object files. (Sound is compiled as modules, and this build has no firmware.)

It might come as no surprise that the three largest binary components are the file 
system code, network code, and all the built-in drivers. If you take the kernel code 
and the architecture-specific kernel code together, this is the next-largest binary com-
ponent. Here you find the scheduler, process and thread management, timer man-
agement, and other core kernel functionality. Naturally, the kernel contains some 
architecture-specific functionality, such as low-level context switching, hardware-level 
interrupt and timer processing, processor exception handling, and more. This is found 
in .../arch/arm/kernel.

Bear in mind that we are looking at a specific example of a kernel build. In this 
particular example, we are building a kernel specific to the ARM XScale architecture 
and, more specifically, the Intel IXP425 network processor on the ADI Engineering 
reference board. You can see the machine-specific binary components in Figure 4-1 
as arch/arm/mach-ixp4xx. Each architecture and machine type (processor/reference 
board) has different elements in the architecture-specific portions of the kernel, so the 
makeup of the vmlinux image is slightly different. When you understand one example, 
you will find it easy to navigate others.
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FIGURE 4-1 vmlinux image components

To help you understand the breakdown of functionality in the kernel source tree, 
Table 4-1 lists each component in Figure 4-1 and describes   each binary element that 
makes up the vmlinux image.

TABLE 4-1 vmlinux Image Components

Component Description

arch/arm/kernel/head.o Kernel-architecture-specific startup code.

arch/arm/kernel/init_task.o Initial thread and task structs required by the kernel.

init/built-in.o Main kernel initialization code. See Chapter 5.

usr/built-in.o Built-in initramfs image. See Chapter 6.

arch/arm/kernel/built-in.o Architecture-specific kernel code.

arch/arm/kernel/head.o

arch/arm/kernel/init_task.o

init

usr/built-in.o

arch/arm/kernel
arch/arm/mm
arch/arm/common
arch/arm/match-ixp4xx
arch/arm/nwfpe

Kernel

mm

fs

ipc
security
crypto
block

arch/arm/lib/lib.a

arch/arm/lib

lib/lib.a

lib

drivers

net

sound

firmware

vmlinux
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TABLE 4-1 Continued

Component Description

arch/arm/mm/built-in.o Architecture-specific memory-management code.

arch/arm/common/built-in.o Architecture-specific generic code. Varies by architecture.

arch/arm/mach-ixp4xx/built-in.o Machine-specific code, usually initialization.

arch/arm/nwfpe/built-in.o Architecture-specific floating-point emulation code.

kernel/built-in.o Common components of the kernel itself.

mm/built-in.o Common components of memory-management code.

fs/built-in.o File system code.

ipc/built-in.o Interprocess communications, such as SysV IPC.

security/built-in.o Linux security components.

crypto/built-in.o Cryptographic API.

block/built-in.o Kernel block layer core code.

arch/arm/lib/lib.a Architecture-specific common facilities. Varies by architec-
ture. 

lib/lib.a Common kernel helper functions.

arch/arm/lib/built-in.o Architecture-specific helper routines.

lib/built-in.o Common library functions.

drivers/built-in.o All the built-in drivers. Does not include loadable modules.

sound/built-in.o Sound drivers.

firmware/built-in.o Driver firmware objects.

net/built-in.o Linux networking.

.tmp_kallsyms2.o Kernel Symbol table.

When we speak of the kernel proper, this vmlinux image (found at the top-level kernel 
directory) is being referenced. As mentioned earlier, very few platforms boot this image 
directly. For one thing, the image that we use to boot is almost universally compressed. 
At a bare minimum, a bootloader must decompress the image. Many platforms require 
some type of stub bolted onto the image to perform the decompression. In Chapter 5, 
you will learn how this image is packaged for different architectures,    machine types, 
and bootloaders, and the requirements for booting it.
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4.2.5 Subdirectory Layout

Now that you’ve seen the components    that make up the kernel image, let’s take a look 
at a representative kernel subdirectory. Listing 4-3 details the contents of the mach-ix-
p4xx subdirectory. This directory exists under the .../arch/arm architecture-specific 
branch of the source tree.

LISTING 4-3 Kernel Subdirectory

$ ls -l ./arch/arm/mach-ixp4xx

total 204

-rw-r--r-- 1 chris chris  1817 2009-11-19 17:12 avila-pci.c

-rw-r--r-- 1 chris chris  4610 2009-11-19 17:12 avila-setup.c

-rw-r--r-- 1 chris chris 11812 2009-11-19 17:12 common.c

-rw-r--r-- 1 chris chris 12979 2009-11-19 17:12 common-pci.c

-rw-r--r-- 1 chris chris  1459 2009-11-19 17:12 coyote-pci.c

-rw-r--r-- 1 chris chris  3158 2009-11-19 17:12 coyote-setup.c

-rw-r--r-- 1 chris chris  1898 2009-11-19 17:12 dsmg600-pci.c

-rw-r--r-- 1 chris chris  7030 2009-11-19 17:12 dsmg600-setup.c

-rw-r--r-- 1 chris chris  1625 2009-11-19 17:12 fsg-pci.c

-rw-r--r-- 1 chris chris  6622 2009-11-19 17:12 fsg-setup.c

-rw-r--r-- 1 chris chris  1490 2009-11-19 17:12 gateway7001-pci.c

-rw-r--r-- 1 chris chris  2646 2009-11-19 17:12 gateway7001-setup.c

-rw-r--r-- 1 chris chris 12280 2009-11-19 17:12 goramo_mlr.c

-rw-r--r-- 1 chris chris  2623 2009-11-19 17:12 gtwx5715-pci.c

-rw-r--r-- 1 chris chris  3935 2009-11-19 17:12 gtwx5715-setup.c

drwxr-xr-x 3 chris chris  4096 2009-11-19 17:12 include

-rw-r--r-- 1 chris chris  1794 2009-11-19 17:12 ixdp425-pci.c

-rw-r--r-- 1 chris chris  7430 2009-11-19 17:12 ixdp425-setup.c

-rw-r--r-- 1 chris chris  1354 2009-11-19 17:12 ixdpg425-pci.c

-rw-r--r-- 1 chris chris 21560 2009-11-19 17:12 ixp4xx_npe.c

-rw-r--r-- 1 chris chris  9350 2009-11-19 17:12 ixp4xx_qmgr.c

-rw-r--r-- 1 chris chris  6422 2009-11-19 17:12 Kconfig

-rw-r--r-- 1 chris chris  1319 2009-11-19 17:12 Makefile

-rw-r--r-- 1 chris chris    57 2009-11-19 17:12 Makefile.boot

-rw-r--r-- 1 chris chris  1751 2009-11-19 17:12 nas100d-pci.c

-rw-r--r-- 1 chris chris  7764 2009-11-19 17:12 nas100d-setup.c

-rw-r--r-- 1 chris chris  1561 2009-11-19 17:12 nslu2-pci.c

-rw-r--r-- 1 chris chris  6732 2009-11-19 17:12 nslu2-setup.c

-rw-r--r-- 1 chris chris  1468 2009-11-19 17:12 wg302v2-pci.c

-rw-r--r-- 1 chris chris  2585 2009-11-19 17:12 wg302v2-setup.c
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The directory contents shown in Listing 4-3 have common components found in 
many kernel source subdirectories: Makefile and Kconfig. These two files drive the ker-
nel configuration and build    process. Let’s look at how that works.

4.3 Kernel Build System

The Linux kernel configuration and build system is rather complicated, as you would 
expect of software projects containing more than 10 million lines of code! This section 
covers the foundation of the kernel build system in case you need to customize your 
build environment.

A recent Linux kernel snapshot showed more than 1,200 makefiles11 in the kernel 
source tree.  (The first edition of this book reported only 800 makefiles. This is a 50% 
increase from the days of Linux 2.6.10!) This might sound like a rather large number, 
but it might not seem so big when you understand the structure and operation of the 
build system. The Linux kernel build system has been significantly updated since the 
days of Linux 2.4 and earlier. If you’re familiar with the older kernel build system, we’re 
sure you’ll find the new Kbuild system to be a huge improvement.

4.3.1 The Dot-Config

Introduced earlier, the     dot-config file is the configuration blueprint for building a 
Linux kernel image. You will likely spend significant effort at the start of your Linux 
project building a configuration that is appropriate for your embedded platform. Sev-
eral editors, both text-based and graphical, are designed to edit your kernel configura-
tion. The output of this configuration exercise is written to a configuration file named 
.config, located in the top-level Linux source directory that drives the kernel build.

You have likely invested a significant amount of time in perfecting your kernel 
configuration, so you will want to protect it. Several make commands delete this con-
figuration file without warning. The most common is make distclean. This make
target    is designed to return the kernel source tree to its pristine, unconfigured state. 
This includes removing all configuration data from the source tree—and, yes, it deletes 
your preexisting .config.

As you might know, any filename in a Linux     file system preceded by a dot is a 
hidden file in Linux. It is unfortunate that such an important file is marked as hidden; 
this has brought considerable grief to more than one developer. If you execute make
distclean or make mrproper without having a backup copy of your .config file, you 
too will share our grief. (You have been warned—back up your .config file!)

11 Not all these makefiles are directly involved in building the kernel. Some, for example, build documentation files.
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The .config file is a collection of definitions with a simple format. Listing 4-4 shows 
a snippet of a .config from      a recent Linux kernel release.

LISTING 4-4 Snippet from Linux 2.6 .config

...

# USB support

#

CONFIG_USB=m

# CONFIG_USB_DEBUG is not set

# Miscellaneous USB options

#

CONFIG_USB_DEVICEFS=y

# CONFIG_USB_BANDWIDTH is not set

# CONFIG_USB_DYNAMIC_MINORS is not set

# USB Host Controller Drivers

#

CONFIG_USB_EHCI_HCD=m

# CONFIG_USB_EHCI_SPLIT_ISO is not set

# CONFIG_USB_EHCI_ROOT_HUB_TT is not set

CONFIG_USB_OHCI_HCD=m

CONFIG_USB_UHCI_HCD=m

...

To understand the .config file, you need to understand a fundamental aspect of the 
Linux kernel. Linux has a monolithic structure. In other words, the entire kernel is 
compiled and linked as a single statically linked executable. However, it is possible to 
compile and incrementally link12 a set of sources into a single object module suitable for 
dynamic insertion into a running kernel. This is the usual method for supporting most 
common device drivers. In Linux, these are called    loadable modules. They are also ge-
nerically called device drivers. After the kernel is booted, a special application program 
is invoked to insert the loadable module into a running kernel.

Armed with that knowledge, let’s look again at Listing 4-4. This snippet of the 
configuration file (.config) shows a portion of the USB subsystem configuration. The 
first configuration option, CONFIG_USB=m, declares that the USB subsystem is to be 

12 Incremental linking is a technique used to generate an object module that is intended to be linked again into another object. 
In this way, unresolved symbols that remain after incremental linking do not generate errors—they are resolved at the next link
stage.

  



80 Chapter 4 The Linux Kernel: A Different Perspective

 

included in this kernel configuration and that it will be compiled as   a dynamically
loadable module (=m), to be loaded sometime after the kernel has booted. The other 
choice would have been =y, in which case the USB module would be compiled and 
statically linked as part of the kernel image itself. It would end up in the .../drivers/
built-in.o composite binary that you saw in Listing 4-2 and Figure 4-1. The astute 
reader will realize that if a driver is configured as a loadable module, its code is not in-
cluded in the kernel proper, but rather exists as a stand-alone object module, a loadable
module, to be inserted into the running kernel after boot.

Notice in Listing 4-4 the CONFIG_USB_DEVICEFS=y declaration. This configuration 
option behaves in a slightly   different manner. In this case, USB_DEVICEFS (as configu-
ration options are commonly abbreviated) is not a stand-alone module, but rather a 
feature to be enabled or disabled in the USB driver. It does not necessarily result in a 
module that is compiled into the kernel proper (=y). Instead, it enables one or more 
features, often represented as additional object modules to be included in the overall 
USB device driver module. Usually, the help text in the configuration editor, or the 
hierarchy presented by the configuration editor, makes this distinction clear.

4.3.2 Configuration Editor(s)

Early kernels used a simple command-line-driven script to configure the kernel. This 
was cumbersome even for early kernels, in which the number of configuration param-
eters was much smaller. This command-line-style interface is still supported, but using 
it is tedious, to say the least. A typical configuration from a recent kernel requires you 
to answer more than 900 questions from the command line. You enter your choice 
and then press Enter for each query in the script. Furthermore, if you make a mistake, 
there is no way to back up; you must start from the beginning. That can be profoundly 
frustrating if you make a mistake on the 899th entry!

In some situations, such as building a kernel on an embedded system without 
graphics, using the command-line configuration utility may be unavoidable, but this 
author would go to great lengths to find a way around it.

The kernel configuration subsystem   has several configuration targets. In fact, a re-
cent Linux kernel release included 11 such configuration targets. They are summarized 
here, from text taken from the output of make help:

• config—Update current config using a line-oriented program

• menuconfig—Update current config using a menu-based program

• xconfig—Update current config using a QT-based front end
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• gconfig—Update current config using a GTK-based front end

• oldconfig—Update current config using a provided .config as the base

• silentoldconfig—Same as oldconfig but silently

• randconfig—New config with random answer to all options

• defconfig—New config with default answer to all options

• allmodconfig—New config that selects modules, when possible

• allyesconfig—New config in which all options are accepted with yes

• allnoconfig—New minimal config

The first four of these makefile configuration targets invoke a form of configuration 
editor, as described in the list. Because of space considerations, we focus our discussion 
in this chapter and the rest of this book only on the GTK-based graphical front end. 
Realize that you can use the configuration editor of your choice    with the same results.

You invoke the configuration editor by entering the command make gconfig from 
the top-level kernel directory.13 Figure 4-2 shows the top-level       configuration menu pre-
sented to the developer when gconfig is run. From here, you can access every available 
configuration parameter to generate a custom kernel configuration.

FIGURE 4-2 Top-level kernel configuration

13 As mentioned, you can use the configuration editor of your choice, such as make xconfig or make menuconfig.
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When you exit the configuration editor, you   are prompted to save your changes. If 
you elect to save your changes, the global configuration file .config is updated (or cre-
ated, if it does not already exist). This .config file, introduced earlier, drives the kernel 
build via the top-level makefile.

Most kernel software modules also read the configuration indirectly via the .config
file as follows. During the build process, the .config file is processed into a C header 
file found in the .../include/linux directory, called autoconf.h. This file is gener-
ated automatically. You should never edit it directly, because edits are lost each time a 
configuration is changed and a new build is started. Many kernel source files include 
this file directly using the #include preprocessor directive. Listing 4-5 reproduces a 
section of this header file related to USB support.  The kernel build files include this 
autoconf.h file into every kernel compile command line, using the -include gcc di-
rective as follows:

gcc ... -include include/linux/autoconf.h ... <somefile.c>

This is how the kernel config is accessed      by various kernel modules.

LISTING 4-5 Linux autoconf.h

$ cat include/linux/autoconf.h | grep CONFIG_USB

#define CONFIG_USB_ARCH_HAS_EHCI 1

#define CONFIG_USB_HID 1

#define CONFIG_USB_EHCI_BIG_ENDIAN_DESC 1

#define CONFIG_USB_ARCH_HAS_OHCI 1

#define CONFIG_USB_EHCI_BIG_ENDIAN_MMIO 1

#define CONFIG_USB_STORAGE 1

#define CONFIG_USB_SUPPORT 1

#define CONFIG_USB_EHCI_HCD 1

#define CONFIG_USB_DEVICEFS 1

#define CONFIG_USB_OHCI_HCD 1

#define CONFIG_USB_UHCI_HCD 1

#define CONFIG_USB_OHCI_LITTLE_ENDIAN 1

#define CONFIG_USB_ARCH_HAS_HCD 1

#define CONFIG_USB 1
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If you haven’t already done so, execute make gconfig in your top-level kernel source 
directory, and poke around this configuration      utility to see the large number of subsec-
tions and configuration options available to the Linux developer. As long as you don’t 
explicitly save your changes, they will be lost when you exit the configuration editor, so 
you can safely explore without modifying your kernel configuration.14 Many configura-
tion parameters contain helpful explanatory text, which can add to your understanding 
of the various configuration options.

4.3.3 Makefile Targets

If you type make help at the top-level Linux   source directory, you are presented with 
a list of targets that can be generated from the source tree. The most common use of 
make is to specify no target. This generates the kernel ELF file vmlinux and the default 
binary image for your chosen architecture (for example, bzImage for x86). Specifying 
make with no target also builds all the device driver modules (kernel loadable modules) 
specified by the configuration.

Many architectures and machine types require binary targets specific to the archi-
tecture and bootloader in use. One of the more common architecture-specific targets is  
zImage. In many architectures, this is the default target image that can be loaded and 
run on the target embedded system. One of the common mistakes that newcomers 
make is to specify bzImage as the make target. The   bzImage target is specific to the x86/
PC architecture. Contrary to popular myth, the bzImage is not a bzip2-compressed 
image. It is a big zImage. Without going into the details of legacy PC architecture, it is 
enough for you to know that a bzImage is suitable only for PC-compatible machines 
with an industry-standard PC-style BIOS.

Listing 4-6 contains the output from make help from a recent Linux kernel. You 
can see from the listing that many targets are available. Each is listed, along with a 
short description of its use. It is important to realize that even the help make target (as 
in make help) is architecture-specific. You get a different list of architecture-specific 
targets depending on the architecture you specify on the make invocation. Listing 4-6 
illustrates an invocation that specifies the ARM architecture, as you can see from the   
command line.

14 Better yet, make a backup copy of your .config file.
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LISTING 4-6 Makefile Targets

$ make ARCH=arm help

Cleaning targets:

  Clean          - Remove most generated files but keep the config and

                    enough build support to build external modules

  mrproper       - Remove all generated files + config + various backup files

  distclean      - mrproper + remove editor backup and patch files

Configuration targets:

  Config         - Update current config utilising a line-oriented program

  Menuconfig     - Update current config utilising a menu based program

  Xconfig        - Update current config utilising a QT based front-end

  Gconfig        - Update current config utilising a GTK based front-end

  Oldconfig      - Update current config utilising a provided .config as base

  silentoldconfig - Same as oldconfig, but quietly

  randconfig     - New config with random answer to all options

  defconfig      - New config with default answer to all options

  allmodconfig   - New config selecting modules when possible

  allyesconfig   - New config where all options are accepted with yes

  allnoconfig    - New config where all options are answered with no

Other generic targets:

  All            - Build all targets marked with [*]

* vmlinux        - Build the bare kernel

* modules        - Build all modules

  modules_install - Install all modules to INSTALL_MOD_PATH (default: /)

  firmware_install- Install all firmware to INSTALL_FW_PATH

                    (default: $(INSTALL_MOD_PATH)/lib/firmware)

  dir/            - Build all files in dir and below

  dir/file.[ois]  - Build specified target only

  dir/file.ko     - Build module including final link

  modules_prepare - Set up for building external modules

  tags/TAGS      - Generate tags file for editors

  cscope         - Generate cscope index

  kernelrelease  - Output the release version string

  kernelversion  - Output the version stored in Makefile

  headers_install - Install sanitised kernel headers to INSTALL_HDR_PATH

                    (default: /home/chris/temp/linux-2.6/usr)

Static analysers

  checkstack      - Generate a list of stack hogs

  namespacecheck  - Name space analysis on compiled kernel

  versioncheck    - Sanity check on version.h usage
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LISTING 4-6 Continued

   includecheck    - Check for duplicate included header files

  export_report   - List the usages of all exported symbols

  headers_check   - Sanity check on exported headers

  headerdep       - Detect inclusion cycles in headers

Kernel packaging:

  rpm-pkg         - Build both source and binary RPM kernel packages

  binrpm-pkg      - Build only the binary kernel package

  deb-pkg         - Build the kernel as an deb package

  tar-pkg         - Build the kernel as an uncompressed tarball

  targz-pkg       - Build the kernel as a gzip compressed tarball

  tarbz2-pkg      - Build the kernel as a bzip2 compressed tarball

Documentation targets:

 Linux kernel internal documentation in different formats:

  htmldocs        - HTML

  pdfdocs         - PDF

  psdocs          - Postscript

  xmldocs         - XML DocBook

  mandocs         - man pages

  installmandocs  - install man pages generated by mandocs

  cleandocs       - clean all generated DocBook files

Architecture specific targets (arm):

* zImage        - Compressed kernel image (arch/arm/boot/zImage)

  Image         - Uncompressed kernel image (arch/arm/boot/Image)

* xipImage      - XIP kernel image, if configured (arch/arm/boot/xipImage)

  uImage        - U-Boot wrapped zImage

  bootpImage    - Combined zImage and initial RAM disk

                  (supply initrd image via make variable INITRD=<path>)

  install       - Install uncompressed kernel

  zinstall      - Install compressed kernel

                  Install using (your) ~/bin/installkernel or

                  (distribution) /sbin/installkernel or

                  install to $(INSTALL_PATH) and run lilo

  acs5k_defconfig          - Build for acs5k

  acs5k_tiny_defconfig     - Build for acs5k_tiny

  afeb9260_defconfig       - Build for afeb9260

  am200epdkit_defconfig    - Build for am200epdkit

  ams_delta_defconfig      - Build for ams_delta

  assabet_defconfig        - Build for assabet
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LISTING 4-6 Continued

  at91cap9adk_defconfig    - Build for at91cap9adk

  at91rm9200dk_defconfig   - Build for at91rm9200dk

  at91rm9200ek_defconfig   - Build for at91rm9200ek

  at91sam9260ek_defconfig  - Build for at91sam9260ek

  at91sam9261ek_defconfig  - Build for at91sam9261ek

  at91sam9263ek_defconfig  - Build for at91sam9263ek

  at91sam9g20ek_defconfig  - Build for at91sam9g20ek

  at91sam9rlek_defconfig   - Build for at91sam9rlek

  ateb9200_defconfig       - Build for ateb9200

  badge4_defconfig         - Build for badge4

  cam60_defconfig          - Build for cam60

  carmeva_defconfig        - Build for carmeva

  cerfcube_defconfig       - Build for cerfcube

  cm_x2xx_defconfig        - Build for cm_x2xx

  cm_x300_defconfig        - Build for cm_x300

  colibri_pxa270_defconfig - Build for colibri_pxa270

  colibri_pxa300_defconfig - Build for colibri_pxa300

  collie_defconfig         - Build for collie

  corgi_defconfig          - Build for corgi

  csb337_defconfig         - Build for csb337

  csb637_defconfig         - Build for csb637

  davinci_all_defconfig    - Build for davinci_all

  ebsa110_defconfig        - Build for ebsa110

  ecbat91_defconfig        - Build for ecbat91

  edb7211_defconfig        - Build for edb7211

  em_x270_defconfig        - Build for em_x270

  ep93xx_defconfig         - Build for ep93xx

  eseries_pxa_defconfig    - Build for eseries_pxa

  ezx_defconfig            - Build for ezx

  footbridge_defconfig     - Build for footbridge

  fortunet_defconfig       - Build for fortunet

  h3600_defconfig          - Build for h3600

  h5000_defconfig          - Build for h5000

  h7201_defconfig          - Build for h7201

  h7202_defconfig          - Build for h7202

  hackkit_defconfig        - Build for hackkit

  integrator_defconfig     - Build for integrator

  iop13xx_defconfig        - Build for iop13xx

  iop32x_defconfig         - Build for iop32x

  iop33x_defconfig         - Build for iop33x

  ixp2000_defconfig        - Build for ixp2000

  ixp23xx_defconfig        - Build for ixp23xx
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LISTING 4-6 Continued

  ixp4xx_defconfig         - Build for ixp4xx

  jornada720_defconfig     - Build for jornada720

  kafa_defconfig           - Build for kafa

  kb9202_defconfig         - Build for kb9202

  kirkwood_defconfig       - Build for kirkwood

  ks8695_defconfig         - Build for ks8695

  lart_defconfig           - Build for lart

  littleton_defconfig      - Build for littleton

  loki_defconfig           - Build for loki

  lpd270_defconfig         - Build for lpd270

  lpd7a400_defconfig       - Build for lpd7a400

  lpd7a404_defconfig       - Build for lpd7a404

  lubbock_defconfig        - Build for lubbock

  lusl7200_defconfig       - Build for lusl7200

  magician_defconfig       - Build for magician

  mainstone_defconfig      - Build for mainstone

  msm_defconfig            - Build for msm

  mv78xx0_defconfig        - Build for mv78xx0

  mx1ads_defconfig         - Build for mx1ads

  mx1_defconfig            - Build for mx1

  mx27_defconfig           - Build for mx27

  mx31pdk_defconfig        - Build for mx31pdk

  mx3_defconfig            - Build for mx3

  n770_defconfig           - Build for n770

  neocore926_defconfig     - Build for neocore926

  neponset_defconfig       - Build for neponset

  netwinder_defconfig      - Build for netwinder

  netx_defconfig           - Build for netx

  ns9xxx_defconfig         - Build for ns9xxx

  omap_2430sdp_defconfig   - Build for omap_2430sdp

  omap_3430sdp_defconfig   - Build for omap_3430sdp

  omap3_beagle_defconfig   - Build for omap3_beagle

  omap3_pandora_defconfig  - Build for omap3_pandora

  omap_apollon_2420_defconfig - Build for omap_apollon_2420

  omap_generic_1510_defconfig - Build for omap_generic_1510

  omap_generic_1610_defconfig - Build for omap_generic_1610

  omap_generic_1710_defconfig - Build for omap_generic_1710

  omap_generic_2420_defconfig - Build for omap_generic_2420

  omap_h2_1610_defconfig   - Build for omap_h2_1610

  omap_h4_2420_defconfig   - Build for omap_h4_2420

  omap_innovator_1510_defconfig - Build for omap_innovator_1510

  omap_innovator_1610_defconfig - Build for omap_innovator_1610
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LISTING 4-6 Continued

  omap_ldp_defconfig       - Build for omap_ldp 

  omap_osk_5912_defconfig  - Build for omap_osk_5912

  omap_perseus2_730_defconfig - Build for omap_perseus2_730

  onearm_defconfig         - Build for onearm

  orion5x_defconfig        - Build for orion5x

  overo_defconfig          - Build for overo

  palmte_defconfig         - Build for palmte

  palmtt_defconfig         - Build for palmtt

  palmz71_defconfig        - Build for palmz71

  palmz72_defconfig        - Build for palmz72

  pcm027_defconfig         - Build for pcm027

  picotux200_defconfig     - Build for picotux200

  pleb_defconfig           - Build for pleb

  pnx4008_defconfig        - Build for pnx4008

  pxa168_defconfig         - Build for pxa168

  pxa255-idp_defconfig     - Build for pxa255-idp

  pxa910_defconfig         - Build for pxa910

  qil-a9260_defconfig      - Build for qil-a9260

  realview_defconfig       - Build for realview

  realview-smp_defconfig   - Build for realview-smp

  rpc_defconfig            - Build for rpc

  rx51_defconfig           - Build for rx51

  s3c2410_defconfig        - Build for s3c2410

  s3c6400_defconfig        - Build for s3c6400

  sam9_l9260_defconfig     - Build for sam9_l9260

  shannon_defconfig        - Build for shannon

  shark_defconfig          - Build for shark

  simpad_defconfig         - Build for simpad

  spitz_defconfig          - Build for spitz

  sx1_defconfig            - Build for sx1

  tct_hammer_defconfig     - Build for tct_hammer

  trizeps4_defconfig       - Build for trizeps4

  usb-a9260_defconfig      - Build for usb-a9260

  usb-a9263_defconfig      - Build for usb-a9263

  versatile_defconfig      - Build for versatile

  viper_defconfig          - Build for viper

  w90p910_defconfig        - Build for w90p910

  yl9200_defconfig         - Build for yl9200

  zylonite_defconfig       - Build for zylonite

  make V=0|1 [targets] 0 => quiet build (default), 1 => verbose build

  make V=2   [targets] 2 => give reason for rebuild of target
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LISTING 4-6 Continued

  make O=dir [targets] Locate all output files in “dir”, including .config

  make C=1   [targets] Check all c source with $CHECK (sparse by default)

  make C=2   [targets] Force check of all c source with $CHECK

Execute “make” or “make all” to build all targets marked with [*]

For further info see the ./README file

 

Many of these targets you might    never use. However, it is good to know that they 
exist. As you can see from Listing 4-6, the targets listed with an asterisk are built by 
default. Notice the numerous default configurations, listed as *_defconfig. Recall from 
Section 4.2.2, “Compiling the Kernel,” the command we used to preconfigure a pris-
tine kernel source tree: We invoked make with an architecture and a default configu-
ration. The default configuration was ixp4xx_defconfig, which appears in this list of 
ARM targets. This is a good way to discover all the default configurations available for 
a particular kernel release and architecture.

4.4 Kernel Configuration

Kconfig (or a file with a similar    root followed by an extension, such as Kconfig.ext)
exists in almost 300 kernel subdirectories. Kconfig drives the configuration process for 
the features contained within its subdirectory. The contents of Kconfig are parsed by 
the configuration subsystem, which presents configuration choices to the user and 
contains help text associated with a given configuration parameter.

The configuration utility (such as gconf, presented earlier) reads the Kconfig files 
starting from the arch subdirectory’s Kconfig file. It is invoked from the Kconfig make-
file with an entry that looks like this:

ifdef KBUILD_KCONFIG

Kconfig := $(KBUILD_KCONFIG)

else

Kconfig := arch/$(SRCARCH)/Kconfig

endif

...

gconfig: $(obj)/gconf

        $< $(Kconfig)
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Depending on which architecture you are building, gconf reads this architecture-
specific Kconfig as the top-level configuration definition. Contained within Kconfig are 
a number of lines that look like this:

source  “drivers/pci/Kconfig”

This directive tells the configuration editor utility to read in another Kconfig file 
from another location within the kernel source tree. Each architecture contains many 
such Kconfig files; taken together, these determine the complete set of menu options 
presented to the user when configuring the kernel. Each Kconfig file is free to source 
additional Kconfig files in different parts of the source tree. The configuration utility—
gconf, in this case—recursively reads the Kconfig file chain and builds the configura-
tion menu structure.

Listing 4-7 is a partial tree view of the Kconfig files associated with the ARM ar-
chitecture. In a recent Linux 2.6 source tree from which this example was taken, the 
kernel configuration was defined by 473 separate Kconfig files. This listing omits most 
of those for the sake of space and clarity; the idea is to show the overall structure. List-
ing      them all in this tree view would take several pages.

LISTING 4-7 Partial Listing of Kconfig for ARM Architecture

arch/arm/Kconfig <<<<<< (top level Kconfig)

 |->  init/Kconfig

 |  ...

 |->  arch/arm/mach-iop3xx/Kconfig

 |->  arch/arm/mach-ixp4xx/Kconfig

 |    ...

 |->  net/Kconfig

 |    |-->  net/ipv4/Kconfig

 |    |     |-->  net/ipv4/ipvs/Kconfig

 |    ...

 |->  drivers/pci/Kconfig

 |    ...

 |->  drivers/usb/Kconfig

 |    |-->  drivers/usb/core/Kconfig

 |    |-->  drivers/usb/host/Kconfig

 | ...

 |->  lib/Kconfig

Looking at Listing 4-7, the file .../arch/arm/Kconfig would contain a line like this:

source “net/Kconfig”
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The file net/Kconfig would contain a line like this:

source “net/ipv4/Kconfig”

and so on.
As mentioned earlier, these Kconfig files taken together determine the configuration 

menu structure and configuration   options presented to the user during kernel con-
figuration. Figure 4-3 is an example of the configuration utility (gconf) for the ARM 
architecture.

FIGURE 4-3 gconf configuration screen

4.4.1 Custom Configuration Options

Many embedded developers add feature support to the Linux kernel to support their 
particular custom hardware. The configuration management architecture just de-
scribed makes it easy to customize and add features. A quick   peek into a typical Kconfig
file shows the structure of the configuration script language. As an example, assume 

  



92 Chapter 4 The Linux Kernel: A Different Perspective

that you have two hardware platforms based on the IXP425 network processor, and 
that your engineering team has dubbed them Vega and Constellation. Each board has 
specialized hardware that must be initialized early during the kernel boot phase. Let’s 
see how easy it is to add these configuration options to the set of choices presented to 
the developer during kernel configuration. Listing 4-8 is a snippet from   the top-level 
ARM Kconfig file.

LISTING 4-8 Snippet from .../arch/arm/Kconfig

source “init/Kconfig”

menu “System Type”

choice

        prompt “ARM system type”

        default ARCH_RPC

config ARCH_CLPS7500

        bool “Cirrus-CL-PS7500FE”

config ARCH_CLPS711X

        bool “CLPS711x/EP721x-based”

...

source “arch/arm/mach-ixp4xx/Kconfig”

 

  

In this Kconfig snippet, you see the menu item System Type being defined. After the 
ARM System type prompt, you see a list of choices related to the ARM architecture. 
Later in the file, you see the inclusion of the IXP4xx-specific Kconfig definitions. In this 
file, you add your custom configuration switches. Listing 4-9    reproduces a snippet of 
this file. Again, for readability and convenience, we’ve omitted irrelevant text, as indi-
cated by the ellipsis.

LISTING 4-9 Snippet from .../arch/arm/mach-ixp4xx/Kconfig

menu “Intel IXP4xx Implementation Options”

comment “IXP4xx Platforms”

config ARCH_AVILA
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LISTING 4-9 Continued

        bool “Avila”

        help

          Say ‘Y’ here if you want your kernel to support...

config ARCH_ADI_COYOTE

        bool “Coyote”

        help

          Say ‘Y’ here if you want your kernel to support

         the ADI Engineering Coyote...

# (These are our new custom options)

config ARCH_VEGA

        bool “Vega”

        help

          Select this option for “Vega” hardware support

config ARCH_CONSTELLATION

        bool “Constellation”

        help

          Select this option for “Constellation”

          hardware support

...

 

Figure 4-4 shows the result of these changes as it appears when you run the gconf
utility (via make ARCH=arm gconfig). As a result of these simple changes, the configura-
tion editor now includes options for our two new hardware platforms.15 Shortly, you’ll 
see how you can use this configuration information in the source tree to conditionally 
select objects that contain support for your new boards.

After the configuration editor (gconf in these examples) is run and you select sup-
port for one of your custom hardware platforms, the .config file introduced earlier 
contains macros for your new options. As with all kernel-configuration options, each 
is preceded with CONFIG_ to identify it as a kernel-configuration option. As a result, 
two new configuration options have been defined, and their state has been recorded in 
the .config file. Listing 4-10      shows the new .config file with your new configuration 
options.

15 We removed many options under ARM system type and Intel IXP4xx Implementation Options to fit the figure on the page.
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FIGURE 4-4 Custom configuration options

LISTING 4-10 Customized .config File Snippet

...

#

# IXP4xx Platforms

#

# CONFIG_ARCH_AVILA is not set

# CONFIG_ARCH_ADI_COYOTE is not set

CONFIG_ARCH_VEGA=y

# CONFIG_ARCH_CONSTELLATION is not set

# CONFIG_ARCH_IXDP425 is not set

# CONFIG_ARCH_PRPMC1100 is not set

...

 Notice two new configuration options related      to your Vega and Constellation hard-
ware platforms. As shown in Figure 4-4, you selected support for Vega; in the .config
file, you can see that the new CONFIG_ option representing the Vega board is selected 
and set to the value y. Notice also that the CONFIG_ option   related to Constellation is 
present but not selected.
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4.4.2 Kernel Makefiles

When building the kernel, the makefiles scan     the configuration and decide what sub-
directories to descend into and what source files to compile for a given configuration. 
To complete the example of adding support for two custom hardware platforms, Vega 
and Constellation, let’s look at the makefile that would read this configuration and take 
some action based on customizations.

Because you’re dealing with hardware-specific options in this example, assume 
that the customizations are represented by two hardware-setup modules called vega_
setup.c and constellation_setup.c. We’ve placed these C source files in the .../
arch/arm/mach-ixp4xx subdirectory of the kernel source tree. Listing 4-11 contains 
the complete makefile for this directory from a recent  Linux release.

LISTING 4-11 Makefile from .../arch/arm/mach-ixp4xx Kernel Subdirectory

#

# Makefile for the linux kernel.

#

obj-y   += common.o common-pci.o

obj-$(CONFIG_ARCH_IXDP4XX)    += ixdp425-pci.o ixdp425-setup.o

obj-$(CONFIG_MACH_IXDPG425)    += ixdpg425-pci.o coyote-setup.o

obj-$(CONFIG_ARCH_ADI_COYOTE)  += coyote-pci.o coyote-setup.o

obj-$(CONFIG_MACH_GTWX5715)    += gtwx5715-pci.o gtwx5715-setup.o

You might be surprised by the simplicity of this makefile. Much work has gone 
into the development of the kernel build system for just this reason. For the average 
developer who simply needs to add support for his custom hardware, the design of the 
kernel build system makes these kinds of customizations very straightforward.16

Looking at this makefile, it might be obvious what must be done to introduce new 
hardware setup routines conditionally based on your configuration options. Simply 
add the following two lines at the bottom of the makefile, and you’re done:

obj-$(CONFIG_ARCH_VEGA)   += vega_setup.o

obj-$(CONFIG_ARCH_CONSTELLATION)   += costellation_setup.o

 

These steps complete the simple addition of setup modules specific to the hypo-
thetical sample custom hardware. Using similar logic, you should now be able to make 
your own modifications to the kernel     configuration/build system.

16 In actuality, the kernel build system is complicated, but most of the complexity is cleverly hidden from the average developer.
As a result, it is relatively easy to add, modify, or delete configurations  without having to be an expert.
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4.5 Kernel Documentation

A wealth of information   is available in the Linux source tree. It would be difficult to 
read it all, because the .../Documentation directory contains nearly 1,300 documen-
tation files in 118 subdirectories. Be cautious in reading this material: Given the rapid 
pace of kernel development and release, this documentation tends to become outdated 
quickly. Nonetheless, it often provides a great starting point from which you can form 
a foundation of knowledge on a particular kernel subsystem or concept.

Do not neglect the   Linux Documentation Project, found at www.tldp.org, where 
you might find the most up-to-date version of a particular document or man page.17

Of particular interest to the previous discussion is the Kbuild documentation, found 
in the kernel .../Documentation/kbuild subdirectory.

No discussion of kernel documentation would be complete without mentioning 
Google. One day soon, Google will appear in Merriam-Webster’s as a verb! Chances 
are, many problems you might have and questions you might ask have been addressed 
and answered. Spend some time becoming proficient in searching the Internet for 
answers to questions. You will discover numerous mailing lists and other information 
repositories full of invaluable information related to your specific project or problem. 
Appendix E contains a useful list of open-source resources.

4.6 Obtaining a Custom Linux Kernel

In general, you can obtain an embedded Linux kernel for your hardware platform in 
three ways: You can purchase a suitable commercial embedded Linux distribution; you 
can download a free embedded distribution   that supports your particular hardware 
platform, if you can find one suitable for your particular architecture and processor; 
or you can find the closest open-source Linux kernel to your application and port it 
yourself. 

Although porting an open source kernel to your custom board is not necessarily 
difficult, it represents a significant investment in engineering/development resources. 
This approach gives you access to free software, but deploying Linux in your develop-
ment project is far from free, as we discussed in Chapter 1, “Introduction.” Even for 
a small system with minimal application requirements, you need many more compo-
nents than just a Linux kernel.

17 Always assume that features advance faster than the corresponding documentation, so treat the docs as a guide rather than 
indisputable facts.
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4.6.1 What Else Do I Need?

This chapter has focused on the layout and construction of the Linux kernel itself. As 
you might have discovered, Linux is only a small component of an embedded system 
based on Linux. In addition to the Linux kernel, you need   the following components 
to develop, test, and launch your embedded Linux widget:

• A bootloader ported to and configured for your specific hardware platform

• A cross-compiler and associated toolchain for your chosen architecture

• A file system containing many packages—binary executables and libraries 
compiled for your native hardware architecture/processor

• Device drivers for any custom devices on your board

• A development environment, including host tools and utilities

• A Linux kernel source tree enabled for your particular processor and board

These are the components of an embedded Linux distribution.

4.7 Summary

This chapter covered the kernel build system and the process of modifying the build 
system to facilitate modifications. We leave it to other great books to describe the 
theory and operation of the Linux kernel. Here we discussed how it is built and identi-
fied the components that make up the image. Breaking the kernel into understandable 
pieces is the key to learning how to navigate this large software project.

• The Linux kernel is almost 20 years old and has become a mainstream, well-
supported operating system for many architectures.

• The Linux open source home is found at www.kernel.org. Virtually every 
release version of the kernel is available there, going all the way back to 
Linux 1.0.

• Several kernel configuration editors exist. We chose one and examined how it 
is driven and how to modify the menus and menu items within. These con-
cepts apply to all the graphical front ends.

• The kernel itself comes with an entire directory structure full of useful kernel 
documentation. This is a helpful resource for understanding and navigating 
the kernel and its operation.
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• This chapter concluded with a brief introduction to the options available for 
obtaining an embedded Linux distribution.

4.7.1 Suggestions for Additional Reading

Linux Kernel    HOWTO
www.linuxdocs.org/HOWTOs/Kernel-HOWTO.html

Kernel Kbuild   documentation
Linux kernel source tree
.../Documentation/kbuild/*

The Linux Documentation Project:
www.tldp.org

Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification, 
Version 1.2
TIS Committee, May   1995
http://refspecs.freestandards.org/elf/elf.pdf

Linux kernel source tree
.../Documentation/kbuild/makefiles.txt

Linux kernel source tree
.../Documentation/kbuild/kconfig-language.txt

Linux Kernel Development, 3rd Edition
Robert Love
Addison-Wesley, 2010
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When the power is applied to an embedded Linux system, a complex se-
quence of events is started. After a few tens of seconds, the Linux kernel 

is operational and has spawned a series of application programs as specified by 
the system init scripts. A significant portion of these activities are governed by 
system configuration and are under the control of the embedded developer.

This chapter examines the initial sequence of events in the Linux kernel. We 
take a detailed look at the mechanisms and processes used during kernel initial-
ization. We then describe the Linux kernel command line and its use to custom-
ize the Linux environment on startup. With this knowledge, you will be able to 
customize and control the initialization sequence to meet the requirements of 
your particular embedded system.

5.1 Composite Kernel Image: Piggy and Friends

Upon power-on, the bootloader in an embedded system is the first software to get 
processor control. After the bootloader has performed some low-level hardware ini-
tialization, control is passed to the Linux kernel. This can be a manual sequence of 
events to facilitate the development process (for example, the user types interac-
tive load/boot commands at the bootloader prompt), or it can be an automated 
startup sequence typical of a production environment. We have dedicated Chapter 
7, “Bootloaders,” to this subject, so we defer any detailed bootloader discussion to 
that chapter.

In Chapter 4, “The Linux Kernel: A Different Perspective,” we examined the 
components that make up the Linux kernel image. Recall that one of the common 
files built for every architecture is the ELF binary named vmlinux. This binary file is 
the monolithic kernel itself, or what we have been calling the kernel proper. In fact, 
when   we looked at its construction in the link stage of vmlinux, we pointed out 
where we might look to see where the first line of code might be found. In most ar-
chitectures, it is found in an assembly language source file called head.S or a similar 
filename. In the Power Architecture (powerpc) branch of the kernel, several versions 
of head.S are present, depending on the processor. For example, the AMCC 440 
series processors are initialized from a file called head_44x.S.
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Some architectures and bootloaders can directly boot the vmlinux kernel image. 
For example, platforms based on Power Architecture and the U-Boot bootloader usu-
ally can boot the vmlinux image directly1 (after conversion from ELF to binary, as 
you will see shortly). In other combinations of architecture and bootloader, additional 
functionality might be needed to set up the proper context and provide the necessary 
utilities to load and boot the kernel.

Listing 5-1 details the final sequence of steps in the kernel build process for a hard-
ware platform based on the ADI Engineering Coyote Reference Platform, which con-
tains an Intel IXP425 network processor. This listing uses the quiet form of output 
from the kernel build system, which is the default. As pointed out in Chapter 4, it is 
a useful shorthand notation, allowing more of a focus on errors   and warnings during 
the build process.

LISTING 5-1 Final Kernel Build Sequence: ARM/IXP425 (Coyote)

$ make ARCH=arm CROSS_COMPILE=xscale_be- zImage

...   < many build steps omitted for clarity>

  LD      vmlinux

  SYSMAP  System.map

  SYSMAP  .tmp_System.map

  OBJCOPY arch/arm/boot/Image

  Kernel: arch/arm/boot/Image is ready

  AS      arch/arm/boot/compressed/head.o

  GZIP    arch/arm/boot/compressed/piggy.gz

  AS      arch/arm/boot/compressed/piggy.o

  CC      arch/arm/boot/compressed/misc.o

  AS      arch/arm/boot/compressed/head-xscale.o

  AS      arch/arm/boot/compressed/big-endian.o

  LD      arch/arm/boot/compressed/vmlinux

  OBJCOPY arch/arm/boot/zImage

  Kernel: arch/arm/boot/zImage is ready

In the third line of Listing 5-1, the vmlinux image (the kernel proper) is linked. 
Following that, a number of additional object modules are processed. These include 

1 The kernel image is nearly always stored in compressed format, unless boot time is a critical issue. In this case, the image might
be called uImage, a compressed vmlinux file with a U-Boot header. See Chapter 7.
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head.o, piggy.o,2 and the architecture-specific head-xscale.o, among others. (The 
tags identify what is happening on each line. For example, AS indicates that the as-
sembler is invoked, GZIP indicates compression, and so on.) In general, these object 
modules are specific to a given architecture (ARM/XScale in this example) and contain 
low-level utility routines needed to boot the kernel on this particular architecture. 
Table 5-1 details   the components from Listing 5-1.

TABLE 5-1 ARM/XScale Low-Level Architecture Objects

Component Description

vmlinux Kernel proper, in ELF format, including symbols, comments, debug info (if com-
piled with g), and architecture-generic components.

System.map Text-based kernel symbol table for the vmlinux module.

.tmp System.map Generated only to sanity-check System.map; otherwise, not used in the final build 
image.

Image Binary kernel module, stripped of symbols, notes, and comments.

head.o ARM-specific startup code generic to ARM processors. This object is passed control 
by the bootloader.

piggy.gz The file Image compressed with gzip.

piggy.o The file piggy.gz in assembly language format so that it can be linked with a sub-
sequent object, misc.o (see the text).

misc.o Routines used to decompress the kernel image (piggy.gz) and the source of the fa-
miliar boot message Uncompressing Linux . . . Done on some architectures.

head xscale.o Processor initialization specific to the XScale processor family.

big endian.o Tiny assembly language routine to switch the XScale processor into big-endian mode.

vmlinux Composite kernel image. This is an unfortunate choice of names, because it dupli-
cates the name for the kernel proper; the two are not the same. This binary image is 
the result when the kernel proper is linked with the objects in this table. See the text 
for an explanation.

zImage Final composite kernel image loaded by bootloader. See the following text.

An illustration will help you understand this structure and the following discussion. Figure 

5-1 shows the image components and their metamorphosis during the build process leading 

up to a bootable kernel image. The following sections    describe the components and process 

in detail.

2 The term piggy was originally used to describe a “piggyback” concept. In this case, the binary kernel image is piggybacked onto 
the bootstrap loader to produce the composite kernel image.
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FIGURE 5-1 Composite kernel image construction

5.1.1 The Image Object

After the vmlinux kernel ELF file has been built, the   kernel build system continues to 
process the targets described in Table 5-1. The Image object is created from the vm-
linux object. Image is basically the vmlinux ELF file stripped of redundant sections 
(notes and comments) and also stripped of any debugging symbols that might have 
been present. The following command is used for this purpose:

xscale_be-objcopy -O binary -R .note -R .note.gnu.build-id -R .comment -S

 vmlinux arch/arm/boot/Image

The -O option tells objcopy to generate a binary file; the -R option removes the ELF 
sections named .note, .note.gnu.build-id, and .comment; and the -S option is the 
flag to strip debugging symbols. Notice that objcopy takes the vmlinux ELF image as 
input and generates the target binary file called Image. In summary, Image is nothing 
more than the kernel proper converted from ELF to binary form      and stripped of debug 
symbols and the aforementioned .note* and .comment sections.
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5.1.2 Architecture Objects

Following the build sequence further, a      number of small modules are compiled. These 
include several assembly language files (head.o, head-xscale.o, and so on) that per-
form low-level architecture and processor-specific tasks. Each of these objects is sum-
marized in Table 5-1. Of particular note is the sequence creating the object called 
piggy.o. First, the Image file (binary kernel image) is compressed using this gzip com-
mand:

cat Image | gzip -f -9 > piggy.gz

This creates a new file called piggy.gz, which is simply a compressed version of the 
binary kernel Image. You can see this graphically in Figure 5-1. What comes next is 
rather interesting. An assembly language file called piggy.S is assembled, which con-
tains a reference to the compressed piggy.gz. In essence, the binary kernel image is 
being piggybacked as payload into a low-level assembly language bootstrap loader.3 This 
bootstrap loader initializes the processor and required memory regions, decompresses 
the binary kernel image, and loads it into the proper place in system memory before 
passing control to it. Listing 5-2       reproduces .../arch/arm/boot/compressed/piggy.S
in its entirety.

LISTING 5-2 Assembly File Piggy.S

  .section .piggydata,#alloc

  .globl    input_data

input_data:

  .incbin   “arch/arm/boot/compressed/piggy.gz”

  .globl    input_data_end

input_data_end:

This small assembly-language file is simple yet produces a complexity that is not 
immediately obvious. The purpose of this file is to cause the compressed binary kernel 
image to be emitted by the assembler as an ELF section called .piggydata. It is trig-
gered by the .incbin assembler preprocessor directive, which can be viewed as the 
assembler’s version of an #include file, except that it expects binary data. In summary, 
the net result of this assembly language file is to contain the compressed binary ker-

3 Not to be confused with the bootloader, a bootstrap loader can be considered a second-stage loader, and the bootloader itself 
can be thought of as a first-stage loader.
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nel image as a payload within another image—the bootstrap loader. Notice the labels 
input_data and input_data_end. The bootstrap loader uses these to identify the 
boundaries of the binary payload—the kernel image itself.

5.1.3 Bootstrap Loader

Not to be confused with   a bootloader, many architectures use a bootstrap loader (or 
second-stage loader) to load the Linux kernel image into memory. Some bootstrap 
loaders perform checksum verification of the kernel image, and most decompress and 
relocate the kernel image. The difference between a bootloader and a bootstrap loader 
in this context is simple: The bootloader controls the board upon power-up and does 
not rely on the Linux kernel in any way. In contrast, the bootstrap loader’s primary 
purpose is to act as the glue between a bare metal bootloader and the Linux kernel. It 
is the bootstrap loader’s responsibility to provide a proper context for the kernel to run 
in, as well as perform the necessary steps to decompress and relocate the kernel binary 
image. It is similar to the concept of a primary and secondary loader found in the PC 
architecture.

Figure 5-2 makes this concept clear. The bootstrap loader is concatenated to the 
kernel image for loading.

FIGURE 5-2 Composite kernel image for ARM XScale
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In the example we have been studying, the bootstrap loader consists of the binary 
images shown in Figure 5-2. The functions performed by this bootstrap loader include 
the following:

• Low-level assembly language processor initialization, which includes support 
for enabling the processor’s internal instruction and data caches, disabling 
interrupts, and setting up a C runtime environment. These include head.o and 
head-xscale.o.

• Decompression and relocation code, embodied in misc.o.

• Other processor-specific initialization, such as big-endian.o, which enables 
big endian mode for this particular processor.

It is worth noting that the details we have been examining are specific to the ARM/
XScale kernel implementation. Each   architecture has different details, although the 
concepts are similar. Using an analysis similar to that presented here, you can learn the 
requirements of your own architecture.

5.1.4 Boot Messages

Perhaps you’ve seen a PC workstation   booting a desktop Linux distribution such as 
Red Hat or SUSE Linux. After the PC’s own BIOS messages, you see Linux display 
a flurry of console messages as it initializes the various kernel subsystems. Significant 
portions of the output are common across disparate architectures and machines. Two 
of the more interesting early boot messages are the kernel version string and the kernel 
command line, which is described shortly. Listing 5-3 reproduces the kernel boot mes-
sages for the ADI Engineering Coyote Reference Platform booting Linux on the Intel 
XScale IXP425 processor. The listing has been formatted with line numbers for easy 
reference.

LISTING 5-3 Linux Boot Messages on IPX425

 1  Using base address 0x01000000 and length 0x001ce114

 2  Uncompressing Linux....... done, booting the kernel.

 3  Linux version 2.6.32-07500-g8bea867 (chris@brutus2) (gcc version 4.2.0 
20070126 (prerelease) (MontaVista 4.2.0-3.0.0.0702771 2007-03-10)) #12 Wed Dec 16 
23:07:01 EST 2009

 4  CPU: XScale-IXP42x Family [690541c1] revision 1 (ARMv5TE), cr=000039ff

 5  CPU: VIVT data cache, VIVT instruction cache

 6  Machine: ADI Engineering Coyote

 7  Memory policy: ECC disabled, Data cache writeback
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LISTING 5-3 Continued

 8  Built 1 zonelists in Zone order, mobility grouping on.  Total pages: 16256

 9  Kernel command line: console=ttyS0,115200 root=/dev/nfs ip=dhcp

10  PID hash table entries: 256 (order: -2, 1024 bytes)

11  Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)

12  Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)

13  Memory: 64MB = 64MB total

14  Memory: 61108KB available (3332K code, 199K data, 120K init, 0K highmem)

15  SLUB: Genslabs=11, HWalign=32, Order=0-3, MinObjects=0, CPUs=1, Nodes=1

16  Hierarchical RCU implementation.

17  RCU-based detection of stalled CPUs is enabled.

18  NR_IRQS:64

19  Calibrating delay loop... 532.48 BogoMIPS (lpj=2662400)

20  Mount-cache hash table entries: 512

21  CPU: Testing write buffer coherency: ok

22  NET: Registered protocol family 16

23  IXP4xx: Using 16MiB expansion bus window size

24  PCI: IXP4xx is host

25  PCI: IXP4xx Using direct access for memory space

26  PCI: bus0: Fast back to back transfers enabled

27  SCSI subsystem initialized

28  usbcore: registered new interface driver usbfs

29  usbcore: registered new interface driver hub

30  usbcore: registered new device driver usb

31  NET: Registered protocol family 8

32  NET: Registered protocol family 20

33  NET: Registered protocol family 2

34  IXP4xx Queue Manager initialized.

35  NetWinder Floating Point Emulator V0.97 (double precision)

36  JFFS2 version 2.2. (NAND) (c) 2001-2006 Red Hat, Inc.

37  io scheduler noop registered

38  io scheduler deadline registered

39  io scheduler cfq registered (default)

40  Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled

41  serial8250.0: ttyS0 at MMIO 0xc8001000 (irq = 13) is a XScale

42  console [ttyS0] enabled

43  Uniform Multi-Platform E-IDE driver

44  ide-gd driver 1.18

45  IXP4XX-Flash.0: Found 1 x16 devices at 0x0 in 16-bit bank

46   Intel/Sharp Extended Query Table at 0x0031

47   Intel/Sharp Extended Query Table at 0x0031

48  Using buffer write method

49  Searching for RedBoot partition table in IXP4XX-Flash.0 at offset 0xfe0000 
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LISTING 5-3 Continued

50  5 RedBoot partitions found on MTD device IXP4XX-Flash.0

51  Creating 5 MTD partitions on “IXP4XX-Flash.0”:

52  0x000000000000-0x000000060000 : “RedBoot”

53  0x000000100000-0x000000260000 : “MyKernel”

54  0x000000300000-0x000000900000 : “RootFS”

55  0x000000fc0000-0x000000fc1000 : “RedBoot config”

56  0x000000fe0000-0x000001000000 : “FIS directory”

57  e100: Intel(R) PRO/100 Network Driver, 3.5.24-k2-NAPI

58  e100: Copyright(c) 1999-2006 Intel Corporation

59  ehci_hcd: USB 2.0 ‘Enhanced’ Host Controller (EHCI) Driver

60  ohci_hcd: USB 1.1 ‘Open’ Host Controller (OHCI) Driver

61  uhci_hcd: USB Universal Host Controller Interface driver

62  Initializing USB Mass Storage driver...

63  usbcore: registered new interface driver usb-storage

64  USB Mass Storage support registered.

65  IXP4xx Watchdog Timer: heartbeat 60 sec

66  usbcore: registered new interface driver usbhid

67  usbhid: USB HID core driver

68  TCP cubic registered

69  NET: Registered protocol family 17

70  XScale DSP coprocessor detected.

71  drivers/rtc/hctosys.c: unable to open rtc device (rtc0)

72  e100 0000:00:0f.0: firmware: using built-in firmware e100/d101m_ucode.bin

73  e100: eth0 NIC Link is Up 100 Mbps Full Duplex

74  IP-Config: Complete:

75       device=eth0, addr=192.168.0.29, mask=255.255.255.0, gw=255.255.255.255,

76       host=coyote1, domain=, nis-domain=(none),

77       bootserver=192.168.0.103, rootserver=192.168.0.103, rootpath=

78  Looking up port of RPC 100003/2 on 192.168.0.103

79  Looking up port of RPC 100005/1 on 192.168.0.103

80  VFS: Mounted root (nfs filesystem) on device 0:11.

81  Freeing init memory: 120K

82  INIT: version 2.86 booting

83  ... <some userland init messages omitted>

84  coyote1 login:

The kernel produces much useful    information during startup, as shown in Listing 
5-3. We study this output in some detail in the next few sections. Line 1 is produced by 
the Redboot bootloader on the board. Line 2 is produced by the bootstrap loader we pre-
sented earlier in this chapter. This message was produced by the decompression loader 
found in .../arch/arm/boot/compressed/misc.c, in a function called decompress_
kernel().
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Line 3 of Listing 5-3 is the kernel version string. It is the first line of output from 
the kernel itself. One of the first lines of C code executed by the kernel (in .../init/
main.c) upon entering start_kernel() is as follows:

printk(KERN_NOTICE “%s”, linux_banner);

This line produces the output just described—the kernel version string, line 3 of 
Listing 5-3. This version string contains a number of pertinent data points related to 
the kernel image:

• Kernel version: Linux version 2.6.32-07500-g8bea8674

• Username/machine name where the kernel was compiled

• Toolchain info: gcc version 4.2.0, supplied by MontaVista Software

 • Build number

• Date and time the kernel image was compiled

This is useful information both during development and later in production. All 
but one of the entries are self-explanatory. The build number is   simply a tool that the 
developers added to the version string to indicate that something more substantial 
than the date and time changed from one build to the next. It is a way for developers 
to keep track of the build in a generic and automatic fashion. You will notice in this 
example that this was the twelfth build in this series, as indicated by the #12 on line 3 
of Listing 5-3. The build number is stored in a hidden file in the top-level Linux direc-
tory and is    called .version. It is automatically incremented by a build script found 
in .../scripts/mkversion. In short, it is a numeric string tag that is automatically 
incremented whenever anything substantial in the kernel is rebuilt. Note that it is reset 
to #1 on execution     of make mrproper.

5.2 Initialization Flow of Control

Now that you understand the structure   and components of the composite kernel im-
age, let’s examine the flow of control from the bootloader to the kernel in a complete 
boot cycle. As we discussed in Chapter 2, “The Big Picture,” the bootloader is the low-
level component that resides in system nonvolatile memory (Flash or ROM). It takes 
control immediately after the power has been applied. It is typically a small, simple 

4 The numbers following 2.6.32 are tags placed on the version string from the build system; they are not relevant for the current
discussion. Chapter 4, Section 4.1.1, explains this mechanism.
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set of routines designed primarily to do low-level initialization, operating system im-
age loading, and system diagnostics. It might contain memory dump and fill routines 
for examining and modifying the contents of memory. It might also contain low-level 
board self-test routines, including memory and I/O tests. Finally, a bootloader con-
tains logic for loading and passing control to another program, usually an operating 
system such as Linux.

The ARM XScale platform used as a basis for the examples in this chapter contains 
the Redboot bootloader. When power is first applied, this bootloader is invoked and 
proceeds to load the operating system (OS). When the bootloader locates and loads the 
OS image (which could be resident locally in Flash, on a hard drive, or via a local area 
network or other device), control is passed to that image.

On this particular XScale platform, the bootloader passes control to our head.o
module at the label start in the bootstrap loader, as shown in Figure 5-3.

FIGURE 5-3 ARM boot control flow

As discussed earlier, the bootstrap loader prepended to the kernel image has a single 
primary responsibility: to create the proper environment to decompress and relocate 
the kernel and pass control to it. Control is passed from the bootstrap loader directly 
to the kernel proper, to a module called head.o for most architectures. It is an unfor-
tunate historical artifact that both the bootstrap loader and the kernel proper contain a 
module called head.o, because it is a source of confusion for the new embedded Linux 
developer. The head.o module in the bootstrap loader might be more appropriately 
called kernel_bootstrap_loader_head.o, although I doubt that the kernel develop-
ers would accept this patch! In fact, a recent Linux 2.6 source tree contains more than 
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25 source files named head.S and almost 70 named head*.S This is another reason 
why you need to know your way around the kernel source tree.

Refer to Figure 5-3 for a graphical view of the flow of control. When the bootstrap 
loader has completed its job, control is passed to the    kernel proper’s head.o, and from 
there to start_kernel() in main.c.

5.2.1 Kernel Entry Point: head.o

The intention of the kernel developers was to keep the architecture-specific head.o
module very generic, without any specific machine5 dependencies. This module, de-
rived from the assembly language file head.S, is      located at .../arch/<ARCH>/kernel/
head.S, where <ARCH> is replaced by the given architecture. The examples in this chap-
ter are based on the ARM/XScale, as you have seen, with <ARCH>=arm.

The head.o module performs architecture- and often CPU-specific initialization 
in preparation for the main body of the kernel. CPU-specific tasks are kept as generic 
as possible across processor families. Machine-specific initialization is performed else-
where, as you will discover shortly. Among other low-level tasks, head.o does the fol-
lowing:

• Checks for valid processor and architecture

• Creates initial page table entries

• Enables the processor’s memory management unit (MMU)

• Establishes limited error detection and reporting

• Jumps to the start of the kernel proper, start_kernel() in main.c

These functions contain some hidden complexities. Many novice embedded devel-
opers have tried to single-step through parts of this code, only to find that the debug-
ger becomes hopelessly lost. Although a discussion of the complexities of assembly 
language and the hardware details of virtual memory is beyond the scope of this book, 
a few things are worth noting about this complicated module.

When control is first passed to the kernel’s head.o from the bootstrap loader, the 
processor is operating in what we used to call real mode in x86 terminology. In effect, 
the logical address contained in the processor’s program counter 6 (or any other register, 
for that matter) is the actual physical address driven onto the processor’s electrical 

5 The term machine as used here refers to a specific hardware platform.

6 Often called Instruction Pointer, the register that holds the address of the next machine instruction in memory.
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memory address pins. Soon after the processor’s registers and kernel data structures are 
initialized to enable memory translation, the processor’s MMU is turned on. Suddenly, 
the address space as seen by the processor is yanked from beneath it and replaced by 
an arbitrary virtual addressing scheme determined by the kernel developers. This cre-
ates a complexity that can really be understood only by a detailed analysis of both the 
assembly language constructs and logical flow, as well as a detailed knowledge of the 
CPU and its hardware address translation mechanism. In short, physical addresses are 
replaced by logical addresses the moment the MMU is enabled. That is why a debugger 
can’t single-step through this portion of code, as with ordinary code.

The second point worth noting is the limited available mapping at this early stage 
of the kernel boot process. Many developers have stumbled into this limitation while 
trying to modify head.o for their particular platform.7 One such scenario might go 
like this. Let’s say you have a hardware device that needs a firmware load very early in 
the boot cycle. One possible solution is to compile the necessary firmware statically 
into the kernel image and then reference it via a pointer to download it to your device. 
However, because of the limited memory mapping done at this point, it is quite pos-
sible that your firmware image will exist beyond the range that has been mapped at 
this early stage in the boot cycle. When your code executes, it generates a page fault, 
because you have attempted to access a memory region for which no valid mapping 
has been created inside the processor. Worse yet, a page fault handler has not yet been 
installed at this early stage, so all you get is an unexplained system crash. At this early 
stage in the boot cycle, you are pretty much guaranteed not to have any      error messages 
to help you figure out what’s wrong.

You are wise to consider delaying any custom hardware initialization until after the 
kernel has booted, if at all possible. In this manner, you can rely on the well-known 
device driver model for access to custom hardware instead of trying to customize the 
much more complicated assembly language startup code. Numerous undocumented 
techniques are used at this level. One common example of this is to work around hard-
ware errata that may or may not be documented. A much higher price will be paid in 
development time, cost, and complexity if you must make changes to the early startup 
assembly language code. Hardware and software engineers should discuss these facts 
during early stages of hardware development, when often a minor hardware change can 
lead to significant savings in software development time.

7 Modifying head.S for your custom platform is highly discouraged. There is almost always a better way. 

  



5.2 Initialization Flow of Control 113

It is important to recognize the constraints placed on the developer in a virtual 
memory environment. Many experienced embedded developers have little or no expe-
rience in this environment, and the scenario just presented is but one small example 
of the pitfalls that await the developer new to virtual memory architectures. Nearly all 
modern 32-bit and larger microprocessors have memory-management hardware used 
to implement virtual memory architectures. One of the most significant advantages of 
virtual memory machines is that they help separate teams of developers writing large, 
complex applications, while protecting other software modules, and the kernel itself, 
from      programming errors.

5.2.2 Kernel Startup: main.c

The final task performed   by the kernel’s own head.o module is to pass control to the 
primary kernel startup file written in C. We spend a good portion of the rest of this 
chapter on this important file.

Each architecture has a different syntax and methodology, but every architecture’s 
head.o module has a similar construct for passing control to the kernel proper. For the 
ARM architecture, it looks as simple as this:

b     start_kernel8

For Power Architecture, it looks similar to this:

lis     r4,start_kernel@h

ori     r4,r4,start_kernel@l

lis     r3,MSR_KERNEL@h

ori     r3,r3,MSR_KERNEL@l

mtspr   SRR0,r4

mtspr   SRR1,r3

rfi

Without going into the details of the specific assembly language syntax, both of 
these examples result in the same thing. Control is passed from the kernel’s first object 
module (head.o) to the C language routine start_kernel() located in .../init/
main.c. Here the kernel begins to develop a life of its own.

8 Modern Linux kernels separate out some common code in head common.S, which is incorporated into head.S using an 
include directive. This is where the call to start kernel() is found.
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The file main.c should be studied carefully by anyone seeking a deeper understand-
ing of the Linux kernel, what components make it up, and how they are initialized 
and/or instantiated. main.c does the bulk of the post-assembly-language startup work 
for the Linux kernel, from initializing the first kernel thread all the way to mounting 
a root file system and executing the very first user space Linux application program.

The function start_kernel() is by far the   largest function in main.c. Most of the 
Linux kernel initialization takes place in this routine. Our purpose here is to highlight 
the particular elements that will prove useful in the context of embedded systems de-
velopment. It is worth repeating that studying main.c is a great way to spend your time 
if you want to develop a better understanding of the Linux kernel      as a system.

5.2.3 Architecture Setup

Among the first few things that happen in .../init/main.c in the start_kernel()
function is the call to setup_arch() found in .../arch/arm/kernel/setup.c. This 
function takes a single parameter—a pointer    to the kernel command line (introduced 
earlier and detailed in the next section):

setup_arch(&command_line);

 

This statement calls an architecture-specific setup routine responsible for perform-
ing initialization tasks common across each major architecture. Among other functions, 
setup_arch() calls functions that identify the specific CPU and provides a mechanism 
for calling high-level CPU-specific initialization routines. One such function, called 
directly by setup_arch(), is setup_processor(), found in .../arch/arm/kernel/
setup.c. This function verifies the CPU ID and revision, calls CPU-specific initializa-
tion functions, and displays several lines of information on the console during boot.

An example of this output can be found in Listing 5-3, lines 4 through 6, repro-
duced here for your convenience:

4  CPU: XScale-IXP42x Family [690541c1] revision 1 (ARMv5TE), cr=000039ff

5  CPU: VIVT data cache, VIVT instruction cache

6  Machine: ADI Engineering Coyote

Here you can see the CPU type, ID string, and revision read directly from the pro-
cessor core. This is followed by details of the processor cache and machine type. In this 
example, the IXP425-based Coyote board has an XScale-IXP42x revision 1 processor, 
ARMv5TE architecture, virtually indexed, virtually tagged (VIVT) data, and instruc-
tion caches.
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One of the final actions of the architecture setup routines is to perform any ma-
chine-dependent initialization. The exact mechanism for this varies across different 
architectures. For ARM, you will find machine-specific initialization in the .../arch/
arm/mach-* series of directories, depending on your machine type. MIPS architecture 
also contains directories specific to supported reference platforms. With Power Archi-
tecture, a platforms directory contains machine-specific routines. 

5.3 Kernel Command-Line Processing

Following the architecture setup, main.c performs generic early kernel initialization 
and then displays the kernel    command line. Line 9 of Listing 5-3 is reproduced here 
for your convenience:

Kernel command line: console=ttyS0,115200 root=/dev/nfs ip=dhcp

In this simple example, the kernel being booted is instructed to open a console de-
vice on serial port device ttyS0 (usually the first serial port) at a baud rate of 115Kbps. 
It is being instructed to obtain its initial IP address information from a DHCP server 
and to mount a root file system via the NFS protocol. (We cover DHCP in Chapter 
12, “Embedded Development Environment,” and NFS in Chapter 9, “File Systems,” 
and Chapter 12. For now, we limit the discussion to the kernel command-line mecha-
nism.)

Linux typically is launched by a bootloader (or bootstrap loader) with a series of 
parameters that have come to be called the kernel command line. Although you don’t 
actually invoke the kernel using a command prompt from a shell, many bootloaders 
can pass parameters to the kernel in a fashion that resembles this well-known model. 
On some platforms whose bootloaders are not Linux-aware, the kernel command line 
can be defined at compile time and becomes hard-coded as part of the kernel binary 
image. On other platforms (such as a desktop PC running Red Hat Linux), the user 
can modify the command line without having to recompile the kernel. The bootstrap 
loader (Grub or Lilo in the desktop PC case) builds the kernel command line from a 
configuration file and passes it to the kernel during the boot process. These command-
line parameters are a boot mechanism to set the initial configuration necessary for 
proper boot on a given machine.

Numerous command-line parameters are defined throughout the kernel. The 
.../Documentation subdirectory in the   kernel source contains a file called kernel-
parameters.txt containing a list of kernel command-line parameters in dictionary 
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order. Remember the previous warning about kernel documentation: The kernel 
changes far faster than the documentation. Use this file as a guide, but not a defini-
tive reference. Hundreds of distinct kernel command-line parameters are documented 
in this file, but it cannot be considered a comprehensive list. For that, you must refer 
directly to the source code.

The basic syntax for kernel command-line parameters   is fairly simple and mostly 
evident from the example in line 9 of Listing 5-3. Kernel command-line parameters can 
be either a single text word, a key=value pair, or a key=value1,value2,.... key and 
multivalue format. It is up to the consumer of this information to process the data as 
delivered. The command line is available globally and is processed by as many modules 
as needed. As noted earlier, setup_arch() in main.c is called with the kernel command 
line as its only argument. This is to pass architecture-specific parameters and configura-
tion directives to the relevant portions of architecture- and machine-specific code.

Device driver writers and kernel developers can add additional kernel command-
line parameters for their own specific needs. Let’s take a look at the mechanism. Unfor-
tunately, some complications are involved in using and processing kernel command-
line parameters. The first of these is that the original mechanism is being deprecated 
in favor of a much more robust implementation. The second complication is that you 
need to comprehend the complexities of a linker script file to fully understand   the 
mechanism.9

5.3.1 The __setup Macro

As an example of the use of kernel command-line parameters, consider the specifica-
tion of the console device. We want a console     initialized early in the boot cycle so that 
we have a destination for messages during boot. This initialization takes place in a ker-
nel object called printk.o. The C source file for this module is found in .../kernel/
printk.c. The console initialization routine is called console_setup() and takes the 
kernel command-line parameter string as its only argument.

The challenge is to communicate the console parameters specified on the kernel 
command line to the setup and device driver routines that require this data in a modular 
and general fashion. Further complicating the issue is that typically the command-line 

9 It’s not necessarily all that complex, but most of us never need to understand a linker script file. The embedded engineer does. 
It is well documented in the GNU LD manual referenced at the end of this chapter.
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parameters are required early, before (or in time for) the modules that need them. The 
startup code in main.c, where the main processing of the kernel command line takes 
place, cannot possibly know the destination functions for each of hundreds of kernel 
command-line parameters without being hopelessly polluted with knowledge from ev-
ery consumer of these parameters. What is needed is a flexible and generic way to pass 
these kernel command-line parameters to their consumers.

A special macro defined in .../include/linux/init.h is used to associate a por-
tion of the kernel command-line string with a function that will act on that portion of 
the string. We now demonstrate how the __setup macro works using the kernel com-
mand line from Listing 5-3 as an example.

From the previous kernel command line (line 9 of Listing 5-3), this is the first com-
plete command-line parameter passed to the kernel:

console=ttyS0,115200

For the purposes of this example, the actual meaning of the parameters is irrelevant. 
Our goal here is to illustrate the mechanism, so don’t be     concerned if you don’t under-
stand the argument or its values.

Listing 5-4 is a snippet of code from .../kernel/printk.c. The body of the func-
tion has been stripped because it is not relevant to the discussion. The most relevant 
part of Listing 5-4 is the last line, the invocation of the __setup macro. This macro 
expects two arguments; in this case, it is passed a string literal and a function pointer. 
It is no coincidence that the string literal passed to the __setup macro is the same as 
the      first eight characters of the kernel command line related to the console: console=.

LISTING 5-4 Console Setup Code Snippet

/*

 *    Setup a list of consoles. Called from init/main.c

 */

static int __init console_setup(char *str)

{

    char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */

    char *s, *options, *brl_options = NULL;

    int idx;

    ...

    <body omitted for clarity...>

    ...

  



118 Chapter 5 Kernel Initialization

LISTING 5-4 Continued

    return 1;

}

__setup(“console=”, console_setup);

 

You can think of the __setup macro as a registration function for the kernel com-
mand-line console parameter. In effect, it says: When the console= string is encoun-
tered on the kernel command line, invoke the function represented by the second 
_ _setup macro argument—in this case, the console_setup() function. But how is 
this information communicated to the early setup code, outside this module, which 
has no knowledge of the console functions? The mechanism is both clever and some-
what complicated, and it relies on lists built by the linker.

The details are hidden in a set of macros     designed to conceal the syntactical tedium 
of adding section attributes (and other attributes) to a portion of object code. The ob-
jective is to build a static list of string literals associated with function pointers. This list 
is emitted by the compiler in a separately named ELF section in the final vmlinux ELF 
image. It is important to understand this technique; it is used in several places within 
the kernel for special-purpose processing.

Let’s now examine how this is done for the __setup macro case. Listing 5-5 is a 
portion of code from the header file .../include/linux/init.h defining      the __setup
family of macros.

LISTING 5-5 Family of __setup Macro Definitions from init.h

...

#define __setup_param(str, unique_id, fn, early)            \

    static const char __setup_str_##unique_id[] __initconst \

        __aligned(1) = str; \

    static struct obs_kernel_param __setup_##unique_id  \

        __used __section(.init.setup)           \

        __attribute__((aligned((sizeof(long)))))    \

        = { __setup_str_##unique_id, fn, early }

#define __setup(str, fn)                    \

    __setup_param(str, fn, fn, 0)

...
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Listing 5-5 is the author’s definition of syntactical tedium! Recall from Listing 5-4 
that our invocation of the original __setup macro looked like this:

__setup(“console=”, console_setup);

With some slight simplification, here is what the compiler’s preprocessor produces 
after macro expansion:

static const char __setup_str_console_setup[] __initconst \

__aligned(1) = “console=”;

static struct obs_kernel_param __setup_console_setup __used  \

__section(.init.setup) __attribute__ ((aligned((sizeof(long))))) \

= { __setup_str_console_setup, console_setup, early};

To make this more readable, we have split the lines, as indicated by the   UNIX line-
continuation character (\).

Several macros are in use here, which we will describe only briefly. The __used
macro tells the compiler    to emit the function or variable, even if the optimizer deter-
mines that it is unused.10 __attribute__ ((aligned)) tells the compiler to align the 
structures on a specific boundary—in this case, sizeof(long). If we remove these for 
simplification, we are left with this:

static struct obs_kernel_param __setup_console_setup \

__section(.init.setup) = { __setup_str_console_setup, console_setup, early};

What we have left after simplification is the heart of the mechanism. First, the 
compiler generates an array of characters (a string pointer) called __setup_str_
console_setup[] initialized to contain the string console=. Next, the compiler gener-
ates a structure that contains three members: a pointer to the kernel command-line 
string (the array just declared), a pointer to the setup function itself, and a simple flag. 
The key to the magic here is the section attribute attached to the structure. This attri-
bute instructs the compiler to emit this structure into a special section within the ELF 
object module, called .init.setup. During the link stage, all the structures defined 
using the __setup macro are collected and placed in this .init.setup section, in ef-
fect creating an array of these structures. Listing 5-6, a snippet from .../init/main.c,
shows how      this data is accessed and used.

10 Normally, the compiler complains if a variable is defined static and is never referenced in the compilation unit. Because these 
variables are not explicitly referenced, the warning would be emitted without this directive.
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LISTING 5-6 Kernel Command-Line Processing

1  extern struct obs_kernel_param __setup_start[], __setup_end[];

2

3  static int __init obsolete_checksetup(char *line)

4  {

5      struct obs_kernel_param *p;

6      int had_early_param = 0;

7

8      p = __setup_start;

9      do {

10          int n = strlen(p->str);

11          if (!strncmp(line, p->str, n)) {

12              if (p->early) {

13                  /* Already done in parse_early_param?

14                   * (Needs exact match on param part).

15                   * Keep iterating, as we can have early

16                   * params and __setups of same names 8( */

17                  if (line[n] == ‘\0’ || line[n] == ‘=’)

18                      had_early_param = 1;

19              } else if (!p->setup_func) {

20                  printk(KERN_WARNING “Parameter %s is obsolete,”

21                         “ ignored\n”, p->str);

22                  return 1;

23              } else if (p->setup_func(line + n))

24                  return 1;

25          }

26          p++;

27      } while (p < __setup_end);

28

29      return had_early_param;

30  }

31

Examination of this code should      be fairly straightforward, with a couple of explana-
tions. The function is called with a single argument, the kernel command line, parsed 
in .../kernel/params.c. In the example we’ve been discussing, line would point to 
the string “console=ttyS0”, which is part of the kernel command line. The two ex-
ternal structure pointers __setup_start and __setup_end are defined in a linker script 
file, not in a C source or header file. These labels mark the start and end of the array 
of obs_kernel_param structures that were placed in the .init.setup section of the 
object file.
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The code in Listing 5-6 scans all these structures via the pointer p to find a match 
for this particular kernel command-line parameter. In this case, the code is searching 
for the string console= and finds a match. From the relevant structure, the function 
pointer element returns a pointer to the console_setup() function, which is called 
with the balance of the parameter (the string ttyS0,115200) as its only argument. This 
process is repeated for every element in the kernel command line until the kernel com-
mand line has been exhausted.

The technique just described, collecting objects into lists in uniquely named ELF 
sections, is used in many places in the kernel. Another example of this technique is the 
use of the __init family of macros to place one-time initialization routines into a com-
mon section in the object file. Their cousin __initconst, used to mark one-time-use 
data items, is used by the __setup macro. Functions and data marked as initialization 
using these macros are collected into specially named ELF sections. Later, after these 
one-time initialization functions and data objects have been used, the kernel frees the 
memory occupied by these items. You might have seen the familiar kernel message near 
the final part of the boot process saying Freeing init memory: 296K. Your mileage 
may vary, but a third of a megabyte is well worth the effort of using the __init family 
of macros. This is exactly the purpose of the __initconst macro in the earlier declara-
tion of __setup_str_console_setup[].

You might have been wondering about the use of symbol names preceded with 
obsolete_. This is because the kernel developers are replacing the kernel command-
line processing mechanism with a more generic mechanism for registering both boot 
time and loadable module parameters. Currently, hundreds of parameters are declared 
with the __setup macro. However, new development is expected to use the family of 
functions defined by the kernel header file .../include/linux/moduleparam.h—most
notably, the family of module_param* macros. These are explained in more detail in 
Chapter 8, “Device Driver Basics,” when we introduce device drivers.

The new mechanism maintains backward compatibility by including an unknown 
function pointer argument in the parsing routine. Thus, parameters that are unknown 
to the module_param* infrastructure are considered unknown, and the processing falls 
back to the old mechanism under control of the developer. This is easily understood by 
examining the well-written code in .../kernel/params.c and the parse_args() calls 
in .../init/main.c.

The last point worth mentioning is the purpose of the flag member of the obs_kernel_
param structure created by the __setup macro. Examination of the code in Listing 5-6 
should make it clear. The flag in the structure, called early, is used to indicate whether 
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this particular command-line parameter was already consumed earlier in the boot pro-
cess. Some command-line parameters are intended for consumption very early in the 
boot process, and this flag provides a mechanism for an early parsing algorithm. You 
will find a function in main.c called do_early_param() that traverses the linker-gen-
erated array of __setup-generated structures and processes, each one marked for early 
consumption. This gives the developer some control over when in the boot process this 
processing is done.

5.4 Subsystem Initialization

Many kernel subsystems   are initialized by the code found in main.c. Some are initial-
ized explicitly, as with the calls to init_timers() and console_init(), which need 
to be called very early. Others are initialized using a technique very similar to that 
described earlier for the __setup macro. In short, the linker builds lists of function 
pointers to various initialization routines, and a simple loop is used to execute each in 
turn. Listing 5-7 shows     how this works.

LISTING 5-7 Sample Initialization Routine

static int __init customize_machine(void)

{

    /* customizes platform devices, or adds new ones */

    if (init_machine)

        init_machine();

    return 0;

}

arch_initcall(customize_machine);

This code snippet comes from .../arch/arm/kernel/setup.c. It is a simple rou-
tine designed to provide a customization hook for a particular board.

5.4.1 The *__initcall Macros

Notice two important things about the initialization routine shown in Listing 5-7. First, 
it is defined with the __init macro. As we   saw earlier, this macro applies a section
attribute to declare that this function gets placed in a section called .init.text in the 
vmlinux ELF file. Recall that the purpose of placing this function in a special section 
of the object file is so that the memory space it occupies can be reclaimed when it is no 
longer needed.
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The second thing to notice is the macro immediately following the definition of 
the function: arch_initcall(customize_machine). This macro is part of a family of 
macros defined in .../include/linux/init.h. These macros   are reproduced here as 
Listing 5-8.

LISTING 5-8 initcall Family of Macros

#define __define_initcall(level,fn,id) \

    static initcall_t __initcall_##fn##id __used \

    __attribute__((__section__(“.initcall” level “.init”))) = fn

/*

 * Early initcalls run before initializing SMP.

 *

 * Only for built-in code, not modules.

 */

#define early_initcall(fn)      __define_initcall(“early”,fn,early)

/*

 * A “pure” initcall has no dependencies on anything else, and purely

 * initializes variables that couldn’t be statically initialized.

 *

 * This only exists for built-in code, not for modules.

 */

#define pure_initcall(fn)       __define_initcall(“0”,fn,0)

#define core_initcall(fn)       __define_initcall(“1”,fn,1)

#define core_initcall_sync(fn)      __define_initcall(“1s”,fn,1s)

#define postcore_initcall(fn)       __define_initcall(“2”,fn,2)

#define postcore_initcall_sync(fn)  __define_initcall(“2s”,fn,2s)

#define arch_initcall(fn)       __define_initcall(“3”,fn,3)

#define arch_initcall_sync(fn)      __define_initcall(“3s”,fn,3s)

#define subsys_initcall(fn)     __define_initcall(“4”,fn,4)

#define subsys_initcall_sync(fn)    __define_initcall(“4s”,fn,4s)

#define fs_initcall(fn)         __define_initcall(“5”,fn,5)

#define fs_initcall_sync(fn)        __define_initcall(“5s”,fn,5s)

#define rootfs_initcall(fn)     __define_initcall(“rootfs”,fn,rootfs)

#define device_initcall(fn)     __define_initcall(“6”,fn,6)

#define device_initcall_sync(fn)    __define_initcall(“6s”,fn,6s)

#define late_initcall(fn)       __define_initcall(“7”,fn,7)

#define late_initcall_sync(fn)      __define_initcall(“7s”,fn,7s)

#define __initcall(fn) device_initcall(fn)

...
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In a similar fashion to the __setup macro    described earlier, these macros declare a 
data item based on the function’s name. They also use the section attribute to place 
this data item in a uniquely named section of the vmlinux ELF file. The benefit of this 
approach is that main.c can call an arbitrary initialization function for a subsystem 
that it has no knowledge of. The only other option, as mentioned earlier, is to pollute 
main.c with knowledge of every subsystem in the kernel.

You can derive the section names from Listing 5-8. The name of the section is 
.initcallN.init, where N is the level defined, between 1 and 7. Notice also that there 
is a section named for each of the seven levels with an s appended. This is intended to 
be a synchronous initcall. The data item is assigned the address of the function be-
ing named in the macro. In the example defined by Listings 5-7 and 5-8, the data item 
would be as follows (simplified by omitting the section attribute):

static initcall_t __initcall_customize_machine = customize_machine;

This data item is placed in the kernel’s object file in a section called .initcall3.
init.

The level (N) is used to provide an ordering of initialization calls. Functions declared 
using the core_initcall() macro are called before all others. Functions declared using 
the postcore_initcall() macros are called next, and so on, and those declared with 
late_initcall() are the last initialization functions to be called.

In a fashion similar to the __setup macro, you can think of this family of *_initcall
macros as registration functions for kernel subsystem initialization routines that need to 
be run once at kernel startup and never used again. These macros provide a mechanism 
for causing the initialization routine to be executed during system startup and a mecha-
nism to discard the code and reclaim the memory after the routine has been executed. 
The developer is also provided up to seven levels of when to perform the initialization 
routines.11 Therefore, if you have a subsystem that relies on another subsystem’s being 
available, you can enforce this ordering using these levels. If you grep (search) the kernel 
for the string [a-z]*_initcall, you will see that this family of macros is used exten-
sively.

One final note about the *_initcall family of macros: The use of multiple levels 
was introduced during the development of the 2.6 kernel series. Earlier kernel versions 
used the __initcall() macro for this purpose. This macro is still in widespread use, 
especially in device drivers. To maintain backward compatibility, this macro has been 
defined to device_initcall(), which      has been defined as a level 6 initcall.

11 Seven variations of each level also are marked synchronous.
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5.5 The init Thread

The code found in .../init/main.c is responsible for bringing the kernel to life. After 
start_kernel() performs some basic   kernel initialization, calling early initialization 
functions explicitly by name, the very first kernel thread is spawned. This thread even-
tually becomes the kernel thread called init(), with a process ID (PID) of 1. As you 
will learn, init() becomes the parent of all Linux processes in user space. At this point 
in the boot sequence, two distinct threads are running: that represented by start_
kernel(), and now init(). The former goes on to become the idle process, having 
completed its work. The latter becomes the init process. This      is shown in Listing 5-9.

LISTING 5-9 Creation of Kernel init Thread

static noinline void __init_refok rest_init(void)

    __releases(kernel_lock)

{

    int pid;

    rcu_scheduler_starting();

    kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);

    numa_default_policy();

    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);

    unlock_kernel();

    /*

     * The boot idle thread must execute schedule()

     * at least once to get things moving:

     */

    init_idle_bootup_task(current);

    preempt_enable_no_resched();

    schedule();

    preempt_disable();

    /* Call into cpu_idle with preempt disabled */

    cpu_idle();

}

The start_kernel() function calls rest_init(), reproduced in Listing 5-9. The 
kernel’s init process is spawned by the call to kernel_thread(), with the function 
kernel_init as its first parameter. init goes on to complete the rest of the system 
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initialization, while the thread of execution started by start_kernel() loops forever      in 
the call to cpu_idle().

The reason for this structure is interesting. You might have noticed that start_
kernel(), a relatively large function, was marked with the __init macro. This means 
that the memory it occupies will be reclaimed during the final stages of kernel initial-
ization. It is necessary to exit this function and the address space it occupies before 
reclaiming its memory. The answer to this is for start_kernel() to call rest_init(),
shown in Listing 5-9, a much smaller piece of memory that becomes the idle process.

5.5.1 Initialization Via initcalls

When kernel_init()is spawned, it eventually calls do_initcalls(), which is the 
function responsible for calling most of the initialization functions registered with the 
*_initcall family of macros. The code is        reproduced in Listing 5-10.

LISTING 5-10 Initialization Via initcalls

extern initcall_t __initcall_start[], __initcall_end[], __early_initcall_end[];

static void __init do_initcalls(void)

{

    initcall_t *fn;

    for (fn = __early_initcall_end; fn < __initcall_end; fn++)

        do_one_initcall(*fn);

    /* Make sure there is no pending stuff from the initcall sequence */

    flush_scheduled_work();

}

  

 

Note that two similar blocks of code exist. Earlier in the initialization process, 
a similar function called do_pre_smp_initcalls() processes part of the list, from 
__initcall_start to __early_initcall_end. This code is self-explanatory, except for 
the two labels marking the loop boundaries: __initcall_start and __initcall_end.
These labels are not found in any C source or header file. They are defined in the linker 
script file used during the link stage of vmlinux. These labels mark the beginning and 
end of the list of initialization functions populated using the *_initcall family of 
macros. You can see each of the labels by looking at the        System.map file in the top-level 
kernel directory. They all begin with the string __initcall, as shown in Listing 5-8.
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5.5.2 initcall_debug

A very interesting kernel command-line parameter allows you to watch these calls be-
ing executed during bootup. It is enabled by setting the kernel command-line parame-
ter initcall_debug. Simply start your kernel with the kernel          command-line parameter 
initcall_debug to enable this diagnostic output.12

Here is an example of what you will see when you enable these debug statements:

...

calling  uhci_hcd_init+0x0/0x100 @ 1

uhci_hcd: USB Universal Host Controller Interface driver

initcall uhci_hcd_init+0x0/0x100 returned 0 after 5639 usecs

...

 

 

 

 

Here you see the USB Universal Host Controller Interface driver being called. The 
first line announces the intention to call the function uhci_hcd_init, which is a device 
driver initialization call from the USB driver. After this announcement is made, the call 
to the function is executed. The second line is printed by the driver itself. The trace 
information on the third line includes the return result and the call’s duration.

This is a useful way to see the details of kernel initialization, especially the order in 
which various subsystems and modules get called. More interesting is the call’s dura-
tion. If you are concerned with system boot time, this is an excellent way to isolate 
where time is being consumed on boot.

Even on a modestly configured          embedded system, dozens of these initialization 
functions are invoked in this manner. This example is taken from an ARM XScale em-
bedded target, compiled with a default configuration. The default configuration results 
in 206 such calls to various kernel initialization routines.

5.5.3 Final Boot Steps

Having spawned the kernel_init() thread, and after all the various initialization calls 
have completed, the kernel performs its final steps in the boot sequence. These include 
freeing the memory used by the initialization functions and data, opening a system 
console device, and starting the first user space process. Listing 5-11 reproduces      the last 
steps in the kernel’s init process from main.c.

12 You might have to lower the default loglevel on your system to see these debug messages. This is described in many references 
about Linux system administration. In any case, you should see them in the kernel log file.

  



128 Chapter 5 Kernel Initialization

LISTING 5-11 Final Kernel Boot Steps from main.c

static noinline int init_post(void)

    __releases(kernel_lock)

{

<... lines trimmed for clarity ...>

...

if (execute_command) {

      run_init_process(execute_command);

      printk(KERN_WARNING “Failed to execute %s.  Attempting “

                        “defaults...\n”, execute_command);

}

run_init_process(“/sbin/init”);

run_init_process(“/etc/init”);

run_init_process(“/bin/init”);

run_init_process(“/bin/sh”);

panic(“No init found.  Try passing init= option to kernel.”);

Notice that if the code proceeds to the end of this function (init_post()), a ker-
nel panic results. If you’ve spent any time experimenting with embedded systems or 
custom root file systems, you’ve undoubtedly encountered this very common error 
message as the last line of output on your console. It is one of the most frequently 
asked questions (FAQs) on a variety of public forums related to Linux and embedded 
systems.

One way or another, one of these run_init_process() commands must proceed 
without error. The run_init_process() function does not return on successful in-
vocation. It overwrites the calling process with the new one, effectively replacing the 
current process with the new one. It uses the familiar execve() system call for this 
functionality. The most common system configurations spawn /sbin/init as the user-
land13 initialization process. We’ll study this functionality in depth in the next chapter.

One option available to the embedded system developer is to use a custom userland 
initialization program. That is the purpose of the conditional statement in the preced-
ing code snippet. If execute_command is non-null, it points to a string containing a 
custom user-supplied command to be executed in user space. The developer specifies 
this command on the kernel command line, and it is set via the __setup macro we 
examined earlier in this chapter. A sample kernel command line incorporating several 
concepts discussed in this chapter might look like this:

initcall_debug init=/sbin/myinit console=ttyS1,115200 root=/dev/hda1

13 Userland is an often-used term for any program, library, script, or anything else in user space.
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This kernel command line instructs   the kernel to display all the initialization 
routines as they are invoked, configures the initial console device as /dev/ttyS1 at 
115Kbps, and executes a custom user space initialization process called myinit, which 
is located in the /sbin directory on the root file system. It directs the kernel to mount 
its root file system from the device /dev/hda1, which is the first IDE hard drive. Note 
that, in general, the order of parameters given on the kernel command line is irrel-
evant. The next chapter covers the details of user space system initialization.

5.6 Summary

• The Linux kernel project is large and complex. Understanding the structure 
and composition of the final image is key to learning how to customize your 
own embedded project.

• Many architectures concatenate an architecture-specific bootstrap loader onto 
the kernel binary image to set up the proper execution environment required 
by the Linux kernel. We presented the bootstrap loader build steps to differen-
tiate this functionality from the kernel proper.

• Understanding the initialization flow of control will help deepen your knowl-
edge of the Linux kernel and provide insight into how to customize it for your 
particular requirements.

• We found the kernel entry point in head.o and followed the flow of control 
into the primary kernel initialization logic, main.c. We looked at a booting 
system and the messages it produced, along with an overview of many of the 
important initialization concepts.

• The kernel command-line processing and the mechanisms used to declare and 
process kernel command-line parameters were presented. This included a de-
tailed look at some advanced coding techniques for calling arbitrary unknown 
setup routines using linker-produced tables.

• The final kernel boot steps produce the first user space processes. Understand-
ing this mechanism and its options will enable you to customize and trouble-
shoot embedded Linux startup issues.
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5.6.1 Suggestions for Additional Reading

GNU Compiler Collection   documentation
http://gcc.gnu.org/onlinedocs/gcc14

Using LD, the   GNU linker
http://sourceware.org/binutils/docs/ld/index.html

Kernel documentation
.../Documentation/kernel-parameters.txt

14 Especially the sections on function attributes, type attributes, and variable attributes.
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n Chapter 2, “The Big Picture,” we pointed out that the Linux kernel itself 
is but a small part of any embedded Linux system. After the kernel has ini-

tialized itself, it must mount a root file system and execute a set of developer-
defined initialization routines. In this chapter, we examine the details of post-
kernel system initialization.

We begin by looking at the root file system and its layout. Next we develop and 
study a minimal system configuration. Later in this chapter, we add functional-
ity to the minimal system configuration to produce useful sample embedded 
system configurations. We complete the coverage of system initialization by in-
troducing the initial ramdisk, initrd and initramfs, and its operation and use. 
The chapter concludes with a brief look at Linux shutdown logic.

6.1 Root File System

In Chapter 5, “Kernel Initialization,” we examined the Linux kernel’s behavior dur-
ing the initialization process. We made several references to mounting a root file sys-
tem. Linux, like many other advanced operating systems, requires a root file system 
to realize the benefits of its services. Although it is certainly possible to use Linux in 
an environment without a file system, doing so makes little sense, because most of 
the features and value of Linux would be lost. It would be similar to putting your 
entire system application into a bloated device driver or kernel thread. And can you 
imagine running your Windows PC without a file system?

The root file system   refers to the file system mounted at the base of the file system 
hierarchy, designated simply as /. As you will discover in Chapter 9, “File Systems,” 
even a small embedded Linux system typically mounts several file systems on dif-
ferent locations within the file system hierarchy. These include both real and virtual 
file systems such as /proc and /sys. The proc file system, introduced in Chapter 9, 
is an example. It is a special-purpose file system mounted at /proc under the root 
file system. The root file system is simply the first file system mounted at the top of 
the file system hierarchy.
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As you will see shortly, the root file system has special requirements for a Linux 
system. Linux expects the root file system to contain programs and utilities to boot the 
system, initialize services such as networking and a system console, load device drivers, 
and mount additional file systems.

6.1.1 FHS: File System Hierarchy Standard

Several kernel developers authored a standard governing the organization and layout 
of a UNIX file system. The File System Hierarchy Standard (FHS) establishes   a mini-
mum baseline of compatibility between Linux distributions and application programs. 
You’ll find a reference to this standard in the last section of this chapter. You are en-
couraged to review the FHS for a better background of the layout and rationale of 
UNIX file system organization.

Many Linux distributions have directory layouts closely matching that described 
in the FHS standard. The standard exists to provide one element of a common base 
between different UNIX and Linux distributions. The FHS standard allows your ap-
plication software (and developers) to predict where certain system elements, including 
files and directories, can be found in the file system.

6.1.2 File System Layout

Where space is a concern, many embedded systems developers create a very small root 
file system on a bootable device (such as Flash memory). Later, a larger file system is 
mounted from another device, perhaps a hard disk or network file system (NFS) server. 
In fact, it is not uncommon to mount a larger root file system on top of the original 
small one. You’ll see an example of that when we examine the initial ramdisk (initrd
and initramfs) later in this chapter.

A simple Linux root file system might contain the following top-level directory 
entries:

 .

|

|--bin

|--dev

|--etc

|--home

|--lib

|--sbin

|--usr

|--var

|--tmp
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Table 6-1 lists the most common contents    of each of these root directory entries.

TABLE 6-1 Top-Level Directories

Directory Contents

bin Binary executables, usable by all users on the system1

dev Device nodes (see Chapter 8, “Device Driver Basics”)

etc Local system configuration files

home User account files

lib System libraries, such as the standard C library and many others

sbin Binary executables usually reserved for superuser accounts on the system

tmp Temporary files

usr A secondary file system hierarchy for application programs, usually read-only

var Contains variable files, such as system logs and temporary configuration files   

The very top of the Linux file system hierarchy is referenced by the slash character (/) by 
itself. For example, to list the contents of the root directory, you would type this:

$ ls /

This produces a listing similar to the following:

root@coyote:/# ls /

bin  dev  etc  home  lib  mnt  opt  proc  root  sbin  tmp  usr  var

root@coyote:/#

   

This directory listing contains directory entries for additional functionality, includ-
ing /mnt and /proc. As previously noted, /proc is a special file system containing sys-
tem information, and /mnt is a placeholder for user-mounted devices and file systems. 
Notice that we reference these directory entries preceded by a slash, indicating    that the 
path to these top-level directories starts from the root directory.

6.1.3 Minimal File System

To illustrate the requirements   of the root file system, we have created a minimal root 
file system. This example was produced on the ADI Engineering Coyote Reference 
board using an XScale processor. Listing 6-1  is the output from the tree command on 
this minimal root file system.

1 Often embedded systems do not have user accounts other than a single root user.
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LISTING 6-1 Contents of a Minimal Root File System

.

|-- bin

|   |-- busybox

|   ‘-- sh -> busybox

|-- dev

|   ‘-- console

|-- etc

|   ‘-- init.d

|       ‘-- rcS

‘-- lib

    |-- ld-2.3.2.so

    |-- ld-linux.so.2 -> ld-2.3.2.so

    |-- libc-2.3.2.so

    ‘-- libc.so.6 -> libc-2.3.2.so

5 directories, 8 files

 This root configuration       makes use of busybox, a popular and aptly named toolkit 
for embedded systems. In short, busybox is a stand-alone binary that supports many 
common Linux command-line utilities. busybox is so pertinent for embedded systems 
that we devote Chapter 11, “BusyBox,” to this flexible utility.

Notice that our sample minimum file system in Listing 6-1 has only eight files in 
five directories. This tiny root file system boots and provides the user with a fully func-
tional command prompt on the serial console. Any commands that have been enabled 
in busybox are available to the user.

Starting from /bin, we have the busybox executable and a soft link called sh point-
ing back to busybox. You will see shortly why this is necessary. The file in /dev is a 
device node2 required to open a console device for input and output. Although it is not 
strictly necessary, the rcS file in the /etc/init.d directory is the default initialization 
script processed by busybox on startup. Including rcS silences the warning message 
issued by busybox whenever rcS is missing.

The final directory entry and set of files required are the two libraries, glibc (libc-
2.3.2.so) and the Linux dynamic loader (ld-2.3.2.so). glibc contains the standard 
C library functions, such as printf() and many others that most application programs 
depend on. The Linux dynamic loader is responsible for loading the binary executable 
into memory and performing the dynamic linking required by the application’s refer-
ence to shared library functions. Two additional soft links are included—ld-linux.

2 Device nodes are explained in detail in Chapter 8.
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so.2, pointing back to ld-2.3.2.so, and libc.so.6, referencing libc-2.3.2.so.
These links provide version immunity and backward compatibility for the libraries 
themselves    and are found on all Linux systems.

This simple root file system produces a fully functional system. On the ARM/
XScale board on which this was tested, the size of this small root file system was about 
1.7MB. It is interesting to note that more than 80 percent of that size is contained 
within the C library itself. If you need to reduce its size for your embedded system, you  
might want to investigate the Library Optimizer Tool at http://libraryopt.sourceforge.
net/.

6.1.4 The Embedded Root FS Challenge

The challenge of a root file system for an embedded device is simple to explain but not 
so simple to overcome. Unless you are lucky enough to be developing an embedded 
system with a reasonably large hard drive or large Flash storage on board, you might 
find it difficult to fit your applications and utilities onto a single Flash memory device. 
Although costs continue to come down for Flash storage, there will always be com-
petitive pressure to reduce costs and decrease time to market. One of the single largest 
reasons Linux continues to grow in popularity as an embedded OS is the huge and 
growing body of Linux application software.

Trimming a root file system to fit into a given storage space requirement can be 
daunting. Many packages and subsystems consist of dozens or even hundreds of files. 
In addition to the application itself, many packages include configuration files, librar-
ies, configuration utilities, icons, documentation files, locale files related to interna-
tionalization, database files, and more. The Apache web server from the Apache Soft-
ware Foundation is an example of a well-known application often found in embedded 
systems. The base Apache package from one popular embedded Linux distribution 
contains 254 different files. Furthermore, they aren’t all simply copied into a single 
directory on your file system. They need to be populated in several different locations 
on the file system for the Apache application to function without modification.

These concepts are some of the   fundamental aspects of distribution engineering, 
and they can be quite tedious. Linux distribution companies such as Red Hat (in 
the desktop and enterprise market segments) and Mentor Graphics (in the embedded 
market segment) spend considerable engineering resources on just this: packaging a 
collection of programs, libraries, tools, utilities, and applications that together make 
up a Linux distribution. By necessity, building a root file system employs elements of 
distribution engineering on a smaller scale.
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6.1.5 Trial-and-Error Method

Until recently, the only way to populate the contents of your root file system was to use 
the trial-and-error method. Perhaps    the process could be automated by creating a set of 
scripts for this purpose, but the knowledge of which files are required for a given func-
tionality still must come from the developer. Tools such as Red Hat Package Manager 
(rpm) can be used to install packages on your root file system. rpm has reasonable de-
pendency resolution within given packages, but it is complex and involves a significant 
learning curve. Furthermore, using rpm does not lend itself easily to building small root 
file systems. It has limited capabilities for stripping unnecessary files from the installa-
tion, such as documentation and unused utilities for a given package.

6.1.6 Automated File System Build Tools

The leading vendors of embedded Linux distributions ship very capable tools designed 
to automate the task of     building root file systems in Flash or other devices. These tools 
usually are graphical in nature, enabling the developer to select files by application or 
functionality. They have features to strip unnecessary files such as documentation from 
a package. Many let you select at the individual file level. These tools can produce a 
variety of file system formats for later installation on your choice of device. Contact 
your favorite embedded Linux distribution vendor for details on these powerful tools.

Some open source build tools automate the task of building a working root file 
system. Some of the more notable include bitbake from the        OpenEmbedded project 
(www.openembedded.org/) and buildroot (http://buildroot.uclibc.org/.)  Chapter 16, 
“Open Source Build Systems,” presents details of some popular build systems.

6.2 Kernel’s Last Boot Steps

The preceding chapter introduced the steps the   kernel takes in the final phases of sys-
tem boot. The final snippet of code from .../init/main.c is reproduced in Listing 
6-2 for your convenience.

LISTING 6-2 Final Boot Steps from main.c

  ...

    if (execute_command) {

            run_init_process(execute_command);

            printk(KERN_WARNING “Failed to execute %s.  Attempting “

                               “defaults...\n”, execute_command);

  

www.openembedded.org/
http://buildroot.uclibc.org/
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LISTING 6-2 Continued

    }

    run_init_process(“/sbin/init”);

    run_init_process(“/etc/init”);

    run_init_process(“/bin/init”);

    run_init_process(“/bin/sh”);

    panic(“No init found.  Try passing init= option to kernel.”);

 This is the final sequence of events for the kernel thread called kernel_init spawned 
by the kernel during the final stages of boot. The run_init_process() is a small wrap-
per around the execve() function, which is a kernel system call with rather interesting 
behavior. The execve() function never returns if no error conditions are encountered 
in the call. The memory space in which the calling thread executes is overwritten by 
the called program’s memory image. In effect, the called program directly replaces   the 
calling thread, including inheriting its Process ID (PID).

The basic structure of this initialization sequence has been unchanged for a long 
time in the development of the Linux kernel. In fact, Linux version 1.0 contained 
similar constructs. Essentially, this is the start of user space3 processing. As you can see 
from Listing 6-2, unless the Linux kernel is successful in executing one of these pro-
cesses, the kernel will halt, displaying the message passed in the panic() system call. If 
you have been working with embedded systems for any length of time, and especially 
if you have experience working on root file systems, you are more than familiar with 
this kernel panic() and its message. If you do an Internet search for this panic() error 
message, you will find page after page of hits. When you complete this chapter, you 
will be an expert at troubleshooting this common failure.

Notice a key ingredient of these processes: They are all programs that are expected 
to reside on a root file system that has a structure similar to that presented in Listing 
6-1. Therefore, we know that we must at least satisfy the kernel’s requirement for an 
init process that can execute within its own environment.

In looking at Listing 6-2, this means that at least one of the run_init_process()
function calls must succeed. You can see that the kernel tries to execute one of four 
programs in the order in which they are encountered. As you also can see that if none 
of these four programs succeeds, the booting kernel issues the dreaded panic() func-
tion call and dies right there. Remember, this snippet of code from .../init/main.c

3 In actuality, modern Linux kernels create a userspace-like environment earlier in the boot sequence for specialized activities,
which are beyond the scope of this book.
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is executed only once on bootup. If it does not succeed, the kernel can do little but 
complain and halt, which it does through the panic() function call.

6.2.1 First User Space Program

On most Linux systems, /sbin/init is spawned by the kernel on boot. This is why it is 
attempted first from Listing 6-2. Effectively, this becomes the    first user space program 
to run. To review, this is the sequence:

1. Mount the root file system.

2. Spawn the first user space program, which, in this discussion, becomes /sbin/
init.

In our sample minimal root file system from Listing 6-1, the first three attempts 
at spawning a user space process would fail, because we did not provide an executable 
file called init anywhere on the file system. Recall from Listing 6-1 that we had a soft 
link called sh that pointed back to busybox. You should now realize the purpose of that 
soft link: It causes busybox to be executed by the kernel as the initial process while also 
satisfying the common requirement for a shell executable from user space.4

6.2.2 Resolving Dependencies

It is not sufficient to simply    include an executable such as init on your file system and 
expect it to boot. For every process you place on your root file system, you must also 
satisfy its dependencies. Most processes have two categories of dependencies: those that 
are needed to satisfy unresolved references within a dynamically linked executable, and 
external configuration or data files that an application might need. We have a tool to 
find the former, but the latter can be supplied only by at least a cursory understanding 
of the application in question.

An example will help make this clear. The init process is a dynamically linked 
executable. To run init, we need to satisfy its    library dependencies. A tool has been 
developed for this purpose: ldd. To understand what libraries a given application re-
quires, simply run your cross-version of ldd on the binary:

$ ppc_4xx-ldd init

        libc.so.6 => /opt/eldk/ppc_4xxFP/lib/libc.so.6

        ld.so.1 => /opt/eldk/ppc_4xxFP/lib/ld.so.1

$

4 When busybox is invoked via the sh symbolic link, it spawns a shell. We cover this in detail in Chapter 11.
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From this ldd output, we can see that the Power Architecture init executable in 
this example is dependent on two libraries—the standard C library (libc.so.6) and 
the Linux dynamic loader (ld.so.1).

To satisfy the second category of dependencies for an executable, the configuration 
and data files that it might need, there is little substitute for some knowledge about 
how the subsystem works. For example, init expects to read its operational configura-
tion from a data file called inittab located on /etc. Unless   you are using a tool that 
has this knowledge built in, such as those described in Chapter 16, you must supply 
that knowledge.

6.2.3 Customized Initial Process

It is worth noting that the system user   can control which initial process is executed at 
startup. This is done by a kernel command-line parameter. It is hinted at in Listing 
6-2 by the text contained within the panic() function call. Building on our kernel 
command line from Chapter 5, here is how it might look with a user-specified init
process:

console=ttyS0,115200 ip=bootp root=/dev/nfs init=/sbin/myinit

 
Specifying init= in the kernel command line in this way, you must provide a binary 

executable on your root file system in the /sbin directory called myinit. This would be 
the first process to gain control at the completion of the kernel’s boot process.

6.3 The init Process

Unless you are doing something highly unusual, you will never need to provide a 
customized initial process, because the capabilities of the standard init process are 
very flexible. The init program, together with a family of startup scripts that we will 
examine shortly, implement what is commonly called    System V Init, from the original 
UNIX System V that used this schema. We will now examine this powerful system 
configuration and control utility.

You saw in the preceding section that init is the first user space process spawned 
by the kernel after completion of the boot process. As you will learn, every process in 
a running Linux system has a child-parent relationship with another process running 
in the system. init is the ultimate parent of all user space processes in a Linux system. 
Furthermore, init provides the default set of environment parameters for all other 
processes to inherit, such as the initial system PATH.
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Its primary role is to spawn additional processes under the direction of a special 
configuration file. This configuration file is usually stored as /etc/inittab. init has 
the concept of a runlevel. A runlevel can be thought of as a system state. Each runlevel 
is defined by the services that are enabled and programs that are spawned   upon entry 
to that runlevel.

init can exist in a single runlevel at any given time. Runlevels used by init include 
runlevels from 0 to 6 and a special runlevel called S. Runlevel 0 instructs init to halt 
the system, and runlevel 6 results in a system reboot. For each runlevel, a set of startup 
and shutdown scripts is usually provided that define the action a system should take 
for each runlevel. Actions to perform for a given runlevel are determined by the /etc/
inittab configuration file, described shortly.

Several of the runlevels have been reserved for specific purposes in many distribu-
tions. Table 6-2 describes the runlevels and their    purposes in common use in many 
Linux distributions.

TABLE 6-2 Runlevels

Runlevel Purpose

0 System shutdown (halt)

1 Single-user system configuration for maintenance

2 User-defined

3 General-purpose multiuser configuration

4 User-defined

5 Multiuser with graphical user interface on startup

6 System restart (reboot)

The runlevel scripts are commonly found under a directory called /etc/rc.d/init.d.
Here you will find most of the scripts that enable and disable individual services. Ser-
vices can be configured manually by invoking the script and passing one of the appro-
priate arguments to the script, such as start, stop, or restart. Listing 6-3 displays        an 
example of restarting the NFS service.

LISTING 6-3 NFS Restart

$ /etc/init.d/nfs-kernel-server

Shutting down NFS mountd:                           [  OK  ]

Shutting down NFS daemon:                           [  OK  ]

Shutting down NFS quotas:                           [  OK  ]

Shutting down NFS services:                         [  OK  ]
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LISTING 6-3 Continued

Starting NFS services:                              [  OK  ]

Starting NFS quotas:                                [  OK  ]

Starting NFS daemon:                                [  OK  ]

Starting NFS mountd:                                [  OK  ]

If you have spent any time with a desktop Linux distribution such as Red Hat or 
Fedora, you have undoubtedly seen lines        like this during system startup.

A runlevel is defined by the services that are enabled at that runlevel. Most Linux 
distributions contain a directory structure under /etc that contains symbolic links to 
the service scripts in /etc/rc.d/init.d. These runlevel directories typically are rooted 
at /etc/rc.d. Under this directory, you will find a series of runlevel directories that 
contain startup and shutdown specifications for each runlevel. init simply executes 
these scripts upon entry and exit from a runlevel. The scripts define the system state, 
and inittab instructs init which scripts to associate with a given runlevel. Listing 6-4 
      contains the directory structure beneath /etc/rc.d that drives the runlevel startup and 
shutdown behavior upon entry to or exit from the specified runlevel, respectively.

LISTING 6-4 Runlevel Directory Structure

$ ls -l /etc/rc.d

total 96

drwxr-xr-x  2 root root  4096 Oct 20 10:19 init.d

-rwxr-xr-x  1 root root  2352 Mar 16  2009 rc

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc0.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc1.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc2.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc3.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc4.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc5.d

drwxr-xr-x  2 root root  4096 Mar 22  2009 rc6.d

-rwxr-xr-x  1 root root   943 Dec 31 16:36 rc.local

-rwxr-xr-x  1 root root 25509 Jan 11  2009 rc.sysinit

 Each of the runlevels is defined       by the scripts contained in rcN.d, where N is the 
runlevel. Inside each rcN.d directory, you will find numerous symlinks arranged in a 
specific order. These symbolic links start with either a K or an S. Those beginning with 
S point to service scripts, which are invoked with startup instructions. Those starting 
with K point to service scripts that are invoked with shutdown instructions. An ex-
ample       with a very small number of services might look like Listing 6-5.
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LISTING 6-5 Sample Runlevel Directory

lrwxrwxrwx  1 root root 17 Nov 25  2009 S10network -> ../init.d/network

lrwxrwxrwx  1 root root 16 Nov 25  2009 S12syslog  -> ../init.d/syslog

lrwxrwxrwx  1 root root 16 Nov 25  2009 S56xinetd  -> ../init.d/xinetd

lrwxrwxrwx  1 root root 16 Nov 25  2009 K50xinetd  -> ../init.d/xinetd

lrwxrwxrwx  1 root root 16 Nov 25  2009 K88syslog  -> ../init.d/syslog

lrwxrwxrwx  1 root root 17 Nov 25  2009 K90network -> ../init.d/network

 

This code instructs the startup scripts to start three services upon entry to this ficti-
tious runlevel: network, syslog, and xinetd. Because the S* scripts are ordered with a 
numeric tag, they will be started in this order. In a similar fashion, when exiting this 
runlevel, three services will be terminated: xinetd, syslog, and network. In a similar 
fashion, these services will be terminated in the order presented by the two-digit num-
ber following the K in the symlink filename. In an actual system, there would undoubt-
edly be many more entries. You can include your own entries for your own custom 
applications as well.

The top-level script that executes these service startup and shutdown scripts is de-
fined in the init configuration file, which we now examine.

6.3.1 inittab

When init is started, it reads the   system configuration file /etc/inittab. This file 
contains directives for each runlevel, as well as directives that apply to all runlevels. 
This file and init’s behavior are well documented in man pages on most Linux work-
stations, as well as by several books covering system administration. We do not attempt 
to duplicate those works; we focus on how a developer might configure inittab for an 
embedded system. For a detailed explanation of how inittab and init work together, 
view the man page on most Linux workstations by typing man init and man inittab.

Let’s look at a typical inittab for a simple embedded system. Listing 6-6 contains 
a simple inittab example for a system that supports a single  runlevel as well as shut-
down and reboot.

LISTING 6-6 Simple inittab

# /etc/inittab

# The default runlevel (2 in this example)

id:2:initdefault:
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LISTING 6-6 Continued

# This is the first process (actually a script) to be run.

si::sysinit:/etc/rc.sysinit

# Execute our shutdown script on entry to runlevel 0

l0:0:wait:/etc/init.d/sys.shutdown

# Execute our normal startup script on entering runlevel 2

l2:2:wait:/etc/init.d/runlvl2.startup

# This line executes a reboot script (runlevel 6)

l6:6:wait:/etc/init.d/sys.reboot

# This entry spawns a login shell on the console

# Respawn means it will be restarted each time it is killed

con:2:respawn:/bin/sh

This very simple5 inittab script       describes three individual runlevels. Each runlevel 
is associated with a script, which must be created by the developer for the desired ac-
tions in each runlevel. When this file is read by init, the first script to be executed is 
/etc/rc.sysinit. This is denoted by the sysinit tag. Then init enters runlevel 2 
and executes the script defined for runlevel 2. From this example, this would be /etc/
init.d/runlvl2.startup. As you might guess from the :wait: tag shown in Listing 
6-6, init waits until the script completes before continuing. When the runlevel 2 
script completes, init spawns a shell on the console (through the /bin/sh symbolic 
link), as shown in the last line of Listing 6-6. The respawn keyword instructs init to 
restart the shell each time it detects that it has exited. Listing 6-7 shows   what it looks 
like during boot.

LISTING 6-7 Sample Startup Messages

...

VFS: Mounted root (nfs filesystem).

Freeing init memory: 304K

INIT: version 2.78 booting

This is rc.sysinit

INIT: Entering runlevel: 2

This is runlvl2.startup

#

5 This inittab is a nice example of a small, purpose-built embedded system.
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The startup scripts in this example    do nothing except announce themselves for il-
lustrative purposes. Of course, in an actual system, these scripts enable features and ser-
vices that do useful work! Given the simple configuration in this example, you would 
enable the services and applications for your particular widget in the /etc/init.d/
runlvl2.startup script. You would do the reverse—disable your applications, ser-
vices, and devices—in your shutdown and/or reboot scripts. The next section looks 
at some typical system configurations and the required entries in the startup scripts to 
enable these configurations.

6.3.2 Sample Web Server Startup Script

Although simple, this      sample startup script is designed to illustrate the mechanism and 
guide you in designing your own system startup and shutdown behavior. This example 
is based on busybox, which has a slightly different initialization behavior than init.
These differences are covered in detail in Chapter 11.

In a typical embedded appliance that contains a web server, you might want several 
servers available for maintenance and remote access. In this example, we enable serv-
ers for HTTP and Telnet access (via inetd). Listing 6-8  contains a simple rc.sysinit
script for our hypothetical web server appliance.

LISTING 6-8 Web Server rc.sysinit

#!/bin/sh

echo “This is rc.sysinit”

busybox mount -t proc none /proc

# Load the system loggers

/sbin/syslogd

/sbin/klogd

# Enable legacy PTY support for telnetd

busybox mkdir /dev/pts

busybox mknod /dev/ptmx c 5 2

busybox mount -t devpts devpts /dev/pts

In this simple initialization   script, we first enable the proc file system. The details 
of this useful subsystem are covered in Chapter 9. Next we enable the system loggers 
so that we can capture system information during operation. This is especially useful 
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when things go wrong. The last entries enable support for the UNIX PTY subsystem, 
which is required for the implementation of the Telnet server used for this example.

Listing 6-9 contains the commands in the runlevel 2 startup script. This script 
contains the commands to enable any services we want   to have operational for our 
appliance.

LISTING 6-9 Sample Runlevel 2 Startup Script

#!/bin/sh

echo “This is runlvl2.startup”

echo “Starting Internet Superserver”

inetd

echo “Starting web server”

webs &

 

Notice how simple this runlevel 2 startup script is. First we enable the so-called 
Internet superserver inetd, which intercepts and spawns services for common TCP/IP 
requests. In our example, we enabled Telnet services through a configuration file called 
/etc/inetd.conf. Then we execute the web server, here called webs. That’s all there is 
to it. Although minimal, this is a working configuration for Telnet and web services.

To complete this configuration, you   might supply a shutdown script (refer to List-
ing 6-6), which, in this case, would terminate the web server and the Internet super-
server before system shutdown. In our sample scenario, that is sufficient for a clean 
shutdown.

6.4 Initial RAM Disk

The Linux kernel contains two mechanisms to mount an early root file system to 
perform certain startup-related system initialization and configuration. First we will 
discuss the legacy method, the initial ramdisk, or initrd. The next section covers the 
newer method called initramfs.

The legacy method for enabling    early user space processing is known as the initial 
RAM disk, or simply initrd. Support for this functionality must be compiled into the 
kernel. This kernel configuration option is found under General Setup, RAM disk sup-
port in the kernel configuration utility. Figure 6-1 shows an example of the configura-
tion for initrd and initramfs.
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FIGURE 6-1 Linux kernel configuration utility

 

 

The initial RAM disk is a small, self-contained root file system that usually contains 
directives to load specific device drivers before the completion of the boot cycle. In 
Linux workstation distributions such as Red Hat and Ubuntu, an initial RAM disk is 
used to load the device drivers for the EXT3 file system before mounting the real root 
file system. An initrd is frequently used to load a device driver that is required in order 
to access the real root file system.

6.4.1 Booting with initrd

To use the initrd functionality, the   bootloader gets involved on most architectures to 
pass the initrd image to the kernel. A common scenario is that the bootloader loads 
a compressed kernel image into memory and then loads an initrd image into another 
section of available memory. In doing so, it becomes the bootloader’s responsibility to 
pass the load address of the initrd image to the kernel before passing control to it. 
The exact mechanism differs depending on the architecture, bootloader, and platform 
implementation. However, the kernel must know where the initrd image is located 
so it can load it.
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Some architectures and platforms construct a single composite binary image. This 
scheme is used when the bootloader does not have specific Linux support for loading 
initrd images. In this case, the kernel and initrd image are simply concatenated into 
a single composite image. You will find reference to this type of composite image in the 
kernel makefiles as bootpImage. Presently, this is used only for the ARM architecture.6

So how does the kernel know where to find the   initrd image? Unless there is some 
special magic in the bootloader, it is usually sufficient simply to pass the initrd image 
start address and size to the kernel via the kernel command line. Here is an example 
of a kernel command line for a popular ARM-based reference board containing the TI 
OMAP 5912 processor:

console=ttyS0,115200 root=/dev/nfs                        \

   nfsroot=192.168.1.9:/home/chris/sandbox/omap-target    \

   initrd=0x10800000,0x14af47

This kernel command line has been separated into several lines to fit in the space 
provided. In actual practice, it is a single line, with the individual elements separated 
by spaces. This kernel command line defines the following kernel behavior:

• Specify a single console on device ttyS0 at 115 kilobaud.

• Mount a root file system via NFS, the network file system.

• Find the NFS root file system on host 192.168.1.9 (from directory /home/
chris/sandbox/omap-target).

• Load and mount an initial ramdisk from physical memory location 
0x10800000, which has a size of 0x14AF47 (1,355,591 bytes).

One additional note regarding   this example: Almost universally, the initrd image 
is compressed. The size specified on the kernel command line is the size of the com-
pressed image.

6.4.2 Bootloader Support for initrd

Let’s look at a simple example    based on the popular U-Boot bootloader running on an 
ARM processor. This bootloader was designed with support for directly booting the 
Linux kernel. Using U-Boot, it is easy to include an initrd image with the kernel im-
age. Listing 6-10 shows a typical boot sequence containing an initial ramdisk image.

6 This technique has largely been deprecated in favor of using initramfs, as explained next.

  



6.4 Initial RAM Disk 149

LISTING 6-10 Booting the Kernel with Ramdisk Support

[uboot]> tftp 0x10000000 kernel-uImage

...

Load address: 0x10000000

Loading: ############################ done

Bytes transferred = 1069092 (105024 hex)

[uboot]> tftp 0x10800000 initrd-uboot

...

Load address: 0x10800000

Loading: ########################################### done

Bytes transferred = 282575 (44fcf hex)

[uboot]> bootm 0x10000000 0x10800040

Uncompressing kernel.................done.

...

RAMDISK driver initialized: 16 RAM disks of 16384K size 1024 blocksize

...

RAMDISK: Compressed image found at block 0

VFS: Mounted root (ext2 filesystem).

Greetings: this is linuxrc from Initial RAMDisk

Mounting /proc filesystem

BusyBox v1.00 (2005.03.14-16:37+0000) Built-in shell (ash)

Enter ‘help’ for a list of built-in commands.

# (<<<< Busybox command prompt)

Here we get a glimpse of the U-Boot bootloader, which we’ll examine in more detail 
in the next chapter. The tftp command causes U-Boot to download the kernel image 
from a TFTP server. The kernel image is downloaded and placed into the base of this 
target system’s memory at the 256MB address (0x10000000 hex7). Then a second im-
age, the initial ramdisk image, is downloaded from a TFTP server into memory at a 
higher memory address (256MB + 8MB in this example). Finally, we issue the U-Boot 
bootm command, which is the “boot from memory” command. The bootm command 
takes two arguments: the address of the Linux kernel image, optionally followed by an 
address representing the location of the initial ramdisk image.

7 It just so happens that on this particular board, our physical SDRAM starts at 256MB.
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Take special note of one feature of the U-Boot bootloader: It fully supports loading 
kernel and ramdisk images over an Ethernet connection. This is a very useful develop-
ment configuration. You can get a kernel and ramdisk image onto your board in other 
ways as well. You can flash them into your Flash memory using a hardware-based Flash 
programming tool, or you can use a serial port and download the kernel and file system 
images via RS-232. However, because these images typically are large (a kernel can be 
about a megabyte, and a ramdisk can be tens of megabytes), you will save a signifi-
cant amount of engineering time if you invest in this Ethernet-based TFTP download    
method. Whatever bootloader you choose, make sure it supports network download 
of development images.

6.4.3 initrd Magic: linuxrc

When the kernel boots, first it detects the presence of the initrd image. Then it copies 
the compressed binary file from the specified physical location in RAM into a proper 
kernel ramdisk and mounts it as the root file system. The magic of initrd comes from 
the contents of a special file within the initrd image. When the kernel mounts the 
initial ramdisk, it looks for a specific file called linuxrc. It treats     this file as a script file 
and proceeds to execute the commands contained therein. This mechanism enables 
the system designer to specify the behavior of initrd. Listing 6-11 shows a sample 
linuxrc file.

LISTING 6-11 Sample linuxrc File

#!/bin/sh

echo ‘Greetings: this is ‘linuxrc’ from Initial Ramdisk’

echo ‘Mounting /proc filesystem’

mount -t proc /proc /proc

busybox sh

In practice, this file would contain directives required before we mount the real 
root file system. One example might be to load CompactFlash drivers to obtain a real 
root file system from a CompactFlash device. For the purposes of this example, we 
simply spawn a busybox shell and halt the boot process for examination. You can see 
the # command prompt from Listing 6-10 resulting from this busybox shell. If you 
were to type the exit command here, the kernel would continue its boot process     until 
complete.

  



6.4 Initial RAM Disk 151

After the kernel copies the ramdisk from physical memory into a kernel ramdisk, 
it returns this physical memory to the available memory pool. You can think of this as 
transferring the initrd image from physical memory at the hard-coded address into 
the kernel’s own virtual memory (in the form of a kernel ramdisk device).

One last comment about Listing 6-11: The mount command in which the /proc
file system is mounted seems redundant in its use of the word proc. This command 
would also work:

mount -t proc none /proc

 

Notice that the device field of the mount command has been changed to none. The 
mount command ignores the device field because no physical device is associated with 
the proc file system. The -t proc is enough to instruct mount to mount the /proc file 
system on the /proc mount point. I use the former invocation as a mental reminder 
that we are actually mounting the kernel pseudo device (the /proc file system) on 
/proc. The mount command ignores this argument. Use the method you prefer. Later, 
when you type mount at the command line, the device field will show proc instead of 
none, reminding you that this is a virtual file system.

6.4.4 The initrd Plumbing

As part of the Linux boot process, the kernel must locate and mount a root file system. 
Late in the boot process, the kernel decides what and where to mount in a function 
called prepare_namespace(), which     is found in .../init/do_mounts.c. If initrd sup-
port is enabled in the kernel, as illustrated in Figure 6-1, and the kernel command line 
is so configured, the kernel decompresses the compressed initrd image from physical 
memory and eventually copies the contents of this file into a ramdisk device (/dev/
ram). At this point, we have a proper file system on a kernel ramdisk. After the file sys-
tem has been read into the ramdisk, the kernel effectively mounts this ramdisk device 
as its root file system. Finally, the kernel spawns a kernel thread to execute the linuxrc
file on the initrd image.8

When the linuxrc script has completed execution, the kernel unmounts the initrd
and proceeds with the final stages of system boot. If the real root device has a directory 
called /initrd, Linux mounts the initrd file system    on this path (in this context, called 

8 Out of necessity (space), this is a very simplified description of the sequence of events. The actual mechanism is similar in con-
cept, but several significant details are omitted for clarity. You are encouraged to consult the kernel source code for more details. 
See .../init/main.c and .../init/do_mounts*.c.
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a mount point). If this directory does not exist in the final root file system, the initrd
image is simply discarded.

If the kernel command line contains a root= parameter specifying a ramdisk 
(root=/dev/ram0, for example), the previously described initrd behavior changes in 
two important ways. First, the processing of the linuxrc executable is skipped. Sec-
ond, no attempt is made to mount another file system as root. This means that you can 
have a Linux system with initrd as the only root file system. This is useful for minimal 
system configurations in which the only root file system is the ramdisk. Placing /dev/
ram0 on the kernel command line allows the full system initialization to complete with 
initrd as the final root file system.

6.4.5 Building an initrd Image

Constructing a suitable root file system image   is one of the more challenging aspects of 
embedded systems. Creating a proper initrd image is even more challenging, because 
it needs to be small and specialized. This section examines initrd requirements and 
file system contents.

Listing 6-12 was produced by running the tree utility on our sample  initrd image 
from this chapter.

LISTING 6-12 Contents of a Sample initrd

.

|-- bin

|   |-- busybox

|   |-- echo -> busybox

|   |-- mount -> busybox

|   ‘-- sh -> busybox

|-- dev

|   |-- console

|   |-- ram0

|   ‘-- ttyS0

|-- etc

|-- linuxrc

‘-- proc

4 directories, 8 files

As you can see, it is very small indeed; it takes up a little more than 500KB in uncom-
pressed form. Since it is based on busybox, it has many capabilities. Because busybox is 
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statically linked for this exercise, it has no dependencies on any system libraries. You will 
learn more about busybox in Chapter 11.

6.5 Using initramfs

initramfs is the preferred mechanism for    executing early user space programs. It is 
conceptually similar to initrd, as described in the preceding section. It is enabled us-
ing the same configuration selections as shown in Figure 6-1. Its purpose is also similar: 
to enable loading of drivers that might be required before mounting the real (final) 
root file system. However, it differs in significant ways from the initrd mechanism.

The technical implementation    details differ significantly between initrd and 
initramfs. For example, initramfs is loaded before the call to do_basic_setup(),9

which provides a mechanism for loading firmware for devices before its driver has been 
loaded. For more details, see the Linux kernel documentation for this subsystem at 
.../Documentation/filesystems/ramfs-rootfs-initramfs.txt.

From a practical perspective, initramfs is much easier to use. initramfs is a cpio 
archive, whereas initrd is a gzipped file system image. This simple difference contrib-
utes to the ease of use of initramfs and removes the requirement that you must be root 
to create it. It is integrated into the Linux kernel source tree, and a small default (nearly 
empty) image is built automatically when you build the kernel image. Making changes 
to it is far easier than building and loading a new initrd image.

Listing 6-13 shows the contents of the Linux kernel .../usr directory, where the 
initramfs image is built. The contents of Listing 6-13   are shown after a kernel has 
been built.

LISTING 6-13 Kernel initramfs Build Directory

$ ls -l usr

total 72

-rw-r--r-- 1 chris chris  1146 2009-12-16 12:36 built-in.o

-rwxr-xr-x 1 chris chris 15567 2009-12-16 12:36 gen_init_cpio

-rw-r--r-- 1 chris chris 12543 2009-12-16 12:35 gen_init_cpio.c

-rw-r--r-- 1 chris chris  1024 2009-06-24 10:57 initramfs_data.bz2.S

-rw-r--r-- 1 chris chris   512 2009-12-16 12:36 initramfs_data.cpio

-rw-r--r-- 1 chris chris  1023 2009-06-24 10:57 initramfs_data.gz.S

-rw-r--r-- 1 chris chris  1025 2009-06-24 10:57 initramfs_data.lzma.S

9 do_basic_setup is called from .../init/main.c and calls do_initcalls(). This causes driver module initial-
ization routines to be called. This was described in detail in Chapter 5 and shown in Listing 5-10.
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LISTING 6-13 Continued

-rw-r--r-- 1 chris chris  1158 2009-12-16 12:36 initramfs_data.o

-rw-r--r-- 1 chris chris  1021 2009-06-24 10:57 initramfs_data.S

-rw-r--r-- 1 chris chris  4514 2009-06-24 10:57 Kconfig

-rw-r--r-- 1 chris chris  2154 2009-12-16 12:35 Makefile

A build script in .../scripts called gen_initramfs_list.sh defines a default list 
of files that will be included in the initramfs archive. The default for recent Linux 
kernels looks like   Listing 6-14.

LISTING 6-14 Sample initramfs File Specification

dir /dev 0755 0 0

nod /dev/console 0600 0 0 c 5 1

dir /root 0700 0 0

 

 
 

This produces a small default directory structure containing the /root and /dev
top-level directories, as well as a single device node representing   the console. The de-
tails of how to specify items for initramfs file systems are described in the kernel 
documentation at .../Documentation/filesystems/ramfs-rootfs-initramfs.txt.
In summary, the preceding listing produces a directory entry (dir) called /dev, with 
0755 file permissions and a user-id and group-id of 0 (root.) The second line defines a 
device node (nod) called /dev/console, with file permissions of 0600, user and group 
IDs of 0 (root), being a character device (c) with major number 5 and minor number 
1.10 The third line creates another directory called /root similar to the /dev specifier.

6.5.1 Customizing initramfs

There are two ways to customize    the initramfs for your particular requirements. Ei-
ther create a cpio archive with your required files, or specify a list of directories and files 
whose contents are merged with the default created by gen_initramfs_list.sh. You 
specify a source for your initramfs files via the kernel-configuration facility. Enable 
INITRAMFS_SOURCE in your kernel configuration, and point it to a location on your de-
velopment workstation. This configuration parameter is highlighted in Figure 6-1. The 
kernel build system will use those files as the source for your initramfs image. Let’s see 
what this looks like using a minimal file system similar to the one built in Listing 6-1.

10 If you are unfamiliar with device nodes and the concept of major numbers and minor numbers, these topics are covered in 
Chapter 8.
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First, we will build a file collection containing the files we want for a minimal sys-
tem. Because initramfs is supposed to be small and lean, we’ll build it around a stati-
cally compiled busybox. Compiling busybox statically means it is not dependent on 
any system libraries. We need very little beyond busybox: a device node for the console 
in a directory called /dev and a symlink pointing back to busybox called init. Finally, 
we’ll include a busybox startup script to spawn a shell for us to interact with after  boot-
ing into this initramfs. Listing 6-15 details this minimal file system.

LISTING 6-15 Minimal initramfs Contents

$ tree ./usr/myinitramfs_root/

.

|-- bin

|   |-- busybox

|   ‘-- sh -> busybox

|-- dev

|   ‘-- console

|-- etc

|   ‘-- init.d

|       ‘-- rcS

‘-- init -> /bin/sh

4 directories, 5 files

 
  

When we point the kernel configuration parameter INITRAMFS_SOURCE to the direc-
tory where this file structure lives, it automatically builds the initramfs compressed 
cpio archive and links it into the kernel image.

The reason for the init symlink should be noted. When the kernel is configured for 
initramfs, it searches for an executable file called /init on the root of the initramfs
image. If it finds it, it executes it as the init process with PID (process ID) set to 1. If it 
does not find it, it skips initramfs and proceeds with normal root file system processing. 
This logic is found in .../init/main.c. A character pointer called ramdisk_execute_
command contains a pointer to this initialization command. By default it is set to the 
string “/init”.

A kernel command-line parameter called rdinit=, when set, overrides this init
specifier much the same way that init= does. To use it, simply add it to your kernel 
command line. For example, we could have set   rdinit=/bin/sh on our kernel com-
mand line to directly call the busybox shell applet.
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6.6 Shutdown

Orderly shutdown   of an embedded system is often overlooked in a design. Improper 
shutdown can affect startup times and can even corrupt certain file system types. One 
of the more common complaints about using the EXT2 file system (the default in 
many desktop Linux distributions for several years) is the time it takes for an fsck (file 
system check) on startup after unplanned power loss. Servers with large disk systems 
can take many hours to properly fsck through a collection of large EXT2 partitions.

Each embedded project will likely have its own shutdown strategy. What works for 
one might or might not work for another. The scale of shutdown can range from a full 
System V shutdown scheme, to a simple script, to halt or reboot. Several Linux utili-
ties are available to assist in the shutdown process, including the shutdown, halt, and 
reboot commands. Of course, these must be available for your chosen architecture.

A shutdown script should terminate all user space processes, which results in clos-
ing any open files used by those processes. If init is being used, issuing the command 
init 0 halts the system. In general, the shutdown process first sends all processes the 
SIGTERM signal to notify them that the system is shutting down. A short delay ensures 
that all processes have the opportunity to perform their shutdown actions, such as 
closing files, saving state, and so on. Then all processes are sent the SIGKILL signal, 
which results in their termination. The shutdown process should attempt to unmount 
any mounted file systems and call the architecture-specific halt or reboot routines. The 
Linux    shutdown command in conjunction with init exhibits this behavior.

6.7 Summary

This chapter presented an in-depth overview of user space initialization on a Linux 
kernel system. With this knowledge, you should be able to customize your own em-
bedded system startup behavior.

• A root file system is required for all Linux systems. They can be difficult to 
build from scratch because of complex dependencies by each application.

• The File System Hierarchy standard provides guidance to developers for laying 
out a file system for maximum compatibility and flexibility.

• We presented a minimal file system as an example of how root file systems are 
created.
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• The Linux kernel’s final boot steps define and control a Linux system’s startup 
behavior. Several mechanisms are available, depending on your embedded 
Linux system’s requirements.

 • The init process is a powerful system configuration and control utility that 
can serve as the basis for your own embedded Linux system. System initializa-
tion based on init was presented, along with sample startup script configura-
tions.

• Initial ramdisk (initrd) is a Linux kernel feature to allow further startup 
behavior customization before mounting a final root file system and spawning 
init. We presented the mechanism and a sample configuration for using this 
powerful feature.

 • initramfs simplifies the initial ramdisk mechanism while providing similar 
early startup facilities. It is easier to use, does not require loading a separate im-
age, and is built automatically during each kernel build.

6.7.1 Suggestions for Additional Reading

File System   Hierarchy Standard
Maintained by freestandards.org
www.pathname.com/fhs/

Boot process, init, and   shutdown
Linux Documentation Project
http://tldp.org/LDP/intro-linux/html/sect_04_02.html

Init man page
Linux Documentation   Project
http://tldp.org/LDP/sag/html/init-intro.html

A brief description of     System V init
http://docs.kde.org/en/3.3/kdeadmin/ksysv/what-is-sysv-init.html

“Booting Linux: The    History and the Future”
Werner Almesberger
www.almesberger.net/cv/papers/ols2k-9.ps
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Previous chapters have referred to and even provided examples of bootloader 
operations. A critical component of an embedded system, the bootloader 

provides the foundation from which the primary system software is spawned. 
This chapter starts by examining the bootloader’s role in a system. We follow 
this with an introduction to some common features of bootloaders. Armed with 
this background, we take a detailed look at a popular bootloader used for em-
bedded systems. We conclude this chapter by introducing a few of the more 
popular bootloaders.

Numerous bootloaders are in use today. It would be impractical to go into much 
detail on even the most popular ones. Therefore, we have chosen to explain 
concepts and use examples based on one of the more popular bootloaders in the 
open source community for Power Architecture, MIPS, ARM, and other archi-
tectures: the U-Boot bootloader.

7.1 Role of a Bootloader

When power is first applied to a processor board, many elements of hardware must 
be initialized before even the simplest program can run. Each architecture and pro-
cessor has a set of predefined actions and configurations upon release of reset, which 
includes fetching initialization code from an onboard storage device (usually Flash 
memory). This early initialization code is part of the bootloader and is responsible 
for breathing life into the processor and related hardware components.

Most processors have a default address from which the first bytes of code are 
fetched upon application of power and release of reset. Hardware designers use this 
information to arrange the layout of Flash memory on the board and to select which 
address range(s) the Flash memory responds to. This way, when power is first ap-
plied, code is fetched from a well-known and predictable address, and software con-
trol can be established.

The bootloader   provides this early initialization code and is responsible for ini-
tializing the board so that other programs can run. This early initialization code is 
almost always written in the processor’s native assembly language. This fact alone 
presents many challenges, some of which we examine here.
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Of course, after the bootloader has performed this basic processor and platform ini-
tialization, its primary role is fetching and booting a full-blown operating system. It is 
responsible for locating, loading, and passing control to the primary operating system. 
In addition, the bootloader might have advanced features, such as the capability to 
validate an OS image, upgrade itself or an OS image, or choose from among several OS 
images based on a developer-defined policy. Unlike    the traditional PC-BIOS model, 
when the OS takes control, the bootloader is overwritten and ceases to exist.1

7.2 Bootloader Challenges

Even a simple “Hello World” program written in C requires significant hardware and 
software resources. The application developer does not need to know or care much 
about these details. This is because the C runtime environment transparently provides 
this infrastructure. A bootloader developer enjoys no such luxury. Every resource that 
a bootloader requires must be carefully initialized and allocated before it is used. One 
of the most visible examples of this is Dynamic Random Access Memory (DRAM).

7.2.1 DRAM Controller

DRAM chips cannot    be directly read from or written to like other microprocessor 
bus resources. They require specialized hardware controllers to enable read and write 
cycles. To further complicate matters, DRAM must be constantly refreshed, or the data 
contained within will be lost. Refresh is accomplished by sequentially reading each 
location in DRAM in a systematic manner within the timing specifications set forth 
by the DRAM manufacturer. Modern DRAM chips support many modes of opera-
tion, such as burst mode and dual data rate for high-performance applications. It is the 
DRAM controller’s responsibility to configure DRAM, keep it refreshed within the 
manufacturer’s timing specifications, and respond to the various read and write com-
mands from the processor.

Setting up a DRAM controller is the source of much frustration for the newcomer 
to embedded development. It requires detailed knowledge of DRAM architecture, the 
controller itself, the specific DRAM chips being used, and the overall hardware design. 
This topic is beyond the scope of this book, but you can learn more about this im-
portant concept by consulting the references at the end of this chapter. Appendix D, 

1 Some embedded designs protect the bootloader and provide callbacks to bootloader routines, but this is almost never a good 
design approach. Linux is far more capable than bootloaders, so there is often little point in doing so.
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“SDRAM Interface Considerations,” provides more background on this important 
topic.

Very little can happen in an embedded system until the DRAM controller and 
DRAM itself have been properly initialized. One of the first things a bootloader must 
do is enable the memory subsystem. After it is initialized, memory can be used as a 
resource. In fact, one of the first actions many bootloaders perform   after memory ini-
tialization is to copy themselves into DRAM for faster execution.

7.2.2 Flash Versus RAM

Another complexity inherent    in bootloaders is that they are required to be stored in 
nonvolatile storage but usually are loaded into RAM for execution. Again, the com-
plexity arises from the level of resources available for the bootloader to rely on. In 
a fully operational computer system running an operating system such as Linux, it 
is relatively easy to compile a program and invoke it from nonvolatile storage. The 
runtime libraries, operating system, and compiler work together to create the infra-
structure necessary to load a program from nonvolatile storage into memory and pass 
control to it. The aforementioned “Hello World” program is a perfect example. When 
compiled, it can be loaded into memory and executed simply by typing the name of 
the executable (hello) on the command line (assuming, of course, that the executable 
exists somewhere on your PATH).

This infrastructure does not exist when a bootloader gains control upon power-on. 
Instead, the bootloader must create its own operational context and move itself, if 
required, to a suitable location in RAM. Furthermore, additional complexity is intro-
duced by the requirement to execute from a read-only medium.

7.2.3 Image Complexity

As application developers, we do   not need to concern ourselves with the layout of a 
binary executable file when we develop applications for our favorite platform. The 
compiler and binary utilities are preconfigured to build a binary executable image 
containing the proper components needed for a given architecture. The linker places 
startup (prologue) and shutdown (epilogue) code into the image. These objects set up 
the proper execution context for your application, which typically starts at main().

This is absolutely not the case with a typical bootloader. When the bootloader gets 
control, there is no context or prior execution environment. A typical system might 
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not have any DRAM until the bootloader initializes the processor and related hard-
ware. Consider what this means. In a typical C function, any local variables are stored 
on the stack, so a simple function like the one shown in Listing 7-1 is   unusable.

LISTING 7-1 Simple C Function with a Local Variable

int setup_memory_controller(board_info_t *p)

    {

    unsigned int *dram_controller_register = p->dc_reg;

...

 

When a bootloader gains control on power-on, there is no stack and no stack pointer. 
Therefore, a simple C function similar to Listing 7-1 will likely crash the processor, because 
the compiler will generate code to create and initialize the pointer dram_controller_
register on the stack, which does not yet exist. The bootloader must create this execu-
tion context before any C functions are called.

When the bootloader is compiled and linked, the developer must exercise com-
plete control over how the image is constructed and linked. This is especially true if 
the bootloader is to relocate itself from Flash to RAM. The compiler and linker must 
be passed a handful of parameters defining the characteristics and layout of the final 
executable image. Two primary characteristics conspire to add complexity to the final 
binary executable image: code organization compatible with the processor’s boot re-
quirements, and the execution context, described shortly.

The first characteristic that presents complexity is the need to organize the startup 
code in a format compatible with the processor’s boot sequence. The first executable 
instructions must be at a predefined location in Flash, depending on the processor and 
hardware architecture. For example, the AMCC Power Architecture 405GP processor 
seeks its first machine instructions from a hard-coded address of 0xFFFF_FFFC. Other 
processors use similar methods with different details. Some processors can be config-
ured at power-on to seek code from one of several predefined locations, depending    on 
hardware configuration signals.

How does a developer specify the layout of a binary image? The linker is passed 
a linker description file, also called a linker command script. This special file can be 
thought of as a recipe for constructing a binary executable image. Listing 7-2 is a snip-
pet from an existing linker description file in use in the    U-Boot bootloader, which we’ll 
discuss shortly.
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LISTING 7-2 Linker Command Script: Reset Vector Placement

SECTIONS

{

  .resetvec 0xFFFFFFFC :

  {

    *(.resetvec)

  } = 0xffff

...

  

A complete description of linker command scripts syntax is beyond the scope of this 
book. Consult the GNU LD manual referenced at the end of this chapter. Looking at 
Listing 7-2, we see the beginning of the definition for the output section of the binary 
ELF image. It directs the linker to place the section of code called .resetvec at a fixed 
address in the output image, starting at location 0xFFFF_FFFC. Furthermore, it specifies 
that the rest of this section shall be filled with all 1s (0xffff.) This is because an erased 
Flash memory array contains all 1s. This technique not only saves wear and tear on the 
Flash memory, but it also significantly speeds up programming of that sector.

Listing 7-3 is the complete assembly language file from a recent U-Boot distribu-
tion that defines the .resetvec code section. It is contained in an assembly language 
file called .../cpu/ppc4xx/resetvec.S. Notice that this code section cannot exceed 
4 bytes in length in a machine with only 32 address bits. This is because only a single 
instruction is defined in this section, no matter what configuration  options are present.

LISTING 7-3 Source Definition of .resetvec

/* Copyright MontaVista Software Incorporated, 2000 */

#include <config.h>

      .section .resetvec,”ax”

#if defined(CONFIG_440)

      b _start_440

#else

#if defined(CONFIG_BOOT_PCI) && defined(CONFIG_MIP405)

      b _start_pci

#else

      b _start

#endif

#endif

 
This assembly language file is easy to understand, even if you have no assembly lan-

guage programming experience. Depending on the particular configuration (as specified 
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by the CONFIG_* macros), an unconditional branch instruction (b in Power Architecture 
assembler syntax) is generated to the appropriate start location in the main body of 
code. This branch location is a 4-byte Power Architecture instruction. As we saw in the 
snippet from the linker command script shown in Listing 7-2, this simple branch in-
struction is placed in the absolute Flash address of 0xFFFF_FFFC in the output image. As 
mentioned earlier, the 405GP processor fetches its first instruction from this hard-coded 
address. This is how the first sequence of code is defined and provided by the developer 
for this particular architecture and processor combination.

7.2.4 Execution Context

The other primary reason   for bootloader image complexity is the lack of execution 
context. When the sequence of instructions from Listing 7-3 starts executing (recall 
that these are the first machine instructions after power-on), the resources available to 
the running program are nearly zero. Default values designed into the hardware ensure 
that fetches from Flash memory work properly. This also ensures that the system clock 
has some default values, but little else can be assumed.2 The reset state of each processor 
is usually well defined by the manufacturer, but the reset state of a board is defined by 
the hardware designers.

Indeed, most processors have no DRAM available at startup for temporary storage 
of variables or, worse, for a stack that is required to use C program calling conventions. 
If you were forced to write a “Hello World” program with no DRAM and, therefore, 
no stack, it would be quite different from the traditional “Hello World” example.

This limitation places significant challenges on the initial body of code designed 
to initialize the hardware. As a result, one of the first tasks the bootloader performs 
on startup is to configure enough of the hardware to enable at least some minimal 
amount of RAM. Some processors designed for embedded use have small amounts of 
on-chip static RAM available. This is the case with the 405GP we’ve been discussing. 
When RAM is available, a stack can be allocated using part of that RAM, and a proper 
context can be constructed to run higher-level languages such as C. This allows the 
rest of the processor and platform    initialization to be written in something other than 
assembly language.

2 The details differ, depending on architecture, processor, and details of the hardware design.
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7.3 A Universal Bootloader: Das U-Boot

Many open source and commercial bootloaders are available, and many more one-of-
a-kind homegrown designs are in widespread use today. Most of these have some level 
of commonality of features. For example, all of them have some capability to load and 
execute other programs, particularly an operating system. Most interact with the user 
through a serial port. Support for various networking subsystems (such as Ethernet) is 
a very powerful but less common feature.

Many bootloaders are specific to a particular architecture. The capability of a boot-
loader to support a wide variety of architectures and processors can be an important 
feature to larger development organizations. It is not uncommon for a single develop-
ment organization to have multiple processors spanning more than one architecture. 
Investing in a single bootloader across multiple platforms ultimately results in lower 
development costs.

This section studies an existing bootloader that has become very popular in the 
embedded Linux community. The official name of this bootloader is   Das U-Boot. It 
is maintained by Wolfgang Denx and hosted at www.denx.de/wiki/U-Boot. U-Boot 
supports multiple architectures and has a large following of embedded developers and 
hardware manufacturers who have adopted it for use in their projects and who have 
contributed to its development.

7.3.1 Obtaining U-Boot

The simplest way to get      the U-Boot source code is via git. If you have git installed on 
your desktop or laptop, simply issue this command:

$ git clone git://git.denx.de/u-boot.git

This creates a directory called u-boot in the directory in which you executed this 
command.

If you don’t have git, or you prefer to download a snapshot instead, you can do so 
through the git server at denx.de. Point your browser to http://git.denx.de/ and click 
the “summary” link on the first project, u-boot.git. This takes you to a summary 
screen and provides a “snapshot” link, which generates and downloads a tarball that 
you can install on your system. Select the most recent snapshot, which   is at the top of 
the “shortlog” list.

  

www.denx.de/wiki/U-Boot
http://git.denx.de/
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7.3.2 Configuring U-Boot

For a bootloader to be useful across   many processors and architectures, some method 
of configuring the bootloader is necessary. As with the Linux kernel itself, a bootloader 
is configured at compile time. This method significantly reduces the complexity of the 
binary bootloader image, which in itself is an important characteristic.

In the case of U-Boot, board-specific configuration is driven by a single header file 
specific to the target platform, together with a few soft links in the source tree that 
select the correct subdirectories based on target board, architecture, and CPU. When 
configuring U-Boot for one of its supported platforms, issue this command:

$ make <platform>_config

Here, platform is one of the many platforms supported by U-Boot. These plat-
form configuration targets are listed in the top-level U-Boot makefile. For example, to 
configure for the Spectrum Digital OSK, which contains a TI OMAP 5912 processor, 
issue this command:

$ make omap5912osk_config

   

 

   

This configures the U-Boot source tree with the appropriate soft links to select 
ARM as the target architecture, the ARM926 core, and the 5912 OSK as the target 
platform.

The next step in configuring U-Boot for this platform is to edit the configura-
tion file specific to this board. This file is found in the U-Boot ../include/configs
subdirectory and is called omap5912osk.h. The README file that comes with the 
U-Boot source code describes the details of configuration and is the best source of this 
information. (For existing boards that are already supported by U-Boot, it may not be 
necessary to edit this board-specific configuration file. The defaults may be sufficient 
for your needs. Sometimes minor edits are needed to update memory size or flash size, 
because    many reference boards can be purchased with varying configurations.)

U-Boot is configured using configuration variables defined in a board-specific head-
er file. Configuration variables have two forms. Configuration options are selected us-
ing macros in the form of CONFIG_XXXX. Configuration settings are selected using mac-
ros in the form of CONFIG_SYS_XXXX. In general, configuration options (CONFIG_XXX)
are user-configurable and enable specific U-Boot operational features. Configuration 
settings (CONFIG_SYS_XXX) usually are hardware-specific and require detailed knowl-
edge of the underlying processor and/or hardware platform. Board-specific U-Boot 
configuration is driven by a header file dedicated to that specific platform that contains 
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configuration options and settings appropriate for the underlying platform. The U-
Boot source tree includes a directory where these board-specific configuration header 
files reside. They can be found in .../include/configs from the top-level U-Boot 
source directory.

You can select numerous    features and modes of operation by adding definitions to 
the board-configuration file. Listing 7-4 is a partial configuration header file for the 
Yosemite board based on the AMCC 440EP processor.

LISTING 7-4 Portions of the U-Boot Board-Configuration Header File

/*---------------------------------------------------------------

 * High Level Configuration Options

 *---------------------------------------------------------------*/

/* This config file is used for Yosemite (440EP) and Yellowstone (440GR)*/

#ifndef CONFIG_YELLOWSTONE

#define CONFIG_440EP        1   /* Specific PPC440EP support    */

#define CONFIG_HOSTNAME     yosemite

#else

#define CONFIG_440GR        1   /* Specific PPC440GR support    */

#define CONFIG_HOSTNAME     yellowstone

#endif

#define CONFIG_440      1   /* ... PPC440 family        */

#define CONFIG_4xx      1   /* ... PPC4xx family        */

#define CONFIG_SYS_CLK_FREQ 66666666    /* external freq to pll */

<...>

/*-----------------------------------------------------------------------

 * Base addresses -- Note these are effective addresses where the

 * actual resources get mapped (not physical addresses)

 *-------------------------------------------------------------------*/

#define CONFIG_SYS_FLASH_BASE      0xfc000000    /* start of FLASH   */

#define CONFIG_SYS_PCI_MEMBASE     0xa0000000    /* mapped pci memory*/

#define CONFIG_SYS_PCI_MEMBASE1    CONFIG_SYS_PCI_MEMBASE  + 0x10000000

#define CONFIG_SYS_PCI_MEMBASE2    CONFIG_SYS_PCI_MEMBASE1 + 0x10000000

#define CONFIG_SYS_PCI_MEMBASE3    CONFIG_SYS_PCI_MEMBASE2 + 0x10000000

<...>

#ifdef CONFIG_440EP

    #define CONFIG_CMD_USB

    #define CONFIG_CMD_FAT

    #define CONFIG_CMD_EXT2

#endif

<...>

/*----------------------------------------------------
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LISTING 7-4 Continued

 * External Bus Controller (EBC) Setup

 *----------------------------------------------------*/

#define CONFIG_SYS_FLASH        CONFIG_SYS_FLASH_BASE

#define CONFIG_SYS_CPLD     0x80000000

/* Memory Bank 0 (NOR-FLASH) initialization                 */

#define CONFIG_SYS_EBC_PB0AP        0x03017300

#define CONFIG_SYS_EBC_PB0CR        (CONFIG_SYS_FLASH | 0xda000)

/* Memory Bank 2 (CPLD) initialization                      */

#define CONFIG_SYS_EBC_PB2AP        0x04814500

#define CONFIG_SYS_EBC_PB2CR        (CONFIG_SYS_CPLD | 0x18000)

<...>

 
 

     

Listing 7-4 gives you an idea of how U-Boot itself is configured for a given board. 
An actual board-configuration file can contain hundreds of lines similar to those found 
here. In this example, you can see the definitions     for the CPU (CONFIG_440EP), board 
name (CONFIG_HOSTNAME), clock frequency, and Flash and PCI base memory addresses. 
We have included examples of configuration variables (CONFIG_XXX) and configura-
tion settings (CONFIG_SYS_XXX). The last few lines are actual processor register values 
required to initialize the external bus controller for memory banks 0 and 1. You can see 
that these values can come only from detailed knowledge of the board and processor.

Many aspects of U-Boot can be configured using these mechanisms, including what 
functionality will be compiled into U-Boot (support for DHCP, memory tests, debug-
ging support, and so on). This mechanism can be used to tell U-Boot how much and 
what kind of memory is on a given board, and where that memory is mapped. You 
can learn much more by looking at the U-Boot code directly, especially the excellent 
README file.

7.3.3 U-Boot Monitor Commands

U-Boot supports more   than 70 standard command sets that enable more than 150 
unique commands using CONFIG_CMD_* macros. A command set is enabled in U-Boot 
through the use of configuration setting (CONFIG_*) macros. For a complete list from 
a recent U-Boot snapshot, consult Appendix B, “U-Boot Configurable Commands.” 
Table 7-1 shows just a few, to give you an idea of the capabilities available.
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TABLE 7-1 Some U-Boot Configurable Commands

Command Set Description Commands

CONFIG_CMD_FLASH Flash memory commands

CONFIG_CMD_MEMORY Memory dump, fill, copy, compare, and so on

CONFIG_CMD_DHCP DHCP support

CONFIG_CMD_PING Ping support

CONFIG_CMD_EXT2 EXT2 file system support

  

 

To enable a specific command, define the macro corresponding to the command you want. 

These macros are defined in your board-specific configuration file. Listing 7-4 shows several 

commands being enabled in the board-specific configuration file. There you see CONFIG_CMD_

USB, CONFIG_CMD_FAT, and CONFIG_CMD_EXT2 being defined conditionally if the board 
is a 440EP.

Instead of specifying each individual CONFIG_CMD_* macro in your own board-
specific configuration header, you can start from the full set of commands defined in 
.../include/config_cmd_all.h. This header file defines every command available. A 
second header file, .../include/config_cmd_default.h, defines a list of useful default 
U-Boot command sets such as tftpboot (boot an image from a tftpserver), bootm (boot 
an image from memory), memory utilities such as md (display memory), and so on. To 
enable your specific combination of commands, you    can start with the default and add 
and subtract as necessary. Listing 7-4 adds the USB, FAT, and EXT2 command sets to the 
default. You can subtract in a similar fashion, starting from config_cmd_all.h:

#include “condif_cmd_all.h”

#undef CONFIG_CMD_DHCP

#undef CONFIG_CMD_FAT

#undef CONFIG_CMD_FDOS

<...>

 Take a look at any board-configuration    header file in .../include/configs/ for 
examples.

7.3.4 Network Operations

Many bootloaders include support for    Ethernet interfaces. In a development environ-
ment, this is a huge time saver. Loading even a modest kernel image over a serial port 
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can take minutes versus a few seconds over an Ethernet link, especially if your board 
supports Fast or Gigabit Ethernet. Furthermore, serial links are more prone to errors 
from poorly behaved serial terminals, line noise, and so on.

Some of the more important features to look for in a bootloader include support 
for the BOOTP, DHCP, and TFTP protocols. If you’re unfamiliar with these,  BOOTP 
(Bootstrap Protocol) and DHCP (Dynamic Host Configuration Protocol) enable a 
target device with an Ethernet port to obtain an IP address and other network-related 
configuration information from a central server. TFTP (Trivial File Transfer Protocol) 
allows the target device to download files (such as a Linux kernel image) from a TFTP 
server. References to these protocol specifications are listed at the end of this chap-
ter. Servers for these services are described in Chapter 12, “Embedded Development 
Environment.”

Figure 7-1 illustrates the flow of information      between the target device and a 
BOOTP server. The client (U-Boot, in this case) initiates the exchange by sending 
a broadcast packet searching for a BOOTP server. The server responds with a reply 
packet that includes the client’s IP address and other information. The most useful 
data includes a filename used to download a kernel image.

FIGURE 7-1 BOOTP client/server handshake

In practice, dedicated BOOTP servers no longer exist as stand-alone servers. DHCP 
servers included with your favorite Linux distribution also support BOOTP protocol 
packets and are almost universally used for BOOTP operations.

Start

U-Boot

Broadcast: BOOTREQUEST

Unicast: BOOTREPLY

BOOTP/DHCP

Server

Time
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The DHCP protocol builds on BOOTP. It can supply the target with a wide variety 
of configuration information. In practice, the information exchange is often limited 
by the target/bootloader DHCP client implementation. Listing 7-5 shows a DHCP 
server configuration block identifying a single target device. This is a snippet from a 
DHCP configuration file from the Fedora Core 2 DHCP        implementation.

LISTING 7-5 DHCP Target Specification

host coyote {

      hardware ethernet 00:0e:0c:00:82:f8;

      netmask 255.255.255.0;

      fixed-address 192.168.1.21;

      server-name 192.168.1.9;

      filename “coyote-zImage”;

      option root-path “/home/sandbox/targets/coyote-target”;

}

...

 

When this DHCP server receives a packet from a device matching the hardware 
Ethernet address contained in Listing 7-5, it responds by sending that device the pa-
rameters in this target specification. Table 7-2 describes the fields in the target specifi-
cation.

TABLE 7-2 DHCP Target Parameters

DHCP Target 

Parameter Purpose Description

host Hostname Symbolic label from the DHCP configuration file

hardware ethernet Ethernet hardware address  Low-level Ethernet hardware address of the target’s 
Ethernet interface

fixed-address Target IP address The IP address that the target will assume

netmask Target netmask The IP netmask that the target will assume

server-name TFTP server IP address  The IP address to which the target will direct requests 
for file transfers, the root file system, and so on

filename TFTP filename  The filename that the bootloader can use to boot a 
secondary image (usually a Linux kernel)

root-path NFS root path  Defines the network path for the remote NFS root 
mount
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When the bootloader on the target board has completed   the BOOTP or DHCP 
exchange, these parameters are used for further configuration. For example, the boot-
loader uses the target IP address (fixed-address) to bind its Ethernet port to this IP 
address. The bootloader then uses the server-name field as a destination IP address to 
request the file contained in the filename field, which, in most cases, represents a Linux 
kernel image. Although this is the most common use, this same scenario could be used 
to download and execute manufacturing test and diagnostics firmware.

It should be noted that the DHCP protocol supports many more parameters than 
those detailed in Table 7-2. These are simply the more common parameters you might 
encounter for embedded systems. See the DHCP specification referenced at the end of 
this chapter for complete details.

7.3.5 Storage Subsystems

Many bootloaders support    the capability of booting images from a variety of nonvola-
tile storage devices in addition to the usual Flash memory. The difficulty in supporting 
these types of devices is the relative complexity in both hardware and software. To ac-
cess data on a hard drive, for example, the bootloader must have device driver code for 
the IDE controller interface, as well as knowledge of the underlying partition scheme 
and file system. This is not trivial and is one of the tasks more suited to full-blown 
operating systems.

Even with the underlying complexity, methods exist for loading images from this 
class of device. The simplest method is to support the hardware only. In this scheme, 
no knowledge of the file system is assumed. The bootloader simply raw-loads from 
absolute sectors on the device. This scheme can be used by dedicating an unformat-
ted partition from sector 0 on an IDE-compatible device (such as CompactFlash) and 
loading the data found there without any structure imposed on the data. This is a 
simple configuration for loading a kernel image or other binary image from a block 
storage device. Additional partitions on the device can be formatted for a given file sys-
tem and can contain complete file systems. After the kernel boots, Linux device drivers 
can be used to access the additional partitions.

U-Boot can load an image from a specified raw partition or from a partition with 
a file system structure. Of course, the board must have a supported hardware device 
(an IDE subsystem), and U-Boot must be so configured. Adding CONFIG_CMD_IDE to 
the board-specific configuration file enables support for an IDE interface, and adding 
CONFIG_CMD_BOOTD enables support for booting from a raw partition. If you are porting 
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U-Boot to a custom board, you will likely have to modify U-Boot to understand your 
particular hardware.

7.3.6 Booting from Disk

As just described, U-Boot supports    several methods for booting a kernel image from a 
disk subsystem. This simple command illustrates one of the supported methods:

=> diskboot 0x400000 0:0

To understand this syntax, you must first understand how U-Boot numbers disk 
devices. The 0:0 in this example specifies the device and partition. In this simple ex-
ample, U-Boot performs a raw binary load of the image found on the first IDE device 
(IDE device 0) from the first partition (partition 0) found on this device. The image is 
loaded into system memory at physical address 0x400000.

After the kernel image has been loaded into memory, the U-Boot bootm command 
(boot from memory) is used to boot    the kernel:

=> bootm 0x400000

7.4 Porting U-Boot

One of the reasons U-Boot has become so popular is the ease with which new plat-
forms can be supported. Each board port    must supply a subordinate makefile that 
supplies board-specific definitions to the build process. These files are all given the 
name config.mk. They exist in the .../board/vendor/boardname subdirectory under 
the U-Boot top-level source directory, where boardname specifies a particular board.

As of a recent U-Boot snapshot, more than 460 different board configuration files 
are named config.mk under the .../boards subdirectory. In this same U-Boot version, 
49 different CPU configurations are supported (counted in the same manner). Note 
that, in some cases, the CPU configuration covers a family of chips, such as ppc4xx,
that supports several processors in the Power Architecture 4xx family. U-Boot supports 
a large variety of popular CPUs and CPU families in use today, and a much larger col-
lection of reference boards based on these processors.

If your board contains one of the supported CPUs, porting U-Boot is straightfor-
ward. If you must add a new CPU, plan on substantially more effort. The good news 
is that someone before you has probably done the bulk of the work. Whether you are 
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porting to a new CPU or a new board based on an existing CPU, study the existing 
source code for specific guidance. Determine what CPU is closest to yours, and clone 
the functionality found in that CPU-specific directory. Finally, modify the resulting 
sources to add the specific support for your new CPU’s requirements.

7.4.1 EP405 U-Boot Port

The same logic used in porting     to a different CPU applies to porting U-Boot to a new 
board. Let’s look at an example. We will use the Embedded Planet EP405 board, which 
contains the AMCC Power Architecture 405GP processor. The particular board used 
for this example was provided courtesy of Embedded Planet and came with 64MB of 
SDRAM and 16MB of on-board Flash. Numerous other devices complete the design.

The first step is to see how close we can come to an existing board. Many boards 
in the U-Boot source tree support the 405GP processor. A quick grep of the board-
configuration header files narrows the choices to those that support the 405GP 
processor:

$ cd .../u-boot/include/configs

$ grep -l CONFIG_405GP *

In a recent U-Boot snapshot, 28 board configuration files are configured for the 
405GP. After examining a few, we choose the AR405.h configuration as a baseline. It 
supports the LXT971 Ethernet transceiver, which is also on the EP405. The goal is to 
minimize any development work by borrowing from similar architectures in the spirit 
of open source.

We’ll tackle the easy steps first. We need a custom board configuration header file 
for our EP405 board. Copy the board configuration file to a new file with a name ap-
propriate for your board. We’ll call ours EP405.h. These commands are issued from the 
top-level U-Boot source tree:

$ cp .../include/configs/AR405.h .../include/configs/EP405.h

After you have copied the configuration header file, you must create the board-
specific directory and make a copy of the AR405 board files. We don’t know yet if we 
need all of them. That step will come later. After copying the files to your new board 
directory, edit the filenames appropriately for your board name:

$ cd board   <<< from top-level U-Boot source directory

$ mkdir ep405

$ cp esd/ar405/* ep405
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Now comes the hard part. Jerry Van Baren, a developer and U-Boot contributor, 
detailed a humorous but realistic process for porting U-Boot in an e-mail posting to 
the U-Boot mailing list. His complete process, documented in pseudo-C, can be found 
in the U-Boot README file. The following summarizes the hard part of the porting 
process in Jerry’s style and spirit:

while (!running) {

      do {

            Add / modify source code

      } until (compiles);

      Debug;

...

}

 

 

Jerry’s process, as summarized here, is the simple truth. When you have selected 
a baseline from which to port, you must add, delete, and modify source code until 
it compiles, and then debug it until it is running without error! There is no magic 
formula. Porting any bootloader to a new board requires knowledge of many areas of 
hardware and software. Some of these disciplines, such as setting up SDRAM control-
lers, are rather specialized and complex. Virtually all of this work involves detailed 
knowledge of the underlying hardware. Therefore, be prepared to spend many enter-
taining hours poring    over your processor’s hardware reference manual, along with the 
data sheets of numerous other components that reside on your board.

7.4.2 U-Boot Makefile Configuration Target

Now that we have a code base to start from, we must make some modifications to the 
top-level U-Boot makefile to add the configuration steps        for our new board. Upon ex-
amining this makefile, we find a section for configuring the U-Boot source tree for the 
various supported boards. This section can be found starting with the unconfig target in 
the top-level makefile. We now add support for our new board to allow us to configure 
it. Because we derived our board from the ESD AR405, we will use that rule as the 
template for building our own. If you follow along in the U-Boot source code, you will 
see that these rules are placed in the makefile in alphabetical order according to their 
configuration names. We will be good open-source citizens and follow that lead. We 
call our configuration target EP405_config, again in concert with the U-Boot conven-
tions. Listing 7-6 details  the edits you will need to make in your top-level makefile.
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LISTING 7-6 Makefile Edits

ebony_config:    unconfig

      @$(MKCONFIG) $(@:_config=) ppc ppc4xx ebony amcc

+EP405_config:    unconfig

+     @$(MKCONFIG) $(@:_config=) ppc ppc4xx ep405 ep

+

ERIC_config:      unconfig

      @./mkconfig $(@:_config=) ppc ppc4xx eric

Our new configuration rule has been inserted as shown in the three lines preceded 
by the + character (unified diff format). Edit the top-level makefile using your favorite 
editor.

Upon completing the steps just described, we have a U-Boot source tree that repre-
sents a starting point. It probably will not compile cleanly, so that should be our first 
step. At least the compiler can give us some        guidance on where to start.

7.4.3 EP405 First Build

We now have a U-Boot source tree with our candidate files. Our first step is to config-
ure the build tree for our newly installed EP405 board. Using the configuration target 
we just added to the top-level makefile, we configure the tree. Listing 7-7 gives you a 
starting point for where you need      to focus your efforts.

LISTING 7-7 Configure and Build for EP405

$ make ARCH=ppc CROSS_COMPILE=ppc_405- EP405_config

Configuring for EP405 board...

$ # Now do the build

$ make ARCH=ppc CROSS_COMPILE=ppc_405-

<...lots of build steps...>

make[1]: Entering directory ‘/home/chris/sandbox/u-boot/board/ep/ep405’

ppc_440ep-gcc  -g  -Os   -mrelocatable -fPIC -ffixed-r14 -meabi -D__KERNEL__ 
-DTEXT_BASE=0xFFFC0000 -I/home/chris/sandbox/u-boot/include -fno-builtin -ffree-
standing -nostdinc -isystem /opt/pro5/montavista/pro/devkit/ppc/440ep/bin/../lib/
gcc/powerpc-montavista-linux-gnu/4.2.0/include -pipe  -DCONFIG_PPC -D__powerpc__ 
-DCONFIG_4xx -ffixed-r2 -mstring -msoft-float -Wa,-m405 -mcpu=405 -Wall -Wstrict-
prototypes -fno-stack-protector   -o ep405.o ep405.c -c

ep405.c:25:19: error: ar405.h: No such file or directory

ep405.c:44:22: error: fpgadata.c: No such file or directory

ep405.c:48:27: error: fpgadata_xl30.c: No such file or directory

ep405.c:54:28: error: ../common/fpga.c: No such file or directory

ep405.c: In function ‘board_early_init_f’:
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LISTING 7-7 Continued

ep405.c:75: warning: implicit declaration of function ‘fpga_boot’

ep405.c:91: error: ‘ERROR_FPGA_PRG_INIT_LOW’ undeclared (first use in this func-
tion)

ep405.c:91: error: (Each undeclared identifier is reported only once

ep405.c:91: error: for each function it appears in.)

ep405.c:94: error: ‘ERROR_FPGA_PRG_INIT_HIGH’ undeclared (first use in this func-
tion)

ep405.c:97: error: ‘ERROR_FPGA_PRG_DONE’ undeclared (first use in this function)

make[1]: *** [ep405.o] Error 1

make[1]: Leaving directory ‘/home/chris/sandbox/u-boot/board/ep/ep405’

make: *** [board/ep/ep405/libep405.a] Error 2

At first glance, we notice we need to edit our cloned ep405.c file and fix up a few 
references. These include the    board header file and references to the FPGA. We can 
eliminate these, because the EP405 board doesn’t contain an FPGA like the AR405 we 
derived from. These edits should be straightforward, so we’ll leave them as an exercise 
for the reader. Again, there is no formula better than Jerry’s: edit-compile-repeat until 
the file compiles cleanly. Then comes the hard part—actually making it work. It was 
not difficult. Less than an hour of editing had the file compiling without errors.

7.4.4 EP405 Processor Initialization

The first task that your new U-Boot port must do correctly is initialize the processor 
and the memory (DRAM) subsystems. After    reset, the 405GP processor core is de-
signed to fetch instructions starting from 0xFFFF_FFFC. The core attempts to execute 
the instructions found here. Because this is the top of the memory range, the instruc-
tion found here must be an unconditional branch instruction.

This processor core is also hard-coded to configure the upper 2MB memory region 
so that it is accessible without programming the external bus controller, to which Flash 
memory is usually attached. This forces the requirement to branch to a location within 
this address space, because the processor is incapable of addressing memory anywhere 
else until our bootloader code initializes additional memory regions. We must branch 
to somewhere at or above 0xFFE0_0000. How do we know all this? Because we read the 
405GP user manual!

The behavior of the 405GP processor core, as just described, places requirements 
on the hardware designer to ensure that, on power-up, nonvolatile memory (Flash) is 
mapped to the required upper 2MB memory region. Certain attributes of this initial 
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memory region assume default values on reset. For example, this upper 2MB region 
will be configured for 256 wait states, three cycles of address to chip select delay, three 
cycles of chip select to output enable delay, and seven cycles of hold time.3 This allows 
maximum freedom for the hardware designer to select appropriate devices or methods 
of getting instruction code to the processor directly after reset.

We’ve already seen how the reset vector is installed to the top of Flash in Listing 
7-2. When configured for the 405GP, our first lines of code will be found in the file 
.../cpu/ppc4xx/start.S. The U-Boot developers intended this code to be processor-
generic. In theory, there should be no need for board-specific code in this file. You will 
see how this is accomplished.

You don’t need to understand Power Architecture assembly language in any depth 
to understand the logical flow in start.S. Many frequently asked questions (FAQs) 
have been posted to the U-Boot mailing list about modifying low-level assembly code. 
In nearly all cases, it is not necessary to modify this code if you are porting to one of 
the many supported processors. It is mature code, with many successful ports running 
on it. You need to modify the board-specific code (at a bare minimum) for your port. 
If you find yourself troubleshooting or modifying the early startup assembler code for 
a processor that    has been around for a while, you are most likely heading down the 
wrong road.

Listing 7-8 reproduces a portion of start.S for the  4xx architecture.

LISTING 7-8 U-Boot 4xx Startup Code

...

#if defined(CONFIG_405GP) || defined(CONFIG_405CR) ||

 defined(CONFIG_405) || defined(CONFIG_405EP)

     /*--------------------------------- */

     /* Clear and set up some registers. */

     /*--------------------------------- */

     addi    r4,r0,0x0000

     mtspr   sgr,r4

     mtspr   dcwr,r4

     mtesr   r4             /* clear Exception Syndrome Reg */

     mttcr   r4             /* clear Timer Control Reg */

     mtxer   r4             /* clear Fixed-Point Exception Reg */

     mtevpr  r4           /* clear Exception Vector Prefix Reg */

     addi    r4,r0,0x1000   /* set ME bit (Machine Exceptions) */

     oris    r4,r4,0x0002            /* set CE bit (Critical Exceptions) */

     mtmsr   r4                      /* change MSR */

3 This data was taken directly from the 405GP user’s manual, referenced at the end of this chapter.
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LISTING 7-8 Continued

     addi    r4,r0,(0xFFFF-0x10000)  /* set r4 to 0xFFFFFFFF (status in the */

                                /* dbsr is cleared by setting bits to 1) */

     mtdbsr  r4                      /* clear/reset the dbsr */

     /*---------------------------------- */

     /* Invalidate I and D caches. Enable I cache for defined memory regions */

     /* to speed things up. Leave the D cache disabled for now. It will be */

     /* enabled/left disabled later based on user-selected menu options. */

     /* Be aware that the I cache may be disabled later based on the menu */

     /* options as well. See miscLib/main.c. */

     /*------------------------------------- */

     bl      invalidate_icache

     bl      invalidate_dcache

     /*-------------------------------------- */

     /* Enable two 128MB cachable regions.    */

     /*-----------------------------------    */

     addis   r4,r0,0x8000

     addi    r4,r4,0x0001

     mticcr  r4                      /* instruction cache */

     isync

     addis   r4,r0,0x0000

     addi    r4,r4,0x0000

     mtdccr  r4                      /* data cache */

The first code to execute in start.S for the 405GP processor starts about a third 
of the way into the source file, where a handful of processor registers are cleared or set 
to sane initial values. The instruction and data caches are then invalidated, and the in-
struction cache is enabled to speed up the initial load. Two 128MB   cacheable regions 
are set up—one at the high end of memory (the Flash region), and the other at the 
bottom (normally the start of system DRAM). U-Boot eventually is copied to RAM in 
this region and executed from there. The reason for this is performance: raw reads from 
RAM are an order of magnitude (or more) faster than reads from Flash. However, for 
the 4xx CPU, there is another subtle reason for enabling the instruction cache, as you 
shall soon discover.
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7.4.5 Board-Specific Initialization

The first opportunity for any      board-specific initialization comes in .../cpu/ppc4xx/
start.S just after the cacheable regions have been initialized. Here we find a call to an 
external assembler language routine called ext_bus_cntlr_init:

bl ext_bus_cntlr_init   /* Board-specific bus cntrl init */

 

This routine is defined in .../board/ep405/init.S, in the new board-specific direc-
tory for our board. It provides a hook for very early hardware-based initialization. This 
is one of the files that has been customized for our EP405 platform. This file contains 
the board-specific code to initialize the 405GP’s external bus controller for our applica-
tion. Listing 7-9 contains the meat of the functionality from this file. This is the   code 
that initializes the 405GP’s external bus controller.

LISTING 7-9 External Bus Controller Initialization

    .globl  ext_bus_cntlr_init

ext_bus_cntlr_init:

    mflr    r4            /* save link register          */

    bl      ..getAddr

..getAddr:

    mflr    r3           /* get _this_ address           */

    mtlr    r4           /* restore link register        */

    addi    r4,0,14      /* prefetch 14 cache lines...   */

    mtctr   r4           /* ...to fit this function      */

                         /* cache (8x14=112 instr)       */

..ebcloop:

    icbt    r0,r3        /* prefetch cache line for [r3] */

    addi    r3,r3,32     /* move to next cache line      */

    bdnz    ..ebcloop    /* continue for 14 cache lines  */

    /*--------------------------------------------------- */

    /* Delay to ensure all accesses to ROM are complete  */

    /* before changing  bank 0 timings                  */

    /* 200usec should be enough.                         */

    /* 200,000,000 (cycles/sec) X .000200 (sec) =        */

    /* 0x9C40 cycles                                     */

    /*--------------------------------------------------- */

    addis   r3,0,0x0

    ori     r3,r3,0xA000 /* ensure 200usec have passed t */
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LISTING 7-9 Continued

    mtctr   r3

..spinlp:

    bdnz    ..spinlp     /* spin loop                    */

    /*----------------------------------------------------*/

    /* Now do the real work of this function             */

    /* Memory Bank 0 (Flash and SRAM) initialization     */

    /*----------------------------------------------------*/

    addi    r4,0,pb0ap         /* *ebccfga = pb0ap;      */

    mtdcr   ebccfga,r4

    addis   r4,0,EBC0_B0AP@h   /* *ebccfgd = EBC0_B0AP;  */

    ori     r4,r4,EBC0_B0AP@l

    mtdcr   ebccfgd,r4

    addi    r4,0,pb0cr         /* *ebccfga = pb0cr;      */

    mtdcr   ebccfga,r4

    addis   r4,0,EBC0_B0CR@h   /* *ebccfgd = EBC0_B0CR;  */

    ori     r4,r4,EBC0_B0CR@l

    mtdcr   ebccfgd,r4

    /*----------------------------------------------------*/

    /* Memory Bank 4 (NVRAM & BCSR) initialization       */

    /*----------------------------------------------------*/

    addi    r4,0,pb4ap         /* *ebccfga = pb4ap;      */

    mtdcr   ebccfga,r4

    addis   r4,0,EBC0_B4AP@h   /* *ebccfgd = EBC0_B4AP;  */

    ori     r4,r4,EBC0_B4AP@l

    mtdcr   ebccfgd,r4

    addi    r4,0,pb4cr         /* *ebccfga = pb4cr;      */

    mtdcr   ebccfga,r4

    addis   r4,0,EBC0_B4CR@h   /* *ebccfgd = EBC0_B4CR;  */

    ori     r4,r4,EBC0_B4CR@l

    mtdcr   ebccfgd,r4

    blr                        /* return                 */

Listing 7-9 was chosen because   it is typical of the subtle complexities involved in 
low-level processor initialization. It is important to realize the context in which this 
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code is running. It is executing from Flash, before any DRAM is available. There is 
no stack. This code is preparing to make fundamental changes to the controller that 
governs access to the very Flash it is executing from. It is well documented for this 
particular processor that executing code from Flash while modifying the external bus 
controller to which the Flash is attached can lead to errant reads and a resulting proces-
sor crash.

The solution is shown in this assembly language routine. Starting at the label 
..getAddr, and for the next seven assembly language instructions, the code essentially 
prefetches itself into the instruction cache, using the icbt instruction. When the entire 
subroutine has been successfully read into the instruction cache, it can proceed to make 
the required changes to the external bus controller without fear of a crash, because it 
is executing directly from the internal instruction cache. Subtle, but clever! This is fol-
lowed by a short delay to make sure that all the requested i-cache reads have completed.

When the prefetch and delay   have completed, the code proceeds to configure 
Memory Bank 0 and Memory Bank 4 appropriately for our board. The values come 
from detailed knowledge of the underlying components and their interconnection on 
the board. Consult the last section in this chapter for all the details of the Power Ar-
chitecture assembler and the 405GP processor from which this example was derived.

Consider making a change to this code without a complete understanding of what 
is happening here. Perhaps you added a few lines and increased its size beyond the 
range that was prefetched into the cache. It would likely crash (worse, it might crash 
only sometimes), but stepping through this code with a debugger would not yield a 
single clue as to why.

The next opportunity for board-specific initialization comes after a temporary stack 
has been allocated from the processor’s data cache. This is the branch to initialize the 
SDRAM controller around line 727 of .../cpu/ppc4xx/start.S:

bl sdram_init

The execution context now includes a stack pointer and some temporary memory 
for local data storage—that is, a partial C context, allowing the developer to use C 
for the relatively complex task of setting up the system SDRAM controller and other 
initialization tasks. In our EP405 port, the sdram_init() code resides in .../board/
ep405/ep405.c and is customized for this particular board and DRAM configuration. 
Because this board does not use a commercially available memory SIMM, it is not pos-
sible to determine the configuration of the DRAM dynamically, as with so many other 
boards supported by U-Boot. It is hard-coded in sdram_init.
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Many off-the-shelf memory DDR modules have an SPD (Serial Presence Detect) 
PROM containing parameters that identify the memory module and its architecture 
and organization. These parameters can be read under program control via I2C and 
can be used as input to determine proper parameters for the memory controller. U-
Boot has support for this technique but may need modifications to work      with your 
specific board. Many examples of its use can be found in the U-Boot source code. The 
configuration option CONFIG_SPD_EEPROM enables this feature. You can grep for this 
option to find examples of its use.

7.4.6 Porting Summary

By now, you can appreciate    some of the difficulties of porting a bootloader to a hard-
ware platform. There is simply no substitute for detailed knowledge of the underlying 
hardware. Of course, we’d like to minimize our investment in time required for this 
task. After all, we usually are not paid based on how well we understand every hardware 
detail of a given processor, but rather on our ability to deliver a working solution in a 
timely manner. Indeed, this is one of the primary reasons open source has flourished. 
You just saw how easy it is to port U-Boot to a new hardware platform—not because 
you’re an expert on the processor, but because many before us have done the bulk of 
the hard work already.

Listing 7-10 is the complete list of new or modified files that complete the basic 
EP405 port for U-Boot. Of course, if there had been new hardware devices for which 
no support exists in U-Boot, or if we were porting to a new CPU that is not yet sup-
ported in U-Boot, this would have been a much more significant effort. The point to 
be made here, at the risk of sounding redundant, is that there is simply no substitute 
for detailed knowledge of both the hardware (CPU and subsystems) and the underly-
ing software (U-Boot) to complete a port successfully in a reasonable time frame. If 
you start the project  from that frame of mind, you will have a successful outcome.

LISTING 7-10 New or Changed Files for U-Boot EP405 Port

$ git diff HEAD --stat

 Makefile                 |    3 +

 board/ep/ep405/Makefile  |   53 ++++

 board/ep/ep405/config.mk |   30 ++

 board/ep/ep405/ep405.c   |  329 ++++++++++++++++++++

 board/ep/ep405/ep405.h   |   44 +++

 board/ep/ep405/flash.c   |  749 ++++++++++++++++++++++++++++++++++++++++++++++

 include/configs/EP405.h  |  272 +++++++++++++++++

 7 files changed, 1480 insertions(+), 0 deletions(-)
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Recall that we derived all the files in the .../board/ep405 directory from another 
directory. Indeed, we didn’t create any files from scratch for this port. We borrowed 
from the work of others and customized where    necessary to achieve our goals.

7.4.7 U-Boot Image Format

Now that we have a working   bootloader for our EP405 board, we can load and run 
programs on it. Ideally, we want to run an operating system such as Linux. To do this, 
we need to understand the image format that U-Boot requires. U-Boot expects a small 
header on the image file that identifies several attributes of the image. U-Boot provides 
the mkimage tool (part of the U-Boot source code) to build this image header.

Recent Linux kernel distributions have built-in support for building images directly 
bootable by U-Boot. Both the arm and powerpc branches of the kernel source tree sup-
port a target called uImage. Let’s look at the Power Architecture case.

Browsing through the makefile .../arch/powerpc/boot/Makefile, we see the uImage
target defining a call to an external wrapper script called, you guessed it, wrapper. With-
out delving into the syntactical tedium, the wrapper script sets up some default variable 
values and eventually calls mkimage. Listing 7-11 reproduces   this processing from the 
wrapper script.

LISTING 7-11 mkimage from Wrapper Script

case “$platform” in

uboot)

    rm -f “$ofile”

    mkimage -A ppc -O linux -T kernel -C gzip -a $membase -e $membase \

    $uboot_version -d “$vmz” “$ofile”

    if [ -z “$cacheit” ]; then

    rm -f “$vmz”

    fi

    exit 0

    ;;

esac

The mkimage utility   creates the U-Boot header and prepends it to the supplied ker-
nel image. It writes the resulting image to the final parameter passed to mkimage—in
this case, the value of the $ofile variable, which in this example will be called uImage.
The parameters are as follows:

 • -A specifies the target image architecture.

 • -O species the target image OS—in this case, Linux.
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• -T specifies the target image type—in this case, a kernel.

• -C specifies the target image compression type—in this case, gzip.

• -a sets the U-Boot loadaddress to the value specified.

• -e sets the U-Boot image entry point to the supplied value.

• -n is a text field used to identify the image to the human user (supplied in the 
uboot_version variable).

 • -d is the executable image file to which the header is prepended.

Several U-Boot commands use this header data both to verify the integrity of the 
image (U-Boot also puts a CRC signature in the header) and to identify the image 
type. U-Boot has a command called iminfo that reads   the image header and displays 
the image attributes from the target image. Listing 7-12 contains the results of loading 
a uImage (bootable Linux kernel image formatted for U-Boot) to the EP405 board via 
U-Boot’s tftp    command and executing the iminfo command on the image.4

LISTING 7-12 U-Boot iminfo Command

=> tftp 400000 uImage-ep405

ENET Speed is 100 Mbps - FULL duplex connection

TFTP from server 192.168.1.9; our IP address is 192.168.1.33

Filename ‘uImage-ep405’.

Load address: 0x400000

Loading: ##########  done

Bytes transferred = 891228 (d995c hex)

=> iminfo

## Checking Image at 00400000 ...

   Image Name:   Linux-2.6.11.6

   Image Type:   PowerPC Linux Kernel Image (gzip compressed)

   Data Size:    891164 Bytes = 870.3 kB

   Load Address: 00000000

   Entry Point:  00000000

   Verifying Checksum ... OK

=>

4 We changed the name of the uImage to reflect the target it corresponds to. In this example, we appended -ep405 to indicate 
it is a kernel for that target.
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7.5 Device Tree Blob (Flat Device Tree)

One of the more challenging aspects of porting Linux (and U-Boot) to your new board 
is the recent requirement for a    device tree blob (DTB). It is also referred to as a flat 
device tree, device tree binary, or simply device tree. Throughout this discussion, these 
terms are used interchangeably. The DTB is a database that represents the hardware 
components on a given board. It is derived from the IBM OpenFirmware specifica-
tions and has been chosen as the default mechanism to pass low-level hardware infor-
mation from the bootloader to the kernel.

Prior to the requirement for a DTB, U-Boot would pass a board information struc-
ture to the kernel, which was derived from a header file in U-Boot that had to exactly 
match the contents of a similar header file in the kernel. It was very difficult to keep 
them in sync, and it didn’t scale well. This was, in part, the motivation for incorporat-
ing the flat device tree as a method to communicate low-level hardware details from 
the bootloader to the kernel.

Similar to U-Boot or other low-level firmware, mastering the DTB requires com-
plete knowledge of the underlying hardware. You can do an Internet search to find 
some introductory documents that describe the device tree. A great starting point is 
the Denx Software Engineering wiki page. References are provided at the end of this 
chapter.

To begin, let’s see how the DTB is used during a typical boot sequence. Listing 7-13 
shows a boot sequence   on a Power Architecture target using U-Boot. The Freescale 
MPC8548CDS system was used for this example.

LISTING 7-13 Booting Linux with the Device Tree Blob from U-Boot

=> tftp $loadaddr 8548/uImage

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.11.103; our IP address is 192.168.11.18

Filename ‘8548/uImage’.

Load address: 0x600000

Loading:  #####################################################

          #####################################################

done

Bytes transferred = 1838553 (1c0dd9 hex)

=> tftp $fdtaddr 8548/dtb

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.11.103; our IP address is 192.168.11.18
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LISTING 7-13 Continued

Filename ‘8548/dtb’.

Load address: 0xc00000

Loading: ##

done

Bytes transferred = 16384 (4000 hex)

=> bootm $loadaddr - $fdtaddr

## Booting kernel from Legacy Image at 00600000 ...

   Image Name:   MontaVista Linux 6/2.6.27/freesc

   Image Type:   PowerPC Linux Kernel Image (gzip compressed)

   Data Size:    1838489 Bytes =  1.8 MB

   Load Address: 00000000

   Entry Point:  00000000

   Verifying Checksum ... OK

## Flattened Device Tree blob at 00c00000

   Booting using the fdt blob at 0xc00000

   Uncompressing Kernel Image ... OK

   Loading Device Tree to 007f9000, end 007fffff ... OK

   <... Linux begins booting here...>

...and away we go!!

 

The primary difference here is that we loaded two images. The large image (1.8MB) 
is the kernel image. The smaller image (16KB) is the flat device tree. Notice that we 
placed the kernel and DTB at addresses 0x600000 and 0xc00000, respectively. All the 
messages from Listing 7-13 are produced by U-Boot. When we use the bootm com-
mand to boot the kernel, we add a third parameter, which tells U-Boot where we 
loaded the DTB.

By now, you are probably wondering where the DTB came from. The easy answer 
is that it was provided as a courtesy by the board/architecture developers as part of the 
Linux kernel source tree. If you look at the powerpc branch of any recent Linux kernel 
tree, you will see a directory called .../arch/powerpc/boot/dts. This is where the 
“source code” for the DTB resides.

The hard answer is that you must provide a DTB for your custom board. Start with 
something close to your platform, and modify from there. At the risk of sounding re-
dundant, there is no easy path. You must dive in and learn the details of your hardware 
platform and become proficient at writing device nodes and their respective      properties. 
Hopefully, this section will start you on your way toward that proficiency.
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7.5.1 Device Tree Source

The device tree blob is “compiled” by a special compiler that produces the binary in 
the proper form for U-Boot and Linux to understand. The dtc compiler usually is 
provided with your embedded Linux distribution, or it can be found  at http://jdl.com/
software. Listing 7-14 shows a snippet of the device tree source (DTS)   from a recent 
kernel source tree.

LISTING 7-14 Partial Device Tree Source Listing

/*

 * MPC8548 CDS Device Tree Source

 *

 * Copyright 2006, 2008 Freescale Semiconductor Inc.

 *

 * This program is free software; you can redistribute it and/or modify it

 * under  the terms of  the GNU General Public License as published by the

 * Free Software Foundation;  either version 2 of the License, or (at your

 * option) any later version.

 */

/dts-v1/;

/ {

    model = “MPC8548CDS”;

    compatible = “MPC8548CDS”, “MPC85xxCDS”;

    #address-cells = <1>;

    #size-cells = <1>;

    aliases {

        ethernet0 = &enet0;

        ethernet1 = &enet1;

        ethernet2 = &enet2;

        ethernet3 = &enet3;

        serial0 = &serial0;

        serial1 = &serial1;

        pci0 = &pci0;

        pci1 = &pci1;

        pci2 = &pci2;

        rapidio0 = &rio0;

    };

    cpus {

  

http://jdl.com/software
http://jdl.com/software
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LISTING 7-14 Continued

        #address-cells = <1>;

        #size-cells = <0>;

        PowerPC,8548@0 {

            device_type = “cpu”;

            reg = <0x0>;

            d-cache-line-size = <32>;   // 32 bytes

            i-cache-line-size = <32>;   // 32 bytes

            d-cache-size = <0x8000>;        // L1, 32K

            i-cache-size = <0x8000>;        // L1, 32K

            timebase-frequency = <0>;   //  33 MHz, from uboot

            bus-frequency = <0>;    // 166 MHz

            clock-frequency = <0>;  // 825 MHz, from uboot

            next-level-cache = <&L2>;

        };

    };

    memory {

        device_type = “memory”;

        reg = <0x0 0x8000000>;  // 128M at 0x0

    };

    localbus@e0000000 {

        #address-cells = <2>;

        #size-cells = <1>;

        compatible = “simple-bus”;

        reg = <0xe0000000 0x5000>;

        interrupt-parent = <&mpic>;

        ranges = <0x0 0x0 0xff000000 0x01000000>;   /*16MB Flash*/

        flash@0,0 {

            #address-cells = <1>;

            #size-cells = <1>;

            compatible = “cfi-flash”;

            reg = <0x0 0x0 0x1000000>;

            bank-width = <2>;

            device-width = <2>;

            partition@0x0 {

                label = “free space”;

                reg = <0x00000000 0x00f80000>;

            };
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LISTING 7-14 Continued

            partition@0x100000 {

                label = “bootloader”;

                reg = <0x00f80000 0x00080000>;

                read-only;

            };

        };

    };

<...truncated here...>

This is a long listing, but it is well worth the time spent studying it. Although it may 
seem obvious, it is worth noting that this device tree source is specific to the Freescale 
MPC8548CDS Configurable Development System. Part of your job as a custom em-
bedded Linux developer is to adopt this DTS to your own MPC8548-based system.

Some of the data shown in Listing 7-14 is self-explanatory. The flat device tree is 
made up of device nodes. A device node    is an entry in the device tree, usually describ-
ing a single device or bus. Each node contains a set of properties that describe it. It is, 
in fact, a tree structure. It can easily be represented by a familiar tree view, as shown in 
Listing 7-15.

LISTING 7-15 Tree View of DTS

|-/ Model: model = “MPC8548CDS”, etc.

|

|---- cpus: #address-cells = <1>, etc.

|   |

|   |----  PowerPC,8548@0, etc.

|

|--- Memory: device_type = “memory”, etc.

|

|----  localbus@e0000000: #address-cells = <2>, etc.

|   |

|   |---- flash@0,0: #address-cells = <1>, etc.

|

<...>

In the first few lines of Listing 7-14, we see the processor model and a property 
indicating compatibility with other processors in the same family. The first child node 
describes the CPU. Many of the CPU device node properties are self-explanatory. For 
example, we can see that the 8548 CPU has data and instruction cache line sizes of 
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32 bytes and that these caches are both 32KB in size (0x8000 bytes.) We see a cou-
ple properties that show clock frequencies, such as timebase-frequency and clock-
frequency, both of which indicate that they are set by U-Boot. That would be natural, 
because U-Boot configures the hardware clocks.

The properties called address-cells and size-cells are worth explaining. A “cell” 
in this context is simply a 32-bit quantity. address-cells and size-cells simply in-
dicate the number of cells (32-bit fields) required to specify an address (or size) in the 
child node.

The memory device node offers no mysteries. From this node, it is obvious that this 
platform contains a single bank of memory starting at address 0, which is 128MB in 
size.

For complete details of flat device   tree syntax, consult the references at the end of 
this chapter. One of the most useful is the document produced by Power.org, found at 
www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf.

7.5.2 Device Tree Compiler

Introduced earlier, the device tree compiler (dtc) converts the human-readable device 
tree source into the machine-readable   binary that both U-Boot and the Linux kernel 
understand. Although a git tree is hosted on kernel.org for dtc, the device tree source 
has been merged into the kernel source tree and is built along with any Power Archi-
tecture kernel from the .../arch/powerpc branch.

It is quite straightforward to use the device tree compiler. A typical command to 
convert source to binary looks like this:

$ dtc -O dtb -o myboard.dtb -b 0 myboard.dts

 

In this command, myboard.dts is the device tree human-readable source, and 
myboard.dtb is the binary created by this command invocation. The -O flag specifies 
the output format—in this case, the device tree blob binary. The -o flag names the out-
put file, and the -b 0 parameter specifies the physical boot CPU in the multicore case.

Note that the dtc compiler allows you to go in both directions. The command 
example just shown performs a compile from source to device tree binary, whereas a 
command like this produces source from the binary:

$ dtc -I dtb -O dts mpc8548.dtb >mpc8548.dts
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You can also build the DTB for many well-known reference boards directly from the 
kernel source. The command looks similar to the following:

$ make ARCH=powerpc mpc8548cds.dtb

This produces a binary device tree blob from a source file with the same base name 
(mpc8548cds) and the dts extension. These are found in .../arch/powerpc/boot/dts.
A recent kernel source tree had 120 such    device tree source files for a range of Power 
Architecture boards.

7.5.3 Alternative Kernel Images Using DTB

Entering make ARCH=powerpc help at the top-level Linux kernel source tree outputs 
many lines of useful help, describing the many build targets available. Several archi-
tecture-specific targets combine the device tree blob with the kernel image. One good 
reason to do this is if you are trying to boot a newer kernel on a target that has an older 
version of U-Boot that does not support the device     tree blob. On a recent Linux kernel, 
Listing 7-16 reproduces the powerpc targets defined for the powerpc architecture.

LISTING 7-16 Architecture-Specific Targets for Powerpc

* zImage          - Build default images selected by kernel config

  zImage.*        - Compressed kernel image (arch/powerpc/boot/zImage.*)

  uImage          - U-Boot native image format

  cuImage.<dt>    - Backwards compatible U-Boot image for older

                    versions which do not support device trees

  dtbImage.<dt>   - zImage with an embedded device tree blob

  simpleImage.<dt> - Firmware independent image.

  treeImage.<dt>  - Support for older IBM 4xx firmware (not U-Boot)

  install         - Install kernel using

                    (your) ~/bin/installkernel or

                    (distribution) /sbin/installkernel or

                    install to $(INSTALL_PATH) and run lilo

  *_defconfig     - Select default config from arch/powerpc/configs

The zImage is the default, but many    targets use uImage. Notice that some of these 
targets have the device tree binary included in the composite kernel image. You need to 
decide which is most appropriate for your particular platform and application.
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7.6 Other Bootloaders

Here we introduce the more popular bootloaders, describe where they might be used, 
and summarize their features. This is not intended to be a thorough tutorial; doing so 
would require a book of its own. Consult the last section of this chapter for further 
study.

7.6.1 Lilo

The Linux Loader, or Lilo, was    widely used in commercial Linux distributions for 
desktop PC platforms; as such, it has its roots in the Intel x86/IA32 architecture. Lilo 
has several components. It has a primary bootstrap program that lives on the first sec-
tor of a bootable disk drive.5 The primary loader is limited to a disk sector size, usu-
ally 512 bytes. Therefore, its primary purpose is simply to load and pass control to a 
secondary loader. The secondary loader can span multiple sectors and does most of the 
bootloader’s work.

Lilo is driven by a configuration file and utility that is part of the Lilo executable. 
This configuration file can be read or written to only under control of the host operat-
ing system. That is, the configuration file is not referenced by the early boot code in 
either the primary or secondary loaders. Entries in the configuration file are read and 
processed by the Lilo configuration utility during system installation or administra-
tion. Listing 7-17 shows a simple lilo.conf configuration file describing   a typical 
dual-boot Linux and Windows installation.

LISTING 7-17 Sample Lilo Configuration: lilo.conf

# This is the global lilo configuration section

# These settings apply to all the “image” sections

boot = /dev/hda

timeout=50

default=linux

# This  describes the primary kernel boot image

# Lilo will display it with the label ‘linux’

image=/boot/myLinux-2.6.11.1

        label=linux

        initrd=/boot/myInitrd-2.6.11.1.img

5 This is mostly for historical reasons. From the early days of PCs, BIOS programs loaded only the first  sector of a disk drive and 
passed control to it.
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LISTING 7-17 Continued

        read-only

        append=”root=LABEL=/”

# This is the second OS in a dual-boot configuration

# This entry will boot a secondary image from /dev/hda1

other=/dev/hda1

        optional

        label=that_other_os

  

 

 

This configuration file instructs the Lilo configuration utility to use the master boot 
record of the first hard drive (/dev/hda). It contains a delay instruction to wait for the 
user to press a key before the timeout (5 seconds, in this case). This allows the system 
operator to select from a list of OS images to boot. If the system operator presses the 
Tab key before the timeout, Lilo presents a list to choose from. Lilo uses the label tag 
as the text to display for each image.

The images are defined with the image tag in the configuration file. In Listing 7-17, 
the primary (default) image is a Linux kernel image with a filename of myLinux-2.6.11.1.
Lilo loads this image from the hard drive. It then loads a second file to be used as an ini-
tial ramdisk. This is the file myInitrd-2.6.11.1.img. Lilo constructs a kernel command 
line containing the string “root=LABEL=/” and passes this to the Linux kernel upon ex-
ecution. This instructs Linux where to get its root file system   after boot.

7.6.2 GRUB

Many current commercial Linux   distributions now ship with the GRUB bootloader. 
GRUB, or GRand Unified Bootloader, is a GNU project. It has many enhanced fea-
tures not found in Lilo. The biggest difference between GRUB and Lilo is GRUB’s ca-
pability to understand file systems and kernel image formats. Furthermore, GRUB can 
read and modify its configuration at boot time. GRUB also supports booting across a 
network, which can be a tremendous asset in an embedded environment. GRUB offers 
a command-line interface at boot time to modify the boot configuration.

Like Lilo, GRUB is driven by a configuration file. Unlike Lilo’s static configuration, 
however, the GRUB bootloader reads this configuration at boot time. This means that 
the configured behavior can be modified at boot time for different system configura-
tions.
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Listing 7-18 is a sample GRUB configuration file. This is the configuration file 
from the PC on which this book was written. The GRUB configuration file is called 
grub.conf6 and usually is placed in a small partition dedicated to storing boot images. 
On the machine from which this example was taken, that directory   is called /boot.

LISTING 7-18 Sample GRUB Configuration File: grub.conf

default=0

timeout=3

splashimage=(hd0,1)/grub/splash.xpm.gz

title Fedora Core 2 (2.6.9)

        root (hd0,1)

        kernel /bzImage-2.6.9 ro root=LABEL=/ rhgb proto=imps quiet

        initrd /initrd-2.6.9.img

title Fedora Core (2.6.5-1.358)

        root (hd0,1)

        kernel /vmlinuz-2.6.5-1.358 ro root=LABEL=/ rhgb quiet

title That Other OS

        rootnoverify (hd0,0)

        chainloader +1

GRUB first presents the user with a list of images that are available to boot. The 
title entries from Listing 7-18 are the image names presented to the user. The default 
tag specifies which image to boot if no keys have been pressed in the timeout period, 
which is 3 seconds in this example. Images are counted starting from 0.

Unlike Lilo, GRUB can actually read a file system on a given partition to load an 
image from. The root tag specifies the root partition from which all filenames in the 
grub.conf configuration file are rooted. In this sample configuration, the root is par-
tition number 1 on the first hard disk drive, specified as root(hd0,1). Partitions are 
numbered from 0; this is the second partition on the first hard disk.

The images are specified as filenames relative to the specified root. In Listing 7-18, 
the default boot image is a Linux 2.6.9 kernel with a matching initial ramdisk image 
called initrd-2.6.9.img. Notice that the GRUB    syntax has the  kernel command-line 
parameters on the same line as the kernel file specification.

6 Some newer distributions call this file menu.lst.

  



7.7 Summary 197

7.6.3 Still More Bootloaders

Numerous other bootloaders have found their way into specific niches. For example, 
Redboot is another   open source bootloader that Intel and the XScale community have 
adopted for use on various evaluation boards based on the Intel IXP and Marvel PXA 
processor families. Micromonitor   is in use by board vendors such as Cogent and oth-
ers. YAMON7 has found popularity in MIPs circles. LinuxBIOS is used primarily in 
X86 environments. In general, when you consider a boot loader, you should consider 
some important factors up front:

• Does it support   my chosen processor?

• Has it been ported to a board similar to my own?

• Does it support the features I need?

• Does it support the hardware devices I intend to use?

• Is there a large community of users where I might get support?

• Are there any commercial vendors from which I can purchase support?

These are some of the questions you must answer when considering what bootload-
er to use in your embedded project. Unless you are doing something on the “bleeding 
edge” of technology using a brand-new processor, you are likely to find that someone 
has already done the bulk of the hard work in porting a bootloader to your chosen 
platform. Use the resources listed at the end of this chapter to help make your final 
decisions.

7.7 Summary

This chapter examined the role of the bootloader and discovered the limited execu-
tion context in which a bootloader must exist. We covered one of the most popular 
bootloaders, U-Boot, in some detail. We walked through the steps of a typical port to 
a board with similar support in U-Boot. We briefly introduced additional bootloaders 
in use today so that you can make an informed choice for your particular requirements.

• The bootloader’s role in an embedded system cannot be overstated. It is the 
first piece of software that takes control upon applying power.

7 In an acknowledgment of the number of bootloaders in existence, the YAMON user’s guide bills itself as Yet Another 
MONitor.
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• Das U-Boot has become a popular universal bootloader for many processor 
architectures. It supports a large number of processors, reference hardware plat-
forms, and custom boards.

• U-Boot is configured using a series of configuration variables in a board-specific 
header file. Appendix B contains a list of all the standard U-Boot command sets 
supported in a recent U-Boot release.

• Porting U-Boot to a new board based on a supported processor is relatively 
straightforward.

• There is no substitute for detailed knowledge of your processor and hardware 
platform when bootloader modification or porting must be accomplished.

• You may need a device tree binary for your board, especially if it is Power 
Architecture and soon perhaps ARM.

7.7.1 Suggestions for Additional Reading

Application Note: Introduction to Synchronous DRAM
Maxwell   Technologies
www.maxwell.com/pdf/me/app_notes/Intro_to_SDRAM.pdf

Using LD, the GNU linker
Free Software   Foundation
http://sourceware.org/binutils/docs/ld/index.html

The DENX U-Boot and Linux Guide (DLUG) for TQM8xxL
Wolfgang Denx, et al., Denx Software    Engineering
www.denx.de/twiki/bin/view/DULG/Manual

RFC 793, “Trivial File Transfer Protocol”
The Internet    Engineering Task Force
www.ietf.org/rfc/rfc783.txt

RFC 951, “Bootstrap Protocol”
The Internet Engineering    Task Force
www.ietf.org/rfc/rfc951.txt

RFC 1531, “Dynamic Host Control    Protocol”
The Internet Engineering Task Force
www.ietf.org/rfc/rfc1531.txt
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PowerPC 405GP Embedded Processor user manual
International Business Machines, Inc.

Programming Environments Manual for 32-bit Implementations of the PowerPC 
Architecture
Freescale Semiconductor, Inc.

Lilo Bootloader  
www.tldp.org/HOWTO/LILO.html

GRUB Bootloader  
www.gnu.org/software/grub/

Device tree documentation
Linux Kernel Source Tree
.../Documentation/powerpc/booting-without-of.txt

Device trees everywhere
David Gibson, Benjamin   Herrenschmidt
http://ozlabs.org/people/dgibson/papers/dtc-paper.pdf

Excellent list of   flat device tree references
www.denx.de/wiki/U-Boot/UBootFdtInfo#Background_Information_on_Flatte
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One of the more challenging aspects of system design is partitioning func-
tionality in a rational manner. The familiar device driver model found 

in UNIX and Linux provides a natural partitioning of functionality between 
your application code and hardware or kernel devices. This chapter helps you 
understand this model and the basics of Linux device driver architecture. After 
reading this chapter, you will have a solid foundation for continuing your study 
of device drivers using one of the references listed at the end of this chapter.

This chapter begins by presenting Linux device driver concepts and describing 
the build system for drivers within the kernel source tree. We examine the Linux 
device driver architecture and present an example of a simple working driver. We 
introduce the user space utilities for loading and unloading kernel modules.1 We 
present a simple application to illustrate the interface between applications and 
device drivers. We conclude this chapter with a discussion of the relationship 
between device drivers and the GNU Public License.

8.1 Device Driver Concepts

Many experienced embedded developers struggle initially with the concept of device 
drivers in a virtual memory operating system. This is because many popular legacy 
real-time operating systems do not have a similar architecture. The idea of virtual 
memory and kernel space versus user space frequently introduces complexity that is 
unfamiliar to experienced embedded developers.

One of the fundamental purposes of a device driver is to isolate the user programs 
from ready access to critical kernel data structures and hardware devices. Further-
more, a well-written device driver hides from the user the complexity and variability 
of the hardware device. For example, a program that wants to write data to the hard 
disk doesn’t need to know if the disk drive uses 512-byte or 1024-byte sectors. The 
user simply opens a file and issues a write command. The device driver handles 
the details and isolates the user from the complexities and perils of hardware device 

1 The terms module and device driver are used here interchangeably.
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programming. The device driver provides a consistent user interface to a large variety 
of hardware devices. It provides the basis for the familiar UNIX/Linux convention that 
everything must be represented as a file.

8.1.1 Loadable Modules

Unlike some other operating systems, Linux   lets you add and remove kernel compo-
nents at runtime. Linux is structured as a monolithic kernel with a well-defined inter-
face for adding and removing device driver modules dynamically after boot time. This 
feature not only provides flexibility for the user, but it also has proven invaluable to the 
device driver developer. Assuming that your device driver is reasonably well behaved, 
you can insert and remove the device driver from a running kernel at will during the 
development cycle instead of rebooting the kernel every time you want to test a change.

Loadable modules have particular importance to embedded systems. Loadable 
modules enhance field upgrade capabilities. For example, the module itself can be up-
dated in a live system without the need for a reboot. Modules can be stored on media 
other than the root (boot) device, which can be space-constrained.

Of course, device drivers can also be statically compiled into the kernel, and, for 
many drivers, this is completely appropriate. Consider, for example, a kernel configured 
to mount a root file system from a network-attached NFS server. In this scenario, you 
configure the network-related drivers (TCP/IP and the network interface card driver) 
to be compiled into the main kernel image so that they are available during boot for 
mounting the remote root file system. You can use the initial ramdisk functionality as 
described in Chapter 6, “User Space Initialization,” as an alternative to having these 
drivers compiled statically as part of the kernel proper. In this case, the necessary mod-
ules and a script to load them would be included in the initial ramdisk image.

Loadable modules are installed after the kernel has booted. Startup scripts can load 
device driver modules, and modules can also be “demand loaded” when needed. Linux 
can request a module when a service is requested that requires a particular module.2

Terminology has never been standardized when discussing kernel modules. Many 
terms have been and continue to be used interchangeably when discussing Linux de-
vice drivers. Throughout this and later chapters, the terms device driver, loadable ker-
nel module (LKM), loadable module, and module are all used    to describe a kernel 
device driver module.

2 This mechanism is described in great detail in Chapter 19, “udev.”
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8.1.2 Device Driver Architecture

The basic Linux device driver model is   familiar to UNIX/Linux system developers. 
Although the device driver model continues to evolve, some fundamental constructs 
have remained nearly constant over the course of UNIX/Linux evolution. Device driv-
ers are broadly classified into two basic categories: character devices and block devices. 
Character devices can be thought of as serial streams of sequential data. Examples of 
character devices include serial ports and keyboards. Block devices are characterized 
by the capability to read and write blocks of data to and from random locations on an 
addressable medium. Examples of block devices include hard drives and USB Flash 
   drives.

8.1.3 Minimal Device Driver Example

Because Linux supports   loadable device drivers, it is relatively easy to demonstrate a 
simple device driver skeleton. Listing 8-1 shows a loadable device driver module that 
contains the bare minimum structure to be loaded and unloaded by a running  kernel.

LISTING 8-1 Minimal Device Driver

/* Example Minimal Character Device Driver */

#include <linux/module.h>

static int __init hello_init(void)

{

    printk(KERN_INFO “Hello Example Init\n”);

    return 0;

}

static void __exit hello_exit(void)

{

    printk(“Hello Example Exit\n”);

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_AUTHOR(“Chris Hallinan”);

MODULE_DESCRIPTION(“Hello World Example”);

MODULE_LICENSE(“GPL”);
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The skeletal driver shown in Listing 8-1 contains enough structure for the kernel to 
load and unload the driver and to invoke the initialization and exit routines. Let’s look 
at how this is done, because it illustrates some important high-level concepts that are 
useful for device driver development.

A device driver is a special kind of binary module. Unlike a stand-alone binary 
executable application, a device driver cannot simply be executed from a command 
prompt. The 2.6 kernel series requires that the binary be in a special “kernel object” 
format. When properly built, the device driver binary module contains a .ko suffix. 
The build steps and compiler options required to create the .ko module object can be 
complex. Here we outline a set of steps to harness the power of the Linux kernel build 
system   without requiring you to become an expert in it, which is beyond the scope of 
this book.

8.1.4 Module Build Infrastructure

A device driver must be compiled against the kernel on which it will execute. Although 
it is possible to load and execute kernel modules built against a different kernel version, 
it is risky to do so unless you are certain that the module does not rely on any features 
of your new kernel. The easiest way to do this is to build the module within the kernel’s 
own source tree. This ensures that as the developer changes the kernel configuration, 
his custom driver is automatically rebuilt with the correct kernel configuration. It is 
certainly possible to build your drivers outside the kernel source tree. However, in this 
case, you are responsible for making sure that your device driver build configuration 
stays in sync with the kernel you want to run your driver on. This typically includes 
compiler switches, the location of kernel header files, and kernel configuration options.

For the sample driver introduced in Listing 8-1, the following changes were made 
to the stock Linux kernel source tree to enable building this sample driver. We’ll ex-
plain each step in detail:

1. Starting from the top-level Linux source directory, create a directory under 
.../drivers/char called examples.

2. Add a menu item to the kernel configuration to enable building examples and 
to specify a built-in or loadable kernel module.

3. Add the new examples subdirectory to the .../drivers/char/Makefile con-
ditional on the menu item created in step 2.
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4. Create a makefile for the new examples directory, and add the hello1.o mod-
ule object to be compiled conditional on the menu item created in step 2.

5. Create the driver hello1.c source file from Listing 8-1.

Adding the examples directory under the .../drivers/char subdirectory is self-
explanatory. After   this directory is created, two files are created in this directory: the 
module source file itself from Listing 8-1, and the makefile for the examples directory. 
The makefile for examples is quite trivial. It contains this single line:

obj-$(CONFIG_EXAMPLES) += hello1.o

Adding the menu item to the kernel configuration utility   is a little more involved. 
Listing 8-2 contains a patch that, when applied to the .../drivers/char/Kconfig file 
from a recent Linux release, adds the configuration menu item to enable our examples
configuration option. In case you’re unfamiliar with the unified diff format, each line 
in Listing 8-2 preceded by a single plus character (+) is inserted in the file between the 
indicated     lines (those without the leading +).

LISTING 8-2 Kconfig Patch for examples

diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig

index 6f31c94..0805290 100644

--- a/drivers/char/Kconfig

+++ b/drivers/char/Kconfig

@@ -4,6 +4,13 @@

 menu “Character devices”

+config EXAMPLES

+       tristate “Enable Examples”

+       default M

+       ---help---

+         Enable compilation option for Embedded Linux Primer

+         driver examples

+

 config VT

        bool “Virtual terminal” if EMBEDDED

        depends on !S390

 
When applied to Kconfig in the .../drivers/char subdirectory of a recent Linux 

kernel, this patch results     in a new kernel configuration option called CONFIG_EXAMPLES.
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As a reminder from our discussion on building the Linux kernel in Chapter 4, “The 
Linux Kernel: A Different Perspective,” the configuration utility is invoked as follows 
(this example assumes the ARM architecture):

$ make ARCH=arm CROSS_COMPILE=xscale_be- gconfig

After the configuration utility is invoked using a command similar to this one, 
our new Enable Examples configuration option appears under the Character devices 
menu, as indicated in the patch. Because it is defined as type tristate, the kernel 
developer has three choices:

(N) No. Do not compile examples.

(Y) Yes. Compile examples and link with the final kernel image.

(M) Module. Compile examples as a dynamically loadable module.

Figure 8-1 shows the resulting gconfig screen with the new configuration option 
added. A dash (-) in the check box selects module, as indicated in the M column on 
the right. A check mark in the check box selects yes, indicating that the driver module 
should be compiled as part of the kernel proper. An empty check box indicates    that the 
option is not selected.

FIGURE 8-1 Kernel configuration with the examples module
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Now that we have added the configuration option to enable compiling our examples
device driver module, we need to modify the makefile in .../drivers/char to instruct 
the build system to descend   into our new examples subdirectory if the configuration 
option CONFIG_EXAMPLES is present in our configuration. Listing 8-3 contains the patch 
for this against the makefile in a recent Linux release.

LISTING 8-3 Makefile Patch for examples

diff --git a/drivers/char/Makefile b/drivers/char/Makefile

index f957edf..f1b373d 100644

--- a/drivers/char/Makefile

+++ b/drivers/char/Makefile

@@ -102,6 +102,7 @@

 obj-$(CONFIG_MWAVE)            += mwave/

 obj-$(CONFIG_AGP)              += agp/

 obj-$(CONFIG_PCMCIA)           += pcmcia/

 obj-$(CONFIG_IPMI_HANDLER)     += ipmi/

+obj-$(CONFIG_EXAMPLES)         += examples/

 obj-$(CONFIG_HANGCHECK_TIMER)  += hangcheck-timer.o

 obj-$(CONFIG_TCG_TPM)          += tpm/

The patch shown in Listing 8-3 adds the single line (preceded by the +) to the 
makefile found in .../drivers/char. The additional lines of context are there so that 
the patch utility can determine where to insert the new line. Our new examples di-
rectory was added to the end of the list of directories already being searched in this 
makefile, which seemed like a logical place to put it. Other than for consistency and 
readability, the location is irrelevant.

Having completed the steps in this section, the infrastructure is now in place to 
build the sample device driver. The beauty of this approach is that the driver is built 
automatically whenever a kernel build is invoked. As long as the configuration option 
defined in Listing 8-3 is selected (either M or Y), the driver module is included in the 
build.

Building for an   arbitrary ARM system, the command line for building modules 
might look like this:

$ make ARCH=arm CROSS_COMPILE=xscale_be- modules

Listing 8-4 shows the build    after a typical editing session on the module (all other 
modules have already been built in this kernel source tree).
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LISTING 8-4 Module Build Output

$ make ARCH=arm CROSS_COMPILE=xscale_be- modules

  CHK     include/linux/version.h

make[1]: ‘include/asm-arm/mach-types.h’ is up to date.

  CHK     include/linux/utsrelease.h

  SYMLINK include/asm -> include/asm-arm

  CALL    scripts/checksyscalls.sh

  CC [M]  drivers/char/examples/hello1.o

  Building modules, stage 2.

  MODPOST 76 modules

  LD [M]  drivers/char/examples/hello1.ko

8.1.5 Installing a Device Driver

Now that this driver is built, we    can load and unload it on a running kernel to observe its 
behavior. Before we can load the module, we need to copy it to an appropriate location 
on our target system. Although we could put it anywhere we want, a convention is in 
place for kernel modules and where they are populated on a running Linux system. As 
with module compilation, it is easiest to let the kernel build system do that for us. The 
makefile target modules_install automatically places modules in the system in a logical 
layout. You simply need to supply the desired location as a prefix to the default path.

In a standard Linux workstation installation, you might already know that the 
device driver modules live in /lib/modules/<kernel-version>/... ordered in a 
manner similar to the device driver directory hierarchy in the Linux kernel tree.3 The 
<kernel-version> string is produced by executing the command uname -r on 
your target Linux system. If you do not provide an installation prefix to the kernel 
build system, by default your modules are installed in your own workstation’s /lib/
modules/... directory. Since we are embedded developers, and we are cross-
compiling, this is probably not what you intended. You can point to a temporary 
location in your home directory and manually copy the modules to your target’s file 
system. Alternatively, if your target embedded system uses NFS root mount to a direc-
tory on your local development workstation, you can install the modules directly to the 
target file system. The following example assumes the latter:

$ make ARCH=arm CROSS_COMPILE=xscale_be-                  \

INSTALL_MOD_PATH=/home/chris/sandbox/coyote-target     \

 modules_install

3 This path is used by Red Hat and Fedora distributions and is also required by the File System Hierarchy Standard. referenced 
at the end of this chapter. Other distributions might use different locations in the file system for kernel modules.
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This places all your modules in the directory coyote-target, which on this sample 
system is exported via NFS and mounted    as root on the target system.4

8.1.6 Loading a Module

Having completed all the necessary     steps, we are now in a position to load and test the 
device driver module. Listing 8-5 shows the output resulting from loading and subse-
quently unloading the device driver on the embedded  system.

LISTING 8-5 Loading and Unloading a Module

# modprobe hello1             <<< Load the driver, must be root

Hello Example Init

# modprobe -r hello1          <<< Unload the driver, must be root

Hello Example Exit

#

You should be able to correlate the output with our device driver source code found 
in Listing 8-1. The module does no work other than printing messages to the kernel 
log system via printk(), which we see on our console.5 When the module is loaded, 
the module-initialization function is called. We specify the initialization function that 
will be executed on module insertion using the module_init() macro. We declare it 
as follows:

module_init(hello_init);

In our initialization function, we simply print the obligatory hello message and 
return. In a real device driver, this is where you would perform any initial resource 
allocation for our module. In a similar fashion, when we unload the module (using 
the modprobe -r command), our module exit routine is called. As shown in Listing 
8-1, the exit routine is specified using the module_exit() macro. In a real driver, this 
is where you undo everything that was done on entry, such as freeing any memory or 
returning the device to a known, harmless state.

That’s all there is to a skeletal device driver capable of live insertion in an actual ker-
nel. The following sections introduce additional functionality to our loadable device 
driver module that illustrates how a user space program    would interact with a device 
driver module.

4 Hosting a target board and NFS root mount are covered in detail in Chapter 12, “Embedded Development Environment.”

5 If you don’t see the messages on the console, either disable your syslogd logger or lower the console  loglevel. We describe how
to do this in Chapter 14, “Kernel Debugging Techniques.”
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8.1.7 Module Parameters

Many device driver modules    can accept parameters to modify their behavior. Examples
include enabling debug mode, setting verbose reporting, and specifying module-
specific options. The insmod utility (and the modprobe utility, introduced later) accepts 
module parameters (also called options in some contexts) by specifying them after 
the module name. Listing 8-6 shows our modified hello1.c example, adding a single   
module parameter to enable debug mode.

LISTING 8-6 Sample Driver with a Parameter

/* Example Minimal Character Device Driver */

#include <linux/module.h>

static int debug_enable = 0;       /* Added driver parameter */

module_param(debug_enable, int, 0);  /* and these 2 lines */

MODULE_PARM_DESC(debug_enable, “Enable module debug mode.”);

static int __init hello_init(void)

{

    /* Now print value of new module parameter */

    printk(“Hello Example Init - debug mode is %s\n”,

           debug_enable ? “enabled” : “disabled”);

    return 0;

}

static void __exit hello_exit(void)

{

    printk(“Hello Example Exit\n”);

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_AUTHOR(“Chris Hallinan”);

MODULE_DESCRIPTION(“Hello World Example”);

MODULE_LICENSE(“GPL”);

Three lines have been added to our sample device driver module. The first de-
clares a static integer to hold our debug flag. The second line is a macro defined in 
.../include/linux/moduleparam.h (included by modules.h) that registers the module 
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parameter with the kernel module subsystem. The third new line is a macro that regis-
ters a string description associated with the parameter with the kernel module subsys-
tem. The purpose of this will become clear when we examine the modinfo command 
later in this chapter.

If we now use insmod to insert our sample module, and add the debug_enable op-
tion, we should see the resulting output, based    on our modified hello1.c module from 
Listing 8-6.

$ insmod /lib/modules/.../examples/hello1.ko debug_enable=1

Hello Example Init - debug mode is enabled

Or, if we omit the optional module parameter:

$ insmod /lib/modules/.../examples/hello1.ko

Hello Example Init - debug mode is disabled

8.2 Module Utilities

Listing 8-5 briefly introduced module utilities. There we used the module utility 
modprobe to insert and remove a device driver module from a running Linux kernel. A 
number of small utilities are used to manage device driver modules. This section intro-
duces them. You are encouraged to refer to the man page for each utility for complete 
details. If you want to know more about how loadable modules and the Linux kernel 
interact,, consult the source code for these utilities. The section at the end of this chap-
ter tells you where they can be found.

8.2.1 insmod

The insmod utility is the simplest   way to insert a module into a running kernel. You 
supply a complete pathname, and insmod does the work. For example:

$ insmod /lib/modules/’uname -r’/kernel/drivers/char/examples/hello1.ko

This loads the module hello1.ko into the kernel. The output would be the same 
as shown in Listing 8-5—namely, the Hello message. The insmod utility is a simple 
program that does not require or accept any command-line options. It requires a full 
pathname because it has no logic for searching for the module. Most often, you will 
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use modprobe, described shortly, because it has many more features and capabilities, 
including the capability to determine and load any dependencies that may be required 
for a given module.

8.2.2 lsmod

The lsmod utility   is also trivial. It simply displays a formatted list of the modules that 
are inserted into the kernel. Recent versions take no parameters and simply format the 
output of /proc/modules.6 Listing 8-7 is an example of the output from lsmod.

LISTING 8-7 lsmod Output Format

$ lsmod

Module                  Size  Used by

ext3                  121096  0

jbd                    49656  1 ext3

loop                   12712  0

hello1                  1412  0

$

Notice the rightmost column, “Used by.” It indicates that the device driver module 
is in use and shows the dependency chain. In this example, the jbd module (journal-
ing routines for journaling file systems) is being used by the ext3 module, the default 
journaling file system for many popular Linux desktop distributions. This means that 
the ext3 device driver depends on the presence of jbd.

8.2.3 modprobe

This is where the cleverness       of modprobe comes into play. Listing 8-7 shows the rela-
tionship between the ext3 and jbd modules. The ext3 module depends on the jbd
module. The modprobe utility can discover this relationship and load the dependent 
modules in the proper order. The following command loads both the jbd.ko and 
ext3.ko driver modules:

$ modprobe ext3

The modprobe utility has several command-line options that control its behavior. 
As we saw earlier, modprobe can be used to remove modules, including the modules on 

6 /proc/modules is part of the /proc file system, which is introduced in Chapter 9, “File Systems.”
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which a given module depends. Here is an example of module removal that removes 
both jbd.ko and ext3.ko:

$ modprobe -r ext3

The modprobe utility is driven by a configuration file called modprobe.conf. This 
enables a system developer to associate devices with device drivers. For a simple em-
bedded system, modprobe.conf might be empty or might contain very few lines. The 
modprobe utility is compiled with a set of default rules that establish the defaults in the 
absence of a valid modprobe.conf. Invoking modprobe with only the -c option displays 
the set of default rules that modprobe uses.

Listing 8-8 shows a typical modprobe.conf, which might be found on a system 
containing two Ethernet interfaces. One is a wireless adapter based on the Prism2 
chipset, and the other is a typical PCI Ethernet card. This system        also contains a sound 
subsystem based on an integrated Intel sound chipset.

LISTING 8-8 Typical modprobe.conf File

$ cat /etc/modprobe.conf

alias eth1 orinoci_pci

options eth1 orinoco_debug=9

alias eth0 e100

alias snd-card-0 snd-intel8x0

options snd-card-0 index=0

$

When the kernel boots and discovers the wireless chipset, this configuration file in-
structs modprobe to load the orinoco_pci device driver, bound to kernel device eth1. It 
then passes the optional module parameter orinoco_debug=9 to the device driver. The 
same action is taken upon discovery of the sound card hardware. Notice the optional 
parameters associated with the sound driver snd-intel8x0.

Note that the modprobe.conf functionality has largely been displaced by the func-
tionality of udev. This is covered in Chapter 19. However, you might find modprobe.
conf on older embedded systems, so knowing how to configure it may prove helpful.

8.2.4 depmod

How does modprobe know about   the dependencies of a given module? The depmod
utility plays a key role in this process. When modprobe is executed, it searches for a file 
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called modules.dep in the same directory where the modules are installed. The depmod
utility creates this module-dependency file.

This file contains a list of all the modules that the kernel build system is configured 
for, along with dependency information for each. It is a simple file format, in which 
each device driver module occupies one line in the file. If the module has dependen-
cies, they are listed in order following the module name. For example, in Listing 8-7, 
we saw that the ext3 module had a dependency on the jbd module. The dependency 
line in modules.dep would look like this:

ext3.ko: jbd.ko

In actual practice, each module name is preceded by its absolute path in the file sys-
tem to avoid ambiguity. We have omitted the path information for readability. A more 
complicated dependency chain, such as sound drivers, might look like this:

snd-intel8x0.ko: snd-ac97-codec.ko snd-pcm.ko snd-timer.ko \

snd.ko soundcore.ko snd-page-alloc.ko

Again, we have removed the leading path components for readability. Each module 
filename in the modules.dep file is an absolute filename, with complete path informa-
tion, and it exists on a single line. The preceding example was placed on two lines to 
fit the page width.

Normally, depmod is run automatically during a kernel build. However, in a cross-
development environment, you must have a cross version of depmod that knows how to 
read the modules that are compiled in the native format of your target architecture. Al-
ternatively, most embedded distributions have a method and init script entries to run 
depmod on each boot, to guarantee that the module dependencies        are kept up to date.

8.2.5 rmmod

The rmmod utility is also trivial. It simply   removes a module from a running kernel. 
Pass it the module name as a parameter. There is no need to include a pathname or file 
extension. For example:

# rmmod hello1      <<< Must be root

Hello Example Exit
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The only interesting point to understand here is that when you use rmmod, it ex-
ecutes the module’s *_exit() function, as shown here, from our hello1.c example of 
Listings 8-1 and 8-6.

It should be noted that, unlike    modprobe, rmmod does not remove dependent mod-
ules. Use modprobe -r for this.

8.2.6 modinfo

You might have noticed        the last three lines of the skeletal driver in Listing 8-1, and later 
in Listing 8-6. These macros are there to place tags in the binary module to facilitate 
their administration and management. Listing 8-9 is the result of modinfo executed on 
our hello1.ko module.

LISTING 8-9 modinfo Output

$ modinfo hello1

filename:     /lib/modules/../kernel/drivers/char/examples/hello1.ko

license:      GPL

description:  Hello World Example

author:       Chris Hallinan

depends:

vermagic:     2.6.32-07500-g8bea867 mod_unload modversions ARMv5

parm:         debug_enable:Enable module debug mode. (int)

 

The first field is obvious: It is the full filename of the device driver module. For 
readability, we have truncated the path again. The following lines are a direct result of 
the descriptive macros found at the end of Listing 8-6—namely, the filename, author, 
and license information. These are simply tags for use by the module utilities; they do 
not affect the behavior of the device driver itself. You can learn more about modinfo
from its man page and the modinfo source.

One very useful feature of modinfo is learning what parameters the module sup-
ports. From Listing 8-9, you can see that this module supports just one parameter. This 
was the one we added in Listing 8-6, debug_enable. The listing gives the name, type 
(in this case, an int), and the descriptive text field we entered with the        MODULE_PARM_
DESC() macro. This can be very handy, especially for modules in which you might not 
have easy access to the source code.
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8.3 Driver Methods

We’ve covered much ground in our short treatment of module utilities. The remaining 
sections describe the basic mechanism for communicating with a device driver from a 
user space program (your application code).

We have introduced the two fundamental methods responsible for the module’s 
one-time initialization and exit processing. Recall from Listing 8-1 that your module 
init and exit routines are identified by module_init() and module_exit(). We discov-
ered that these routines are invoked when the module is inserted into or removed from 
a running kernel. Now we need some methods to interface with our device driver from 
our application program. After all, two of the more important reasons we use device 
drivers are to isolate the user from the perils of writing code in kernel space and to pres-
ent a unified method to communicate with hardware or kernel-level devices.

8.3.1 Driver File System Operations

After the device driver is loaded           into a live kernel, the first action we must take is to 
prepare the driver for subsequent operations. The open() method is used for this pur-
pose. After the driver has been opened, we need routines for reading and writing to 
the driver. A release() routine is provided to clean up after operations are complete 
(basically, a close() call). Finally, a special system call is provided for nonstandard 
communication with the driver. This is called ioctl(). Listing 8-10 adds this infra-
structure to our sample device driver.

LISTING 8-10 Adding File System Ops to hello.c

#include <linux/module.h>

#include <linux/fs.h>

#define HELLO_MAJOR 234

static int debug_enable = 0;

module_param(debug_enable, int, 0);

MODULE_PARM_DESC(debug_enable, “Enable module debug mode.”);

struct file_operations hello_fops;

static int hello_open(struct inode *inode, struct file *file)

{

    printk(“hello_open: successful\n”);
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LISTING 8-10 Continued

    return 0;

}

static int hello_release(struct inode *inode, struct file *file)

{

    printk(“hello_release: successful\n”);

    return 0;

}

static ssize_t hello_read(struct file *file, char *buf, size_t count,

               loff_t *ptr)

{

    printk(“hello_read: returning zero bytes\n”);

    return 0;

}

static ssize_t hello_write(struct file *file, const char *buf,

               size_t count, loff_t * ppos)

{

    printk(“hello_write: accepting zero bytes\n”);

    return 0;

}

static int hello_ioctl(struct inode *inode, struct file *file,

               unsigned int cmd, unsigned long arg)

{

    printk(“hello_ioctl: cmd=%ld, arg=%ld\n”, cmd, arg);

    return 0;

}

static int __init hello_init(void)

{

    int ret;

    printk(“Hello Example Init - debug mode is %s\n”,

           debug_enable ? “enabled” : “disabled”);

    ret = register_chrdev(HELLO_MAJOR, “hello1”, &hello_fops);

        if (ret < 0) {

            printk(“Error registering hello device\n”);

            goto hello_fail1;

        }

    printk(“Hello: registered module successfully!\n”);
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LISTING 8-10 Continued

    /* Init processing here... */

    return 0;

hello_fail1:

    return ret;

}

static void __exit hello_exit(void)

{

    printk(“Hello Example Exit\n”);

}

struct file_operations hello_fops = {

    owner:   THIS_MODULE,

    read:    hello_read,

    write:   hello_write,

    ioctl:   hello_ioctl,

    open:    hello_open,

    release: hello_release,

};

module_init(hello_init);

module_exit(hello_exit);

MODULE_AUTHOR(“Chris Hallinan”);

MODULE_DESCRIPTION(“Hello World Example”);

MODULE_LICENSE(“GPL”);

This expanded device driver    example includes many new lines. From the top, we 
had to add a new kernel header file to get the definitions for the file system operations. 
We also defined a major number for our device driver. (Note to device driver authors: 
This is not the proper way to allocate a device driver major number. Refer to the Linux 
kernel documentation [.../Documentation/devices.txt] or to one of the excellent 
texts on device drivers for guidance on the allocation of major device numbers. For this 
simple example, we simply chose one that we know isn’t in use on our system.)

Next we see definitions for four new functions—our open, close, read, and write
methods. In keeping with good coding practices, we’ve adopted a consistent naming 
scheme that will help our code’s readability and maintainability. Our new methods 
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are called hello_open(), hello_release(), hello_read(), and hello_write(), re-
spectively. For the purposes of this simple exercise, they are do-nothing functions that 
simply print a message to the kernel log subsystem.

Notice that we’ve also added a new function call to our hello_init() routine. This 
line registers our device driver with the kernel. With that registration call, we pass a 
structure containing pointers to the required methods. The kernel uses this structure, 
of type struct file_operations, to bind our specific device functions with the appro-
priate requests from the file system. When an application opens a device represented 
by our device driver and requests a read() operation, the file system associates    that 
generic read() request with our module’s hello_read() function. The following sec-
tions examine this process in detail.

8.3.2 Allocation of Device Numbers

It must be noted that the examples   in this book are designed to give you an overall 
idea of the architecture of device drivers and how they fit into the big picture. It is not 
meant to be a tutorial on device driver development. This topic is covered in the two 
excellent texts listed at the end of this chapter.

With that caveat, it should be noted that the method by which we allocate a major
device number in Listing 8-10 has been superseded by a much more robust method. 
Usually you will not specify a device number in your driver. You will use methods that 
allow the kernel to specify a device number for you. This avoids collisions with device 
numbers and scales much better than manually assigning your own device number. 
This process is described fully in Chapter 3 of Linux Device Drivers, 3rd Edition, ref-
erenced at the end of this chapter.

8.3.3 Device Nodes and mknod

To understand how an application binds its requests to a specific device represented by 
our device driver, we must understand the concept of a device node. A device node     is a 
special file type in Linux that represents a device. Virtually all Linux distributions keep 
device nodes in a common location (specified by the Filesystem Hierarchy Standard7),
in a directory called /dev. A dedicated utility is used to create a device node on a file 
system. This utility is called mknod.

7 This standard is referred to at the end of this chapter.
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An example of node creation is the best way to illustrate its functionality and the 
information it conveys. In keeping with our simple device driver example, let’s create 
the proper device node to exercise it:

$ mknod /dev/hello1 c 234 0

After executing this command on our target embedded system, we end up with a 
new file called /dev/hello1 that represents our device driver module. If we list this file, 
it looks like this:

$ ls -l /dev/hello1

crw-r--r--   1 root  root  234, 0 Jul 14 2005 /dev/hello1

 

The parameters we passed to mknod include the name, type, and major and minor 
numbers for our device driver. The name we chose was hello1. Because we are dem-
onstrating the use of a character driver, we use c to indicate that. The major number is 
234, the number we chose for this example, and the minor number is 0.

By itself, the device node is just another file on our file system. However, because 
of its special status as a device node, we use it to bind to an installed device driver. If 
an application process issues an open() system call with our device node as the path 
parameter, the kernel searches for a valid device driver registered with a major number 
that matches the device node—in this case, 234. This is the mechanism by which the 
kernel associates our particular device to the device node.

As most C programmers know, the open() system call, or any of its variants, returns 
a reference (file descriptor) that our applications use to issue subsequent file system 
operations, such as read, write, and close. This reference is then passed to the various 
file system operations, such as read and write, or their variants.

If you’re curious about the purpose of the minor number, it is a mechanism for 
handling multiple devices or subdevices with a single device driver. It is not used by the 
operating system; it is simply passed to the device driver. The device driver can use the 
minor number in any way it sees fit. For example, with a multiport serial card, the major 
number would specify the driver. The minor number might specify one of the multiple 
ports handled by the same driver on the multiport card. Consult one of the excellent 
texts on device drivers for further details.

One final note is worthy of mention. The preceding discussion about device nodes 
is meant for instructional purposes. On most modern Linux systems, you will never 
actually create a device node. Device node creation is handled   automatically by udev.
This functionality is explained fully in Chapter 19.
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8.4 Bringing It All Together

Now that we have a skeletal device driver, we can load and exercise it. Listing 8-11 is a 
simple user space application that exercises our device driver. We’ve already seen how 
to load the driver. Simply compile it and issue    the make modules_install command 
to place it on your file system, as described earlier.

LISTING 8-11 Exercising Our Device Driver

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

int main(int argc, char **argv)

{

    /* Our file descriptor */

    int fd;

    int rc = 0;

    char *rd_buf[16];

    printf(“%s: entered\n”, argv[0]);

    /* Open the device */

    fd = open(“/dev/hello1”, O_RDWR);

    if ( fd == -1 ) {

        perror(“open failed”);

        rc = fd;

        exit(-1);

    }

    printf(“%s: open: successful\n”, argv[0]);

    /* Issue a read */

    rc = read(fd, rd_buf, 0);

    if ( rc == -1 ) {

        perror(“read failed”);

        close(fd);

        exit(-1);

    }

    printf(“%s: read: returning %d bytes!\n”, argv[0], rc);

    close(fd);

    return 0;

}
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This simple file, compiled    on an ARM XScale system, demonstrates the binding of 
application to device driver through the device node. Like the device driver, it doesn’t 
do any useful work, but it does demonstrate the concepts as it exercises some of the 
methods we introduced in the device driver of Listing 8-10.

First we issue an open() system call8 on our device node created earlier. If the open 
succeeds, we indicate that with a message to the console. Next we issue a read() com-
mand and again print a message to the console on success. Notice that a read of 0 
bytes is perfectly acceptable as far as the kernel is concerned. In actual practice, this 
indicates an end-of-file or out-of-data condition. Your device driver defines that special 
condition. When complete, we simply close the file and exit. Listing 8-12 captures    the 
output of running this sample application on an ARM XScale target.

LISTING 8-12 Using the Sample Driver

$ modprobe hello1

Hello Example Init - debug mode is disabled

Hello: registered module successfully!

$ ./use-hello

./use-hello: entered

./use-hello: open: successful

./use-hello: read: returning zero bytes!

$

 

8.5 Building Out-of-Tree Drivers

outside of the kernel source tree. Using It is often convenient to build device drivers    
a simple makefile patterned after one of the many in the kernel source tree makes this 
job easy. Driver makefiles in the Linux kernel source tree usually are quite simple. Over 
half of the more than 450 driver makefiles contain fewer than ten lines. Five percent 
contain just a single line!

If we build a makefile for our hello1 example to build it outside the kernel tree, it 
might look like this:

obj-$(CONFIG_EXAMPLES)          += hello1.o

Create a makefile in a directory of your choice, and place the hello1.c source 
code there. Next, create a new file named Makefile in the same directory. The makefile 

8 Actually, the open() call is a C library wrapper function around the Linux sys_open() system call.

  



224 Chapter 8 Device Driver Basics

should contain the single line just shown. Then execute the following build command 
from this directory (which you just created):

$ make ARCH=arm CROSS_COMPILE=xscale_be- -C \

     <path/to/your/linux-2.6> SUBDIRS=$PWD modules

Of course, you replace <path/to/your/linux-2.6> with the path to your own Linux 
source tree. This make command, when invoked, switches to your kernel source tree via 
the -C parameter, and instructs the build to build those targets defined in SUBDIRS. It’s 
that simple.

As soon as you understand the concepts, you can build your makefile to have a bit 
more intelligence. For example, it can define SUBDIRS and the path to your kernel if 
you like. It is important to realize that your kernel configuration must have CONFIG_
EXAMPLES defined to either =m or =y. You can check    this in your .config file. As expect-
ed, if CONFIG_EXAMPLES is not defined, your hello1.c module will not be compiled.

8.6 Device Drivers and the GPL

 Disclaimer You may have seen the Internet acronym IANAL. This acronym applies here: I am 
not a lawyer. The most sound advice you could be given is to consult an attorney who is well 
versed in intellectual property and copyright law, preferably one who has some professional 
experience with open source licenses.

Much discussion and debate   surround the issue of device drivers and how the terms 
of the GNU Public License apply to device drivers. The first test is well understood: If 
your device driver (or any software, for that matter) is based, even in part, on existing 
GPL software, it is considered a derived work. For example, if you start with a cur-
rent Linux device driver and modify it to suit your needs, this is certainly considered 
a derived work. Therefore, you are obligated to license this modified device driver 
under the terms of the work it was derived from, presumably the GPL, observing all 
its requirements.

This is where the debate comes in. Some of these concepts have not yet been tested 
in court. The prevailing opinion of the legal and open source communities is that if a 
work can be proven to be independently derived,9 and a given device driver does not as-
sume “intimate knowledge” of the Linux kernel, the developers are free to license it in 
any way they see fit. If modifications are made to the kernel to accommodate a special 
need of the driver, it is considered a derived work and therefore is subject to the GPL.

9 This practice is not unique to open source. Copyright and patent infringement are ongoing concerns for all developers.
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A large and growing body of information exists in the open source community re-
garding these issues. It seems likely that, at some point in the future, these concepts will 
be tested in a court of law, and a precedent will be established. How long that might 
take is anyone’s guess. If you are interested in gaining a better understanding of the 
legal issues surrounding Linux and open source, you might enjoy www.open-bar.org.

8.7 Summary

This chapter presented a high-level overview of device driver basics and how they fit 
into the architecture of a Linux system. Now that you’re armed with the basics, if you’re 
new to device drivers, you can jump into one of the excellent texts devoted to device 
driver writers, as listed in the last section. This chapter concluded by introducing the 
relationship between kernel device drivers and the Open Source GNU Public License.

• Device drivers enforce a rational separation between unprivileged user applica-
tions and critical kernel resources such as hardware and other devices. They 
present a well-known unified interface to applications.

• The minimum infrastructure to load a device driver is only a few lines of code. 
We presented this minimum infrastructure and built on the concepts to a 
simple shell of a driver module.

• Device drivers configured as loadable modules can be inserted into and re-
moved from a running kernel after kernel boot.

• Module utilities are used to manage the insertion, removal, and listing of 
device driver modules. We covered the details of the module utilities used for 
these functions.

• Device nodes on your file system provide the glue between your user space ap-
plication and the device driver.

• Driver methods implement the familiar open, read, write, and close function-
ality commonly found in UNIX/Linux device drivers. This mechanism was 
explained by example, including a simple user application to exercise these 
driver methods.
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8.7.1 Suggestions for Additional Reading

Linux Device Drivers, 3rd Edition
Alessandro Rubini and Jonathan Corbet
O’Reilly Publishing, 2005   

Essential Linux Device Drivers
Sreekrishnan Venkateswaran
Prentice Hall, 2008

Filesystem Hierarchy Standard  
http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Rusty’s Linux Kernel Page  
Module Utilities for 2.6
Rusty Russell
http://kernel.org/pub/linux/kernel/people/rusty/

  

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://kernel.org/pub/linux/kernel/people/rusty/


227

9

File Systems

In This Chapter

■  9.1 Linux File System Concepts 228

■  9.2 ext2 230

■  9.3 ext3 235

■  9.4 ext4 237

■  9.5 ReiserFS 238

■  9.6 JFFS2 239

■  9.7 cramfs 242

■  9.8 Network File System 244

■  9.9 Pseudo File Systems 248

■  9.10 Other File Systems 255

■  9.11 Building a Simple File System 256

■  9.12 Summary 258

  



228

Perhaps one of the most important decisions an embedded developer makes 
is which file system(s) to deploy. Some file systems optimize for perfor-

mance, whereas others optimize for size. Still others optimize for data recovery 
after device or power failure. This chapter introduces the major file systems 
in use on Linux systems and examines the characteristics of each as they ap-
ply to embedded designs. It is not the intent of this chapter to examine the 
internal technical details of each file system. Instead, this chapter examines the 
operational characteristics and development issues related to each file system 
presented. 

Starting with the most popular file system in use on earlier Linux desktop distri-
butions, we introduce concepts from the Second Extended File System (ext2) to 
lay a foundation for further discussion. Next we look at its successor, the Third 
Extended File System (ext3), which has enjoyed much popularity as the default 
file system for many Linux desktop and server distributions. We then describe 
the improvements that led to ext4.

After introducing some fundamentals, we examine a variety of specialized file 
systems, including those optimized for data recovery and storage space, and 
those designed for use on Flash memory devices. The Network File System 
(NFS) is presented, followed by a discussion of the more important pseudo file 
systems, including the /proc file system and sysfs.

9.1 Linux File System Concepts

Before delving into the details of the individual file systems, let’s look at the big 
picture of how data is stored on a Linux system. In our study of device drivers in 
Chapter 8, “Device Driver Basics,” we looked at the structure of a character device. 
In general, character devices store and retrieve data in serial streams. The most basic 
example of a character device is a serial port or mouse. In contrast, block devices 
store and retrieve data in equal-sized chunks of data at a time, in random locations 
on an addressable medium. For example, a typical IDE hard disk controller can 
transfer 512 bytes of data at a time to and from a specific, addressable location on 
the physical medium.
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9.1.1 Partitions

Before we begin our   discussion of file systems, we start by introducing partitions, the 
logical division of a physical device on which a file system exists. At the highest level, 
data is stored on physical devices in partitions. A partition is a logical division of the 
physical medium (hard disk, Flash memory) whose data is organized following the 
specifications of a given partition type. A physical device can have a single partition 
covering all its available space, or it can be divided into multiple partitions to suit a 
particular task. A partition can be thought of as a logical disk onto which a complete 
file system can be written.

Figure 9-1 shows the relationship between   partitions and file systems.

FIGURE 9-1 Partitions and file systems

Linux uses a utility called fdisk to manipulate partitions     on block devices. A recent 
fdisk utility found on many Linux distributions has knowledge of more than 90 dif-
ferent partition types. In practice, only a few are commonly used on Linux systems. 
Some common partition types are Linux, FAT32, and Linux Swap.

Listing 9-1 displays the output of the fdisk utility targeting a CompactFlash device 
connected to a USB port. On this particular target system, the physical CompactFlash 
device was assigned to the device node /dev/sdb.1

1 You will learn how this is done in Chapter 19, “udev.”
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LISTING 9-1 Displaying Partition Information Using fdisk

# fdisk /dev/sdb

Command (m for help): p

Disk /dev/sdb: 49 MB, 49349120 bytes

4 heads, 32 sectors/track, 753 cylinders

Units = cylinders of 128 * 512 = 65536 bytes

   Device Boot    Start       End      Blocks   Id  System

/dev/sdb1   *         1       180       11504   83  Linux

/dev/sdb2           181       360       11520   83  Linux

/dev/sdb3           361       540       11520   83  Linux

/dev/sdb4           541       753       13632   83  Linux

 

 
 

 
   

For this discussion, we have created four partitions on the device using the fdisk
utility. One of them is marked bootable, as   indicated by the asterisk in the Boot col-
umn. This reflects a boot indicator flag in the data structure that represents the partition 
table on the device. As you can see from the listing, the logical unit of storage used 
by fdisk is a cylinder.2 On this device, a cylinder contains 64KB. On the other hand, 
Linux represents the smallest unit of storage as a logical block. You can deduce from 
this listing that a block is a unit of 1024 bytes.

After the CompactFlash has been partitioned in this manner, each device represent-
ing a partition can be formatted with the file system of your choice. When a partition is 
formatted with a given file system type, Linux can mount the corresponding file system 
from that partition.

9.2 ext2

Building on Listing 9-1, we need to format the partitions created with fdisk. To do so, 
we use the Linux mkfs.ext2 utility. mkfs.ext2 is similar to the familiar DOS format
command. This utility makes a file system of type ext2 on the specified partition. mkfs.
ext2 is specific to the ext2 file system; other file systems have their own versions of these 
utilities. Listing 9-2 captures      the output of this process.

2 The term cylinder was borrowed from the unit of storage on a rotational medium. It consists of the data under a group of 
heads on a given sector of a disk device. Here it is used for compatibility purposes with existing file system utilities.
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LISTING 9-2 Formatting a Partition Using mkfs.ext2

# mkfs.ext2 /dev/sdb1 -L CFlash_Boot_Vol

mke2fs 1.40.8 (13-Mar-2008)

Filesystem label=CFlash_Boot_Vol

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

2880 inodes, 11504 blocks

575 blocks (5.00%) reserved for the super user

First data block=1

Maximum filesystem blocks=11796480

2 block groups

8192 blocks per group, 8192 fragments per group

1440 inodes per group

Superblock backups stored on blocks:

     8193

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 33 mounts or 180

days, whichever comes first.  Use tune2fs -c or -i to override.

 

Listing 9-2 contains much detail relating to the ext2 file system. It’s an excellent 
way to begin understanding the operational characteristics of ext2. This partition was 
formatted as type ext2 (we know this because we used the ext2 mkfs utility) with a 
volume label of CFlash_Boot_Vol. It was created on a Linux partition (OS Type:) with 
a block size of 1024 bytes. Space was allocated for 2,880 inodes, occupying 11,504 
blocks. An inode is the fundamental data  structure representing a single file. For more 
detailed information about the internal structure of the ext2 file system, see the last 
section of this chapter.

Looking at the output of mkfs.ext2 in Listing 9-2, we can ascertain certain char-
acteristics of how the storage device is organized. We already know that the block size 
is 1024 bytes. If necessary for your particular application, mkfs.ext2 can be instructed 
to format an ext2 file system with different block sizes. Current implementations allow 
block sizes of 1,024, 2,048, and 4,096 blocks.

Block size is always a compromise   for best performance. On one hand, large block 
sizes waste more space on disks with many small files, because each file must fit into 
an integral number of blocks. Any leftover fragment above block_size * n must oc-
cupy another full block, even if only 1 byte. On the other hand, very small block sizes 
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increase the file system overhead of managing the metadata that describes the block-
to-file mapping. Benchmark testing on your particular hardware implementation and 
data formats is the only way to be sure you have selected an optimum block size.

9.2.1 Mounting a File System

After a file system has been created, we can mount it on a running Linux system. The 
kernel must be compiled with support   for our particular file system type, either as a 
compiled-in module or as a dynamically loadable module. The following command 
mounts the previously created ext2 file system on a mount point that we specify:

# mount /dev/sdb1 /mnt/flash

 

This example assumes that we have a directory created on our target Linux machine 
called /mnt/flash. This is called the mount point  because we are installing (mounting) 
the file system rooted at this point in our file system hierarchy. We are mounting the 
Flash device described earlier that was assigned to the device /dev/sdb1. On a typical 
Linux desktop (development) machine, we need to have root privileges to execute this 
command.3 The mount point is any directory path on your file system that you decide, 
which becomes the top level (root) of your newly mounted device. In the preceding 
example, to reference any files on your Flash device, you must prefix the path with 
/mnt/flash.

The mount command   has many options. Several options that mount accepts depend 
on the target file system type. Most of the time, mount can determine the type of file 
system on a properly formatted file system known to the kernel. We’ll provide ad-
ditional usage examples for the mount command as we proceed through this chapter.

Listing 9-3 displays the directory    contents of a Flash device configured for an arbi-
trary embedded system.

LISTING 9-3 Flash Device Listing

$ ls -l /mnt/flash

total 24

drwxr-xr-x  2 root root  1024 Jul 18 20:18 bin

drwxr-xr-x  2 root root  1024 Jul 18 20:18 boot

drwxr-xr-x  2 root root  1024 Jul 18 20:18 dev

drwxr-xr-x  2 root root  1024 Jul 18 20:18 etc

drwxr-xr-x  2 root root  1024 Jul 18 20:18 home

3 File systems can be made mountable by nonroot users, as with cdrom, using appropriate entries in /etc/fstab.
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LISTING 9-3 Continued

drwxr-xr-x  2 root root  1024 Jul 18 20:18 lib

drwx------  2 root root 12288 Jul 17 13:02 lost+found

drwxr-xr-x  2 root root  1024 Jul 18 20:18 proc

drwxr-xr-x  2 root root  1024 Jul 18 20:18 root

drwxr-xr-x  2 root root  1024 Jul 18 20:18 sbin

drwxr-xr-x  2 root root  1024 Jul 18 20:18 tmp

drwxr-xr-x  2 root root  1024 Jul 18 20:18 usr

drwxr-xr-x  2 root root  1024 Jul 18 20:18 var

$

Listing 9-3 is an example of what an embedded system’s root file system might look 
like at the top (root) level. Chapter 6, “User Space Initialization,” provides guidance on 
and examples of how to determine   the contents of the root file system.

9.2.2 Checking File System Integrity

The e2fsck command   is used to check the integrity of an ext2 file system. A file sys-
tem can become corrupted for several reasons. By far the most common reason is an 
unexpected power failure. Linux distributions close all open files and unmount file 
systems during the shutdown sequence (assuming an orderly shutdown of the system). 
However, when we are dealing with embedded systems, unexpected power-downs are 
common, so we need to provide some defensive measures against these cases. e2fsck
is our first line of defense.

Listing 9-4 shows the output of e2fsck run on our CompactFlash from the previ-
ous examples. It has been formatted and   properly unmounted, so no errors should 
occur.

LISTING 9-4 Clean File System Check

# e2fsck /dev/sdb1

e2fsck 1.40.8 (13-Mar-2008)

CFlash_Boot_Vol: clean, 11/2880 files, 471/11504 blocks

#

The e2fsck utility checks several aspects of the file system for consistency. If no is-
sues are found, e2fsck issues a message similar to that shown in Listing 9-4. Note that 
e2fsck should be run only on an unmounted file system. Although it is possible to 
run it on a mounted file system, doing so can cause significant damage to internal file 
system structures on the disk or Flash device.
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To offer a more interesting example, Listing 9-5 was created by pulling the 
CompactFlash device out of its socket while it was still mounted. We intentionally cre-
ated a file and started an editing session on that file before removing it from the system. 
This can result in corruption of the data structures describing the file, as well as the 
actual data blocks containing the file’s  data.

LISTING 9-5 Corrupted File System Check

# e2fsck -y /dev/sdb1

e2fsck 1.40.8 (13-Mar-2008)

/dev/sdb1 was not cleanly unmounted, check forced.

Pass 1: Checking inodes, blocks, and sizes

Inode 13, i_blocks is 16, should be 8.  Fix? yes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

/dev/sdb1: ***** FILE SYSTEM WAS MODIFIED *****

/dev/sdb1: 25/2880 files (4.0% non-contiguous), 488/11504 blocks

#

From Listing 9-5, you can see     that e2fsck detected that the CompactFlash was not 
cleanly unmounted. Furthermore, you can see the processing on the file system during 
e2fsck checking. The e2fsck utility makes five passes over the file system, checking 
various elements of the internal file system’s data structures. An error associated with a 
file, identified by inode4 13, was automatically fixed because the -y flag was included 
on the e2fsck command line.

Of course, in a real system, you might not be this lucky. Some types of file sys-
tem errors cannot be repaired using e2fsck. Moreover, the embedded system designer 
should understand that if power has been removed without proper shutdown, the 
boot cycle can be delayed by the length of time it takes to scan your boot device and 
repair any errors. Indeed, if these errors are not repairable, the system boot is halted, 
and manual intervention is indicated. Furthermore, it should be noted that if your file 
system is large, the file system check (fsck) can take minutes or even hours for large 
multigigabyte file systems.

Another defense against file system corruption is to ensure that writes are commit-
ted to disk immediately when written. The sync utility can be used to force all queued 

4 A file on a file system is represented by an internal ext2 data structure called an inode.
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I/O requests to be committed to their respective devices. One strategy to minimize the 
window of vulnerability for data corruption from unexpected power loss or drive fail-
ure is to issue the sync command after every file write or strategically as needed by your 
application requirements. The trade-off is, of course, a performance penalty. Deferring 
disk writes is a performance optimization used in all modern operating systems. Using 
sync effectively defeats this optimization.

The ext2 file system has matured     as a fast, efficient, and robust file system for Linux 
systems. However, if you need the additional reliability of a journaling file system, or if 
boot time after unclean shutdown is an issue in your design, you should consider the 
ext3 file system.

9.3 ext3

The ext3 file system   has become a powerful, high-performance, and robust journal-
ing file system. It is currently the default file system for many popular desktop Linux 
distributions.

The ext3 file system is basically an extension of the ext2 file system with added jour-
naling capability. Journaling   is a technique in which each change to the file system is 
logged in a special file so that recovery is possible from known journaling points. One 
of the primary advantages of the ext3 file system is its ability to be mounted directly 
after an unclean shutdown. As stated in the preceding section, when a system shuts 
down unexpectedly, such as during a power failure, the system forces a file system con-
sistency check, which can be a lengthy operation. With ext3 file systems, a consistency 
check is unneeded, because the journal can simply be played back to ensure the file 
system’s consistency.

Without going into design details that are beyond the scope of this book, we will 
quickly explain how a journaling file system  works. A journaling file system contains a 
special file, often hidden from the user, that is used to store file system metadata5 and 
file data itself. This special file is referred to as the journal. Whenever the file system 
is subject to a change (such as a write operation), the changes are first written to the 
journal. The file system drivers make sure that this write is committed to the journal 
before the actual changes are posted and committed to the storage medium (disk or 
Flash, for example). After the changes have been logged in the journal, the driver posts 

5 Metadata is data about the file, as opposed to the file’s data itself. Examples include a file’s date, time, size, blocks used, and so 
on.
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the changes to the actual file and metadata on the medium. If a power failure occurs 
during the media write and a reboot occurs, all that is necessary to restore consistency   
to the file system is to replay the changes in the journal.

One of the most significant design goals for the ext3 file system was that it be both 
backward- and forward-compatible with the ext2 file system. It is possible to convert an 
ext2 file system to an ext3 file system and back again without reformatting or rewriting 
all the data on the disk. Let’s see    how this is done.6 Listing 9-6 details the procedure.

LISTING 9-6 Converting an ext2 File System to an ext3 File System

# mount /dev/sdb1 /mnt/flash     <<< Mount the ext2 file system

# tune2fs -j /dev/sdb1          <<< Create the journal

tune2fs 1.37 (21-Mar-2005)

Creating journal inode: done

This filesystem will be automatically checked every 23 mounts or 180

days, whichever comes first.  Use tune2fs -c or -i to override.

#

Notice that first we mounted the file system on /mnt/flash for illustrative purposes 
only. Normally, we would execute this command on an unmounted ext2 partition. 
The design behavior for tune2fs when the file system is mounted is to create the 
journal file called .journal, a hidden file. A file in Linux preceded by a period (.) is 
considered a hidden file; most Linux command-line file utilities silently ignore files of 
this type. In Listing 9-7, we can see that the ls command is invoked   with the -a flag, 
which tells the ls utility to list all files.

LISTING 9-7 ext3 Journal File

$ ls -al /mnt/flash

total 1063

drwxr-xr-x  15 root root    1024 Aug 25 19:25 .

drwxrwxrwx   5 root root    4096 Jul 18 19:49 ..

drwxr-xr-x   2 root root    1024 Aug 14 11:27 bin

drwxr-xr-x   2 root root    1024 Aug 14 11:27 boot

drwxr-xr-x   2 root root    1024 Aug 14 11:27 dev

drwxr-xr-x   2 root root    1024 Aug 14 11:27 etc

drwxr-xr-x   2 root root    1024 Aug 14 11:27 home

-rw-------   1 root root 1048576 Aug 25 19:25 .journal

drwxr-xr-x   2 root root    1024 Aug 14 11:27 lib

drwx------   2 root root   12288 Aug 14 11:27 lost+found

6 Converting a file system in this manner should be considered a development activity only.
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LISTING 9-7 Continued

drwxr-xr-x   2 root root    1024 Aug 14 11:27 proc

drwxr-xr-x   2 root root    1024 Aug 14 11:27 root

drwxr-xr-x   2 root root    1024 Aug 14 11:27 sbin

drwxr-xr-x   2 root root    1024 Aug 14 11:27 tmp

drwxr-xr-x   2 root root    1024 Aug 14 11:27 usr

drwxr-xr-x   2 root root    1024 Aug 14 11:27 var

 
Now that we have created the journal file on our Flash module, it is effectively for-

matted as an ext3 file system. The next time the system is rebooted or the e2fsck utility 
is run on the partition containing the newly created ext3 file system, the journal file is 
automatically made invisible. Its metadata is stored in a reserved inode set aside for this 
purpose. As long as the .journal file is visible in the directory listing, it is dangerous 
to modify or delete this file.

It is possible and sometimes advantageous   to create the journal file on a different 
device. For example, if your system has more than one physical device, you can place 
your ext3 journaling file system on the first drive and have the journal file on the sec-
ond drive. This method works regardless of whether your physical storage is based on 
Flash or rotational media. To create the journaling file system from an existing ext2 
file system with the journal file in a separate partition, invoke tune2fs in the following 
manner:

# tune2fs -J device=/dev/sda1 -j /dev/sdb1

For this to work, you must have   already formatted the device where the journal is 
to reside with a journal file—it must be an ext3 file system.

9.4 ext4

The ext4 file system builds   on the success of the ext3 file system. Like its predecessor, 
it is a journaling file system. It was developed as a series of patches designed to remove 
some of the limitations of the ext3 file system. It is likely that ext4 will become the 
default file system for a number of popular Linux distributions.

The ext4 file system removed the 16-terabyte limit for file systems, increasing the 
size to 1 exbibyte  (260 bytes, if you can count that high!) and supports individual file 
sizes up to 1024 gigabytes. (I can’t pronounce exbibyte, much less comprehend that 
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quantity!) Several other improvements have been made to increase performance for the 
types of loads expected on large server and database systems, where ext4 is expected to 
be the default.

If your embedded system requirements include support for large, high-performance 
journaling file systems, you might consider investigating ext4.

9.5 ReiserFS

The ReiserFS file system   has enjoyed popularity among some desktop distributions 
such as SuSE and Gentoo. Reiser4 is the current incarnation of this journaling file 
system. Like the ext3 file system, ReiserFS guarantees that either a given file system 
operation completes in its entirety, or none of it completes. Unlike ext3, Reiser4 has 
introduced an API for system programmers to guarantee the atomicity of a file system 
transaction. Consider the following example:

A database program is busy updating records in the database. Several writes are 
issued to the file system. Power is lost after the first write but before the last one has 
completed. A journaling file system guarantees that the metadata changes have been 
stored to the journal file so that when power is again applied to the system, the kernel 
can at least establish a consistent state of the file system. That is, if file A was reported 
as having 16KB before the power failure, it will be reported as having 16KB afterward, 
and the directory entry representing this file (actually, the inode) properly records the 
file’s size. This does not mean, however, that the file data was properly written to the 
file; it indicates only that there are no errors on the file system. Indeed, it is likely that 
data was lost by the database program in the previous scenario, and it would be up to 
the database logic to recover the lost if, in fact, recovery is even possible.

Reiser4 implements high-performance “atomic” file system operations designed to 
protect both the state of the file system (its consistency) and the data involved in a file 
system operation. Reiser4 provides a user-level API to enable programs such as data-
base managers to issue a file system write command that is guaranteed to either suc-
ceed in its entirety or fail in a similar manner. This guarantees not only that file system 
consistency is maintained, but also that no partial data or garbage data remains in files 
after a system crash.

For more details and the actual    software for ReiserFS, consult the references at the 
end of this chapter.
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9.6 JFFS2

Flash memory has   been used extensively in embedded products. Because of the nature 
of Flash memory technology, it is inherently less efficient and more prone to data cor-
ruption caused by power loss. This is due to much larger write times. The inefficiency 
stems from the block size. Block sizes of Flash memory devices are often measured in 
the tens or hundreds of kilobytes. Flash memory   can be erased only a block at a time, 
although writes usually can be executed 1 byte or word at a time. To update a single 
file, an entire block must be erased and rewritten.

It is well known that the distribution of file sizes on any given Linux machine (or 
other OS) contains many more smaller files than larger files. The histogram shown in 
Figure 9-2, generated with gnuplot, illustrates the distribution   of file sizes on a typical 
Linux development system.

FIGURE 9-2 File sizes in bytes

Figure 9-2 shows that the majority of file sizes are well below approximately 5KB. 
The spike at 4096 represents directories. Directory entries (also files themselves) are 

110000

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0 
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Typical File Sizes

Directories

23794.3, –14042.6

N
u

m
b

e
r 

o
f 

O
c
c
u

rr
e
n

c
e
s

File Size Steps

  



240 Chapter 9 File Systems

 

exactly 4096 bytes in length, and there are many of them. The spike above 40,000 
bytes is an artifact of the measurement. It is a count of the number of files greater than 
approximately 40KB, the end of the measurement quantum. It is interesting to note 
that the vast majority of files are very small.

Small file sizes present a unique challenge to the Flash file system designer. Because 
Flash memory must be erased an entire block at a time, and the size of a Flash block is 
often many multiples of the smaller file sizes, Flash is subject to time-consuming block 
rewriting operations. For example, assume that a 128KB block of Flash is being used 
to hold a couple dozen files of 4096 bytes or less. Now assume that one of those files 
needs to be modified. This causes the Flash file system to invalidate the entire 128KB 
block and rewrite every file in the block to a newly erased block. This can be a time-
consuming process.

Because Flash writes can be time-consuming (much slower than hard disk writes), 
this increases the window where data corruption can occur due to a sudden loss of 
power. Unexpected power loss is a common occurrence in embedded systems. For in-
stance, if power is lost during the rewrite of the 128KB data block just mentioned, all 
of the couple dozen files potentially could be lost.

Enter the second-generation   Journaling Flash File System (JFFS2). The issues just 
discussed and other problems have been largely reduced or eliminated by the design of 
JFFS2. The original JFFS was designed by Axis Communications AB of Sweden and 
was targeted specifically at the commonly available Flash memory devices of the time. 
The JFFS had knowledge of the Flash architecture and, more important, architectural 
limitations imposed by the devices.

Another problem with Flash file systems is that Flash memory has a limited life-
time. Typical Flash memory devices are specified for a minimum of 100,000 write 
cycles, and, more recently, 1,000,000-cycle devices have become common. This speci-
fication is applicable to each block of the Flash device. This unusual limitation imposes 
the requirement to spread the writes evenly across the blocks of a Flash memory device. 
JFFS2 uses a technique called wear leveling        to accomplish this function.

9.6.1 Building a JFFS2 Image

Building a JFFS2 image   is relatively straightforward. Although you can build a JFFS2 
image on your workstation without kernel support, you cannot mount it. Before pro-
ceeding, ensure that your kernel has support for JFFS2 and that your development 
workstation contains a compatible version of the mkfs.jffs2 utility. These utilities 
can be downloaded and built from source code, ftp://ftp.infradead.org/pub/mtd-utils/. 
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Preferably, they should be available from your desktop Linux package maintainer. For 
example, on Ubuntu, they can be installed by executing this command:

$ sudo apt-get install mtd-tools

 

Your distribution may call them something different, such as mtd-utils. Consult the 
documentation that came with your desktop Linux distribution.

JFFS2 images are built from a directory that contains the desired files on the file sys-
tem image. Listing 9-8 shows a typical    directory structure for a Flash device designed 
to be used as a root file system.

LISTING 9-8 Directory Layout for a JFFS2 File System

$ ls -l

total 44

drwxr-xr-x  2 root root 4096 Aug 14 11:27 bin

drwxr-xr-x  2 root root 4096 Aug 14 11:27 dev

drwxr-xr-x  2 root root 4096 Aug 14 11:27 etc

drwxr-xr-x  2 root root 4096 Aug 14 11:27 home

drwxr-xr-x  2 root root 4096 Aug 14 11:27 lib

drwxr-xr-x  2 root root 4096 Aug 14 11:27 proc

drwxr-xr-x  2 root root 4096 Aug 14 11:27 root

drwxr-xr-x  2 root root 4096 Aug 14 11:27 sbin

drwxr-xr-x  2 root root 4096 Aug 14 11:27 tmp

drwxr-xr-x  2 root root 4096 Aug 14 11:27 usr

drwxr-xr-x  2 root root 4096 Aug 14 11:27 var

$

When suitably populated with runtime files, this directory layout can be used as a 
template for the mkfs.jffs2     command. The mkfs.jffs2 command produces a prop-
erly formatted JFFS2 file system image from a directory tree such as that shown in 
Listing 9-8. Command-line parameters are used to pass mkfs.jffs2 the directory loca-
tion as well as the name of the output file to receive the JFFS2 image. The default is to 
create the JFFS2 image from the current directory. Listing 9-9 shows the command      for 
building the JFFS2 image.

LISTING 9-9 mkfs.jffs2 Command Example

# mkfs.jffs2 -d ./jffs2-image-dir -o jffs2.bin

# ls -l

total 4772

-rw-r--r--   1 root  root   1098640 Sep 17 22:03 jffs2.bin

drwxr-xr-x  13 root  root      4096 Sep 17 22:02 jffs2-image-dir

#
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The directory structure and files from Listing 9-8 are in the jffs2-image-dir direc-
tory in our example. We arbitrarily execute the mkfs.jffs2 command from the direc-
tory above our file system image. Using the -d flag, we tell the mkfs.jffs2 command 
where the file system template is located. We use the -o flag to name the output file to 
which the resulting JFFS2 image is written. The resulting image, jffs2.bin, is used 
in Chapter 10, “MTD Subsystem,” when we examine the JFFS2 file together with the 
MTD subsystem.

It should be pointed out that any Flash-based file system that supports write opera-
tions is subject to conditions that can lead to premature failure of the underlying Flash 
device. For example, enabling system loggers (syslogd and klogd) configured to write 
their data to Flash-based file systems can easily overwhelm a Flash device with continu-
ous writes. Some categories of program errors can also lead to continuous writes. Care 
must be taken to limit Flash writes to values within the lifetime     of Flash devices.

9.7 cramfs

From the README file in the cramfs project, the goal of cramfs is to “cram a file system 
into a small ROM.” The cramfs file system   is very useful for embedded systems that 
contain a small ROM or FLASH memory that holds static data and programs. Bor-
rowing again from the cramfs README file, “cramfs is designed to be simple and 
small, and compress things well.”

The cramfs file system is read-only. It is created with a command-line utility called 
mkcramfs. If you don’t have it on your development workstation, you can download it 
from the URL provided at the end of this chapter. As with JFFS2, mkcramfs builds a 
file system image from a directory specified on the command line. Listing 9-10 details 
the procedure for building a cramfs image. We use the same file      system structure from 
Listing 9-8 that we used to build the JFFS2 image.

LISTING 9-10 mkcramfs Command Example

# mkcramfs

usage: mkcramfs [-h] [-v] [-b blksize] [-e edition] [-i file] [-n name]

dirname outfile

 -h         print this help

 -E         make all warnings errors (non-zero exit status)

 -b blksize use this blocksize, must equal page size

 -e edition set edition number (part of fsid)

 -i file    insert a file image into the filesystem (requires >= 2.4.0)
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LISTING 9-10 Continued

 -n name    set name of cramfs filesystem

 -p         pad by 512 bytes for boot code

 -s         sort directory entries (old option, ignored)

 -v         be more verbose

 -z         make explicit holes (requires >= 2.3.39)

 dirname    root of the directory tree to be compressed

 outfile    output file

# mkcramfs . ../cramfs.image

warning: gids truncated to 8 bits (this may be a security concern)

# ls -l ../cramfs.image

-rw-rw-r--  1 chris chris 1019904 Sep 19 18:06 ../cramfs.image

  

 

The mkcramfs command was initially issued without any command-line param-
eters to reproduce the usage message. Because this utility has no man page, this is the 
best way to understand its usage. We subsequently issued the command specifying the 
current directory (.) as the source of the files for the cramfs file system, and a file called 
cramfs.image as the destination. Finally, we listed   the file just created, and we see a 
new file called cramfs.image.

Note that if your kernel is configured with cramfs support, you can mount this file 
system image on your Linux development workstation and examine its contents. Of 
course, because it is a read-only file system, you cannot modify it. Listing 9-11 demon-
strates mounting the cramfs file system    on a mount point called /mnt/flash.

LISTING 9-11 Examining the cramfs File System

# mount -o loop cramfs.image /mnt/flash

# ls -l /mnt/flash

total 6

drwxr-xr-x  1 root  root 704 Dec 31  1969 bin

drwxr-xr-x  1 root  root   0 Dec 31  1969 dev

drwxr-xr-x  1 root  root 416 Dec 31  1969 etc

drwxr-xr-x  1 root  root   0 Dec 31  1969 home

drwxr-xr-x  1 root  root 172 Dec 31  1969 lib

drwxr-xr-x  1 root  root   0 Dec 31  1969 proc

drws------  1 root  root   0 Dec 31  1969 root

drwxr-xr-x  1 root  root 272 Dec 31  1969 sbin

drwxrwxrwt  1 root  root   0 Dec 31  1969 tmp

drwxr-xr-x  1 root  root 124 Dec 31  1969 usr

drwxr-xr-x  1 root  root 212 Dec 31  1969 var

#
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You might have noticed the warning message regarding group ID (GID) in Listing 
9-10 when the mkcramfs command was executed. The cramfs file system uses very 
terse metadata to reduce file system size and increase the speed of execution. One of 
the “features” of the cramfs file system is that it truncates the group ID field to 8 bits. 
Linux uses the 16-bit group ID field. The result is that files created with group IDs 
greater than 255 are truncated with the warning issued in Listing 9-10.

Although somewhat limited in terms of maximum file sizes, maximum number 
of files, and so on, the cramfs file system is ideal for boot ROMs, in which read-only 
operation and fast compression are desirable   features.

9.8 Network File System

If you have developed   in the UNIX environment, you undoubtedly are familiar with 
the Network File System (NFS). Properly configured, NFS enables you to export a 
directory on an NFS server and mount that directory on a remote client machine as if 
it were a local file system. This is useful in general for large networks of UNIX/Linux 
machines, and it can be a panacea to the embedded developer. Using NFS on your tar-
get board, an embedded developer can have access to a huge number of files, libraries, 
tools, and utilities during development and debugging, even if the target embedded 
system is resource-constrained.

As with the other file systems, your kernel must be configured with NFS support, 
for both the server-side functionality and the client side. NFS server and client func-
tionality is independently configured in the kernel configuration.

Detailed instructions for configuring and tuning NFS are beyond the scope of this 
book, but a short introduction will help illustrate how useful NFS can be during de-
velopment in the embedded environment. See the section at the end of this chapter 
for a pointer to detailed information about NFS, including the complete NFS Howto.

On your development workstation with NFS enabled, a configuration file contains 
a list specifying each directory that you want to export via the Network File System. 
On Red Hat, Ubuntu, and most other distributions, this file   is located in the /etc
directory and is named exports. Listing 9-12 is a sample /etc/exports, such as might 
be found on a development workstation used for embedded development.
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LISTING 9-12 Contents of /etc/exports

$ cat /etc/exports

# /etc/exports

/coyote-target  *(rw,sync,no_root_squash,no_all_squash,no_subtree_check)

/home/chris/workspace  *(rw,sync,no_root_squash,no_all_squash,no_subtree_check)

$

This file contains the names of two directories on a Linux development worksta-
tion. The first directory contains a target file system for an ADI Engineering Coyote 
reference board. The second directory is a general workspace that contains projects 
targeted for an embedded system. This is arbitrary; you can configure NFS any way 
you choose.

On an embedded system with NFS enabled, the following command mounts 
the .../workspace directory exported by the NFS server    on a mount point of our 
choosing:

# mount -t nfs pluto:/home/chris/workspace /workspace

Notice some important points about this command. We are instructing the mount
command to mount a remote directory (on a machine named pluto, our development 
workstation in this example) onto a local mount point called /workspace. For the 
command semantics to work, two requirements must be met on the embedded target. 
First, for the target to recognize the symbolic machine name pluto, it must be able to 
resolve the symbolic name. The easiest way to do this is to place an entry in the /etc/
hosts file on the target. This allows the networking subsystem to resolve the symbolic 
name to its corresponding IP address. The entry in the target’s /etc/hosts file would 
look like this:

192.168.11.9        pluto

The second requirement is that the embedded target must have a directory in its 
root directory called /workspace. (You may choose any pathname you wish. For ex-
ample, you could mount it on /mnt/mywork.) This is called a mount point. The re-
quirement is that the target must have a directory created with the same name as given 
on the mount command.

The mount command in the preceding example causes the contents of the NFS 
server’s /home/chris/workspace directory to be available on the embedded system’s 
/workspace path.
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This is quite useful, especially in a cross-development environment. Let’s say that 
you are working on a large project for your embedded device. Each time you make 
changes to the project, you need to move that application to your target so that you 
can test and debug it. Using NFS in the manner just described, assuming that you are 
working in the NFS exported directory on your host, the changes are immediately 
available on your target embedded system without the need to upload     the newly com-
piled project files. This can speed development considerably.

9.8.1 Root File System on NFS

Mounting your project workspace   on your target embedded system is very useful for 
development and debugging because it facilitates rapid access to changes and source 
code for source-level debugging. This is especially useful when the target system is se-
verely resource-constrained. NFS really shines as a development tool when you mount 
your embedded system’s root file system entirely from an NFS server. In Listing 9-12, 
notice the coyote-target entry. This directory on your development workstation 
could contain hundreds or thousands of files compatible with your target architecture.

The leading embedded Linux distributions targeted at embedded systems ship tens 
of thousands of files compiled and tested for the chosen target architecture. To il-
lustrate this, Listing 9-13 contains   a directory listing of the coyote-target directory 
referenced in Listing 9-12.

LISTING 9-13 Target File System Example Summary

$ du -h --max-depth=1

724M    ./usr

4.0K    ./opt

39M     ./lib

12K     ./dev

27M     ./var

4.0K    ./tmp

3.6M    ./boot

4.0K    ./workspace

1.8M    ./etc

4.0K    ./home

4.0K    ./mnt

8.0K    ./root

29M     ./bin

32M     ./sbin

4.0K    ./proc
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LISTING 9-13 Continued

64K     ./share

855M    .

$

$ find -type f | wc -l

29430

This target file system contains just shy of a gigabyte worth of binary files targeted 
at the ARM architecture. As you can see from the listing, this is more than 29,000 
binary, configuration, and documentation files. This would hardly fit on the average 
Flash device found on an embedded system!

This is the power of an NFS root mount. For development purposes, it can only 
increase productivity if your embedded system is loaded with all the tools and utilities 
you are familiar with on a Linux workstation. Indeed, likely dozens of command-line 
tools and development utilities that you have never seen can help you shave time off 
your development schedule. You will learn more about    some of these useful tools in 
Chapter 13, “Development Tools.”

Configuring your embedded system to mount its root file system via NFS at boot 
time is relatively straightforward. First, you must configure your target’s kernel for 
NFS support. There is also a configuration option      to enable root mounting of an NFS 
remote directory. This is illustrated in Figure 9-3.

FIGURE 9-3 NFS kernel configuration

 Notice that NFS file system support has been selected, along with support for “Root 
file system on NFS.” After these kernel-configuration parameters have been selected, 
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all that remains is to somehow feed information to the kernel so that it knows where to 
look for the NFS server. Several methods can be used to do this; some depend on the 
chosen target architecture and choice of bootloader. At a minimum, the kernel can be 
passed the proper parameters on the kernel command line to configure its IP port and 
server information on power-up. A typical kernel command line might look like this:

console=ttyS0,115200 ip=bootp root=/dev/nfs

 

This tells the kernel to expect a root file system via NFS and to obtain the rel-
evant parameters (server name, server IP address, and root directory to mount) from a 
BOOTP server. This is a common and tremendously useful configuration during the 
development phase of a project. If you are statically configuring your target’s IP address, 
your kernel command line might look like this:

console=ttyS0,115200                                      \

ip=192.168.11.139:192.168.11.1:192.168.11.1:255.255.255.0:coyote1:eth0:off  \

nfsroot=192.168.11.1:/coyote-target  \

root=/dev/nfs

Of course, this would all be on one line. Theip= parameter is defined in .../Documentation/
filesystems/nfsroot.txt and has the following syntax, all on one line:

ip=<client-ip>:<server-ip>:<gw-ip>

:<netmask>:<hostname>:<device>:<autoconf>

Here, client-ip is the target’s IP address; server-ip is the address of the NFS 
server; gw-ip is the gateway (router), in case the server is on a different subnet; and 
netmask defines the class of IP addressing. hostname is a string that is passed as the tar-
get hostname; device is the Linux device name, such as eth0; and autoconf defines the 
protocol used to obtain initial IP parameters, such as BOOTP    or DHCP. It can also be 
set to off for no autoconfiguration.

9.9 Pseudo File Systems

A number of file systems fall under the category of   Pseudo File Systems in the kernel-
configuration menu. Together they provide a range of facilities useful in a wide range 
of applications. For additional information, especially on the /proc file system, spend 
an afternoon poking around this useful system facility. References to additional reading 
material can be found in the last section of this chapter.
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9.9.1 /proc File System

The /proc file system takes    its name from its original purpose: an interface that allows 
the kernel to communicate information about each running process    on a Linux sys-
tem. Over the course of time, it has grown and matured to provide much more than 
process information. We introduce the highlights here; a complete tour of the /proc
file system is left as an exercise for you.

The /proc file system has become a virtual necessity for all but the simplest of 
Linux systems, even embedded ones. Many user-level functions rely on the contents of 
the /proc file system to do their job. For example, the mount command, issued without 
any parameters, lists all the currently active mount points on a running system, from 
the information delivered by /proc/mounts. If the /proc file system is unavailable, the 
mount command silently returns. Listing 9-14 illustrates   this on the ADI Engineering 
Coyote board.

LISTING 9-14 Mount Dependency on /proc

# mount

rootfs on / type rootfs (rw)

/dev/root on / type nfs

(rw,v2,rsize=4096,wsize=4096,hard,udp,nolock,addr=192.168.11.19)

tmpfs on /dev/shm type tmpfs (rw)

/proc on /proc type proc (rw,nodiratime)

< Now unmount proc and try again ...>

# umount /proc

# mount

#

 

Notice in Listing 9-14 that /proc itself is listed as a mounted file system, as type 
proc mounted on /proc. This is not doublespeak; your system must have a mount 
point called /proc at the top-level directory tree as a destination for the /proc file sys-
tem to be mounted on.7 To mount the /proc file        system, use the mount command, as 
with any other file system:

$ mount -t proc /proc /proc

7 It is certainly possible to mount /proc anywhere you like on your file system, but all the utilities (including mount) that 
require proc expect to find it mounted on /proc.
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The general form of the mount command, from the man page, is:

mount [-t fstype] something somewhere

In the preceding invocation, we could have substituted none for /proc, as follows:

$ mount -t proc none /proc

 

 

 

This looks somewhat less like doublespeak. The something parameter is not strictly 
necessary, because /proc is a pseudo file system, not a real physical device. However, spec-
ifying /proc as in the earlier example helps remind us that we are mounting the /proc
file system on the /proc directory (or, more appropriately, on the /proc mount point).

Of course, by this time, it might be obvious that to get /proc file system functional-
ity, it must be enabled in the kernel configuration. This kernel-configuration option 
can be found on the File Systems submenu under the category Pseudo File Systems.

Each user process running in the kernel is represented by an entry in the /proc file 
system. For example, the init process introduced in Chapter 6 is always assigned the 
process ID (PID) of 1. Processes in the /proc file system are represented by a directory 
that is given the PID number as its name. For example, the init process with a PID of 
1 would be represented by a /proc/1 directory. Listing 9-15 shows          the contents of this 
directory on our embedded Coyote board.

LISTING 9-15 init Process /proc Entries

# ls -l /proc/1

total 0

-r--------    1 root  root   0 Jan  1 00:25 auxv

-r--r--r--    1 root  root   0 Jan  1 00:21 cmdline

lrwxrwxrwx    1 root  root   0 Jan  1 00:25 cwd -> /

-r--------    1 root  root   0 Jan  1 00:25 environ

lrwxrwxrwx    1 root  root   0 Jan  1 00:25 exe -> /sbin/init

dr-x------    2 root  root   0 Jan  1 00:25 fd

-r--r--r--    1 root  root   0 Jan  1 00:25 maps

-rw-------    1 root  root   0 Jan  1 00:25 mem

-r--r--r--    1 root  root   0 Jan  1 00:25 mounts

-rw-r--r--    1 root  root   0 Jan  1 00:25 oom_adj

-r--r--r--    1 root  root   0 Jan  1 00:25 oom_score

lrwxrwxrwx    1 root  root   0 Jan  1 00:25 root -> /

-r--r--r--    1 root  root   0 Jan  1 00:21 stat

-r--r--r--    1 root  root   0 Jan  1 00:25 statm

-r--r--r--    1 root  root   0 Jan  1 00:21 status

dr-xr-xr-x    3 root  root   0 Jan  1 00:25 task

-r--r--r--    1 root  root   0 Jan  1 00:25 wchan
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These entries, which are present in the /proc file system    for each running process, 
contain much useful information, especially for analyzing and debugging a process. 
For example, the cmdline entry contains the complete command line used to invoke 
the process, including any arguments. The cwd and root directories contain the pro-
cesses’ view of the current working directory and current root directory.

One of the more useful entries for system debugging is the maps entry. This con-
tains a list of each virtual memory segment assigned to the program, along with at-
tributes for each. Listing 9-16 is the output   from /proc/1/maps in our example of the 
init process.

LISTING 9-16 init Process Memory Segments from /proc

# cat /proc/1/maps

00008000-0000f000 r-xp 00000000 00:0a 9537567    /sbin/init

00016000-00017000 rw-p 00006000 00:0a 9537567    /sbin/init

00017000-0001b000 rwxp 00017000 00:00 0

40000000-40017000 r-xp 00000000 00:0a 9537183    /lib/ld-2.3.2.so

40017000-40018000 rw-p 40017000 00:00 0

4001f000-40020000 rw-p 00017000 00:0a 9537183    /lib/ld-2.3.2.so

40020000-40141000 r-xp 00000000 00:0a 9537518    /lib/libc-2.3.2.so

40141000-40148000 ---p 00121000 00:0a 9537518    /lib/libc-2.3.2.so

40148000-4014d000 rw-p 00120000 00:0a 9537518    /lib/libc-2.3.2.so

4014d000-4014f000 rw-p 4014d000 00:00 0

befeb000-bf000000 rwxp befeb000 00:00 0

#

The usefulness of this information is readily apparent. You can see the program seg-
ments of the init process itself in the first two entries. You can also see the memory 
segments used by the shared library objects being used by the init process. The format 
is as follows:

vmstart-vmend  attr  pgoffset  devname inode filename

 

Here, vmstart and vmend are the starting   and ending virtual memory addresses, 
respectively. attr indicates memory region attributes, such as read, write, and execute, 
and tells whether this region is shareable. pgoffset is the page offset of the region (a 
kernel virtual memory parameter). devname, displayed as xx:xx, is a kernel representa-
tion of the device ID associated with this memory region. The memory regions that 
are not associated with a file are also not associated with a device—thus the 00:00. The 
final two entries are the inode and file associated with the given memory region. Of 
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course, if a memory segment is not accociated with a file, the inode field will contain 
0. These are usually data segments.

Other useful entries are listed for each process. The status entry contains informa-
tion about the running process, including items such as the parent PID, user and group 
IDs, virtual memory usage, signals, and capabilities. More    details can be obtained from 
the references at the end of this chapter.

Some frequently used /proc entries   are cpuinfo, meminfo, and version. The cpuinfo
entry lists attributes that the kernel discovers about the processor(s) running on the sys-
tem. The meminfo entry provides statistics on the total system memory. The version
entry mirrors the Linux kernel version string, together with information on what com-
piler and machine were used to build the kernel.

The kernel generates many more useful /proc entries; we have only scratched the 
surface of this useful subsystem. Many utilities have been designed for extracting and 
reporting information contained in the /proc file system. Two popular examples are 
top and ps, which every embedded Linux developer should be intimately familiar 
with. These are introduced in Chapter 13. Other utilities useful for interfacing with 
the /proc file system include free, pkill, pmap, and uptime. See the    procps package 
for more details.

9.9.2 sysfs

Like the /proc file system, sysfs   is not representative of an actual physical device. In-
stead, sysfs models specific kernel objects such as physical devices and provides a way 
to associate devices with device drivers. Some agents in a typical Linux distribution 
depend on the information on sysfs.

We can get some idea of what kinds of objects are exported by looking directly at 
the directory structure    exported by sysfs. Listing 9-17 shows the top-level /sys direc-
tory on our Coyote board.

LISTING 9-17 Top-Level /sys Directory Contents

# ls -l /sys

drwxr-xr-x  2 root root 0 Jan  1 00:00 block

drwxr-xr-x 10 root root 0 Jan  1 00:00 bus

drwxr-xr-x 23 root root 0 Jan  1 00:00 class

drwxr-xr-x  4 root root 0 Jan  1 00:00 dev

drwxr-xr-x  6 root root 0 Jan  1 00:00 devices

drwxr-xr-x  2 root root 0 Jan  1 00:00 firmware

drwxr-xr-x  2 root root 0 Jan  1 00:00 fs
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LISTING 9-17 Continued

drwxr-xr-x  4 root root 0 Jan  1 00:00 kernel

drwxr-xr-x 20 root root 0 Jan  1 00:00 module

#

   

sysfs provides a top-level subdirectory for several system elements, including the 
system buses. For example, under the block subdirectory, each block device is repre-
sented by a subdirectory entry. The same holds true for the other directories at the top 
level.

Most of the information stored by sysfs is in a format more suitable for machines 
rather than humans to read. For example, to discover the devices on the PCI bus, you 
could look directly at the /sys/bus/pci subdirectory. On our Coyote board, which has 
a single PCI device attached (an Ethernet card), the directory looks like this:

# ls -l /sys/bus/pci/devices/

0000:00:0f.0 -> ../../../devices/pci0000:00/0000:00:0f.0

 

Parts of the output were trimmed for clarity. This entry is actually a symbolic link 
pointing to another node in the sysfs directory tree. The name of the symbolic link is 
the kernel’s representation of the PCI bus, and it points to a devices subdirectory called 
pci0000:00 (the PCI bus representation). This subdirectory contains a number of sub-
directories and files representing attributes of this specific   PCI device. As you can see, 
the data is rather difficult to discover and parse.

A useful utility can help you browse the sysfs file system directory structure. Called 
systool, it comes from the sysfsutils   package found on sourceforge.net. Here is how 
systool would display the PCI bus from the previous discussion:

$ systool -b pci

“Bus = “pci”

  0000:00:0f.0 8086:1229

Again we see the kernel’s representation of the bus and device (0f ), but this tool 
displays the vendor ID (8086 = Intel) and device ID (1229 = eepro100 Ethernet card) 
obtained from the /sys/devices/pci0000:00 branch of /sys, where these attributes 
are kept. Executed with no parameters, systool displays   the top-level system hierar-
chy. Listing 9-18 is an example    from our Coyote board.
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LISTING 9-18 Output from systool

$ systool

Supported sysfs buses:

        hid

        i2c

        ide

        mdio_bus

        pci

        platform

        scsi

        usb

Supported sysfs classes:

        atm

        bdi

        block

        firmware

        hwmon

        i2c-adapter

        i2c-dev

        ide_port

        input

        leds

        mdio_bus

        mem

        misc

        mtd

        net

        pci_bus

        rtc

        scsi_device

        scsi_disk

        scsi_host

        tty

Supported sysfs devices:

        pci0000:00

        platform

        system

        virtual

Supported sysfs modules:

        8250

        ehci_hcd

        hid

        ide_gd_mod
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LISTING 9-18 Continued

        kernel

        libata

        lockd

        mousedev

        nfs

        printk

        scsi_mod

        spurious

        sunrpc

        tcp_cubic

        uhci_hcd

        usb_storage

        usbcore

        usbhid

You can see from this listing    the variety of system information available from sysfs. 
Many utilities use this information to determine the characteristics of system devices or 
to enforce system policies, such as power management and hot-plug capability.

sysfs from http://en.wikipedia.org/wiki/Sysfs and the You can learn more about    
references found there.

9.10 Other File Systems

Linux supports numerous file systems. Space does not permit us to cover all of them. 
However, you should be aware of some important file systems frequently found in 
embedded systems.

The ramfs file system   is best considered from the context of the Linux source code 
module that implements it. Listing 9-19 reproduces the first several lines of that file.

LISTING 9-19 Linux ramfs Source Module Comments

/*

 * Resizable simple ram filesystem for Linux.

 *

 * Copyright (C) 2000 Linus Torvalds.

 *               2000 Transmeta Corp.

 *

 * Usage limits added by David Gibson, Linuxcare Australia.

 * This file is released under the GPL.

 */

  

http://en.wikipedia.org/wiki/Sysfs
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LISTING 9-19 Continued

/*

 * NOTE! This filesystem is probably most useful not as a real

 * filesystem, but as an example of how virtual filesystems can be

 * written.

 *

 * It doesn’t get much simpler than this. Consider that this file

 * implements the full semantics of a POSIX-compliant read-write

 * filesystem.

This module was written primarily as an example of how virtual file systems can be 
written. One of the primary differences between this file system and the ramdisk facil-
ity found in modern Linux kernels is its capability to shrink and grow according to its 
use. A ramdisk does not have this property. This source module is compact and well 
written. It is presented here for its educational value. You are encouraged to study this 
example if you want to learn more about   Linux file systems.

The tmpfs file system   is similar to and related to ramfs. Like ramfs, everything in 
tmpfs is stored in kernel virtual memory, and the contents of tmpfs are lost on power-
down or reboot. The tmpfs file system is useful for fast temporary file storage. A good 
example of tmpfs use is to mount your /tmp directory on a tmpfs. It improves perfor-
mance for applications that use many small temporary files. This is also a great way to 
keep your /tmp directory clean, because its contents are lost on every reboot. Mounting 
tmpfs is similar to any other virtual file system:

# mount -t tmpfs /tmpfs /tmp

  As with other virtual file systems such as /proc, the first tmpfs parameter in this mount
command is a “no-op.” In other words, it could be the word none and still function. 
However, it is a good reminder that you are mounting a virtual file system called tmpfs.

9.11 Building a Simple File System

It is straightforward   to build a simple file system image. Here we demonstrate the use 
of the Linux kernel’s loopback device. The loopback device enables the use of a regular 
file as a block device. In s   hort, we build a file system image in a regular file and use 
the Linux loopback device to mount that file in the same way any other block device 
is mounted.

To build a simple root file system, start with a fixed-sized file containing all 0s:

# dd if=/dev/zero of=./my-new-fs-image bs=1k count=512
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This command creates a file of 512KB containing nothing but 0s. We fill the file 
with 0s to aid in compression later and to have a consistent data pattern for uninitial-
ized data blocks within the file system. Exercise caution when using the   dd command. 
Executing dd with no boundary (count=) or with an improper boundary can fill up 
your hard drive and possibly crash your system. dd is a powerful tool; use it with the 
respect it deserves. Simple typos in commands such as dd, executed as root, have de-
stroyed countless file systems.

When we have the new image file, we actually format the file to contain the data 
structures defined by a given file system.   In this example, we build an ext2 file system. 
Listing 9-20 details the procedure.

LISTING 9-20 Creating an ext2 File System Image

# /sbin/mkfs.ext2 ./my-new-fs-image

mke2fs 1.40.8 (13-Mar-2008)

./my-new-fs-image is not a block special device.

Proceed anyway? (y,n) y

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

64 inodes, 512 blocks

25 blocks (4.88%) reserved for the super user

First data block=1

Maximum filesystem blocks=524288

1 block group

8192 blocks per group, 8192 fragments per group

64 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or 180

days, whichever comes first.  Use tune2fs -c or -i to override.

Like dd, the mkfs.ext2 command    can destroy your system, so use it with care. In 
this example, we asked mkfs.ext2 to format a file rather than a hard drive partition 
(block device) for which it was intended. As such, mkfs.ext2 detected that fact and 
asked us to confirm the operation. After confirming, mkfs.ext2 proceeded to write an 
ext2 superblock and file system data structures into the file. We can then mount this 
file like any block device, using the Linux loopback device:

# mount -o loop ./my-new-fs-image /mnt/flash
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This command mounts the file my-new-fs-image as a file system on the mount point 
named /mnt/flash. The mount point name is unimportant; you can mount it wherever 
you want, as long as the mount point exists. Use mkdir to create your mount point.

After the newly created image file is mounted as a file system, we are free to make 
changes to it. We can add and delete directories, make device nodes, and so on. We can 
use tar to copy files into or out of it. When the changes are complete, they are saved in 
the file, assuming that you didn’t exceed the size of the device. Remember, using this 
method, the size is fixed at creation time and cannot be changed.

9.12 Summary

This chapter introduced a variety of file systems in use on both desktop/server Linux 
systems and embedded systems. File systems specific to embedded use and especially 
Flash file systems were described. The important pseudo file systems also were covered.

• Partitions are the logical division of a physical device. Numerous partition 
types are supported under Linux.

•  A file system is mounted on a mount point in Linux. The root file system is 
mounted at the root of the file system hierarchy and is referred to as /.

•  The popular ext2 file system is mature and fast. It is often found on embedded 
and other Linux systems such as Red Hat and the Fedora Core series.

•  The ext3 file system adds journaling on top of the ext2 file system for better 
data integrity and system reliability.

•  ReiserFS is another popular and high-performance journaling file system 
found on many embedded and other Linux systems.

•  JFFS2 is a journaling file system optimized for use with Flash memory. It 
contains Flash-friendly features such as wear leveling for longer Flash memory 
lifetime.

•  cramfs is a read-only file system perfect for small-system boot ROMs and other 
read-only programs and data.

•  NFS is one of the most powerful development tools for the embedded devel-
oper. It can bring the power of a workstation to your target device. Learn how 
to use NFS as your embedded target’s root file system. The convenience and 
time savings will be worth the effort.

•  Many pseudo file systems are available on Linux. A few of the more important 
ones were presented here, including the /proc file system and sysfs.
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• The RAM-based tmpfs file system has many uses for embedded systems. Its 
most significant improvement over traditional ramdisks is the capability to 
resize itself dynamically to meet operational requirements.

9.12.1 Suggestions for Additional Reading

“Design and Implementation of the Second     Extended Filesystem”
Rémy Card, Theodore Ts’o, and Stephen Tweedie
First published in the Proceedings of the First Dutch International Symposium on 
Linux
http://e2fsprogs.sourceforge.net/ext2intro.html

“A Non-Technical Look Inside the EXT2 File System”
Randy Appleton
www.linuxjournal.com/article/2151  

Red Hat’s New Journaling File System: ext3
Michael K. Johnson  
www.redhat.com/support/wpapers/redhat/ext3/

Reiser4 File System
http://en.wikipedia.org/wiki/Reiser4  

JFFS: The Journaling Flash File System
David Woodhouse  
http://sources.redhat.com/jffs2/jffs2.pdf

README file from the cramfs project
Unsigned (assumed to be the project author)  
http://sourceforge.net/projects/cramfs/

NFS home page  
http://nfs.sourceforge.net

The /proc file system documentation   
www.tldp.org/LDP/lkmpg/2.6/html/c712.htm

“File System Performance: The Solaris OS, UFS, Linux ext3, and ReiserFS”
A technical whitepaper
Dominic     Kay
www.sun.com/software/whitepapers/solaris10/fs_performance.pdf
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www.redhat.com/support/wpapers/redhat/ext3/
http://en.wikipedia.org/wiki/Reiser4
http://sources.redhat.com/jffs2/jffs2.pdf
http://sourceforge.net/projects/cramfs/
http://nfs.sourceforge.net
www.tldp.org/LDP/lkmpg/2.6/html/c712.htm
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T

 

he Memory Technology Device (MTD) subsystem   grew out of the need to 
support a wide variety of memory-like devices such as Flash memory chips. 

Many different types of Flash chips are available, along with numerous methods 
to program them, partly because of the many specialized and high-performance 
modes that are supported. The MTD layer architecture enables the separation 
of the low-level device complexities from the higher-layer data organization and 
storage formats that use memory and flash devices.

This chapter introduces the MTD subsystem and provides some simple exam-
ples of its use. First we look at what is required of the kernel to support MTD 
services. We show some simple operations on a development workstation with 
MTD enabled to help you understand the basics of this subsystem. This chapter 
also integrates MTD and the JFFS2 file system.

Then this chapter discusses the concept of partitions as they relate to the MTD 
layer. We examine the details of building partitions from a bootloader and how 
the Linux kernel detects them. The chapter continues with a brief introduction 
to the MTD utilities. We conclude by putting it all together and booting a target 
board using an in-Flash JFFS2 file system image.

10.1 MTD Overview

Simply stated, MTD is a device driver layer that provides a uniform API for interfac-
ing with raw Flash devices. MTD supports a wide variety of Flash devices. However, 
MTD is not a block device. MTD deals with devices in units of erase blocks that 
are not always a uniform size, whereas block devices operate on fixed-size read/write 
blocks called sectors. Block devices have two primary operations—read and write to 
a sector—and MTDs have three: read, write, and erase. MTD devices have a limited 
write life cycle, and MTD has logic to spread the write operations over the device’s 
life span to increase the device’s life span. This is called wear leveling.

Contrary to popular belief, SD/MMC cards, CompactFlash cards, USB Flash 
drives, and other popular devices are not MTD devices. These devices all contain in-
ternal Flash translation layers that handle MTD-like functions such as block erasure 
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and wear leveling. Therefore, these devices appear to the system as traditional block 
devices and do not require the specialized handling of MTD.

Most device drivers in Linux are either character or block devices. MTD is neither. 
Although translation mechanisms can make MTD look like a character or block de-
vice, MTD is unique in Linux driver architecture. This is because MTD drivers must 
perform Flash-specific operations such as the erase block and wear leveling operations, 
which have no parallel in traditional block drivers.

10.1.1 Enabling MTD Services

To use MTD services, your kernel    must be configured with MTD enabled. This 
applies equally to your development workstation and your embedded system. For 
simplicity, we’ll demonstrate MTD operations on your development workstation. To 
follow along, you must have MTD enabled on your workstation as described here. In 
a similar fashion, you must also have MTD enabled on your embedded target to use 
MTD capabilities there.

MTD has many configuration options, some of which can be confusing. The best 
way to understand the myriad choices is simply to begin working with them. To il-
lustrate the mechanics of the MTD subsystem and how it fits in with the system, we’ll 
begin with some simple  that you can perform on your Linux development workstation. 
Figure 10-1 shows the kernel configuration (invoked per the usual make ARCH=<arch> 
gconfig) necessary to enable the bare-minimum MTD functionality. Listing 10-1 dis-
plays the .config file entries resulting from the selections shown in Figure 10-1. These 
configuration options are found under Device drivers in the kernel configuration   
utility.

LISTING 10-1 Basic MTD Configuration from .config

CONFIG_MTD=y

CONFIG_MTD_CHAR=y

CONFIG_MTD_BLOCK=y

CONFIG_MTD_MTDRAM=m

CONFIG_MTDRAM_TOTAL_SIZE=8192

CONFIG_MTDRAM_ERASE_SIZE=128
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FIGURE 10-1 MTD configuration

The MTD subsystem is enabled through the first configuration option, which you 
select by checking the first box shown in Figure 10-1, Memory Technology Device 
(MTD) Support. The next two entries from the configuration shown in Figure 10-1 
enable special device-level access to the MTD devices, such as Flash memory, from 
user space. The first one (CONFIG_MTD_CHAR) enables character device mode access, es-
sentially a sequential access characterized by byte-at-a-time sequential read and write 
access. The second (CONFIG_MTD_BLOCK) enables access to the MTD device in block 
device mode, the access method used for disk drives, in which blocks of multiple bytes 
of data are read or written at one time. These access modes allow the use of familiar 
Linux commands to read and write data to Flash memory, as you will see shortly.

The CONFIG_MTD_MTDRAM element enables a special test driver that allows us to ex-
amine the MTD subsystem on our development host even if no MTD devices (such as 
Flash memory) are available. Remember, we are working with MTD on our develop-
ment workstation in these examples as a convenient way to get familiar with the MTD 
subsystem. You would rarely if ever do this on an embedded target.
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Coupled with this configuration selection are two parameters associated with the 
RAM-based test driver: the device size and the erase size. For this example, we have 
specified 8192KB total size and 128KB erase size. The objective of this test driver is 
to emulate a Flash device, primarily to facilitate MTD subsystem testing and develop-
ment. Because Flash memory is architected using fixed-size erase blocks, the test driver 
also contains the concept of erase blocks. You will see   how these parameters are used 
shortly.

10.1.2 MTD Basics

Recent Linux kernel releases   have MTD integrated, so you don’t need to apply MTD 
patches to enable it. If you feel the need to be on the leading edge of MTD develop-
ment, you can download the latest source code from the MTD home page, listed in 
the last section of this chapter. Of course, in either case, MTD must be enabled in your 
kernel configuration, as shown in Figure 10-1.

After MTD is enabled, we can examine how this subsystem works on our Linux de-
velopment workstation. Using the test RAM driver we just configured, we can mount 
a JFFS2 image using an MTD device. Assuming that you created a JFFS2 image as 
detailed in Chapter 9, “File Systems,” you might want to mount it and examine it. 
The image we built in Chapter 9 was called jffs2.bin.1 Recall from Chapter 9 that we 
built the jffs2.bin image using this command:

# mkfs.jffs2 -d ./jffs2-image-dir -o jffs2.bin

The Linux kernel does not support mounting a JFFS2 file system image directly 
on a loopback device, such as is possible with ext2 and other file system images. So we 
must use a different method. This can be achieved     using the MTD RAM test driver on 
our development Linux workstation. Listing 10-2 illustrates the steps.

LISTING 10-2 Mounting JFFS2 on an MTD RAM Device

# modprobe jffs2

# modprobe mtdblock

# modprobe mtdram

# dd if=jffs2.bin of=/dev/mtdblock0

 4690+1 records in

 4690+1 records out

# mkdir /mnt/flash

1 You can easily re-create a minimal file system for this exercise by using the example from Listing 6-1.
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LISTING 10-2 Continued

# mount -t jffs2 /dev/mtdblock0 /mnt/flash

# ls -l /mnt/flash

total 0

drwxr-xr-x   2 root root 0 Sep 17 22:02 bin

drwxr-xr-x   2 root root 0 Sep 17 21:59 dev

drwxr-xr-x   7 root root 0 Sep 17 15:31 etc

drwxr-xr-x   2 root root 0 Sep 17 22:02 lib

drwxr-xr-x   2 root root 0 Sep 17 15:31 proc

drwxr-xr-x   2 root root 0 Sep 17 22:02 sbin

drwxrwxrwt   2 root root 0 Sep 17 15:31 tmp

drwxr-xr-x   9 root root 0 Sep 17 15:31 usr

drwxr-xr-x  14 root root 0 Sep 17 15:31 var

#

 

In Listing 10-2, we first install the loadable modules that the Linux kernel requires 
to support JFFS2 and the MTD subsystem. We load the jffs2 module followed by 
the mtdblock and mtdram modules. After     the necessary device drivers are loaded, we use 
the Linux dd command to copy our JFFS2 file system image into the MTD RAM test 
driver using the mtdblock device. In essence, we are using system RAM as a backing 
device to emulate an MTD block device.

After we have copied our JFFS2 file system image into the MTD block device, we 
can mount it using the mount command, in the manner shown in Listing 10-2. After 
the MTD pseudo-device has been mounted, we can work with the JFFS2 file system 
image in any way we choose. The only limitation using this method is that we cannot 
change the size of the image. Its size is limited by two factors. First, when we config-
ured the MTD RAM test device in the Linux kernel configuration user interface, we 
gave it a maximum size of 8MB. Second, when we created the JFFS2 image, we fixed 
the size of the image using the mkfs.jffs2 utility. The image size was determined by 
the contents of the directory we specified when we created it. Refer to Listing 9-9 in 
Chapter 9 to recall how our jffs2.bin image was built.

It is important to realize the limitations of using this method to examine the con-
tents of a JFFS2 file system. Consider what we did: We copied the contents of a file 
(the JFFS2 file system binary image) into a kernel block device (/dev/mtdblock0). We 
then mounted the kernel block device (/dev/mtdblock0) as a JFFS2 file system. After 
we did this, we could then use all the traditional file system     utilities to examine and 
even modify the file system. Tools such as ls, df, dh, mv, rm, and cp can all be used 
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to examine and modify the file system. However, unlike the loopback device, there is 
no connection between the file we copied and the mounted JFFS2 file system image. 
Therefore, if we unmount the file system after making changes, the changes will be 
lost. If you want to save the changes, you must copy them back into a file. One such 
method is the following:

# dd if=/dev/mtdblock0 of=./your-modified-fs-image.bin

  

 

This command creates a file called your-modified-fs-image.bin that is the same 
size as the mtdblock0 device that was specified during configuration. In our example, 
it would be 8MB. Lacking suitable JFFS2 editing facilities, this is a perfectly valid way 
to examine and modify a JFFS2 file system. More important, it illustrates the basics of 
the MTD subsystem on our development system without real Flash memory. Now let’s 
look at some hardware that contains physical Flash devices.

10.1.3 Configuring MTD on Your Target

To use MTD with the Flash memory on your board, you must have MTD configured 
correctly. You must do the following to configure MTD for your board, Flash, and 
Flash layout:

• Specify the partitioning on your Flash device.

• Specify the type of Flash and location.

• Configure the proper Flash driver for your chosen chip.

• Configure the kernel with the appropriate driver(s).

Each of these steps is explored in the following sections.

10.2 MTD Partitions

Most Flash devices on a given hardware platform are divided into several sections, 
called partitions, similar   to the partitions found on a typical desktop workstation hard 
drive. The MTD subsystem supports such Flash partitions. The MTD subsystem must 
be configured for MTD partitioning support. Figure 10-2 shows the configuration op-
tions for MTD partitioning support from a recent Linux kernel    snapshot.
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FIGURE 10-2 Kernel configuration for MTD partitioning support

You can communicate the partition data to the Linux kernel in several ways. You 
can see the configuration options for each in Figure 10-2 under “MTD partitioning 
support.” The following methods currently are supported:

• Redboot partition table parsing

• Kernel command-line partition table definition

• Board-specific mapping drivers

• TI AR7 partitioning support

MTD also allows configurations without    partition data. In this case, MTD simply 
treats the entire Flash memory as a single device.
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10.2.1 Redboot Partition Table Partitioning

One of the more common methods of defining and detecting MTD partitions stems 
from one of the original implementations: Redboot partitions. Redboot is a bootloader 
found on many embedded boards, especially   ARM XScale boards such as the ADI 
Engineering Coyote Reference Platform.

The MTD subsystem defines a method for storing partition information on the 
Flash device itself, similar in concept to a partition table on a hard disk. In the case 
of the Redboot partitions, the developer reserves and specifies a Flash erase block that 
holds the partition definitions. A mapping driver is selected that calls the partition 
parsing functions during boot to detect the partitions on the Flash device. Figure 10-2 
shows the mapping driver for our sample board; it is the final highlighted entry defin-
ing CONFIG_MTD_IXP4XX.

As usual, taking a detailed look at an example helps illustrate these concepts. We 
start by looking at the information provided by the Redboot bootloader for the Coyote 
platform. Listing 10-3 captures some of the output   from the Redboot bootloader upon 
power-up.

LISTING 10-3 Redboot Messages on Power-Up

Platform: ADI Coyote (XScale)

IDE/Parallel Port CPLD Version: 1.0

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x04000000, 0x0001f960-0x03fd1000 available

FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each.

...

This console output tells us that RAM on this board is physically mapped starting at 
address 0x00000000 and that Flash is mapped at physical address 0x50000000 through 
0x51000000. We can also see that    Flash has 128 blocks of 0x00020000 (128KB) each.

Redboot contains a command to create and display partition information stored 
on Flash. Listing 10-4 is the output of the fis list command, part of the Flash Image 
System family of commands available in the   Redboot bootloader.

LISTING 10-4 Redboot Flash Partition List

RedBoot> fis list

Name              FLASH addr  Mem addr    Length      Entry point

RedBoot           0x50000000  0x50000000  0x00060000  0x00000000
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LISTING 10-4 Continued

RedBoot config    0x50FC0000  0x50FC0000  0x00001000  0x00000000

FIS directory     0x50FE0000  0x50FE0000  0x00020000  0x00000000

RedBoot>

From Listing 10-4, we see that the Coyote board has three partitions defined on 
the Flash. The partition named RedBoot contains the executable Redboot bootloader 
image. The partition named RedBoot config contains the configuration parameters 
maintained by the bootloader. The final partition named FIS directory holds informa-
tion about the partition table itself.

When properly configured, the Linux kernel can detect and parse this partition 
table and create MTD partitions representing the physical partitions on Flash. Listing 
10-5 reproduces a portion of the boot messages that are output from the aforemen-
tioned ADI Engineering Coyote board, booting a Linux   kernel configured with sup-
port for detecting Redboot partitions.

LISTING 10-5 Detecting Redboot Partitions on Linux Boot

...

IXP4XX-Flash.0: Found 1 x16 devices at 0x0 in 16-bit bank

 Intel/Sharp Extended Query Table at 0x0031

Using buffer write method

Searching for RedBoot partition table in IXP4XX-Flash.0 at offset 0xfe0000

3 RedBoot partitions found on MTD device IXP4XX-Flash0

Creating 3 MTD partitions on “IXP4XX-Flash.0”:

0x00000000-0x00060000 : “RedBoot”

0x00fc0000-0x00fc1000 : “RedBoot config”

0x00fe0000-0x01000000 : “FIS directory”

...

    

 

The first message in Listing 10-5 is printed when the Flash chip is detected, via 
the Common Flash Interface (CFI) driver, enabled through CONFIG_MTD_CFI. CFI is 
an industry-standard method for determining the Flash chip’s characteristics, such as 
manufacturer, device type, total size, and erase block size. See  the last section for a link 
to the CFI specification.

CFI is enabled through the kernel-configuration utility under the Memory Tech-
nology Device (MTD) top-level menu. Select “Detect flash chips by Common 
Flash Interface (CFI) probe” under “RAM/ROM/Flash chip drivers,” as shown   in 
Figure 10-3.
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FIGURE 10-3 Kernel configuration for MTD CFI support

Because we also enabled CONFIG_MTD_REDBOOT_PARTS (see Figure 10-3), MTD scans 
for the Redboot partition table on the Flash chip. Notice also that the chip has been 
enumerated with the device name IXP4XX-Flash.0. You can see from Listing 10-5 that 
the Linux kernel has detected three partitions   on the Flash chip, as enumerated previ-
ously using the fis list command in Redboot.

When the infrastructure is in place as described here, the Linux kernel automati-
cally detects and creates kernel data structures representing the three Flash partitions. 
Evidence of these can be found in the /proc file   system when the kernel has completed 
initialization, as shown in Listing 10-6.
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LISTING 10-6 Kernel MTD Flash Partitions

root@coyote:~# cat /proc/mtd

dev:    size   erasesize  name

mtd0: 00060000 00020000 “RedBoot”

mtd1: 00001000 00020000 “RedBoot config”

mtd2: 00020000 00020000 “FIS directory”

#

We can easily create a new Redboot partition. We use the Redboot FIS commands 
for this example, but we do not detail the Redboot commands in this book. You can 
consult the Redboot user documentation to learn   more about this. See the last section 
for references. Listing 10-7 shows the details of creating a new Redboot partition.

LISTING 10-7 Creating a New Redboot Partition

RedBoot> load -r -v -b 0x01008000 coyote-40-zImage

Using default protocol (TFTP)

Raw file loaded 0x01008000-0x0114dccb, assumed entry at 0x01008000

RedBoot> fis create -b 0x01008000 -l 0x145cd0 -f 0x50100000 MyKernel

... Erase from 0x50100000-0x50260000: . .........

... Program from 0x01008000-0x0114dcd0 at 0x50100000: ....

... Unlock from 0x50fe0000-0x51000000: .

... Erase from 0x50fe0000-0x51000000: .

... Program from 0x03fdf000-0x03fff000 at 0x50fe0000: .

... Lock from 0x50fe0000-0x51000000: .

First, we load the image to be used to create the new partition. We use our kernel 
image for the example and load it to memory address    0x01008000. We then create the 
new partition using the Redboot fis create command. We instruct Redboot to create 
the new partition in an area of Flash starting at 0x50100000. You can see the action as 
Redboot first erases this area of Flash and then programs the kernel image. In the final 
sequence, Redboot unlocks its directory area and updates the FIS Directory with the 
new partition information. Listing 10-8 shows the output of fis list with the new 
partition. Compare this with the output   shown in Listing 10-4.

LISTING 10-8 New Redboot Partition List

RedBoot> fis list

Name              FLASH addr  Mem addr    Length     Entry point

RedBoot           0x50000000  0x50000000  0x00060000  0x00000000

RedBoot config    0x50FC0000  0x50FC0000  0x00001000  0x00000000

FIS directory     0x50FE0000  0x50FE0000  0x00020000  0x00000000

MyKernel          0x50100000  0x50100000  0x00160000  0x01008000
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Of course, when we boot the Linux kernel, it discovers the new partition, and we 

can operate on it as we see fit. You might have realized the other benefit of this new par-
tition: We can now boot the kernel from Flash instead of having to load it using TFTP 
every time. The Redboot command for accomplishing    this is shown next. Simply pass 
the Redboot exec command the Flash starting address of the partition and the length 
of the image to transfer into RAM:

RedBoot> exec -b 0x50100000 -l 0x145cd0

   Uncompressing Linux........... done, booting the kernel.

   ...

  

 

10.2.2 Kernel Command-Line Partitioning

As detailed in Section 10.2, “MTD Partitions,” the raw Flash partition information 
can be communicated to the kernel using other    methods. Indeed, possibly the most 
straightforward way, though perhaps not the simplest, is to manually pass the parti-
tion information directly on the kernel command line. Of course, as you have learned, 
some bootloaders make that easy (such as U-Boot), whereas others do not have a facil-
ity to pass a kernel command line to the kernel upon boot. In these cases, the kernel 
command line must be configured at compile time and therefore is more difficult to 
change, requiring a recompile of the kernel itself each time the partitions are modified.

To enable command-line partitioning in the MTD subsystem, your kernel must be 
configured for this support. You can see this configuration option in Figure 10-2 under 
“MTD partitioning support.” Select the option for command-line partition table pars-
ing, which defines the CONFIG_MTD_CMDLINE_PARTS option.

Listing 10-9 shows the format for defining a partition on the kernel command line 
(taken from .../drivers/mtd/cmdlinepart.c).

LISTING 10-9 Kernel Command-Line MTD Partition Format

mtdparts=<mtddef>[;<mtddef]

 * <mtddef>  := <mtd-id>:<partdef>[,<partdef>]

 * <partdef> := <size>[@offset][<name>][ro]

 * <mtd-id>  := unique name used in mapping driver/device (mtd->name)

 * <size>    := std linux memsize OR “-” to denote all remaining space

 * <name>    := ‘(‘ NAME ‘)’

Each mtddef parameter passed on the kernel command line defines a separate par-
tition. As shown in Listing 10-9, each mtddef definition has several parts. You can 
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specify a unique ID, partition size, and offset from the start of the Flash. You can also 
pass the partition a name and, optionally, the read-only attribute. Referring to our 
Redboot partition definitions shown in Listing 10-4, we could statically define these 
on the kernel command line as follows:

mtdparts=MainFlash:384K(Redboot),4K(config),128K(FIS),-(unused)

With this definition, the kernel would instantiate four MTD partitions, with an 
MTD ID of MainFlash, containing the sizes and layout    matching those found in List-
ing 10-4.

10.2.3 Mapping Driver

The final method for defining your board-specific Flash layout is to use a dedicated 
board-specific mapping driver. The    Linux kernel source tree contains many examples 
of mapping drivers, located in .../drivers/mtd/maps. Any one of these will provide 
a good example of how to create your own. The implementation details vary by archi-
tecture.

The mapping driver is a proper kernel module, complete with module_init() and 
module_exit() calls, as described in Chapter 8, “Device Driver Basics.” A typical map-
ping driver is small and easy to navigate, often containing fewer than a couple dozen 
lines of C.

Listing 10-10 reproduces a section of .../drivers/mtd/maps/pq2fads.c. This 
mapping driver defines the Flash device on a Freescale PQ2FADS evaluation board 
that supports the MPC8272 and other   processors.

LISTING 10-10 PQ2FADS Flash Mapping Driver

...

static struct mtd_partition pq2fads_partitions[] = {

      {

#ifdef CONFIG_ADS8272

            .name       = “HRCW”,

            .size       = 0x40000,

            .offset       = 0,

            .mask_flags = MTD_WRITEABLE,  /* force read-only */

      }, {

            .name       = “User FS”,

            .size       = 0x5c0000,

            .offset       = 0x40000,

#else
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LISTING 10-10 Continued

            .name       = “User FS”,

            .size       = 0x600000,

            .offset       = 0,

#endif

      }, {

            .name       = “uImage”,

            .size       = 0x100000,

            .offset       = 0x600000,

            .mask_flags = MTD_WRITEABLE,  /* force read-only */

      }, {

            .name       = “bootloader”,

            .size       = 0x40000,

            .offset     = 0x700000,

            .mask_flags = MTD_WRITEABLE,  /* force read-only */

      }, {

            .name       = “bootloader env”,

            .size       = 0x40000,

            .offset            = 0x740000,

            .mask_flags = MTD_WRITEABLE,  /* force read-only */

      }

};

/* pointer to MPC885ADS board info data */

extern unsigned char __res[];

static int __init init_pq2fads_mtd(void)

{

      bd_t *bd = (bd_t *)__res;

      physmap_configure(bd->bi_flashstart, bd->bi_flashsize,

                      PQ2FADS_BANK_WIDTH, NULL);

      physmap_set_partitions(pq2fads_partitions,

                      sizeof (pq2fads_partitions) /

                      sizeof (pq2fads_partitions[0]));

      return 0;

}

static void __exit cleanup_pq2fads_mtd(void)

{

}

module_init(init_pq2fads_mtd);

module_exit(cleanup_pq2fads_mtd);

...
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This simple but complete Linux device    driver communicates the PQ2FADS Flash 
mapping to the MTD subsystem. Recall from Chapter 8 that when a function in a 
device driver is declared with the module_init() macro, it is automatically invoked 
during Linux kernel boot. In this PQ2FADS mapping driver, the module initialization 
function init_pq2fads_mtd() performs just two simple calls:

 • physmap_configure() passes to the MTD subsystem the Flash chip’s physical 
address, size, and bank width, along with any special setup function required 
to access the Flash.

 • physmap_set_partitions() passes the board’s unique partition information 
to the MTD subsystem from the partition table defined in the pq2fads_
partitions[] array found at the start of this mapping driver.

Following this simple example, you     can derive a mapping driver for your own board.

10.2.4 Flash Chip Drivers

MTD supports a wide variety   of Flash chips and devices. Chances are very good that 
your chosen chip is also supported. The most common Flash chips support the Com-
mon Flash Interface (CFI) mentioned earlier. Older Flash chips might have JEDEC 
support, which is an older Flash compatibility standard. Figure 10-4 shows the kernel 
configuration from a recent Linux kernel snapshot. This version supports many Flash 
types.

If your Flash chip is not supported, you must provide a device file yourself. Using 
one of the many examples in .../drivers/mtd/chips as a starting point, customize or 
create your own Flash device driver. Better yet, unless the chip was just introduced with 
some newfangled interface, someone probably     has already produced a driver.

10.2.5 Board-Specific Initialization

Along with a mapping driver, your   board-specific (platform) setup must provide the 
underlying definitions for proper MTD Flash system operation. Listing 10-11 repro-
duces the relevant portions of .../arch/arm/mach-ixp4xx/coyote-setup.c.
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FIGURE 10-4 Flash device support

LISTING 10-11 Coyote-Specific Board Setup

static struct flash_platform_data coyote_flash_data = {

      .map_name   = “cfi_probe”,

      .width      = 2,

};

static struct resource coyote_flash_resource = {

      .flags            = IORESOURCE_MEM,

};

static struct platform_device coyote_flash = {
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LISTING 10-11 Continued

      .name       = “IXP4XX-Flash”,

      .id         = 0,

      .dev        = {

            .platform_data = &coyote_flash_data,

      },

      .num_resources      = 1,

      .resource   = &coyote_flash_resource,

};

...

static struct platform_device *coyote_devices[] __initdata = {

      &coyote_flash,

      &coyote_uart

};

static void __init coyote_init(void)

{

      ...

      platform_add_devices(coyote_devices,

                             ARRAY_SIZE(coyote_devices));

}

...

Starting from the bottom of Listing 10-11, the coyote_init() function calls 
platform_add_devices(), specifying the Coyote-specific devices defined earlier in 
this file. You’ll notice that two devices    are defined just above the coyote_init() rou-
tine. The one we’re interested in for this discussion is coyote_flash. This structure of 
type struct platform_device contains all the important details needed by the Linux 
kernel and MTD subsystem.

The .name member of the coyote_flash structure binds our platform-specific Flash 
resource to a mapping driver with the same name. You can see this in the mapping driv-
er file .../drivers/mtd/maps/ixp4xx.c. The .resource member communicates the 
base address of the Flash on the board. The .dev member, which contains a .platform_
data member, ties our Flash setup to a chip driver. In this case, we have specified that 
our board will use the CFI probe method, specified in the kernel configuration as 
CONFIG_MTD_CFI. You can see this configuration selection in Figure 10-4.
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Depending on your own architecture and board, you can use a method similar to 
this to define the Flash support for your own board.

10.3 MTD Utilities

The MTD package   contains a number of system utilities useful for setting up and 
managing your MTD subsystem. The utilities are built separately from the primary 
MTD subsystem, which should be built from within your Linux kernel source tree. 
These utilities can be built in a manner similar to any other cross-compiled user space 
code.

You must exercise caution when using these utilities, because Linux provides no 
protection from mistakes. A single-digit typo can wipe out the bootloader on your 
hardware platform. This can ruin your day unless you’ve backed it up and know how 
to reprogram it using a JTAG Flash programmer.

In keeping with a common practice throughout this book, we cannot devote suf-
ficient space to cover every MTD utility. We highlight the most common and useful 
ones and leave it as an exercise for you to explore the rest. A recent MTD snapshot 
contained more than 20 binary utilities.

The flash_* family of utilities is useful for raw device operations on an MTD par-
tition. These include flashcp, flash_erase, flash_info, flash_lock, flash_unlock, and 
others. Hopefully their names are descriptive enough to give you some idea of their 
function. After partitions are defined and enumerated as kernel devices, any of these 
user space utilities can be run on a partition. We repeat the warning we issued earlier: 
If you execute flash_erase on the partition containing your bootloader, you’ll be the 
proud owner of a silicon paperweight. If you intend to experiment like this, it’s a good 
idea to have a backup of your bootloader image and to know how to re-Flash it using 
a hardware JTAG emulator or another Flash programming tool.

Our new partition created in Listing 10-7 (MyKernel) shows up in the kernel run-
ning on the Coyote board, as detailed in Listing 10-12. Here you can see the new 
partition we created instantiated      as the kernel device mtd1.

LISTING 10-12 Kernel MTD Partition List

root@coyote:~# cat /proc/mtd

dev:    size   erasesize  name

mtd0: 00060000 00020000 “RedBoot”

mtd1: 00160000 00020000 “MyKernel”

mtd2: 00001000 00020000 “RedBoot config”

mtd3: 00020000 00020000 “FIS directory”
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Using the MTD utilities, we can perform a number of operations on the newly cre-
ated partition. The following is the result    of a flash_erase command on the partition:

# flash_erase /dev/mtd1

Erase Total 1 Units

Performing Flash Erase of length 131072 at offset 0x0 done

To copy a new kernel image to this partition, use the    flashcp command:

root@coyote:~# flashcp /workspace/coyote-40-zImage /dev/mtd1

 

It gets a bit more interesting working with a root file system partition. We have the 
option of using the bootloader or the Linux kernel to place the initial image on the 
Redboot Flash partition. First, we use Redboot to create the new partition that will 
hold our root file system. The following command creates a new partition on the Flash 
device called RootFS starting at physical memory address 0x50300000, with a length of 
30 blocks. Remember, a block, generically called an erase unit, is 128KB on this Flash 
chip.

RedBoot> fis create -f 0x50300000 -l 0x600000 -n RootFS

Next, we boot the kernel and copy the root file system image into the new parti-
tion we have named RootFS. This is accomplished with the following command from 
a Linux command prompt on your target   board. Note that this assumes you have 
already placed your file system image in a directory accessible to your board. As men-
tioned many times throughout this book, NFS root mount is your best friend during 
development.

root@coyote:~# flashcp /rootfs.ext2 /dev/mtd2

The file system can be anywhere from a couple megabytes up to the largest size we 
have allowed on this partition, so this can take some time. Remember, this operation 
involves programming (sometimes called   flashing) the image into the Flash memory. 
After copying, we can mount the   partition as a file system. Listing 10-13 displays the 
sequence.

LISTING 10-13 Mounting the MTD Flash Partition as an ext2 File System

root@coyote:~# mount -t ext2 /dev/mtdblock2 /mnt/remote ro

root@coyote:~# ls -l /mnt/remote/

total 16
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LISTING 10-13 Continued

drwxr-xr-x  2 root root 1024 Nov 19  2005 bin

drwxr-xr-x  2 root root 1024 Oct 26  2005 boot

drwxr-xr-x  2 root root 1024 Nov 19  2005 dev

drwxr-xr-x  5 root root 1024 Nov 19  2005 etc

drwxr-xr-x  2 root root 1024 Oct 26  2005 home

drwxr-xr-x  3 root root 1024 Nov 19  2005 lib

drwxr-xr-x  3 root root 1024 Nov 19  2005 mnt

drwxr-xr-x  2 root root 1024 Oct 26  2005 opt

drwxr-xr-x  2 root root 1024 Oct 26  2005 proc

drwxr-xr-x  2 root root 1024 Oct 26  2005 root

drwxr-xr-x  2 root root 1024 Nov 19  2005 sbin

drwxr-xr-x  2 root root 1024 Oct 26  2005 srv

drwxr-xr-x  2 root root 1024 Oct 26  2005 sys

drwxr-xr-x  2 root root 1024 Oct 26  2005 tmp

drwxr-xr-x  6 root root 1024 Oct 26  2005 usr

drwxr-xr-x  2 root root 1024 Nov 19  2005 var

root@coyote:~#

  

Listing 10-13 has two important subtleties. Notice that we have specified /dev/
mtdblock2 on the mount command line. This is the MTD block driver that enables us 
to access the MTD partition as a block device. Specifying /dev/mtd2 instructs the ker-
nel to use the MTD character driver. Both mtdchar and mtdblock are pseudo drivers 
used to provide either character-based or block-oriented access to the underlying Flash 
partition. Because mount expects a block device, you must use the block-device speci-
fier. Figure 10-1 shows the kernel configuration that enables these access methods. The 
respective kernel configuration macros are CONFIG_MTD_CHAR and CONFIG_MTD_BLOCK.

The second subtlety is the use of the read-only (ro) command-line switch on the 
mount command. It is perfectly acceptable to mount an ext2 image from Flash using 
the MTD block emulation driver for read-only purposes. However, there is no support 
for writing to an ext2 device using the mtdblock driver. This is because ext2 has no 
knowledge of Flash erase blocks. For write access to a Flash-based   file system, we need 
to use a file system with Flash knowledge, such as JFFS2.

10.3.1 JFFS2 Root File System

Creating a JFFS2 root file system is a straightforward process. In addition to compres-
sion, JFFS2 supports wear leveling, a feature designed to increase Flash lifetime by 
fairly distributing the write cycles across the blocks of the device. As pointed out in 
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Chapter 9, Flash memory is subject to a limited number of write cycles. Wear leveling 
should be considered a mandatory feature in any Flash-based file system you employ. 
As mentioned elsewhere in this book, you should consider Flash memory as a write-
occasional medium. Specifically, you should avoid allowing any processes that require 
frequent writes to target the Flash file system. Be especially aware of any logging pro-
grams, such as syslogd.

We can build a JFFS2 image on our development workstation using the ext2 im-
age we used on our Redboot RootFS partition. The compression benefits will be im-
mediately obvious. The image we used in the previous RootFS example was an ext2 file 
system image. Here is the listing in long (-l) format:

# ls -l rootfs.ext2

-rw-r--r--  1 root root 6291456 Nov 19 16:21 rootfs.ext2

 Now let’s convert this file system image to JFFS2 using the mkfs.jffs2 utility found 
in the MTD package. Listing 10-14 shows the command and results.

LISTING 10-14 Converting RootFS to JFFS2

# mount -o loop rootfs.ext2 /mnt/flash/

# mkfs.jffs2 -r /mnt/flash -e 128 -b -o rootfs.jffs2

# ls -l rootfs.jffs2

-rw-r--r--  1 root root 2401512 Nov 20 10:08 rootfs.jffs2

#

 

First we mount the ext2 file system image on a loopback device on an arbitrary 
mount point on our development workstation. Next we invoke the MTD utility mkfs.
jffs2 to create the JFFS2 file system image. The -r flag tells mkfs.jffs2 where the 
root file system image is located. The -e instructs mkfs.jffs2 to build the image while 
assuming a 128KB block size. The default block size is 64KB. JFFS2 does not exhibit 
its most efficient behavior if the Flash device contains a different block size than the 
block size of the image. Finally, we display a long listing and discover that the resulting 
JFFS2 root file system image has been reduced in size by more than 60 percent. When 
you are working with limited Flash memory, this is a substantial reduction in precious  
Flash resource usage.

Take note of an important command-line flag passed to mkfs.jffs2 in Listing 
10-14. The -b flag is the -big-endian flag. It instructs the mkfs.jffs2 utility to create 
a JFFS2 Flash image suitable for use on   a big-endian target. Because we are targeting 
the ADI Engineering Coyote board, which contains an Intel IXP425 processor run-
ning in big-endian mode, this step is crucial for proper operation. If you fail to specify 
big-endian, you will get several screens full of complaints from the kernel as it tries to 
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 negotiate the superblock of a JFFS2 file system that is essentially gibberish.2 Would you 
like to guess how I remembered this important detail?

In a manner similar to the previous example, we can copy this image to our Redboot 
RootFS Flash partition using the flashcp utility. Then we can boot the Linux kernel 
using a JFFS2 root file system. Listing 10-15 provides the details, running the MTD 
utilities on our target hardware.

LISTING 10-15 Copying JFFS2 to the RootFS Partition

root@coyote:~# cat /proc/mtd

dev:    size   erasesize  name

mtd0: 00060000 00020000 “RedBoot”

mtd1: 00160000 00020000 “MyKernel”

mtd2: 00600000 00020000 “RootFS”

mtd3: 00001000 00020000 “RedBoot config”

mtd4: 00020000 00020000 “FIS directory”

root@coyote:~# flash_erase /dev/mtd2

Erase Total 1 Units

Performing Flash Erase of length 131072 at offset 0x0 done

root@coyote:~# flashcp /rootfs.jffs2 /dev/mtd2

root@coyote:~#

It is important to note that you must have the JFFS2 file system enabled in your 
kernel configuration. Execute make ARCH=<arch> gconfig and select JFFS2 under File 
Systems, Miscellaneous File Systems. Another useful hint is to use the -v (verbose) flag 
on the MTD utilities. This provides progress updates and other useful information 
during the Flash operations.

We have already seen how to boot a kernel with the Redboot exec command. List-
ing 10-16 details the sequence of commands to load   and boot the Linux kernel with 
our new JFFS2 file system as root.

LISTING 10-16 Booting with JFFS2 as the Root File System

RedBoot> load -r -v -b 0x01008000 coyote-zImage

Using default protocol (TFTP)

Raw file loaded 0x01008000-0x0114decb, assumed entry at 0x01008000

RedBoot> exec -c “console=ttyS0,115200 rootfstype=jffs2 root=/dev/mtdblock2”

Using base address 0x01008000 and length 0x00145ecc

Uncompressing Linux...... done, booting the kernel.

...

2 The kernel can be configured to operate with a wrong-endian MTD file system, at the cost of reduced performance. In some 
configurations (such as multiprocessor designs), this can be a useful feature.
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10.4 UBI File System

The Unsorted Block Image (UBI) File System   was designed to overcome some of the 
limitations of the JFFS2 file system. It can be considered the successor to JFFS2, al-
though JFFS2 remains in widespread use on embedded Linux devices containing Flash 
memory. The UBI File System (UBIFS) is layered on top of UBI devices, which in turn 
depends on MTD devices.

UBIFS improves on one of the more significant limitations of the JFFS2 file sys-
tem: mount time. JFFS2 maintains its indexing metadata in system memory and must 
read this index to build a complete directory tree each time the system boots. This can 
require reading a significant portion of the Flash device. In contrast, UBIFS maintains 
its indexing metadata on the Flash device itself, negating the need to scan and rebuild 
this data on each mount. Therefore, UBIFS mounts many times faster than JFFS2.

UBIFS also supports write caching, which can be a significant performance en-
hancement. You can read more about the advantages of UBIFS at www.linux-mtd.
infradead.org/doc/ubifs.html.

10.4.1 Configuring for UBIFS

To use UBIFS, your kernel needs   to have UBI support enabled. Two different kernel 
configuration menu items must be enabled in your kernel configuration to enable 
UBIFS. First, enable support for MTD_UBI. This option can be found in your kernel 
configuration under Device Drivers --> Memory Technology Device (MTD) support 
--> UBI - Unsorted block images --> Enable UBI. After this item is chosen, it enables 
the file system support configuration options found under File Systems --> Miscella-
neous filesystems --> UBIFS file system support.

10.4.2 Building a UBIFS Image

Building a UBIFS image is a little more   tricky than building a JFFS2 image. The ad-
ditional complexity comes from the NAND Flash technology. Building a UBIFS im-
age requires that you have knowledge of the NAND Flash architecture on your target 
system. This will become clear in a moment. You will also need a fairly recent version 
of MTD Utils installed on your development workstation. MTD Utils can be found at 
git://git.infradead.org/mtd-utils.git.

Listing 10-17 details the process for creating the UBIFS image on your develop-
ment workstation. Assume for this exercise that you have the   desired contents of your 
file system in a directory called rootfs.

  

www.linux-mtd.infradead.org/doc/ubifs.html
www.linux-mtd.infradead.org/doc/ubifs.html
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LISTING 10-17 Building the UBIFS Image

$ mkfs.ubifs -m 2048 -e 129024 -c 1996 -o ubifs.img -r ./rootfs

$ ubinize -m 2048 -p 128KiB -s 512 -o ubi.img ubinize.cfg

$ ls -l

total 200880

drwxr-xr-x 17 chris chris      4096 2010-03-01 11:33 rootfs

-rw-r--r--  1 chris chris 101799936 2010-03-01 11:55 ubifs.img

-rw-r--r--  1 chris chris 103677952 2010-03-01 11:58 ubi.img

-rw-r--r--  1 chris chris       112 2010-03-01 11:54 ubinize.cfg

 

 

The raw UBIFS image is built using the mkfs.ubifs utility, from the mtd-utils 
package. This produces the target file ubifs.img. It is critical that the correct param-
eters are passed to mkfs.ubifs. These parameters come from your hardware design and 
NAND Flash architecture. The -m specifies the minimum I/O unit size—in this case, 
2KB. The -e specifies the logical erase block (LEB) size for the image. The maximum 
number of LEBs for the image is specified by -c. The name of the output image is 
specified using -o. For this example, we have named it ubifs.img.

Now that we have the UBIFS image, we must generate the UBI volume image. We 
use the ubinize tool (part of the mtd-utils package) for this. Once again, we must use 
the correct parameters for our target environment. In addition, you will notice that 
ubinize requires a configuration file. The ubinize.cfg file     contains the volume name, 
among other things, as we will see shortly.

Listing 10-17 specifies the minimum I/O size, as in mkfs.ubifs, as 2KB. Here we 
specify the physical erase block size, given by the -p parameter. In our case, we are us-
ing NAND Flash with a 128KiB physical erase block size. The -s parameter specifies 
a subpage size, which is the minimum I/O unit. We name the target output file using 
-o ubi.img. We will flash this image into our device.

The configuration file used by ubinize specifies the volumes to be generated by the 
ubinize tool. Listing 10-18 details the simple       configuration we used for Listing 10-17.

LISTING 10-18 ubinize Configuration File

$ cat ubinize.cfg

[ubifs]

mode=ubi

image=ubifs.img

vol_id=0

vol_size=200MiB

vol_type=dynamic

vol_name=rootfs
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Here you can see that we named the volume rootfs and that the raw image comes 
from the file called ubifs.img. Recall from Listing 10-17 that this was the image pro-
duced by the mkfs.ubifs utility. You can read more    about the ubinize configuration 
file from the man page for that utility.

Once we have the final image, we can flash it to our device. We will use the 
ubiformat command for that. You cannot    simply flash the raw image to the device. 
This is because NAND Flash as used by the UBI layer contains special headers that 
record the erase count, among other things, for each physical erase block. This is used 
for wear leveling. Using ubiformat preserves these error count headers. Listing    10-19 
shows the details.

LISTING 10-19 Using the UBIFS Image

root@beagleboard:~# flash_eraseall /dev/mtd4

Erasing 128 Kibyte @ f980000 -- 100 % complete.

root@beagleboard:~# ubiformat /dev/mtd4 -s 512 -f /ubi.img

ubiformat: mtd4 (NAND), size 261619712 bytes (249.5 MiB), 131072 eraseblocks of 
131072 bytes (128.0 KiB), min. I/O size 2048 bytes

<...>

root@beagleboard:~# ubiattach /dev/ubi_ctrl -m 4

UBI device number 0, total 1996 LEBs (257531904 bytes, 245.6 MiB), available 0 
LEBs (0 bytes), LEB size 129024 bytes (126.0 KiB)

root@beagleboard:~# mount -t ubifs  ubi0:rootfs /mnt/ubifs

root@beagleboard:~# ls /mnt/ubifs

bin     dev     home    linuxrc  mnt     sbin    sys     usr

boot    etc     lib     media    proc    srv     tmp     var

Here you can see the sequence of events leading to mounting of the UBIFS file 
system. First, we erase the Flash device, using flash_eraseall, one of the utilities from 
mtd-utils. Consider your need to use this erase utility, because it does not preserve er-
ror counters. This would be a first-time-use scenario.

The ubiformat command places the image on the NAND Flash in our example. 
The -s specifies the subpage size, which must agree with the image, and the -f is 
used to select the image file. After this operation completes, we can attach the UBI 
device, which is required before the UBI device is mounted. ubiattach requires the 
UBI control device (/dev/ubi_ctrl) and a specifier to select which MTD device to at-
tach. Because we wrote the image to MTD partition 4 (/dev/mtd4), we specify this to 
ubiattach using the -m 4 parameter.
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With all of this in place, we can now mount the UBIFS image. Notice in Listing 
10-19 that we pass the volume name specified     in the ubinize.cfg configuration file to 
the mount command.

10.4.3 Using UBIFS as the Root File System

Now that we have an image    in place on /dev/mtd4, we can instruct the kernel to mount 
this file system as its root file system. To do so, pass the following kernel command-line 
parameters to the kernel:

ubi.mtd=4 root=ubi0:rootfs rw rootfstype=ubifs

This set of kernel command-line parameters instructs the kernel to attach the mtd4 
device to ubi0 and to mount the resulting UBI device as the root file system. If you 
run into difficulties, make sure you include an appropriate rootdelay option on your 
kernel command line. For this exercise, rootdelay=1 was required to allow time for 
the UBI and UBIFS layers to be ready when it came time to mount the UBIFS as the 
root file system.

10.5 Summary

This chapter presented one of the more important and difficult-to-master topics of 
interest to the embedded developer. MTD is present in some form on many embed-
ded systems.

• The Memory Technology Device (MTD) subsystem provides support for 
memory devices such as Flash memory in the Linux kernel.

• MTD must be enabled in your Linux kernel configuration. Several figures in 
this chapter detailed the configuration options.

• As part of the MTD kernel configuration, the proper Flash driver(s) for your 
Flash chips must be selected. Figure 10-4 showed the chip drivers supported in 
a recent Linux kernel snapshot.

• Your Flash memory device can be managed as a single large device or can be 
divided into multiple partitions.

• Several methods are available for communicating the partition information 
to the Linux kernel. These include Redboot partition information, kernel 
command-line parameters, and mapping drivers.
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• A mapping driver, together with definitions supplied by your architecture-
specific board support, defines your Flash configuration to the kernel.

• MTD comes with a number of user space utilities to manage the images on 
your Flash devices.

• The Journaling Flash File System 2 (JFFS2) is a good companion to the MTD 
subsystem for small, efficient Flash-based file systems. In this chapter, we built 
a JFFS2 image and mounted it as root on our target device.

• UBIFS improves on JFFS2 and is rapidly gaining popularity in embedded 
systems.

10.5.1 Suggestions for Additional Reading

MTD Linux home page   
www.linux-mtd.infradead.org/

Redboot user documentation  
http://ecos.sourceware.org/ecos/docs-latest/redboot/redboot-guide.html

Common Flash Memory Interface Specification
AMD Corporation  
www.amd.com/us-en/assets/content_type/DownloadableAssets/cfi_r20.pdf

  

www.linux-mtd.infradead.org/
http://ecos.sourceware.org/ecos/docs-latest/redboot/redboot-guide.html
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he man page for BusyBox declares that BusyBox is “The Swiss Army Knife 
of Embedded Linux.” This is a fitting description, for BusyBox is a small 

and efficient replacement for a large collection of standard Linux command-line 
utilities. It often serves as the foundation for a resource-limited embedded plat-
form. This chapter introduces BusyBox and provides an excellent starting point 
for customizing your own BusyBox installation.

Previous chapters referred to BusyBox. This chapter presents the details of this 
useful package. After a brief introduction to BusyBox, we explore the BusyBox 
configuration utility. This is used to tailor BusyBox to your particular require-
ments. We then discuss the requirements for cross-compiling the BusyBox pack-
age.

BusyBox operational issues are considered, including how it is used in an em-
bedded system. We examine the BusyBox initialization sequence and explain 
how it departs from the standard System V initialization. This chapter also pres-
ents a sample initialization script. After seeing the steps for installing BusyBox 
on a target system, you will learn about some of the BusyBox commands and 
their limitations.

11.1 Introduction to BusyBox

BusyBox has gained  tremendous popularity in the embedded Linux community. 
It is remarkably easy to configure, compile, and use. In addition, it has the poten-
tial to significantly reduce the overall system resources required to support a wide 
collection of common Linux utilities. BusyBox provides compact replacements for 
many traditional full-blown utilities found on most desktop and embedded Linux 
distributions. Examples include the file utilities such as ls, cat, cp, dir, head, and 
tail; general utilities such as dmesg, kill, halt, fdisk, mount, and umount; and 
many more. BusyBox also provides support for more-complex operations, such as 
ifconfig, netstat, route, and other network utilities.

BusyBox is modular and highly configurable and can be tailored to suit your par-
ticular requirements. The package includes a configuration utility similar to the one 
used to configure the Linux kernel and therefore will seem quite familiar.
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The commands in BusyBox generally are simpler implementations than their full-
blown counterparts. In some cases, only a subset of the usual command-line options 
are supported. In practice, however, you will find that the BusyBox subset of command 
functionality is more than sufficient for most general embedded  requirements.

11.1.1 BusyBox Is Easy

If you can configure and build the Linux kernel, you will find BusyBox quite straight-
forward to configure, build, and install. The steps are similar:

1. Execute a configuration utility and enable your choice of features.

 2. Run make to build the package.

3. Install the binary and a series of symbolic links1 on your target system.

You can build and install BusyBox on   your development workstation or your target 
embedded system. BusyBox works equally well in both environments. However, you 
must take care when installing on your development workstation that you keep it iso-
lated in a working directory, to avoid overwriting your system’s startup files or primary 
utilities.

11.2 BusyBox Configuration

To initiate the BusyBox configuration, the   command is the same as that used with the 
Linux kernel for the ncurses library-based configuration utility. Note that, in a similar 
fashion to the Linux kernel, make help produces     much useful information on available 
make targets. The command to configure is:

$ make menuconfig

 
Figure 11-1 shows the top-level   BusyBox configuration.
Space does not permit coverage of each configuration option. However, some of the 

options deserve mention. Some of the more important BusyBox configuration options 
appear under Busybox Settings ---> Build Options. Here you will find configuration 
options necessary to cross-compile the BusyBox application. Listing 11-1 details the 
options found under Build Options in a recent BusyBox snapshot. Select   Build Op-
tions from the top-level BusyBox configuration utility to navigate to this screen.

1 We cover the details of symbolic links shortly.
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FIGURE 11-1 Top-level BusyBox Configuration menu

LISTING 11-1 BusyBox Build Options

[ ] Build BusyBox as a static binary (no shared libs)

[ ]   Build BusyBox as a position independent executable

[ ] Force NOMMU build

[ ] Build shared libbusybox

[*] Build with Large File Support (for accessing files > 2 GB)

()  Cross Compiler prefix

The first option is useful for building very minimal embedded systems. It allows 
BusyBox to be compiled and linked statically so that no dynamically loaded libraries 
(libc-*, for example) are required at runtime on the target system. Without this op-
tion, BusyBox requires various libraries so that it can run. We can easily determine 
what libraries BusyBox (or any other binary) requires on our target system by using   
the ldd command. Listing 11-2 is the output of ldd cross-compiled for ARM xscale.
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LISTING 11-2 BusyBox Library Dependencies

$ xscale_be-ldd busybox

    linux-gate.so.1 =>  (0xb8087000)

    libm.so.6 => /lib/tls/i686/cmov/libm.so.6 (0xb804d000)

    libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7efe000)

    /lib/ld-linux.so.2 (0xb8088000)

 

 

Notice that the BusyBox utility, as compiled using the default configuration, re-
quires the four shared libraries shown in Listing 11-2. Had we elected to build Busy-
Box as a static binary, ldd would simply issue a message telling us that the BusyBox 
binary is not a dynamic executable. In other words, it requires no shared libraries to 
resolve any unresolved dependencies in the executable. Static linking yields a smaller 
overall footprint on a root file system because no shared libraries are required. How-
ever, building an embedded application without shared libraries means that none of 
the familiar C library functions are available to your applications. To give you an idea 
of the relative size difference between a statically linked BusyBox and the same con-
figuration compiled against shared libraries, a statically linked busybox is about 1.5MB 
versus 778KB for a dynamically linked image   for a recent version of BusyBox.

11.2.1 Cross-Compiling BusyBox

As mentioned at the beginning of the    chapter, the authors of BusyBox intended the 
package to be used in a cross-development environment, so building BusyBox in such 
an environment is quite easy. In earlier versions of BusyBox the only requirement was 
to specify the prefix to the cross-compiler by selecting the option to build BusyBox 
with a cross-compiler. This has been superseded by the more standard method of speci-
fying an environment variable similar to building other packages such as the Linux ker-
nel. To cross-compile with a specific cross-compiler on your development workstation, 
simply define CROSS_COMPILE in your environment. Some examples of CROSS_COMPILE
values are arm5vt_le-, xscale_be-, and ppc_linux-. Note that you can also specify 
the cross-compiler prefix in the configuration utility just described. We cover compiler 
prefixes related to cross-compiling in more detail in the next chapter when we examine 
the embedded development environment.

11.3 BusyBox Operation

When you build BusyBox, you end up with a binary called—you guessed it—BusyBox.
BusyBox can be invoked from the binary name itself, but it is   usually launched via a 
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symlink. When BusyBox is invoked without command-line parameters, it produces a 
list of the functions that were enabled via the configuration. Listing 11-3 shows    such 
an output (it has been formatted to fit the page width).

LISTING 11-3 BusyBox Usage

root@coyote # busybox

BusyBox v1.13.2 (2010-02-24 16:04:14 EST) multi-call binary

Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko and

others. Licensed under GPLv2.

See source distribution for full notice.

Usage: busybox [function] [arguments]...

   or: function [arguments]...

    BusyBox is a multi-call binary that combines many common Unix

    utilities into a single executable.  Most people will create a link

    to busybox for each function they wish to use and BusyBox will act

    like whatever it was invoked as!

Currently defined functions:

    [, [[, addgroup, adduser, ar, ash, awk, basename, blkid, bunzip2,

    bzcat, cat, chattr, chgrp, chmod, chown, chpasswd, chroot, chvt,

    clear, cmp, cp, cpio, cryptpw, cut, date, dc, dd, deallocvt,

    delgroup, deluser, df, dhcprelay, diff, dirname, dmesg, du,

    dumpkmap, dumpleases, echo, egrep, env, expr, false, fbset,

    fbsplash, fdisk, fgrep, find, free, freeramdisk, fsck, fsck.minix,

    fuser, getopt, getty, grep, gunzip, gzip, halt, head, hexdump,

    hostname, httpd, hwclock, id, ifconfig, ifdown, ifup, init, insmod,

    ip, kill, killall, klogd, last, less, linuxrc, ln, loadfont,

    loadkmap, logger, login, logname, logread, losetup, ls, lsmod,

    makedevs, md5sum, mdev, microcom, mkdir, mkfifo, mkfs.minix, mknod,

    mkswap, mktemp, modprobe, more, mount, mv, nc, netstat, nice,

    nohup, nslookup, od, openvt, passwd, patch, pidof, ping, ping6,

    pivot_root, poweroff, printf, ps, pwd, rdate, rdev, readahead,

    readlink, readprofile, realpath, reboot, renice, reset, rm, rmdir,

    rmmod, route, rtcwake, run-parts, sed, seq, setconsole, setfont,

    sh, showkey, sleep, sort, start-stop-daemon, strings, stty, su,

    sulogin, swapoff, swapon, switch_root, sync, sysctl, syslogd, tail,

    tar, tee, telnet, telnetd, test, tftp, time, top, touch, tr,

    traceroute, true, tty, udhcpc, udhcpd, umount, uname, uniq, unzip,

    uptime, usleep, vi, vlock, watch, wc, wget, which, who, whoami,

    xargs, yes, zcat
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From Listing 11-3, you can   see the list of functions that are enabled in this BusyBox 
build. They are listed in alphabetical order (ignoring the shell scripting [ and [[ opera-
tors) from addgroup to zcat, a utility used to decompress the contents of a compressed 
file. This list represents the set of utilities enabled in this particular BusyBox build.

To invoke a particular function, execute busybox with one of the defined functions 
passed on the command line. For example, to display a listing of files in the root direc-
tory, execute this command:

[root@coyote]# busybox ls /

Another important message from the BusyBox usage message shown in Listing 
11-3 is the short description of the program. It  describes BusyBox as a multicall binary, 
combining many common utilities into a single executable. This is the purpose of the 
symlinks mentioned earlier. BusyBox was intended to be invoked by a symlink named 
for the function it will perform. This removes the burden of having to type a two-word 
command to invoke a given function, and it presents the user with a set of familiar 
commands for the similarly named utilities. Listings 11-4 and 11-5 should make this 
clear.

Listing 11-4 shows the target directory structure as built by the BusyBox package 
via the make install command in the busybox source tree.

LISTING 11-4 BusyBox Symlink Structure from make install

[root@coyote]$ ls -l /

total 12

drwxrwxr-x  2 root   root 4096 Dec  3 13:38 bin

lrwxrwxrwx  1 root   root   11 Dec  3 13:38 linuxrc -> bin/busybox

drwxrwxr-x  2 root   root 4096 Dec  3 13:38 sbin

drwxrwxr-x  4 root   root 4096 Dec  3 13:38 usr

The executable busybox file is found in the /bin directory, and symlinks have been 
populated throughout the rest of the structure pointing back to /bin/busybox. Listing 
11-5 expands on the directory structure   of Listing 11-4.

LISTING 11-5 BusyBox Symlink Structure: Tree Detail

[root@coyote]$ tree

.

|-- bin

|   |-- addgroup -> busybox

|   |-- busybox
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LISTING 11-5 Continued

|   |-- cat -> busybox

|   |-- cp -> busybox

<...>

|   ‘-- zcat -> busybox

|-- linuxrc -> bin/busybox

|-- sbin

|   |-- halt -> ../bin/busybox

|   |-- ifconfig -> ../bin/busybox

|   |-- init -> ../bin/busybox

|   |-- klogd -> ../bin/busybox

<...>

|   ‘-- syslogd -> ../bin/busybox

‘-- usr

    |-- bin

    |   |-- [ -> ../../bin/busybox

    |   |-- basename -> ../../bin/busybox

<...>

    |   |-- xargs -> ../../bin/busybox

    |   ‘-- yes -> ../../bin/busybox

    ‘-- sbin

        ‘-- chroot -> ../../bin/busybox

The output shown in Listing 11-5 has been significantly truncated for readability 
and to avoid a three-page listing. Each line containing an ellipsis (...) indicates where 
this listing has been pruned to show only the first few and last few entries of that given 
directory. In actuality, more than 100 symlinks can be populated in these directories, 
depending on what functionality you have enabled using the BusyBox configuration 
utility.

Notice the BusyBox executable itself, the second entry from the /bin directory. Also 
in the /bin directory are symlinks pointing back to busybox for addgroup, cat, cp, and 
so on, all the way to zcat. Again, the entries between cp and zcat have been omitted 
from this listing for readability. With this symlink structure, the user simply enters 
the actual name of the utility to invoke its functionality. For example, to configure a 
network interface using the BusyBox ifconfig utility, the user might enter a command 
similar to this:

$ ifconfig eth1 192.168.1.14
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This would invoke the BusyBox executable through the ifconfig symlink. BusyBox 
examines how it was called. In other words, it reads argv[0] to determine what func-
tionality is being requested.

11.3.1 BusyBox init

Notice the symlink in Listing 11-5 called init. In Chapter 6, “User Space Initializa-
tion,” you learned about the init program and its role in system initialization. Recall 
that the kernel attempts to execute a program called /sbin/init as the last step in ker-
nel initialization. There is no reason why BusyBox can’t emulate the init functionality, 
and that’s exactly how the system illustrated in Listing 11-5 is configured. BusyBox 
handles the init functionality.

BusyBox handles system initialization   differently from standard System V init.
A Linux system using the System V (SysV) initialization as described in Chapter 6 
requires an inittab file accessible in the /etc directory. BusyBox also reads an inittab
file, but the syntax of the inittab file is different. In general, you should not need to use 
an inittab if you are using BusyBox. Consider the advice in the BusyBox man page: If 
you need runlevels, use System V initialization.2

Let’s see what this looks like on an embedded system. We have created a small root 
file system based on BusyBox. We configured BusyBox for static linking, eliminating 
the need for any shared libraries. Listing 11-6 is a tree listing of this root file system. 
We built this small file system using the steps outlined in Chapter 9, “File Systems,” in 
Section 9.11, “Building a Simple File System.” We do not detail the procedure again 
here. The  files in our simple file system are shown in Listing 11-6.

LISTING 11-6 Minimal BusyBox Root File System

$ tree

.

|-- bin

|   |-- busybox

|   |-- cat -> busybox

|   |-- dmesg -> busybox

|   |-- echo -> busybox

|   |-- hostname -> busybox

|   |-- ls -> busybox

|   |-- ps -> busybox

|   |-- pwd -> busybox

2 We covered the details of System V initialization in Chapter 6.
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LISTING 11-6 Continued

|   ‘-- sh -> busybox

|-- dev

|   ‘-- console

|-- etc

‘-- proc

4 directories, 10 files

This BusyBox-based root file system occupies little more than the size needed for 
busybox itself. In this configuration, using static linking and supporting nearly 100 
utilities, the BusyBox executable comes in at less than   2MB:

# ls -l /bin/busybox

-rwxr-xr-x 1 chris chris 1531600 2010-01-28 15:49 /bin/busybox

Now let’s see how this system behaves. Listing 11-7 captures the console output at 
power-up on this BusyBox-based   embedded system.

LISTING 11-7 BusyBox Default Startup

...

Looking up port of RPC 100003/2 on 192.168.1.9

Looking up port of RPC 100005/1 on 192.168.1.9

VFS: Mounted root (nfs filesystem).

Freeing init memory: 96K

Bummer, could not run ‘/etc/init.d/rcS’: No such file or directory

Please press Enter to activate this console.

BusyBox v1.01 (2005.12.03-19:09+0000) Built-in shell (ash)

Enter ‘help’ for a list of built-in commands.

-sh: can’t access tty; job control turned off

/ #

Listing 11-7 was run on an embedded board configured for NFS root mount. We 
export a directory on our workstation that contains the simple file system image de-
tailed in Listing 11-6. As one of the final steps in the boot process, the   Linux kernel 
on our target board mounts a root file system via NFS. When the kernel attempts to 
execute /sbin/init, it fails (by design) because there is no /sbin/init on our file 
system. However, as we have seen, the kernel also attempts to execute /bin/sh. In our 
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BusyBox-configured target, this succeeds, and busybox is launched via the symlink 
/bin/sh on our root file system.

The first thing BusyBox does is complain that it can’t find /etc/init.d/rcS. This 
is the default initialization script that BusyBox searches for. Instead of using inittab,
this is the preferred method to initialize an embedded system based on BusyBox.

When it has completed initialization, BusyBox displays a prompt asking the user to 
press Enter to activate a console. When BusyBox detects the Enter key, it executes an 
ash shell session waiting for user input. The final message about job control is a result 
of the fact that, in this particular example (and on most typical embedded systems), we 
are creating the system console on a serial terminal. The Linux kernel contains code to 
disable job control if it detects the console on a serial terminal.

This example produced a working system, with nearly 100 Linux utilities available, 
including core utilities, file utilities, network support, and a reasonably capable shell. 
You can see that this simple package provides a powerful platform upon which to build 
your own system applications. Of course, it should be noted that without any support 
for libc and other system libraries, you would face a formidable task implementing 
your applications. You would have to provide support for all the usual standard C li-
brary calls and other library functions that a typical C program relies on. Alternatively, 
you could statically link your applications against the libraries they depend on, but if 
you have more than a couple applications using this method, your applications will 
likely exceed the combined size of linking   dynamically and having the shared libraries 
on your target.

11.3.2 Sample rcS Initialization Script

Before BusyBox spawns     an interactive shell, it tries to execute commands from a script 
called /etc/init.d/rcS, as shown in Listing 11-7. It is here where your applications 
come to life in a BusyBox system. A simple rcS initialization script is provided in List-
ing 11-8.

LISTING 11-8 Simple rcS BusyBox Startup Script

#!/bin/sh

echo “Mounting proc”

mount -t proc /proc /proc

echo “Starting system loggers”

syslogd
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LISTING 11-8 Continued

klogd

echo “Configuring loopback interface”

ifconfig lo 127.0.0.1

echo “Starting inetd”

xinetd

# start a shell

busybox sh

 

 

 

This simple script is mostly self-explanatory. First, it is important to mount the 
/proc file system on its reserved mount point, /proc. This is because many utilities get 
their information from the /proc file system. This is explained more fully in Chapter 9. 
Next we launch the system loggers as early as possible, to capture any startup problems. 
Following the system log daemons, we configure the local loopback interface for the 
system. Again, a number of traditional Linux facilities assume that a loopback interface 
is present, and if your system has support for sockets configured, you should enable 
this interface. The last thing we do before starting a shell is launch the Internet su-
perserver xinetd. This program sits in the background, listening for network requests 
on any configured network interfaces. For example, to initiate a telnet session to the 
board, xinetd intercepts the request for telnet connection and spawns a telnet server 
to handle the session.

Instead of starting a shell, your own applications can be launched from this rcS
initialization script. Listing 11-8 is a simple example   of a telnet-enabled target board 
running basic services such as system and kernel loggers.

11.3.3 BusyBox Target Installation

The discussion of BusyBox installation can proceed only when you understand the use 
and purpose of symlinks. The BusyBox makefile   contains a target called install. Execut-
ing make install creates a directory structure containing the BusyBox executable and 
a symlink tree. This environment needs to be migrated to your target embedded sys-
tem’s root directory, complete with the symlink tree. As explained earlier, the symlink 
tree eliminates the need to type busybox command for each command. Instead, to see a 
listing of files in a given directory, the user simply types ls. The symlink executes Busy-
Box as described previously and invokes the ls functionality. Review Listings 11-4 and 
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11-5 to see the symlink tree. Note that the BusyBox build system creates links only for 
the functionality that you have enabled via the configuration utility.

The easiest way to populate your root file system with the necessary symlink farm 
is to let the BusyBox build system do it for you. Simply mount your root file system 
on your development workstation and pass CONFIG_PREFIX to the  BusyBox makefile. 
Listing 11-9 shows the procedure.

LISTING 11-9 Installing BusyBox on the Root File System

$ mount -o loop bbrootfs.ext2 /mnt/remote

$ make CONFIG_PREFIX=/mnt/remote install

  /mnt/remote/bin/ash -> busybox

  /mnt/remote/bin/cat -> busybox

  /mnt/remote/bin/chgrp -> busybox

  /mnt/remote/bin/chmod -> busybox

  /mnt/remote/bin/chown -> busybox

...

  /mnt/remote/usr/bin/xargs -> ../../bin/busybox

  /mnt/remote/usr/bin/yes -> ../../bin/busybox

  /mnt/remote/usr/sbin/chroot -> ../../bin/busybox

--------------------------------------------------

You will probably need to make your busybox binary

setuid root to ensure all configured applets will

work properly.

--------------------------------------------------

$ chmod +s /mnt/remote/bin/busybox

$ ls -l /mnt/remote/bin/busybox

-rwsr-sr-x  1 root root 552132  ... /mnt/remote/bin/busybox

First we mount the root file system binary image on our desired mount point—in 
this case, /mnt/remote, a favorite of mine. Then we invoke the BusyBox make install
command, passing it CONFIG_PREFIX, specifying where we want the symlink tree and 
BusyBox executable file to be placed. Although it isn’t obvious from the listing, the 
makefile invokes a script called applets/install.sh to do the bulk of the work. The 
script walks through a file containing all the enabled BusyBox applets and creates a 
symlink for each one on the path we have specified using the CONFIG_PREFIX. The 
script is very chatty; it outputs a line for each symlink created. For brevity, only the first 
few and last few symlink announcements are displayed in Listing 11-9. The ellipsis in 
the listing represents those that have been eliminated.
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The message about setuid is also displayed by the install script to remind you that it 
might be necessary to make your BusyBox executable setuid root. This allows BusyBox 
functions that require root access to function properly even when invoked by a non-
root user. This is not strictly necessary, especially in an embedded Linux environment, 
where it is common to have only a root account on a system. If this is necessary for 
your installation, the required command (chmod +s) is shown in Listing 11-9.

The result of this installation step is that the BusyBox binary and symlink tree are 
installed on our target root file system. The end result looks very similar to Listing 
11-4.

It is useful to note that BusyBox also has an option to enable creation of this sym-
link tree on the target system at runtime. This option is enabled in the BusyBox con-
figuration and is invoked at runtime by executing BusyBox with the -install option. 
You must have the /proc file system mounted on your target system   for this support 
to work.

11.3.4 BusyBox Applets

In a recent BusyBox snapshot, 282   commands (also called applets) were documented 
in the man page. Sufficient support exists for reasonably complex shell scripts, includ-
ing support for Bash shell scripting. BusyBox supports awk and sed, frequently found 
in Bash scripts. BusyBox supports network utilities such as ping, ifconfig, traceroute,
and netstat. Some commands are specifically included for scripting support, includ-
ing true, false, and yes.

Spend a few moments perusing Appendix C, “BusyBox Commands,” where you 
can find a summary of each BusyBox command. After you have done so, you will have 
a better appreciation of the capabilities of BusyBox and how it might be applicable to 
your own embedded Linux project.

As mentioned at the beginning of this chapter, many of the BusyBox commands 
contain a limited subset of features and options compared to their full-featured coun-
terparts. In general, you can get help on any given BusyBox command at runtime by 
invoking the command with the --help option. This produces a usage message with 
a brief description of each supported command option. The BusyBox gzip applet is a 
useful example of a BusyBox command that supports a limited set of options. Listing 
11-10 displays the   output from gzip -help on a BusyBox target.
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LISTING 11-10 BusyBox gzip Applet Usage

/ # gzip --help

BusyBox v1.13.2 (2010-02-24 16:04:14 EST) multi-call binary

Usage: gzip [OPTION]... [FILE]...

Compress FILEs (or standard input)

Options:

        -c      Write to standard output

        -d      Decompress

        -f      Force

The BusyBox version of gzip supports just three command-line options. Its full-
featured counterpart supports more than 15 different command-line options. For ex-
ample, the full-featured gzip utility supports a --list option that produces compres-
sion statistics for each file on the command line. No such support exists for BusyBox 
gzip. This is usually not a significant limitation for embedded systems. We present 
this information so that you can make an informed choice when deciding on BusyBox. 
When the full capabilities of a utility are needed, the solution is simple: Delete support 
for that particular utility in the BusyBox configuration, and add the standard Linux 
utility to your target system. In this way you can mix BusyBox utilities and the stan-
dard Linux utilities   on the same embedded system.

11.4 Summary

This chapter described BusyBox, one of the most popular utilities in the embedded 
Linux landscape. BusyBox has also found a place in desktop and server distributions, 
as part of a rescue image as well as the initial ramdisk typically found in these distribu-
tions. This chapter covered how to configure, build, and install this important utility. 
We also examined the differences in system initialization when using BusyBox-based 
systems.

• BusyBox is a powerful tool for embedded systems that replaces many common 
Linux utilities in a single multicall binary.

• BusyBox can significantly reduce the size of your root file system image.

• BusyBox is easy to use and has many useful features.
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• Configuring BusyBox is straightforward, using an interface similar to that used 
for Linux configuration.

• BusyBox can be configured as a statically or dynamically linked application, 
depending on your particular requirements.

• System initialization is somewhat different with BusyBox; those differences 
were covered in this chapter.

• BusyBox has support for many commands. Appendix C itemizes all the avail-
able BusyBox commands from a recent release.

11.4.1 Suggestions for Additional Reading

BusyBox Project home   
www.busybox.net/

BusyBox man page
www.busybox.net/downloads/BusyBox.html
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The configuration and services available on your host development system 
can have a huge impact on your success as an embedded developer. This 

chapter examines the unique requirements of a cross-development environment 
and some of the tools and techniques that an embedded developer needs to 
know to be productive.

We begin by examining a typical cross-development environment. Using the 
familiar “Hello World” example, we detail the important differences between 
host-based applications and those targeted for embedded systems. We also look 
at differences in the toolchains for native versus embedded application develop-
ment. We then present host system requirements and detail the use of some im-
portant elements of your host system. We conclude this chapter with an example 
of a target board being hosted by a network-based host.

12.1 Cross-Development Environment

Developers new to embedded   development often struggle with the concepts of and 
differences between native and cross-development environments. Indeed, a system 
often has three compilers and three (or more) versions of standard header files (such 
as stdlib.h). Debugging an application on your target embedded system can be 
difficult without the right tools and host-based utilities. You must manage and keep 
separate the files and utilities designed to run on your host system from those you 
intend to use on your target.

When we use the term host in this context, we are referring to the development 
workstation that is sitting   on your desktop and running your favorite Linux desk-
top distribution.1 Conversely, when we use the term target, we are referring to your 
embedded hardware platform. Therefore, native development denotes the compila-
tion and building of applications on and for your host system. Cross-development 
denotes the compilation and building of applications on the host system that will be 
run on the embedded system. Keeping these definitions in mind will help you stay 
on track throughout this chapter.

1 Webster’s defines nonsense as “an idea that is absurd or contrary to good sense.” It is the author’s opinion that developing 
embedded Linux platforms on a non-Linux/UNIX host is nonsensical.
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Figure 12-1 shows the layout   of a typical cross-development environment. A host 
PC is connected to a target board through one or more physical connections. It is most 
convenient if both serial and Ethernet ports are available on the target. Later, when we 
discuss kernel debugging, you will realize that a second serial port can be a valuable 
asset.

FIGURE 12-1 Cross-development setup

In the most common scenario, the developer has a serial terminal on the host con-
nected to the RS-232 serial port, possibly one or more telnet or SSH terminal sessions 
to the target board, and potentially one or more debug sessions using Ethernet as the 
connection medium. This cross-development setup provides  a great deal of flexibility. 
The basic idea is that the host system provides the horsepower to run the compilers, 
debuggers, editors, and other utilities, and the target executes only the applications 
designed for it. You can certainly run compilers and debuggers on the target system, 
but we assume that your host system has more resources available, including processor 
horsepower, RAM, disk storage, and Internet connectivity. In fact, it is not uncommon 
for a target embedded board to have no human-input devices or output displays.

12.1.1 “Hello World” Embedded

A properly configured cross-development system hides a great deal of complexity from 
the average application developer. Looking   at a simple example will help uncover and 
explain some of the mystery. When we compile a simple “Hello World” program, the 
toolchain (compiler, linker, and associated utilities) makes many assumptions about 
the host system we are building on and the program we are compiling. Actually, they 
are not assumptions, but a collection of rules that the compiler references to build a 
proper binary.

Listing 12-1 reproduces    a simple “Hello World” program.

Host System

Ethernet Hub

RS-232

 Target
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LISTING 12-1 Hello World Again

#include <stdio.h>

int main(int argc, char **argv)

{

    printf(“Hello World\n”);

    return 0;

}

Even the casual application developer will realize some important points about this 
C source file. First, the function printf() is referenced but not defined in this file. If 
we omit the #include directive containing the prototype for the printf() function, 
the compiler emits this familiar message:

hello.c:5: warning: implicit declaration of function ‘printf’

This introduces some interesting questions:

• Where is the file stdio.h located, and how is it found?

• Where is the printf() function object code stored on your system, and how is 
this reference resolved in the binary executable?

Somehow it seems that the compiler just knows how to put together a proper bi-
nary file that can be executed from the command line. To further complicate matters, 
the final executable contains startup and shutdown prologue code that we never see 
but that the linker automatically includes. This prologue deals with details such as the 
environment and arguments passed to your program, startup and shutdown house-
keeping, exit handling, and more.

To build the “Hello World” application, we can use a simple command-line invoca-
tion of the compiler, similar    to this:

$ gcc -o hello hello.c

This produces the binary executable file called hello, which we can execute directly 
from the command line. Defaults referenced by the compiler provide guidance on 
where include files will be found. In a similar fashion, the linker knows how to resolve 
the reference to the printf() function by including a reference to the library where it 
is defined. This, of course, is the standard C library.
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We can query the toolchain     to see some of the defaults that were used. Listing 12-2 
is a partial listing of the output from cpp when passed the -v flag. You might already 
know that cpp is the C preprocessor component of the GNU gcc toolchain. We have 
added some formatting (white space only) to improve readability.

LISTING 12-2 Default Native cpp Search Directories

$ cpp -v /dev/null

Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/3.3.3/specs

Configured with: ../configure --prefix=/usr

--mandir=/usr/share/man --infodir=/usr/share/info

--enable-shared --enable-threads=posix --disable-checking

--disable-libunwind-exceptions --with-system-zlib

--enable-__cxa_atexit -host=i386-redhat-linux

Thread model: posix

gcc version 3.3.3 20040412 (Red Hat Linux 3.3.3-7)

 /usr/lib/gcc-lib/i386-redhat-linux/3.3.3/cc1 -E -quiet -v -

ignoring nonexistent directory “/usr/i386-redhat-linux/include”

#include “...” search starts here:

#include <...> search starts here:

 /usr/local/include

 /usr/lib/gcc-lib/i386-redhat-linux/3.3.3/include

 /usr/include

End of search list.

/usr/lib/

This simple query produces some useful information. First, we can see how the com-
piler was configured using the familiar ./configure utility. The default thread model is 
posix, which determines the thread library your application gets linked against if you 
employ threading functions. Finally, you see the default search directories for #include
directives.

But what if we want to build hello.c for a different architecture, such as Power 
Architecture? When we compile an application program for a Power Architecture tar-
get using a cross-compiler on our host machine, we must make sure that the compiler 
does not use the default host include directories or library paths. Using a properly con-
figured cross-compiler is the first step, and having a well-designed cross-development 
environment is the second.
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Listing 12-3 is the output from a popular open-source cross-development tool-
chain known as the Embedded Linux Development Kit (ELDK), assembled and main-
tained by Denx Software Engineering. This particular installation   was configured for 
the Power Architecture 82xx toolchain. Again, we have added some white space to the 
output for readability.

LISTING 12-3 Default Cross-Search Directories

$ ppc_82xx-cpp -v /dev/null

Reading specs from /opt/eldk/usr/bin/..

/lib/gcc-lib/ppc-linux/3.3.3/specs

Configured with: ../configure --prefix=/usr

--mandir=/usr/share/man --infodir=/usr/share/info

--enable-shared --enable-threads=posix --disable-checking

--with-system-zlib --enable-__cxa_atexit --with-newlib

--enable-languages=c,c++ --disable-libgcj

--host=i386-redhat-linux -target=ppc-linux

Thread model: posix

gcc version 3.3.3 (DENX ELDK 3.1.1 3.3.3-10)

 /opt/eldk/usr/bin/../lib/gcc-lib/ppc-linux/3.3.3/cc1

-E -quiet -v -iprefix /opt/eldk/usr/bin/..

/lib/gcc-lib/ppc-linux/3.3.3/ -D__unix__ -D__gnu_linux__

-D__linux__ -Dunix -D__unix -Dlinux -D__linux -Asystem=unix

-Asystem=posix - -mcpu=603

ignoring nonexistent directory “/opt/eldk/usr/ppc-linux/sys-include”

ignoring nonexistent directory “/opt/eldk/usr/ppc-linux/include”

#include “...” search starts here:

#include <...> search starts here:

 /opt/eldk/usr/lib/gcc-lib/ppc-linux/3.3.3/include

 /opt/eldk/ppc_82xx/usr/include

End of search list.

Here you can see that the default search paths for include directories are now ad-
justed to point to your cross versions instead of the native include directories. This 
seemingly obscure detail is critical to being able to develop applications and compile 
open source packages for your embedded system. It is one of the most confusing topics 
to even experienced application developers who are new to embedded systems.
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12.2 Host System Requirements

Your development workstation must   include several important components and sys-
tems. First, you need a properly configured cross toolchain. You can download and 
compile one yourself or obtain one of the many commercial toolchains available. 
Building one yourself is beyond the scope of this book; however, several good refer-
ences are available. See the last section of this chapter for recommendations.

The next major item you need is a Linux distribution targeted for your embedded 
system architecture. This includes hundreds to potentially thousands of files that will 
populate your embedded system’s file system(s). Again, the choices are to build your 
own or to obtain one of the commercial ones. One of the more popular open source 
embedded system distributions is the aforementioned ELDK. The ELDK is available 
for many Power Architecture, ARM, and other embedded targets. The topic of build-
ing an embedded Linux distribution from scratch would require a book of this size 
in itself; therefore, it’s beyond the scope of our discussion. We introduce open source 
build systems in Chapter 16, “Open Source Build Systems.”

In summary, your development host requires four separate and distinct capabilities:

• Cross toolchain and libraries

• Target system packages, including programs, utilities, and libraries

• Host tools such as editors, debuggers, and utilities

• Servers for hosting your target board, as covered in the next section

If you install a ready-built embedded Linux development environment on your 
workstation, either a commercial variety or one freely available in the open source 
community, the toolchain and components have already been preconfigured to work 
together. For example, the toolchain has been configured with    default directory search 
paths that match the location of the target header files and system libraries on your 
development workstation. The situation becomes much more complex if your require-
ments include support for multiple architectures and processors on your development 
workstation. This is the reason that commercial embedded Linux distributions exist.

12.2.1 Hardware Debug Probe

In addition to the components just listed, you should consider some type of hardware-
assisted debugging. This consists of a hardware probe connected to your host (often 
via Ethernet) and connected to your target via a debug connector on the board. Many 
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solutions are available. The de facto standard in the Linux community remains the 
Abatron BDI-3000. This topic is covered in detail   in Chapter 14, “Kernel Debugging 
Techniques.”

12.3 Hosting Target Boards

Referring to Figure 12-1, you will notice an Ethernet connection from the target-
embedded board to the host-development system. This is not strictly necessary; 
indeed, some smaller embedded devices do not have an Ethernet interface. However, 
this is the exception rather than the rule. Having an Ethernet connection available on 
your target board is worth its cost in silicon! This enables the NFS root mount configu-
ration, which can save you days or weeks of development time.

While developing your embedded Linux kernel, you will compile and download 
kernels and root file systems to your embedded board many times. Many embedded 
development systems and bootloaders support TFTP and assume that the developer 
will use it. TFTP is a lightweight protocol for moving files between a TFTP server and 
TFTP client over Ethernet, similar to FTP.

Using TFTP from your bootloader to load the kernel will save you countless hours 
waiting for serial downloads, even at higher serial baud rates. And loading your root file 
system or ramdisk image can take much longer, because these images can grow to many 
tens of megabytes or more, depending on your requirements. The investment in your 
time to configure and use TFTP will definitely pay off and is highly recommended. 
Very few designs can’t afford the real estate to include an Ethernet port during develop-
ment, even if it is depopulated for production.

12.3.1 TFTP Server

Configuring TFTP on your    Linux development host is not difficult. Of course, the 
details might vary, depending on which Linux distribution you choose for your de-
velopment workstation. The guidelines presented here are based on popular desktop 
Linux distributions.

TFTP is a TCP/IP service that must be enabled on your workstation. To enable 
the TFTP service, you must instruct your workstation to respond to incoming TFTP 
packets. The easiest way to do this is to run a TFTP server daemon. Most modern 
desktop Linux distributions have multiple packages available to provide this service. 
HPA’s TFTP server will be used as the basis for the examples here. It can be obtained 
from ftp://ftp.kernel.org/pub/software/network/tftp.
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On modern Ubuntu and other Debian-based systems, the HPA TFTP server can 
be installed as follows:2

$ sudo apt-get install tftpd-hpa

  Configuring this TFTP server is easy. There is a single configuration file on Ubuntu 
and other distributions called /etc/default/tftpd-hpa. This file needs to be custom-
ized to your particular requirements. Listing 12-4  shows a typical example of this con-
figuration file.

LISTING 12-4 TFTP Configuration

#Defaults for tftpd-hpa

RUN_DAEMON=”yes”

OPTIONS=”-l -c -s /tftpboot”

  The first thing you must do is enable the service. When you first install the tftpd-hpa
package, RUN_DAEMON defaults to “no”. To enable the service, you must change the default 
“no” to “yes”, as shown in Listing 12-4.

The second line defines the command-line options to the daemon itself, usually 
/usr/sbin/in.tftpd. The -s switch tells in.tftpd to switch to the specified directory 
(/tftpboot) upon startup, which causes this directory to be the root of your TFTP 
server. The -c flag allows the creation of new files. This is useful to write files to the 
server from the target. The BDI-3000 (covered later in this book) has such a capability, 
and it will not work without the -c. The -l argument instructs the TFTP daemon to 
run in the background and listen on the TFTP port for incoming TFTP packets.

Once the changes are made to this configuration file, you must restart the TFTP 
server so that they take effect:

$ sudo /etc/init.d/tftpd-hpa restart

In any case, consult the documentation that came with your distribution for op-
tions on how to enable the TFTP server       on your specific distribution.

12.3.2 BOOTP/DHCP Server

Having a DHCP server on your          development host simplifies the configuration man-
agement for your embedded target. We have already established the reasons why an 

2 Do not confuse this with the TFTP client package, which is named tftp-hpa.
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Ethernet interface on your target hardware is a good idea. When Linux boots on your 
target board, it needs to configure the Ethernet interface before the interface will be 
useful. Moreover, if you are using an NFS root mount configuration on your target 
board, Linux needs to configure your target’s Ethernet interface before the boot process 
can complete. We covered NFS in detail in Chapter 9, “File Systems.”

In general, Linux can use two methods to initialize its Ethernet/IP interface during 
boot:

• Hard-code the Ethernet interface parameters either on the Linux kernel com-
mand line or in the default configuration, such as a static IP configuration.

• Configure the kernel to automatically detect the network settings at boot time.

For obvious reasons, the second choice is more flexible. DHCP or BOOTP is the 
protocol your target and server use to accomplish the automatic detection of network 
settings. For details on the DHCP and BOOTP protocols, see the last section of this 
chapter.

A DHCP server controls the IP address assignments for IP subnets for which it has 
been configured, and for DHCP or BOOTP clients that have been configured to par-
ticipate. A DHCP server listens for requests from a DHCP client (such as your target 
board) and assigns addresses and other pertinent information to the client as part of the 
boot process. A typical DHCP exchange (see Listing 12-5) can be examined by starting 
your DHCP server with the -d debug switch and observing the output   when a target 
machine requests configuration.

LISTING 12-5 Typical DHCP Exchange

tgt> DHCPDISCOVER from 00:09:5b:65:1d:d5 via eth0

svr> DHCPOFFER on 192.168.0.9 to 00:09:5b:65:1d:d5 via eth0

tgt> DHCPREQUEST for 192.168.0.9 (192.168.0.1) from \

       00:09:5b:65:1d:d5 via eth0

svr> DHCPACK on 192.168.0.9 to 00:09:5b:65:1d:d5 via eth0

The sequence starts with the client (target) transmitting a broadcast frame attempt-
ing to discover a DHCP server. This is shown by the DHCPDISCOVER message. The 
server responds (if it has been so configured and enabled) by offering an IP address for 
the client. This is evidenced by the DHCPOFFER message. The client then responds 
by testing this IP address locally. The testing includes sending the DHCPREQUEST 
packet to the DHCP server, as shown. Finally, the server responds by acknowledging 
the IP address assignment to the client, thus completing the automatic target configu-
ration.
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It is interesting to note that a properly configured client will remember the last ad-
dress it was assigned by a DHCP server. The next time it boots, it will skip the DHCP-
DISCOVER stage and proceed directly to the DHCPREQUEST stage, assuming that 
it can reuse the same IP address that the server previously assigned. A booting Linux 
kernel does not have this capability and emits the same          sequence every time it boots.

Configuring your host’s DHCP server is not difficult. As usual, our advice is to 
consult the documentation that came with your desktop Linux distribution. On a Red 
Hat or Fedora distribution, the configuration entry  for a single target might look like 
Listing 12-6.

LISTING 12-6 Sample DHCP Server Configuration

# Example DHCP Server configuration

allow bootp;

subnet 192.168.1.0 netmask 255.255.255.0 {

 default-lease-time 1209600;     # two weeks

  option routers 192.168.1.1;

  option domain-name-servers 1.2.3.4;

  group {

    host pdna1 {

      hardware ethernet 00:30:bd:2a:26:1f;

      fixed-address 192.168.1.68;

      filename “uImage-pdna”;

      option root-path “/home/chris/sandbox/pdna-target”;

    }

  }

}

  

This is a simple example, meant only to show the kind of information you can 
pass to your target system. A one-to-one mapping of the target MAC address to its as-
signed IP address is defined by this host definition. In addition to its fixed IP address, 
you can pass other information to your target. In this example, the default router and 
DNS server addresses are passed to your target, along with the filename of a file of your 
choice, and a root path for your kernel to mount an NFS root file system from. The 
filename might be used by your bootloader to load a kernel image from your TFTP 
server. You can also configure your DHCP server to hand out IP addresses from a 
predefined range, but it is very convenient to use a fixed address such as that shown in 
Listing 12-6.

You must first enable the DHCP server on your Linux development workstation. 
This is typically done through your main menu or at the command line. Consult the 
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documentation for your Linux distribution for details suitable for your environment. 
For example, to enable the DHCP server on a Fedora Core Linux distribution, simply 
type the following command from a root command prompt:

$ /etc/init.d/dhcpd start

or

$ /etc/init.d/dhcpd restart

 

You must do this each time you start your development workstation, unless you 
configure it to start automatically. Consult the documentation associated with your dis-
tribution for instructions on how to do this. You will usually find a reference to enabling 
services or something similar. In this example, dhcpd is considered a system service.

Many nuances are involved with installing a DHCP server, so unless your server 
is on a private network, it is advisable to check with your system administrator before 
going live with your own. If you coexist with   a corporate LAN, it is very possible that 
you will interfere with its own DHCP service.

12.3.3 NFS Server

Using an NFS root mount   for your target board is a very powerful development tool. 
Here are some of the advantages of this configuration for development:

• Your root file system is not size-restricted by your board’s own limited resourc-
es, such as Flash memory.

• Changes made to your application files during development are immediately 
available to your target system.

• You can debug and boot your kernel before developing and debugging your 
root file system.

The steps for setting up an NFS server vary depending on which desktop Linux dis-
tribution you are using. As with the other services described in this chapter, you must 
consult the documentation for your Linux distribution for the details appropriate to 
your configuration. The NFS service must be started from either your startup scripts, 
a graphical menu, or the command line. For example, the command to start NFS 
services from a root command prompt for a Fedora Core Linux desktop is as follows:

$ /etc/init.d/nfs start

or
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Note that on later Ubuntu and other distributions this command has been changed 
to /etc/init.d/nfs-kernel-server.

You must do this each time you start your desktop Linux workstation. (This and 
other services can be started automatically on booting. Consult the documentation for 
your desktop Linux distribution.) In addition to enabling the service, your kernel must 
be compiled with support for NFS. Although DHCP and TFTP are both user space 
utilities, NFS requires kernel support. This is true on both your development worksta-
tion and your target board. Figure 12-2 shows the configuration options for NFS in 
the kernel. Notice that there are configuration options for both NFS server and client 
support. Note also the option “Root file system on NFS.” Your target kernel must have 
this option       configured for NFS root mount operation.

FIGURE 12-2 NFS kernel configuration

The NFS server gets its instructions from an exports file located on your develop-
ment workstation. It is commonly  found in /etc/exports. Listing 12-7 is an example 
of a simple exports entry.

LISTING 12-7 Simple NFS exports File

$ cat /etc/exports

# /etc/exports

/home/chris/sandbox/coyote-target \ *(rw,sync,no_root_squash,no_all_squash,no_sub-
tree_check)

/home/chris/sandbox/pdna-target \ *(rw,sync,no_root_squash,no_all_squash,no_sub-
tree_check)

/h / h i / k  \ *( t h ll h bt h k)
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These entries allow a client to remotely mount any of the three directories shown. 
The attributes following the directory specification instruct the NFS server to allow 
connections from any IP address (*) and to mount the respective directories with the 
given attributes (read/write with no_root_squash). The latter attribute enables a cli-
ent with root privileges to exercise those privileges on the given directory. It is usually 
required when working with embedded systems because they often have only root 
accounts.

The no_all_squash attribute ensures that the uid and gid of an incoming NFS 
request are honored, instead of being mapped to a default anonymous account. The 
no_subtree_check attribute disables subtree checking on your server. This can im-
prove performance and reliability in some circumstances. Consult your NFS server 
documentation and the man page describing the exports file for more details.

You can test your NFS configuration right from your workstation. Assuming that 
you have NFS services enabled (which requires that both the NFS server and client 
components are enabled), you can mount a local NFS export as you would mount any 
other file system:

# mount -t nfs localhost:/home/chris/workspace /mnt/remote

If this command succeeds       and the files in .../workspace are available on /mnt/
remote, your NFS server configuration is working.

12.3.4 Target NFS Root Mount

Mounting your target    through NFS root mount is not difficult, and, as mentioned 
elsewhere, it is a very useful development configuration. However, a set of details must 
be correct before it will work. The steps required are as follows:

1. Configure your NFS server, and export a proper target file system for your 
architecture.

2. Configure your target kernel with NFS client services and root file system on 
NFS.

3. Enable kernel-level autoconfiguration of your target’s Ethernet interface.

4. Provide your target Ethernet IP configuration using the kernel command line 
or static kernel configuration option.

5. Provide a kernel command line enabled for NFS.
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We presented the kernel configuration in Figure 12-2 when we explained the NFS 
server configuration. You must make sure that your target kernel configuration has 
NFS client services enabled, and, in particular, you must enable the option for Root 
file system on NFS. Specifically, make sure that your kernel has CONFIG_NFS_FS=y and 
CONFIG_ROOT_NFS=y. Obviously, you cannot configure NFS as loadable modules if you 
intend to boot via NFS root mount.

Kernel-level autoconfiguration is a TCP/IP configuration option found under the 
Networking tab in the kernel configuration utility. Enable CONFIG_IP_PNP on your 
target kernel. When this is selected, you are presented with several options for auto-
matic configuration. Select either BOOTP or DHCP, as described earlier. Figure 12-3 
illustrates the kernel configuration for kernel-level autoconfiguration.

FIGURE 12-3 Kernel-level autoconfiguration

When your server and target kernel are configured, you need to provide your target 
Ethernet configuration using one of the methods described earlier. If your bootloader 
supports a kernel command line, that is the easiest method. Here is what a kernel com-
mand line to support NFS root mount      might look like:

console=ttyS0,115200 root=/dev/nfs rw ip=dhcp \

   nfsroot=192.168.1.9:/home/chris/sandbox/pdna-target
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12.3.5 U-Boot NFS Root Mount Example

U-Boot is a good example   of a bootloader that supports a configurable kernel com-
mand line. Using U-Boot’s nonvolatile environment feature, we can store our kernel 
command line in a parameter specially named for this purpose. To enable the NFS 
command line in U-Boot, we do the following (all on one line in our serial terminal):

setenv bootargs console=ttyS0,115200 root=/dev/nfs rw \

   ip=dhcp nfsroot=192.168.1.9:/home/chris/sandbox/pdna-target

Then we load a kernel using our TFTP server. Listing 12-8   shows what this might 
look like on a Power Architecture embedded target.

LISTING 12-8 Loading a Kernel Using the TFTP Server

=> tftpboot 200000 uImage-pdna      <<< Entered at U-Boot prompt

Using FEC ETHERNET device

TFTP from server 192.168.1.9; our IP address is 192.168.1.68

Filename ‘uImage-pdna’.

Load address: 0x200000

Loading: ##################################################

         ##################################################

         #########################################

done

Bytes transferred = 911984 (dea70 hex)

=>

 

When we boot the kernel, we see specific evidence of our NFS root mount con-
figuration. Listing 12-9 reproduces selected output from the kernel boot messages to 
demonstrate this. This output has been formatted (with many lines omitted and white 
space added) for readability.

LISTING 12-9 Booting with NFS Root Mount

Uncompressing Kernel Image ... OK

Linux version 2.6.14 (chris@pluto) (gcc version 3.3.3

(DENX ELDK 3.1.1 3.3.3-10)) #1 Mon Jan 2 11:58:48 EST 2006

.

.

Kernel command line: console=ttyS0,115200 root=/dev/nfs rw

nfsroot=192.168.1.9:/home/chris/sandbox/pdna-target ip=dhcp

.

.

  



12.3 Hosting Target Boards 321

LISTING 12-9 Continued

Sending DHCP requests ... OK

IP-Config: Got DHCP answer from 192.168.1.9, my address is 192.168.1.68

IP-Config: Complete:

      device=eth0, addr=192.168.1.68, mask=255.255.255.0,

      gw=255.255.255.255, host=192.168.1.68, domain=,

      nis-domain=(none), bootserver=192.168.1.9,

      rootserver=192.168.1.9,

      rootpath=/home/chris/sandbox/pdna-target

.

.

Looking up port of RPC 100003/2 on 192.168.1.9

Looking up port of RPC 100005/1 on 192.168.1.9

VFS: Mounted root (nfs filesystem).

.

.

BusyBox v0.60.5 (2005.06.07-07:03+0000) Built-in shell (msh)

Enter ‘help’ for a list of built-in commands.

#

 

 

In Listing 12-9, first we see the    kernel banner, followed by the kernel command 
line. We specified four items in this kernel command line:

• Console device (/dev/console)

• Root device (/dev/nfs)

• NFS root path (/home/chris/sandbox/pdna-target)

• IP kernel-level autoconfiguration method (dhcp)

Shortly thereafter, we see the kernel attempting kernel-level autoconfiguration via 
DHCP. This begins with the “Sending DHCP requests” console message. When the 
server responds and the DHCP exchange completes, the kernel displays the detected 
configuration in the following lines. You can see from this listing that the DHCP server 
has assigned the target the IP address 192.168.1.68. Compare the settings obtained via 
autoconfiguration with the DHCP server configuration in Listing 12-6. You can use a 
similar server configuration to assign the IP address and NFS root path to your target.

When the kernel has completed the IP autoconfiguration, it can mount the root file 
system using the supplied parameters. You can see this from the three lines ending with 
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 the VFS (virtual file subsystem) message announcing that it has mounted the NFS root 
file system. After the NFS root file system has been mounted, initialization completes 
as described in Chapter 5, “Kernel Initialization.”

It is also possible to pass target IP settings to the kernel in a static fashion instead of 
having the kernel obtain IP settings from a DHCP or BOOTP server. IP settings can 
be passed using the kernel command line directly. In this case, the kernel command 
line might look similar to this:

console=console=ttyS0,115200 \

   ip=192.168.1.68:192.168.1.9::255.255.255.0:pdna:eth0:off \

   root=/dev/nfs rw nfsroot=192.168.1.9:/home/chris/pdna-target

 

12.4 Summary

This chapter provided the background to build and configure a development worksta-
tion suitable for embedded development work. Several key servers were introduced, 
along with information on how to install and configure them. We concluded this chap-
ter by looking at one of the most powerful tools available to the embedded developer: 
the NFS server.

• Many features of a development environment greatly facilitate efficiency for 
embedded cross-development. Most of these fall under the category of tools 
and utilities. We cover this aspect in detail in the next chapter, where we de-
scribe development tools.

• A properly configured development host is a critical asset for the embedded 
developer.

• Toolchains employed for cross-development must be properly configured to 
match your host system’s target Linux environment.

• Your development host must have target components installed that your 
toolchain and binary utilities can reference. These components include target 
header files, libraries, target binaries, and their associated configuration files. In 
short, you need to assemble or obtain an embedded Linux distribution.

• Configuring target servers such as TFTP, DHCP, and NFS will greatly increase 
your productivity as an embedded Linux developer. This chapter introduced 
configuration examples for each.
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12.4.1 Suggestions for Additional Reading

GCC online documentation  
http://gcc.gnu.org/onlinedocs/

Building and testing gcc/glibc cross toolchains
http://kegel.com/crosstool/

“The TFTP Protocol, Version 2”  
RFC 1350
www.ietf.org/rfc/rfc1350.txt?number=1350

“Bootstrap Protocol (BOOTP)”  
RFC 951
www.ietf.org/rfc/rfc0951.txt?number=951

“Dynamic Host Configuration Protocol”   
RFC 2131
www.ietf.org/rfc/rfc2131.txt?number=2131

  

http://gcc.gnu.org/onlinedocs/
http://kegel.com/crosstool/
www.ietf.org/rfc/rfc1350.txt?number=1350
www.ietf.org/rfc/rfc0951.txt?number=951
www.ietf.org/rfc/rfc2131.txt?number=2131
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typical embedded Linux development environment includes many useful
 tools. Some are complex and require a great deal of proficiency to master. 

Others are simple and have been all but ignored by developers of embedded 
systems. Some tools might require customization for a particular environment. 
Many run “right out of the box” and provide the developer with useful infor-
mation without much effort. This chapter presents a cross-section of the most 
important (and frequently neglected) tools available to the embedded Linux 
engineer.

It is impossible to provide complete details on the tools and utilities presented 
in this chapter. That would take an entire book by itself! Rather than provide a 
complete reference, our goal is to introduce the basic usage of each one. You are 
encouraged to pursue additional study on these and other important develop-
ment tools. The man page (or other documentation) for each tool is a great place 
to start.

The GNU Debugger (GDB) is introduced first, followed by a brief look at the 
Data Display Debugger, a graphical front end for GDB. Next we cover a series 
of utilities designed to give the developer a look at the behavior of programs and 
the system as a whole. These include strace, ltrace, top, and ps, often over-
looked by inexperienced Linux developers. We then present some crash dump 
and memory-analysis tools. The chapter concludes by introducing some of the 
more useful binary utilities.

13.1 GNU Debugger (GDB)

If you spend much time developing Linux applications, you will undoubtedly spend 
many hours getting to know the    GNU Debugger. GDB is arguably the most im-
portant tool in the developer’s toolbox. It has a long history, and its capabilities 
have blossomed to include low-level hardware-specific debugging support for a wide 
variety of architectures and microprocessors. It should be noted that the GDB user 
manual is nearly as large as this book. Our intention here is to introduce GDB to 
get you started. You are encouraged to study the user manual referenced in the last 
section.
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Because this is a book about embedded Linux development, we use a version of 
GDB that has been compiled as a cross-debugger. That is, the debugger itself runs on 
your development host, but it understands only binary executables in the architecture 
for which it was configured at compile time. The next few examples use GDB com-
piled for a Linux development host and an XScale (ARM) target processor. Although 
we use the short name gdb, we present examples based on the XScale-enabled cross-
gdb from the Monta Vista embedded Linux distribution for ARM XScale. The binary 
is called xscale_be-gdb. It is still GDB, but it is configured for a cross-development 
environment.

The GDB debugger is a complex program that offers many configuration options 
during the build process. It is not our intention to provide guidance on building gdb;
that has been covered in other literature. For the purposes of this chapter, we assume 
that you have obtained a working GDB configured for the architecture and host devel-
opment environment you will be using.

13.1.1 Debugging a Core Dump

One of the most common   reasons to drag GDB out of the toolbox is to evaluate a 
core dump. This process is quick and easy and often leads to immediate identification 
of the offending code. A core dump is a file generated by the kernel when an applica-
tion program generates a fault, such as accessing a memory location it does not own. 
Many conditions can trigger a core dump,1 but SIGSEGV (segmentation fault) is by 
far the most common. A SIGSEGV is a Linux kernel signal that is generated on illegal 
memory accesses by a user process. When this signal is generated, the kernel terminates 
the process. The kernel then dumps a core image if it is so enabled.

To enable generation of a core dump, your process must have the authority to en-
able a core dump. This is achieved by setting the process’s resource limits using the 
setrlimit() C function call, or from a BASH or BusyBox shell command prompt us-
ing ulimit. It is not uncommon to find the following line in the initialization scripts 
of an embedded system to enable the generation of core dumps on process errors:

ulimit -c unlimited

1 See SIG_KERNEL_COREDUMP_MASK in .../include/linux/signal.h for a definition of which signals generate 
a core dump.
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This BASH built-in command is used to set the size limit of a core dump. In the pre-
ceding instance, the size is set to unlimited. You can issue this command from the shell 
to show the current setting:

$ ulimit

unlimited

When an application program generates a segmentation fault (for example, by writ-
ing to a memory address outside its permissible range), Linux terminates the process 
and generates a core dump, if so enabled. The core dump      is a snapshot of the running 
process at the time the segmentation fault occurred.

It helps to have debugging symbols enabled in your binary. GDB produces much 
more useful output with debugging symbols (gcc -g) enabled during the build. How-
ever, it is still possible to determine the sequence of events leading to the segmentation 
fault, even if the binary was compiled without debugging symbols. You might need to 
do a bit more investigative work without the aid of debugging symbols. In this case, 
you must manually correlate virtual addresses to locations within your program.

Listing 13-1 shows the results of a core dump analysis session using GDB. The 
output has been reformatted slightly to fit the page. We have used some demonstra-
tion software to intentionally produce a segmentation fault. Here is the output of the 
process (called webs) that generated the segmentation  fault:

root@coyote:# ./webs

Segmentation fault (core dumped)

LISTING 13-1 Core Dump Analysis Using GDB

$ xscale_be-gdb webs core

GNU gdb 6.3 (MontaVista 6.3-20.0.22.0501131 2005-07-23)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or distribute copies of it under

certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for details.

This GDB was configured as “--host=i686-pc-linux-gnu

-target=armv5teb-montavista-linuxeabi”...

Core was generated by ‘./webs’.

Program terminated with signal 11, Segmentation fault.

  



13.1 GNU Debugger (GDB) 329

LISTING 13-1 Continued

Reading symbols from /opt/montavista/pro/.../libc.so.6...done.

Loaded symbols for /opt/montavista/pro/.../libc.so.6

Reading symbols from /opt/montavista/pro/.../ld-linux.so.3...done.

Loaded symbols for /opt/montavista/pro/.../ld-linux.so.3

#0  0x00012ac4 in ClearBlock (RealBigBlockPtr=0x0, l=100000000) at led.c:43

43                      *ptr = 0;

(gdb) l

38

39    static int ClearBlock(char * BlockPtr, int l)

40    {

41        char * ptr;

42        for (ptr = BlockPtr; (ptr - BlockPtr) < l; ptr++)

43            *ptr = 0;

44        return 0;

45    }

46    static int InitBlock(char * ptr, int n)

47    {

(gdb) p ptr

$1 = 0x0

(gdb)

 

 

13.1.2 Invoking GDB

The first line of Listing 13-1 shows how   GDB was invoked from the command line. 
Because we are doing cross-debugging, we need the cross-version of GDB that has 
been compiled for our host and target system. We invoke our version of cross-gdb as 
shown and pass xscale_be-gdb the name of the binary followed by the name of the 
core dump file—in this case, simply core. After GDB prints several banner lines de-
scribing its configuration and other information, it displays the reason for the termina-
tion: signal 11, which indicates a segmentation fault.2

Several lines follow as GDB loads the binary, the libraries it depends on, and the 
core file. The last line printed upon GDB startup is the current location of the program 
when the fault occurred. The line preceded by the #0 string indicates the stack frame 
(stack frame zero in a function called ClearBlock() at virtual address 0x00012ac4).

2 Signals and their associated numbers are defined in .../arch/<arch>/include/asm/signal.h in your Linux 
kernel source tree.
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The following line starting with 43 is the line number of the offending source line 
from a file called led.c. From there, GDB displays its command prompt and waits for 
input.

To provide some context, we enter the gdb list command, using its abbreviated 
form, l. GDB recognizes command abbreviations where no ambiguity exists. Here the 
program error begins to present itself. Here is the offending line, according to GDB’s 
analysis of the core dump:

43            *ptr = 0;

Next we issue the gdb print command on the ptr variable, abbreviated as p. As 
you can see from Listing 13-1, the value of the pointer ptr is 0. So we conclude that 
the reason for the segmentation fault is the classic null pointer dereference, a common 
programming error in many programming languages. From here, we can elect to use 
the backtrace command to see the call chain leading to this error, which       might take us 
back to the source of the error. Listing 13-2 displays these results.

LISTING 13-2 Backtrace Command

(gdb) bt

#0  0x00012ac4 in ClearBlock (RealBigBlockPtr=0x0, l=100000000) at led.c:43

#1  0x00012b08 in InitBlock (ptr=0x0, n=100000000) at led.c:48

#2  0x00012b50 in ErrorInHandler (wp=0x325c8, urlPrefix=0x2f648 “/Error”,

    webDir=0x2f660 “”, arg=0, url=0x34f30 “/Error”, path=0x34d68 “/Error”,

    query=0x321d8 “”) at led.c:61

#3  0x000126cc in websUrlHandlerRequest (wp=0x325c8) at handler.c:273

#4  0x0001f518 in websGetInput (wp=0x325c8, ptext=0xbefffc40,

    pnbytes=0xbefffc38) at webs.c:664

#5  0x0001ede0 in websReadEvent (wp=0x325c8) at webs.c:362

#6  0x0001ed34 in websSocketEvent (sid=1, mask=2, iwp=206280) at webs.c:319

#7  0x00019740 in socketDoEvent (sp=0x34fc8) at sockGen.c:903

#8  0x00019598 in socketProcess (sid=1) at sockGen.c:845

#9  0x00012be8 in main (argc=1, argv=0xbefffe14) at main.c:99

(gdb)

The backtrace displays the call chain all the way back to main(), the start of the 
user’s program. A stack frame number    precedes each line of the backtrace. You can 
switch to any given stack frame using the gdb frame command. Listing 13-3 is an 
example of this. Here we switch to stack frame 2 and display the source code in that 
frame. As in the previous examples, the lines preceded by the (gdb) command prompt 
are the commands we issue to GDB, and the   other lines are the GDB output.
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LISTING 13-3 Moving Around Stack Frames in GDB

(gdb) frame 2

#2  0x00012b50 in ErrorInHandler (wp=0x325c8, urlPrefix=0x2f648 “/Error”,

    webDir=0x2f660 “”, arg=0, url=0x34f30 “/Error”, path=0x34d68 “/Error”,

    query=0x321d8 “”) at led.c:61

61              return InitBlock(p, siz);

(gdb) l

56

57              siz = 10000 * sizeof(BigBlock);

58

59              p = malloc(siz);

60          /*  if (p) */

61                 return InitBlock(p, siz);

62          /*  else return (0);  */

63      }

64

65

(gdb)

As you can see, with a little help from the source code available using the list com-
mand, it would be a simple process to trace the code back to the source of the errant 
null pointer. In fact, notice the source of the segmentation fault we have produced for 
this example. In Listing 13-3, we see that the check of the return value in the call to 
malloc() has been commented out. In this example, the malloc() call failed, leading 
to the operation on a null pointer two frames later in the call chain. Although this 
example is both contrived and trivial, many crashes of this type are remarkably easy to 
track down using a similar method with GDB and core dumps. You can also see the 
null pointer by looking at the parameter values in the function call. This often   leads 
you directly to the stack frame where the null pointer originated.

13.1.3 Debug Session in GDB

We conclude this introduction   to GDB by showing a typical debug session. In the 
previous demonstration of a program crash, we could have elected to step through 
the code to narrow down the cause of the failure. Of course, if you get a core dump, 
you should always start there. However, in other situations, you might want to set 
breakpoints and step through running code. Listing 13-4 details how we start GDB in 
preparation for a debug session. Note that the program must have been compiled with 
the debug flag enabled in the gcc command line for GDB to be useful in this context. 
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Refer to Figure 12-1 in Chapter 12, “Embedded Development Environment”; this 
is a cross-debug session with GDB running on your development host, debugging a 
program running on your target. We cover the complete details of remote  application 
debugging in Chapter 15, “Debugging Embedded Linux Applications.”

LISTING 13-4 Initiating a GDB Debug Session

$ xscale_be-gdb -silent webs

(gdb) target remote 192.168.1.21:2001

0x40000790 in ?? ()

(gdb) b main

Breakpoint 1 at 0x12b74: file main.c, line 78.

(gdb) c

Continuing.

Breakpoint 1, main (argc=1, argv=0xbefffe04) at main.c:78

78              bopen(NULL, (60 * 1024), B_USE_MALLOC);

(gdb) b ErrorInHandler

Breakpoint 2 at 0x12b30: file led.c, line 57.

(gdb) c

Continuing.

Breakpoint 2, ErrorInHandler (wp=0x311a0, urlPrefix=0x2f648 “/Error”,

    webDir=0x2f660 “”, arg=0, url=0x31e88 “/Error”, path=0x31918 “/Error”,

    query=0x318e8 “”) at led.c:57

57              siz = 10000 * sizeof(BigBlock);

(gdb) next

59              p = malloc(siz);

(gdb) next

61              return InitBlock(p, siz);

(gdb) p p

$1 =(unsigned char *) 0x0

(gdb) p siz

$2 =  100000000

(gdb)

Examining this simple debug session, first we connect to our target board using the 
gdb target command. (We cover remote debugging in more detail in Chapter 15.) 
When we are connected to our target hardware, we set a breakpoint at main() using the 
gdb break (abbreviated b) command. Then we issue the gdb continue (abbreviated c)
command to resume program execution. If we had any program arguments, we could 
have issued them on the command line when we invoked GDB.
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We hit the breakpoint set at main(), and then set another one at ErrorInHandler(),
followed by the continue command, again abbreviated. When this new breakpoint is 
hit, we begin to step through the code using the next command. There we encounter 
the call to malloc(). Following the malloc() call, we examine the return value and 
discover the failure, as indicated by the null return value. Finally, we print the value of 
the parameter in the malloc() call and see that a very large memory region (100 mil-
lion bytes) is being requested, which fails.

Although trivial, the GDB examples in this section should enable the newcomer to 
become immediately productive with GDB. Few people have really mastered GDB—
it is complex and has many capabilities. Section 13.2, “Data Display Debugger,” in-
troduces a graphical front end to GDB that can ease the transition if you’re unfamiliar 
with GDB.

One final note about GDB: No doubt you have noticed the many banner lines 
GDB displays on the console when it is first invoked, as in Listing 13-1. In these ex-
amples, as stated earlier, we used a cross-gdb from the Monta Vista embedded Linux 
distribution. The banner lines contain a vital piece   of information that the embedded 
developer must be aware of: GDB’s host and target specifications. In Listing 13-1, we 
saw the following output when GDB was invoked:

This GDB was configured as “--host=i686-pc-linux-gnu -

target=armv5teb-montavista-linuxeabi”

In this instance, we invoked a version of GDB that was compiled to execute from 
a Linux PC—specifically, an i686 running the GNU/Linux operating system. Equally 
critical, this instance of GDB was compiled to debug ARM binary code generated 
from the armv5teb big endian toolchain.

One of the most common mistakes made by newcomers to embedded development 
is to use the wrong GDB while trying to debug target executables. If something isn’t 
working right, you should immediately check your GDB configuration to make sure 
that it makes sense for your environment. You cannot use your   native GDB to debug 
target code!

13.2 Data Display Debugger

The Data Display Debugger (DDD), shown      in Figure 13-1, is a graphical front end to 
GDB and other command-line debuggers. DDD has many advanced features beyond 
simply viewing source code and stepping through a debug session.
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FIGURE 13-1 Data Display Debugger

DDD is invoked     as follows:

$ ddd --debugger xscale_be-gdb webs

Without the --debugger flag, DDD would attempt to invoke the native GDB on 
your development host. This is not what you want if you are planning to debug an 
application on your target system. The second argument on the DDD command line 
is the program you will be debugging. See the DDD man page for additional details.

Using the command tool as shown in Figure 13-1, you can step through your 
program. You can set breakpoints either graphically or via the GDB console window 
at the bottom of the DDD screen. For target debugging, you must first connect your 
debugger to the target system as we did in Listing 13-4, using the target command. 
This command is issued in the GDB window of the DDD main screen.
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When you are connected to the target, you can execute commands similar to the se-
quence just shown to isolate the program failure. Figure 13-2 shows the DDD display 
during the later phase of this debugging     session.

FIGURE 13-2 Debug session in DDD

Notice that in Figure 13-2, we have initiated the display of some important program 
variables that can help us narrow the cause of the segmentation fault. We can watch these 
variables as we step through the program using the command tool shown in the figure.

DDD is a powerful graphical front end for GDB. It is relatively easy to use and 
widely supported for many development hosts. Consult the last section of this chapter 
for a link to the GNU DDD documentation.

It should be noted that    over the course of time, Eclipse has eclipsed (pun intended!) 
DDD as the debugger of choice. Space does not permit detailed coverage of Eclipse. 
References to Eclipse are included at the end of this chapter in case you would like 
more information.

13.3 cbrowser/cscope

We introduce cbrowser because support    for this handy tool has found its way into the 
Linux kernel source tree. cbrowser is a simple source-code browsing tool that makes it 
easy to navigate around a large source tree following symbols  Some distributions, such 
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as Ubuntu, have cbrowser in their repository, but others, such as the recent Fedora, do 
not. On Ubuntu, simply type the following:

$ sudo apt-get install cbrowser

 The Linux kernel makefile supports building the database that cbrowser uses. Here 
is a sample invocation from a recent Linux kernel snapshot:

$ make ARCH=powerpc CROSS_COMPILE=ppc_82xx- cscope

This produces the cscope symbol database that cbrowser uses. cscope is the en-
gine; cbrowser is the graphical user interface. You can use cscope on its own if you 
want. It is command-line-driven and very powerful, but not quite as quick or easy for 
navigating a large source tree in this point-and-click era. If vi is still your favorite edi-
tor, cscope might be just for you!

To invoke cbrowser, enter the directory that contains your cscope database, and 
simply type the cbrowser command without arguments. Figure 13-3 shows a sample 
session. You can read more about both   of these useful tools in the references listed in 
the last section.

FIGURE 13 3 b  i  ti
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13.4 Tracing and Profiling Tools

Many useful tools can provide you with various views of the system. Some tools offer 
a high-level perspective. You can discover what processes are running on your system 
and which processes are consuming the most CPU bandwidth. Other tools can pro-
vide detailed analysis, such as where memory is being allocated or, even more useful, 
where it is being leaked. The next few sections introduce the most important tools and 
utilities in this category. We have space for only a cursory introduction to these tools; 
references are provided where appropriate for additional details.

13.4.1 strace

strace is a useful trace utility found   in virtually all Linux distributions. strace cap-
tures and displays information for every kernel system call executed by a Linux applica-
tion program. strace is especially handy because it can be run on programs for which 
no source code is available. It is not necessary to compile the program with debug 
symbols as it is with GDB. Furthermore, strace can be a very insightful educational 
tool. As the man page states, “Students, hackers, and the overly-curious will find that 
a great deal can be learned about a system and its system calls by tracing even ordinary 
programs.”

While preparing the sample software for the GDB section earlier in this chapter, I 
decided to use a software project unfamiliar to me—an early version of the GoAhead 
embedded web server. The first attempt at compiling and linking the project led to 
an interesting example for strace. Starting the application from the command line 
silently returned control to the console. No error messages were produced, and a look 
into the system logs also produced no clues. It simply would not run.

strace quickly identified the problem. Listing 13-5 shows the output from invok-
ing strace on this application. Many lines from this output have been deleted due to 
space considerations. The unedited       output is over one hundred lines long.

LISTING 13-5 strace Output: GoAhead Web Demo

01 root@coyote:$ strace ./websdemo

02 execve(“./websdemo”, [“./websdemo”], [/* 14 vars */]) = 0

03 uname({sys=”Linux”, node=”coyote”, ...}) = 0

04 brk(0)                                  = 0x10031050

05 open(“/etc/ld.so.preload”, O_RDONLY)    = -1 ENOENT (No such file or

 directory)

06 open(“/etc/ld.so.cache”, O_RDONLY)      = -1 ENOENT (No such file or

 directory)
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LISTING 13-5 Continued

07 open(“/lib/libc.so.6”, O_RDONLY)        = 3

08 read(3, “\177ELF\1\2\1\0\0\0\0\0\0\0\0\0\0\3\0\24\0\0\0\1\0\1\322”..., 1024) = 
1024

09 fstat64(0x3, 0x7fffefc8)                = 0

10 mmap(0xfe9f000, 1379388, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0xfe9f000

11 mprotect(0xffd8000, 97340, PROT_NONE)   = 0

12 mmap(0xffdf000, 61440, PROT_READ|PROT_WRITE|PROT_EXEC,MAP_PRIVATE|MAP_FIXED, 3, 
0x130000) = 0xffdf000

13 mmap(0xffee000, 7228, PROT_READ|PROT_WRITE|PROT_EXEC,

MAP_PRIVATE|MAP_FIXED| MAP_ANONYMOUS, -1, 0) = 0xffee000

14 close(3)                                = 0

15 brk(0)                                  = 0x10031050

16 brk(0x10032050)                         = 0x10032050

17 brk(0x10033000)                         = 0x10033000

18 brk(0x10041000)                         = 0x10041000

19 rt_sigaction(SIGPIPE, {SIG_IGN}, {SIG_DFL}, 8) = 0

20 stat(“./umconfig.txt”, 0x7ffff9b8)      = -1 ENOENT (No such file or

directory)

21 uname({sys=”Linux”, node=”coyote”, ...}) = 0

22 gettimeofday({3301, 178955}, NULL)      = 0

23 getpid()                                = 156

24 open(“/etc/resolv.conf”, O_RDONLY)      = 3

25 fstat64(0x3, 0x7fffd7f8)                = 0

26 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x30017000

27 read(3, “#\n# resolv.conf  This file is th”..., 4096) = 83

28 read(3, “”, 4096)                       = 0

29 close(3)                                = 0

...   <<< Lines 30-81 removed for brevity

82 socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

83 connect(3, {sa_family=AF_INET, sin_port=htons(53),

sin_addr=inet_addr(“0.0.0.0”)}, 28) = 0

84 send(3, “\267s\1\0\0\1\0\0\0\0\0\0\6coyotea\0\0\1\0\1”, 24, 0) = 24

85 gettimeofday({3301, 549664}, NULL)      = 0

86 poll([{fd=3, events=POLLIN, revents=POLLERR}], 1, 5000) = 1

87 ioctl(3, 0x4004667f, 0x7fffe6a8)        = 0

88 recvfrom(3, 0x7ffff1f0, 1024, 0, 0x7fffe668, 0x7fffe6ac) = -1

ECONNREFUSED (Connection refused)

89 close(3)                                = 0

90 socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

91 connect(3, {sa_family=AF_INET, sin_port=htons(53),

sin_addr=inet_addr(“0.0.0.0”)}, 28) = 0
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LISTING 13-5 Continued

92 send(3, “\267s\1\0\0\1\0\0\0\0\0\0\6coyote\0\0\1\0\1”, 24, 0) = 24

93 gettimeofday({3301, 552839}, NULL)      = 0

494 poll([{fd=3, events=POLLIN, revents=POLLERR}], 1, 5000) = 1

95 ioctl(3, 0x4004667f, 0x7fffe6a8)        = 0

96 recvfrom(3, 0x7ffff1f0, 1024, 0, 0x7fffe668, 0x7fffe6ac) = -1

ECONNREFUSED (Connection refused)

97 close(3)                                = 0

98 exit(-1)                                = ?

99 root@coyote:/home/websdemo#

Line numbers have been added       to the output produced by strace to make this list-
ing more readable. The application is spawned under strace on line 01. In its simplest 
form, simply put the strace command directly in front of the name of the program 
you want to examine. This is how the output in Listing 13-5 was produced.

Each line of this trace represents a discrete kernel system call that the websdemo ap-
plication makes into the kernel. We don’t need to analyze and understand each line of 
the trace, although it is quite instructive to do so. We are looking for any anomalies 
that might help pinpoint why the program won’t run. In the first several lines, the en-
vironment in which the program will execute is prepared. We see several open() system 
calls to /etc/ld.so.*, which is the Linux dynamic linker-loader (ld.so) doing its job. 
In fact, line 06 is a clue that this sample embedded board had not been properly con-
figured. A linker cache file should be produced by running ldconfig. (The linker cache 
substantially speeds up searching for shared library references.) This was subsequently 
resolved by running ldconfig on the target.3

Down through line 19 is more basic housekeeping, mostly by the loader and libc
initializing. Notice in line 20 that the program looks for a configuration file but does 
not find one. That could be an important issue when we get the software running. 
Starting with line 24, the program begins to set up and configure the appropriate 
networking resources it needs. Lines 24 through 29 open and read a Linux system file 
containing instructions for the DNS service to resolve hostnames. Local network con-
figuration activity continues through line 81. Most of this activity consists of network 
setup and configuration necessary to build the networking infrastructure for the pro-
gram itself. This portion of the listing has been removed for brevity and clarity.

3 See man ldconfig for details on creating a linker cache for your target system.
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Notice especially the network activity starting on line 82. Here the program tries 
to establish a TCP/IP connection to an IP address of all 0s. Line 82 is reproduced here 
for convenience:

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

A couple points about Listing 13-5 are worth noting. We might not know all the 
details of every system call, but we can get a general idea of what is happening. The 
socket() system call is similar to a file system open() call. The return value, indicated 
by the = sign in this case, represents a Linux file descriptor. Knowing this, we can as-
sociate the activity from line 82 through the close() system call in line 89 with file 
descriptor 3.

We are interested in this group of related system calls because we see an error mes-
sage in line 88: Connection refused. At this point, we still don’t know why the pro-
gram won’t run, but this appears abnormal. Let’s investigate. Line 82, the system call to 
socket(), establishes an endpoint for IP communication. Line 83 is curious, because it 
tries to establish a connection to a remote endpoint (socket) containing an IP address 
of all 0s. We don’t have to be network experts to suspect that this might be causing 
trouble.4 Line 83 provides another important clue: The port parameter is set to 53. A 
quick Internet search for TCP/IP port numbers reveals that port 53 is the Domain 
Name Service (DNS).

Line 84 provides yet another clue. Our board has a hostname of coyote. This can 
be seen as part of the command prompt in line 01 of Listing 13-5. It appears that this 
activity is a DNS lookup for our board’s hostname, which is failing. As an experiment, 
we add an entry to our target system’s /etc/hosts5 file to associate our locally defined 
hostname with the board’s locally assigned IP address, as follows:

coyote  192.168.1.21        #The IP address we assigned

Voilà. Our program begins to function   normally. Although we might not know 
exactly why this would lead to a program failure (TCP/IP networking experts might), 
our strace output led us to the fact that a DNS lookup for our board name was failing. 
When we corrected that, the program started happily and began serving web pages. To 
recap, this was a program for which we had no source code to reference, and it had no 
symbols compiled into its binary image. Using strace, we were able to determine the 
cause of the program failure and implement a solution.

4 Sometimes an all-0s address is appropriate in this context. However, we are investigating why the program terminated abnor-
mally  so we should consider this suspect
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13.4.2 strace Variations

The strace utility   has many command-line options. One of the more useful is the 
ability to select a subset of system calls for tracing. For example, if you want to see only 
the network-related activity of a given process, issue the command as follows:

$ strace -e trace=network process_name

This produces a trace of all the network-related system calls, such as socket(),
connect(), recvfrom(), and send(). This is a powerful way to view the network activ-
ity of a given program. Several other subsets are available. For example, you can view 
only a program’s file-related activities, with open(), close(), read(), write(), and so 
on. Additional subsets include process-related system calls, signal-related system calls, 
and IPC-related system calls.

It is worth noting that strace can deal with tracing programs that spawn addi-
tional processes. Invoking strace with the -f option instructs strace to follow child 
processes that are created using the fork() system call. The strace command has nu-
merous possibilities. The best way to become proficient with this powerful utility is to 
use it. Make it a point to seek out and read the latest open source documentation with 
this and the other tools we present. In this case, man strace on most Linux hosts will 
produce enough material to keep you experimenting for an afternoon!

One very useful way to employ strace is to use the -c option. This option produces 
a high-level profiling of your application. Using the -c option, strace accumulates 
statistics on each system call, how many times it was encountered, how many times 
errors were returned, and the time spent in each system call. Listing 13-6 is an example 
of running strace -c on the webs demo      from the previous example.

LISTING 13-6 Profiling Using strace

root@coyote$ strace -c ./webs

% time     seconds  usecs/call     calls    errors syscall

------ ----------- -----------  ---------  --------- --------

 29.80    0.034262         189       181           send

 18.46    0.021226        1011        21        10 open

 14.11    0.016221         130       125           read

 11.87    0.013651         506        27         8 stat64

  5.88    0.006762         193        35           select

  5.28    0.006072          76        80           fcntl64

  3.47    0.003994          65        61           time

  2.79    0.003205        3205         1           execve
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LISTING 13-6 Continued

  1.71    0.001970          90        22         3 recv

  1.62    0.001868          85        22           close

  1.61    0.001856         169        11           shutdown

  1.38    0.001586         144        11           accept

  0.41    0.000470          94         5           mmap2

  0.26    0.000301         100         3           mprotect

  0.24    0.000281          94         3           brk

  0.17    0.000194         194         1         1 access

  0.13    0.000150         150         1           lseek

  0.12    0.000141          47         3           uname

  0.11    0.000132         132         1           listen

  0.11    0.000128         128         1           socket

  0.09    0.000105          53         2           fstat64

  0.08    0.000097          97         1           munmap

  0.06    0.000064          64         1           getcwd

  0.05    0.000063          63         1           bind

  0.05    0.000054          54         1           setsockopt

  0.04    0.000048          48         1           rt_sigaction

  0.04    0.000046          46         1           gettimeofday

  0.03    0.000038          38         1           getpid

------ -----------  -----------  --------- --------- -----------

100.00    0.114985                   624        22 total

This is a very useful way to get a high-level view of where your application is con-
suming time and where errors are occurring. Some errors might be a normal part of 
your application’s operation, but others might be consuming time in ways that you did 
not anticipate. From Listing 13-6, we can see that the syscall with the longest duration 
was the execve(), which is the call that the shell used to spawn the application. As 
you can see, it was called only once. Another interesting observation is that the send()
system call was the most frequently used syscall. This makes sense, because the applica-
tion is a small web server.

Bear in mind that, like the other tools we have been discussing here, strace must 
be compiled for your target architecture. strace is executed on your target board, not 
your development host. You must use a version that is compatible with your architec-
ture. If you purchase a commercial embedded Linux distribution, you should make 
sure that this utility is included for your chosen       architecture.
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13.4.3 ltrace

The ltrace and strace utilities     are closely related. The ltrace utility does for library 
calls what strace does for system calls. It is invoked in a similar fashion. You precede 
the program to be traced by the tracer utility, as follows:

$ ltrace ./example

Listing 13-7 reproduces      the output of ltrace on a small sample program that ex-
ecutes a handful of standard C library calls.

LISTING 13-7 Sample ltrace Output

$ ltrace ./example

__libc_start_main(0x8048594, 1, 0xbffff944, 0x80486b4, 0x80486fc <unfinished ...>

malloc(256)                                      = 0x804a008

getenv(“HOME”)                                   = “/home/chris”

strncpy(0x804a008, “/home”, 5)                   = 0x804a008

fopen(“foo.txt”, “w”)                            = 0x804a110

printf(“$HOME = %s\n”, “/home/chris”$HOME = /home/chris

)            = 20

fprintf(0x804a110, “$HOME = %s\n”, “/home/chris”) = 20

fclose(0x804a110)                                = 0

remove(“foo.txt”)                                = 0

free(0x804a008)                                  = <void>

+++ exited (status 0) +++

$

For each library call, the name of the call is displayed, along with varying portions 
of the parameters to the call. Similar to strace, the return value of the library call is 
then displayed. As with strace, this tool can be used on programs for which source 
code is unavailable.

Similar to strace, a variety of switches affect the behavior of ltrace. You can 
display the value of the program counter at each library call, which can be helpful 
in understanding your application’s program flow. As with strace, you can use -c to 
accumulate and report count, error, and time statistics, making a useful, simple profil-
ing tool. Listing 13-8 displays the results of our simple sample   program using the -c
option.
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LISTING 13-8 Profiling Using ltrace

$ ltrace -c ./example

$HOME = /home/chris

% time     seconds  usecs/call     calls      function

------ -----------  ----------- --------- ----------------

 24.16    0.000231         231         1 printf

 16.53    0.000158         158         1 fclose

 16.00    0.000153         153         1 fopen

 13.70    0.000131         131         1 malloc

 10.67    0.000102         102         1 remove

  9.31    0.000089          89         1 fprintf

  3.35    0.000032          32         1 getenv

  3.14    0.000030          30         1 free

  3.14    0.000030          30         1 strncpy

------ ----------- ----------- --------- ----------------

 100.00    0.000956                     9 total

The ltrace tool is available only for programs that have been compiled to use dy-
namically linked shared library objects. This is the usual default, so unless you explic-
itly specify -static when compiling, you can use ltrace on the resulting binary. Also 
similar to strace, you must use an ltrace binary that has been compiled for your tar-
get architecture. These utilities     are run on the target, not the host development system.

13.4.4 ps

With the possible exception     of strace and ltrace, no tools are neglected by the em-
bedded systems developer more often than top and ps. Given the myriad options 
available for each utility, we could easily devote an entire chapter to these useful sys-
tem-profiling tools. They are almost universally available on your favorite target in 
embedded Linux distributions.

Both of these utilities make use of the /proc file system, as described in Chapter 9, 
“File Systems.” Much of the information they convey can be learned from the /proc
file system if you know what to look for and how to parse the resulting information. 
These tools present that information in a convenient human-readable form.

The ps utility lists all the running processes on a machine. However, it is quite 
flexible and can be tailored to provide much useful data on the state of a machine and 
the processes running on it. For example, ps can display the scheduling policy of each 
process. This is particularly useful for systems that employ real-time processes.

Without any options, ps displays all processes that have the same user ID as the user 
who invoked the command, and only those processes associated with the terminal on 
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which the command was issued. This is useful when many jobs have been spawned by 
that user and terminal.

Passing options to ps can be confusing, because ps supports a wide variety of stan-
dards (as in POSIX versus UNIX) and three distinct options styles: BSD, UNIX, and 
GNU. In general, BSD options are single or multiple letters, with no dash. UNIX op-
tions are the familiar dash-letter combinations, and GNU uses long argument formats 
preceded by double dashes. Refer to the man page    for details of your ps implementa-
tion.

Everyone who uses ps likely has a favorite invocation. One particularly useful gen-
eral-purpose invocation is ps aux. This displays every process on the system. Listing 
13-9 is an example from a running   embedded target board.

LISTING 13-9 Process Listing

$ ps aux

USER      PID %CPU %MEM    VSZ   RSS TTY   STAT START   TIME COMMAND

root        1  0.0  0.8   1416   508 ?     S    00:00   0:00 init [3]

root        2  0.0  0.0      0     0 ?     S<   00:00   0:00 [ksoftirqd/0]

root        3  0.0  0.0      0     0 ?     S<   00:00   0:00 [desched/0]

root        4  0.0  0.0      0     0 ?     S<   00:00   0:00 [events/0]

root        5  0.0  0.0      0     0 ?     S<   00:00   0:00 [khelper]

root       10  0.0  0.0      0     0 ?     S<   00:00   0:00 [kthread]

root       21  0.0  0.0      0     0 ?     S<   00:00   0:00 [kblockd/0]

root       62  0.0  0.0      0     0 ?     S    00:00   0:00 [pdflush]

root       63  0.0  0.0      0     0 ?     S    00:00   0:00 [pdflush]

root       65  0.0  0.0      0     0 ?     S<   00:00   0:00 [aio/0]

root       36  0.0  0.0      0     0 ?     S    00:00   0:00 [kapmd]

root       64  0.0  0.0      0     0 ?     S    00:00   0:00 [kswapd0]

root      617  0.0  0.0      0     0 ?     S    00:00   0:00 [mtdblockd]

root      638  0.0  0.0      0     0 ?     S    00:00   0:00 [rpciod]

bin       834  0.0  0.7   1568   444 ?     Ss   00:00   0:00 /sbin/portmap

root      861  0.0  0.0      0     0 ?     S    00:00   0:00 [lockd]

root      868  0.0  0.9   1488   596 ?     Ss   00:00   0:00 /sbin/syslogd -r

root      876  0.0  0.7   1416   456 ?     Ss   00:00   0:00 /sbin/klogd -x

root      884  0.0  1.1   1660   700 ?     Ss   00:00   0:00 /usr/sbin/rpc.statd

root      896  0.0  0.9   1668   584 ?     Ss   00:00   0:00 /usr/sbin/inetd

root      909  0.0  2.2   2412  1372 ?     Ss+  00:00   0:00 -bash

telnetd   953  0.3  1.1   1736   732 ?     S    05:58   0:00 in.telnetd

root      954  0.2  2.1   2384  1348 pts/0 Ss   05:58   0:00 -bash

root      960  0.0  1.2   2312   772 pts/0 R+   05:59   0:00 ps aux
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This is but one of the many ways to view output data using ps. The columns are 
as follows:

• The USER and process ID (PID) fields are self-explanatory.

• The %CPU field expresses the percentage of CPU utilization since the begin-
ning of the process’s lifetime; thus, CPU usage will almost never add up to 100 
percent.

• The %MEM field indicates the ratio of the process’s resident memory foot-
print to the total available physical memory.

• The VSZ field is the virtual memory size of the process in kilobytes.

• RSS is the resident set size. It indicates the nonswapped physical memory that 
a process has used, also in kilobytes.

• TTY is the process’s controlling terminal.

Most of the processes in this example are not associated with a controlling terminal. 
The ps command that generated Listing 13-9 was issued from a telnet session, as indi-
cated by the pts/0 terminal device.

The STAT field describes the state of the process at the time this snapshot was pro-
duced. S means that the process is sleeping, waiting on an event of some type, often 
I/O. R means that the process is in a runnable state (that is, the scheduler is free to give 
it control of the CPU if nothing of a higher priority is waiting). The angle bracket next 
to the state letter indicates that this process has a higher priority.

The final column is the command name. Those listed in brackets are kernel threads. 
Many more symbols and options   are available; refer to the man page for ps for com-
plete details.

13.4.5 top

Whereas ps is a one-time     snapshot of the current system, top takes periodic snapshots 
of the state of the system and its processes. Similar to ps, top has numerous command-
line and configuration options. It is interactive and can be reconfigured while running 
to customize the display to your particular needs.

Entered without options, top displays all running processes in a fashion very simi-
lar to the ps aux command presented in Listing 13-9, updated every 3 seconds. Of 
course, this and many other aspects of top are user-configurable. The first few lines of 
the top screen display system information, also updated every 3 seconds. This includes 
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the system uptime, the number of users, information on the number of processes and 
their state, and much more.

Listing 13-10 shows top in its default  configuration, resulting from executing top
from the command line without parameters.

LISTING 13-10 Default top Display

top - 06:23:14 up  6:23,  2 users,  load average: 0.00, 0.00, 0.00

Tasks:  24 total,   1 running,  23 sleeping,   0 stopped,   0 zombie

Cpu(s):  0.0% us,  0.3% sy,  0.0% ni, 99.7% id,  0.0% wa,  0.0% hi,  0.0% si

Mem:     62060k total,    17292k used,    44768k free,        0k buffers

Swap:        0k total,        0k used,        0k free,    11840k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND

  978 root      16   0  1924  952  780 R  0.3  1.5   0:01.22 top

    1 root      16   0  1416  508  452 S  0.0  0.8   0:00.47 init

    2 root       5 -10     0    0    0 S  0.0  0.0   0:00.00 ksoftirqd/0

    3 root       5 -10     0    0    0 S  0.0  0.0   0:00.00 desched/0

    4 root      -2  -5     0    0    0 S  0.0  0.0   0:00.00 events/0

    5 root      10  -5     0    0    0 S  0.0  0.0   0:00.09 khelper

   10 root      18  -5     0    0    0 S  0.0  0.0   0:00.00 kthread

   21 root      20  -5     0    0    0 S  0.0  0.0   0:00.00 kblockd/0

   62 root      20   0     0    0    0 S  0.0  0.0   0:00.00 pdflush

   63 root      15   0     0    0    0 S  0.0  0.0   0:00.00 pdflush

   65 root      19  -5     0    0    0 S  0.0  0.0   0:00.00 aio/0

   36 root      25   0     0    0    0 S  0.0  0.0   0:00.00 kapmd

   64 root      25   0     0    0    0 S  0.0  0.0   0:00.00 kswapd0

  617 root      25   0     0    0    0 S  0.0  0.0   0:00.00 mtdblockd

  638 root      15   0     0    0    0 S  0.0  0.0   0:00.34 rpciod

  834 bin       15   0  1568  444  364 S  0.0  0.7   0:00.00 portmap

  861 root      20   0     0    0    0 S  0.0  0.0   0:00.00 lockd

  868 root      16   0  1488  596  504 S  0.0  1.0   0:00.11 syslogd

  876 root      19   0  1416  456  396 S  0.0  0.7   0:00.00 klogd

  884 root      18   0  1660  700  612 S  0.0  1.1   0:00.02 rpc.statd

  896 root      16   0  1668  584  504 S  0.0  0.9   0:00.00 inetd

  909 root      15   0  2412 1372 1092 S  0.0  2.2   0:00.34 bash

  953 telnetd   16   0  1736  736  616 S  0.0  1.2   0:00.27 in.telnetd

  954 root      15   0  2384 1348 1096 S  0.0  2.2   0:00.16 bash

The default columns from Listing 13-10 are the PID, the user, the process priority, 
the process nice value, the virtual memory used by the process, the resident memory 
footprint, the amount of shared memory used by the task, and other fields that are 
identical to those described in the previous ps example.
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Space permits only a cursory introduction to these useful utilities. You are encour-
aged to spend an afternoon with the   man pages for top and ps to explore the richness 
of their capabilities.

13.4.6 mtrace

mtrace is a simple utility that     analyzes and reports on calls to malloc(), realloc(), and 
free() in your application. It is easy to use and can potentially help spot trouble in your 
application. As with other userland tools we have described in this chapter, mtrace must 
be configured and compiled for your target architecture. mtrace is a malloc replacement 
library that is installed on your target. Your application enables it with a special function 
call. Your embedded Linux distribution should contain the mtrace package.

To demonstrate this utility, we created a simple program that creates dynamic data 
on a simple linked list. Each list item was dynamically generated, as was each data item 
we placed on the list. Listing 13-11 shows the      simple list structure.

LISTING 13-11 Simple Linear Linked List

struct blist_s {

  struct blist_s *next;

  char *data_item;

  int item_size;

  int index;

};

Each list item was dynamically created using malloc() as follows and subsequently 
was placed at the end of the linked list:

struct blist_s *p = malloc( sizeof(struct blist_s) );

Each variable-sized data item in the list was also dynamically generated and added 
to the list item before being placed at the end of the list. This way, every list item was 
created using two calls to malloc()—one for the list item itself, represented by struct
blist_s, just shown, and one for the variable data item. We then generated 10,000 re-
cords on the list containing variable string data, resulting in 20,000 calls to malloc().

For you to use mtrace, three conditions must be satisfied:

• A header file, mcheck.h, must be included in the source file.

• The application must call mtrace() to install the handlers.
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• The environment variable MALLOC_TRACE must specify the name of a writeable 
file to which the trace data is written.

When these conditions are satisfied, each call to one of the traced functions gener-
ates a line in the raw trace file defined by MALLOC_TRACE. The trace data looks like this:

@ ./mt_ex:[0x80486ec] + 0x804a5f8 0x10

   

The @ sign signals that the trace line contains an address or function name. The 
program is executing at the address in square brackets, 0x80486ec. Using binary utili-
ties or a debugger, we could easily associate this address with a function. The plus sign 
(+) indicates that this is a call to allocate memory. A  call to free() would be indicated 
by a minus sign. The next field indicates the virtual address of the memory location 
being allocated or freed. The last field is the size, which is included in every call to al-
locate memory.

This data format is not very user-friendly. For this reason, the mtrace utility in-
cludes a utility that analyzes the raw trace data and reports on any inconsistencies. The 
analysis utility is a Perl script supplied with the mtrace package. In the simplest case, 
the Perl script prints a single line with the message No memory leaks. Listing 13-12 
shows the output that results when memory leaks       are detected.

LISTING 13-12 mtrace Error Report

$ mtrace ./mt_ex mtrace.log

Memory not freed:

-----------------

   Address     Size     Caller

0x0804aa70     0x0a  at /home/chris/temp/mt_ex.c:64

0x0804abc0     0x10  at /home/chris/temp/mt_ex.c:26

0x0804ac60     0x10  at /home/chris/temp/mt_ex.c:26

0x0804acc8     0x0a  at /home/chris/temp/mt_ex.c:64

  

 

As you can see, this simple tool can help you spot trouble before it happens, as well 
as find trouble when it occurs. Notice that the Perl script displays the filename and line 
number of each call to malloc() that does not have a corresponding call to free() for 
the given memory location. This requires debugging information in the executable file 
generated by passing the -g flag to the compiler. If no debugging information is found, 
the script simply reports the address of the function     calling malloc().
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13.4.7 dmalloc

dmalloc picks up where     mtrace leaves off. The mtrace package is a simple, relatively 
nonintrusive package most useful for simple detection of malloc/free unbalance condi-
tions. The dmalloc package lets you detect a much wider range of dynamic memory-
management errors. Compared to mtrace, dmalloc is highly intrusive. Depending on 
the configuration, dmalloc can slow your application to a crawl. It is definitely not the 
right tool if you suspect memory errors due to race conditions or other timing issues. 
dmalloc (and mtrace, to a lesser extent) will definitely change the timing of your ap-
plication.

dmalloc is a very powerful dynamic  memory-analysis tool. It is highly configurable 
and, therefore, somewhat complex. It takes some time to learn and master this tool. 
However, from QA testing to bug squashing, it could become one of your favorite 
development tools.

dmalloc is a debug malloc library replacement. These     conditions must be satisfied 
for you to use dmalloc:

• Application code must include the dmalloc.h header file.

• The application must be linked against the dmalloc library.

 • The dmalloc library and utility must be installed on your embedded target.

• Certain environment variables that the dmalloc library references must be 
defined before you run your application on the target.

Although it is not strictly necessary, you should include dmalloc.h in your applica-
tion program. This allows dmalloc to include file and line number information in the 
output.

Link your application against the dmalloc library of your choice. The dmalloc
package can be configured to generate several different libraries, depending on your 
selections during package configuration. The following     examples use the libdmalloc.
so shared library object. Place the library (or a symlink to it) in a path where your 
compiler can find it. The command to compile your application might look something 
like this:

$ ppc_82xx-gcc -g -Wall -o mtest_ex -L../dmalloc-5.4.2/ -ldmalloc mtest_ex.c

This command line assumes that you’ve placed the dmalloc library (libdmalloc.
so) in a location searched by the -L switch on the command line—namely, the ../
dmalloc-5.4.2 directly above the current directory.
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To install the dmalloc library on your target, place it in your favorite location (per-
haps /usr/local/lib). You might need to configure your system to find this library. 
On our sample Power Architecture system, we added the path /usr/local/lib to the 
/etc/ld.so.conf file and invoked the ldconfig utility to update the library search cache.

The last step in preparation is to set an environment variable that the dmalloc li-
brary uses to determine the level of debugging that will be enabled. The environment 
variable contains a debug bit mask that concatenates a number of features into a single 
convenient variable. Yours might look something like this:

DMALLOC_OPTIONS=debug=0x4f4ed03,inter=100,log=dmalloc.log

Here, debug is the debug-level bit mask, and inter sets an interval count at which 
the dmalloc library performs extensive checks on itself and the heap. The dmalloc
library writes its log output to the     file indicated by the log variable.

The dmalloc package comes with a utility to generate the DMALLOC_OPTIONS envi-
ronment variable based on flags passed to it. The documentation in the dmalloc pack-
age details this quite thoroughly, so we will not reproduce it here. The example just 
shown was generated with the following dmalloc invocation:

$ dmalloc -p check-fence -l dmalloc.log -i 100 high

When these steps are complete, you should be able to run your application against 
the dmalloc debug library.

dmalloc produces quite a detailed output log.   Listing 13-13 shows sample dmalloc
log output for a sample program that intentionally generates some memory leaks.

LISTING 13-13 dmalloc Log Output

2592: 4002: Dmalloc version ‘5.4.2’ from ‘http://dmalloc.com/’

2592: 4002: flags = 0x4f4e503, logfile ‘dmalloc.log’

2592: 4002: interval = 100, addr = 0, seen # = 0, limit = 0

2592: 4002: starting time = 2592

2592: 4002: process pid = 442

2592: 4002: Dumping Chunk Statistics:

2592: 4002: basic-block 4096 bytes, alignment 8 bytes

2592: 4002: heap address range: 0x30015000 to 0x3004f000, 237568 bytes

2592: 4002:     user blocks: 18 blocks, 73652  bytes (38%)

2592: 4002:    admin blocks: 29 blocks, 118784 bytes (61%)

2592: 4002:    total blocks: 47 blocks, 192512 bytes

2592: 4002: heap checked 41
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LISTING 13-13 Continued

2592: 4002: alloc calls: malloc 2003, calloc 0, realloc 0, free 1999

2592: 4002: alloc calls: recalloc 0, memalign 0, valloc 0

2592: 4002: alloc calls: new 0, delete 0

2592: 4002:   current memory in use: 52 bytes (4 pnts)

2592: 4002:  total memory allocated: 27546 bytes (2003 pnts)

2592: 4002:  max in use at one time: 27546 bytes (2003 pnts)

2592: 4002: max alloced with 1 call: 376 bytes

2592: 4002: max unused memory space: 37542 bytes (57%)

2592: 4002: top 10 allocations:

2592: 4002:  total-size  count in-use-size  count  source

2592: 4002:       16000   1000          32      2  mtest_ex.c:36

2592: 4002:       10890   1000          20      2  mtest_ex.c:74

2592: 4002:         256      1           0      0  mtest_ex.c:154

2592: 4002:       27146   2001          52      4  Total of 3

2592: 4002: Dumping Not-Freed Pointers Changed Since Start:

2592: 4002:  not freed: ‘0x300204e8|s1’ (10 bytes) from ‘mtest_ex.c:74’

2592: 4002:  not freed: ‘0x30020588|s1’ (16 bytes) from ‘mtest_ex.c:36’

2592: 4002:  not freed: ‘0x30020688|s1’ (16 bytes) from ‘mtest_ex.c:36’

2592: 4002:  not freed: ‘0x300208a8|s1’ (10 bytes) from ‘mtest_ex.c:74’

2592: 4002:  total-size  count  source

2592: 4002:          32      2  mtest_ex.c:36

2592: 4002:          20      2  mtest_ex.c:74

2592: 4002:          52      4  Total of 2

2592: 4002: ending time = 2592, elapsed since start = 0:00:00

It is important to note that this   log is generated upon program exit. (dmalloc has 
many options and modes of operation; it is possible to configure dmalloc to print out-
put lines when errors are detected.)

The first half of the output log reports high-level statistics about the heap and the 
application’s overall memory usage. Totals are produced for each of the malloc library 
calls, such as malloc(), free(), and realloc(). Interestingly, this default log reports 
on the top ten allocations and the source location where they occurred. This can be 
very useful for overall system-level profiling.

Toward the end of the log, we see evidence of memory leaks in our application. You 
can see that the dmalloc library detected four instances of memory that was allocated 
but apparently never freed. Because we included dmalloc.h and compiled with debug 
symbols, dmalloc placed the source location where the memory was allocated into the 
log.
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As with the other tools we’ve covered in this chapter, space permits only a brief in-
troduction to this very powerful debug tool. dmalloc can detect many other conditions 
and limits. For example, dmalloc can detect when a freed pointer has been written. It 
can tell whether a pointer was used to access data outside its bounds but within the ap-
plication’s permissible address range. In fact, dmalloc can be configured to log almost 
any memory transaction through the   malloc family of calls. dmalloc is a tool that is 
sure to pay back many times the effort taken to become proficient with it.

13.4.8 Kernel Oops

Although not strictly a tool, a kernel oops    contains much useful information to help 
you troubleshoot the cause. A kernel oops results from a variety of kernel errors, from 
simple memory errors produced by a process (fully recoverable, in most cases) to a hard 
kernel panic. Recent Linux kernels support display of symbolic information in addi-
tion to the raw hexadecimal address values. Listing 13-14 shows a kernel oops from   a 
Power Architecture target.

LISTING 13-14 Kernel Oops Display

$ modprobe loop

Oops: kernel access of bad area, sig: 11 [#1]

NIP: C000D058 LR: C0085650 SP: C7787E80 REGS: c7787dd0 TRAP: 0300  Not tainted

MSR: 00009032 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 11

DAR: 00000000, DSISR: 22000000

TASK = c7d187b0[323] ‘modprobe’ THREAD: c7786000

Last syscall: 128

GPR00: 0000006C C7787E80 C7D187B0 00000000 C7CD25CC FFFFFFFF 00000000 80808081

GPR08: 00000001 C034AD80 C036D41C C034AD80 C0335AB0 1001E3C0 00000000 00000000

GPR16: 00000000 00000000 00000000 100170D8 100013E0 C9040000 C903DFD8 C9040000

GPR24: 00000000 C9040000 C9040000 00000940 C778A000 C7CD25C0 C7CD25C0 C7CD25CC

NIP [c000d058] strcpy+0x10/0x1c

LR [c0085650] register_disk+0xec/0xf0

Call trace:

 [c00e170c] add_disk+0x58/0x74

 [c90061e0] loop_init+0x1e0/0x430 [loop]

 [c002fc90] sys_init_module+0x1f4/0x2e0

 [c00040a0] ret_from_syscall+0x0/0x44

Segmentation fault

Notice that the register dump includes symbolic information where appropriate. 
Your kernel must have KALLSYMS enabled for this symbolic information to be available. 
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Figure 13-4 shows the configuration options    under the General Setup main menu.

FIGURE 13-4 Symbol support for oops

Much of the information in a kernel oops message is directly related to the proces-
sor. Having some knowledge of the underlying architecture is necessary to fully under-
stand the oops message.

Analyzing the oops shown in Listing 13-14, we see right away that the oops was 
generated due to a “kernel access of bad area, sig: 11.” We already know from previous 
examples in this chapter that signal 11 is a segmentation fault.

The first section is a summary showing the reason for the oops, a few important 
pointers, and the offending task. In Listing 13-14, NIP is the next instruction pointer, 
which is decoded later in the oops message. This points to the offending code that led 
to the oops. LR is a Power Architecture register and usually indicates the return ad-
dress for the currently executing subroutine. SP is the stack pointer. REGS indicates 
the kernel address for the data structure containing the register dump data. TRAP 
indicates the type of exception that this oops message relates to. Referring to the Pow-
erPC architecture user manual referenced at the end of Chapter 7, “Bootloaders,” we 
see that a TRAP 0300 is a Data Storage Interrupt, which is triggered by a data memory 
access error.

On the third line of the oops message, we see additional Power Architecture ma-
chine registers, such as MSR (machine state register) and a decode of some of its bits. 
On the next line, we see the DAR (data access register), which often contains the of-
fending memory address. The DSISR register contents can be used in conjunction 
with the PowerPC architecture reference to discover much detail about the specific 
reason for the exception.
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An oops message also contains the task pointer and the decoded task name to help 
you quickly determine what task or thread was running at the time of the oops. We 
also see a detailed processor register dump, which can be used for additional clues. 
Again, we need knowledge of the architecture and compiler register usage to make 
sense of the clues from the register values. For example, the PowerPC architecture uses 
the r3 register for return values from C functions.

The last part of the oops message provides a stack backtrace with symbol decode if 
symbols are enabled in the kernel. Using this information, we can construct a sequence 
of events that led to the offending condition.

In this simple example, we have learned a great deal of information from this oops 
message. We know that it is a Power Architecture Data Storage Exception, caused 
by an error in a data memory access (as opposed to an instruction fetch memory ac-
cess). The DAR register tells us that the data address that generated this exception 
was 0x0000_0000. We know that the modprobe process produced the error. From the 
backtrace and NIP (next instruction pointer), we know that it was in a call to strcpy()
that can be traced directly back to the loop_init() function in the loop.ko module, 
which modprobe was trying to insert at the time of the exception. Given this informa-
tion, tracking down the source of this errant null pointer dereference    should be easy.

13.5 Binary Utilities

Binary utilities, or binutils, are a critical component of any toolchain. Indeed, to build 
a compiler, you must first have successfully built binutils. This section briefly intro-
duces the more useful tools that the embedded developer needs to know about. As 
with most of the other tools in this chapter, these are cross-utilities and must be built 
to execute on your development host while operating on binary files targeted to your 
chosen architecture. Alternatively, you could compile or obtain versions of these to run 
on your target, but we assume a cross-development environment for these examples.

13.5.1 readelf

The readelf utility examines   the composition of your target ELF binary file. This 
is particularly useful for building images targeted for ROM or Flash memory where 
explicit control of the image layout is required. It is also a great tool for learning how 
your toolchain builds images and for understanding the ELF file format.

For example, to display the symbol table in an ELF image, use this command:

$ readelf -s <elf-image>
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To discover and display all the sections in your ELF image, use this command:

$ readelf -e <elf-image>

 Use the -S flag to list the section headers in your ELF image. You might be surprised 
to learn that even a simple seven-line “Hello World” program contains 38 separate sec-
tions. Some of them will be familiar to you, such as the .text and .data sections. List-
ing 13-15 contains a partial listing of sections from our “Hello World” example. For 
simplicity, we have listed only those sections that are        likely to be familiar or relevant to 
the embedded developer.

LISTING 13-15 readelf Section Headers

$ ppc_82xx-readelf -S  hello-ex

There are 38 section headers, starting at offset 0x32f4:

Section Headers:

[ Nr] Name        Type        Addr     Off    Size   ES Flg Lk Inf Al

...

 [11] .text       PROGBITS    100002f0 0002f0 000568 00  AX  0   0  4

...

 [13] .rodata     PROGBITS    10000878 000878 000068 00   A  0   0  4

...

 [15] .data       PROGBITS    100108e0 0008e0 00000c 00  WA  0   0  4

...

 [22] .sdata      PROGBITS    100109e0 0009e0 00001c 00  WA  0   0  4

 [23] .sbss       NOBITS      100109fc 0009fc 000000 00  WA  0   0  1

...

 [25] .bss        NOBITS      10010a74 0009fc 00001c 00  WA  0   0  4

...

The .text section contains the executable        program code. The .rodata section con-
tains constant data in your program. The .data section generally contains initialized 
global data used by the C library prologue code and can contain large initialized data 
items from your application. The .sdata section is used for smaller initialized global 
data items and exists on only some architectures. Some processor architectures can 
make use of optimized data access when the attributes of the memory area are known. 
The .sdata and .sbss sections enable these optimizations. The .bss and .sbss sec-
tions contain uninitialized data in your program. These sections occupy no space in 
the program image. Their memory space is allocated and initialized to 0 on program   
startup by C library prologue code.
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We can dump any of these sections and display the contents. Given this line in your 
C program declared outside of any function, we can examine how it is placed in the 
.rodata section:

char *hello_rodata = “This is a read-only data string\n”;

Issue the readelf command specifying the section number we want to dump from 
Listing 13-15:

$ ppc_82xx-readelf -x 13 hello-ex

Hex dump of section ‘.rodata’:

  0x10000878 100189e0 10000488 1000050c 1000058c ................

  0x10000888 00020001 54686973 20697320 61207265 ....This is a read-

  0x10000898 61642d6f 6e6c7920 64617461 20737472 only data string

  0x100008a8 696e670a 00000000 54686973 20697320 .....This is

  0x100008b8 73746174 69632064 6174610a 00000000 static data.....

  0x100008c8 48656c6c 6f20456d 62656464 65640a00 Hello Embedded..

  0x100008d8 25730a00 25780a00                   %s..%x..

We see that the initialized global variable that we declared is represented in the .rodata
section, together with all the constant strings     defined in the program.

13.5.2 Examining Debug Information Using readelf

One of the more useful features       of readelf is to display the debug information con-
tained in an ELF file. When the -g compiler flag is issued during a compilation, the 
compiler generates debug information in a series of sections within the resulting ELF 
file. We can use readelf to display these ELF section headers within the ELF file:

$ ppc-linux-readelf -S ex_sync | grep debug

  [28] .debug_aranges    PROGBITS   00000000 000c38 0000b8 00   0   0  8

  [29] .debug_pubnames   PROGBITS   00000000 000cf0 00007a 00   0   0  1

  [30] .debug_info       PROGBITS   00000000 000d6a 00079b 00   0   0  1

  [31] .debug_abbrev     PROGBITS   00000000 001505 000207 00   0   0  1

  [32] .debug_line       PROGBITS   00000000 00170c 000354 00   0   0  1

  [33] .debug_frame      PROGBITS   00000000 001a60 000080 00   0   0  4

  [34] .debug_str        PROGBITS   00000000 001ae0 00014d 00   0   0  1

Using readelf with the --debug-dump option, we can display the contents of any 
one of these .debug_* sections. You will see how this information can be useful in 
Chapter 14, “Kernel Debugging Techniques,” when we discuss       the challenge of debug-
ging optimized kernel code.
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Debug information can be very large. Displaying all the debug information in the 
Linux kernel ELF file vmlinux produces more than six million lines of output. How-
ever daunting it might appear, having at least a familiarity with debug information will 
make you a better embedded engineer.

Listing 13-16 is a partial listing of the contents of the .debug_info section from a 
small sample application. For space   considerations, it shows only a few records.

LISTING 13-16 Partial Debug Info Dump

$ ppc-linux-readelf -debug-dump=info ex_sync

1 The section .debug_info contains:

2

3   Compilation Unit @ 0:

4    Length:        109

5    Version:       2

6    Abbrev Offset: 0

7    Pointer Size:  4

8  <0><b>: Abbrev Number: 1 (DW_TAG_compile_unit)

9      DW_AT_stmt_list   : 0

10      DW_AT_low_pc      : 0x10000368

11      DW_AT_high_pc     : 0x1000038c

12      DW_AT_name        :

../sysdeps/powerpc/powerpc32/elf/start.S

13      DW_AT_comp_dir    : /var/tmp/BUILD/glibc-2.3.3/csu

14      DW_AT_producer    : GNU AS 2.15.94

15      DW_AT_language    : 32769  (MIPS assembler)

...

394  <1><5a1>: Abbrev Number: 14 (DW_TAG_subprogram)

395      DW_AT_sibling     : <5fa>

396      DW_AT_external    : 1

397      DW_AT_name        : main

398      DW_AT_decl_file   : 1

399      DW_AT_decl_line   : 9

400      DW_AT_prototyped  : 1

401      DW_AT_type        : <248>

402      DW_AT_low_pc      : 0x100004b8

403      DW_AT_high_pc     : 0x10000570

404      DW_AT_frame_base  : 1 byte block: 6f       (DW_OP_reg31)

...

423  <2><5e9>: Abbrev Number: 16 (DW_TAG_variable)

424      DW_AT_name        : mybuf

425      DW_AT_decl_file   : 1

426      DW_AT_decl_line   : 11
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LISTING 13-16 Continued

427      DW_AT_type        : <600>

428      DW_AT_location    : 2 byte block: 91 20    (DW_OP_fbreg: 32)

...

The first record identified by the Dwarf26 tag DW_TAG_compile_unit identifies the 
first compilation unit of this Power Architecture executable. It is a file called start.S,
which provides startup prologue for a C program. The next record identified by DW_
TAG_subprogram identifies the start of the user program, the familiar function main().
This Dwarf2 debug record contains a reference to the file and line number where 
main() is found. The final record in Listing 13-16 identifies a local variable in the 
main() routine called mybuf. Again, the line number and file are provided by this re-
cord. You can deduce from this information that main() is at line 9, and mybuf is at line 
11 of the source file. Other debug records in the ELF file correlate the filename via the 
Dwarf2 DW_AT_decl_file attribute.

You can discover all the details of the    Dwarf2 debug information format via the 
reference given in the last section of this chapter.

13.5.3 objdump

The objdump utility   has considerable overlap with the readelf tool. However, one of 
the more useful features of objdump is its capability to display disassembled object code. 
Listing 13-17 provides an example of disassembly of the .text section of the simple 
“Hello World” Power Architecture version. We include only the main() routine to save 
space. The entire dump, including C library prologue   and epilogue, would consume 
many pages.

LISTING 13-17 Disassembly Using objdump

$ ppc_82xx-objdump -S -m powerpc:common -j .text hello

...

10000488 <main>:

10000488:       94 21 ff e0     stwu    r1,-32(r1)

1000048c:       7c 08 02 a6     mflr    r0

10000490:       93 e1 00 1c     stw     r31,28(r1)

10000494:       90 01 00 24     stw     r0,36(r1)

10000498:       7c 3f 0b 78     mr      r31,r1

1000049c:       90 7f 00 08     stw     r3,8(r31)

6 A reference to the Dwarf2 Debug Information Specification is provided at the end of this chapter.
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LISTING 13-17 Continued

100004a0:       90 9f 00 0c     stw     r4,12(r31)

100004a4:       3d 20 10 00     lis     r9,4096

100004a8:       38 69 08 54     addi    r3,r9,2132

100004ac:       4c c6 31 82     crclr   4*cr1+eq

100004b0:       48 01 05 11     bl      100109c0

<__bss_start+0x60>

100004b4:       38 00 00 00     li      r0,0

100004b8:       7c 03 03 78     mr      r3,r0

100004bc:       81 61 00 00     lwz     r11,0(r1)

100004c0:       80 0b 00 04     lwz     r0,4(r11)

100004c4:       7c 08 03 a6     mtlr    r0

100004c8:       83 eb ff fc     lwz     r31,-4(r11)

100004cc:       7d 61 5b 78     mr      r1,r11

100004d0:       4e 80 00 20     blr

...

  

Much of the code from the simple main() routine is stack frame creation and de-
struction. The actual call to printf() is represented by the branch link (bl) instruction 
near the center of the listing at address 0x100004b0. This is a Power Architecture func-
tion call. Because this program was compiled as a dynamically linked object, we will 
not have an address for the printf() function until runtime, when it is linked with the 
shared library printf() routine. Had we compiled this as a statically linked object, we 
would see the symbol and corresponding address for the call to printf().

13.5.4 objcopy

objcopy formats and, optionally, converts   the format of a binary object file. This util-
ity is quite useful for generating code for ROM or Flash resident images. The U-Boot 
bootloader introduced in Chapter 7 makes use of objcopy to produce binary and 
s-record7 output formats from the final ELF file. This sample usage illustrates the capa-
bilities of objcopy and its use to build Flash images:

$ ppc_82xx-objcopy --gap-fill=0xff -O binary u-boot u-boot.bin

This objcopy invocation shows how an image might be prepared for Flash memory. 
The input file—u-boot, in this example—is the complete ELF U-Boot image, includ-
ing symbols and relocation information. The objcopy utility takes only the relevant 

7 S-record files are an ASCII representation of a binary file, used by many device programmers and software binary utilities.
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sections containing program code and data and places the image in the output file, 
specified here as u-boot.bin.

Flash memory contains all 1s in its erased state. Therefore, filling gaps in a binary 
image with all 1s improves programming efficiency and prolongs the life of the Flash 
memory, which has limited write cycles. This is done with the --gap-fill parameter 
to objcopy.

This is but one simple example usage of objcopy. This utility can be used to gener-
ate s-records and convert from one format   to another. See the man page for complete 
details.

13.6 Miscellaneous Binary Utilities

Your toolchain contains several additional useful utilities. Learning to use these utilities 
is straightforward. You will find many uses for these helpful tools.

13.6.1 strip

The strip utility     can be used to remove symbols and debug information from a binary. 
This is frequently used to save space on an embedded device. In the cross-development 
model, it is convenient to place stripped binaries on the target system and leave the 
unstripped version on your development host. Using this method, symbols are avail-
able for cross-debugging on your development host while saving space on the target. 
strip has many options, which are described in the man page.

13.6.2 addr2line

When we highlighted mtrace in Listing 13-12, you   saw that the output from the 
mtrace analysis script contained file and line number information. The mtrace Perl 
script used the addr2line utility to read the debug information contained in the ex-
ecutable ELF file and display a line number corresponding to the address. Using the 
same mtrace sample executable, we can find a filename and line number for a virtual 
address:

$ addr2line -f -e mt_ex 0x80487c6

     put_data

     /home/chris/examples/mt_ex.c:64

Notice that the function put_data() is also listed together with the file and line 
number. This says that the address 0x80487c6 is on line 64 of the mt_ex.c file, in the 
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put_data() function. This is even more useful in larger binaries consisting of multiple 
filenames, such as the Linux kernel:

$ ppc_82xx-addr2line -f -e vmlinux c000d95c

     mpc52xx_restart

     arch/ppc/syslib/mpc52xx_setup.c:41

This particular example highlights one of the points repeated throughout this chap-
ter: This is an architecture-specific tool. You must use a tool configured and compiled 
to match the architecture of the target binary you are using. As with the cross-compiler, 
addr2line is a cross tool and part of the binary utilities package.

13.6.3 strings

The strings utility     examines ASCII string data in binary files. This is especially useful 
for examining memory dumps when source code or debug symbols might not be avail-
able. You might often discover that you can narrow the cause of a crash by tracing the 
strings back to the offending binary. Although strings does have a few command-line 
options, it is easy to learn and use. See the man page for further details.

13.6.4 ldd

Although not strictly a binary utility, the   ldd script is another useful tool for the em-
bedded developer. It is part of the C library package and exists on virtually every Linux 
distribution. ldd lists the shared object library dependencies for a given object file or 
files. We introduced ldd in Chapter 11, “BusyBox.” See Listing 11-2 for a sample us-
age. The ldd script is particularly useful during development of ramdisk images. One 
of the most common failures asked about on the various embedded Linux mailing lists 
is a kernel panic after mounting root:

VFS: Mounted root (nfs filesystem).

Freeing unused kernel memory: 96k init

Kernel panic - not syncing: No init found.  Try passing init=option to kernel.

One of the most common causes is that the root file system image (be it ramdisk, 
Flash, or NFS root file system) does not have the supporting libraries for the binaries 
that the kernel is trying to execute. Using ldd, you can determine which libraries each 
of your binaries requires and make sure that you include them in your ramdisk or other 
root file system image. In the previous sample kernel panic, init was indeed on the 
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file system, but the Linux dynamic loader, ld.so.1, was missing. Using ldd is quite 
straightforward:

$ xscale_be-ldd init

    libc.so.6 => /opt/mvl/.../lib/libc.so.6 (0xdead1000)

    ld-linux.so.3 => /opt/mvl/.../lib/ld-linux.so.3 (0xdead2000)

This simple example demonstrates that the init binary requires two dynamic li-
brary objects: libc and ld-linux. Both must be on your target and must be accessible to 
your init binary—that is, they must be readable     and executable.

13.6.5 nm

The nm utility displays   symbols from an object file. This can be useful for a variety 
of tasks. For example, suppose that, when cross-compiling a large application, you 
encounter unresolved symbols. You can use nm to find which object module contains 
those symbols and then modify your build environment to include it.

The nm utility provides attributes for each symbol. For example, you can discover 
whether this symbol is local or global, and whether it is defined or referenced in only a 
particular object module. Listing 13-18  reproduces several lines from the output of nm
run on the U-Boot ELF image u-boot.

LISTING 13-18 Displaying Symbols Using nm

$ ppc_85xx-nm u-boot

...

fff23140 b base_address

fff24c98 B BootFile

fff06d64 T BootpRequest

fff00118 t boot_warm

fff21010 d border

fff23000 A __bss_start

...

Notice the link addresses of these U-Boot symbols. They were linked for a Flash 
device that lives in the highest portion of the memory map on this particular board. 
This listing contains only a few sample symbols, for discussion purposes. The middle 
column is the symbol type. A capital letter indicates a global symbol, and lowercase 
indicates a local symbol. B indicates that the symbol is located in the .bss section. T 
indicates that the symbol is located in the .text section. D indicates that the symbol is 
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located in the .data section. A indicates that this address is absolute and is not subject 
to modification by an additional link stage. This absolute       symbol indicates the start of 
the .bss section and is used by the code that clears the .bss on startup, as required for 
a C execution environment.

13.6.6 prelink

The prelink utility is often   used in systems in which startup time is important. A 
dynamically linked ELF executable must be linked at runtime when the program is 
first loaded. This can take significant time in a large application. prelink prepares the 
shared libraries and the object files that depend on them to provide a priori knowledge 
of the unresolved library references. In effect, this can reduce the startup time of a 
given application. The man page has complete details on the use of this handy utility.

13.7 Summary

This chapter examined some of the more important tools available to the embedded 
Linux developer. We showed how ordinary utilities can be used in powerful ways to 
analyze system behavior. We presented many of the utilities found in binutils, includ-
ing readelf, objdump, objcopy, and several others.

• The GNU Debugger (GDB) is a complex and powerful debugger with many 
capabilities. We presented the basics to get you started.

• The DDD graphical front end for GDB integrates source code and data dis-
play with the power of GDB command-line interface capabilities.

 • cbrowser is a useful aid for understanding large projects. It uses the cscope
database to rapidly find and display symbols and other elements of C source 
code.

• Linux is supported by many profiling and trace tools. We presented several, 
including strace, ltrace, top, and ps, and the memory profilers mtrace and 
dmalloc.

• Embedded developers often need to build custom images such as those re-
quired for bootloaders and firmware images. For these tasks, knowledge of 
binutils is indispensable.

  



13.7 Summary 365

13.7.1 Suggestions for Additional Reading

GDB: The GNU Project Debugger     
www.gnu.org/software/gdb/gdb.html

GDB Pocket Reference
Arnold Robbins
O’Reilly Media, 2005

Data Display Debugger     
www.gnu.org/software/ddd/

cbrowser home page      
www.ziplink.net/~felaco/cbrowser/

cscope home page
http://cscope.sourceforge.net/index.html

dmalloc: Debug Malloc Library      
http://dmalloc.com/

Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification
Version 1.2
TIS Committee, May 1995   

Tool interface standards
DWARF Debugging Information Format Specification
Version 2.0
TIS Committee, May 1995

The Eclipse Project  
www.eclipse.org/
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O    
ften the pivotal factor in achieving development timetables comes down 
to your efficiency in finding and fixing bugs. Debugging inside the Linux 

kernel can be quite challenging. No matter how you approach it, kernel debug-
ging will always be complex. This chapter examines some of the complexities 
and presents ideas and methods to improve your debugging skills inside the 
kernel and device drivers.

14.1 Challenges to Kernel Debugging

Debugging a modern operating  system involves many challenges. Virtual memory 
operating systems present their own unique challenges. Gone are the days when we 
could replace a processor with an in-circuit emulator. Processors have become far too 
fast and complex. Moreover, pipeline architectures hide important code-execution 
details. This is because memory accesses on the bus can be ordered differently from 
code execution, and particularly because of internal caching of instruction streams. It 
is not always possible to correlate external bus activity to internal processor instruc-
tion execution, except at a rather coarse level.

Here are some of the challenges you will encounter while debugging Linux ker-
nel code:

• Linux kernel code is highly optimized for speed of execution in many areas.

• Compilers use optimization techniques that complicate the correlation of 
C source to actual machine instruction flow. Inline functions are a good 
example of this.

• Single-stepping through compiler optimized code often produces unusual 
and unexpected results.

• Virtual memory isolates user space memory from kernel memory and can 
make various debugging scenarios especially difficult.

• Some code cannot be stepped through with traditional debuggers.

• Startup code can be especially difficult because of its proximity to the hard-
ware and the limited resources available (for example, no console, limited 
memory mapping, and so on).
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The Linux kernel has matured into a very high-performance operating system that can 
compete with the best commercial operating systems. Many areas within the kernel do 
not lend themselves to easy analysis by simply reading the source code. Knowledge of 
the architecture and detailed design are often necessary to understand the code flow 
in a particular area. Several good books are available that describe the kernel design in 
detail. Refer to the last section of this chapter for recommendations.

GCC is an optimizing compiler. By default, the Linux kernel is compiled with the 
-O2 compiler flag. This enables many optimization algorithms that can change the 
fundamental structure and order of your code.1 For example, the Linux kernel makes 
heavy use of inline functions. Inline functions are small functions declared with the 
inline keyword, which results in the function’s being included directly in the execu-
tion thread instead of generating a function call with the associated overhead.2 Inline 
functions require a minimum of -O1 optimization level. Therefore, you cannot turn off 
optimization, which would be desirable to facilitate debugging.

In many areas within the Linux kernel, single-stepping through code is difficult or 
impossible. The most obvious examples are code paths that modify the virtual memory 
settings. When your application   makes a system call that results in entry into the ker-
nel, this results in a change in address space as seen by the process. In fact, any transi-
tion that involves a processor exception changes the operational context and can be 
difficult or impossible to single-step through.

14.2 Using KGDB for Kernel Debugging

Two popular methods enable symbolic source-level debugging within the Linux kernel:

• Using KGDB as a remote GDB agent

• Using a hardware JTAG probe to control the processor

JTAG debugging is covered in Section 14.4, “Hardware-Assisted Debugging.”
KGDB (Kernel GDB) is   a set of Linux kernel patches that provide an interface to 

GDB through its remote serial protocol.3 KGDB implements a GDB stub that com-
municates with a cross-gdb running on your host development workstation. Until 
recently, KGDB on the target required a serial connection to the development host. 

1 See the GCC manual referenced at the end of this chapter for details on the optimization levels.

2 Inline functions are like macros, but with the advantage of compile-time type checking.

3 A simplified version of KGDB was merged into Linux 2.6.26 mainline, but without support for some features, including 
KGDB over Ethernet and other features.
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Some targets support KGDB connection via Ethernet and even USB. Complete sup-
port for KGDB is still not in the mainline kernel.org kernel. You need to port KGDB 
to your chosen target or obtain an embedded Linux distribution for your chosen archi-
tecture and platform that contains KGDB support. Most commercial embedded Linux 
distributions available today support KGDB.

It is worth noting that you will find some differences between architectures and 
platforms when it comes to KGDB support. Unless the platform developer specifically 
enabled KGDB, it may not work for your particular platform. You will notice differ-
ences in the kernel configuration options for KGDB across various architectures and 
platforms. The only way to guarantee that KGDB is supported for your platform is to 
either port it yourself or obtain your Linux kernel and distribution for a commercial 
vendor that supports KGDB on your platform. For reference documentation, see the 
last section of this chapter.

Figure 14-1 shows the KGDB debug setup. Up to three connections to the target 
board are used. Ethernet is used to enable NFS root mount and telnet sessions from the 
host. If your board has a ramdisk image in Flash    that it mounts as a root file system, 
you can eliminate the Ethernet connection.

FIGURE 14-1 KGDB debug setup

A serial port is dedicated for the connection between KGDB and GDB running on 
the development host system, and an optional second serial port serves as a console. 
Systems that have only one serial port make KGDB somewhat more cumbersome to 
use.

As shown in Figure 14-1, the debugger (your cross-version of GDB) runs on your 
development host system. KGDB is part of the kernel running on your target system. 
KGDB implements the hooks required to interface GDB with your target board to en-
able features such as setting breakpoints, examining memory, and enabling single-step 
program execution.
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14.2.1 KGDB Kernel Configuration

As mentioned, there are differences between architectures and platforms with re-
spect to KGDB support. The following example is based on the Power Architecture 
MPC8548 CPU on the CDS platform from Freescale Semiconductor, using the com-
mercial MontaVista Linux distribution, which added this KGDB support. Some of 
the features in this example are unavailable from mainline kernel source code, because 
including KGDB support in the kernel has been discouraged for a long time and is 
only recently (Linux 2.6.26) starting to appear in generic form.

KGDB is a kernel feature   and must be enabled in your kernel. KGDB is selected 
from the Kernel hacking menu, as shown in Figure 14-2. (Many items have been 
removed from the Kernel hacking menu for this figure to fit on the page. Yours will 
have many more entries before the KGDB options.) As part of the configuration, you 
must select the I/O driver for KGDB to use. In this example, we chose the serial port 
via KGDB_8250. Notice also in Figure 14-2 that we enable the option to compile the 
kernel with debug information. This adds the -g compiler flag to the build process to 
enable symbolic debugging.

FIGURE 14-2 Kernel configuration for KGDB
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14.2.2 Target Boot with KGDB Support

After your kernel is built with KGDB support, it must be enabled at runtime. In gen-
eral, KGDB is enabled   by passing a command-line switch to the kernel using the ker-
nel command line. If KGDB support is compiled into the kernel but not enabled using 
a command-line switch, it does nothing. When KGDB is enabled, you can instruct 
the kernel to stop at a KGDB-enabled breakpoint very early in the boot cycle to allow 
you to connect to the target using GDB. Figure 14-3 shows the logic for generating an 
initial   breakpoint when KGDB is enabled.

FIGURE 14-3 KGDB logic

KGDB requires a serial port for    connection to the host.4 The first step in setting up 
KGDB is to enable a serial port very early in the boot process. In many architectures, 
the hardware UART must be mapped into kernel memory before access. After the 

4 You can configure KGDB to use Ethernet and even USB on some architectures and platforms.
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address range is mapped, the serial port is initialized. Debug trap handlers are then 
installed to allow processor exceptions to trap into the debugger.

Listing 14-1 displays the terminal output when booting with KGDB enabled. This 
example is based on the    Freescale MPC8548CDS reference board, which ships with 
the U-Boot bootloader.

LISTING 14-1 Booting with KGDB Enabled Using U-Boot

=> setenv bootargs console=ttyS1,115200 root=/dev/nfs rw ip=dhcp kgdbwait

kgdb8250=ttyS1,115200

=> tftp 600000 mpc8548.uImage

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.9; our IP address is 192.168.0.18

Filename ‘8548/uImage’.

Load address: 0x600000

Loading: #################################################################

         ##############################################################

done

Bytes transferred = 1854347 (1c4b8b hex)

=> tftp c00000 mpc8548.dtb

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.9; our IP address is 192.168.0.18

Filename ‘8548/dtb’.

Load address: 0xc00000

Loading: ##

done

Bytes transferred = 16384 (4000 hex)

=> bootm 600000 - c00000

## Booting kernel from Legacy Image at 00600000 ...

   Image Name:   MontaVista Linux 6/2.6.27/freesc

   Image Type:   PowerPC Linux Kernel Image (gzip compressed)

   Data Size:    1854283 Bytes =  1.8 MB

   Load Address: 00000000

   Entry Point:  00000000

   Verifying Checksum ... OK

## Flattened Device Tree blob at 00c00000

   Booting using the fdt blob at 0xc00000

   Uncompressing Kernel Image ... OK

   Loading Device Tree to 007f9000, end 007fffff ... OK

kgdb8250: ttyS1 init delayed, use io/mmio/mbase syntax for early init.

Using MPC85xx CDS machine description
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LISTING 14-1 Continued

Memory CAM mapping: CAM0=256Mb, CAM1=0Mb, CAM2=0Mb residual: 0Mb

Linux version 2.6.27.28.freescale-8548cds.0908010910 (chris@pluto) (gcc version 
4.3.3 (MontaVista Linux Sourcery G++ 4.3-217) ) #1 PREEMPT Mon Mar 29 11:09:48 EDT 
2010

console [udbg0] enabled

setup_arch: bootmem

mpc85xx_cds_setup_arch()

<... many messages deleted ...>

Serial: 8250/16550 driver4 ports, IRQ sharing enabled

serial8250.0: ttyS0 at MMIO 0xe0004500 (irq = 42) is a 16550A

serial8250.0: ttyS1 at MMIO 0xe0004600 (irq = 42) is a 16550A

console handover: boot [udbg0] -> real [ttyS1]

kgdb: Registered I/O driver kgdb8250.

kgdb: Waiting for connection from remote gdb...

Most of the boot sequence   is familiar from our coverage of U-Boot in Chapter 7, 
“Bootloaders.” Recall from Chapter 7 that the kernel command line is defined by the 
U-Boot bootargs environment variable. Notice that we have added the kgdbwait pa-
rameter, which instructs the kernel to force an early breakpoint and wait for the host 
debugger (your cross-gdb) to connect.

Notice that the boot sequence did not complete. Because we placed kgdbwait on 
the command line, the kernel completed initialization up until the serial port drivers 
were loaded and then hit a predefined breakpoint. At this point, it waits indefinitely 
for an external debugger to connect.

You should also notice the second new kernel command-line parameter. This par-
ticular architecture (Power) and platform (8548CDS) use the 8250 serial driver and a 
special 8250-based KGDB driver implemented by .../drivers/serial/8250_kgdb.c.
You must tell KGDB which serial port to use for debugging, using a syntax similar to 
that used for describing a console device.

Now that the kernel is set up and waiting for the host debugger, we can begin our 
debugging session. We invoke cross-gdb from our host development workstation and 
connect to the target through GDB’s remote protocol. In this example, we are sharing 
the serial port with the console, so we must disconnect the terminal emulator from the 
target before trying to connect with GDB. Listing 14-2 highlights the GDB connec-
tion process. This assumes that we have already exited our terminal     emulator and freed 
the serial port for GDB to use.
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LISTING 14-2 Connecting to KGDB

$ ppc_85xx-gdb -q vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

0xc0058360 in kgdb_register_io_module (new_kgdb_io_ops=0x1)

    at kernel/kgdb.c:1802

1802        wmb(); /* Sync point before breakpoint */

(gdb) l

1797   * the debugger.

1798   */

1799  void kgdb_breakpoint(void)

1800  {

1801        atomic_set(&kgdb_setting_breakpoint, 1);

1802        wmb(); /* Sync point before breakpoint */

1803        arch_kgdb_breakpoint();

1804        wmb(); /* Sync point after breakpoint */

1805        atomic_set(&kgdb_setting_breakpoint, 0);

1806  }

(gdb)

Here we have performed three actions:

• Invoked our cross-gdb, passing it the kernel ELF file vmlinux

• Connected to the target using the target remote command

 • Issued the list command, using     its abbreviated form l to display our location 
in the source code

At the risk of pointing out the obvious, the vmlinux image that we pass to GDB 
must be from the same kernel build that produced the kernel binary running on your 
target board. It also must have been compiled with the -g compiler flag to contain de-
bug information. Recall from Chapter 13, “Development Tools,” Section 13.5.2, that 
you can use your cross-readelf tool to verify that your vmlinux image was compiled 
with debug symbols. Use a command similar to this to verify that you have debug sec-
tions in your ELF file:

$ ppc_85xx-readelf -S vmlinux | grep debug

When we issued the target remote command, GDB responded by displaying the 
location of the program counter (PC). In this example, the kernel is stopped in the 
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kgdb_breakpoint() function at line 1802 in file .../kernel/kgdb.c. When we issue 
the continue (c) command, execution resumes from this point.

14.2.3 Useful Kernel Breakpoints

We have now established a debug connection with the kernel on our target board. 
When we issue the GDB continue (c) command, the kernel proceeds to boot, and if 
no problems occur, the boot process completes. At this stage, you may want to place 
some breakpoints to establish your particular     debug session. Two of the most common 
are highlighted in Listing 14-3.

LISTING 14-3 Common Kernel Breakpoints

(gdb) b panic

Breakpoint 1 at 0xc02d1a84: file arch/powerpc/include/asm/thread_info.h, line 87.

(gdb) b sys_sync

Breakpoint 2 at 0xc00baae4: file fs/sync.c, line 41.

(gdb) c

Continuing.

Using the GDB breakpoint command, again using its abbreviated version, we en-
ter two breakpoints. One is at panic(), and the other is at the sync system call entry 
sys_sync(). The former allows the debugger to be invoked if a later event generates 
a panic. This enables examination of the system state at the time of the panic. The 
second is a useful way to halt the kernel and trap into the debugger from user space by 
entering the sync command from a terminal running on your target hardware.

We are now ready to proceed with our debugging session. We have a KGDB-enabled 
kernel running on our target, paused at a KGDB-defined breakpoint. We established a 
connection to the target with our host-based cross debugger—in this case, invoked as 
ppc_85xx-gdb—and we have entered a pair of useful system breakpoints. Now we can 
direct our debugging activities to the task at hand.

One caveat: By definition, we cannot use KGDB for stepping through code 
before the breakpoint() used to establish the connection between a KGDB-enabled 
kernel and cross-gdb on our host. Figure 14-3 is a rough approximation of the code 
that executes before KGDB gains control. Debugging this early code requires the use 
of a hardware-assisted debug probe. We cover this topic in   Section 14.4, “Hardware-
Assisted Debugging.”
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Once your initial breakpoints have been set up, and you issue the continue com-
mand, you can stop execution at any time simply by issuing Ctrl-C to your cross-gdb. 
Listing 14-4 shows how    this might look.

LISTING 14-4 Kernel Debug Session in Progress

(gdb) c

Continuing.

<<<<<<< User types Ctl-C here >>>>>>>>>

Program received signal SIGTRAP, Trace/breakpoint trap.

0xc0058048 in kgdb_breakpoint () at kernel/kgdb.c:1802

1802        wmb(); /* Sync point before breakpoint */

(gdb) bt

#0  0xc0058048 in kgdb_breakpoint () at kernel/kgdb.c:1802

#1  0xc019bcdc in kgdb8250_interrupt (irq=<value optimized out>,

    dev_id=<value optimized out>) at drivers/serial/8250_kgdb.c:145

#2  0xc005a4f0 in handle_IRQ_event (irq=42, action=0xcf80af20)

    at kernel/irq/handle.c:140

#3  0xc005c19c in handle_fasteoi_irq (irq=42, desc=0xc039a950)

    at kernel/irq/chip.c:424

#4  0xc0004b04 in do_IRQ (regs=<value optimized out>)

    at include/linux/irq.h:289

#5  0xc000f310 in ret_from_except_full ()

#6  0xc0008144 in cpu_idle () at arch/powerpc/kernel/idle.c:59

#7  0xc02d022c in rest_init () at init/main.c:481

#8  0xc036e75c in start_kernel () at init/main.c:691

#9  0xc00003d0 in skpinv ()

(gdb)

You can see the effects of compiler   optimization in Listing 14-4. This is discussed 
further in Section 14.3.2.

14.2.4 Sharing a Console Serial Port with KGDB

Although it is possible to use a single serial port for your system console as well as for 
KGDB over serial, it is certainly not ideal. KGDB exists in various states of complete-
ness, depending on your architecture and platform. Once   you depart from x86 archi-
tectures, things become less certain. KGDB has many connection options, including 
using serial ports, Ethernet ports, and even USB on some platforms. It is a sure bet that 
not all of these combinations are tested on any given platform.

  



378 Chapter 14 Kernel Debugging Techniques

It has been stated elsewhere in this book: If you believe you will need to engage 
in kernel debugging using KGDB, the cost of an extra serial port is easily justifiable, 
especially if it can be depopulated for production if necessary to meet cost goals. The 
aggravation saved (read developer’s time) will more than pay back the incremental 
development costs.

To share the serial port between the console and KGDB, you need two command-
line parameters. Use the kernel command-line parameter kgdboc to specify which se-
rial port to use, and use kgdbcon to specify that you will share this port with the con-
sole. Specify the kgdboc parameter with a serial console, in a manner similar to that for 
describing the console device on the kernel command line:

kgdbcon kgdboc=ttyS1,115200

When you boot the kernel and connect with KGDB, any console messages are 
displayed by your cross-gdb. Listing 14-5 shows what this looks like. First we boot 
the target using the extra kernel command-line parameters just mentioned. The target 
boots to a login prompt. Now we must enable KGDB using the SysRequest function. 
The easiest way to do this from a serial port on the console is to use the /proc interface:

root@8548:~# echo g >/proc/sysrq-trigger

SysRq : GDB

Entering KGDB

    Now we disconnect our serial terminal  from the console to free it for use by KGDB. 
We then launch our cross-gdb, and the session continues as shown in Listing 14-5.

LISTING 14-5 Sharing the Serial Console with KGDB

$ ppc_85xx-gdb -q vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

0xc0058098 in sysrq_handle_gdb (key=0x11, tty=0x8ddf) at kernel/kgdb.c:1802

1802        wmb(); /* Sync point before breakpoint */

(gdb) b sys_sync

Breakpoint 1 at 0xc00baae4: file fs/sync.c, line 41.

(gdb) b panic

Breakpoint 2 at 0xc02d1a84: file arch/powerpc/include/asm/thread_info.h, line 87.

(gdb) c

Continuing.

<<<<  After logging in via SSH on another terminal

<<<<  we execute ‘modprobe ipv6’ at this point in time
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LISTING 14-5 Continued

[New Thread 1665]

NET: Registered protocol family 10

lo: Disabled Privacy Extensions

ADDRCONF(NETDEV_UP): eth1: link is not ready

tunl0: Disabled Privacy Extensions

As shown in Listing 14-5, we set breakpoints and continue, allowing the kernel to 
run again, with our breakpoints set. On a separate terminal window on our host, we 
ssh into the target and load a module. In this case, it is ipv6.ko. It doesn’t really matter 
what module we use. Our goal is to generate some kernel printk messages to verify 
that they actually arrive on the GDB terminal window. You can see these messages 
starting with the [New Thread 1665] line. These are kernel printk messages routed 
to the system console and routed from KGDB via GDB remote protocol   to the GDB 
console. Very cool indeed.

14.2.5 Debugging Very Early Kernel Code

The techniques just described do not allow for the debugging of very early kernel code 
during kernel initialization. In fact, the    best you can do is to debug initialization code 
after the serial driver has been called and registered. On some architectures and plat-
forms, this capability is provided by two kernel command-line parameters: kgdbwait
and kgdb8250.5

Support for early kernel debug requires a KGDB I/O driver that supports early ker-
nel debug. The most common (and least intrusive) I/O method for early kernel debug 
using KGDB is the serial driver. An example of this is the kgdb8250 driver referenced 
earlier. It should be obvious that this driver will need to be compiled into the kernel to 
be available for early kernel debug.

As we saw in Listing 14-1, kgdb8250 is used to tell KGDB which serial port to use. 
However, using an alternative syntax, we can invoke an early serial initialization rou-
tine that will allow very early kernel debugging. Using kgdbwait we can instruct the 
kernel to halt very early in the initialization sequence to wait for commands from the 
user. Add these variables to the kernel command line to enable early kernel debugging 
using KGDB:

kgdb8250=ttyS1,115200 kgdbwait

5 This early debug support was provided by MontaVista in its commercial embedded Linux offering for the MPC8548 
platform. Currently it is unavailable in mainstream kernel sources. Your kernel would need to be patched with these early serial
drivers in order to duplicate this functionality.
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It is important to realize that the order of these kernel command-line parameters is 
critical. You must supply the KGDB I/O driver first (in our example it is kgdb8250)
so that it can be initialized before kgdbwait is encountered. Since kgdbwait basically 
causes a debug breakpoint, infrastructure must be in place to communicate to a debug-
ger prior to issuing the breakpoint.

Another point to remember is that this support typically is platform-specific. That 
is, your kernel and platform must support some type of early kernel debug I/O driver 
for this functionality to be available. Your platform might have different hardware 
available for this purpose, so it is up to you (or your embedded Linux vendor) to sup-
ply the early kernel debug I/O driver.

For the kgdb8250 I/O driver, you can also supply a complete specification that 
passes the driver detailed information for your specific board. This can include what 
type of I/O is required to access this driver, its base address, and optionally a register 
shift value and IRQ along with baud rate. In this form,      it looks like this:

kgdb8250=<io|mmio|mbase>,<address>[/<regshift>],<baud rate>,<irq>

14.2.6 KGDB Support in the Mainline Kernel

As of Linux 2.6.26, generic KGDB support    has been incorporated into the Linux ker-
nel available from kernel.org. Once the kernel has been compiled with KGDB support 
as described earlier, two kernel command-line parameters are used to configure KGDB 
at runtime. kgdboc is used   to specify the serial port to use, and kgdbwait is used to 
cause the kernel to execute a breakpoint on boot to allow the debugger (gdb) to gain 
control. The syntax for kgdboc is the same as that for kgdb8250, as just described in 
Section 14.2.5, specifying the serial port and baud rate. kgdbwait is used stand-alone 
without parameters. Similar to the example in Section 14.2.5, the kernel command-
line parameters for enabling KGDB in Linux 2.6.26 and above are as follows. Note 
that the order of these parameters is important. The serial port must be specified before 
you can instruct the kernel to perform the breakpoint:

kgdboc=ttyS1,115200 kgdbwait

On boot, the kernel performs most of the system initialization and then waits for 
the debugger to connect. Listing 14-6 illustrates     this sequence.
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LISTING 14-6 Booting with Generic KGDB from Kernel.org

<... boot kernel using kgdboc=ttyS0,115200 kgdbwait ...>

... (many boot messages)

Serial: 8250/16550 driver, 2 ports, IRQ sharing enabled

serial8250.0: ttyS0 at MMIO 0xffe04500 (irq = 42) is a 16550A

console handover: boot [udbg0] -> real [ttyS0]

serial8250.0: ttyS1 at MMIO 0xffe04600 (irq = 42) is a 16550A

kgdb: Registered I/O driver kgdboc.

kgdb: Waiting for connection from remote gdb...

At this point, the kernel is waiting for connection from a remote GDB session, 
and debugging can begin. Notice that     this is fairly late in the kernel boot sequence. To 
debug a generic Linux kernel any earlier in the boot sequence, you must use hardware-
assisted debugging using a JTAG probe. This is described shortly.

14.3 Kernel Debugging Techniques

One of the more common reasons you might find yourself stepping through kernel 
code is to modify or customize the platform-specific code for your custom board. Let’s 
see how this might be done using the AMCC Yosemite board. We place a breakpoint at 
the platform-specific architecture setup functionv and   then continue until that break-
point is encountered. Listing 14-7 shows the sequence.

LISTING 14-7 Debugging Architecture Setup Code

(gdb) b yosemite_setup_arch

    Breakpoint 3 at 0xc021a488:

        file arch/ppc/platforms/4xx/yosemite.c, line 308.

(gdb) c

Continuing.

Can’t send signals to this remote system.  SIGILL not sent.

Breakpoint 3, yosemite_setup_arch () at arch/ppc/platforms/4xx/yosemite.c:308

308             yosemite_set_emacdata();

(gdb) l

303     }

304

305     static void __init

306     yosemite_setup_arch(void)

307     {

308             yosemite_set_emacdata();
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LISTING 14-7 Debugging Architecture Setup Code

309

310             ibm440gx_get_clocks(&clocks, YOSEMITE_SYSCLK, 6 * 1843200);

311             ocp_sys_info.opb_bus_freq = clocks.opb;

312

(gdb)

     

When the breakpoint at yosemite_setup_arch() is encountered, control passes to 
GDB at line 308 of yosemite.c. The list (l) command displays the source listing 
centered on the breakpoint at line 308. The warning message about SIGILL displayed 
by GDB after the continue (c) command can be safely ignored. It is part of GDB’s way 
of testing the capabilities of the remote system. It first sends a remote continue_with_
signal command to the target. The KGDB implementation for this target board does 
not support this command; therefore, it is NAKed by the target. GDB responds by 
displaying this informational message and issuing the standard remote continue com-
mand instead.

14.3.1 gdb Remote Serial Protocol

GDB includes a debug switch   that enables us to observe the remote protocol being 
used between GDB on your development host and the target. This can be very useful 
for understanding the underlying protocol, as well as for troubleshooting targets that 
exhibit unusual or errant behavior. To enable this debug mode, issue the following 
command:

(gdb) set debug remote 1

With remote debugging enabled, it is instructive to observe the continue command 
in action and the steps taken by GDB. Listing 14-8 illustrates   the use of the continue 
command with remote debugging enabled.

LISTING 14-8 Remote Protocol Example: continue Command

(gdb) c

Continuing.

Sending packet: $mc0000000,4#80...Ack

Packet received: c022d200

Sending packet: $Mc0000000,4:7d821008#68...Ack

Packet received: OK

Sending packet: $mc0016de8,4#f8...Ack
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LISTING 14-8 Remote Protocol Example: continue Command

Packet received: 38600001

Sending packet: $Mc0016de8,4:7d821008#e0...Ack

Packet received: OK

Sending packet: $mc005bd5c,4#23...Ack

Packet received: 38600001

Sending packet: $Mc005bd5c,4:7d821008#0b...Ack

Packet received: OK

Sending packet: $mc021a488,4#c8...Ack

Packet received: 4bfffbad

Sending packet: $Mc021a488,4:7d821008#b0...Ack

Packet received: OK

Sending packet: $c#63...Ack

    <<< program running, gdb waiting for event

Although it might look daunting      at first, what is happening here is easily under-
stood. In summary, GDB is restoring all its breakpoints on the target. Recall from 
Listing 14-3 that we entered two breakpoints—one at panic() and one at sys_sync().
Later, in Listing 14-7, we added a third breakpoint at yosemite_setup_arch(). Thus, 
there are three active user-specified breakpoints. These can be displayed by issuing the 
GDB info breakpoints command. As usual, we use the abbreviated version:

(gdb) i b

Num Type           Disp Enb Address    What

1   breakpoint     keep y   0xc0016de8 in panic at kernel/panic.c:74

2   breakpoint     keep y   0xc005bd5c in sys_sync at fs/buffer.c:296

3   breakpoint     keep y   0xc021a488 in yosemite_setup_arch at

arch/ppc/platforms/4xx/yosemite.c:308

        breakpoint already hit 1 time

(gdb)

Now compare the previous breakpoint addresses with the addresses in the GDB 
remote $m packet in Listing 14-8. The $m packet is a “read target memory” command, 
and the $M packet is a “write target memory” command. Once for each breakpoint, 
the address of the breakpoint is read from target memory, stored locally on the host by 
GDB (so that it can be restored later), and replaced with the Power Architecture trap 
instruction twge r2, r2 (0x7d821008). This results in control        passing back to the 
debugger. Figure 14-4 illustrates this action.

  



384 Chapter 14 Kernel Debugging Techniques

FIGURE 14-4 GDB inserting target memory breakpoints

You might have noticed that GDB is updating four breakpoints, whereas we en-
tered only three. The first one, at target memory location 0xc000_0000, is put there 
by GDB automatically upon startup. This location is the base address of the linked 
kernel image from the ELF file—essentially, _start. It is equivalent to a breakpoint at 
main() for user space debugging and is done by GDB automatically. The other three 
breakpoints are the ones we entered earlier.

The same thing happens in reverse when an event occurs that returns control to 
GDB. Listing 14-9 details the action when our breakpoint  at yosemite_setup_arch()
is encountered.

LISTING 14-9 Remote Protocol: Breakpoint Hit

Packet received: T0440:c021a488;01:c020ff90;

Sending packet: $mc0000000,4#80...Ack  <<< Read memory @c0000000

Packet received: 7d821008

Sending packet: $Mc0000000,4:c022d200#87...Ack  <<< Write memory

Packet received: OK

Sending packet: $mc0016de8,4#f8...Ack

Packet received: 7d821008

Sending packet: $Mc0016de8,4:38600001#a4...Ack

Packet received: OK

Sending packet: $mc005bd5c,4#23...Ack

Host System

GDB

twge r2 r2

Target System Virtual Memory

twge r2 r2

twge r2 r2

twge r2 r2

c000 0000

c001 6de8

c005 bd5c

c021 a488

Kernel

Virtual

Memory

  



14.3 Kernel Debugging Techniques 385

LISTING 14-9 Continued

Packet received: 7d821008

Sending packet: $Mc005bd5c,4:38600001#cf...Ack

Packet received: OK

Sending packet: $mc021a488,4#c8...Ack

Packet received: 7d821008

Sending packet: $Mc021a488,4:4bfffbad#d1...Ack

Packet received: OK

Sending packet: $mc021a484,c#f3...Ack

Packet received: 900100244bfffbad3fa0c022

Breakpoint 3, yosemite_setup_arch () at arch/ppc/platforms/4xx/yosemite.c:308

308             yosemite_set_emacdata();

(gdb)

The $T packet is a GDB Stop Reply packet. It is sent by the target to GDB when 
a breakpoint is encountered. In our example, the $T packet returns the value of the 
program counter and register r1.6 The rest of the activity is the reverse of that shown in 
Listing 14-8. The Power Architecture trap breakpoint instructions are removed, and 
GDB restores the original instructions to their respective      memory locations.

14.3.2 Debugging Optimized Kernel Code

At the start of this chapter, we    said that one of the challenges of debugging kernel code 
results from compiler optimization. We noted that the Linux kernel is compiled by 
default with optimization level -O2. Here we illustrate one of the many ways optimiza-
tion can complicate the debugging process.

The related Internet mail lists are strewn with questions about what appear to be 
broken tools. Sometimes the poster reports that his debugger is single-stepping back-
ward or that his line numbers do not line up with his source code. Here we present an 
example to illustrate the complexities that optimizing compilers bring to source-level 
debugging. In this example, the line numbers that GDB reports when a breakpoint is 
hit do not match up with the line numbers in our source file due to function inlining.

For this demonstration, we use the same debug code snippet as shown in Listing 
14-7. Listing 14-10 shows the results of this     debugging session.

6 As pointed out earlier, the GDB remote protocol is detailed in the GDB manual cited at the end of this chapter.
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LISTING 14-10 Optimized Architecture-Setup Code

$ ppc_44x-gdb --silent vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825     }

(gdb) b panic

Breakpoint 1 at 0xc0016b18: file kernel/panic.c, line 74.

(gdb) b sys_sync

Breakpoint 2 at 0xc005a8c8: file fs/buffer.c, line 296.

(gdb) b yosemite_setup_arch

Breakpoint 3 at 0xc020f438: file arch/ppc/platforms/4xx/yosemite.c, line 116.

(gdb) c

Continuing.

Breakpoint 3, yosemite_setup_arch ()

    at arch/ppc/platforms/4xx/yosemite.c:116

116             def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

(gdb) l

111             struct ocp_def *def;

112             struct ocp_func_emac_data *emacdata;

113

114             /* Set mac_addr and phy mode for each EMAC */

115

116             def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

117             emacdata = def->additions;

118             memcpy(emacdata->mac_addr, __res.bi_enetaddr, 6);

119             emacdata->phy_mode = PHY_MODE_RMII;

120

(gdb) p yosemite_setup_arch

$1 = {void (void)} 0xc020f41c <yosemite_setup_arch>

Referring to Listing 14-7, notice that   the function yosemite_setup_arch() actu-
ally falls on line 306 of the file yosemite.c. Compare that with Listing 14-10. We hit 
the breakpoint, but GDB reports the breakpoint at file yosemite.c line 116. It ap-
pears at first glance to be a mismatch of line numbers between the debugger and the 
corresponding source code. Is this a GDB bug? First, let’s confirm what the compiler 
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produced for debug information. Using the readelf tool7 described in Chapter 13, we 
can examine the debug information for this function produced by the compiler:

$ ppc_44x-readelf --debug-dump=info vmlinux | grep -u6 \

yosemite_setup_arch | tail -n 7

    DW_AT_name        : (indirect string, offset: 0x9c04): yosemite_setup_arch

    DW_AT_decl_file   : 1

    DW_AT_decl_line   : 307

    DW_AT_prototyped  : 1

    DW_AT_low_pc      : 0xc020f41c

    DW_AT_high_pc     : 0xc020f794

    DW_AT_frame_base  : 1 byte block: 51       (DW_OP_reg1)

We don’t have to be experts at reading DWARF2 debug records8 to recognize that 
the function in question is reported at line 307 in our source file. We can confirm this 
using the addr2line utility, also introduced in Chapter 13. We can use the address 
derived from GDB in Listing 14-10:

$ ppc_44x-addr2line  -e vmlinux 0xc020f41c

    arch/ppc/platforms/4xx/yosemite.c:307

breakpoint at line 116 of the yosemite.c file. At this point, GDB is reporting our    
To understand what is happening, we need to look at the assembler output of the func-
tion as reported by GDB. Listing 14-11 is the output from GDB after the disassemble
command     is issued on the yosemite_setup_arch() function.

LISTING 14-11 Disassemble Function yosemite_setup_arch

(gdb) disassemble yosemite_setup_arch

0xc020f41c <yosemite_setup_arch+0>:     mflr    r0

0xc020f420 <yosemite_setup_arch+4>:     stwu    r1,-48(r1)

0xc020f424 <yosemite_setup_arch+8>:     li      r4,512

0xc020f428 <yosemite_setup_arch+12>:    li      r5,0

0xc020f42c <yosemite_setup_arch+16>:    li      r3,4116

0xc020f430 <yosemite_setup_arch+20>:    stmw    r25,20(r1)

0xc020f434 <yosemite_setup_arch+24>:    stw     r0,52(r1)

0xc020f438 <yosemite_setup_arch+28>:    bl      0xc000d344 <ocp_get_one_device>

0xc020f43c <yosemite_setup_arch+32>:    lwz     r31,32(r3)

0xc020f440 <yosemite_setup_arch+36>:    lis     r4,-16350

0xc020f444 <yosemite_setup_arch+40>:    li      r28,2

0xc020f448 <yosemite_setup_arch+44>:    addi    r4,r4,21460

7 Remember to use your cross-version of readelf, such as ppc_44x-readelf for the PowerPC 44x  architecture.

8 A reference to the DWARF debug specification appears at the end of this chapter.
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LISTING 14-11 Continued

0xc020f44c <yosemite_setup_arch+48>:    li      r5,6

0xc020f450 <yosemite_setup_arch+52>:    lis     r29,-16350

0xc020f454 <yosemite_setup_arch+56>:    addi    r3,r31,48

0xc020f458 <yosemite_setup_arch+60>:    lis     r25,-16350

0xc020f45c <yosemite_setup_arch+64>:    bl      0xc000c708 <memcpy>

0xc020f460 <yosemite_setup_arch+68>:    stw     r28,44(r31)

0xc020f464 <yosemite_setup_arch+72>:    li      r4,512

0xc020f468 <yosemite_setup_arch+76>:    li      r5,1

0xc020f46c <yosemite_setup_arch+80>:    li      r3,4116

0xc020f470 <yosemite_setup_arch+84>:    addi    r26,r25,15104

0xc020f474 <yosemite_setup_arch+88>:    bl      0xc000d344 <ocp_get_one_device>

0xc020f478 <yosemite_setup_arch+92>:    lis     r4,-16350

0xc020f47c <yosemite_setup_arch+96>:    lwz     r31,32(r3)

0xc020f480 <yosemite_setup_arch+100>:   addi    r4,r4,21534

0xc020f484 <yosemite_setup_arch+104>:   li      r5,6

0xc020f488 <yosemite_setup_arch+108>:   addi    r3,r31,48

0xc020f48c <yosemite_setup_arch+112>:   bl      0xc000c708 <memcpy>

0xc020f490 <yosemite_setup_arch+116>:   lis     r4,1017

0xc020f494 <yosemite_setup_arch+120>:   lis     r5,168

0xc020f498 <yosemite_setup_arch+124>:   stw     r28,44(r31)

0xc020f49c <yosemite_setup_arch+128>:   ori     r4,r4,16554

0xc020f4a0 <yosemite_setup_arch+132>:   ori     r5,r5,49152

0xc020f4a4 <yosemite_setup_arch+136>:   addi    r3,r29,-15380

0xc020f4a8 <yosemite_setup_arch+140>:   addi    r29,r29,-15380

0xc020f4ac <yosemite_setup_arch+144>:   bl      0xc020e338 <ibm440gx_get_clocks>

0xc020f4b0 <yosemite_setup_arch+148>:   li      r0,0

0xc020f4b4 <yosemite_setup_arch+152>:   lis     r11,-16352

0xc020f4b8 <yosemite_setup_arch+156>:   ori     r0,r0,50000

0xc020f4bc <yosemite_setup_arch+160>:   lwz     r10,12(r29)

0xc020f4c0 <yosemite_setup_arch+164>:   lis     r9,-16352

0xc020f4c4 <yosemite_setup_arch+168>:   stw     r0,8068(r11)

0xc020f4c8 <yosemite_setup_arch+172>:   lwz     r0,84(r26)

0xc020f4cc <yosemite_setup_arch+176>:   stw     r10,8136(r9)

0xc020f4d0 <yosemite_setup_arch+180>:   mtctr   r0

0xc020f4d4 <yosemite_setup_arch+184>:   bctrl

0xc020f4d8 <yosemite_setup_arch+188>:   li      r5,64

0xc020f4dc <yosemite_setup_arch+192>:   mr      r31,r3

0xc020f4e0 <yosemite_setup_arch+196>:   lis     r4,-4288

0xc020f4e4 <yosemite_setup_arch+200>:   li      r3,0

0xc020f4e8 <yosemite_setup_arch+204>:   bl      0xc000c0f8 <ioremap64>

End of assembler dump.

(gdb)

  



14.3 Kernel Debugging Techniques 389

Again, we need not be Power Architecture       assembly language experts to understand 
what is happening here. Notice the labels associated with the Power Architecture bl
instruction. This is a function call in Power Architecture mnemonics. The symbolic 
function labels are the important data points. After a cursory analysis, we see several 
function calls near the start of this assembler listing:

Address     Function

0xc020f438  ocp_get_one_device()

0xc020f45c  memcpy()

0xc020f474  ocp_get_one_device()

0xc020f48c  memcpy()

0xc020f4ac  ibm440gx_get_clocks()

Listing 14-12 reproduces portions of the source file yosemite.c. Correlating the 
functions we found in the GDB disassemble output, we see those labels occurring in 
the function yosemite_set_emacdata(), around the line numbers reported by GDB 
when the breakpoint at yosemite_setup_arch() was encountered. The key to under-
standing this anomaly is to notice the subroutine call at the very start of yosemite_
setup_arch(). The compiler has inlined the call to yosemite_set_emacdata() instead 
of generating a function call, as would be expected by simple inspection of the source 
code. This inlining produced the mismatch in the line numbers when GDB hit the 
breakpoint. Even though the yosemite_set_emacdata() function     was not declared 
using the inline keyword, GCC inlined the function as a performance optimization.

LISTING 14-12 Portions of Source File yosemite.c

109 static void __init yosemite_set_emacdata(void)

110 {

111         struct ocp_def *def;

112         struct ocp_func_emac_data *emacdata;

113

114         /* Set mac_addr and phy mode for each EMAC */

115

116         def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 0);

117         emacdata = def->additions;

118         memcpy(emacdata->mac_addr, __res.bi_enetaddr, 6);

119         emacdata->phy_mode = PHY_MODE_RMII;

120

121         def = ocp_get_one_device(OCP_VENDOR_IBM, OCP_FUNC_EMAC, 1);

122         emacdata = def->additions;

123         memcpy(emacdata->mac_addr, __res.bi_enet1addr, 6);
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LISTING 14-12 Continued

124         emacdata->phy_mode = PHY_MODE_RMII;

125 }

126

...

304

305 static void __init

306 yosemite_setup_arch(void)

307 {

308         yosemite_set_emacdata();

309

310         ibm440gx_get_clocks(&clocks, YOSEMITE_SYSCLK, 6 * 1843200);

311         ocp_sys_info.opb_bus_freq = clocks.opb;

312

313         /* init to some ~sane value until calibrate_delay() runs */

314         loops_per_jiffy = 50000000/HZ;

315

316         /* Setup PCI host bridge */

317         yosemite_setup_hose();

318

319 #ifdef CONFIG_BLK_DEV_INITRD

320        if (initrd_start)

321                ROOT_DEV = Root_RAM0;

322         else

323 #endif

324 #ifdef CONFIG_ROOT_NFS

325                 ROOT_DEV = Root_NFS;

326 #else

327                 ROOT_DEV = Root_HDA1;

328 #endif

329

330         yosemite_early_serial_map();

331

332         /* Identify the system */

333         printk( “AMCC PowerPC “ BOARDNAME “ Platform\n” );

334 }

335

To summarize the previous     discussion:

• We entered a breakpoint in GDB at yosemite_setup_arch().

• When the breakpoint was hit, we found ourselves at line 116 of the source file, 
which was far removed from the function where we defined the breakpoint.
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• We produced a disassembly listing of the code at yosemite_setup_arch() and 
discovered the labels to which this sequence of code was branching.

• Comparing the labels to our source code, we discovered that the compiler 
placed the yosemite_set_emacdata() subroutine inline with the function 
where we entered a breakpoint, causing potential confusion.

This explains the line numbers reported by GDB when the original breakpoint in 
yosemite_setup_arch() was hit.

Recall that Listing 14-4 contained several examples of another type of optimization, 
with the debugger reporting value optimized out on certain variables. These are ex-
amples of where a local variable has been replaced by a processor register for the dura-
tion of the function. Therefore, the local variable has been optimized out by the com-
piler. This is easily illustrated using a snippet of U-Boot code from the cmd_bootm.c
file. Listing 14-13 shows a few lines from     the do_bootm() function.

LISTING 14-13 Example of Local Variable Optimized Out

584 int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

 585 {

 586         ulong           iflag;

 587         ulong           load_end = 0;

 588         int             ret;

<...many lines omitted>

 652         ret = bootm_load_os(images.os, &load_end, 1);

 653

 654         if (ret < 0) {

 655                 if (ret == BOOTM_ERR_RESET)

 656                         do_reset (cmdtp, flag, argc, argv);

 ...

Stepping through this code using a BDI-2000/3000 using your cross-gdb would 
look something like this:

(gdb) l 654

649         dcache_disable();

650   #endif

651

652         ret = bootm_load_os(images.os, &load_end, 1);

653
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654         if (ret < 0) {

655               if (ret == BOOTM_ERR_RESET)

656                     do_reset (cmdtp, flag, argc, argv);

657               if (ret == BOOTM_ERR_OVERLAP) {

658                     if (images.legacy_hdr_valid) {

(gdb) p ret

$2 = <value optimized out>

Notice after the call to bootm_load_os(), we read the value returned by the function, 
which, according to the source code on line 652, is stored in a local variable called ret.
Attempting to display the value of ret results in the now-familiar <value optimized 
out> message. Because we know that Power Architecture returns its function call results 
in register R3, we can display the return code by displaying R3 immediately after this 
call returns:

(gdb) mon rd

GPR00: 0ff7c9ec 0ff4db40 0ff4df64 00000000

GPR04: 00000002 00000000 0ff50ac8 00002538

GPR08: 00001000 00000020 00003538 00000001

GPR12: 24044022 1001a5b8 00000000 00000000

GPR16: 0ff88af4 00000000 00000000 00000000

GPR20: 00000000 00000000 0fff10f4 00000000

GPR24: 00000001 00000000 0ffab9d0 00000004

GPR28: 0ff50a40 0fff0b34 0ffaf0f0 00000000

CR   : 42044048     MSR: 00021200

(gdb)

This command issues the BDI-2000/3000 rd command (display general-purpose 
registers) directly and returns the results. GPR03 (R3) contains 0s, indicating that the 
function call was successful.

Compilers employ many different kinds of optimization algorithms. This example 
presented just one: function inlining. Each can confuse a debugger (the human and the 
machine) in a different way. The challenge is to understand what is happening at the 
machine level and translate that into what we as developers intended. You can see now 
the benefits of using the minimum possible optimization    level for debugging.

14.3.3 GDB User-Defined Commands

You might already know that    GDB looks for an initialization file on startup, called 
.gdbinit. When first invoked, GDB loads this initialization file (usually found in the 
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user’s home directory) and acts on the commands within it. One of my favorite com-
binations is to connect to the target system and set initial breakpoints. In this case, the 
contents of .gdbinit would look like Listing   14-14.

LISTING 14-14 Simple GDB Initialization File

$ cat ~/.gdbinit

set history save on

set history filename ~/.gdb_history

set output-radix 16

define connect

#   target remote bdi:2001

    target remote /dev/ttyS0

    b panic

    b sys_sync

end

This simple .gdbinit file enables the storing of command history in a user-speci-
fied file and sets the default output radix for printing of values. Then it defines a GDB 
user-defined command called    connect. (User-defined commands are also often called 
macros.) When this command is issued at the GDB command prompt, GDB connects 
to the target system using the desired method (the serial port in this example) and sets 
the system breakpoints at panic() and sys_sync(). The network method (host:port) is 
commented out; we discuss this method in Section 14.4.

There is no end to the creative uses of GDB user-defined commands. When de-
bugging in the kernel, it is often useful to examine global data structures such as task 
lists and memory maps. Here we present several useful GDB user-defined commands 
that can display specific kernel data that you might    need to access during your kernel 
debugging.

14.3.4 Useful Kernel GDB Macros

During kernel debugging, it is often useful   to view the processes that are running on 
the system, as well as some common attributes of those processes. The kernel maintains 
a linked list of tasks described by struct task_struct. The address of the first task in 
the list is contained in the kernel global variable init_task, which represents the initial 
task spawned by the kernel during startup. Each task contains a struct list_head,
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which links the tasks in a circular linked list. These two ubiquitous kernel structures 
are described in the following header files:

struct task_struct            .../include/linux/sched.h

struct list_head              .../include/linux/list.h

 

Using GDB macros, we can traverse the task list and display useful information 
about the tasks. It is easy to modify the macros to extract the data you might be inter-
ested in. It is also a very useful tool for learning the details of kernel internals.

The first macro we examine in Listing 14-15 (find_task) is a simple one that search-
es the kernel’s linked list of task_struct     structures until it finds the given task. If the 
task is found, the macro displays the name of the task.

LISTING 14-15 GDB find_task Macro

 1 # Helper function to find a task given a PID or the

 2 # address of a task_struct.

 3 # The result is set into $t

 4 define find_task

 5   # Addresses greater than _end: kernel data...

 6   # ...user passed in an address

 7   if ((unsigned)$arg0 > (unsigned)&_end)

 8     set $t=(struct task_struct *)$arg0

 9   else

10     # User entered a numeric PID

11     # Walk the task list to find it

12     set $t=&init_task

13     if (init_task.pid != (unsigned)$arg0)

14       find_next_task $t

15       while (&init_task!=$t && $t->pid != (unsigned)$arg0)

16         find_next_task $t

17       end

18       if ($t == &init_task)

19         printf “Couldn’t find task; using init_task\n”

20       end

21     end

22   end

23   printf “Task \”%s\”:\n”, $t->comm

24 end
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and restart GDB, or source it9 using GDB’s Place this text in your .gdbinit file    
source command. (We explain the find_next_task macro later, in Listing 14-19.) In-
voke it as follows:

(gdb) find_task 910

   Task “syslogd”:

Note that you can also pass an    address to the find_task macro as follows:

(gdb) find_task 0xCFFDE470

   Task “bash”:

 

Of course, you will have to supply valid parameters based on your own particular 
debug scenario.

Line 4 of Listing 14-15 defines the macro name. Line 7 decides whether the input 
argument is a PID (a numeric entry starting at 0 and limited to a few million) or a 
task_struct address that must be greater than the end of the Linux kernel image itself, 
defined by the symbol _end.10 If it’s an address, the only action required is to cast it to 
the proper type to enable dereferencing the associated task_struct. This is done at 
line 8. As the comment in line 3 states, this macro returns a GDB convenience variable 
typecast to a pointer to a struct task_struct.

If the input argument is a numeric PID, the list is traversed to find the matching 
task_struct. Lines 12 and 13 initialize the loop variables (GDB does not have a for
statement in its macro command language), and lines 15 through 17 define the search 
loop. The find_next_task macro is used to extract the pointer to the next task_struct
in the linked list. Finally, if the search fails, a sane return value is set (the address of 
init_task) so that it can be safely used in other macros.

Building on the find_task macro   in Listing 14-15, we can easily create a simple ps
command that displays useful information about each process running on the system.

Listing 14-16 defines a GDB macro called ps that displays interesting information 
from a running process, extracted from the struct task_struct for the given pro-
cess. It is invoked like any other GDB command, by typing its name followed by any 
required input parameters. Notice that this user-defined      command requires a single 
argument, either a PID or the address of a task_struct.

9 A helpful shortcut for macro development is the GDB source command. This command opens and reads a source file 
containing macro definitions.

10 The symbol _end is defined in the linker script file during the final link.
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LISTING 14-16 GDB Print Process Information Macro

 1 define ps

 2   # Print column headers

 3   task_struct_header

 4   set $t=&init_task

 5   task_struct_show $t

 6   find_next_task $t

 7   # Walk the list

 8   while &init_task!=$t

 9     # Display useful info about each task

10     task_struct_show $t

11     find_next_task $t

12   end

13 end

14

15 document ps

16 Print points of interest for all tasks

17 end

This ps macro is similar   to the find_task macro, except that it requires no input 
arguments and it adds a macro (task_struct_show) to display the useful information 
from each task_struct. Line 3 prints a banner line with column headings. Lines 4 
through 6 set up the loop and display the first task. Lines 8 through 11 loop through 
each task, calling the task_struct_show macro    for each.

Notice also the inclusion of the GDB document command. This allows the GDB 
user to get help by issuing the help ps command from the GDB command prompt 
as follows:

(gdb) help ps

   Print points of interest for all tasks

Listing 14-17 displays the output of this   macro on a target board running only 
minimal services.

LISTING 14-17 GDB ps Macro Output

(gdb) ps

Address      PID State      User_NIP  Kernel-SP  device comm

0xC01D3750     0 Running              0xC0205E90 (none) swapper

0xC04ACB10     1 Sleeping  0x0FF6E85C 0xC04FFCE0 (none) init

0xC04AC770     2 Sleeping             0xC0501E90 (none) ksoftirqd/0

0xC04AC3D0     3 Sleeping             0xC0531E30 (none) events/0
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LISTING 14-17 Continued

0xC04AC030     4 Sleeping             0xC0533E30 (none) khelper

0xC04CDB30     5 Sleeping             0xC0535E30 (none) kthread

0xC04CD790    23 Sleeping             0xC06FBE30 (none) kblockd/0

0xC04CD3F0    45 Sleeping             0xC06FDE50 (none) pdflush

0xC04CD050    46 Sleeping             0xC06FFE50 (none) pdflush

0xC054B7B0    48 Sleeping             0xC0703E30 (none) aio/0

0xC054BB50    47 Sleeping             0xC0701E20 (none) kswapd0

0xC054B410   629 Sleeping             0xC0781E60 (none) kseriod

0xC054B070   663 Sleeping             0xCFC59E30 (none) rpciod/0

0xCFFDE0D0   675 Sleeping  0x0FF6E85C 0xCF86DCE0 (none) udevd

0xCF95B110   879 Sleeping  0x0FF0BE58 0xCF517D80 (none) portmap

0xCFC24090   910 Sleeping  0x0FF6E85C 0xCF61BCE0 (none) syslogd

0xCF804490   918 Sleeping  0x0FF66C7C 0xCF65DD70 (none) klogd

0xCFE350B0   948 Sleeping  0x0FF0E85C 0xCF67DCE0 (none) rpc.statd

0xCFFDE810   960 Sleeping  0x0FF6E85C 0xCF5C7CE0 (none) inetd

0xCFC24B70   964 Sleeping  0x0FEEBEAC 0xCF64FD80 (none) mvltd

0xCFE35B90   973 Sleeping  0x0FF66C7C 0xCFEF7CE0 ttyS1  getty

0xCFE357F0   974 Sleeping  0x0FF4B85C 0xCF6EBCE0 (none) in.telnetd

0xCFFDE470   979 Sleeping  0x0FEB6950 0xCF675DB0 ttyp0  bash

0xCFFDEBB0   982<Running   0x0FF6EB6C 0xCF7C3870 ttyp0  sync

(gdb)

The bulk of the work done by this ps macro is performed by the task_struct_show
macro. As shown in Listing 14-17, the task_struct_show macro displays the following 
fields from each task_struct:

• Address—Address of the task_struct for the process

• PID—Process ID

• State—Current state of the process

• User_NIP—User space next instruction pointer

• Kernel_SP—Kernel stack pointer

• device—Device associated with this process

• comm—Name of the process (or command)

It is relatively easy to modify the macro to show the items of interest for your par-
ticular kernel debugging task. The only complexity is in the simplicity of the macro 
language. Because function equivalents such as strlen do not exist in GDB’s user-
defined command language, screen formatting must be done by hand.
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Listing 14-18 shows the task_struct_show macro        that produced the preceding 
listing.

LISTING 14-18 GDB task_struct_show Macro

 1 define task_struct_show

 2   # task_struct addr and PID

 3   printf “0x%08X %5d”, $arg0, $arg0->pid

 4

 5   # Place a ‘<’ marker on the current task

 6   #  if ($arg0 == current)

 7   # For PowerPC, register r2 points to the “current” task

 8   if ($arg0 == $r2)

 9     printf “<”

10   else

11     printf “ “

12   end

13

14   # State

15   if ($arg0->state == 0)

16     printf “Running   “

17   else

18     if ($arg0->state == 1)

19       printf “Sleeping  “

20     else

21       if ($arg0->state == 2)

22         printf “Disksleep “

23       else

24         if ($arg0->state == 4)

25           printf “Zombie    “

26         else

27           if ($arg0->state == 8)

28             printf “sTopped   “

29           else

30             if ($arg0->state == 16)

31               printf “Wpaging   “

32             else

33               printf “%2d        “, $arg0->state

34             end

35           end

36         end

37       end

38     end
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LISTING 14-18 Continued

39   end

40

41   # User NIP

42   if ($arg0->thread.regs)

43     printf “0x%08X “, $arg0->thread.regs->nip

44   else

45     printf “           “

46   end

47

48   # Display the kernel stack pointer

49   printf “0x%08X “, $arg0->thread.ksp

50

51   # device

52   if ($arg0->signal->tty)

53     printf “%s   “, $arg0->signal->tty->name

54   else

55     printf “(none) “

56   end

57

58   # comm

59   printf “%s\n”, $arg0->comm

60 end

of the task_struct. Lines 8 through 12 display the Line 3 displays the address    
process ID. If this is the current process (the process that was currently running on this 
CPU when the breakpoint was hit), it is marked with a < character.

Lines 14 through 39 decode and display the state of the process. This is followed by 
displaying the user process next instruction pointer (NIP) and the kernel stack pointer 
(SP). Finally, the device associated with the process is displayed, followed by the name 
of the process (stored in the ->comm element of the task_struct).

It is important to note that this macro is architecture-dependent, as shown in lines 7 
and 8. In general, macros such as these are highly architecture- and version-dependent. 
Anytime a change in the underlying structure is made, macros such as these must be 
updated. However, if you spend a lot of time debugging the kernel    using GDB, the 
payback is often worth the effort.
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For completeness, we present the find_next_task macro. Its implementation is less 
than obvious and deserves explanation. (It is assumed that you can easily deduce the 
task_struct_header that completes the series necessary for the ps macro presented in 
this section. It is nothing more than a single line arranging the column headers with 
the correct amount of white space.) Listing   14-19 presents the find_next_task macro 
used in our ps and find_task macros.

LISTING 14-19 GDB find_next_task Macro

define find_next_task

  # Given a task address, find the next task in the linked list

  set $t = (struct task_struct *)$arg0

  set $offset=( (char *)&$t->tasks - (char *)$t)

  set $t=(struct task_struct *)( (char *)$t->tasks.next- (char *)$offset)

end

The function performed by this macro is simple. The implementation is slightly 
less than straightforward. The goal is to return the ->next pointer, which points to the 
next task_struct in the linked list. However, the task_struct structures are linked by 
the address of the struct list_head member called tasks, as opposed to the common 
practice of being linked by the starting address of the task_struct itself. Because the 
->next pointer points to the address of the task structure element in the next task_
struct on the list, we must subtract to get the address of the top of the task_struct
itself. The value we subtract from the ->next pointer is the offset from that pointer’s 
address to the top of task_struct. First we calculate the offset, and then we use that 
offset to adjust the ->next pointer to point to the top of task_struct. Figure 14-5 
should make this clear.

Now we present a final macro called lsmod that will be useful in the next section 
when we discuss debugging loadable modules. Listing 14-20 is a simple macro that 
displays the kernel’s list of currently installed loadable modules.
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FIGURE 14-5 Task structure list linking

LISTING 14-20 GDB List Modules Macro

 1 define lsmod

 2   printf “Address\t\tModule\n”

 3   set $m=(struct list_head *)&modules

 4   set $done=0

 5   while ( !$done )

 6     # list_head is 4-bytes into struct module

 7     set $mp=(struct module *)((char *)$m->next - (char *)4)

 8     printf “0x%08X\t%s\n”, $mp, $mp->name

 9     if ( $mp->list->next == &modules)

10       set $done=1

11     end

12     set $m=$m->next

13   end

14 end

15

16 document lsmod

17 List the loaded kernel modules and their start addresses

18 end
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This simple loop starts with the kernel’s   global variable module. This variable is a 
struct list_head that marks the start of the linked list of loadable modules. The only 
complexity is the same as that described in Listing 14-19. We must subtract an offset 
from the struct list_head pointer to point to the top of the struct module. This is 
performed in line 7. This macro produces a simple listing of modules containing the 
address of the struct module and the module’s name. Here is an example of its use:

(gdb) lsmod

Address         Module

0xD1012A80      ip_conntrack_tftp

0xD10105A0      ip_conntrack

0xD102F9A0      loop

(gdb) help lsmod

List the loaded kernel modules and their start addresses

(gdb)

 

Macros such as the ones presented here are very powerful debugging aids. You can 
create macros in a similar fashion to display anything in the kernel that lends itself to 
easy access, especially the major data structures maintained as linked lists. Examples 
include process memory map information, module information, file system informa-
tion, timer lists, and so on. The information presented    here should get you started.

14.3.5 Debugging Loadable Modules

One of the typical reasons    for using KGDB is to debug loadable kernel modules—that 
is, device drivers. One of the more convenient features of loadable modules is that un-
der most circumstances, it is not necessary to reboot the kernel for each new debugging 
session. You can start a debugging session, make some changes, recompile, and reload 
the module without the hassle and delay of a complete kernel reboot.

The complication associated with debugging loadable modules is in gaining access 
to the symbolic debug information contained in the module’s object file. Because load-
able modules are dynamically linked when they are loaded into the kernel, the symbol-
ic information contained    in the object file is useless until the symbol table is adjusted.

Recall from our earlier examples how we invoke GDB for a kernel debugging ses-
sion:

$ ppc_4xx-gdb vmlinux
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This launches a GDB debugging session on your host and reads the symbol infor-
mation from the Linux kernel ELF file vmlinux. Of course, you will not find symbols 
for any loadable modules in this file. Loadable modules are separate compilation units 
and are linked as individual stand-alone ELF objects. Therefore, if we intend to per-
form any source-level debugging on a loadable module, we need to load its debug sym-
bols from the ELF file. GDB provides this capability in its add-symbol-file command.

The add-symbol-file command   loads symbols from the specified object file, assum-
ing that the module itself has already been loaded. However, we are faced with chicken-
and-egg syndrome. We don’t have any symbol information until the loadable module 
has been loaded into the kernel, and the add-symbol-file command is issued to read in 
the module’s symbol information. However, after the module has been loaded, it is too 
late to set breakpoints and debug the module’s *_init and related functions because 
they have already executed.

The solution to this dilemma is to place a breakpoint in the kernel code that is 
responsible for loading the module, after it has been linked but before its initialization 
function has been called. This work is done by .../kernel/module.c. Listing 14-21 
shows the relevant portions     of module.c.

LISTING 14-21 module.c: Module Initialization

...

2292         /* Drop lock so they can recurse */

2293         mutex_unlock(&module_mutex);

2294

2295         blocking_notifier_call_chain(&module_notify_list,

2296                         MODULE_STATE_COMING, mod);

2297

2298         /* Start the module */

2299         if (mod->init != NULL)

2300                 ret = do_one_initcall(mod->init);

2301         if (ret < 0) {

2302                 /* Init routine failed: abort.  Try to protect us from

2303                    buggy refcounters. */

2304                 mod->state = MODULE_STATE_GOING;

...

We load the module using the modprobe utility, which was demonstrated in Listing 
8-5 in Chapter 8, “Device Driver Basics.” It looks like this:

$ modprobe loop
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This command issues a special system   call that directs the kernel to load the mod-
ule. The module loading begins at load_module() in module.c. After the module has 
been loaded into kernel memory and dynamically linked, control is passed to the mod-
ule’s *_init function. This is shown in lines 2299 and 2300 from a recent copy of 
module.c, as shown in Listing 14-21. We place our breakpoint here. This enables us 
to add the symbol file to GDB and subsequently set breakpoints in the module. We 
demonstrate this process using the Linux kernel’s loopback driver, called loop.ko. This 
module has no dependencies on other modules and is reasonably easy to demonstrate.

Listing 14-22 shows the GDB commands   to initiate this debugging session on 
loop.ko.

LISTING 14-22 Initiate Module Debug Session: loop.ko

 1 $ ppc-linux-gdb --silent vmlinux

 2 (gdb) connect   <<< remember, this is a user-defined func

 3 breakinst () at arch/ppc/kernel/ppc-stub.c:825

 4 825     }

 5 Breakpoint 1 at 0xc0016b18: file kernel/panic.c, line 74.

 6 Breakpoint 2 at 0xc005a8c8: file fs/buffer.c, line 296.

 7 (gdb) b kernelmodule.c:2299

 8 Breakpoint 3 at 0xc0055b28: file kernel/module.c, line 2299.

 9 (gdb) c

10 Continuing.

11 >>>> Here we let the kernel finish booting

12      and then load the loop.ko module on the target

13

14 Breakpoint 3, sys_init_module (umod=0x48030000, len=<optimized out>,

15     uargs=<value optimized out>) at kernel/module.c:2299

16 2299                    ret = mod->init();

17 (gdb) lsmod

18 Address         Module

19 0xD1069A60     loop

20 (gdb) set $m=(struct module *)0xD1069a60

21 (gdb) p $m->module_core

22 $1 = (void *) 0xd1066000

23 (gdb) add-symbol-file ./drivers/block/loop.ko 0xd1066000

24 add symbol table from file “./drivers/block/loop.ko” at

25         .text_addr = 0xd1066000

26 (y or n) y

27 Reading symbols from /home/chris/sandbox/linux-2.6.27/

drivers/block        /loop.ko...done.

28 (gdb)
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 Starting with line 2, we use the GDB user-defined macro connect created in Listing 
14-14 to connect to the target board and set our initial breakpoints. We then add the 
breakpoint in module.c, as shown in line 7, and we issue the continue (c) command. 
Now the kernel completes the boot process, and we    establish a telnet session into the 
target and load the loop.ko module (not shown). When the loop module is loaded, 
we immediately hit breakpoint 3. GDB then displays the information shown in lines 
14 through 16.

At this point, we need to discover the address where the Linux kernel linked our 
module’s .text section. Linux stores this address in the module information structure 
struct module in the module_core element. Using the lsmod macro we defined in 
Listing 14-20, we obtain the address of the struct module associated with our loop.ko
module. This is shown in lines 17 through 19. Now we use this structure address to ob-
tain the module’s .text address from the module_core structure member. We pass this 
address to the GDB add-symbol-file command, and GDB uses this address to adjust 
its internal symbol table to match the actual addresses where the module was linked 
into the kernel. From there, we can proceed in the usual manner to set breakpoints in 
the module, step through code, examine data, and so on.

We conclude this section with a demonstration of placing a breakpoint in the loop-
back module’s initialization function so that we can step through the module’s initial-
ization code. The complication here    is that the kernel loads the module’s initialization 
code into a separately allocated portion of memory so that it can be freed after use. Re-
call from Chapter 5, “Kernel Initialization,” our discussion of the __init macro. This 
macro expands into a compiler attribute that directs the linker to place the marked 
portion of code into a specially named ELF section. In essence, any function defined 
with this attribute is placed in a separate ELF section named .init.text. Its    use is 
similar to the following:

static int __init loop_init(void){...}

This invocation would place the compiled loop_init() function into the .init.
text section of the loop.ko object module. When the module is loaded, the kernel 
allocates a chunk of memory for the main body of the module, which is pointed to by 
the struct module member named module_core. It then allocates a separate chunk of 
memory to hold the .init.text section. After the initialization function is called, the 
kernel frees the memory that contained the initialization function. Because the object 
module is split like this, we need to inform GDB of this addressing scheme to be able 
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to use symbolic data for debugging the initialization function. Listing   14-23 demon-
strates these steps.

LISTING 14-23 Debugging Module init Code

$ ppc-linux-gdb -q vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

breakinst () at arch/ppc/kernel/ppc-stub.c:825

825     }

<< Place a breakpoint before calling module init >>

(gdb) b kernel/module.c:2299

Breakpoint 1 at 0xc0036418: file kernel/module.c, line 2299.

(gdb) c

Continuing.

[New Thread 1468]

[Switching to Thread 1468]

Breakpoint 3, sys_init_module (umod=0x48030000, len=<optimized out>,

    uargs=<value optimized out>) at kernel/module.c:2299

2299         if (mod->init != NULL)

<< Discover init addressing from struct module >>

(gdb) lsmod

Address         Module

0xD1069A60      loop

(gdb) set $m=(struct module *)0xD1069A60

(gdb) p $m->module_core

$1 = (void *) 0xd1066000

(gdb) p $m->module_init

$2 = (void *) 0xd101e000

<< Now load a symbol file using the core and init addrs >>

(gdb) add-symbol-file ./drivers/block/loop.ko 0xd1066000 -s .init.text 0xd101e000

add symbol table from file “./drivers/block/loop.ko” at

      .text_addr = 0xd1066000

      .init.text_addr = 0xd101e000

(y or n) y

Reading symbols from /home/chris/sandbox/linux-2.6.27/drivers/block/

loop.ko...done.
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LISTING 14-23 Continued

(gdb) b loop_init

Breakpoint 4 at 0xd101e008: file drivers/block/loop.c, line 1517.

(gdb) c

Continuing.

<< Breakpoint hit, proceed to debug module init function >>

Breakpoint 4, loop_init () at drivers/block/loop.c:1517

1517          part_shift = 0;

(gdb)l

1512           *     load, user can further extend loop device by create dev node

1513           *     themselves and have kernel automatically instantiate actual

1514           *     device on-demand.

1515           */

1516

1517          part_shift = 0;

1518          if (max_part > 0)

1519                part_shift = fls(max_part);

1520

1521          if (max_loop > 1UL << (MINORBITS - part_shift))

(gdb)

14.3.6 printk Debugging

Debugging kernel and device    driver code using printk() is a popular technique, most-
ly because printk has evolved into a very robust method. You can call printk from 
almost any context, including from interrupt handlers. printk is the kernel’s version of 
the familiar printf() C library function. printk is defined in .../kernel/printk.c.

It is important to understand the limitations of using printk for debugging. First, 
printk requires a console device. Moreover, although the console device is configured 
as early as possible during kernel initialization, many calls to printk occur before the 
console device has been initialized. We present a method to cope with this limitation 
later, in Section 14.5, “When It Doesn’t Boot.”

The printk function allows the addition of a string marker that identifies the level 
of severity of a given message. The header file .../include/linux/kernel.h defines 
eight levels:

#define     KERN_EMERG    “<0>” /* system is unusable */

#define     KERN_ALERT    “<1>” /* action must be taken immediately */
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#define     KERN_CRIT     “<2>” /* critical conditions */

#define     KERN_ERR      “<3>” /* error conditions */

#define     KERN_WARNING  “<4>” /* warning conditions */

#define     KERN_NOTICE   “<5>” /* normal but significant condition */

#define     KERN_INFO     “<6>” /* informational */

#define     KERN_DEBUG    “<7>” /* debug-level messages */

A simple printk message might look like this:

printk(“foo() entered w/ %s\n”, arg);

If the severity string is omitted, as shown here, the kernel assigns a default sever-
ity level, which is defined in printk.c. In recent kernels, this is set at severity level 4, 
KERN_WARNING. Specifying printk with a severity level (the preferred method) might 
look something like this:

printk(KERN_CRIT “vmalloc failed in foo()\n”);

No, this unusual C syntax is not a typo. KERN_CRIT is a text string itself, so a comma 
is not needed to separate parameters. In fact, if a comma were included, the function 
would not produce the expected results. The compiler automatically concatenates the 
strings into a single string. By default, all printk messages below a predefined loglevel 
are displayed on the system console device. The default console loglevel is defined in 
printk.c. In recent Linux kernels, it has the value 7. This means that any printk mes-
sage that is greater in importance than KERN_DEBUG (found in .../include/linux/
kernel.h) is displayed on the console.

You can set the default kernel loglevel in a variety of ways. At boot time, you can 
specify the default loglevel on your target board by passing the appropriate kernel 
command-line parameters to the kernel at boot time. Three kernel command-line op-
tions defined in main.c affect the default loglevel:

• debug sets the console loglevel to 10.

• quiet sets the console loglevel to 4.

• loglevel= sets the console loglevel to your choice of value.

Using the debug log level effectively displays every printk message. Using quiet
displays all printk messages of severity KERN_ERR or higher.
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printk messages can be logged to files on your target or via the network. Use klogd
(kernel log daemon) and syslogd (system log daemon) to control the logging behav-
ior of printk messages. These popular utilities are described in man pages and many 
Linux references and therefore    are not described here.

14.3.7 Magic SysReq Key

The Magic SysReq key is a useful debugging   aid that is invoked through a series of 
special predefined key sequences that send messages directly to the kernel. For many 
target architectures and boards, you use a simple terminal emulator on a serial port as 
a system console. For these architectures, the Magic SysReq key is defined as a break 
character followed by a command character. Consult the documentation on the termi-
nal emulator you use to find out how to send a break character. Many Linux develop-
ers use the minicom terminal emulator. For minicom, you send the break character 
by pressing Ctrl-A F. If you use screen, pressing Ctrl-A Ctrl-B sends a break. After 
sending the break in this manner, you have 5 seconds to enter the command character 
before the command sequence times out.

This useful kernel tool can be very helpful for development and debugging, but it 
can also cause data loss and system corruption. Indeed, the b command immediately 
reboots your system without any notification or preparation. Open files are not closed, 
disks are not synced, and file systems are not unmounted. When the reboot (b) com-
mand is issued, control is immediately passed to your architecture’s reset vector in a 
most abrupt and stunning manner. Use this powerful tool at your own peril!

This feature is well documented in the Linux kernel documentation subdirectory in 
a file called sysrq.txt. There you find the details of many architectures and descrip-
tions of available commands.

Another way to set the kernel loglevel just discussed is to use the Magic SysReq key. 
The command is a number from 0 through 9, which results in the default loglevel be-
ing set to the number passed in. From minicom, press Ctrl-A F followed by a number, 
such as 9. Here is how it looks on the terminal after you sending the break sequence:

$ SysRq : Changing Loglevel

   Loglevel set to 9

Commands can be used to dump registers, shut down your system, reboot your 
system, dump a list of processes, dump current memory information to your console, 
and more. See the documentation file in any recent Linux kernel for details.
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This feature is most commonly used when something causes your system to lock 
up. Often the Magic SysReq key provides    a way to learn something from an otherwise 
dead system.

14.4 Hardware-Assisted Debugging

By now you’ve probably realized that you cannot debug very early kernel startup code 
with KGDB. This is because KGDB is not initialized until after most of the low-level 
hardware initialization code has executed. Furthermore, if you are assigned the task of 
bringing up a brand-new board design and porting a bootloader and the Linux kernel, 
having a hardware-debug probe is without a doubt the most efficient means of debug-
ging problems in these early stages of board porting.

You can choose from     a wide variety of hardware-debug probes. For the examples in 
this section, we use a unit manufactured by Abatron called the BDI-2000   (see www.
abatron.ch). These units are often called JTAG probes because they use a low-level 
communications method that was first employed for boundary scan testing of integrat-
ed circuits defined by the Joint Test Action Group (JTAG). Abatron has since released 
its newer BDI-3000, which features a faster (100MB) Ethernet interface.

A JTAG probe contains a small connector designed for connection to your target 
board. It is often a simple square-pin header and ribbon cable arrangement. Most 
modern high-performance CPUs contain a JTAG interface that is designed to provide 
this software debugging capability. The JTAG probe connects to this CPU JTAG in-
terface. The other side of the JTAG probe connects to your host development system, 
usually through Ethernet, USB, or a parallel port. Figure 14-6 details the setup for the 
Abatron unit.

FIGURE 14-6 Hardware JTAG probe debugging

Host System

Ethernet Hub

Ethernet

Target
RS-232

JTAG Probe
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JTAG probes can be complicated to set up. This is a direct result of the complexity 
of the CPU to which they are   connected. When power is applied to a target board and 
its CPU comes out of reset, almost nothing is initialized. In fact, many processors need 
at least a small amount of initialization before they can do anything. Many methods 
are available for getting this initial configuration into the CPU. Some CPUs read a 
hardware-configuration word or initial values of specific pins to learn their power-on 
configuration. Others rely on reading a default location in a simple nonvolatile storage 
device such as Flash. When using a JTAG probe, especially to bring up a new board 
design, a minimum level of CPU and board initialization must be performed before 
anything else can be done. Many JTAG probes rely on a configuration file for this 
initialization.

The Abatron unit uses a configuration file to initialize the target hardware it is con-
nected to, as well as to define other operational parameters of the debugger. This con-
figuration file contains directives that initialize the CPU, memory system, and other 
necessary board-level hardware. It is the developer’s responsibility to customize this 
configuration file with the proper directives for his own board. The details of the con-
figuration command syntax can be found in the JTAG probe’s documentation. How-
ever, only the embedded developer can create the unique configuration file required 
for a given board design. This requires detailed knowledge of the CPU and board-level 
design features. Much like creating a custom Linux port for a new board, there is no   
shortcut or substitute for this task.

Appendix F, “Sample BDI-2000 Configuration File,” contains a sample Abatron 
configuration file for a custom board based on the Freescale Semiconductor MPC5200 
embedded controller. In that appendix, you can see the necessary setup for a custom 
board. Notice the liberal use of comments describing various registers and initialization 
details. This makes it easier to update and maintain over time, and it can help you get 
the configuration right the first time.

Hardware probes generally are used in two ways. Most have a user interface of some 
type that enables the developer to use features of the probe. Examples of this are to 
program Flash or download binary images. The second usage is as a front end to GDB 
or other source-level debuggers. We’ll demonstrate both usage scenarios.

14.4.1 Programming Flash Using a JTAG Probe

Many hardware probes include     the capability to program a wide variety of Flash mem-
ory chips. The Abatron BDI-3000 is no exception. The BDI-3000 configuration file 
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includes a [FLASH] section to define the characteristics of the target Flash. Refer to 
Appendix F for a sample. The [FLASH] section defines attributes of the Flash chip as 
used in a particular design, such as the chip type, the size of the device, and its data bus 
width. Also defined are the location in memory and a description of the chip’s storage 
organization.

When updating one portion of the Flash, you often want to preserve the contents 
of other portions of the same Flash. In this case, your hardware probe must have some 
way to limit the sectors that are being erased. In the case of the Abatron unit, this is 
done by adding a line starting with the keyword ERASE for each sector to be erased. 
When the erase command is issued to the Abatron unit using its telnet user interface, 
all sectors defined with an ERASE specification are erased. Listing 14-24 demonstrates 
erasing a portion of Flash on a target board and subsequently programming   a new U-
Boot bootloader image.

LISTING 14-24 Erase and Program Flash

$ telnet bdi

Trying 192.168.1.129...

Connected to bdi (192.168.1.129).

Escape character is ‘^]’.

BDI Debugger for Embedded PowerPC

=================================

...  (large volume of help text)

uei> erase

Erasing flash at 0xfff00000

Erasing flash at 0xfff10000

Erasing flash at 0xfff20000

Erasing flash at 0xfff30000

Erasing flash at 0xfff40000

Erasing flash passed

uei> prog 0xfff00000 u-boot.bin BIN

Programming u-boot.bin , please wait ....

Programming flash passed

uei>

  

First we establish a telnet session to the Abatron BDI-2000. After some initializa-
tion, we are presented with a command prompt. When the erase command is issued, 
the Abatron displays a line of output for each section     defined in the configuration file. 
With the configuration shown in Appendix F, we define five erase sectors. This reserves 
up to 256KB of space for the U-Boot bootloader binary.
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The prog command is shown with all three of its optional parameters. These specify 
the location in memory where the new image is to be loaded, the name of the image 
file, and the format of the file—in this case, a binary file. You can specify these param-
eters in the BDI-2000 configuration file. In this case, the command reduces to simply 
prog without parameters.

This example only scratches the surface of these two BDI-2000 commands. Many 
more combinations of usage and capabilities are supported. Each hardware JTAG 
probe has its own way to specify Flash erasure and programming   capabilities. Consult 
the documentation for your particular device for the specifics.

14.4.2 Debugging with a JTAG Probe

Instead of interfacing   directly with a JTAG probe through its user interface, many 
JTAG probes can interface with your source-level debugger. By far the most popular 
debugger supported by hardware probes for Linux is the GDB debugger. In this usage 
scenario, GDB is instructed to begin a debug session with the target using an external 
connection, usually an Ethernet connection. Rather than communicate directly with 
the JTAG probe through a user interface, the debugger passes commands back and 
forth between itself and the JTAG probe. In this model, the JTAG probe uses the GDB 
remote protocol to control the hardware on behalf of the debugger. Refer to Figure 
14-6 for connection details.

JTAG probes are especially useful for source-level debugging of bootloader and 
early startup code. In this example, we demonstrate the use of GDB and an Abatron 
BDI-2000 for debugging portions of the U-Boot bootloader on a Power Architecture 
target board.

Many processors contain debugging registers that include the capability to set tra-
ditional address breakpoints (stop when the program reaches a specific address) as well 
as data breakpoints (stop on conditional access of a specified memory address). When 
debugging code resident in read-only memory such as Flash, this is the only way to set 
a breakpoint. However, these registers typically are limited. Many processors contain 
only one or two such registers. You must understand this limitation before using hard-
ware breakpoints. The following example demonstrates this.

Using a setup such as that shown in Figure 14-6, assume that our target board has 
U-Boot stored in Flash. When we presented bootloaders in Chapter 7, you learned that 
U-Boot and other bootloaders typically copy themselves into RAM as soon as possible 
after startup. This is because hardware read (and write) cycles from RAM are orders of 
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magnitude faster than typical read-only memory devices such as Flash. This presents 
two specific debugging challenges. First, we cannot modify the contents of read-only 
memory (to insert a software breakpoint), so we must rely   on processor-supported 
breakpoint registers for this purpose.

The second challenge comes from the fact that only one of the execution contexts 
(Flash or RAM) can be represented by the ELF executable file from which GDB reads 
its symbolic debugging information. In the case of U-Boot, it is linked for the Flash 
environment where it is initially stored. The early code relocates itself and performs 
any necessary address adjustments. This means that we need to work with GDB within 
both of these execution contexts. Listing 14-25   shows an example of such a debug ses-
sion.

LISTING 14-25 U-Boot Debugging Using a JTAG Probe

$ ppc-linux-gdb -q u-boot

(gdb) target remote bdi:2001

Remote debugging using bdi:2001

_start () at /home/chris/sandbox/u-boot-1.1.4/cpu/mpc5xxx/start.S:91

91        li      r21, BOOTFLAG_COLD   /* Normal Power-On */

Current language:  auto; currently asm

<< Debug a flash resident code snippet >>

(gdb) mon break hard

(gdb) b board_init_f

Breakpoint 1 at 0xfff0457c: file board.c, line 366.

(gdb) c

Continuing.

Breakpoint 1, board_init_f (bootflag=0x7fc3afc) at board.c:366

366             gd = (gd_t *) (CFG_INIT_RAM_ADDR + CFG_GBL_DATA_OFFSET);

Current language:  auto; currently c

(gdb) bt

#0  board_init_f (bootflag=0x1) at board.c:366

#1  0xfff0456c in board_init_f (bootflag=0x1) at board.c:353

(gdb) i frame

Stack level 0, frame at 0xf000bf50:

 pc = 0xfff0457c in board_init_f (board.c:366); saved pc 0xfff0456c

 called by frame at 0xf000bf78

 source language c.

 Arglist at 0xf000bf50, args: bootflag=0x1

 Locals at 0xf000bf50, Previous frame’s sp is 0x0
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LISTING 14-25 Continued

<< Now debug a memory resident code snippet after relocation >>

(gdb) del 1

(gdb) symbol-file

Discard symbol table from ‘/home/chris/sandbox/u-boot-1.1.4-powerdna/u-boot’?

(y or n) y

No symbol file now.

(gdb) add-symbol-file u-boot 0x7fa8000

add symbol table from file “u-boot” at

        .text_addr = 0x7fa8000

(y or n) y

Reading symbols from u-boot...done.

(gdb) b board_init_r

Breakpoint 2 at 0x7fac6c0: file board.c, line 608.

(gdb) c

Continuing.

Breakpoint 2, board_init_r (id=0x7f85f84, dest_addr=0x7f85f84) at board.c:608

608             gd = id;      /* initialize RAM version of global data */

(gdb) i frame

Stack level 0, frame at 0x7f85f38:

 pc = 0x7fac6c0 in board_init_r (board.c:608); saved pc 0x7fac6b0

 called by frame at 0x7f85f68

 source language c.

 Arglist at 0x7f85f38, args: id=0x7f85f84, dest_addr=0x7f85f84

 Locals at 0x7f85f38, Previous frame’s sp is 0x0

(gdb) mon break soft

(gdb)

Study this example carefully. Some   subtleties are definitely worth taking the time 
to understand. First, we connect to the Abatron BDI-2000 using the target remote
command. The IP address in this case is that of the Abatron unit, represented by the 
symbolic name bdi.11 By default, the Abatron BDI-2000 uses port 2001 for its remote 
GDB protocol connection.

Next we issue a command to the BDI-2000 using the GDB mon command. The mon
command tells GDB to pass the rest of the command directly to the remote hardware 
device. Therefore, mon break hard sets the BDI-2000 into hardware breakpoint mode.

We then set a hardware breakpoint at board_init_f. This is a routine that executes 
while still running out of Flash memory at address 0xfff0457c. After the breakpoint 

11 An entry in the host system’s /etc/hosts file enables the symbolic IP address reference.
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is defined, we issue the continue (c) command to resume execution. Immediately, the 
breakpoint at board_init_f is encountered, and we are free to do the usual debugging 
activities, including stepping through code and examining data. You can see that we 
have issued the bt command to examine the stack backtrace and the i frame com-
mand to examine the details of the current stack frame.

Now we continue execution again, but this time we know that U-Boot copies it-
self to RAM and resumes execution from its copy in RAM. So we need to change the 
debugging context while keeping the debugging session alive. To accomplish this, we 
discard the current symbol table (using the symbol-file command with no arguments) 
and load in the same symbol file again using the add-symbol-file command. This 
time, we instruct GDB to offset the symbol table to match where U-Boot has relocated 
itself to memory. This ensures that our source code and symbolic debugging informa-
tion match the actual memory-resident image.

After the new symbol table is loaded, we can add a breakpoint to a location that 
we know will reside in RAM when it is executed. This is where one of the subtle 
complications is exposed. Because we know that U-Boot is currently running in Flash 
but is about to move itself to RAM and jump to its RAM-based copy, we must still 
use a hardware breakpoint. Consider what happens at this point if we use a software 
breakpoint. GDB dutifully writes the breakpoint opcode into the specified memory 
location, but U-Boot overwrites it when it copies itself to RAM. The net result is that 
the breakpoint is never hit, and we begin to suspect that our tools are broken. After 
U-Boot has entered the RAM copy and our symbol table has been updated to reflect 
the RAM-based addresses, we are free to use RAM-based breakpoints. This is reflected 
by the last command in Listing 14-25, which sets the Abatron BDI-2000 back to soft 
breakpoint mode.

Why do we care about using hardware versus software breakpoints? If we had un-
limited hardware breakpoint registers, we wouldn’t. But this is never the case. Here 
is what it looks like when you run out of processor-supported hardware breakpoint 
registers during a debug session on a 4xx processor:

(gdb) b flash_init

Breakpoint 3 at 0x7fbebe0: file flash.c, line 70.

(gdb) c

Continuing.

warning: Cannot insert breakpoint 3:

Error accessing memory address 0x7fbebe0: Unknown error 4294967295.
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Because we are debugging remotely, we    aren’t told about the resource constraint 
until we try to resume after entering additional breakpoints. This is because of how 
GDB handles breakpoints. When a breakpoint is hit, GDB restores all the breakpoints 
with the original opcodes for that particular memory location. When it resumes execu-
tion, it restores the breakpoint opcodes at the specified locations. You can observe this 
behavior by enabling GDB’s remote debug mode, as we saw earlier:

(gdb) set debug remote 1

 

14.5 When It Doesn’t Boot

One of the most frequently asked questions on the  various mailing lists that serve em-
bedded Linux goes something like this:

I am trying to boot Linux on my board, and I get stuck after this message

prints to my console:

“Uncompressing Kernel Image . . . OK.”

 

Thus starts the long and sometimes frustrating learning curve of embedded Linux! 
Many things that can go wrong could lead to this common failure. With some knowl-
edge and a JTAG debugger, there are ways to determine what went awry.

14.5.1 Early Serial Debug Output

CONFIG_SERIAL_TEXT_DEBUG, which   we covered in the first edition of this book, has 
been deprecated in recent Linux kernels. Reference to this configuration parameter has 
been removed from the kernel sources.

However, CONFIG_EARLY_PRINTK is available on most architectures. This feature is 
on by default in most kernel configurations. When on, it enables serial console output 
much sooner than the registration of the serial driver. On most Linux ports, there is 
nothing to do to enable this; it is on by default.

14.5.2 Dumping the printk Log Buffer

When we discussed printk debugging   in Section 14.3.6, we pointed out some of the 
limitations of this method. printk itself is a very robust implementation. One of its 
shortcomings is that you can’t see any printk messages until later in the boot sequence, 
when the console device has been initialized. Very often, when your board hangs on 
boot, quite a few messages are stuck in the printk buffer. If you know where to find 
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them, you can often pinpoint the exact problem that is causing the boot to hang. In-
deed, many times you will discover that the kernel has encountered an error that led to 
a call to panic(). The output from panic() has likely been dumped into the printk
buffer, and you can often pinpoint the exact line of offending code.

This is best accomplished with a JTAG debugger, but it is still possible to use a 
bootloader and its memory dump capability to display the contents of the printk buf-
fer after a reset. Some corruption of memory contents might occur as a result of the 
reset, but log buffer text is usually very readable.

The actual buffer where printk stores its message text is declared in the printk
source file .../kernel/printk.c:

static char __log_buf[__LOG_BUF_LEN];

We can easily determine the linked location of this buffer from the Linux kernel 
map file System.map:

$ grep __log_buf System.map

   c022e5a4 b __log_buf

If the system happens to hang upon booting, right after the Uncompressing Kernel 
Image . . . OK message appears, reboot and use the bootloader to examine the buffer. 
Because the relationship between kernel virtual memory and physical memory is fixed 
and constant on a given architecture, we can do a simple conversion. The address of 
__log_buf shown earlier is a kernel virtual address; we must convert it into a physical 
address. On this particular Power Architecture processor, that conversion is a simple 
subtraction of the constant KERNELBASE address, 0xc0000000. This is where we probe 
in memory to read the contents, if any, of the printk log buffer.

Listing 14-26 is an example of   the listing as displayed by the U-Boot memory 
dump command.

LISTING 14-26 Dump of Raw printk Log Buffer

=> md 22e5a4

0022e5a4: 3c353e4c 696e7578 20766572 73696f6e    <5>Linux version

0022e5b4: 20322e36 2e313320 28636872 6973406a     2.6.13 (chris@

0022e5c4: 756e696f 72292028 67636320 76657273    junior) (gcc

0022e5d4: 696f6e20 332e342e 3320284d 6f6e7461    version 3.4.3 (Monta

0022e5e4: 56697374 6120332e 342e332d 32352e30    Vista 3.4.3-25.0

0022e5f4: 2e37302e 30353031 39363120 32303035    .70.0501961 2005

0022e604: 2d31322d 31382929 20233131 20547565    -12-18)) #11 Tue
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LISTING 14-26 Continued

0022e614: 20466562 20313420 32313a30 353a3036     Feb 14 21:05:06

0022e624: 20455354 20323030 360a3c34 3e414d43     EST 2006.<4>AMC

0022e634: 4320506f 77657250 43203434 30455020    C PowerPC 440EP

0022e644: 596f7365 6d697465 20506c61 74666f72    Yosemite Platform.

0022e654: 6d0a3c37 3e4f6e20 6e6f6465 20302074    <7>On node 0

0022e664: 6f74616c 70616765 733a2036 35353336    totalpages: 65536

0022e674: 0a3c373e 2020444d 41207a6f 6e653a20    .<7>  DMA zone:

0022e684: 36353533 36207061 6765732c 204c4946    65536 pages, LIF

0022e694: 4f206261 7463683a 33310a3c 373e2020    O batch:31.<7>

=>

0022e6a4: 4e6f726d 616c207a 6f6e653a 20302070    Normal zone: 0

0022e6b4: 61676573 2c204c49 464f2062 61746368    pages, LIFO batch

0022e6c4: 3a310a3c 373e2020 48696768 4d656d20    :1.<7>  HighMemzone:

0022e6d4: 7a6f6e65 3a203020 70616765 732c204c    0 pages,

0022e6e4: 49464f20 62617463 683a310a 3c343e42    LIFO batch:1.<4>

0022e6f4: 75696c74 2031207a 6f6e656c 69737473    Built 1 zonelists

0022e704: 0a3c353e 4b65726e 656c2063 6f6d6d61    .<5>Kernel command

0022e714: 6e64206c 696e653a 20636f6e 736f6c65    line: console

0022e724: 3d747479 53302c31 31353230 3020726f    =ttyS0,115200

0022e734: 6f743d2f 6465762f 6e667320 72772069    root=/dev/nfs rw

0022e744: 703d6468 63700a3c 343e5049 44206861    ip=dhcp.<4>PID

0022e754: 73682074 61626c65 20656e74 72696573    hash table entries

0022e764: 3a203230 34382028 6f726465 723a2031    : 2048 (order:

0022e774: 312c2033 32373638 20627974 6573290a    11, 32768 bytes).

0022e784: 00000000 00000000 00000000 00000000    . ..............

0022e794: 00000000 00000000 00000000 00000000    . ..............

=>

It is not very pretty to read, but the data is there. We can see in this particular ex-
ample that the kernel crashed someplace after initializing   the PID hash table entries. 
With some additional use of printk messages, we can begin to close in on the actual 
source of the crash.

As shown in this example, this is a technique that can be used with no additional 
tools. You can see the importance of some kind of early serial port output during boot 
if you are working on a new board port.

It’s worth noting that the bootloader on some platforms performs initialization on 
memory contents before completing initialization. On these platforms, the kernel log 
buffer contents are destroyed, and this technique cannot be used without modifying 
the bootloader code.
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14.5.3 KGDB on Panic

If KGDB is enabled, the kernel attempts   to pass control back to KGDB upon error 
exceptions. In some cases, the error itself is readily apparent. To use this feature, a con-
nection must already be established between KGDB and GDB. When the exception 
condition occurs, KGDB emits a Stop Reply packet to GDB, indicating the reason 
for the trap into the debug handler, as well as the address where the trap condition oc-
curred. Listing 14-27 illustrates the sequence.

LISTING 14-27 Trapping Crash on Panic Using KGDB

$ ppc-_4xx-gdb -q vmlinux

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0

(gdb) c

Continuing.

<< KGDB gains control from panic() on crash >>

Program received signal SIGSEGV, Segmentation fault.

0xc0215d6c in pcibios_init () at arch/ppc/kernel/pci.c:1263

1263            *(int *)-1 = 0;

(gdb) bt

#0  0xc0215d6c in pcibios_init () at arch/ppc/kernel/pci.c:1263

#1  0xc020e728 in do_initcalls () at init/main.c:563

#2  0xc020e7c4 in do_basic_setup () at init/main.c:605

#3  0xc0001374 in init (unused=0x20) at init/main.c:677

#4  0xc00049d0 in kernel_thread ()

Previous frame inner to this frame (corrupt stack?)

(gdb)

The crash in this example was   contrived by a simple write to an invalid memory 
location (all 1s). We first establish a connection from GDB to KGDB and allow the 
kernel to continue to boot. Notice that we didn’t even bother to set breakpoints. When 
the crash occurs, we see the line of offending code and get a nice backtrace to help us 
determine its cause.
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14.6 Summary

• Linux kernel debugging presents many complexities, especially in a cross-
development environment. Understanding how to navigate these complexities 
is the key to successful kernel debugging.

• KGDB is a very useful kernel-level GDB stub that enables direct symbolic 
source-level debugging inside the Linux kernel and device drivers. It uses the 
GDB remote protocol to communicate with your host-based cross-gdb.

• Understanding (and minimizing) compiler optimizations helps you make sense 
of seemingly strange debugger behavior when stepping through compiler-
optimized code.

• GDB supports user-defined commands, which can be very useful for automat-
ing tedious debugging tasks such as iterating kernel linked lists and accessing 
complex variables.

• Kernel-loadable modules present their own challenges to source-level debug-
ging. You can debug the module’s initialization routine by placing a breakpoint 
in module.c at the call to mod->init().

 • printk and the Magic SysReq key provide additional tools to help isolate prob-
lems during kernel development and debugging.

• Hardware-assisted debugging using a JTAG probe lets you debug Flash or 
ROM resident code where other debugging methods can be cumbersome or 
otherwise impossible.

 • Enabling CONFIG_EARLY_PRINTK on architectures where this feature is support-
ed is a powerful tool for debugging a new kernel port.

 • Examining printk log_buf often leads to the cause of a silent kernel crash on 
boot on architectures that support it.

• KGDB passes control to GDB on a kernel panic, enabling you to examine a 
backtrace and isolate the cause of the kernel panic.
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14.6.1 Suggestions for Additional Reading

Linux Kernel Development, 3rd Edition
Robert Love
Addison-Wesley, 2010   

The Linux Kernel Primer
Claudia Salzberg Rodriguez et al.
Prentice Hall, 2005

“Using the GNU Compiler Collection”
Richard M. Stallman and the GCC Developer Community
GNU Press, a division of Free Software Foundation  
http://gcc.gnu.org/onlinedocs/

Debugging with GDB
Richard Stallman, Roland Pesch, Stan Shebs, et al.
Free Software Foundation  
www.gnu.org/software/gdb/documentation/

Using kgdb and the kgdb Internals   
www.kernel.org/doc/htmldocs/kgdb.html

Tool Interface Standards
DWARF Debugging Information Format Specification
Version 2.0
TIS Committee, May 1995
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T he preceding chapter explored the use of GDB for debugging kernel code 
and code resident in Flash, such as bootloader code. This chapter continues 

our coverage of GDB for debugging application code in user space. We extend 
our coverage of remote debugging and the tools and techniques used for this 
particular debugging environment.

15.1 Target Debugging

We explored several important   debugging tools in Chapter 13, “Development 
Tools.” strace and ltrace can be used to observe and characterize a process’s be-
havior and often isolate problems. dmalloc can help isolate memory leaks and pro-
file memory usage. ps and top are useful for examining the state of processes. These 
relatively small tools are designed to run directly on the target hardware.

Debugging Linux application code on an embedded system has its own unique 
challenges. Resources on your embedded target are often limited. RAM and nonvol-
atile storage limitations might prevent you from running target-based development 
tools. You might not have an Ethernet port or other high-speed connection. Your 
target embedded system might not have a graphical display, keyboard, or mouse.

This is where your cross-development tools and an NFS root mount environ-
ment can yield large dividends. Many tools, especially GDB, have been architected 
to execute on your development host while actually debugging code on a remote 
target. GDB can be used to interactively debug your target code or to perform a 
postmortem analysis of a core file generated by an application crash. We covered the 
details of application core dump analysis in Chapter 13.

15.2 Remote (Cross) Debugging

Cross-development tools     were developed primarily to overcome the resource limita-
tions of embedded platforms. A modest-size application compiled with symbolic 
debug information can easily exceed several megabytes. With cross debugging, the 
heavy lifting can be done on your development host. When you invoke your cross 
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version of GDB on your development host, you pass it an ELF file compiled with sym-
bolic debug information. On your target, you can strip1 the ELF file of all unnecessary 
debugging information to keep the resulting image to its minimum size.

We introduced the readelf utility in Chapter 13. In Chapter 14, “Kernel Debug-
ging Techniques,” we used it to examine the debug information in an ELF file compiled 
with symbolic debugging information. Listing 15-1 contains the output of readelf for 
a relatively small web server application compiled for the ARM architecture.

LISTING 15-1 ELF File Debug Information for the Sample Program

$ xscale_be-readelf -S websdemo

There are 39 section headers, starting at offset 0x3dfd0:

Section Headers:

[Nr] Name              Type        Addr     Off    Size   ES Flg Lk Inf Al

[ 0]                   NULL        00000000 000000 000000 00      0  0  0

[ 1] .interp           PROGBITS    00008154 000154 000013 00   A  0  0  1

[ 2] .note.ABI-tag     NOTE        00008168 000168 000020 00   A  0  0  4

[ 3] .note.numapolicy  NOTE        00008188 000188 000074 00   A  0  0  4

[ 4] .hash             HASH        000081fc 0001fc 00022c 04   A  5  0  4

[ 5] .dynsym           DYNSYM      00008428 000428 000460 10   A  6  1  4

[ 6] .dynstr           STRTAB      00008888 000888 000211 00   A  0  0  1

[ 7] .gnu.version      VERSYM      00008a9a 000a9a 00008c 02   A  5  0  2

[ 8] .gnu.version_r    VERNEED     00008b28 000b28 000020 00   A  6  1  4

[ 9] .rel.plt          REL         00008b48 000b48 000218 08   A  5 11  4

[10] .init             PROGBITS    00008d60 000d60 000018 00  AX  0  0  4

[11] .plt              PROGBITS    00008d78 000d78 000338 04  AX  0  0  4

[12] .text             PROGBITS    000090b0 0010b0 019fe4 00  AX  0  0  4

[13] .fini             PROGBITS    00023094 01b094 000018 00  AX  0  0  4

[14] .rodata           PROGBITS    000230b0 01b0b0 0023d0 00   A  0  0  8

[15] .ARM.extab        PROGBITS    00025480 01d480 000000 00   A  0  0  1

[16] .ARM.exidx        ARM_EXIDX   00025480 01d480 000008 00  AL 12  0  4

[17] .eh_frame_hdr     PROGBITS    00025488 01d488 00002c 00   A  0  0  4

[18] .eh_frame         PROGBITS    000254b4 01d4b4 00007c 00   A  0  0  4

[19] .init_array       INIT_ARRAY  0002d530 01d530 000004 00  WA  0  0  4

[20] .fini_array       FINI_ARRAY  0002d534 01d534 000004 00  WA  0  0  4

[21] .jcr              PROGBITS    0002d538 01d538 000004 00  WA  0  0  4

1 Remember to use your cross version of strip, such as ppc_82xx-strip.
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LISTING 15-1 Continued

[22] .dynamic          DYNAMIC     0002d53c 01d53c 0000d0 08  WA  6  0  4

[23] .got              PROGBITS    0002d60c 01d60c 000118 04  WA  0  0  4

[24] .data             PROGBITS    0002d728 01d728 0003c0 00  WA  0  0  8

[25] .bss              NOBITS      0002dae8 01dae8 0001c8 00  WA  0  0  4

[26] .comment          PROGBITS    00000000 01dae8 000940 00      0  0  1

[27] .debug_aranges    PROGBITS    00000000 01e428 0004a0 00      0  0  8

[28] .debug_pubnames   PROGBITS    00000000 01e8c8 001aae 00      0  0  1

[29] .debug_info       PROGBITS    00000000 020376 013d27 00      0  0  1

[30] .debug_abbrev     PROGBITS    00000000 03409d 002ede 00      0  0  1

[31] .debug_line       PROGBITS    00000000 036f7b 0034a2 00      0  0  1

[32] .debug_frame      PROGBITS    00000000 03a420 003380 00      0  0  4

[33] .debug_str        PROGBITS    00000000 03d7a0 000679 00      0  0  1

[34] .note.gnu.arm.ide NOTE        00000000 03de19 00001c 00      0  0  1

[35] .debug_ranges     PROGBITS    00000000 03de35 000018 00      0  0  1

[36] .shstrtab         STRTAB      00000000 03de4d 000183 00      0  0  1

[37] .symtab           SYMTAB      00000000 03e5e8 004bd0 10     38 773 4

[38] .strtab           STRTAB      00000000 0431b8 0021bf 00      0  0  1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

$

You can see from Listing 15-1 that many sections contain debug information. A 
section with the name .comment contains more     than 2KB (0x940) of information that 
is not necessary for the application to function. The size of this sample file, including 
debug information, is more than 275KB, as shown here:

$ ls -l websdemo

-rwxrwxr-x  1 chris chris 283511 Nov 8 18:48 websdemo

If we strip this file using our cross-strip utility, we can minimize its size to preserve 
resources on our target system. Listing       15-2 shows the results.

LISTING 15-2 Strip Target Application

$ xscale_be-strip -s -R .comment -o websdemo-stripped websdemo

$ ls -l websdemo*

-rwxrwxr-x  1 chris chris 283491 Apr  9 09:19 websdemo

-rwxrwxr-x  1 chris chris 123156 Apr  9 09:21 websdemo-stripped

$
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Here we strip both the symbolic debug information and the .comment section from 
the executable file. We specify the name of the stripped binary using the -o command-
line switch. You can see that the stripped binary is less than half its original size. Of 
course, for larger applications, this space savings can be even more significant. A recent 
Linux kernel compiled with debug information was larger than 18MB. After stripping, 
as in Listing 15-2, the resulting binary was slightly larger than 2MB!

For debugging in this fashion, you       place the stripped version of the binary on your 
target system and keep a local unstripped copy on your development workstation con-
taining symbolic information needed for debugging. You use gdbserver on your target 
board to provide an interface back to your development host, where you run the full-
blown version of GDB (your cross-gdb, of course) on your unstripped binary.

15.2.1 gdbserver

Using gdbserver allows you to run GDB from a development workstation rather than 
on the target embedded Linux platform. This configuration has obvious benefits. For 
starters, it is common for your development      workstation to have far more CPU power, 
memory, and hard-drive storage than your embedded platform. In addition, it is com-
mon for the source code for your application under debug to exist on the development 
workstation and not on the embedded platform.

gdbserver is a small program that runs on the target board and allows remote 
debugging of a process on the board. It is invoked on the target board specifying the 
program to be debugged, as well as an IP address and port number on which it will 
listen for connection requests from GDB. Listing 15-3       shows the startup sequence for 
initiating a debug session on your target board.

LISTING 15-3 Starting gdbserver on Your Target Board

$ gdbserver localhost:2001 websdemo-stripped

Process websdemo-stripped created; pid = 197

Listening on port 2001

 This example starts gdbserver configured to listen for an Ethernet TCP/IP 
connection on port 2001, ready to debug our stripped binary program called 
websdemo-stripped.

From our development workstation, we launch GDB, passing it the name of the 
binary executable containing symbolic debug information that we want to debug as an 
argument. After GDB initializes, we issue a command       to connect to the remote target 
board. Listing 15-4 shows this sequence.
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LISTING 15-4 Starting a Remote GDB Session

$ xscale_be-gdb -q websdemo

(gdb) target remote 192.168.1.141:2001

Remote debugging using 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) p main       <<<< Display address of main function

$1 = {int (int, char **)} 0x12b68 <main>

(gdb) b main       <<<< Place breakpoint at main()

Breakpoint 1 at 0x12b80: file main.c, line 72.

(gdb)

Listing 15-4 invokes cross-gdb on your development host. When GDB is running, 
we issue the GDB target remote command. This command causes GDB to initiate a 
TCP/IP connection from your development workstation to your target board, with the 
indicated IP address on port 2001. When gdbserver accepts the connection request, 
it prints a line similar to this:

Remote debugging from host 192.168.0.10

Now GDB is connected to the target board’s gdbserver process, ready       to accept 
commands from GDB. The rest of the session is exactly the same as if you were debug-
ging an application locally. This is a powerful tool. It lets you use the power of your 
development workstation for the debug session, leaving only a small, relatively unob-
trusive GDB stub and your program being debugged on the target board. In case you 
were wondering, gdbserver for this particular ARM target is only 54KB, as shown 
here:

root@coyote:~# ls -l /usr/bin/gdbserver

-rwxr-xr-x  1 root root 54344 Jun 26  2009 /usr/bin/gdbserver

The one caveat is often the subject    of the frequently asked questions (FAQ) on 
mailing lists. You must be using a GDB on your development host that was configured 
as a cross debugger. It is a binary program that runs on your development workstation 
(usually x86) and that understands binary executable images compiled for another 
architecture. This is an important and frequently overlooked fact. You cannot debug a 
Power Architecture target with a native GDB such as that found in a typical Ubuntu 
desktop Linux installation. You must have a GDB configured for your host and target 
combination.
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When GDB is invoked, it displays a banner consisting of several lines of informa-
tion, and then it displays its compiled configuration. Listing 15-5 is an example of 
the GDB used for some examples in this book. It is part of an embedded Linux dis-
tribution provided by MontaVista Software configured for Power Architecture       cross- 
development.

LISTING 15-5 Invocation of cross-gdb

$ ppc_82xx-gdb

GNU gdb 6.0 (MontaVista 6.0-8.0.4.0300532 2003-12-24)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are welcome to change it and/or distribute copies of it under

certain conditions.  Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type “show warranty” for

details.

This GDB was configured as “--host=i686-pc-linux-gnu

--target=powerpc-hardhat-linux”.

(gdb)

 

 

Notice the last lines of this GDB startup message. This is the configuration com-
piled into this version of GDB. It was compiled to execute on an x86 (i686) PC host 
running GNU/Linux and to debug binary programs compiled for a Power Architec-
ture processor running GNU/Linux. This is specified by the --host and --target
variables displayed by the banner text. It is also a part of the      configuration string passed 
to ./configure when building GDB.

15.3 Debugging with Shared Libraries

Now that you understand how to invoke a remote debug session using GDB on the 
host and gdbserver on the target, we turn    our attention to the complexities of shared 
libraries and debug symbols. Unless your application is a statically linked executable 
(linked with the -static linker command-line switch), many symbols in your applica-
tion will reference code outside your application. Obvious examples include the use of 
standard C library routines such as fopen, printf, malloc, and memcpy. Less obvious 
examples might include calls to application-specific functions such as jack_transport_
locate() (a routine from the JACK low-latency audio server), which calls a library 
function outside the standard C libraries.
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To have symbols from these    routines available, you must satisfy two requirements 
for GDB:

• You must have debug versions of the libraries available.

• GDB must know where to find them.

If you don’t have debug versions of the libraries available, you can still debug your 
application; you just won’t have any debug information available for library routines 
called by your application. Often this is perfectly acceptable—unless, of course, you 
are developing a shared library object as part of your embedded project.

Look back at Listing 15-4, where we invoked GDB on a remote target. After GDB 
connected using the target remote command, GDB issued a two-line response:

Remote debugging using 192.168.1.141:2001

0x40000790 in ?? ()

This confirms that GDB connected to our target at the indicated IP address and 
port. GDB then reports the location of the program counter as 0x40000790. Why do 
we get question marks instead of a symbolic location? Because this is the Linux dy-
namic loader (ld-x.y.z.so), and this particular platform does not have debug symbols 
available for this shared library. How do we know this?

Recall the discussion of the /proc file system in Chapter 9, “File Systems.” One 
of the more useful entries was the maps entry (see Listing 9-16 in Chapter 9) in the 
per-process directory structure. We know the process ID (PID) of our target applica-
tion from the gdbserver output shown in Listing 15-3. Our process was assigned PID 
197. Given that, we can see the memory segments     in use right after process startup, as 
shown in Listing 15-6.

LISTING 15-6 Initial Target Memory Segment Mapping

root@coyote:~# cat /proc/197/maps

00008000-00026000 r-xp 00000000 00:0e 4852444    ./websdemo-stripped

0002d000-0002e000 rw-p 0001d000 00:0e 4852444    ./websdemo-stripped

40000000-40017000 r-xp 00000000 00:0a 4982583    /lib/ld-2.3.3.so

4001e000-40020000 rw-p 00016000 00:0a 4982583    /lib/ld-2.3.3.so

bedf9000-bee0e000 rwxp bedf9000 00:00 0          [stack]

root@coyote:~#

Here we see the target websdemo-stripped application occupying two memory seg-
ments. The first is the read-only executable segment at 0x8000, and the second is a 
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read-write data segment at 0x2d000. The third memory segment is the one of interest. 
It is the Linux dynamic linker’s executable code segment. Notice that it starts at address 
0x40000000. If we investigate further, we can confirm that GDB is actually sitting at 
the first line of code for the dynamic linker, before any code from our own application 
has been executed. Using our cross version of readelf, we can     confirm the linker’s 
starting address as follows:

# xscale_be-readelf -S ld-2.3.3.so | grep \.text

[ 9] .text    PROGBITS    00000790 000790 012c6c 00  AX  0   0 16

From this data, we conclude that the address that GDB reports on startup is the 
first instruction from ld-2.3.3.so, the Linux dynamic linker/loader. You can use this 
technique to get a rough idea of where your code is if you don’t have symbolic debug 
information for a process or shared library.

Remember that we are executing this cross readelf command on our development 
host. Therefore, the ld-2.3.3.so file, itself an XScale binary object, must be accessible 
to your development host. Most typically, this file resides on your development host 
and is a component of your embedded Linux distribution installed on your host.

15.3.1 Shared Library Events in GDB

GDB can alert you to shared library events. This      can be useful for understanding your 
application’s behavior or the behavior of the Linux loader, or for setting breakpoints 
in shared library routines you want to debug or step through. Listing 15-7 illustrates 
this technique. Normally, the complete path to the library is displayed. This listing  has 
been edited for better readability.

LISTING 15-7 Stopping GDB on Shared Library Events

$ xscale_be-gdb -q websdemo

(gdb) target remote 192.168.1.141:2001

Remote debugging using 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) i shared       <<< Display loaded shared libs

No shared libraries loaded at this time.

(gdb) b main         <<< Break at main

Breakpoint 1 at 0x12b80: file main.c, line 72.

(gdb) c

Continuing.
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LISTING 15-7 Continued

Breakpoint 1, main (argc=0x1, argv=0xbec7fdc4) at main.c:72

72              int localvar = 9;

(gdb) i shared

From        To          Syms Read   Shared Object Library

0x40033300  0x4010260c  Yes         /opt/mvl/.../lib/tls/libc.so.6

0x40000790  0x400133fc  Yes         /opt/mvl/.../lib/ld-linux.so.3

(gdb) set stop-on-solib-events 1

(gdb) c

Continuing.

Stopped due to shared library event

(gdb) i shared

From        To          Syms Read   Shared Object Library

0x40033300  0x4010260c  Yes         /opt/mvl/.../lib/tls/libc.so.6

0x40000790  0x400133fc  Yes         /opt/mvl/.../lib/ld-linux.so.3

0x4012bad8  0x40132104  Yes         /opt/mvl/.../libnss_files.so.2

(gdb)

When the debug session is first started, no shared libraries are loaded. You can see 
this with the first i shared command. This command displays the shared libraries that 
are currently loaded. Setting a breakpoint at our application’s main() function, we see 
that two shared libraries are now loaded. These            are the Linux dynamic linker/loader 
and the standard C library component libc.

From here, we issue the set stop-on-solib-event command   and continue pro-
gram execution. When the application tries to execute a function from another shared 
library, that library is loaded. In case you are wondering, the gethostbyname() func-
tion   is encountered and causes the next shared object to load.

This example illustrates an important cross-development concept. The binary ap-
plication (ELF image) running on the target contains information on the libraries it 
needs to resolve its external references. We can view this information easily using the 
ldd command, introduced in Chapter 11, “BusyBox,” and detailed in Chapter 13. 
Listing 15-8 shows the output of ldd invoked        from the target board.

LISTING 15-8 ldd Executed on the Target Board

root@coyote:/workspace# ldd websdemo

        libc.so.6 => /lib/tls/libc.so.6 (0x40020000)

        /lib/ld-linux.so.3 (0x40000000)

root@coyote:/workspace#
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Notice that the paths to the shared libraries on the target are absolute paths starting 
at /lib on the root file system. But GDB running on your host development worksta-
tion cannot use these paths to find the libraries. You should realize that doing so would 
result in your host GDB loading libraries from the wrong architecture. Your host is 
likely x86, whereas in this example, the target is ARM XScale.

If you invoke your        cross version of ldd, you will see the paths that were precon-
figured into your toolchain. Your toolchain must know where these files exist on your 
host development system.2 Listing 15-9 illustrates this. Again, we have edited the list-
ing for readability; long paths have been abbreviated.

LISTING 15-9 ldd Executed on the Development Host

$ xscale_be-ldd websdemo

   libc.so.6 => /opt/mvl/.../xscale_be/target/lib/libc.so.6 (0xdead1000)

   ld-linux.so.3 => /opt/mvl/.../xscale_be/target/lib/ld-linux.so.3 (0xdead2000)

$

     

Your cross toolchain should be preconfigured with these library locations. Not only 
does your host GDB need to know where they are located, but, of course, your com-
piler and linker also need to know.3 GDB can tell you where it is configured to look for 
these libraries using the show solib-absolute-prefix command:

(gdb) show solib-absolute-prefix

Prefix for loading absolute shared library symbol files is

“/opt/mvl/pro/devkit/arm/xscale_be/target”.

(gdb)

You can set or change where GDB searches for shared libraries using the GDB com-
mands set solib-absolute-prefix and set solib-search-path. If you are develop-
ing your own shared library modules or have custom library locations on your system, 
you can use solib-search-path to instruct GDB where to look for your libraries. For 
more details about these and other GDB commands, consult     the online GDB manual 
referenced at the end of this chapter.

One final note about ldd. You might have noticed the addresses from Listing 15-8 
and Listing 15-9 associated with the libraries. ldd displays the load address for the start 

2 It is certainly possible to pass these locations to your compiler, linker, and debugger for every invocation, but any good em-
bedded Linux distribution will configure these defaults into the toolchain as a convenience to the developer.

3 Of course, your compiler also needs to know the location of target files such as architecture-specific system and library header 
files.
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of these code segments as they would be if the program were loaded by the Linux dy-
namic linker/loader. Executed on the target, the addresses shown in Listing 15-5 make 
perfect sense, and we can correlate these with the /proc/<pid>/maps listing of the run-
ning process on the target. Listing 15-10 displays the memory segments for this target 
process after it is completely loaded and running.

LISTING 15-10 Memory Segments from /proc/<pid>/maps on Target

root@coyote:~# cat /proc/197/maps

00008000-00026000 r-xp 00000000 00:0e 4852444    /workspace/websdemo-stripped

0002d000-0002e000 rw-p 0001d000 00:0e 4852444    /workspace/websdemo-stripped

0002e000-0005e000 rwxp 0002e000 00:00 0          [heap]

40000000-40017000 r-xp 00000000 00:0a 4982583    /lib/ld-2.3.3.so

40017000-40019000 rw-p 40017000 00:00 0

4001e000-4001f000 r--p 00016000 00:0a 4982583    /lib/ld-2.3.3.so

4001f000-40020000 rw-p 00017000 00:0a 4982583    /lib/ld-2.3.3.so

40020000-4011d000 r-xp 00000000 00:0a 4982651    /lib/tls/libc-2.3.3.so

4011d000-40120000 ---p 000fd000 00:0a 4982651    /lib/tls/libc-2.3.3.so

40120000-40124000 rw-p 000f8000 00:0a 4982651    /lib/tls/libc-2.3.3.so

40124000-40126000 r--p 000fc000 00:0a 4982651    /lib/tls/libc-2.3.3.so

40126000-40128000 rw-p 000fe000 00:0a 4982651    /lib/tls/libc-2.3.3.so

40128000-4012a000 rw-p 40128000 00:00 0

4012a000-40133000 r-xp 00000000 00:0a 4982652    /lib/tls/libnss_files-2.3.3.so

40133000-4013a000 ---p 00009000 00:0a 4982652    /lib/tls/libnss_files-2.3.3.so

4013a000-4013b000 r--p 00008000 00:0a 4982652    /lib/tls/libnss_files-2.3.3.so

4013b000-4013c000 rw-p 00009000 00:0a 4982652    /lib/tls/libnss_files-2.3.3.so

becaa000-becbf000 rwxp becaa000 00:00 0          [stack]

root@coyote:~#

Notice the correlation of the target ldd output from Listing 15-8 to the memory 
segments displayed in the /proc file system for this process. The start of the Linux 
loader (the beginning of the .text segment) is 0x40000000, and the start of libc is 
at 0x40020000. These are the virtual addresses where these portions of the application 
have been loaded; they are reported by the target invocation of ldd. However, the 
load addresses reported by the cross version of ldd in Listing 15-9 (0xdead1000 and 
0xdead2000) are there to remind you that these libraries cannot be loaded on your host 
system (they are ARM architecture binaries). These load addresses   are simply place-
holders.
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15.4 Debugging Multiple Tasks

Generally the developer is presented with two different debugging scenarios when 
dealing with multiple threads of execution. Processes can exist in their own address 
space or can share an address space (and other system resources) with other threads 
of execution. The first scenario (independent processes not sharing common address 
space) must be debugged using separate independent debug sessions. Nothing prevents 
you from using gdbserver on multiple processes on your target system and using a 
separate invocation of GDB on your development host to coordinate a debug session 
for multiple cooperating but independent processes.

15.4.1 Debugging Multiple Processes

When a process being     debugged under GDB uses the fork() system call4 to spawn a new 
process, GDB can take one of two courses of action. It can continue to control and debug 
the parent process, or it can stop debugging the parent process and attach to the newly 
formed child process. You can control this behavior using the set follow-fork-mode
command. The two modes are follow parent and follow child. The default behavior is 
for GDB to follow the parent. In this case, the child process executes immediately upon 
a successful fork.

Listing 15-11 reproduces   a snippet of a simple program that forks multiple pro-
cesses from its main() routine.

LISTING 15-11 Using fork() to Spawn a Child Process

...
  for( i=0; i<MAX_PROCESSES; i++ ) {

    /* Creating child process */

    pid[i] = fork();            /* Parent gets non-zero PID */

    if ( pid[i] == -1 ) {

      perror(“fork failed”);

      exit(1);

    }

    if ( pid[i] == 0 ) {      /* Indicates child’s code path */

      worker_process();       /* The forked process calls this */

    }

4 We will use the term system call, but fork() in this context is actually the C library function, which in turn calls the 
Linux sys_fork() system call.
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LISTING 15-11 Continued

  }

  /* Parent’s main control loop */

  while ( 1 ) {

...

  }

This simple loop creates MAX_PROCESSES new processes using the fork() system 
call. Each newly spawned process executes a body of code defined by the function 
worker_process(). When this code is run under GDB in default mode, GDB detects 
the creation of the new threads   of execution (processes) but remains attached to the 
parent’s thread of execution. Listing 15-12 illustrates        this GDB session.

LISTING 15-12 GDB in follow-fork-mode = parent

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) b main

Breakpoint 1 at 0x8888: file forker.c, line 104.

(gdb) c

Continuing.

[New Thread 356]

[Switching to Thread 356]

Breakpoint 1, main (argc=0x1, argv=0xbe807dd4) at forker.c:104

104       time(&start_time);

(gdb) b worker_process

Breakpoint 2 at 0x8784: file forker.c, line 45.

(gdb) c

Continuing.

Detaching after fork from child process 357.

Detaching after fork from child process 358.

Detaching after fork from child process 359.

Detaching after fork from child process 360.

Detaching after fork from child process 361.

Detaching after fork from child process 362.

Detaching after fork from child process 363.

Detaching after fork from child process 364.

Notice that eight child processes were spawned, with PID values from 357 to 364. 
The parent process was instantiated with PID 356. When the breakpoint in main()
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was hit, we entered a breakpoint at        the worker_process() routine, which each child 
process executes upon fork(). Letting the program continue from main, we see each 
of the new processes spawned and detached by the debugger. They never hit the break-
point because GDB is attached to the main process, which never executes the worker_
process() routine.

If you need to debug each process, you must execute a separate independent GDB 
session and attach to the child process after it is forked(). The GDB documenta-
tion referenced at the end of this chapter outlines a useful technique to place a call to 
sleep() in the child process, giving you time to attach a debugger to the new process. 
Attaching to a new process is explained in Section 15.5.2, “Attaching to a Running 
Process.”

If you simply need to follow the child process, set follow-fork-mode to follow 
child before your parent reaches the fork() system        call, as shown in Listing 15-13.

LISTING 15-13 GDB in follow-fork-mode = child

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) set follow-fork-mode child

(gdb) b worker_process

Breakpoint 1 at 0x8784: file forker.c, line 45.

(gdb) c

Continuing.

[New Thread 401]

Attaching after fork to child process 402.

[New Thread 402]

[Switching to Thread 402]

Breakpoint 1, worker_process () at forker.c:45

45        int my_pid = getpid();

(gdb) c

Continuing.

 

 

Here we see the parent process being instantiated as PID 401. When the first child is 
spawned by the fork() system call, GDB detaches silently from the parent thread of ex-
ecution and attaches to the newly spawned child process having PID 402. GDB is now 
in control of the first child process and        honors the breakpoint set at worker_process().
Notice, however, that the other child processes spawned by the code snippet from List-
ing 15-11 are not debugged and continue to run to their own completion.
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In summary, using GDB in this fashion, you are limited to debugging a single pro-
cess at a time. You can debug through the fork() system call, but you have to decide 
which thread of execution to follow through the fork() call—the parent or the child. 
As mentioned in the introduction to this section, you can use multiple independent 
GDB sessions if you must debug more than one cooperating     process at a time.

15.4.2 Debugging Multithreaded Applications

If your application uses the POSIX thread library for its threading functions, GDB has 
additional capabilities to handle concurrent debugging of a multithreaded application. 
The Native POSIX Thread Library (NPTL) has become the de facto standard thread 
library in use on Linux systems, including embedded Linux systems. The rest of this 
discussion assumes that you are using this thread library.

For this section, we use a demonstration program that spawns a number of threads 
using the pthread_create() library function   in a simple loop. After the threads are 
spawned, the main() routine simply waits for keyboard input to terminate the applica-
tion. Each thread displays a short message on the screen and sleeps for a predetermined 
time. Listing 15-14 shows      the startup sequence on the target board.

LISTING 15-14 Target Threads Demo Startup

root@coyote:/apps # gdbserver localhost:2001 ./tdemo

Process ./tdemo created; pid = 671

Listening on port 2001

Remote debugging from host 192.168.1.10

    ^^^^^  Previous three lines displayed by gdbserver

tdemo main() entered: My pid is 671

Starting worker thread 0

Starting worker thread 1

Starting worker thread 2

Starting worker thread 3

    

As in our previous examples, gdbserver prepares the application for running and 
waits for a connection from our host-based cross-gdb. When GDB connects, gdbserver
reports the connection with the Remote debugging... message. Now we start GDB on 
the host and connect. Listing 15-15 reproduces  this half of the session.
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LISTING 15-15 Host GDB Connecting to Target Threads Demo

$ xscale_be-gdb -q tdemo

(gdb) target remote 192.168.1.141:2001

0x40000790 in ?? ()

(gdb) b tdemo.c:97

Breakpoint 1 at 0x88ec: file tdemo.c, line 97.

(gdb) c

Continuing.

[New Thread 1059]

[New Thread 1060]

[New Thread 1061]

[New Thread 1062]

[New Thread 1063]

[Switching to Thread 1059]

Breakpoint 1, main (argc=0x1, argv=0xbefffdd4) at tdemo.c:98

98              int c = getchar();

(gdb)

Here we connect to the target (resulting in the Remote debugging...message shown 
in Listing 15-14), set a breakpoint just past the loop where we spawned the new 
threads, and continue. When the new thread is created, GDB displays a notice along 
with the thread ID. Thread 1059 is the tdemo application, doing its work directly from 
the main() function. Threads 1060 through 1063     are the new threads created from the 
call to pthread_create().

When GDB hits the breakpoint, it displays the message [Switching to Thread 
1059], indicating that this was the thread of execution that encountered the break-
point. It is the active thread for the debugging session, referred to as the current thread 
in the GDB documentation.

GDB enables us to switch between threads and perform the usual debugging opera-
tions such as setting additional breakpoints, examining data, displaying a backtrace, 
and working with the individual stack frames within the current thread. Listing 15-16 
provides examples of these operations, continuing   with our debugging session started 
in Listing 15-15.
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LISTING 15-16 GDB Operations on Threads

...
(gdb) c

Continuing.

                 <<< Ctl-C to interrupt program execution

Program received signal SIGINT, Interrupt.

0x400db9c0 in read () from /opt/mvl/.../lib/tls/libc.so.6

(gdb) i threads

  5 Thread 1063  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

  4 Thread 1062  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

  3 Thread 1061  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

  2 Thread 1060  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

* 1 Thread 1059  0x400db9c0 in read ()

   from /opt/mvl/.../lib/tls/libc.so.6

(gdb) thread 4               <<< Make Thread 4 the current thread

[Switching to thread 4 (Thread 1062)]

#0  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

(gdb) bt

#0  0x400bc714 in nanosleep ()

   from /opt/mvl/.../lib/tls/libc.so.6

#1  0x400bc4a4 in __sleep (seconds=0x0) at sleep.c:137

#2  0x00008678 in go_to_sleep (duration=0x5) at tdemo.c:18

#3  0x00008710 in worker_2_job (random=0x5) at tdemo.c:36

#4  0x00008814 in worker_thread (threadargs=0x2) at tdemo.c:67

#5  0x40025244 in start_thread (arg=0xfffffdfc) at pthread_create.c:261

#6  0x400e8fa0 in clone () at../sysdeps/unix/sysv/linux/arm/clone.S:82

#7  0x400e8fa0 in clone () at../sysdeps/unix/sysv/linux/arm/clone.S:82

(gdb) frame 3

#3  0x00008710 in worker_2_job (random=0x5) at tdemo.c:36

36          go_to_sleep(random);

(gdb) l                    <<< Generate listing of where we are

31      }

32

33      static void worker_2_job(int random)

34      {

35          printf(“t2 sleeping for %d\n”, random);

36          go_to_sleep(random);

37      }
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LISTING 15-16 Contiued

38

39      static void worker_3_job(int random)

40      {

(gdb)

A few points are worth mentioning. GDB assigns its own integer value to each 
thread and uses these values to reference the individual threads. When a breakpoint is 
hit in a thread, all threads within the process are halted for examination. GDB marks 
the current thread with an asterisk (*). You can set unique breakpoints within each 
thread—assuming, of course, that they exist in a unique context. If you set a break-
point in a common portion of code where all threads execute, the thread   that hits the 
breakpoint first is arbitrary.

The GDB user documentation referenced at the end of this chapter contains more 
useful information related to debugging in a multithreaded environment.

15.4.3 Debugging Bootloader/Flash Code

Debugging Flash resident   code presents its own unique challenges. The most obvi-
ous limitation is the way in which GDB and gdbserver cooperate in setting target 
breakpoints. When we discussed the GDB remote serial protocol in Chapter 14, you 
learned how breakpoints are inserted into an application.5 GDB replaces the opcode 
at the breakpoint location with an architecture-specific opcode that passes control to 
the debugger. However, in ROM or Flash, GDB cannot overwrite the opcode, so this 
method of setting breakpoints is useless.

Most modern processors contain some number of debug registers that can be used 
to get around this limitation. These capabilities must be supported by architecture- 
and processor-specific hardware probes or stubs. The most common technique for de-
bugging Flash and ROM resident code is to use JTAG hardware probes. These probes 
support the setting of processor-specific hardware breakpoints. This topic was covered 
in detail in Chapter 14. Refer to Section 14.4.2, “Debugging with a JTAG Probe,” for 
details.

5 Refer to Listing 14-7.
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15.5 Additional Remote Debug Options

Sometimes you might want to use a serial port for remote debugging. For other tasks, 
you might find it useful to attach the debugger to a process that is already running. 
These simple but useful operations are detailed here.

15.5.1 Debugging Using a Serial Port

Debugging using a serial port   is quite straightforward. Of course, you must have a se-
rial port available on your target that is not being used by another process, such as a 
serial console. The same limitation applies to your host. A serial port must be available. 
If both of these conditions can be met, simply replace the IP address:port number speci-
fication passed to gdbserver with a serial port specification. Use the same technique 
when connecting to your target from your host-based GDB.

On your target:

root@coyote:/apps # gdbserver /dev/ttyS0 ./tdemo

Process ./tdemo created; pid = 698

Remote debugging using /dev/ttyS0

From your host:

$ xscale_be-gdb -q tdemo

(gdb) target remote /dev/ttyS1

Remote debugging using /dev/ttyS1

0x40000790 in ?? ()

15.5.2 Attaching to a Running Process

It is often advantageous   to connect to a process to examine its state while it is running 
instead of killing the process and starting it again. With gdbserver, this task is trivial:

root@coyote:/apps # ps ax | grep tdemo

 1030 pts/0    Sl+    0:00 ./tdemo

root@coyote:/apps # gdbserver localhost:2001 --attach 1030

Attached; pid = 1030

Listening on port 2001
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When you are finished examining the process under debug, you can issue the GDB 
detach command. This detaches    the gdbserver from the application on the target and 
terminates the debug session. The application continues where it left off. This is a very 
useful technique for examining a running program. Be aware, though, that when you 
attach to the process, it halts, waiting for instructions from you. It does not resume 
execution until instructed to do so, using either the continue or detach command. 
Also note that you can use the detach command at almost any time to end the debug 
session and leave the application   running on the target.

15.6 Summary

• Remote (cross) debugging enables symbolic debugging using host develop-
ment workstation resources for the heavy lifting, preserving often-scarce target 
resources.

 • gdbserver runs on the target system and acts as the glue between the cross-gdb 
running on a development host and the process being debugged on the target.

• GDB on the host typically uses IP connections via Ethernet to send commands 
to and receive commands from gdbserver running on the target. The GDB 
remote protocol is used between GDB and gdbserver.

• GDB can halt on shared library events and can automatically load shared 
library symbols when available. Your toolchain should be configured for the 
default paths on your cross-development system. Alternatively, you can use 
GDB commands to set the search paths for shared library objects.

• GDB can be used to debug multiple independent processes using multiple 
concurrent GDB sessions.

• GDB can be configured to follow a forked process on a fork() system call. Its 
default mode is to continue debugging the parent—the caller of fork().

• GDB has features to facilitate debugging multithreaded applications written 
to POSIX thread APIs. The current default Linux thread library is the Native 
POSIX Thread Library (NPTL).

• GDB supports attaching to and detaching from a running process.
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15.6.1 Suggestions for Additional Reading

GDB: The GNU Project Debugger    
Online documentation
http://sourceware.org/gdb/onlinedocs/

GDB Pocket Reference
Arnold Robbins
O’Reilly Media, 2005
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Software build systems have been around for a long time. Historically, they 
have taken many forms, from simple script-driven or make-based systems 

to complex and often proprietary software programs designed to build a particu-
lar project. Several open source build systems have come and gone, while a few 
have survived the test of time.

This chapter presents some of the more popular build systems and takes a de-
tailed look at one build system that has emerged as a leading contender for 
building embedded Linux systems: OpenEmbedded.

16.1 Why Use a Build System?

There are many sources  of complete, embedded Linux distributions. Embedded 
Linux distributions can be found online, obtained through free download, or pur-
chased from commercial embedded Linux suppliers. Often these embedded Linux 
distributions are fixed in their functionality and difficult to change. They often 
come with binary-only solutions, such as important toolchains and critical pack-
ages, without instructions for actually generating these elements from source.

A capable embedded Linux build system helps you create an embedded Linux 
distribution tailored to your unique requirements. This must include a cross-
toolchain and all the packages required for your project. Your build system should 
be able to generate root file systems in your choice of binary formats, your embed-
ded Linux kernel image with your configuration, a bootloader image, and any other 
necessary files and utilities so that these can be properly deployed.

It is absolutely nontrivial to build an embedded Linux distribution—or, for that 
matter, any Linux distribution—from scratch. Just imagine trying to assemble all 
the components that make up your desktop Linux distribution. Don’t forget to in-
clude the toolchain, because for embedded applications, contrary to popular belief, 
obtaining commercial-quality toolchains for non-x86 architectures is quite difficult 
without dedicated knowledge of and experience in cross-toolchain development and 
testing for your chosen architecture.

  



16.2 Scratchbox 447

Compiling the list of components you need can be your first challenge. Where 
will your toolchain come from? What about required system libraries and bootload-
ers? Where will you get these? What packages will you need to support the various 
hardware devices and software applications you are planning for your product? What 
are the dependencies for each of the packages you plan to use? Which file systems will 
you use, and how do you build them? How will you track package versions and their 
dependencies? How can you determine which versions of packages and tools are com-
patible with one another? How will you manage updates and upgrades to your embed-
ded Linux distribution and resulting embedded product? How are patches integrated 
after the fact?

These and other questions face the embedded systems developer as the project plans 
take shape. A well-designed and easily supported embedded Linux build system is a 
perfect tool to help answer these questions and lead  to a rapid project deployment that 
is readily maintainable.

The next few sections introduce several of the more popular build systems. We will 
spend considerable time describing one of the most promising and popular embedded 
Linux build systems—OpenEmbedded.

16.2 Scratchbox

Scratchbox is a cross-compilation   toolkit that became popular during its use in the 
Maemo project targeting the Nokia N770 handheld computer. The Maemo project 
has since been merged with Moblin to become MeeGo (www.meego.com).

According to the Scratchbox website, ARM and X86 targets are supported, with 
experimental support for PowerPC and MIPS. The latest installation manual claims 
support for PowerPC targets.

16.2.1 Installing Scratchbox

Installation is straightforward   following the instructions on the Scratchbox website. 
For Debian-based systems such as Ubuntu, add this line to the /etc/apt/sources.
list file:

deb http://scratchbox.org/debian stable main

  

www.meego.com
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Then perform an update, install the required packages, and add your username1 to 
Scratchbox. This sequence  is shown in Listing 16-1.

LISTING 16-1 Scratchbox Installation

$ sudo apt-get update

$ sudo apt-get install scratchbox-core

$ sudo sb-adduser <your username>

Note that this sequence of instructions requires root access. This is not a huge prob-
lem so long as you have root access to your build machine. Many developers at larger 
enterprises do not, according to IT policy. You should consider whether this is an issue 
for your application.

Also note that after you use sb-adduser to add your username to the Scratchbox 
infrastructure, you must log out and then log in again with a new shell to pick up the 
changes in group membership. This is described   fully in the Scratchbox documenta-
tion.

16.2.2 Creating a Cross-Compilation Target

After you have installed   Scratchbox, you must follow several steps before a build can 
begin. First, you must install a toolchain and qemu (a popular processor emulator) for 
target emulation. Then you must log into Scratchbox and perform an initial setup us-
ing a Scratchbox menu-driven utility. Scratchbox toolchain installation is not difficult 
if you are using a Debian-based distribution such as Ubuntu. Several toolchains are 
available from Scratchbox. Check its website, under the Download tab, for current 
versions. For this example, we chose an ARM compiler:

$ sudo apt-get install scratchbox-toolchain-arm-linux-cs2010q1-202

$ sudo apt-get install scratchbox-devkit-qemu

Next, log in as a Scratchbox user and create a target for cross-compilation. Use the 
Scratchbox login program to log in:

$ /scratchbox/login

After you are logged in as a Scratchbox user, invoke the configuration utility. You 
do this using a menu-based utility called    sb-menu. Invoke the configuration menu as 
follows:

$ [sbox-NO-TARGET: ~] > sb-menu
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Figure 16-1 shows the main configuration   screen that results from this command.

 FIGURE 16-1 Scratchbox menuconfig

Using the installation documentation found on the Scratchbox website (installdoc.
pdf) as your    guide (www.scratchbox.org/documentation/docbook/installdoc.html), set 
up your Scratchbox environment by following these steps:

1. Create a new target under Setup called mytarget.

2. Select a cross-compiler when prompted after target selection.

3. Select devkits, and then select qemu.

4. Select CPU transparency, and    then select qemu-arm-sb.

With these steps completed, exit   the sb-menu utility. Now you are ready to explore 
the Scratchbox environment.

For our brief demo, we will use a simple Hello World program. Using your favorite 
editor from within the Scratchbox shell, create   a simple Hello World program similar 
to Listing 16-2.

LISTING 16-2 Simple Hello World Example

#include <stdio.h>

int main(int argc, char **argv)

{

    printf(“Hello world\n”);

        return 0;
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Now compile the program within the Scratchbox environment:

[sbox-mytarget: ~] > gcc -o hello-arm hello.c

This uses the Scratchbox ARM toolchain you just installed to compile the hello.c
file. This command invokes the ARM toolchain through a Scratchbox wrapper. You 
can see the toolchain wrappers in /scratchbox/compilers/bin. The wrapper deter-
mines which compiler to call based on the target specifications you just created. Then 
you can verify that the resulting file is an ARM binary, and you can run it in the 
Scratchbox shell using the qemu emulation technology provided   by the Scratchbox 
environment:

[sbox-mytarget: ~] > file hello-arm

hello-arm: ELF 32-bit LSB executable, ARM, version 1 (SYSV), for GNU/Linux 2.6.16, 
dynamically linked (uses shared libs), not stripped

[sbox-mytarget: ~] > ./hello-arm

Hello

While this is a trivial example, it illustrates the Scratchbox environment and meth-
odology. The Scratchbox model is to provide the developer with a development envi-
ronment that looks like the target. The advantage of this approach is that many open 
source packages that are difficult to cross-compile are made easier by the use of target 
emulation.

Of course, the actual use cases for Scratchbox are much more complex than this 
example, but the architecture and approach are apparent. In actual practice, you would 
have numerous packages and other software programs that are compiled under the 
Scratchbox environment, perhaps by a series of makefiles or a custom build script that 
you generate particular to your requirements.

Scratchbox includes a remote shell feature   that allows the developer to perform 
certain actions (both interactive and noninteractive) directly on real target hardware. 
It works similar to the familiar remote shell (rsh). It is called sbrsh and is available 
as part of the Scratchbox installation. More details about sbrsh can be found in the 
Scratchbox documentation.

Scratchbox has good documentation. If you want to learn more about Scratchbox, 
install it on your system and follow the documentation found on its website 
(www.scratchbox.org).
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16.3 Buildroot

Buildroot is a set of makefiles and patches   in a system designed to build a complete 
embedded Linux distribution. According to the Buildroot website, its major features 
include the following:

• It can build all the required components for your embedded Linux product, 
including cross-compiler, root file system, kernel image, and bootloader.

• It allows for simple configuration using the familiar Linux kernel menuconfig 
and related utilities.

• It supports several hundred packages for user space applications and libraries, 
including GTK2, Qt, GStreamer, and many network utilities.

• It supports uClibc or glibc, among other target libraries.

• It has a simple structure based on the makefile language that is well under-
stood.

16.3.1 Buildroot Installation

The first thing you need to    do is locate and download a Buildroot snapshot. The easi-
est way to do this is using git. Of course, using git without specifying a tag means that 
you are getting the latest top of tree, which, in any open source project, has its risks 
of instability. For the less bold, stable snapshots are available for download. They are 
listed on the downloads page at the Buildroot website at http://buildroot.uclibc.org/
downloads/buildroot.html. For these examples, we will use git:

$ git clone git://git.buildroot.net/buildroot

16.3.2 Buildroot Configuration

After the snapshot (or git repository) is   installed, you can begin the configuration. 
Enter the directory where you installed Buildroot, and issue the familiar configuration 
command:

$ make menuconfig
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This brings up a configuration utility that by now should be very familiar. You saw 
a similar configuration menu with Linux kernel configuration, as well as with Scratch-
box. Figure 16-2 shows what this looks like.

FIGURE 16-2 Buildroot configuration

Buildroot’s configuration is extensive. You have many options to choose from to 
configure the properties of your embedded Linux distribution that Buildroot creates. 
Here are some of the more important attributes you must select:

 • Target architecture

• Architecture variant, such as PowerPC 603e or ARM 920t

• Target options, such as board devices and serial ports

• Build options, which define build-related options such as the location of build 
and download directories, parallelism (the number of simultaneous jobs), and 
other build attributes

• Toolchain options, including library type (uClibc or glibc) and compiler ver-
sion.

• Package selection, such    as what software packages will be on your target

16.3.3 Buildroot Build

After you have performed a simple configuration, you kick off the build simply by 
typing make. If your   configuration is good and you are lucky,2 you will end up with a 
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complete embedded Linux distribution. The build is likely to take some time, because 
it is downloading and building many software components and performing a number 
of steps to achieve that goal. A lot of output will stream up your serial terminal while 
the build is under way. Buildroot is performing the following general steps:

• Download source files for all the configured packages and toolchains

• Build the cross-compilation toolchain

• Using the cross-toolchain, configuring and compiling all the requested pack-
ages

• Building a kernel image if configured to do so

• Creating a root file system in the format of your choosing

When the build has finished, the results   can be seen in the .../output directory. 
This is shown in Listing 16-3.

LISTING 16-3 Buildroot Output Directory Structure

chris@speedy:~/sandbox/buildroot$ ls -l output

total 28

drwxr-xr-x  7 chris chris 4096 2010-07-31 16:45 build

drwxr-xr-x  3 chris chris 4096 2010-07-31 16:45 host

drwxr-xr-x  2 chris chris 4096 2010-07-31 16:45 images

drwxr-xr-x  5 chris chris 4096 2010-07-31 16:34 staging

drwxr-xr-x  2 chris chris 4096 2010-07-31 16:44 stamps

drwxr-xr-x 16 chris chris 4096 2010-07-31 16:45 target

drwxr-xr-x 18 chris chris 4096 2010-07-31 16:41 toolchain

The proper root file system is found in .../output/images. Because we specified 
the ext2 file system when we configured the build, we find a rootfs.ext2 image in the 
images subdirectory:

chris@speedy:~/sandbox/buildroot$ ls -l ./output/images/

total 3728

-rw-r--r-- 1 chris chris 3817472 2010-07-31 16:45 rootfs.ext2

-rwxr-xr-x 1 chris chris   65656 2010-07-31 17:31 u-boot.bin

Buildroot is quite flexible and has many configuration options. Buildroot can build 
U-Boot for a specific board, simply by specifying the board name from the U-Boot 
makefile (without the _config suffix) during Buildroot configuration. For this exam-
ple, ap920t was specified, and a U-Boot image (u-boot.bin) was also generated. The 
Buildroot documentation has more details on this.
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The other directories in Buildroot’s output subdirectories, as shown in Listing 
16-3, include directories to hold intermediate build targets. The staging subdirectory 
is used to hold the build targets of packages that are themselves dependencies of other 
packages. The toolchain directory contains components necessary for cross-toolchain 
compilation. The host directory contains host-specific tools that were built to support 
Buildroot’s operation. These include programs such as fakeroot (used to build the root 
file system without root privileges) and programs for image generation. The target
directory is a near-replica of the root file system image, but it cannot be used directly 
as the root file system. The user, group, permissions, and device nodes are incorrect. 
Fakeroot uses this target directory to build the final image. Finally, the build   directory 
is where all the components (except for the cross-toolchain) are built.

Buildroot is a powerful build system that can build a complete embedded Linux 
distribution. Consult the Buildroot documentation at http://buildroot.uclibc.org/
docs.html for full details.

16.4 OpenEmbedded

evolution, but when it comes to OpenEmbedded, it be-There is much debate about    
comes quickly obvious that OpenEmbedded evolved from several technologies that 
came before it. OpenEmbedded shares some of its conceptual origins with the Portage 
build system from Gentoo, but it also builds on some concepts from other build sys-
tems, including Buildroot.

The OpenEmbedded home page    (www.openembedded.org) claims that 
OpenEmbedded “...offers a best-in-class cross-compile environment.” Given the lim-
itations of other open source build systems, and the flexibility of OpenEmbedded, 
this might just be accurate. The website also lists the following as    OpenEmbedded 
advantages:

• It supports many hardware architectures.

• It supports multiple releases for those architectures.

• It contains tools for speeding up the process of re-creating the base after 
changes have been made.

• It’s easy to customize.

• It runs on any Linux distribution.

• It cross-compiles thousands of packages, including GTK+, Qt, X Windows, 
Mono, and Java.
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OpenEmbedded has gained significant traction in both commercial and open source 
projects. Many commercial development organizations have adopted OpenEmbedded 
as their preferred build system. Indeed, some commercial suppliers of Embedded Linux, 
including Mentor Graphics and MontaVista Software, have adopted OpenEmbedded 
as the basis for their commercial embedded Linux offerings.

16.4.1 OpenEmbedded Composition

OpenEmbedded is composed of two primary elements, as shown in Figure 16-3. 
BitBake is the build engine, which is a powerful and flexible build tool. Metadata is the 
set of instructions that tell BitBake what to build.

FIGURE 16-3 BitBake and metadata
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BitBake processes    the metadata, which provides instructions that describe what to 
build. At the end of the build process, BitBake produces all the requested images, in-
cluding the root file system, kernel, bootloader, and intermediate images such as device 
tree binary (in the case of Power Architecture). One of the more powerful features of 
OpenEmbedded is its ability to create software development kits (SDKs). These SDKs 
can contain toolchains, libraries, and header files for application developers to use in a 
self-contained development environment.

16.4.2 BitBake Metadata

Metadata can be roughly grouped   into four categories, each of which fulfills a specific 
role:

• Recipes

• Classes

• Tasks

• Configuration

The most common type of metadata is a recipe file. Recipes usually contain the 
instructions for BitBake to build a single package. Recipes describe the package, its 
dependencies, and any other special action that might be required to build a package.

Classes perform a role similar to that of classes in an object-oriented programming 
language such as C++ or Java. They are used to encapsulate common functionality used 
across a large number of recipes.

Tasks are usually used to group packages for use in building a root file system. 
They are usually simple files, often containing little more than a few lines of package 
dependencies.

Configuration metadata plays an important role in defining the overall behavior of 
BitBake. Configuration data provides global build variables such as build paths, default 
image construction commands, and specifics of a particular machine. It also defines 
characteristics of the distribution under construction, such   as which toolchain and C 
library (uClibc, glibc, and so on) to use.

16.4.3 Recipe Basics

The most common unit   of OpenEmbedded metadata is the recipe. A recipe is usually 
a single file or small collection of files that build a single package. Examining a simple 
recipe is a good way to begin understanding the OpenEmbedded metadata language. 

  



16.4 OpenEmbedded 457

Listing 16-4 is the OpenEmbedded version of Hello World. This recipe builds a simple 
Hello World application and prepares it for inclusion in the    final root file system. It is 
called hello_1.0.0.bb on the file system.

LISTING 16-4 Simple OpenEmbedded Recipe: hello_1.0.0.bb

DESCRIPTION = “Hello demo project”

PR = “r0”

LICENSE = “GPL”

SRC_URI = “http://localhost/sources/hello-1.0.0.tar.gz”

SRC_URI[md5sum] = “90a8ffd73e4b467b6d4852fb95e493b9”

SRC_URI[sha256sum] = “fd626b829cf1df265abfceac37c2b5629f2ba8fbc3897add29f-
9661caa40fe12”

do_install() {

        install -m 0755 -d ${D}${bindir}

        install -m 0755 ${S}/hello ${D}${bindir}/hello

}

 

The first few fields are little    more than administrative:

• DESCRIPTION—Descriptive information about the package itself

• PR—Package (recipe) version number

• LICENSE—The package license

SRC_URI must be present in every recipe. It defines the method (http in this ex-
ample) and location (localhost/sources/hello-1.1.0.tar.gz) that BitBake will use 
to locate and obtain the files that make up the package. Source code can be fetched 3 in
many forms using a variety of methods. For example, source can be fetched from a git, 
svn, or cvs repository, either local or remote. Source can be fetched from a file or tarball 
either locally or on an Internet server.

SRC_URI[md5sum] is one method of specifying a checksum that can be used to vali-
date proper fetching of a source archive. If a remote md5 or sha256 signature file is 
available, it is tested against these values to ensure correct download.

The do_install method is a function override of BitBake’s default install meth-
od. In this sample recipe, the do_install method defines two steps using the Linux 
install command: It creates an output directory in which to place the build artifact 

3 One of the BitBake modules is called the “fetcher.”
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(our hello binary), and it places that binary in the directory just created. The direc-
tories are specified using a syntax commonly found in autotools configuration scripts 
and build files. {bindir} refers to /bin on the target. The S and D are OpenEmbedded 
metadata convenience variables that refer to the source and destination directories, 
respectively. You can read more about the install command on your favorite Linux 
desktop on its man page, man install.

Recipes in OpenEmbedded can contain directives in either Python language or 
bash shell script language. Our example in Listing 16-4 contains only bash shell script 
language. Discussion of Python is beyond    the scope of this section.

You may be wondering how this simple recipe can result in building the Hello 
World application. We saw an install step defined in the recipe, but there was little else 
in the way of build instructions. BitBake processes each recipe using a default set of 
steps, defined in OpenEmbedded classes. BitBake classes are files ending in .bbclass.
Most of the default processing steps come from a special base class called base.bbclass.
It is here that the default commands to fetch, unpack, configure, compile, and install 
are defined.

Listing 16-5 shows the BitBake output    while building the hello package. BitBake 
can accept any recipe or task 4 as a target for building.

LISTING 16-5 BitBake Hello Recipe Processing

chris@speedy:~/sandbox/build01$ bitbake hello

<...>

NOTE: Executing runqueue

NOTE: Running task 10 of 38 (ID: 5, NOTE: Running task 10 of 38 (ID: 5,

/hello_1.0.0.bb, do_fetch)

NOTE: Running task 11 of 38 (ID: 0, /hello_1.0.0.bb, do_unpack)

NOTE: Running task 15 of 38 (ID: 1, /hello_1.0.0.bb, do_patch)

NOTE: Running task 16 of 38 (ID: 7, /hello_1.0.0.bb, do_configure)

NOTE: Running task 17 of 38 (ID: 8, /hello_1.0.0.bb, do_compile)

NOTE: Running task 18 of 38 (ID: 2, /hello_1.0.0.bb, do_install)

NOTE: Running task 19 of 38 (ID: 10, /hello_1.0.0.bb, do_package)

NOTE: Running task 25 of 38 (ID: 13, /hello_1.0.0.bb, do_package_write_ipk)

NOTE: Running task 26 of 38 (ID: 9, /hello_1.0.0.bb, do_package_write)

NOTE: Running task 29 of 38 (ID: 3, /hello_1.0.0.bb, do_populate_sysroot)

NOTE: Running task 30 of 38 (ID: 12, /hello_1.0.0.bb, do_package_stage)

NOTE: Running task 37 of 38 (ID: 11, /hello_1.0.0.bb, do_package_stage_all)

NOTE: Running task 38 of 38 (ID: 4, /hello_1.0.0.bb, do_build)

NOTE: Tasks Summary: Attempted 38 tasks of which 25 didn’t need to be rerun and 0 
failed.

4 Recall that a “task” is a special kind of OpenEmbedded metadata (recipe) that is often used to group packages for inclusion in
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Note that this listing has been reformatted for easier reading. Each line has been 
truncated to remove the full path to the hello_1.0.0.bb recipe file, and several lines 
not relevant to the discussion have been     removed.

From Listing 16-5, we can see the individual steps that BitBake uses to build the 
package defined by the hello_1.0.0.bb recipe. The first step (fetch) downloads the 
hello tarball from the server. Unpack untars the tarball into a working directory de-
fined by the configuration metadata. We saw in Listing 16-4 that this working direc-
tory can be referenced by a metadata variable called S. The do_patch step applies any 
required patches that are present in the metadata.

Configure follows patch. In this simple recipe, it is a null method. It does nothing, 
because there is nothing to configure. The next task is the compile step. Here is where 
a generic make command is issued in the hello source working directory, expecting a 
package makefile to do the work of building the package. Following this is the install 
step. Notice from Listing 16-5 that we have overridden the default install stage with 
our own definition for install. Our version of install takes precedence. It installs the 
hello binary as described in the discussion of Listing 16-4.

The next few steps related to packaging result in building a binary package contain-
ing the files we populated with our install method. A detailed discussion of packaging 
is beyond the scope of this section, but realize that every recipe creates a binary pack-
age, of the form specified by the metadata. Usually this is the .ipk package format—a 
compact, lightweight packaging technology designed especially for embedded Linux 
applications. The resulting package is placed in a special output directory that BitBake 
created for the purpose.

The populate and staging steps move any required files to a special staging location 
so that if other subsequent packages depend on artifacts from this build, they will be 
available. Also, the root file system is ultimately compiled from the contents of special 
recipe-specific directories where the build artifacts are collected. This is the work of the 
do_build method.

After BitBake has completed processing this recipe successfully, the package is built. 
Then the build artifacts (usually a binary or library or a set of these) are placed in a 
special recipe-specific directory so that other programs can refer to them during the 
build. Subsequent image-building recipes can gather the build artifacts from these 
recipe-specific directories for inclusion in a final    root file system.

The next few sections discuss the other major categories of metadata—tasks, class-
es, and configuration.
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16.4.4 Metadata Tasks

A task is a recipe that is used   to group packages together, usually for the purpose 
of building root file systems. Tasks do not produce output packages with artifacts in 
them, because they would be empty. They may or may not have “task” in their name.

Note that the term task in OpenEmbedded terminology is overloaded. We speak of 
BitBake tasks, which are the steps that BitBake performs, such as do_compile, or we 
refer to tasks as these special recipes. Beware of the terminology!

Listing 16-6 shows a simple task from a recent snapshot of OpenEmbedded. This 
task specifies the required packages for generic Java support.  When the root file system 
is finally assembled, it will contain the packages  specified in task-java.bb.

LISTING 16-6 task-java.bb

DESCRIPTION = “Base task package for Java”

PR = “r2”

LICENSE = “MIT”

inherit task

RDEPENDS_${PN} = “\

    cacao \

    classpath-awt \

    java2-runtime \

    librxtx-java \

 “

Some tasks can be complex, but this task is relatively simple and illustrates the basic 
idea behind a task. The obligatory header fields are present, including DESCRIPTION,
PR, and LICENSE. The inherit keyword illustrates the use of the next metadata type 
we will discuss—classes and their role in inheritance. You can think of this directive as 
similar to #include in C. It specifies that the variables and methods defined in task.
bbclass should be incorporated into this recipe as it is processed by BitBake.

The RDEPENDS_${PN} variable in Listing 16-6 is the syntax used to define runtime 
dependencies. PN evaluates to the package name, basically just the basename of the rec-
ipe filename—in this example, task-java. When this task-java.bb recipe is included 
in an image build, the runtime dependencies listed under its RDEPENDS cause these 
packages to be built and included in the final image. If you have followed along with 
these examples and downloaded an OpenEmbedded snapshot, you    can see this task in 
action in the image recipe x11-gpe-java-image.bb.
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16.4.5 Metadata Classes

A class in OpenEmbedded is similar to   classes in object-oriented languages such as 
C++ and Java. It is used to encapsulate common functionality that can be shared by 
many other recipes. Classes are used in OpenEmbedded for many common functions.

We saw an example of the use of a class in the task-java.bb recipe in Listing 
16-6. This task class can be found in a file called task.bbclass in a subdirectory of the 
openembedded repository called classes. It performs some housekeeping for functions 
required by all tasks. Among them are directives to tell BitBake that this recipe does 
not itself produce any build artifacts that require packaging or incorporation into the 
final root file system. It also includes logic that produces -dbg and -dev versions of the 
packages that are incorporated by the task itself.

One of the more commonly used classes is autotools.bbclass. This class provides 
the familiar autotools functionality around which many common Linux packages are 
built. You are probably familiar with autotools-based packages. If you have ever down-
loaded source code and unpacked and compiled it on a Linux desktop using the fa-
miliar sequence of ./configure, make, and make install, you have built an autotools-
based project.

The autotools.bbclass class provides this functionality. If you have a source pack-
age that uses autotools, the recipe can be quite simple, even if the package itself is not.

Listing 16-7 displays a simple autotools-based recipe. It has been slightly reformat-
ted for readability with no  loss of functionality.

LISTING 16-7 Simple Autotools-Based Recipe: rdesktop_1.5.0.bb

DESCRIPTION = “Rdesktop rdp client for X”

HOMEPAGE = “http://www.rdesktop.org”

DEPENDS = “virtual/libx11 openssl”

SECTION = “x11/network”

LICENSE = “GPL”

PR = “r2”

inherit autotools

SRC_URI = “${SOURCEFORGE_MIRROR}/rdesktop/rdesktop-${PV}.tar.gz”

EXTRA_OECONF = “--with-openssl=${STAGING_EXECPREFIXDIR} “
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It hardly gets any simpler than this. This recipe provides build instructions for 
rdesktop, an rdp client for X. The standard header is present, including DESCRIPTION,
LICENSE, PR, and so on. Next comes the autotools functionality from autotools.
bbclass, incorporated via the inherit keyword. The SRC_URI tells BitBake where 
and how to obtain the source code.

The last item illustrates one of the key features of autotools-based projects. If you’ve 
ever passed commands to ./configure while building an autotools-based project, 
you will find this familiar. The EXTRA_OECONF variable is simply passed to rdesktop’s 
./configure when the configure step is executed. This particular example passes the 
--with-openssl flag to the rdesktop ./configure script. This causes rdesktop to be 
configured with openssl functionality and tells it where to find the openssl support files 
needed to compile with this feature enabled.

Classes are used in OpenEmbedded   for a wide variety of purposes. You can see all 
the current classes defined in the .../openembedded/classes directory.

16.4.6 Configuring OpenEmbedded

One of the most difficult aspects    of using OpenEmbedded is to get a working configu-
ration. Many things need to be defined in order to build an embedded Linux distribu-
tion. Here are some of the more obvious attributes that must be defined:

 • Target architecture

 • Processor type

• Machine features such as serial port and baud rate and Flash organization

• Choice of C library, such as glibc or one of the several embedded-optimized 
alternatives

• Toolchain and binutils version and source (external or built by BitBake)

• Root file system image type

 • Kernel version

Of course, there is much more to the configuration than what is listed here. Con-
figuration metadata can be generalized in four broad categories: BitBake, machine, 
distribution, and local. BitBake configuration (bitbake.conf) is in many ways like 
BitBake’s plumbing. It defines system-wide variables such as system paths, target file 
system layout, and many architecture-dependent build variables. Unless you are doing 
something peculiar, you should not have to edit this file.
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Machine configuration is placed in a configuration file named for the machine 
it describes. Recent OpenEmbedded snapshots contain configuration files describing 
more than 250 machines.5 This is the proper place to define machine-specific features 
such as serial port configuration and any specific requirements for image format, kernel 
version, and bootloader version. Target architecture is usually specified in the machine 
file.

Distribution configuration defines aspects of the entire embedded Linux distribu-
tion that you are building. Current versions of OpenEmbedded have distribution con-
figuration files for over 35 different named distributions. Angstrom and OpenMoko 
are two examples that have received a lot of attention from OpenEmbedded develop-
ers.

Attributes of the distribution that are defined in a distribution configuration file 
include toolchain type, C library type, and distribution version. You will often place a 
minimum specification for your base root file system within this configuration file. See 
the many examples in the OpenEmbedded metadata for more details.

The last category of configuration is local.conf. This is where you tune and cus-
tomize a distribution to your liking. Your local.conf can be simple or complex, de-
pending on your needs. At a minimum, your local.conf must define your machine 
type and distribution choice, which ties together the machine and distribution con-
figurations for your custom embedded Linux distribution. OpenEmbedded metada-
ta contains a sample local.conf with many comments that makes a good starting 
point. There are also specific examples of local.conf online. OpenEmbedded instruc-
tions   can be found for the BeagleBoard on the BeagleBoard wiki at http://elinux.org/
BeagleBoard#OpenEmbedded.

16.4.7 Building Images

The most powerful recipes in   OpenEmbedded are image recipes. You can build an 
entire embedded Linux distribution using a properly constructed image recipe. The 
OpenEmbedded collection of metadata contains nearly one hundred image recipes. 
You can either use them as is or modify them to suit your particular requirements.

Some of the more common image recipes include console-image and x11-image.
The former builds a basic bootable image that boots to a command prompt. The latter 
produces an image designed to drive a graphics display, including the required graphics 
libraries for X11 support.

5 The term “machine” is used to refer to a specific hardware platform.
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It is easy to build these images using BitBake:

$ bitbake console-image

 
 

 

This simple command builds a root file system that contains a collection of packag-
es sufficient to boot your embedded device to a command prompt. There is nothing to 
prevent you from adding other outputs to your image recipe. For example, you could 
construct a recipe that will produce your root file system, kernel image, bootloader im-
age, and any other files required for your target board.

We could devote an entire book to the subject of OpenEmbedded. Hopefully this 
short introduction will help you get started with this powerful build system. There is 
no substitute for diving in and getting your hands dirty with the technology.

16.5 Summary

Several open source build systems are available. We have provided introductory cover-
age of three of the most popular. OpenEmbedded is the latest build system to gain 
wide adoption and significant numbers of developers working on the project. Any one 
of these build systems can help you with the significant challenge of building a custom 
embedded Linux system for your product:

• Scratchbox is an environment that emulates the target architecture to ease the 
process of cross-compilation.

• Buildroot has enjoyed popularity in a number of projects and has a good fol-
lowing of developers and users in its development community.

• OpenEmbedded builds on the state of the art and represents the latest technol-
ogy in embedded Linux build systems.

16.5.1 Suggestions for Additional Reading

Scratchbox website and documentation
www.scratchbox.org/   

Buildroot home page
www.buildroot.org   

OpenEmbedded home page
www.openembedded.org   
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When Linux began life on an Intel i386 processor, no one expected the 
success that Linux would enjoy in server applications. That success has 

led to Linux’s being ported to many different architectures and being used by 
developers for embedded systems from cellular handsets to telecommunications 
switches. Not long ago, if your application had real-time requirements, you 
might not have included Linux among the choices for your operating system. 
That has all changed with the developments in real-time Linux driven, in large 
part, by audio and multimedia applications.

This chapter starts with a brief look at the historical development of real-time 
Linux features. Then we look at the facilities available to the real-time program-
mer and how these facilities are used.

17.1 What Is Real Time?

Ask five people what “real time” means, and chances are, you will get five different 
answers. Some might even cite numbers. For the purposes of this discussion, we will 
cover various scenarios and then propose a definition. Many requirements can be 
said to be soft real time, and others are called hard real time.

17.1.1 Soft Real Time

Most agree that soft real time   means that the operation has a deadline. If the dead-
line is missed, the quality of the experience could be diminished but not fatal. Your 
desktop workstation is a perfect example of soft real-time requirements. When you 
are editing a document, you expect to see the results of your keystrokes on the screen 
immediately. When playing your favorite mp3 file, you expect to have high-quality 
audio without any clicks, pops, or gaps in the music.

In general terms, humans cannot see or hear delays of less than a few tens of 
milliseconds. Of course, musicians will tell you that music can be colored by delays 
smaller than that. If a deadline is missed by these so-called soft real-time events, the 
results may be undesirable, leading to a lower level of “quality” for the experience, 
but not catastrophic.
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17.1.2 Hard Real Time

Hard real time is characterized   by the results of a missed deadline. In a hard real-time 
system, if a deadline is missed, the results are often catastrophic. Of course, catastroph-
ic is a relative term. If your embedded device is controlling the fuel flow to a jet aircraft 
engine, missing a deadline to respond to pilot input or a change in operational charac-
teristics can lead to disastrous results.

Note that the deadline’s duration has no bearing on the real-time characteristic. Ser-
vicing the tick on an atomic clock is such an example. As long as the tick is processed 
within the 1-second window before the next tick, the data remains valid. Missing the 
processing on a tick might throw off our global positioning systems by feet or even 
miles!

With this in mind, we draw on a commonly used set of definitions for soft and hard 
real time. With soft real-time systems, the value of a computation or result is dimin-
ished if a deadline is missed. With hard real-time systems, if a single deadline is missed, 
the system is considered to have failed by definition, and this may have catastrophic 
consequences.

17.1.3 Linux Scheduling

UNIX and Linux were both designed for fairness in their process scheduling. That is, 
the scheduler tries its best to allocate available resources across all processes that need 
the CPU and guarantee   each process that it can make progress. This very design objec-
tive is counter to the requirement for a real-time process. A real-time process must be 
given absolute priority to run when it becomes ready to run. Real time means having 
predictable and repeatable latency.

17.1.4 Latency

Real-time processes   are often associated with a physical event, such as an interrupt 
arriving from a peripheral device. Figure 17-1 illustrates the latency components in a 
Linux system. Latency measurement begins upon receipt of the interrupt we want to 
process. This is indicated by time t0 in Figure 17-1. Sometime later, the interrupt oc-
curs, and control is passed to the interrupt service routine   (ISR), as indicated by time 
t1. This interrupt latency is almost entirely dictated by the maximum interrupt off 
time1—the time spent in a thread of execution that has hardware interrupts disabled.

1 We neglect the context switching time for interrupt processing because it is often negligible compared to interrupt off time.
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FIGURE 17-1 Latency components

It is considered good design practice to minimize the processing done in the actual 
ISR. Indeed, this execution context is limited in capability (for example, an ISR can-
not call a blocking function, one that might sleep). Therefore, it is desirable to simply 
service the hardware device and leave the data processing to a Linux    bottom half, also 
called softirqs. There are several types of bottom-half processing; they are best de-
scribed in Robert Love’s book Linux Kernel Development. See the section at the end of 
this chapter for the reference.

When the ISR/bottom half has finished its processing, the usual case is to wake up 
a user space process that is waiting for the data. This is indicated by time t2 in Figure 
17-1. Some time later, the scheduler selects the real-time process to run, and the pro-
cess is given the CPU. This is indicated by time t3 in Figure 17-1. Scheduling latency 
is affected primarily by the number of processes waiting for the CPU and the priorities 
among them. Setting the Real Time attribute on a process (SCHED_FIFO or SCHED_RR)
gives it higher priority over normal Linux processes and allows it to be the next process 
selected to run, assuming that it is the highest-priority real-time process waiting for the 
CPU. The highest-priority real-time process that is ready to run (not blocked on I/O) 
will always run. You’ll   see how to set this attribute shortly.
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17.2 Kernel Preemption

In the early Linux days of Linux 1.x, kernel preemption    did not exist. This meant that 
when a user space process requested kernel services, no other task could be scheduled 
to run until that process blocked (went to sleep) waiting on something (usually I/O) or 
until the kernel request completed. Making the kernel preemptable2 meant that while 
one process was running in the kernel, another process could preempt the first and be 
allowed to run even though the first process had not completed its in-kernel process-
ing. Figure 17-2 illustrates this sequence of events.

FIGURE 17-2 Kernel preemption

 

   

In this figure, Process A has entered the kernel via a system call. Perhaps it was a call 
to write() to a device such as the console or a file. While executing in the kernel on 
behalf of Process A, Process B with higher priority is woken up by an interrupt. The 
kernel preempts Process A and assigns the CPU to Process B, even though Process A 
had neither blocked nor completed its kernel processing.

17.2.1 Impediments to Preemption

The challenge in making the kernel fully preemptable is to identify all the places in the 
kernel that must be protected from preemption. These are the critical sections within 

2 Interestingly, there is much debate over the correct spelling of preemptable! I defer to the survey done by Rick Lehrbaum at 
www.linuxdevices.com/articles/AT5136316996.html.
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the kernel where preemption cannot be allowed to occur. For example, assume that 
Process A in Figure 17-2 is executing in the kernel performing a file system operation. 
At some point, the code might need to write to an in-kernel data structure represent-
ing a file on the file system. To protect that data structure from corruption, the process 
must lock out all other processes from accessing     the shared data structure. Listing 17-1 
illustrates this concept using C syntax.

LISTING 17-1 Locking Critical Sections

...

  preempt_disable();

  ...

  /* Critical section */

  update_shared_data();

  ...

  preempt_enable();

...

If we did not protect shared data in this fashion, the process updating the shared 
data structure could be preempted in the middle of the update. If another process 
attempted to update the same shared data, corruption of the data would be virtually 
certain. The classic example is when two processes are operating directly on common 
variables and making decisions on their values. Figure 17-3    illustrates such a case.

     

   •••

count ;

   •••

Process B

Process A

preempted here

Process A

resumes here

•••

count++;

if ( count )

   do something();

•••

Process A
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In Figure 17-3, Process A is interrupted after updating the shared data but before 
it makes a decision based on it. By design, Process A cannot detect that it has been 
preempted. Process B changes the value of the shared data before Process A gets to run 
again. As you can see, Process A will be making a decision based on a value determined 
by Process B. If this is not the behavior you seek, you must disable preemption in Process 
A around the shared data—in this case, the operation and    decision on the variable count.

17.2.2 Preemption Models

The first solution to kernel preemption    was to place checks at strategic locations within 
the kernel code where it was known to be safe to preempt the current thread of execu-
tion. These locations included entry and exit to system calls, release of certain kernel 
locks, and return from interrupt processing. At each of these points, code similar to 
Listing 17-2 was used to perform     preemption.

LISTING 17-2 Check for Preemption a la the Linux 2.4+ Preempt Patch

...

  /*

   * This code is executed at strategic locations within

   * the Linux kernel where it is known to be safe to

   * preempt the current thread of execution

   */

  if (kernel_is_preemptable() && current->need_resched)

    preempt_schedule();

...

  /*

   * This code is in .../kernel/sched.c and is invoked from

   * those strategic locations as above

   */

  #ifdef CONFIG_PREEMPT

  asmlinkage void preempt_schedule(void)

  {

    while (current->need_resched) {

        ctx_sw_off();

        current->state |= TASK_PREEMPTED;

        schedule();

        current->state &= ~TASK_PREEMPTED;

        ctx_sw_on_no_preempt();

    }

  }

  #endif
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The first snippet of code in Listing 17-2 (simplified from the actual code) is in-
voked at the strategic locations described earlier, where it is known that the kernel is 
safe to preempt. The second snippet of code in Listing 17-2 is the actual code from 
an early Linux 2.4 kernel with the preempt patch applied. This     interesting while loop 
causes a context switch via the call to schedule() until all requests for preemption have 
been satisfied.

Although this approach led to reduced latencies in the Linux system, it was not 
ideal. The developers working on low latency soon realized the need to “flip the logic.” 
With earlier preemption models, we had this:

• The Linux kernel was fundamentally nonpreemptable.

• Preemption checks were sprinkled around the kernel at strategic locations 
known to be safe for preemption.

• Preemption was enabled only at these known-safe points.

To achieve a further significant reduction in latency, we want the following in a 
preemptable kernel:

• The Linux kernel is fully preemptable everywhere.

• Preemption is disabled only around critical sections.

This is where the kernel developers have been heading since the original preempt-
able kernel patch series. However, this is no easy task. It involves poring over the entire 
kernel source code base, analyzing exactly what data must be protected from concur-
rency, and disabling preemption at only those locations. The method used for this has 
been to instrument the kernel for latency measurements, find the longest latency code 
paths, and fix them. The more recent Linux 2.6 kernels can be configured for very 
low-latency applications because of the effort that has gone into   this “lock-breaking” 
methodology.

17.2.3 SMP Kernel

It is interesting to note that much   of the work involved in creating an efficient multi-
processor architecture also benefits real time. Symmetric multiprocessing (SMP) is a 
multiprocessing architecture in which multiple CPUs, usually residing on one board, 
share the same memory and other resources. The SMP challenge is more complex than 
the uniprocessor challenge because there is an additional element of concurrency to 
protect against. In the uniprocessor model, only a single task can execute in the kernel 
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at a time. Protection from concurrency involves only protection from interrupt or ex-
ception processing. In the SMP model, multiple threads of execution in the kernel are 
possible in addition to the threat from interrupt and exception processing.

SMP has been supported from as far back as early Linux 2.x kernels. A   big kernel 
lock (BKL) was used to protect against concurrency in the transition from uniproces-
sor to SMP operation. The BKL is a global spinlock, which prevents any other tasks 
from executing in the kernel. In his excellent book Linux Kernel Development, Robert 
Love characterized the BKL as the “redheaded stepchild of the kernel.” In describing 
the characteristics of the BKL, Robert jokingly added “evil” to its list of attributes!

Early implementations of the SMP kernel based on the BKL led to significant inef-
ficiencies in scheduling. It was found that one of the CPUs could be kept idle for long 
periods of time. Much of the work that led to an efficient SMP kernel also directly 
benefited real-time applications—primarily lowered latency. Replacing the BKL with 
smaller-grained locking surrounding only the actual shared data to be protected led to 
significantly reduced preemption latency.

17.2.4 Sources of Preemption Latency

A real-time system must be able to service its real-time tasks within a specified upper 
boundary of time. Achieving consistently   low preemption latency is critical to a real-
time system. The two single largest contributors to preemption latency are interrupt-
context processing and critical section processing where interrupts are disabled. You 
have already learned that a great deal of effort has been targeted at reducing the size 
(and thus the duration) of the critical sections. This leaves interrupt-context processing 
as the next challenge. This was answered with the Linux 2.6 real-time patch.

17.3 Real-Time Kernel Patch

Support for hard real time is still not in the mainline kernel.org source tree. To enable 
hard real time, a patch must    be applied. The real-time kernel patch is the cumulative re-
sult of several initiatives to reduce Linux kernel latency. The patch had many contribu-
tors, and it is currently maintained by Ingo Molnar; you can find it at www.kernel.org/
pub/linux/kernel/projects/rt/. The soft real-time performance of the 2.6 Linux ker-
nel has improved significantly since the early 2.6 kernel releases. When 2.6 was first 
released, the 2.4 Linux kernel was substantially better in soft real-time performance. 
Since about Linux 2.6.12, soft real-time performance in the single-digit milliseconds 
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on a reasonably fast x86 processor is readily achieved. Getting repeatable latencies in 
the microsecond range requires the real-time patch.

The real-time patch adds several important features to the Linux kernel. Figure 17-4 
displays the configuration options   for Preemption mode when the real-time patch has 
been applied.

FIGURE 17-4 Preemption modes with real-time patch

The real-time patch adds a fourth preemption mode called PREEMPT_RT, or Preempt 
Real Time. The four preemption modes are as follows:

 • PREEMPT_NONE—No forced preemption. Overall latency is good on average, but 
some occasional long delays can occur. Best suited for applications for which 
overall throughput is the top design criterion.

 • PREEMPT_VOLUNTARY—First stage of latency reduction. Additional explicit pre-
emption points are placed at strategic locations in the kernel to reduce latency. 
Some loss of overall throughput is traded for lower latency.

 • PREEMPT_DESKTOP—This mode enables preemption everywhere in the kernel 
except when processing within critical sections. This mode is useful for soft 
real-time applications such as audio and multimedia. Overall throughput is 
traded for further reductions in latency.
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 • PREEMPT_RT—Features from the real-time patch are added, including replac-
ing spinlocks with preemptable mutexes. This enables involuntary preemption 
everywhere within the kernel except for areas protected by preempt_disable().
This mode significantly smoothes out the variation in latency (jitter) and al-
lows a low and predictable latency for time-critical      real-time applications.

If kernel preemption is enabled in your kernel configuration, you can disable it at 
boot time by adding the following kernel    parameter to the kernel command line:

preempt=0

17.3.1 Real-Time Features

Several new Linux kernel features   are enabled with CONFIG_PREEMPT_RT. Figure 17-4 
shows several new configuration settings. These and other features of the real-time 
Linux kernel patch are described here.

The real-time patch converts most spinlocks in the system to priority-inheritance 
mutexes. This reduces overall latency at the cost of additional overhead in spinlock 
(mutex) processing, resulting in reduced overall system throughput. The benefit of 
converting spinlocks to mutexes is that they can be preempted. If Process A is holding 
a lock, and Process B at a higher priority needs the same lock, Process A can preempt 
Process B in the case where it is holding a mutex.

With CONFIG_PREEMPT_HARDIRQS selected, interrupt service routines (ISRs) are 
forced to run in process context. This gives the developer control over the priority of 
ISRs, because they become schedulable entities. As such, they also become preempt-
able to allow higher-priority hardware interrupts to be handled first. Because they can 
be scheduled, you can assign them a priority in a similar fashion to other tasks based 
on your system’s requirements.

This is a powerful feature. Some hardware architectures do not enforce interrupt 
priorities. Those that do might not enforce the priorities consistent with your specified 
real-time design goals. Using CONFIG_PREEMPT_HARDIRQS, you are free to define the 
priorities at which each IRQ will run.

CONFIG_PREEMPT_SOFTIRQS reduces latency by running softirqs within the context 
of the kernel’s softirq daemon (ksoftirqd). ksoftirqd is a proper Linux task (process). 
As such, it can be prioritized and scheduled along with other tasks. If your kernel is 
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configured for real time, and CONFIG_PREEMPT_SOFTIRQS is enabled, the ksoftirqd ker-
nel task is elevated to real-time priority to handle the softirq processing.3 Listing 17-3 
shows the code responsible for this from a recent Linux   kernel, found in .../kernel/
softirq.c.

LISTING 17-3 Promoting ksoftirqd to Real-Time Status

static int ksoftirqd(void * __data)

{

   /* Priority needs to be below hardirqs */

    struct sched_param param = { .sched_priority = MAX_USER_RT_PRIO/2 - 1};

    struct softirqdata *data = __data;

    u32 softirq_mask = (1 << data->nr);

    struct softirq_action *h;

    int cpu = data->cpu;

    sys_sched_setscheduler(current->pid, SCHED_FIFO, &param);

    current->flags |= PF_SOFTIRQ;

...

Here we see that the    ksoftirqd kernel task is promoted to a real-time task (SCHED_
FIFO) using the sys_sched_setscheduler() kernel function.

17.3.2 O(1) Scheduler

The O(1) scheduler has   been around since the days of Linux 2.5. It is mentioned 
here because it is a critical component of a real-time solution. The O(1) scheduler is a 
significant improvement over the previous Linux scheduler. It scales better for systems 
with many processes and helps produce lower overall latency.

In case you are wondering, O(1) is a mathematical designation for a system of the 
first order. In this context, it means that the time it takes to make a scheduling deci-
sion is not dependent on the number of processes on a given runqueue. The old Linux 
scheduler did not have this characteristic, and its performance degraded with the num-
ber of processes.4

3 See Linux Kernel Development, referenced at the end of this chapter, to learn more about softirqs.

4 We refer you again to Robert Love’s book for an excellent discussion of the O(1) scheduler and a  delightful diatribe on algo-
rithmic complexity, from which the notation O(1) is derived.
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17.3.3 Creating a Real-Time Process

You can designate a process       as real time by setting a process attribute that the scheduler 
uses as part of its scheduling algorithm. Listing 17-4 shows the general method.

LISTING 17-4 Creating a Real-Time Process

#include <sched.h>

#define MY_RT_PRIORITY MAX_USER_RT_PRIO /* Highest possible */

int main(int argc, char **argv)

{

      ...

      int rc, old_scheduler_policy;

      struct sched_param my_params;

      ...

      /* Passing zero specifies caller’s (our) policy */

      old_scheduler_policy = sched_getscheduler(0);

      my_params.sched_priority = MY_RT_PRIORITY;

      /* Passing zero specifies callers (our) pid */

      rc = sched_setscheduler(0, SCHED_RR, &my_params);

      if ( rc == -1 )

            handle_error();

      ...

}

This code snippet does two things in the call to sched_setscheduler(). It changes 
the scheduling policy to SCHED_RR and raises its priority to the maximum possible on 
the system. Linux supports three scheduling       policies:

 • SCHED_OTHER—Normal Linux process, fairness scheduling.

 • SCHED_RR—Real-time process with a time slice. In other words, if it does not 
block, it is allowed to run for a given period of time determined by the sched-
uler.

 • SCHED_FIFO—Real-time process that runs until it either blocks or explicitly 
yields the processor, or until another higher-priority SCHED_FIFO process be-
comes runnable.
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The man page for sched_setscheduler() provides more detail on the three differ-
ent scheduling policies.

17.4 Real-Time Kernel Performance Analysis

The instrumentation   for examining real-time kernel performance was once somewhat 
ad hoc. Those days are over. Ftrace has replaced the older tracing mechanisms that 
existed when the first edition of this book was published. Ftrace is a powerful set of 
tracing tools that can give the developer a detailed look at what is going on inside the 
kernel. Complete documentation on the Ftrace system can be found in the kernel 
source tree at .../Documentation/trace/ftrace.txt.

17.4.1 Using Ftrace for Tracing

Ftrace must be enabled      in your kernel configuration before it can be used. Figure 17-5 
shows the relevant kernel configuration parameters from a recent kernel release.

FIGURE 17-5 Kernel configuration for Ftrace
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Ftrace has many available modules. It is prudent to select only those you might 
need for a particular test session, because each one adds some level of overhead to the 
kernel.

The general framework for enabling tracing is through its interface exported to the 
debugfs file system. Assuming that you have properly enabled Ftrace in your kernel 
configuration, you must then mount the debugfs. This is done as follows:

# mount -t debugfs debug /sys/kernel/debug

When this is complete, you should find a directory under /sys/kernel/debug
called tracing. This tracing directory contains all the controls and output sources for 
Ftrace data. This will become more clear as we interact with this system in the follow-
ing sections. As suggested in the kernel documentation, we will use a symlink called 
/tracing to simplify reporting and interacting with the Ftrace subsystems:

# ln -s /sys/kernel/debug/tracing /tracing

 

From here on, we      will reference /tracing instead of the longer /sys/kernel/debug/
tracing.

17.4.2 Preemption Off Latency Measurement

The kernel uses calls to disable   preemption during processing in critical shared data 
structures. When preemption is disabled, interrupts can still occur, but a higher-
priority process cannot run. You can profile the preempt off times using the preemptoff 
functionality of Ftrace.

To enable measurement of preemption off latency, enable PREEMPT_TRACER and
PREEMPT_OFF_HIST in the Kernel hacking submenu of your kernel configuration. This 
trace mode enables the detection of the longest latency paths with preemption disabled.

The general method for arming Ftrace for a preemptoff measurement is as follows:

# echo preemptoff >/tracing/current_tracer

# echo latency-format > /tracing/trace_options

# echo 0 >/tracing/tracing_max_latency

# echo 1 > /tracing/tracing_enabled

 <do some processing>

# echo 0 > /tracing/tracing_enable
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Listing 17-5 shows the trace output resulting from this sequence of commands. 
Notice that the maximum latency of 221 microseconds  is displayed in the header.

LISTING 17-5 Preemptoff Trace

# cat /tracing/trace

# tracer: preemptoff

#

# preemptoff latency trace v1.1.5 on 2.6.33.4-rt20

# --------------------------------------------------------------------

# latency: 221 us, #239/239, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

#    -----------------

#    | task: -0 (uid:0 nice:0 policy:0 rt_prio:0)

#    -----------------

#  => started at: acpi_idle_enter_bm

#  => ended at:   rest_init

#

#

#                  _------=> CPU#

#                 / _-----=> irqs-off

#                | / _----=> need-resched

#                || / _---=> hardirq/softirq

#                ||| / _--=> preempt-depth

#                |||| /_--=> lock-depth

#                |||||/     delay

#  cmd     pid   |||||| time  |   caller

#     \   /      ||||||   \   |   /

  <idle>-0       0d..1.    0us : acpi_idle_do_entry <-acpi_idle_enter_bm

  <idle>-0       0d..1.    1us : ktime_get_real <-acpi_idle_enter_bm

  <idle>-0       0d..1.    1us : getnstimeofday <-ktime_get_real

  <idle>-0       0d..1.    1us : ns_to_timeval <-acpi_idle_enter_bm

  <idle>-0       0d..1.    1us : ns_to_timespec <-ns_to_timeval

<... many lines omitted for brievity...>

  <idle>-0       0d..3.  220us : native_apic_mem_write <-lapic_next_event

  <idle>-0       0d..3.  220us : _raw_spin_unlock_irqrestore

<-tick_broadcast_oneshot_control

  <idle>-0       0d..2.  220us : _raw_spin_unlock_irqrestore <-clockevents_notify

  <idle>-0       0d..1.  220us : enter_idle <-cpu_idle

  <idle>-0       0d..1.  221us : __rcu_read_lock <-__atomic_notifier_call_chain

  <idle>-0       0d..1.  221us : __rcu_read_unlock

<-__atomic_notifier_call_chain

  <idle>-0       0d..1.  221us : cpu_idle <-rest_init

  <idle>-0       0d..1.  221us : stop_critical_timings <-rest_init

# cat /tracing/tracing_max_latency
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Notice the last two lines of Listing 17-5. Here we have displayed the maximum 
latency value captured by Ftrace by displaying   the contents of tracing_max_latency.
This value will always be updated with the maximum latency recorded and the out-
put of the trace file (the entire contents of Listing 17-5) that corresponds to the path 
through the system associated with this longest latency.

17.4.3 Wakeup Latency Measurement

One of the most critical measurements   of interest to real-time developers is how long 
it takes to get the high-priority task running after it has been signaled to do so. When 
a real-time process (one with the SCHED_FIFO or SCHED_RR scheduling attribute) is run-
ning in your system, it is by definition sharing the processor with other tasks. When an 
event needs servicing, the real-time task is woken up. In other words, the scheduler is 
informed that it needs to run. Wakeup timing is the time from the wakeup event until 
the task actually gets the CPU and begins to run.

Ftrace has a wakeup and wakeup_rt trace facility. This facility records and traces the 
longest latency from wakeup to running while the tracer is enabled.

Listing 17-6 was generated from a simple C test program that creates and writes 
to a file. Prior to the file I/O, the test program elevates itself to SCHED_RR with priority 
99 and sets up the tracing system using writes to stdio, similar to issuing the following 
commands from the shell:

# echo 0 > /tracing/tracing_enabled

# echo 0 > /tracing/tracing_max_latency (resets the max record back to zero)

# echo wakeup > /tracing/current_tracer

# echo 1 > /tracing/tracing_enabled

After our test program issues these commands, tracing has completed. Listing 17-6 
shows the results. Notice in this case that the maximum   wakeup latency is reported as 
7 microseconds.
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LISTING 17-6 Wakeup Timing Trace

root@speedy:~# cat /tracing/trace

# tracer: wakeup

#

# wakeup latency trace v1.1.5 on 2.6.33.4-rt20

# --------------------------------------------------------------------

# latency: 7 us, #35/35, CPU#4 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:8)

#    -----------------

#    | task: -6006 (uid:0 nice:0 policy:2 rt_prio:99)

#    -----------------

#

#                  _------=> CPU#

#                 / _-----=> irqs-off

#                | / _----=> need-resched

#                || / _---=> hardirq/softirq

#                ||| / _--=> preempt-depth

#                |||| /_--=> lock-depth

#                |||||/     delay

#  cmd     pid   |||||| time  |   caller

#     \   /      ||||||   \   |   /

    sshd-1789    4d.h3.    0us :   1789:120:R   + [004]  6006:  0:S rt

    sshd-1789    4d.h3.    1us : wake_up_process <-hrtimer_wakeup

    sshd-1789    4d.h2.    1us : check_preempt_wakeup <-try_to_wake_up

    sshd-1789    4d.h2.    1us : resched_task <-check_preempt_wakeup

    sshd-1789    4dNh2.    2us : task_woken_rt <-try_to_wake_up

    sshd-1789    4dNh2.    2us : _raw_spin_unlock_irqrestore <-try_to_wake_up

    sshd-1789    4dNh1.    2us : preempt_schedule <-_raw_spin_unlock_irqrestore

    sshd-1789    4dNh..    2us : preempt_schedule <-try_to_wake_up

    sshd-1789    4dNh..    2us : _raw_spin_lock <-__run_hrtimer

    sshd-1789    4dNh1.    3us : _raw_spin_unlock <-hrtimer_interrupt

    sshd-1789    4dNh..    3us : preempt_schedule <-_raw_spin_unlock

    sshd-1789    4dNh..    3us : tick_program_event <-hrtimer_interrupt

    sshd-1789    4dNh..    3us : tick_dev_program_event <-tick_program_event

    sshd-1789    4dNh..    4us : ktime_get <-tick_dev_program_event

    sshd-1789    4dNh..    4us : clockevents_program_event

<-tick_dev_program_event

    sshd-1789    4dNh..    4us : lapic_next_event <-clockevents_program_event

    sshd-1789    4dNh..    4us : native_apic_mem_write <-lapic_next_event

    sshd-1789    4dNh..    4us : irq_exit <-smp_apic_timer_interrupt

    sshd-1789    4dN.1.    4us : rcu_irq_exit <-irq_exit

    sshd-1789    4dN.1.    5us : idle_cpu <-irq_exit

    sshd-1789    4dN...    5us : preempt_schedule_irq <-retint_kernel

    sshd-1789    4dN...    5us : __schedule <-preempt_schedule_irq
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LISTING 17-6 Continued

    sshd-1789    4dN...    5us : rcu_sched_qs <-__schedule

    sshd-1789    4dN.1.    6us : _raw_spin_lock_irq <-__schedule

    sshd-1789    4d..2.    6us : put_prev_task_fair <-__schedule

    sshd-1789    4d..2.    6us : update_curr <-put_prev_task_fair

    sshd-1789    4d..2.    6us : task_of <-update_curr

    sshd-1789    4d..2.    6us : cpuacct_charge <-update_curr

    sshd-1789    4d..2.    6us : __rcu_read_lock <-cpuacct_charge

    sshd-1789    4d..2.    7us : __rcu_read_unlock <-cpuacct_charge

    sshd-1789    4d..2.    7us : __enqueue_entity <-put_prev_task_fair

    sshd-1789    4d..2.    7us : pick_next_task_rt <-__schedule

    sshd-1789    4d..2.    7us : dequeue_pushable_task <-pick_next_task_rt

    sshd-1789    4d..3.    8us : __schedule <-preempt_schedule_irq

    sshd-1789    4d..3.    8us :   1789:120:R ==> [004]  6006:  0:R rt

        

When the test program runs, it performs the file I/O and then sleeps. This guar-
antees that it will yield the processor even if it did not block on I/O. The trace shown 
in Listing 17-6 is quite interesting. From the header, you see that the test program ran 
as PID 6006 with priority 99. You also see that the maximum latency reported was 
7 microseconds—certainly a very acceptable value.

The first line of the trace output is the wakeup event. A process with PID 1789 
was running (ssh daemon) at the time. The last trace is the actual context switch from 
sshd to the test program running as PID 6006 with RT priority. The lines between 
the wakeup and context switch are the kernel path taken, along with the relative times.

Refer to the a.../Documentation subdirectory of the Linux kernel source tree for 
trace/ftrace.txt for additional details.

The maximum latency is provided separately in another trace file. To display the 
maximum wakeup latency during        a particular tracing run, simply issue this command:

root@speedy:~# cat /tracing/tracing_max_latency

7

17.4.4 Interrupt Off Timing

To enable measurement of maximum   interrupt off timing, make sure your kernel has 
IRQSOFF_TRACER enabled in your kernel configuration. This option measures time 
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spent in critical sections with IRQs disabled. This feature works the same as wakeup 
latency timing. To enable the measurement, do the following as root:

# echo irqsoff >/tracing/current_tracer

# echo latency-format > /tracing/trace_options

# echo 0 > /tracing/tracing_max_latency

# echo 1 > /tracing/tracing_enabled

< ... some processing ...>

# echo 0 > /tracing/tracing_enabled

To read the current maximum, simply display the contents of /tracing/tracing_
max_latency:

# cat /tracing/tracing_max_latency

97

 
 

You will notice that the latency measurements for both wakeup latency and inter-
rupt off latency are enabled and displayed using the same file. This means, of course, 
that only one measurement can be configured at a time, or the results might be invalid. 
Because these measurements add significant runtime        overhead, it would be unwise to 
enable them all at once anyway.

17.4.5 Soft Lockup Detection

To enable   soft lockup detection, enable DETECT_SOFTLOCKUP in the kernel configura-
tion. This feature enables the detection of long periods of running in kernel mode 
without a context switch. This feature exists in non-real-time kernels but is useful for 
detecting very-high-latency paths or soft deadlock conditions. To use soft lockup de-
tection, simply enable the feature and watch for any reports on the console or system 
log. Reports similar to this will be emitted:

BUG: soft lockup detected on CPU0

When the kernel emits this message, it is usually accompanied by a backtrace and 
other information such as the process name and PID. It will look similar to a kernel 
oops message, complete with processor registers. See .../kernel/softlockup.c for 
details. This information can be used to help track   down the source of the lockup 
condition.
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17.5 Summary

Linux is increasingly being used in systems where real-time performance is required. 
Examples include multimedia applications and robot, industrial, and automotive con-
trollers. This chapter presented fundamental concepts and analysis techniques to help 
you develop and debug real-time applications.

• Real-time systems are characterized by deadlines. When a missed deadline 
results in inconvenience or a diminished customer experience, this is called 
soft real time. In contrast, hard real-time systems are considered failed when a 
deadline is missed.

• Kernel preemption was the first significant feature in the Linux kernel that ad-
dressed system-wide latency.

• Recent Linux kernels support several preemption modes, ranging from no 
preemption to full real-time preemption.

• The real-time patch adds several key features to the Linux kernel, resulting in 
reliable low latencies.

• The real-time patch includes several important measurement tools to aid in 
debugging and characterizing a real-time Linux implementation.

17.5.1 Suggestion for Additional Reading

Linux Kernel Development, 3rd Edition
Robert Love
Addison-Wesley, 2010 
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By anyone’s measure, Universal Serial Bus (USB) has   been wildly successful. 
USB was originally designed to overcome the shortcomings of the various 

I/O interfaces found on the PC architecture. Today it is difficult to find an elec-
tronic device at your local electronics superstore that does not have a USB port. 
Digital cameras, printers, cell phones, IP telephones, and, of course, keyboards 
and mice are typical examples of devices that have USB interfaces. However, the 
list is much longer than the average reader would guess. Even some of my guitar 
pedals have USB interfaces!

Gone are the days when you needed special-purpose input/output hardware for 
common devices. The promise of USB has actually been realized, unlike a host 
of other technologies that have come and gone. Indeed, as this second edition 
was being prepared, the first experimental Linux drivers for USB 3.0 had just 
been released. And it is notable that Linux was the first OS to have such support!

18.1 USB Overview

USB can seem complex at first. It has a plethora of devices and a fairly large variety 
of embedded host controllers. It has several modes of operation, and a given control-
ler on a processor (or external to it) may have multiple modes of operation. If you’ve 
looked at the full list of USB configuration options in a recent Linux kernel, you 
quickly realize that it can be confusing to configure. We can eliminate some of that 
confusion by understanding some basic USB concepts.

18.1.1 USB Physical Topology

USB is a master/slave bus   topology. Each USB bus can have only one master, which 
is called a host controller. Figure 18-1 illustrates the basic topology.
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FIGURE 18-1 Simple USB topology

The host controller   is always associated with a root hub. The root hub provides an 
attachment point to the host controller and provides the hub functions at the top of 
the USB hierarchy. The most common arrangement is that a host controller and root 
hub combination are brought out directly to a connector (through a transceiver chip) 
on the edge of the board. It is this connector that end users see.

The devices shown in Figure 18-1 are   endpoints—physical USB appliances that 
plug into a USB hub. A device may support several functions, such as an audio interface 
that provides input and output functionality. The important concept here is that every 
USB device plugs into one and only one hub upstream of its location in the topology.

Devices on the USB bus are operated in a polled manner, controlled by the host 
controller. Only one device at a time can communicate on the bus, as directed by the 
host controller. Mechanisms exist in the specification to allocate a specified portion of 
bandwidth to a given function within a device.
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One of USB’s most successful features is that it is dynamic and truly hot-swappable. 
Devices can be plugged into the USB bus at any time. Software running on the com-
puter (Linux, of course) that contains the host controller is responsible for configuring 
the USB devices when they appear   in the topology.

18.1.2 USB Logical Topology

To better understand the software   components and data flow in a USB system, it is 
useful to understand USB’s logical topology. Figure 18-2 shows the logical makeup of 
a hypothetical USB device.

FIGURE 18-2 USB device functional block diagram

 
Each USB device has a number of descriptors1 that allow software to discover capabil-

ities and configure functionality. Every device must have   a single device descriptor, which 
contains information such as manufacturer (idVendor), product (idProduct), serial 

1 These descriptors are described in Chapter 9, “File Systems,” of the USB 2.0 specification, referenced at the end of this 
chapter.
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number (iSerialNumber), and the number of configurations (bNumConfigurations). The 
identifiers in parentheses are the actual field names referenced in the USB 2.0 specifica-
tion.

Every configuration identified in the device descriptor has a configuration descrip-
tor. The configuration descriptor   contains the number of interfaces (bNumInterfaces)
available for each configuration and also indicates the maximum power required when 
operated in this configuration (bMaxPower). Most often, a USB device contains only a 
single configuration. However, some devices may have high and low power modes, or 
even different functions available in a single device. These types of devices may contain 
multiple configurations. Plug your iPod into a USB host, and you will see an example 
of multiple configurations, interfaces, and endpoints!

Each interface described   by a configuration descriptor has an interface descriptor. 
The interface descriptor contains a field specifying how many endpoints a device has 
(bNumEndpoints). Endpoint 0 is always assumed to exist and is not included in the 
interface count. The interface descriptor also includes information describing the in-
terface class, subclass, and protocol as defined by the USB specifications.

The USB endpoint   is the actual logical element that software communicates with 
during operation of the USB device. Each endpoint described by an interface descrip-
tor (excluding endpoint 0) contains an endpoint descriptor. The endpoint descriptor 
defines the endpoint’s communication parameters, including the endpoint address and 
various endpoint attributes describing the characteristics of the data transfer from each 
endpoint.

Later in this chapter, we introduce the utility lsusb, which allows you to read these 
descriptors.

More details can be found   in the complete Universal Serial Bus specification refer-
enced at the end of this chapter.

18.1.3 USB Revisions

USB 1.0 was introduced   well over a decade ago. The current USB 2.0 specification 
document shows a revision history as early as November 1994, and that was already 
revision 0.7. The original specification called for a data transfer rate of 12 megabits 
per second (Mbps), with a low-speed rate defined as 1.5 Mbps. The 2.0 revision of 
the USB spec was finalized in April 2000.2 USB 2.0 defined a high-speed data transfer 
rate of 480 Mbps. There is now a 3.0 revision of the USB specification, specifying 

2 According to the revision history in the current USB 2.0 specification.

  



492 Chapter 18 Universal Serial Bus

data transfer rates into gigabits per second and adding yet another speed definition: 
SuperSpeed.

It can be difficult to remember the difference between full speed and high speed. 
Here is a summary:

USB 1.0 Low speed 1.5 Mbps

USB 1.0 Full speed 12 Mbps

USB 2.0 High speed 480 Mbps

USB 3.0 Super speed 5 Gbps

18.1.4 USB Connectors

Unless you are a USB expert, the variety    of USB connector and cable configurations 
can be confusing. The most familiar connector type, defined by the original specifica-
tion, is the USB A connector. This is the familiar rectangular connector most com-
monly found on laptop and desktop PCs. The plug end of the USB A connector, by 
definition, always points upstream, toward the host controller/root hub. Figure 18-3 
shows a standard   USB A plug.

FIGURE 18-3 USB A plug

A peripheral (slave) device such as a printer or scanner often has the USB B recep-
tacle and accepts a USB B plug, also defined by the original USB specification. A com-
mon cable suitable for connection between a host (such as a PC) and a peripheral (such 
as a printer) has an A plug on one end and a B plug on the other. It is more narrow 
than the A plug and has more of a D shape than rectangular. The USB B connector 
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by definition always points downstream, or away from the host   controller/root hub. 
Figure 18-4 shows a USB B plug.

FIGURE 18-4 USB B plug

 

There are also a couple of miniature plug configurations. Smaller form factor de-
vices such as cell phones and PDAs drove the requirement for even smaller plugs and 
receptacles. The USB Mini-A connector has been made obsolete by the specifications, 
although it is still in use. The Mini-B connector    is widely used on small peripheral 
devices.

The Micro-USB specification defines three additional connectors—a Micro-B plug 
and receptacle, a Micro-AB receptacle, and a Micro-A plug. The Micro-AB receptacle 
is for use only on USB On-The-Go (OTG) appliances, discussed later.

To summarize the standard A and B connectors, the A receptacle is always on the 
host side (the A plug always points upstream), and the B connector is always on the 
peripheral side (the B plug always points downstream.) Table   18-1 summarizes these 
characteristics.

TABLE 18-1 USB Connector Summary

Connector Plug Receptacle

A series Points toward the host (or hub) Functions as host (or hub) output

B series Points toward the peripheral Functions as peripheral (or hub) input
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18.1.5 USB Cable Assemblies

The latest USB specifications   define the cable assemblies listed in Table 18-2 as the 
only compliant cables.

TABLE 18-2 USB Cables and Typical Applications

Cable Type Typical Application

Standard-A plug to Standard-B plug Standard host (PC) to a peripheral device such as a printer

Standard-A plug to Mini-B plug  Standard host (PC) to a small form factor peripheral such as a cell 
phone or camera

Captive cable with Standard-A plug USB mouse, keyboard tether

Micro-A plug to Micro-B plug OTG peripheral to peripheral, such as a camera to a printer

Micro-A plug to Standard-A receptacle Adapter to Micro-A, connecting a keyboard to a PDA, for example

Micro-B plug to Standard-A plug Host to OTG device

Captive cable with Micro-A plug Small form factor peripheral tether

It is possible to purchase other types of cable assemblies that are not listed here. 
These are typically available to resolve special cases, such as obsolete (or misdesigned) 
hardware. For example, the BeagleBoard requires a special adapter with a Mini-A plug 
on one end and a USB-A receptacle on the other. The Mini-A plug has pins 4 and 5 
shorted, which appears to be required by the transceiver   on the BeagleBoard for it to 
be configured for host mode operation.

18.1.6 USB Modes

One of the more confusing   aspects of USB to the uninitiated is the various modes of 
operation. We hear terms such as USB On-The-Go (OTG), gadget, and peripheral. 
Hopefully we have taken the confusion out of the different speed ratings and connec-
tor types. This section briefly covers the various modes of USB controllers and devices.

The USB controller and receptacle on a standard desktop PC is called a USB host. 
Because USB is a master-slave bus, by definition one node on a USB bus must provide 
the master functionality. This   is the host. You will hear it referred to as host mode or 
simply the USB host. The host controller, in association with the root hub, is the low-
level piece of hardware that operates the USB master/slave bus protocol. The USB host 
is always the bus master.
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The other end of a simple USB    network is the device end. Sometimes this is called 
a USB gadget.3 Gadget functionality within the Linux kernel simply refers to the abil-
ity to operate as a device in slave mode. Once you enter the embedded world, you no 
longer assume that the processing device acts as a host. For example, you might have a 
Linux-powered smart phone with a USB connector and a USB controller designed to 
operate a device, or the slave end of a USB link.

Many embedded systems need to operate in both master (host) and slave (device) 
modes from the same controller. A personal digital assistant (PDA) is a good example 
of this requirement. Your PDA might have a requirement to connect to a USB host, 
such as your desktop PC in order to synchronize its data to a master database located 
on your PC, or to get a software update. On the other hand, you might want to con-
nect a USB keyboard to your PDA to facilitate typing. These USB devices must be able 
to operate in both host and device modes. This is called    USB On-The-Go (OTG). As 
an added benefit, the USB OTG specification allows switching roles on-the-fly, with-
out having to pull out a plug and reconnect it in the   opposite mode.

18.2 Configuring USB

Like most functionality   not directly related to the core Linux kernel operations, USB 
functionality is optional and must be enabled in your kernel configuration. As with 
most other auxiliary functionality, USB can be compiled into the kernel image or can 
be configured as loadable modules for dynamically loading into a booted kernel. For 
purposes of this text, we will use loadable modules, because this helps bring visibility 
to which components are required for specific functionality.

One of the barriers to properly configuring USB is simply the volume of options in 
a typical kernel    config for USB. On a very recent kernel, configured as allmodconfig,4

almost 300 different device driver modules (*.ko files) were related to USB. Of course, 
many of those drivers are for particular USB devices, but looking through the configu-
ration options for USB, it is clear that a little know-how will go a long way!

In the following examples, we’ll look at the Freescale Semiconductor i.MX31 Ap-
plications Processor on the i.MX31 PDK development platform. It makes for an in-
teresting example, because it contains three host controllers that can be configured in 
a variety of operational modes.

3 The Linux USB developers coined the term “gadget” to avoid confusion with the overused term “device,” as in device drivers.

4 The Linux kernel make target, mostly for build testing, that builds a configuration with all modules where possible.
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Figure 18-5 shows a portion of the USB configuration options from a recent Linux 
kernel configured for the ARM architecture    and the Freescale Semiconductor i.MX31 
PDK reference board.

FIGURE 18-5 Part of the USB configuration for i.MX31

There are many more options than can be shown here. These are just the initial 
ones. You must first select USB_SUPPORT to see any further USB configuration options. 
Notice that USB is selected as M (module), meaning that the kernel build system will 
compile the USB drivers as loadable modules.

Let’s look at the minimal configuration to get USB operational on the i.MX31. 
For all USB configurations, the module called usbcore.ko is required. It is selected 
automatically whenever CONFIG_USB is selected.5 You can see this easily by looking at 
the makefile for the core part of the USB driver support, shown in Listing 18-1. This   
makefile is found at .../drivers/usb/core/Makefile.6

5 You may recall from earlier chapters that actual configuration variables always start with CONFIG_, but this is omitted from 
the GUIs that we use to configure the kernel. For example, USB_SUPPORT in Figure 18-3 actually translates to CONFIG_
USB_SUPPORT in the kernel’s configuration file, .config.

6 Remember that this notation describes the location of the file from your top-level kernel directory.
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LISTING 18-1 Makefile for the USB Core

#

# Makefile for USB Core files and filesystem

#

usbcore-objs    := usb.o hub.o hcd.o urb.o message.o driver.o \

                   config.o file.o buffer.o sysfs.o endpoint.o \

                   devio.o notify.o generic.o quirks.o

ifeq ($(CONFIG_PCI),y)

        usbcore-objs    += hcd-pci.o

endif

ifeq ($(CONFIG_USB_DEVICEFS),y)

        usbcore-objs    += inode.o devices.o

endif

obj-$(CONFIG_USB)       += usbcore.o

ifeq ($(CONFIG_USB_DEBUG),y)

EXTRA_CFLAGS += -DDEBUG

endif

 Looking at the various makefiles that drive the kernel’s build system is always a great 
way to figure out what components are required, or the reverse—what configuration 
options are required for a specific function. For example, in Listing 18-1, you can see 
that we need to enable CONFIG_USB to get usbcore included in the build. As we learned 
in Chapter 4, “The Linux Kernel: A Different Perspective,” if CONFIG_USB is set to m,
this device driver is compiled as a loadable kernel module       and provides USB host sup-
port.

18.2.1 USB Initialization

Booting the i.MX31 into   a minimal configuration, we can load the usbcore module 
as follows:

# modprobe usbcore

This loads the USB core module, which handles common functions for the rest of 
the USB collection of drivers. These functions include housekeeping such as register 
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and deregister functions for various elements and provide an interface to drive USB 
hardware. This takes much of the complexity out of writing drivers for USB hardware. 
You can see the public symbols by using your cross-nm utility. You learned about nm
in Chapter 13, “Development Tools.” Here is an example of using your cross-nm to 
display USB registration functions:

$ arm_v6_vfp_le-nm usbcore.ko  | grep T.*_register

0000adc0 T usb_register_dev

000094b0 T usb_register_device_driver

00009560 T usb_register_driver

0000fcf8 T usb_register_notify

usbcore also contains functions for buffer handling; support for usbfs, the hub class 
driver; and many other functions dealing with communication with the underlying 
USB controller.

usbcore is not very useful by itself. It does not contain any low-level host controller 
drivers. These are separate modules, and they can differ depending on the hardware 
you are using. For example, the BeagleBoard, which contains the TI OMAP3530 Ap-
plications Processor, has a built-in dual-role7 controller. This controller is the Inven-
tra™ USB Hi-Speed Dual-Role Controller. The driver for this host controller is called 
musb_hdrc.

On many platforms, the USB host controller is designed to conform to the    En-
hanced Host Controller Interface (EHCI),8 which describes the register-level interface 
for an industry-standard USB host controller. In this case, the driver, when compiled 
as a loadable module, is called ehci-hcd.ko. Let’s see what happens       when we load that 
driver on the Freescale i.MX31, as shown in Listing 18-2.

LISTING 18-2 Installing the USB Host Controller Driver on i.MX31

root@imx31:~# modprobe ehci-hcd

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

fsl-ehci fsl-ehci.0: Freescale On-Chip EHCI Host Controller 

fsl-ehci fsl-ehci.0: new USB bus registered, assigned bus number 1

fsl-ehci fsl-ehci.0: irq 35, io mem 0x43f88200

7 Dual-role controllers can act as USB hosts or USB peripherals and can switch between the two functions while in operation. 
As you will quickly learn, this is referred to as USB On-The-Go (OTG).

8 A reference to this EHCI specification appears at the end of this chapter.
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LISTING 18-2 Continued

fsl-ehci fsl-ehci.0: USB 2.0 started, EHCI 1.00, driver 10 Dec 2004

usb usb1: configuration #1 chosen from 1 choice

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 1 port detected

fsl-ehci fsl-ehci.1: Freescale On-Chip EHCI Host Controller

fsl-ehci fsl-ehci.1: new USB bus registered, assigned bus number 2

fsl-ehci fsl-ehci.1: irq 36, io mem 0x43f88400

fsl-ehci fsl-ehci.1: USB 2.0 started, EHCI 1.00, driver 10 Dec 2004

usb usb2: configuration #1 chosen from 1 choice

hub 2-0:1.0: USB hub found

hub 2-0:1.0: 1 port detected

fsl-ehci fsl-ehci.2: Freescale On-Chip EHCI Host Controller

fsl-ehci fsl-ehci.2: new USB bus registered, assigned bus number 3

fsl-ehci fsl-ehci.2: irq 37, io mem 0x43f88000

fsl-ehci fsl-ehci.2: USB 2.0 started, EHCI 1.00, driver 10 Dec 2004

usb usb3: configuration #1 chosen from 1 choice

hub 3-0:1.0: USB hub found

hub 3-0:1.0: 1 port detected

There is much useful information here. Note that we had the console log level set so 
that these messages appear on the console. First we see usbcore registration functions 
in action. We see registration messages for the usbfs interface driver, the hub interface 
driver, and the EHCI (usb host mode) driver itself. You will learn about usbfs shortly.

Next we see the three host   controllers being initialized. Recall that the Freescale 
i.MX31 Application Processor contains three separate USB controllers. We see these 
controllers being enumerated as fsl-ehci.0, fsl-ehci.1, and fsl-ehci.2. You can 
see the interrupt (IRQ) assignment and the base address of the register file that is as-
sociated with each USB controller. Notice that in each case the root hub is enumer-
ated. The root hub is a fundamental component of the USB architecture and always is 
associated with the host controller. It is required in order to   connect peripheral devices 
(hubs or other USB devices) to the host controller.

It is worth noting that we did not need to separately install usbcore, as we did at the 
start of this section. modprobe understands how to determine required dependencies 
for a given module. Simply issue the following command:

# modprobe ehci-hcd

  



500 Chapter 18 Universal Serial Bus

This loads its dependency, usbcore, before loading the ehci-hcd driver. This mecha-
nism is explained in Chapter 8, “Device Driver Basics.” In fact, on many platforms that 
use the udev system, these steps are automated   by udev. This is covered in Chapter 19.

 

18.3 sysfs and USB Device Naming

As described in Chapter 9, “File Systems,” the sysfs file system is basically a view of ker-
nel objects, or kobjects. Each USB device is represented in sysfs. Look at /sys/bus/usb/
devices on any USB-enabled system. Listing 18-3 shows how it looks on my Freescale 
i.MX31 PDK board. Note that I have truncated the ls -l format to fit the page width 
by removing       all the columns except the filename.

LISTING 18-3 Output of /sys/bus/usb/devices on i.MX31

root@imx31:~# ls -l /sys/bus/usb/devices/

total 0

1-0:1.0 -> ../../../devices/platform/fsl-ehci.0/usb1/1-0:1.0

2-0:1.0 -> ../../../devices/platform/fsl-ehci.1/usb2/2-0:1.0

2-1 -> ../../../devices/platform/fsl-ehci.1/usb2/2-1

2-1.1 -> ../../../devices/platform/fsl-ehci.1/usb2/2-1/2-1.1

2-1.1:1.0 -> ../../../devices/platform/fsl-ehci.1/usb2/2-1/2-1.1/2-1.1:1.0

2-1:1.0 -> ../../../devices/platform/fsl-ehci.1/usb2/2-1/2-1:1.0

3-0:1.0 -> ../../../devices/platform/fsl-ehci.2/usb3/3-0:1.0

usb1 -> ../../../devices/platform/fsl-ehci.0/usb1

usb2 -> ../../../devices/platform/fsl-ehci.1/usb2

usb3 -> ../../../devices/platform/fsl-ehci.2/usb3

All the entries in /sys/bus/usb/devices are links to other portions of the sysfs hi-
erarchy. Notice the numeric names, such as 1-0:1.0. In this naming scheme, the first 
numeral is the root hub, or the top level of the USB hierarchy for this particular bus. 
The second number is the port number that a given device is connected to. The third 
number (the one after the colon) is the configuration number of the USB device, fol-
lowed by the device’s interface number. The configuration and interface elements are 
logical components of all USB devices, as described in Section 18.1.2.
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To summarize:

1-0:1.0

| | | |----- interface number

| | |------- configuration number

| |--------- hub port

|----------- root_hub

 

If additional hubs are added   to the topology, they are added to the device name 
by adding a dot (.) followed by the hub port number, chained to the upstream port. 
For example, if we add a hub to the topology just shown, we might end up with 
1-0.2:1.0. This assumes we have a downstream hub with at least two ports, with the 
device plugged into port number 2.

If you examine the content of each directory linked, you can determine what com-
ponent is being referenced. For example, the first entry in Listing 18-3 represents a 
logical USB interface. You can tell this by looking at the files (also called sysfs attri-
butes) pointed to by the symbolic link 1-0:1.0. It contains entries from the interface 
descriptor, such as bInterfaceNumber and bNumEndpoints, both elements of the USB 
2.0 interface descriptor. The first two entries in Listing 18-3 represent the single in-
terface associated with two of the internal USB controllers/root hubs in the Freescale 
i.MX31.

The third entry in Listing 18-3 (2-1) represents an external hub connected to the 
second USB bus. In particular, it is a representation of the struct usb_device for this 
hub.

The three entries in Listing 18-3 starting with usb represent the buses themselves. 
You can see that this system has three buses, because the Freescale i.MX31 processor 
has three USB controllers. The bus number is the final digit in the usb name. The USB 
buses are numbered starting with 1.

In summary, here are some examples:

 • 3-0:1.0 represents an interface (struct usb_interface) connected to bus 3. 
This is the root hub interface for bus 3.

 • 2-1 represents a device (struct usb_device). In the configuration from this 
example, this is an external hub connected to the root hub on bus 2.

 • 2-1.3 represents a downstream device (struct usb_device) from device 2-1,
connected to its port 3.
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 • usb2 represents a USB bus, number 2 (also a struct usb_device).

 • 2-1.3.4:1.0 represents an interface (my iPod) running in configuration 1, 
connected to port 4 of its parent hub, which is connected to port 3 of its par-
ent and then       to the root hub on bus 2!

18.4 Useful USB Tools

A number of useful tools and utilities can help you better understand your system, 
configure drivers, and get detailed information about your USB subsystem. This sec-
tion introduces them.

18.4.1 USB File System

The USB File System (USBFS) is another     type of virtual file system. It is not available 
until you mount it. Some Linux systems automatically mount USBFS, but many do 
not. For you to use USBFS, it must also be enabled in your kernel. Select CONFIG_
USB_DEVICEFS under USB Support in your kernel configuration. Note that this 
system is deprecated but is still included in recent kernels and is useful for understand-
ing your USB system configuration. Because several utilities depend on it, it will likely 
be around for some time.

After your kernel is configured for USB_DEVICEFS (most Linux distributions 
have this enabled by default), you must      mount this virtual file system to use it:

# mount -t usbfs usbfs /proc/bus/usb

After it is enabled, you should    get a listing similar to Listing 18-4.

LISTING 18-4 Directory Listing: /proc/bus/usb

root@imx31:~# ls -l /proc/bus/usb

total 0

dr-xr-xr-x 2 root root 0 Jun  7 14:00 001

-r--r--r-- 1 root root 0 Jun  7 14:36 devices

After the USBFS is mounted, you can get a human-readable listing of the devices 
found in the USB topology, as shown    in Listing 18-5.
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LISTING 18-5 Output of /proc/bus/usb/devices

root@imx31:~# cat /proc/bus/usb/devices

T:  Bus=03 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=480 MxCh= 1

B:  Alloc=  0/800 us ( 0%), #Int=  0, #Iso=  0

D:  Ver= 2.00 Cls=09(hub  ) Sub=00 Prot=01 MxPS=64 #Cfgs=  1

P:  Vendor=0000 ProdID=0000 Rev= 2.06

S:  Manufacturer=Linux 2.6.24-335-g47af517 ehci_hcd

S:  Product=Freescale On-Chip EHCI Host Controller

S:  SerialNumber=fsl-ehci.2

C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=  0mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub

E:  Ad=81(I) Atr=03(Int.) MxPS=   4 Ivl=256ms

T:  Bus=02 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=480 MxCh= 1

B:  Alloc=  0/800 us ( 0%), #Int=  1, #Iso=  0

D:  Ver= 2.00 Cls=09(hub  ) Sub=00 Prot=01 MxPS=64 #Cfgs=  1

P:  Vendor=0000 ProdID=0000 Rev= 2.06

S:  Manufacturer=Linux 2.6.24-335-g47af517 ehci_hcd

S:  Product=Freescale On-Chip EHCI Host Controller

S:  SerialNumber=fsl-ehci.1

C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=  0mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub

E:  Ad=81(I) Atr=03(Int.) MxPS=   4 Ivl=256ms

T:  Bus=02 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  2 Spd=480 MxCh= 4

D:  Ver= 2.00 Cls=09(hub  ) Sub=00 Prot=01 MxPS=64 #Cfgs=  1

P:  Vendor=05e3 ProdID=0608 Rev= 7.02

S:  Product=USB2.0 Hub

C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub

E:  Ad=81(I) Atr=03(Int.) MxPS=   1 Ivl=256ms

T:  Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=480 MxCh= 1

B:  Alloc=  0/800 us ( 0%), #Int=  0, #Iso=  0

D:  Ver= 2.00 Cls=09(hub  ) Sub=00 Prot=01 MxPS=64 #Cfgs=  1

P:  Vendor=0000 ProdID=0000 Rev= 2.06

S:  Manufacturer=Linux 2.6.24-335-g47af517 ehci_hcd

S:  Product=Freescale On-Chip EHCI Host Controller

S:  SerialNumber=fsl-ehci.0

C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=  0mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub

E:  Ad=81(I) Atr=03(Int.) MxPS=   4 Ivl=256ms
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The format of this printout is documented in .../Documentation/usb/proc_usb_
info.txt in the kernel source tree. In summary, each T line documents a new USB 
device. T stands for topology. The T line contains additional information that can be 
used to build a topological diagram of the current USB bus. Each T line contains, 
in order, the   bus number (Bus), level in the hierarchy (Lev), parent level (Prnt), port 
on the parent device (Port), the count of devices at this level (Cnt), device number 
(Dev#), speed (Spd), and the maximum number of children (MxCh).

Additional lines describe bandwidth requirements (B:), device descriptor (D:),
product ID (P:), string descriptors associated with the device (S:), configuration de-
scriptor (C:), interface descriptor (I:), and endpoint     descriptor (E:).

18.4.2 Using usbview

The most valuable way   to use this information is by using a program that builds the 
bus topology with this information contained in it.  Greg Kroah-Hartman wrote a pro-
gram called usbview that is still available on many Linux distributions. It uses the GTK 
library to graphically display the USB topology containing the information retrieved 
from the usbfs file system. I have taken that program and removed the GTK stuff so 
that it can be run in text mode on an embedded system without graphics. It is available 
on this book’s companion website. Search for usbview-text.

Listing 18-6 shows how the output looks from usbview-text when run on the 
Freescale i.MX31. The output is truncated to show only a single device—in this case, 
my iPod. This device contains multiple configurations and illustrates many of the con-
cepts we’ve discussed up to now.

LISTING 18-6 Output of usbview-text

root@imx31:~# /tmp/usbview-text

Bus 2 Device 3  ******** New Device *********

Device Name: iPod

Manufacturer: Apple Inc.

Serial Number: 00xxxxxxxxxx

Speed: 480Mb/s (high)

USB Version:  2.00

Device Class: 00(>ifc )

Device Subclass: 00

Device Protocol: 00

Maximum Default Endpoint Size: 64

Number of Configurations: 2
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LISTING 18-6 Continued

Vendor Id: 05ac

Product Id: 1261

Revision Number:  0.01

Config Number: 1

    Number of Interfaces: 1

    Attributes: c0

    MaxPower Needed: 500mA

    Interface Number: 0

        Name: usb-storage

        Alternate Number: 0

        Class: 08(stor.)

        Sub Class: 06

        Protocol: 50

        Number of Endpoints: 2

            Endpoint Address: 83

            Direction: in

            Attribute: 2

            Type: Bulk

            Max Packet Size: 512

            Interval: 0ms

            Endpoint Address: 02

            Direction: out

            Attribute: 2

            Type: Bulk

            Max Packet Size: 512

            Interval: 0ms

Config Number: 2

    Number of Interfaces: 3

    Attributes: c0

    MaxPower Needed: 500mA

    Interface Number: 0

        Name:

        Alternate Number: 0

        Class: 01(audio)

        Sub Class: 01

        Protocol: 00
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LISTING 18-6 Continued

        Number of Endpoints: 0

    Interface Number: 1

        Name:

        Alternate Number: 0

        Class: 01(audio)

        Sub Class: 02

        Protocol: 00

        Number of Endpoints: 0

    Interface Number: 1

        Name:

        Alternate Number: 1

        Class: 01(audio)

        Sub Class: 02

        Protocol: 00

        Number of Endpoints: 1

            Endpoint Address: 81

            Direction: in

            Attribute: 1

            Type: Isoc

            Max Packet Size: 192

            Interval: 1ms

    Interface Number: 2

        Name:

        Alternate Number: 0

        Class: 03(HID  )

        Sub Class: 00

        Protocol: 00

        Number of Endpoints: 1

            Endpoint Address: 83

            Direction: in

            Attribute: 3

            Type: Int.

            Max Packet Size: 64

            Interval: 125us
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This output lists the information from the various descriptors (device, configura-
tion, interface, and endpoint descriptors) for the iPod in question. The first thing to 
notice is that it contains two configurations—representing a mass storage device and 
an audio recording and playback device.

Configuration 1 contains a single interface with two endpoints, both designed for 
bulk data transfer, one in each direction. These endpoints are for reading and storing 
data on the internal Flash as represented by the USB storage device.

Configuration 2 contains three interfaces. Interface 0 contains no endpoints. Inter-
face 1 contains one endpoint, which is an isochronous interface. This transfer type is 
for streaming real-time data such as audio or video, which occupies a predetermined 
amount of bandwidth. Interface 2 contains a single endpoint of type Interrupt. This 
endpoint transfer type is designed for timely but reliable        delivery of data, such as from 
a mouse or keyboard.

18.4.3 USB Utils (lsusb)

A package called usbutils provides   a utility called lsusb, which provides functionality 
similar to lspci. lsusb makes use of libusb, which must be on your system before 
you can use it. Check to make sure that your embedded distribution contains both 
packages (most do).

lsusb allows you to enumerate all the USB buses in your system and display infor-
mation about each device on those buses. Listing 18-7   displays the physical bus topol-
ogy by passing the -t flag to lsusb.

LISTING 18-7 USB Bus Physical Topology

root@imx31:~# lsusb -t

/:  Bus 03.Port 1: Dev 1, Class=root_hub, Driver=fsl-ehci/1p, 480M

/:  Bus 02.Port 1: Dev 1, Class=root_hub, Driver=fsl-ehci/1p, 480M

    |__ Port 1: Dev 2, If 0, Class=hub, Driver=hub/4p, 480M

        |__ Port 1: Dev 3, If 0, Class=stor., Driver=usb-storage, 480M

/:  Bus 01.Port 1: Dev 1, Class=root_hub, Driver=fsl-ehci/1p, 480M

Here you can see all three buses of the   i.MX31 with a hub plugged into the second 
bus and my iPod plugged into port 1 of that hub. You can also display the descriptors 
for all devices or target just a single device:

root@imx31:~# lsusb -s 2:3

Bus 002 Device 003: ID 05ac:1261 Apple, Inc. iPod Classic
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This format of the lsusb command displays device number 3 from bus number 
2. Adding the -v flag would dump all the descriptors for the device, which would 
produce far too much data for a listing here. I leave that as an exercise for you. If you 
have an iPod, that makes for interesting output, because it has two configurations and 
multiple interfaces and endpoints.

18.5 Common USB Subsystems

This section   introduces the more common USB subsystems that you are likely to en-
counter. Most are easy to set up and use. Together with udev (covered in Chapter 19) 
they can be automatically configured and ready to use immediately after you plug in 
your favorite USB device.

The following sections detail a standard USB class as defined by the USB Class 
Specification Documents. The intent of a standardized USB class is that one common 
class driver can be used to support a wide variety of different vendors’ devices. When 
the device manufacturer conforms to the class specifications, you can operate the de-
vice without a vendor-specific device driver, using only the class driver for the class.

18.5.1 USB Mass Storage Class

Probably the single most    common USB “class” or subsystem used in embedded sys-
tems is USB mass storage. It enables external USB Flash drives and other peripherals 
with internal storage or a high-speed external disk drive such as the Western Digital 
My Book™. USB storage must be configured in your kernel. One of the more confus-
ing aspects of USB storage is that it requires   SCSI subsystem support. In fact, on more 
recent kernels, when you select kernel support for USB mass storage, CONFIG_SCSI 
and CONFIG_BLK_DEV_HD are selected automatically.

As usual, these modules can be statically compiled into the kernel or configured as 
dynamically loadable modules. In these examples, we will use modules because they 
better illustrate what components and, therefore, configuration are required to get 
things working properly. Of course, you should know by now that you need usbcore
and ehci-hcd as the base set of USB drivers. (Note that this assumes that we are con-
tinuing to use the Freescale i.MX31 Applications Processor in these examples. Other 
boards may need a different host controller driver, such as BeagleBoard, which uses 
musb_hdrc.)

To recognize the USB storage class of device, we need to include the usb_storage
driver. However, this driver     depends on scsi_mod, so we need that also. If your system 
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is properly configured, modprobe should be able to detect the dependency and load 
scsi_mod for you when you load usb_storage. These dependencies are located in your 
modules.dep file, which is found in /lib/modules/`uname -r`/modules.dep. Simply 
search for usb-storage, and you will see its dependencies listed on the same line.

Let’s see what this looks like. Listing 18-8 shows   the results of inserting the 
usb-storage module.

LISTING 18-8 Modules for usb-storage

root@imx31:~# modprobe usb-storage

SCSI subsystem initialized

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

root@imx31:~# lsmod

Module                  Size  Used by

usb_storage            35872  0

scsi_mod               97552  1 usb_storage

ehci_hcd               30836  0

usbcore               129752  3 usb_storage,ehci_hcd

Now if we plug a USB storage   device into a hub port, it will be detected as a usb_
storage device by the usb-storage driver:

usb 2-1.2: new high speed USB device using fsl-ehci and address 6

usb 2-1.2: configuration #1 chosen from 2 choices

scsi1 : SCSI emulation for USB Mass Storage devices

scsi 1:0:0:0: Direct-Access     Apple    iPod    1.62 PQ: 0 ANSI: 0

However, we need an additional driver in order to access the partitions on the USB 
storage device. This is where the SCSI emulation layer comes in. The sd-mod driver is 
responsible for handling SCSI disk devices. After we load this module, the disk device 
within the USB storage device is enumerated, together   with any and all partitions on 
the device. Listing 18-9 displays the results.

LISTING 18-9 Adding the sd-mod Driver

root@imx31:~# modprobe sd_mod

sd 1:0:0:0: [sda] 19488471 4096-byte hardware sectors (79825 MB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Assuming drive cache: write through
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LISTING 18-9 Continued

sd 1:0:0:0: [sda] 19488471 4096-byte hardware sectors (79825 MB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 1:0:0:0: [sda] Attached SCSI removable disk

root@imx31:~# lsmod

Module                  Size  Used by

sd_mod                 20720  0

usb_storage            35872  0

scsi_mod               97552  2 sd_mod,usb_storage

ehci_hcd               30836  0

usbcore               129752  3 usb_storage,ehci_hcd

Now we have everything we need to mount the disk partition and access its con-
tents. We can see from Listing 18-9 that the single partition on this USB storage device 
was enumerated as sda1. Assuming that we have a device node /dev/sda1 and kernel 
support for the file system type, we can now mount    this device:

# mount /dev/sda1 /your/favorite/mount/point

When udev is installed and properly configured on your embedded device, all the 
device node creation is done automatically. We cover udev in detail in the next chapter. 
For completeness, we’ll show you how to create this device node on your system if udev 
is not present. The sysfs file system   contains an entry for sda1:

root@imx31:~# find /sys -name sda1

/sys/block/sda/sda1

This sysfs entry has an attribute called dev. This attribute lists the major and minor 
number that the kernel assigned to the /dev/sda1 device. On my Freescale i.MX31, 
it is assigned major=8, minor=1. Using this information, we create a device node, and 
then we can mount and access the partition. Listing 18-10           contains the final results.

LISTING 18-10 Creating a Device Node and Mounting the SD Device

root@imx31~:# cat /sys/block/sda/sda1/dev

8:1

root@imx31:~# mknod /dev/sda1 b 8 1

root@imx31:~# mkdir /media/disk

root@imx31:~# mount /dev/sda1 /media/disk
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LISTING 18-10 Continued

root@imx31:~# dir /media/disk

total 80

drwxr-xr-x 2 root root 16384 Oct 13  2008 Calendars

drwxr-xr-x 2 root root 16384 Oct 13  2008 Contacts

drwxr-xr-x 2 root root 16384 Oct 13  2008 Notes

drwxr-xr-x 2 root root 16384 Oct 13  2008 Recordings

drwxr-xr-x 8 root root 16384 Oct 13  2008 iPod_Control

 
 

mknod was covered    in detail in Chapter 8.

18.5.2 USB HID Class

USB HID (Human Input Devices) is probably     the most common USB device found on 
desktop Linux boxes, and sometimes on embedded systems. HID devices are relatively 
simple to use. The configuration options for USB HID support are found under Device 
Drivers --> HID Devices on the kernel configuration menu. You need to enable CONFIG_
HID_SUPPORT, CONFIG_HID, and CONFIG_USB_HID. This is the generic HID driver that 
implements the USB-defined HID class driver support. Simply insert the usbhid mod-
ule, and modprobe automatically includes    its dependency, the HID core driver (hid):

root@imx31:~# modprobe usbhid

usbcore: registered new interface driver usbhid

usbhid: v2.6:USB HID core driver

root@imx31:~# lsmod

Module                  Size  Used by

usbhid                 18980  0

hid                    31428  1 usbhid

ehci_hcd               30836  0

usbcore               129752  3 usbhid,ehci_hcd

With this infrastructure in place, most common HID devices, such as mice, key-
boards, and joysticks that conform to the HID Class Driver specification, should be 
recognized and enabled. When I plug in my Kensington USB wireless travel mouse, I 
see this:

usb 2-1.4: new low speed USB device using fsl-ehci and address 4

usb 2-1.4: configuration #1 chosen from 1 choice

input: Kensington USB Mouse as /devices/platform/fsl-ehci.1/usb2/2-1/

2-1.4/2-1.4:1.0/input/input2

input: USB HID v1.10 Mouse [Kensington Kensington USB Mouse] on

usb-fsl-ehci.1-1.4
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As we did for USB storage, we can find the device numbers that the kernel assigned 
when it enumerated the mouse in the sysfs file system. Because we already know that 
the device numbers are contained   in the dev attribute, we search for something reason-
able:

root@imx31:~# find /sys -name dev | grep input

/sys/devices/platform/fsl-ehci.1/usb2/2-1/2-1.4/2-1.4:1.0/input/input2/event2/dev

/sys/devices/virtual/input/input0/event0/dev

/sys/devices/virtual/input/input1/event1/dev

Because we plugged the mouse device into port 4 of an external hub, we select the 
device with physical address 2-1.4:1-0:

root@imx31:~# cat /sys/devices/platform/fsl-ehci.1/usb2/2-1/2-1.4/2-1.4:1.0/input
�/input2/event2/dev

13:66

Finally, we create the   device node using these device numbers:

root@imx31:~# mknod /dev/mouse c 13 66

You are now ready to use the device. As with    USB storage, if you have a working 
udev configuration (as described in the next chapter), you don’t need to create the de-
vice node manually. This is the job of udev.

18.5.3 USB CDC Class Drivers

USB Communications Device Class (CDC) drivers   were designed to provide a com-
mon driver framework for entire classes of common communications devices. Several 
standard CDC classes have been defined, including ATM, Ethernet, ISDN PSTN 
(common telephony), wireless mobile devices, cable modems, and similar devices.

One of the best uses of CDC class drivers is the Ethernet CDC functionality. It can 
be very handy to have Ethernet connectivity   on an embedded device during develop-
ment that might not have an Ethernet interface. There are many examples of such 
devices, such as cellular phones and PDAs.

There are two different ways to accomplish this functionality. One is to set up a 
point-to-point link between a host and a peripheral device directly using a standard 
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USB cable. The other model uses an Ethernet “dongle,” basically an Ethernet interface 
with a USB plug. We will look at both methods.9

Setting up a direct USB link between   a host and a peripheral is relatively straight-
forward. Of course, you must have the proper hardware. For example, you cannot 
connect a laptop PC to a desktop PC using only a USB cable. This is because one end 
of every USB link must be an “upstream” device (host or hub), and the other end must 
be a “downstream” device (peripheral device or “gadget”). Remember, USB is a master-
slave protocol.

We will use BeagleBoard   as an example of USB-USB direct networking using the 
CDC class driver. You must enable this functionality in your kernel. Of course, you 
must have your host controller driver, which, for BeagleBoard, is musb_hdrc.ko. This 
is enabled by selecting USB_MUSB_HDRC in your beagle kernel config. For BeagleBoard, 
you must also select TWL4030_USB10 to enable the USB transceiver. Enable peripheral 
mode by selecting USB_GADGET_MUSB_HDRC under USB Gadget support. Finally, select 
Ethernet Gadget (USB_ETH) support under USB Gadget Drivers. This is the driver with 
CDC Ethernet support for the peripheral (slave) side of the link.

On your desktop or laptop host, you need to load usbnet.ko. On most modern 
desktop distributions, udev does this automatically after you plug in the USB cable 
coming from the BeagleBoard. This assumes that you have already enabled your Bea-
gle’s g_ether driver and configured the interface. Let’s see what that   looks like. Listing 
18-11 shows the relevant steps.

LISTING 18-11 Beagle g_ether Configuration

# modprobe twl4030_usb

twl4030_usb twl4030_usb: Initialized TWL4030 USB module

# modprobe g_ether

musb_hdrc: version 6.0, musb-dma, peripheral, debug=0

musb_hdrc: USB Peripheral mode controller at d80ab000 using DMA, IRQ 92

g_ether gadget: using random self ethernet address

g_ether gadget: using random host ethernet address

usb0: MAC ae:9e:55:32:0a:c9

usb0: HOST MAC c2:de:61:36:21:9c

g_ether gadget: Ethernet Gadget, version: Memorial Day 2008

g_ether gadget: g_ether ready

9 Although it may use common elements of CDC, using an Ethernet dongle in the following example is not strictly through a 
CDC class driver.

10 It is more convenient to compile TWL4030_USB directly into the kernel (=y) because there is little reason to ever remove it. 
It is required for all USB modes and takes up very little space.
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LISTING 18-11 Continued

# lsmod

Module                  Size  Used by

g_ether                23664  0

musb_hdrc              35524  1 g_ether

twl4030_usb             5744  0

# ifconfig usb0 192.168.4.2

  

After we load the two device drivers as shown in Listing 18-11, you notice that a 
usb0 interface has been created and enumerated. lsmod shows which modules are load-
ed after these steps. Notice that modprobe automatically        loaded the musb_hdrc module.

The final step is to configure the interface with a valid IP address. Now the Ethernet 
interface over usb0 is ready for showtime. When the USB cable from the BeagleBoard 
is connected to my Ubuntu 8.04 laptop, here are the resulting log entries:

usb 7-3: new high speed USB device using ehci_hcd and address 13

usb 7-3: configuration #1 chosen from 1 choice

usb0: register ‘cdc_ether’ at usb-0000:00:1d.7-3, CDC Ethernet Device,

32:89:fb:38:00:04

usbcore: registered new interface driver cdc_ether

ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

Notice that the host side of the link has automatically installed cdc_ether.ko and 
its dependent module, usbnet.ko. On my Ubuntu 8.04 laptop:

$ lsmod | head -n 3

Module                  Size  Used by

cdc_ether               7168  0

usbnet                 20232  1 cdc_ether

Now we configure the host-side usb0 interface with a valid IP address (easiest if 
it’s on the same subnet), and we are done. We now have a working Ethernet interface 
from the BeagleBoard to a laptop USB host interface. Note that if your laptop/desktop 
distribution was not running udev (for some unimaginable reason) or was not properly 
configured, you would have to manually load usbnet and cdc_ether on the host end of 
your link. If a properly configured peripheral device such as the BeagleBoard is con-
nected to a USB host port on your desktop/laptop host, loading these   modules will 
create and enumerate a usb0 interface.
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18.5.4 USB Network Support

Another method of enabling Ethernet on   an embedded device with a USB port is to 
use an Ethernet “dongle” plugged into a USB host port. These dongles are readily avail-
able at many electronics stores and online. The one we will use in this next example 
was purchased from Radio Shack. It is a nondescript unit manufactured in China, 
containing an ASIX chipset. When plugged into a USB host port, it becomes a fully 
operational Ethernet port.

You need to enable support for this functionality in your kernel. For this particular 
dongle, you must enable USB_USBNET and USB_NET_AX8817X. These options 
are found under Device Drivers --> Network Devices --> USB Network Support in 
your kernel configuration utility. After loading the necessary USB low-level drivers, 
load the ASIX driver and plug in the Ethernet dongle.  The ASIX driver is loaded as 
follows:

# modprobe asix

usbcore: registered new interface driver asix

# usb 1-1.3: new high speed USB device using musb_hdrc and address 3

usb 1-1.3: configuration #1 chosen from 1 choice

eth0 (asix): not using net_device_ops yet

eth0: register ‘asix’ at usb-musb_hdrc-1.3, ASIX AX88772 USB 2.0 Ethernet,

00:50:b6:03:c8:f8

First you see the messages from the low-level USB support, enumerating the new 
USB device (1-1.3). Then the ASIX driver takes over and creates a new Ethernet inter-
face, eth0. Unless you override the choices by passing parameters to the ASIX module 
while loading, it creates a random Ethernet MAC address for you.

The next step is simply to configure the interface with a valid IP address:

# ifconfig eth0 192.168.4.159

eth0: link up, 100Mbps, full-duplex, lpa 0xCDE1

eth0: link up, 100Mbps, full-duplex, lpa 0xCDE1

# ping 192.168.4.1

PING 192.168.4.1 (192.168.0.1) 56(84) bytes of data.

64 bytes from 192.168.4.1: icmp_seq=1 ttl=64 time=1002 ms

64 bytes from 192.168.4.1: icmp_seq=2 ttl=64 time=0.305 ms

64 bytes from 192.168.4.1: icmp_seq=3 ttl=64 time=0.336 ms

That’s all there     is to it!
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18.6 USB Debug

Numerous debug options are available when USB support is enabled. Enabling ver-
bose debug messages is a good way to see what   is going on in your system. Enable 
USB_DEBUG in your kernel configuration to see debug messages from usbcore and 
the hub driver (part of usbcore.) Enabling USB_ANNOUNCE_NEW_DEVICES 
produces a report for each device inserted, listing vendor, product, manufacturer, and 
serial number strings from the device’s descriptors. Both of these options enable output 
to syslog and are found under USB Support --> Support for Host-side USB.

Listing 18-12 displays the syslog entries after you plug in the Ethernet dongle from 
the preceding example with the debug    configuration options just mentioned compiled 
into the kernel.

LISTING 18-12 Debug Output from Ethernet Dongle Insertion

user.info  kernel: usb 1-1.3: new high speed USB device using musb_hdrc

and address 3

user.debug kernel: usb 1-1.3: default language 0x0409

user.info  kernel: usb 1-1.3: New USB device found, idVendor=0b95, idProduct=7720

Jan  1 00:02:38 (none) user.info kernel: usb 1-1.3: New USB device strings:

Mfr=1, Product=2, SerialNumber=3

user.info  kernel: usb 1-1.3: Product: AX88772

user.info  kernel: usb 1-1.3: Manufacturer: ASIX Elec. Corp.

user.info  kernel: usb 1-1.3: SerialNumber: 000001

user.debug kernel: usb 1-1.3: uevent

user.debug kernel: usb 1-1.3: usb_probe_device

user.info  kernel: usb 1-1.3: configuration #1 chosen from 1 choice

user.debug kernel: usb 1-1.3: adding 1-1.3:1.0 (config #1, interface 0)

user.debug kernel: usb 1-1.3:1.0: uevent

user.debug kernel: drivers/usb/core/inode.c: creating file ‘003’

Most of the log entries are self-explanatory. You may be wondering about the last 
log entry, announcing the creation of file ‘003’. You may especially scratch your head 
when you can’t find this file on your target system. It is part of the usb device file sys-
tem, usbfs, and it is not visible until you mount    usbfs as described earlier:

# mount -t usbfs usbfs /proc/bus/usb

 

After usbfs is mounted, you see the file created under /proc/bus/usb/001, which 
represents the USB interface just instantiated. The 001 is the bus number, and 003 
represents the device. The file is not human-readable; it contains data from the descrip-
tors of the USB interface.
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Some platforms and drivers may have   platform-specific debug options. For exam-
ple, BeagleBoard kernels using the musb_hdrc driver can be compiled with debug func-
tionality. Enable USB_MUSB_DEBUG in your kernel configuration to get this functionality. 
To make use of it, you must pass a debug level into the musb_hdrc driver when it is 
loaded. This particular option can produce verbose debug information, including in-
formation on each USB message sent between devices. You may recall that you pass a 
module parameter into a module by specifying it on the modprobe command line, or 
in distribution-specific configuration files. This example sets the debug level to 3 in the 
musb_hdrc driver:

# modprobe musb_hdrc debug=3

 

18.6.1 usbmon

If you are hard-core, you can   try usbmon. This is a USB packet sniffer much like 
tcpdump. The word “packet” is not really used in USB, but the concept is the same. 
usbmon allows you to capture raw traces of the transfers between devices on a USB 
bus. If you were developing a USB device from scratch, for example, it might come in 
handy.

To use usbmon, you must first enable DEBUG_FS, which is found in the Kernel 
Hacking menu in your kernel configuration. You must also enable USB_MON, found 
under Device Drivers --> USB Support --> Support for host side USB.

After it is enabled, you must mount the debugfs file system as follows:

# mount -t debugfs debugfs /sys/kernel/debug

Then load the usbmon.ko driver:

# modprobe usbmon

After this is done, tracing is enabled. You see the debug sockets created by the 
usbmon driver in /sys/kernel/debug/usbmon. The kernel dumps the packets into these 
debug sockets. Like tcpdump, they are dumped in text format, which makes them 
(somewhat) human-readable. Simply start cat on one of the sockets. Listing 18-13 
shows a few lines of trace when a USB Flash drive is inserted into   a BeagleBoard with 
usbmon enabled.
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LISTING 18-13 usbmon Trace

# cat /sys/kernel/debug/usbmon/0u

c717ee40 1830790883 C Ii:1:002:1 0:2048 1 D

c717ee40 1830790944 S Ii:1:002:1 -115:2048 1 <

c717e140 1830791005 S Ci:1:002:0 s a3 00 0000 0003 0004 4 <

c717e140 1830791249 C Ci:1:002:0 0 4 = 01010100

c717e140 1830791279 S Co:1:002:0 s 23 01 0010 0003 0000 0

c717e140 1830791524 C Co:1:002:0 0 0

c717e140 1830791554 S Co:1:002:0 s 23 03 0016 0003 0000 0

The cat process was started before the USB Flash drive was inserted. Fifty-three 
lines of output were generated, indicating that 53 USB packets11 were transmitted. 
It is beyond the scope of this book to go into the format and details of this output 
trace. You can refer to the write-up in the kernel source tree at .../Documentation/
usb/usbmon.txt for those details. However, more detailed knowledge of internal USB 
architecture is required to fully understand it. References are given   at the end of this 
chapter if you want to take the next step in your knowledge of USB.

18.6.2 Useful USB Miscellanea

Often, when you plug a USB device into a host, nothing much happens. Many things 
could be wrong, but the most likely   case is that no device driver is available for the 
device. If, upon insertion of a USB device, you see messages like these in the syslog, 
this means that the device was recognized, its descriptors were read, and a configura-
tion was chosen, but Linux could not find an appropriate device driver for the device:

usb 1-1.1: new high speed USB device using ehci_hcd and address 5

usb 1-1.1: configuration #1 chosen from 1 choice

The remedy is to find and enable the correct device driver for your USB widget. Of 
course, as an embedded developer, you may just have to write one yourself.

Although it may seem obvious, systems that depend on USB devices such as a 
keyboard or mouse should configure these device drivers as statically linked into the 
kernel (=y). This prevents the possibility that the console could be lost on removal of 
a dependent module.

11 The term “packet” is not in the USB vocabulary. However, the details are beyond the scope of this book. See the references at 
the end of the chapter if you want to dive in deeper.
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18.7 Summary

This chapter presented the foundation for understanding the rather complex USB sub-
system. It described the topology and concepts and examined how USB is configured 
and used. The most commonly used USB subsystems were discussed.

• You can better understand USB by examining its physical and logical topology.

• The different types of USB cables and connectors was covered.

• Several examples of USB configuration were presented.

• sysfs was presented in Chapter 9, and its use with USB was covered here.

• Several useful tools for understanding and troubleshooting USB were covered 
in detail.

• Class drivers including mass storage, HID, and CDC were introduced.

• The chapter concluded with some helpful debug tools and tips.

18.7.1 Suggestions for Additional Reading

Universal Serial Bus System Architecture, 2nd Edition   
Don Anderson
Mindshare, Inc., 2001

Enhanced Host Controller Interface Specification for Universal Serial Bus
Version 1.0
Intel Corporation  
www.intel.com/technology/usb/download/ehci-r10.pdf

Essential Linux Device Drivers
Chapter 11, “Universal Serial Bus”
Sreekrishnan Venkateswaran
Prentice Hall, 2008

Linux Device Drivers, 3rd Edition
Chapter 13, “USB”
Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman
O’Reilly, 2005
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Universal Serial Bus Specification
Revision 2.0, April 27, 2000
www.usb.org/developers/docs/usb_20_052709.zip

USB Approved Class Specification Documents
www.usb.org/developers/devclass_docs

  

www.usb.org/developers/docs/usb_20_052709.zip
www.usb.org/developers/devclass_docs


521

19

udev

In This Chapter

■  19.1 What Is udev? 522

■  19.2 Device Discovery 523

■  19.3 Default udev Behavior 525

■  19.4 Understanding udev Rules 527

■  19.5 Loading Platform Device Drivers 538

■  19.6 Customizing udev Behavior 540

■  19.7 Persistent Device Naming 541

■  19.8 Using udev with busybox 545

■  19.9 Summary 548

  



522

L

 

 

ike many Linux kernel subsystems, udev has evolved over time based on a
 variety of input from users, developers, and distribution maintainers, as 

well as historical experience from earlier attempts to solve a similar problem. 
udev replaces devfs, which was an attempt to solve the problem of the runaway 
/dev directory and to address the requirement to create the /dev directory dy-
namically based on discovery of the hardware present in a system.

As with many topics in this book, a thorough treatment of udev would take a 
small book of its own. This chapter takes a quick look at udev, what it can do 
for you, and how it works.

19.1 What Is udev?

As a brief review, /dev is the Linux system   directory that contains special file system 
entries called device nodes. Device nodes were introduced in Chapter 8, “Device 
Driver Basics,” Section 8.3.3, “Device Nodes and mknod.” These special files can be 
thought of as “pointers” to actual device drivers that control   and give applications 
access to the device. A device node creates an association between a human-readable 
name and a kernel device major and minor number pair. A device node also contains 
an attribute marker that specifies the type of device it references, such as block or 
character devices.

In the not-so-distant past, Linux systems came with thousands of device nodes, 
statically created, usually by a script such as MAKEDEV. Chances are, if you have Linux 
running on your home or work machine, you still can find the MAKEDEV script on 
your system.

Without some automated method of determining what devices are present on a 
system, Linux distribution maintainers simply used MAKEDEV to populate /dev with 
virtually every possible device that could be encountered. It is not difficult to under-
stand that this brute-force approach was not ideal.

udev is the latest and greatest subsystem designed to populate the /dev directory 
dynamically, based on information provided by the kernel as devices are discovered. 
It has evolved into a very flexible and powerful way to invoke policy upon the detec-
tion of a piece of hardware in the system. Notice that I did not say “load a device 
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driver” or “create a device node” upon the detection of a piece of hardware. Indeed, 
udev often performs these actions by default, but you can customize the actions that 
take place when a particular device is discovered. udev’s default behavior is to create a 
device node with the name of the device as supplied by the kernel.

There are many ways a device can suddenly appear in your Linux system long after 
it has been booted. Some obvious examples are plugging a USB device into a USB port 
or enabling the wireless interface using a switch found on many laptops. Hot-plugging 
a hard drive into a fault-tolerant chassis might be another.

19.2 Device Discovery

When the kernel discovers a new device, it     creates a uevent that is delivered to a listener 
on a netlink socket1 in user space. That listener is udev. Listing 19-1 shows a typical 
uevent as delivered by the kernel. It was captured using the udevadm utility as follows 
and then plugging a USB four-port hub into the USB host port on a BeagleBoard:

# udevadm monitor --environment

(Note that earlier versions of udev use separate commands, such udevmonitor
or udevtrigger. Newer versions have rolled all these tools into one admin program, 
udevadm, as shown here. Check which version you   are running if this command isn’t 
recognized.)

LISTING 19-1 Typical uevent: USB Device

KERNEL[1244031028.077331] add  /devices/platform/musb_hdrc/usb1/1-1 (usb)

ACTION=add

DEVPATH=/devices/platform/musb_hdrc/usb1/1-1

SUBSYSTEM=usb

DEVTYPE=usb_device

DEVICE=/proc/bus/usb/001/002

PRODUCT=5e3/608/702

TYPE=9/0/1

BUSNUM=001

DEVNUM=002

SEQNUM=321

MAJOR=189

MINOR=1

1 You can learn more about netlink sockets at http://en.wikipedia.org/wiki/Netlink.
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Listing 19-1 shows the first kernel uevent that is emitted upon detection of a USB 
four-port hub when plugged into the USB port on a BeagleBoard. The first line signi-
fies that this uevent is an “add” operation, meaning that the kernel detected the USB 
device. Its kernel name is

/devices/platform/musb_hdrc/usb1/1-1

 
When the kernel detects a new device, one of the default actions it takes is to create 

an entry in the sysfs file system, nearly always mounted on /sys. The DEVPATH attribute 
represents its location within the /sys directory hierarchy and is referenced in many 
places in udev rules and utilities. Other attributes indicate device type, device, product 
(vendor and/or device ID), and some information on where the device physically ex-
ists hierarchically on the USB bus. The DEVICE attribute is the kernel’s idea of a device 
node for this device. This device was detected on USB bus number 001 and has been 
assigned device number 002 by the kernel.

In Listing 19-1, the product vendor code is 5e3, and the device is 608. Referring to 
the list maintained at www.linux-usb.org/usb.ids, vendor 05e3 is Genesys Logic, Inc., 
and product ID 0608 is a USB 2.0 four-port hub.

A uevent sequence number is incremented for every uevent emitted. Finally, the 
major and minor numbers for a device driver are included in the uevent. The major 
number of 189 has been assigned in this case, with a minor number of 1.

When udev receives the uevent, it scans its rules database (described in Section 
19.4). udev looks for matches with the attributes of the device that prescribe the ac-
tions to take based on those attributes. In the absence of any matching rule, udev’s 
default behavior is simply to create the device node with the name supplied by the 
kernel, having the major and minor numbers specified in the kernel uevent. In this 
case, the behavior would be to create the following device node, as displayed by ls -l:

crw-rw---- 1 root root 189, 0 Jun  4 16:37 usbdev1.1

Rules exist in udev to allow the system        designer or distribution maintainer to apply 
custom actions suitable for specific applications. Most often, the default rules specify 
the creation of an appropriate device node in /dev. They typically also include the 
creation of a symlink pointing to this newly created device node, which may be a well-
known shorthand name that applications use to access the device. We will look at udev 
rules in detail in a moment.
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19.3 Default udev Behavior

You might be surprised to know that the uevent detailed in Listing 19-1 is the first of 
many kernel uevents to be delivered. Listing 19-2 details every uevent generated by the 
kernel upon insertion of this four-port hub. This listing    was generated with the follow-
ing udev command:

# udevadm monitor --kernel

LISTING 19-2 Kernel uevents on a Four-Port Hub Insertion

KERNEL× add     /devices/platform/musb_hdrc/usb1/1-1 (usb)

KERNEL× add     /devices/platform/musb_hdrc/usb1/1-1/1-1:1.0 (usb)

KERNEL× add     /class/usb_endpoint/usbdev1.2_ep81 (usb_endpoint)

KERNEL× add     /class/usb_device/usbdev1.2 (usb_device)

KERNEL× add     /class/usb_endpoint/usbdev1.2_ep00 (usb_endpoint)

Note that the timestamp has been removed and replaced with ts to help this listing 
fit on the page and make it easier to read. Every uevent has a timestamp like the one 
shown in Listing 19-1. You can see that five events were generated by the insertion of 
the four-port USB hub. These represent the various components of the USB device hi-
erarchy. USB and its architecture was described in Chapter 18, “Universal Serial Bus.”

Listing 19-3 shows the device nodes that udev has created up to this point. These 
device nodes are created in /dev. These device nodes represent udev’s default behavior. 
For this introductory exercise, no   rules have been supplied to udev to customize its 
behavior.

LISTING 19-3 Initial USB Devices Created by udev

crw-rw---- 1 root root 189, 0 Jan  1 02:03 usb1

crw-rw---- 1 root root 189, 0 Jan  1 02:03 usbdev1.1

crw-rw---- 1 root root 253, 1 Jan  1 02:03 usbdev1.1_ep00

crw-rw---- 1 root root 253, 0 Jan  1 02:03 usbdev1.1_ep81

crw-rw---- 1 root root 189, 1 Jan  1 02:04 usbdev1.2

crw-rw---- 1 root root 253, 3 Jan  1 02:04 usbdev1.2_ep00

crw-rw---- 1 root root 253, 2 Jan  1 02:04 usbdev1.2_ep81

Figure 19-1 shows the hardware configuration that produced the devices shown in 
Listing 19-3.
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FIGURE 19-1 USB four-port hub setup

The first line in Listing 19-3 represents the host controller on the BeagleBoard. As 
we learned in Chapter 18, we can see what it is by looking at its attributes in /sys.
It is the high-speed dual-rate USB controller (generically referred to as the USB host 
controller) that is part of the Texas Instruments OMAP3530 chip on the BeagleBoard. 
This is how we examine the device attributes using /sys:

# cd /sys/devices/platform/musb_hdrc/usb1

# cat idVendor idProduct product

1d6b

0002

MUSB HDRC host driver

The next three lines in Listing 19-3 represent the internal one-port hub that is 
always architecturally associated with the USB host controller. This is the root hub, as 
discussed in Chapter 18. You can think of the physical connector as that one-port hub. 
As discussed in Chapter 18, the USB device consists of logical entities called interfaces 
and endpoints. The device named usbdev1.1 represents the USB interface, and the 
devices named usbdev1.1_ep00 and usbdev1.1_ep81 represent the logical endpoints in 
the hub—the actual logical entities that communicate across the USB bus.

After we plugged the four-port hub into the BeagleBoard’s USB port, the last three 
device nodes in Listing 19-3 were generated by udev using its default behavior. Notice 
the numbering of the device nodes, with the .2 representing the second hub in a con-
nected hierarchy of USB hubs.

You might wonder if different names might    better represent devices of this type. If 
the device were meant directly for use by application programs, such as a USB mouse, 
a name such as usbdev1.3_ep002 wouldn’t be very user-friendly. This is where udev’s 
rules come in.

2 This is exactly what a device node representing a mouse (or any other device) would be called if you plugged it directly into 
this four-port hub.
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19.4 Understanding udev Rules

The real power of udev comes   from its rules engine. System designers and distribu-
tion maintainers use udev rules to organize the /dev hierarchy and assign user-friendly 
names to the device nodes it creates. More often than not, the default device name is 
created, and a symlink with a user-friendly name is created alongside it, associating the 
kernel name with a user-friendly name.

udev’s rules engine can also be used to load device drivers (modules). In fact, using 
udev rules, you can perform just about any action you can imagine upon detection 
of insertion or removal of a device. However, the most common use of udev rules is 
device renaming—creating symbolic links with human-readable names—and device 
driver loading.

Let’s look at a typical set of rules that udev uses to decide what action(s) to take after 
receiving a uevent from the kernel. In recent versions of udev, the default location for 
udev rules is /lib/udev/rules.d. We will    use this as the default location throughout 
the rest of this discussion. Many distributions place udev rules in /etc/udev/rules.d.
Rules files typically are customized by distribution maintainers. They often are grouped 
according to functionality to make them easier to maintain. If you are sitting near a 
Linux machine while reading this, you might take a moment to browse its rules files.

Although the default directory in which udev looks for rules is /lib/udev/rules.d,
udev also looks in /etc/udev/rules.d. Any rules files found there override rules files 
with the same name in /lib/udev/rules.d, allowing you to override the default rules.

In modern Linux distributions, the rules files taken together form the road map for 
actions to be taken upon device discovery or removal. My laptop distribution has 31 
rules files with almost 1,400 lines and almost 700 individual rules! If you scan through 
these rules files, you begin to appreciate the flexibility and power of udev.

When udev is first started, it reads all the rules found in /lib/udev/rules.d/ and 
builds an internal rules table. When a device is discovered, udev matches the actions 
and attributes passed by the kernel in the uevent against the global table of rules it 
maintains. When a match is found, the action(s) determined by that rule (or set of 
rules) are carried out. Let’s look at an example.

Continuing with the previous BeagleBoard example, let’s see what happens when 
we plug an ordinary mouse into the USB port. With no rules, udev creates the obliga-
tory device nodes using the raw name supplied by the kernel in the uevent:

root@beagle:~# ls -l /dev/usbdev1.2*

crw-rw---- 1 root root 189, 1 Jan  1 00:21 /dev/usbdev1.2

crw-rw---- 1 root root 253, 3 Jan  1 00:21 /dev/usbdev1.2_ep00

 1 t t 253  2 J   1 00 21 /d / bd 1 2 81
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These devices represent the basic USB infrastructure. No other devices were cre-
ated. If you are at all familiar with input devices in Linux, you might expect to find a 
device called mouse-something. Many common applications expect to find a mouse 
with such a device name. Furthermore, no device drivers were loaded to handle the 
newly inserted mouse. In a properly configured desktop system, assuming a modern 
and properly functioning Linux distribution, you would find a device with a common 
name (such as mouse*), and you would expect the input device driver and mouse driver 
to have been loaded.3

Recall from Chapter 8 that we can check which modules are loaded using the lsmod
command:

root@beagle:~# lsmod

Module                  Size  Used by

musb_hdrc              36352  0

usbcore               143324  2 musb_hdrc

Remember, this is a bare-bones system   with no udev rules. Only the host controller 
driver (musb_hdrc) and USB core subsystem (usbcore) are currently loaded, and they 
were loaded by hand for this example. We’ll see later how udev can load these platform 
drivers automatically. The interesting point here is that no device drivers were loaded 
to handle a mouse (input) device!

Now let’s add a couple of rules for udev to process, as    detailed in Listing 19-4.

LISTING 19-4 Simple udev Rules

DRIVER!=”?*”, ENV{MODALIAS}==”?*”, RUN{ignore_error}+=”/sbin/modprobe -b

$env{MODALIAS}”

KERNEL==”mouse*|mice|event*”,     NAME=”input/%k”, MODE=”0640”

These two rules are placed in a randomly named file ending in .rules located in /
lib/udev/rules.d.4 The first rule contains the magic that loads the device driver. This 
rule matches if the      kernel uevent attribute DRIVER is not set (indicating that the kernel 
does not know or supply a driver name). The rule instructs udev to RUN the modprobe
program, passing it the contents of the MODALIAS environment variable. We will exam-
ine MODALIAS shortly, but for now, assume it is a “clue” that modprobe uses to load the 
appropriate device driver.

3 This assumes you are dealing with a system configured for dynamically loading device drivers.

4 Of course, in a production environment, we might impose a more sensible name and organizational structure on our rules 
files.
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After the device driver is loaded, the mouse device is recognized beyond just a ge-
neric USB device. The driver recognizes the mouse functions and registers itself as a 
mouse driver. When the driver is loaded, another series of kernel uevents is generated, 
which causes further rules processing to begin. This is where the second rule comes in.

The second rule matches for any kernel uevent with the device named mouse* or 
mice or event*. When a match is found, this rule instructs udev to create a device node 
in a subdirectory called input. udev assumes that /dev is the root path of device nodes 
unless otherwise overridden—but this should almost never be done on a production 
system. The device node assumes the name of the kernel device, as specified here by the 
%k substitution operator. The device node is created with mode 0640, meaning read/
write for user, read-only for group, and no access for other. Listing 19-5 shows the re-
sulting device nodes after the drivers are loaded, and Listing 19-6 displays the modules 
that are loaded and active after this mouse insert event and udev rules processing. No-
tice that the usbhid, mousedev, and evdev modules have been loaded and are ready to 
be used by application devices. You can double-check on your system that the modules 
have been properly loaded by entering the following command:

# cat /dev/input/mouse0

If you move the mouse with this command active, you see control characters re-
ceived on that device. Of course, they are not human-readable characters, and your 
terminal device might complain! The screen    program on ttyUSB0 displays this data 
quite nicely on my Ubuntu 80.4 host.

LISTING 19-5 /dev Entries for the Mouse Device

root@beagle:~# ls -l /dev/input/

total 0

crw-r----- 1 root root 13, 64 Jan  3 21:38 event0

crw-r----- 1 root root 13, 63 Jan  3 21:38 mice

crw-r----- 1 root root 13, 32 Jan  3 21:38 mouse0

The device named event0 represents the first event stream, which is a high-level 
description of an input event. The device named mice represents a mixed input from 
all mouse devices—hence the plural    form of mouse! The device named mouse0 is the 
low-level mouse device itself.
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LISTING 19-6 lsmod After udev Processing

root@beagle:~# lsmod

Module                  Size  Used by

evdev                   9080  0

mousedev               11692  0

usbhid                 16548  0

hid                    36944  1 usbhid

musb_hdrc              36352  0

usbcore               143324  3 usbhid,musb_hdrc

You might be wondering how all the modules in Listing 19-6 were loaded by the 
two simple rules presented in Listing 19-4. These   device drivers were located and load-
ed through the magic of a modalias.

19.4.1 Modalias

When a device is detected, such as   the USB mouse we have been using here as an exam-
ple, the kernel sends out a series of uevents reporting the addition of the device. Listing 
19-7 details the kernel uevents emitted when the USB mouse is plugged into the USB 
port on a BeagleBoard. Listing 19-7 was produced using the     following command:

# udevadm monitor --kernel

LISTING 19-7 Kernel uevents on a USB Mouse Insert

KERNEL× add      /devices/platform/musb_hdrc/usb1/1-1 (usb)

KERNEL× add      /devices/platform/musb_hdrc/usb1/1-1/1-1:1.0 (usb)

KERNEL× add      /class/usb_endpoint/usbdev1.2_ep81 (usb_endpoint)

KERNEL× add      /class/usb_device/usbdev1.2 (usb_device)

KERNEL× add      /class/usb_endpoint/usbdev1.2_ep00 (usb_endpoint)

KERNEL× add      /module/hid (module)

KERNEL× add      /bus/hid (bus)

KERNEL× add      /module/usbhid (module)

KERNEL× add      /bus/hid/drivers/generic-usb (drivers)

KERNEL× add      /devices/platform/musb_hdrc/usb1/1-1/1-1:1.0/

0003:047D:1035.0001 (hid)

KERNEL× add      /class/input/input0 (input)

KERNEL× add      /bus/usb/drivers/usbhid (drivers)

KERNEL× add      /module/mousedev (module)

KERNEL× add      /class/input/mice (input)

KERNEL× add      /class/input/input0/mouse0 (input)

  



19.4 Understanding udev Rules 531

LISTING 19-7 Continued

KERNEL× add      /class/misc/psaux (misc)

KERNEL× add      /module/evdev (module)

KERNEL× add      /class/input/input0/event0 (input)

Timestamps have been shortened to ts for readability. Each kernel event would 
contain a timestamp similar to the one    shown in Listing 19-1. You may be surprised 
to see 18 events emitted upon insertion of a simple USB mouse. The first five events 
report the addition of the raw USB devices themselves and represent the architectural 
components of the USB implementation. These are the USB device, interface, and 
endpoints. Let’s look at the full text of the uevent emitted for USB interface 1-1:1.0.5

Listing 19-8 contains     the full text of that kernel uevent as reported by udevadm:

# udevadm monitor --environment

LISTING 19-8 Kernel uevent for USB Interface 1-1:1.0

KERNEL× add    /devices/platform/musb_hdrc/usb1/1-1/1-1:1.0 (usb)

ACTION=add

DEVPATH=/devices/platform/musb_hdrc/usb1/1-1/1-1:1.0

SUBSYSTEM=usb

DEVTYPE=usb_interface

DEVICE=/proc/bus/usb/001/002

PRODUCT=47d/1035/100

TYPE=0/0/0

INTERFACE=3/1/2

MODALIAS=usb:v047Dp1035d0100dc00dsc00dp00ic03isc01ip02

SEQNUM=322

Notice the MODALIAS field. At first glance, it looks like gibberish. The string can be 
parsed into individual elements that are attributes that the USB device exposes to the 
device driver. Some of the fields are obvious:

v047D Vendor ID (047D stands for Kensington)

p1035 Product ID (1035 is the Kensington product ID for a wireless mouse)

Other fields are device-, class-, and subsystem-specific. They may include attributes 
such as device, device class, and subclass. These attributes provide low-level hardware 
details to the driver. It is beyond the scope of this discussion to get into these details. 

5 This numbering scheme was covered in Chapter 18.
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The important part of this discussion is to realize that the modprobe utility can load a 
module from this MODALIAS. Let’s see how this works.

From the command   line of a BeagleBoard, the following command causes two de-
vice drivers to be loaded. This assumes that you have already loaded the platform USB 
driver (musb_hdrc) and usbcore and that udevd is not running:

# modprobe usb:v047Dp1035d0100dc00dsc00dp00ic03isc01ip02

Executing this modprobe command causes two new modules to be loaded—hid and 
usbhid. You can see this by executing the lsmod command again:

root@beagle:~# lsmod

Module                  Size  Used by

usbhid                 16548  0

hid                    36944  1 usbhid

musb_hdrc              36352  0

usbcore               143324  3 usbhid,musb_hdrc

 

This modprobe invocation causes modprobe to attempt to load usbhid. Because hid
is a dependency of usbhid, it is loaded first. When modprobe is invoked, it consults a 
file called modules.alias, which lives in /lib/modules/`uname -r`. This file is created 
by a utility called depmod, whose purpose is to create a database of module dependen-
cies. If you look at the contents of modules.alias, you will find many lines that look 
very similar to the MODALIAS string of Listing 19-8. modprobe matches the alias passed 
on the command line with a line in the modules.alias file. If a match is found, the 
module in the alias file is loaded. Here is what the matching line in modules.alias
contains:

alias usb:v*p*d*dc*dsc*dp*ic03isc*ip* usbhid

Looking at this line from modules.alias, it becomes clear what the ic field is. The 
USB interface class 0x03 defines human input devices (HIDs). This line basically says 
to accept any values (because of the wildcard, *) for all fields, and if the interface class 
(ic) field contains a 0x03, load usbhid. Voilà!

The modalias entries that are compiled in your modules.alias file come from the 
device drivers themselves. In the example here, you will find the following line in the 
kernel’s hid.mod.c source file:

MODULE_ALIAS(“usb:v*p*d*dc*dsc*dp*ic03isc*ip*”);
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When the modules are compiled   and placed on your system, the depmod utility 
gathers all these strings and builds the modules.alias file for reference by modprobe.
Take a look at the modules.alias file on your Linux box, and then look at the driv-
ers subdirectory of any recent Linux kernel, and you can match up the entries. This 
is how udev causes modules to be automatically loaded—via MODALIAS. In the sample 
rule shown in Listing 19-4, the second line containing the modprobe directive actually 
says the following: If the DEVICE environment variable is not set, and there is text in 
the MODALIAS environment variable as passed in the kernel uevent, pass the MODALIAS to 
modprobe to load the module. Any module dependencies, such as hid in our example, 
are also loaded. This is a very powerful feature of udev.

19.4.2 Typical udev Rules Configuration

As mentioned, the set of rules     that governs udev behavior on your embedded Linux box 
is the responsibility of the system designer or embedded Linux distribution provider. 
In some cases, a package provider adds rules to support its specific functionality. Any 
recent mainstream Linux distribution provides a good example to follow. Listing 19-9 
shows the list of default rules found in a recent snapshot of the Moblin distribution.

LISTING 19-9 Default udev Rules from the Moblin Linux Distribution

$ ls -l /Moblin/lib/udev/rules.d/

total 60

-rw-r--r-- 1 root root  652 2009-05-10 04:02 10-moblin.rules

-rw-r--r-- 1 root root  348 2009-05-10 04:02 40-alsa.rules

-rw-r--r-- 1 root root  172 2009-05-10 04:02 50-firmware.rules

-rw-r--r-- 1 root root 4548 2009-05-10 04:02 50-udev-default.rules

-rw-r--r-- 1 root root  141 2009-05-10 04:02 60-cdrom_id.rules

-rw-r--r-- 1 root root  715 2009-05-10 04:02 60-persistent-serial.rules

-rw-r--r-- 1 root root 1518 2009-05-10 04:02 60-persistent-storage-tape.rules

-rw-r--r-- 1 root root  708 2009-05-10 04:02 60-persistent-v4l.rules

-rw-r--r-- 1 root root  525 2009-05-10 04:02 61-persistent-storage-edd.rules

-rw-r--r-- 1 root root  390 2009-05-10 04:02 75-cd-aliases-generator.rules

-rw-r--r-- 1 root root 2403 2009-05-10 04:02 75-persistent-net-generator.rules

-rw-r--r-- 1 root root  137 2009-05-10 04:02 79-fstab_import.rules

-rw-r--r-- 1 root root  779 2009-05-10 04:02 80-drivers.rules

-rw-r--r-- 1 root root  234 2009-05-10 04:02 95-udev-late.rules

Notice the grouping of rules files. In a fashion similar to system V initscripts, num-
bers are used to fix the read order. The rules files   are processed in the same order as 
Listing 19-9. A few of these are worth peeking into.
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The rules file 50-udev-default.rules is part of the udev package (from a current 
udev snapshot) and is provided by the udev team as an example. As it turns out, the 
Moblin version is very close to this default version found in the udev package. This 
rules file establishes a set of defaults for many common Linux devices, including char-
acter devices such as ttys, ptys, serial devices, memory devices such as /dev/null and 
/dev/zero, and many other devices commonly found on any Linux system.

Other rules files provide   distribution-specific attributes and actions for specific 
classes of devices. In the Moblin rules file collection, these include ALSA rules for 
sound devices, CD-ROM rules definitions, and several sets of rules designed to provide 
persistent device names for several categories of devices. You can find much more detail 
in the udev documentation, which is referenced at the end of this chapter.

Another comment about udev rules is worth mentioning. Unless you use a specific 
syntax to cause other behavior, udev rules are   cumulative. In other words, you may 
have several rules for a single device, spanning multiple rules files, each matching on 
different attributes. Each of the actions defined by those rules is applied to the device 
or subsystem in question. For instance, you can separate rules that give names to de-
vices from rules that apply permissions. Recent Ubuntu distributions have an example 
of this idea in rules files named 20- names.rules and 40-basic-permissions.rules.

Looking at 20-names.rules and 40-basic-permissions.rules easily illustrates the 
“stacking” nature of udev rules. A single device can match multiple rules, and these 
rules taken together define the actions taken for a specified subsystem or device. For 
example, consider common sound devices such as controlC0, the sound card interface. 
A rule in 20-names.rules might look like this:

KERNEL==”controlC[0-9]*”, NAME=”snd/%k”

This rule simply matches the kernel devices called controlC0, controlC1, and so on 
and assigns the device name snd/%k. %k refers to the actual name that the kernel passes 
to udev—in this case, controlC. The snd/ prepended to the device name instructs 
udev to create that device node under a subdirectory in /dev called snd. So you end up 
with /dev/snd/controlC0 as the device node for the first sound card interface.

The next rule from 40-permissions.rules might look like this:

KERNEL=”controlC[0-9]*”,  MODE=”0666”

This rule, when scanned by udev, is basically concatenated to the preceding rule 
and causes the device node to be created with read/write permissions for all (user, 
group, and other).
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In this way, Linux distributions can create clean rule sets that separate functionality 
for easy maintenance. In this discussion, you can see that the rules for assigning device 
names to categories (such as subdirectories under /dev) are maintained in one rules 
file, and the rules to set permissions for these devices are maintained in a separate file 
dealing exclusively with permissions. This is very clean and easy to maintain.

To be an expert, you should study the excellent document referenced at the end of 
this chapter, “Writing udev Rules,” by Daniel Drake.

One final note about rules: udev is event-driven. It    doesn’t do anything unless an 
event is triggered. For example, even though udev monitors its rules directory using 
inotify and rescans the rules if you modify a rules file, no action is taken on a recently 
edited rule until a device that uses that rule is removed     and reinstalled.6

19.4.3 Initial System Setup for udev

udev is a user space process. As   such, it doesn’t get to run until the kernel has completed 
the boot process and mounted a root file system. The vast majority of Linux systems, 
embedded or not, run init as the very first process, as described in Chapter 6, “User 
Space Initialization.” In a system where udev is in charge of creating device nodes, we 
must provide some mechanism for init and its child processes to access the most com-
monly required devices before udev is run. These usually include the console device; 
input/output devices including stdin, stdout, and stderr; and a few others.

The simplest and most common method for small embedded systems is simply 
to have a few static device nodes already created on /dev, and then to mount a tmpfs 
on top of /dev for use by udev before starting udev. Listing   19-10 is an example of a 
simplified startup script for udev-based systems.

LISTING 19-10 Simple udev Startup Script

#!/bin/sh

# Simplified udev init script

# Assumes we’ve already mounted our virtual file systems, i.e. /proc, /sys, etc.

# mount /dev as a tmpfs

mount -n -t tmpfs -o mode=0755 udev /dev

# Copy default static devices, which were duplicated here

cp -a -f /lib/udev/devices/* /dev

# udev does all the work of hotplug now

6 You can cause a manual trigger using udevadm trigger, which would cause your change to be applied.
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LISTING 19-10 Continued

if [ -e /proc/sys/kernel/hotplug ]; then

    echo “” > /proc/sys/kernel/hotplug

fi

# Now start the udev daemon

/sbin/udevd --daemon

# Process devices already created by the kernel during boot

/sbin/udevadm trigger

# Wait until initial udevd processing (from the trigger event)

# has completed

/sbin/udevadm settle

This script is the minimum required functionality to configure your system for 
dynamically created device nodes using   udev. The first thing it does is mount a tmpfs 
(temporary RAM-based file system utilizing virtual memory) on top of /dev. When 
the mount command succeeds, any previous contents of /dev are gone, and /dev shows 
up as an empty directory.

The next action is to copy a small set of static device nodes to replace the collection 
you need for boot, such as console, standard input/output, and a few others. Listing 
19-11 is an example of such a collection, which was placed in /lib/udev/devices
during file system creation. The original location is up to you; it is not particularly 
important.

The last action of the script in Listing 19-10 is to make sure no hotplug agent is 
specified in /proc. The kernel delivers uevents to this user space agent it specified. 
However, we want udev to receive these messages   over the netlink socket, as described 
earlier, so we null this entry.

LISTING 19-11 Default Static Device Nodes

root@beagle:~# ls -l /lib/udev/devices/

total 8

crw------- 1 root root 5, 1 Jun  8  2009 console

crw-rw-rw- 1 root root 1, 3 Jun  8  2009 null

crw-rw-rw- 1 root root 5, 2 Jun  8  2009 ptmx

drwxrw-r-- 2 root root 4096 Jun  8  2009 pts

drwxrw-r-- 2 root root 4096 Jun  8  2009 shm

lrwxrwxrwx 1 root root   15 Jun  8  2009 stderr -> /proc/self/fd/2

lrwxrwxrwx 1 root root   15 Jun  8  2009 stdin -> /proc/self/fd/0

lrwxrwxrwx 1 root root   15 Jun  8  2009 stdout -> /proc/self/fd/1
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Now that we’ve set up everything, it’s time to start the udevd daemon. You can see 
this in Listing 19-10 on the line calling /sbin/udevd. If you’ve studied this startup 
script, you may be wondering what the last actions are all about.

19.4.3.1 Coldplug Processing

During the kernel boot process, various   subsystems are initialized, and many devices 
are discovered and registered, along with their corresponding entries in /sys. On the 
BeagleBoard used for the examples in this chapter, nearly 200 devices are reported in 
/sys that ordinarily would be processed by udev for possible device node creation, or 
device driver load. The problem is that udev is not started until some time after init
runs; therefore, those nearly 200 devices remain unprocessed by udev. This is the rea-
son the trigger facility exists in udev.

Take a look at the last two shell commands in the script of Listing 19-10. udevdadm
trigger causes udev to process all the entries in /sys by playing back the kernel uevents 
and processing them in the normal fashion. To illustrate the scope of this processing 
without taking up the next 12 pages in this book, we’ll show the count of devices in 
/dev before and after the trigger event, using the following command:

root@beagle:~# find /dev -type c -o -type b -o -type l | wc -l

6

 

Note that the three device nodes found in this find command match exactly the 
contents of Listing 19-11. Our initial set of static devices has exactly three character 
devices, and three symbolic links, for a total of six entries. The final two entries in List-
ing 19-11 are directories we filtered out with the find command just shown.

After running the udevadm trigger command in our sample startup script of List-
ing 19-10, which causes udev to play back all the kernel uevents, we see that more than 
100 new devices and over 400 symbolic links have been created. This is illustrated by 
the following sequence of commands:

root@beagle:~# udevadm trigger

root@beagle:~# udevadm settle

root@beagle:~# find /dev -type c -o -type b | wc -l

135

root@beagle:~# find /dev -type c -o -type b -o -type l | wc -l

410
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Now that udev has processed all the devices that the kernel found during boot, we find 
132 new device nodes, for a total of 135 (including the original three from our static 
collection). Adding in the symbolic links, we now have a total of 410 files in /dev that 
can reference a device. This is how udev “post-processes” the devices that the kernel 
creates during boot. From now on, as long as the udevd daemon remains running, the 
kernel reports to udev any devices that are added or removed,    and udev processes them 
according to its rules set.

19.5 Loading Platform Device Drivers

Platform device drivers    are easy to load dynamically using udev. A default rule found 
in the udev package can be installed on your embedded system. This rule should look 
like the first rule in Listing 19-4. It is reproduced here for convenience:

DRIVER!=”?*”, ENV{MODALIAS}==”?*”, RUN{ignore_error}+=”/sbin/modprobe

-b $env{MODALIAS}”

This rule says to run modprobe, passing the value of MODALIAS to modprobe under 
the following conditions: MODALIAS is set by the driver, and the DRIVER environment 
variable is not. As long as your driver contains a MODULE_ALIAS macro with the proper 
format, this is passed to modprobe to be matched with the information collected in the 
modules.alias file produced by depmod. This is explained in detail in Section 19.4.1.

As an example, let’s look at the platform driver for the Inventra dual-role USB 
controller driver found on the OMAP3530 on the BeagleBoard. Listing 19-12 shows 
a few lines from this USB host controller driver from a recent Linux kernel. The last 
line contains the magic that translates to an  entry to the modules.alias file, which 
modprobe uses to select which driver to load.

LISTING 19-12 Portion of musb_hdrc.c

#define MUSB_DRIVER_NAME “musb_hdrc”

const char musb_driver_name[] = MUSB_DRIVER_NAME;

MODULE_DESCRIPTION(DRIVER_INFO);

MODULE_AUTHOR(DRIVER_AUTHOR);

MODULE_LICENSE(“GPL”);

MODULE_ALIAS(“platform:” MUSB_DRIVER_NAME);
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The macro MODULE_ALIAS effectively creates a char string (const char) that is placed 
in a special section of the device driver (module) object file. This string is similar to an 
environment variable and exists   in the form alias=”string”. This special section is 
named .modinfo and contains attributes describing various aspects of the driver. You 
can see this section header using your cross version of readelf. Recall that we covered 
the details of readelf in Chapter 13, “Development Tools.” The .modinfo section can 
be seen using the following command:

$ arm_v7_vfp_le-readelf -e drivers/usb/musb/musb_hdrc.ko | grep modinfo

  [11] .modinfo          PROGBITS        00000000 0063dc 0001ec 00   A  0   0  4

To see the human-readable contents of the .modinfo section, use the     modinfo com-
mand, which comes from the module-init-tools package:

$ modinfo drivers/usb/musb/musb_hdrc.ko

filename:       drivers/usb/musb/musb_hdrc.ko

alias:          platform:musb_hdrc

license:        GPL

author:         Mentor Graphics, Texas Instruments, Nokia

description:    Inventra Dual-Role USB Controller Driver, v6.0

srcversion:     70956E00448DDC456F54F73

depends:        usbcore

vermagic:       2.6.29.1_omap3-omap3530_evm-00003-g1c23d15 mod_unload

modversions ARMv7

parm:           debug:Debug message level. Default = 0 (uint)

parm:           fifo_mode:initial endpoint configuration (ushort)

parm:           use_dma:enable/disable use of DMA (bool)

Notice the module alias—platform:musb_hdrc. As soon as you have all the pieces 
in place, you should be able to manually load your device driver using the modalias 
string, as it would be passed from udev:

# modprobe platform:musb_hdrc

Of course, if udev is configured correctly, with a rule similar to the one shown in 
Listing 19-4, udev loads this module for you using the modalias string. The module 
is loaded after the call to udevadm trigger found   in the sample udev startup script 
shown in Listing 19-10. That’s all there is to it!
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19.6 Customizing udev Behavior

Your own imagination   might be the limit of what you can do with udev. For one thing, 
you can run your own programs upon device add or remove. For example, a rule such 
as the following might be used to kick off a software upgrade process when someone 
plugs a USB storage device into your embedded Linux appliance:

ACTION=”add”, KERNEL==”sd[a-d][0-9]”, RUN+=”/bin/myloader”

Your program /bin/myloader is handed a copy of the udev environment related to 
this device. Next, your program can validate the contents of the newly installed device 
and initiate any actions that might be required. This is one way to automate the pro-
cess of installing a new software image on your embedded Linux box.

If you choose this approach, it might be wise to fork and detach, allowing the udev 
parent process to complete and return. This action avoids any unpleasant surprises in 
case udev decides now or in future revisions to kill any child processes it deems to be 
taking too much time to complete. Also, consider the unique execution environment. 
When your program runs, it inherits a minimal execution environment provided by 
udev. This may be insufficient for your needs. You might need to create your own en-
vironment for your special handler program to complete its tasks.

19.6.1 udev Customization Example: USB Automounting

Listing 19-13 demonstrates   a set of rules that can automatically mount a USB Flash 
drive inserted into your embedded Linux box.

LISTING 19-13 USB Automounting Rules

# Handle all usb storage devices from sda<n> to sdd<n>

ACTION==”add”, KERNEL==”sd[a-d][0-9]”, SYMLINK+=”usbdisk%n”, NAME=”%k”

ACTION==”add”, KERNEL==”sd[a-d][0-9]”, RUN+=”/bin/mkdir -p /media/usbdisk%n”

ACTION==”add”, KERNEL==”sd[a-d][0-9]”, RUN+=”/bin/mount /dev/%k /media/usbdisk%n”

ACTION==”remove”, KERNEL==”sd[a-d][0-9]”, RUN+=”/bin/umount /media/usbdisk%n”

ACTION==”remove”, KERNEL==”sd[a-d][0-9]”, RUN+=”/bin/rmdir /media/usbdisk%n”

Upon device detection, udev creates a symbolic link to the actual device called 
usbdiskn, where n is the device number. For example, consider usbdisk0: after udev 
processing is complete. You would have a symbolic link called /dev/usbdisk0 pointing 
to the actual device. Next, the RUN directive would create a directory under /media with 
the same name. Notice that because the -p option is passed to mkdir, all entries along 
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 this new path are created if they don’t already exist. The final action on add is to mount 
the newly found device on the new mount point created in /media. When the device 
is later removed, umount is executed, and the directory is removed.

Inserting the USB Flash drive into a BeagleBoard with the preceding rules located 
in /lib/udev/rules/99-usb-automount.rules results     in the following:

# ls /media

usbdisk1

# ls /media/usbdisk1/

u-boot.bin         uImage-beagle

19.7 Persistent Device Naming

Persistent device naming     is implemented in udev by default, using a scheme originally 
proposed by Hannes Reinecke. The persistent naming rules are in the rules files con-
taining the string “persistent”. Let’s examine how this all works.

If you look at your /dev directory in your udev-based system, you can see this in 
action for disk-based devices.

Listing 19-14 shows the files in the /dev/disk directory on my BeagleBoard after 
two USB Flash drives have been inserted into a hub      attached to the BeagleBoard USB 
port.

LISTING 19-14 Symlink by-id in /dev/disk

# ls -l /dev/disk/by-id/

mmc-SD02G_0x5079cde8 -> ../../mmcblk0

mmc-SD02G_0x5079cde8-part1 -> ../../mmcblk0p1

mmc-SD02G_0x5079cde8-part2 -> ../../mmcblk0p2

usb-Flash_Drive_SM_USB20_AA04012700008398-0:0 -> ../../sdb

usb-Flash_Drive_SM_USB20_AA04012700008398-0:0-part1 -> ../../sdb1

usb-SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0 -> ../../sda

usb-SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0-part1 -> ../../sda1

The output of ls -l has been trimmed here to avoid the clutter of uninteresting 
data. Seven symlinks in this directory are called by-id. Each symlink points back to a 
device node created by udev for the device in question. Here we see, from top to bot-
tom, an SD card, a generic USB Flash drive, and a Cruzer Mini USB Flash drive. In 
each case, first is the disk device, and then each partition found on the device is enu-
merated. You can see two partitions on the SD card (the mmcblk0 is the disk device, and 
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the mmcblk0p1 and mmcblk0p2 are the partitions) and, in similar fashion, one partition 
each on the USB Flash drives.

The symlink is the persistent name. You can now remove the USB Flash drives and 
reinsert them into different hub ports. udev, through its helper utility usb_id, assigns 
the same names (symlinks) to the device pointing to the correct device node, which is 
not necessarily the same raw device node     as the first time you plugged them in.

19.7.1 udev Helper Utilities

The unique ID strings   shown in Listing 19-14 were produced either by reading the 
raw device in question or by querying attribute data in /sys. This is done by a small 
collection of helper utilities found in the extras directory of the udev git tree. There 
are several, including scsi_id, cdrom_id, path_id, and volume_id. See the udev git 
tree under the subdirectory extras for all of them. We will look at the usb_id utility 
to gain an understanding of how they work.

The rule that generates the persistent name (unique ID) comes from 60-persistent-
storage.rules in the udev source tree:

KERNEL==”sd*[!0-9]|sr*”, ENV{ID_SERIAL}!=”?*”, SUBSYSTEMS==”usb”,

IMPORT{program}=”usb_id --export %p”

This rule says that for any kernel device with an ACTION of add or change,7 where 
the kernel device name is sd* or sr* and does not contain a device number (the base 
disk device itself, not a partition), call the program     usb_id and capture its output from 
stdout as environment variables. %p is a udev string substitution operator and refers to 
the DEVPATH—the device path in /sys. Let’s see what this looks like if we execute it 
manually on the console:

# /lib/udev/usb_id --export /devices/platform/musb_hdrc/usb1/1-1/1-1.2/1-1.2:1.0

/host1/target1:0:0/1:0:0:0/block/sda/sda1

ID_VENDOR=SanDisk

ID_VENDOR_ENC=SanDisk\x20

ID_VENDOR_ID=0781

ID_MODEL=Cruzer_Mini

ID_MODEL_ENC=Cruzer\x20Mini\x20\x20\x20\x20\x20

ID_MODEL_ID=5150

ID_REVISION=0.1

7 Look at the 60-persistent-storage.rules file to see exactly how this is done. The add|change clause is at the 
top of the rules file in a pseudo if statement, which bypasses the entire rules file if ACTION is not add or change.
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ID_SERIAL=SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0

ID_SERIAL_SHORT=SNDK8BA6040286306704

ID_TYPE=disk

ID_INSTANCE=0:0

ID_BUS=usb

ID_USB_INTERFACES=:080650:

ID_USB_INTERFACE_NUM=00

ID_USB_DRIVER=usb-storage

When this usb_id command is executed as part of a rule, the output is imported 
as part of the environment for this particular udev event. Later   in the same rules file 
(60-persistent-storage.rules), you find this rule:

KERNEL==”sd*|sr*”, ENV{DEVTYPE}==”disk”, ENV{ID_SERIAL}==”?*”,

SYMLINK+=”disk/by-id/$env{ID_BUS}-$env{ID_SERIAL}”

This rule actually creates the persistent name, which was produced by usb_id. This 
rule says for a kernel uevent where ACTION is either add or change, and the kernel de-
vice name is sd* or sr* (a SCSI-type disk device), and the udev environment variable 
DEVTYPE is set to disk, and the udev environment variable ID_SERIAL is a non-null 
string, create the symlink with the concatenation of ID_BUS and ID_SERIAL joined      by a 
dash (-). That is the resulting symlink, as shown in Listing 19-14.

These utilities are not necessarily meant to be used by the end user. It is much easier 
to use the udevadm info command to get information you might need to make use of 
persistent device names. Listing 19-15 has an example of the output of udevadm info
for the same device we’ve been discussing here, the Cruzer Mini USB Flash drive. This 
utility is easier to use and is meant to be used by a system admin or developer. We 
will pass it the device name from /dev—in this example, the      first partition of the sda 
device.

LISTING 19-15 Device Query Using udevadm

# udevadm info --query=env --name=/dev/sda1

DEVPATH=/devices/platform/musb_hdrc/usb1/1-1/1-1.2/1-1.2:1.0/host1/

target1:0:0/1:0:0:0/block/sda/sda1

MAJOR=8

MINOR=1

DEVTYPE=partition

DEVNAME=/dev/sda1

ID_VENDOR=SanDisk

ID_VENDOR_ENC=SanDisk\x20
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LISTING 19-15 Continued

ID_VENDOR_ID=0781

ID_MODEL=Cruzer_Mini

ID_MODEL_ENC=Cruzer\x20Mini\x20\x20\x20\x20\x20

ID_MODEL_ID=5150

ID_REVISION=0.1

ID_SERIAL=SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0

ID_SERIAL_SHORT=SNDK8BA6040286306704

ID_TYPE=disk

ID_INSTANCE=0:0

ID_BUS=usb

ID_USB_INTERFACES=:080650:

ID_USB_INTERFACE_NUM=00

ID_USB_DRIVER=usb-storage

DEVLINKS=/dev/block/8:1 /dev/disk/by-id/usb-SanDisk_Cruzer_Mini_SNDK-
8BA6040286306704-0:0-part1 /dev/usbdisk1

 
So how can we use this data? We saw earlier a method to mount USB Flash disks us-

ing udev rules. We can use the unique identifier      as produced here by udevadm info to 
build rules in a udev rules file. Note that we can use any of these attributes if it makes 
sense to do so.

The most common way to use this infrastructure is to provide human-readable or 
easily recognizable names for devices in a persistent manner. Consider the following 
rule, for example:

ACTION==”add”, ENV{ID_SERIAL}==”SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0”,

SYMLINK+=”cruzer”

This would cause a new symlink to be added to your /dev directory, pointing at 
whatever device name the kernel and udev created for this device:

# ls -l /dev/cruzer

lrwxrwxrwx  1 root  root  4 Jan  1 22:12 /dev/cruzer -> sda1

Revisiting our USB automounting rules from Listing 19-13, we can create rules 
that will always mount this particular Cruzer Mini USB Flash disk on a mount point 
of our choice, regardless of which order it is inserted in or where it ends up in the USB 
device hierarchy:

ACTION==”add”, ENV{ID_SERIAL}==”SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0”,

RUN+=”/bin/mkdir -p /media/cruzer”
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ACTION==”add”, ENV{ID_SERIAL}==”SanDisk_Cruzer_Mini_SNDK8BA6040286306704-0:0”,

RUN+=”/bin/mount /dev/%k /media/cruzer”

Using these rules, in the sample case installed in a file called 99-usb-automount.
rules, each time you insert your Cruzer Mini USB Flash drive (no matter in what 
order or on what hub port), it will always be mounted      and the contents made available 
on /media/cruzer. That’s the magic of udev and persistent device naming!

 

19.8 Using udev with busybox

Look back at the first rule in Listing 19-4. This rule causes modprobe to be invoked with 
the -b flag. This flag is used to check against a modules blacklist, if present. Currently 
this is incompatible with the busybox implementation of modprobe.8 When modprobe
is run without modification, you simply don’t see any drivers loaded when that is the 
expected action. The error invoking modprobe will not be apparent, because the udev 
daemon is the recipient of messages on stdout and stderr while executing programs in 
its context. Therefore, error messages are not displayed on the console.

The simplest way around this is to use the real version of modprobe—that is, in-
clude the module-init-tools package in your embedded system. This package provides 
the full versions of modprobe, lsmod, and insmod. You need to compile busybox with 
support for depmod disabled or, at a minimum, remove the busybox symbolic links 
pointing the module-init-tools utilities back to busybox. Depending on how you have 
configured your busybox, you may have either links or scriptlets—simple script wrap-
pers that invoke busybox for each supported function. See Chapter 11, “BusyBox,” for 
more details on these installation options.

19.8.1 busybox mdev

busybox has tiny versions of many   popular and useful Linux utilities, so why not a 
udev implementation? Simply stated, mdev is busybox’s answer to udev. mdev exists to 
dynamically create device nodes in /dev upon device discovery. Because it is a simpli-
fied implementation, it does not possess the richness and flexibility of the stand-alone 
udev package.

As with udev, busybox mdev requires sysfs support in the kernel, as well as being 
hotplug-enabled. It is hard to imagine a modern embedded Linux system without 
these kernel subsystems enabled!9

8 Tested on busybox v1.41.1.

9 OK  I can imagine a very minimal system with hotplug and sysfs disabled  but it would be very specific and limited in func
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mdev uses the older hotplug infrastructure to receive kernel uevents. Recall from 
Listing 19-10 that for udev, we made sure that the /proc file for the hotplug agent 
name was nulled (disabled), so the kernel would not pass uevents to this agent. busy-
box mdev requires the hotplug agent to be itself, called through /bin/mdev. So the first 
order of business in a startup script is to set this /proc file to point to mdev:

echo “/bin/mdev” > /proc/sys/kernel/hotplug

Of course, this must be done after mounting /proc in your startup script. Not so 
obvious is the requirement to have /sys mounted as well. When these steps are com-
plete, you start the utility. Listing 19-16 is a sample    startup script using busybox mdev.

LISTING 19-16 Sample Startup Script for busybox mdev

#!/bin/sh

# mount virtual file systems

mount -t proc /proc /proc

mount -t sysfs /sys /sys

mount -t tmpfs /tmp /tmp

mount -t devpts /pts /dev/pts

# mount /dev as a tmpfs

mount -n -t tmpfs -o mode=0755 udev /dev

# Copy default static devices, which were duplicated here

cp -a -f /lib/udev/devices/* /dev

# Set hotplug agent

echo “/bin/mdev” > /proc/sys/kernel/hotplug

# Start busybox mdev

/bin/mdev -s

mdev’s default behavior is simply to create a device node in /dev with the same 
name as the kernel device name passed in the uevent. This is quite useful if you don’t 
need the flexibility of the stand-alone udev. It    usually results in a well-known device 
name for the device in question.

In Listing 19-16, the -s flag passed to mdev upon its invocation is similar to the 
udevadm trigger action. It causes mdev to scan /sys and create device nodes for 
devices found there. In this way, device nodes are created for initial devices that have 

  



19.8 Using udev with busybox 547

already been discovered by the kernel, before init gets to run (or, in the busybox case, 
busybox init).

Booting a busybox configured system, with udev removed and before mdev is start-
ed, we have this:

# find /dev -type b -o -type c | wc -l

3

Executing /bin/mdev (which is a busybox link or scriptlet pointing to /bin/busybox
itself ) results in this:

# find /dev -type b -o -type c | wc -l

130

19.8.2 Configuring mdev

busybox mdev can be customized   by an optional configuration file called /etc/mdev.
conf. It is largely used to customize the permissions of device nodes created by mdev. 
By default, mdev creates device nodes with uid:gid set to root:root, and permissions of 
0660. Entries in /etc/mdev.conf are simple and take this form:

device uid:gid octal permissions

device is a simple regex of the device name, similar to udev’s device name speci-
fication. The rest of the fields are self-explanatory, with the note that uid and gid are 
numeric, and not the ASCII user/group name.

Some examples follow. The following mdev rule changes the default permissions to 
777, leaving the default user:group at root:root. You can use this to change the default 
user and/or group as well:

.* 0:0 777

You also can rename (and relocate) device nodes using /etc/mdev.conf. This rule 
moves all mouse devices to a subdirectory called input in dev:

mouse* 0:0 660 input/

You can learn more about busybox mdev   in its documentation files contained in 
the busybox source tree.
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19.9 Summary

This chapter presented the details of udev, a Linux utility that adds a great deal of value 
to any Linux distribution. Correct use of udev helps create a very user-friendly system 
that can discover and configure devices without human intervention.

• We started this chapter by introducing udev and describing its purpose.

• udev’s default behavior was presented as a foundation for understanding how 
to customize it. 

• We examined a typical system setup to demonstrate the complexities of using 
udev.

• Customizing udev was discussed to allow system designers and distribution 
maintainers to build systems tailored to specific use cases.

• For busybox users, we examined the busybox mdev utility, a lightweight alter-
native to udev.

• We concluded by looking at some examples of busybox mdev configuration.

19.9.1 Suggestions for Additional Reading

“Udev: A Userspace Implementation of devfs”    
Greg Kroah-Hartman
www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-
OLS2003.pdf

Linux Allocated Devices
Torben Mathiasen, maintainer 
www.lanana.org/docs/device-list/devices.txt

Linux Device Drivers, 3rd Edition 
(especially Chapter 14, “The Linux Device Model”)
Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman
O’Reilly, 2005

“Writing udev Rules” 
Daniel Drake
http://reactivated.net/writing_udev_rules.html

Persistent Device Names in Linux 2.6.x
Hannes Reinecke
July 12  2004
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T his is an exact reproduction of the GNU Public License (GPL) as authored 
and published by the Free Software Foundation. An     electronic copy can be 

obtained at www.fsf.org. This is GPL Version 2. A new GPL Version 3 has been 
published, but the vast majority of programs released under GPL V2, including 
the Linux kernel, are still using V2. Therefore, GPL V2 is reproduced here in its 
entirety for reference.

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
Everyone is permitted  to copy and distribute verbatim copies of this license 
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and 
change it. By contrast, the GNU General Public License is intended to guarantee 
your freedom to share and change free software—to make sure the software is free 
for all its users. This General Public License applies to most of the Free Software 
Foundation’s software and to any other program whose authors commit to using 
it. (Some other Free Software Foundation software is covered by the GNU Lesser 
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our 
General Public Licenses are designed to make sure that you have the freedom to 
distribute copies of free software (and charge for this service if you wish), that you 
receive source code or can get it if you want it, that you can change the software or 
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you 
these rights or to ask you to surrender the rights. These restrictions translate to certain 
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a 
fee, you must give the recipients all the rights that you have. You must make sure 
that they, too, receive or can get the source code. And you must show them these 
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer 
you this license which gives you legal permission to copy, distribute, and/or modify 
the software.
550
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Also, for each author’s protection and ours, we want to make certain that everyone 
understands that there is no warranty for this free software. If the software is modified 
by someone else and passed on, we want its recipients to know that what they have 
is not the original, so that any problems introduced by others will not reflect on the 
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to 
avoid the danger that redistributors of a free program will individually obtain patent 
licenses, in effect making the program proprietary. To prevent this, we have made it 
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions for Copying, Distribution, and Modification

0. This License applies to any program or other work which contains a notice 
placed by the copyright holder saying it may be distributed under the terms of 
this General Public License. The “Program”, below, refers to any such program 
or work, and a “work based on the Program” means either the Program or any 
derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated 
into another language. (Hereinafter, translation is included without limitation 
in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered 
by this License; they are outside its scope. The act of running the Program is 
not restricted, and the output from the Program is covered only if its contents 
constitute a work based on the Program (independent of having been made 
by running the Program). Whether that is true depends on what the Program 
does.

1. You may copy and distribute verbatim copies of the Program’s source code as 
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of 
warranty; keep intact all the notices that refer to this License and to the ab-
sence of any warranty; and give any other recipients of the Program a copy of 
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at 
your option offer warranty protection in exchange for a fee.
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2. You may modify your copy or copies of the Program or any  portion of it, thus 
forming a work based  on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet 
all of these  conditions:

a.  You must cause the modified files to carry prominent notices stating that 
you changed the files and the date of any change.

b.  You must cause any work that you distribute or publish, that in whole or 
in part contains or is derived from the Program or any part thereof, to be 
licensed as a whole at no charge to all third parties under the terms of this 
License.

c.  If the modified program normally reads commands interactively when run, 
you must cause it, when started running for such interactive use in the most 
ordinary way, to print or display an announcement including an appropri-
ate copyright notice and a notice that there is no warranty (or else, saying 
that you provide a warranty) and that users may redistribute the program 
under these conditions, and telling the user how to view a copy of this 
License. (Exception: if the Program itself is interactive but does not nor-
mally print such an announcement, your work based on the Program is not 
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably 
considered independent and separate works in themselves, then this License, 
and its terms, do not apply to those sections when you distribute them as sepa-
rate works. But when you distribute the same sections as part of a whole which 
is a work based on the Program, the distribution of the whole must be on the 
terms of this License, whose permissions for other licensees extend to the entire 
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights 
to work written entirely by you; rather, the intent is to exercise the right to 
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with 
the Program (or with a work based on the Program) on a volume of a storage 
or distribution medium does not bring the other work under the scope of this 
License.
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3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2 
above provided that you also do one of the following:

 a.  Accompany it with the complete corresponding machine- readable source 
code, which must be distributed under the terms of Sections 1 and 2 above 
on a medium customarily used for software interchange; or,

 b.  Accompany it with a written offer, valid for at least three years, to give any 
third party, for a charge no more than your cost of physically performing 
source distribution, a complete machine-readable copy of the corresponding 
source code, to be distributed under the terms of Sections 1 and 2 above on 
a medium customarily used for software interchange; or,

 c.  Accompany it with the information you received as to the offer to distribute 
corresponding source code. (This alternative is allowed only for noncom-
mercial distribution and only if you received the program in object code or 
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making 
modifications to it. For an  executable work, complete source code means all 
the source code for all modules it contains, plus any associated interface defini-
tion files, plus the scripts used to control compilation and installation of the 
executable. However, as a special exception, the source code distributed need 
not include anything that is normally distributed (in either source or binary 
form) with the major components (compiler, kernel, and so on) of the operat-
ing system on which the executable runs, unless that component itself accom-
panies the executable.

If distribution of executable or object code is made by offering access to copy 
from a designated place, then offering equivalent access to copy the source 
code from the same place counts as distribution of the source code, even 
though third parties are not compelled to copy the source along with the ob-
ject code.

4. You may not copy, modify, sublicense, or distribute the Program except as 
expressly provided under this License. Any attempt otherwise to copy, modify, 
sublicense, or distribute the Program is void, and will automatically terminate 
your rights under this License. However, parties who have received copies, or 
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rights, from you under this License will not have their licenses terminated so 
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program 
or its derivative works. These actions are prohibited by law if you do not accept 
this License. Therefore, by modifying or distributing the Program (or any work 
based on the Program), you indicate your acceptance of this License to do so, 
and all its terms and conditions for copying, distributing, or modifying the 
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), 
the recipient automatically receives a license from the original licensor to copy, 
distribute or modify the Program subject to these terms and conditions. You 
may not impose any further restrictions on the recipients’ exercise of the rights 
granted herein. You are not responsible for enforcing compliance by third par-
ties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement 
or for any other reason (not limited to patent issues), conditions are imposed 
on you (whether by court order, agreement or otherwise) that contradict the 
conditions of this License, they do not excuse you from the conditions of this 
License. If you cannot distribute so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a con-
sequence you may not distribute the Program at all. For example, if a patent 
license would not permit royalty-free redistribution of the Program by all those 
who receive copies directly or indirectly through you, then the only way you 
could satisfy both it and this License would be to refrain entirely from distri-
bution of the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the 
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or 
other property right claims or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity of the free software distri-
bution system, which is implemented by public license practices. Many people 
have made generous contributions to the wide range of software distributed 
through that system in reliance on consistent  application of that system; it is 
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up to the author/donor to decide if he or she is willing to distribute software 
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries 
either by patents or by copyrighted interfaces, the original copyright holder 
who places the Program under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is 
permitted only in or among countries not thus excluded. In such case, this 
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the 
General Public License from time to time. Such new versions will be similar in 
spirit to the present version, but may differ in detail to address new problems 
or concerns.

Each version is given a distinguishing version number. If the Program specifies 
a version number of this License which applies to it and “any later version”, 
you have the option of following the terms and conditions either of that ver-
sion or of any later version published by the Free Software Foundation. If the 
Program does not specify a version number of this License, you may choose 
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose 
distribution conditions are different, write to the author to ask for permission. 
For software which is copyrighted by the Free Software Foundation, write to 
the Free Software Foundation; we sometimes make exceptions for this. Our de-
cision will be guided by the two goals of preserving the free status of all deriva-
tives of our free software and of promoting  the sharing and reuse of software 
generally.

No Warranty

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE 
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN 
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES 

  



556 Appendix A GNU Public License

PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK 
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS 
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU 
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR, OR 
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR 
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR 
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE 
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR 
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL 
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR 
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMIT-
ED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE 
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE 
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 
EVEN IF SUCH HOLDER OR OTHER PARTY HAS  BEEN ADVISED 
OF THE POSSIBILITY OF SUCH DAMAGES.
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U
 

-Boot has more than 70 configurable commands. These are summarized in 
Table B-1 from a recent U-Boot snapshot. In addition to these are a large 

number of nonstandard commands, some of which depend on specific hardware 
or are experimental. For the complete and up-to-date listing, consult the source 
code. The   commands listed here are defined in the .../include/config_cmd_all.h
header file from the top-level U-Boot source directory.

TABLE B-1 U-Boot Configurable Commands

Command Set Commands

CONFIG_CMD_AMBAPP Prints a summary of AMBA Bus Plug & Play information

CONFIG_CMD_ASKENV Prompt for environment variable

CONFIG_CMD_AT91_SPIMUX Unimplemented in recent U-Boot source

CONFIG_CMD_AUTOSCRIPT Autoscript support

CONFIG_CMD_BDI Bdinfo: display board information

CONFIG_CMD_BEDBUG Includes BedBug debugger

CONFIG_CMD_BMP BMP support

CONFIG_CMD_BOOTD Bootd: boot default command

CONFIG_CMD_BSP Board-specific functions

CONFIG_CMD_CACHE icache, dcache commands

CONFIG_CMD_CDP Cisco Discovery Protocol

CONFIG_CMD_CONSOLE coninfo: display console info

CONFIG_CMD_DATE Support for RTC, date/time, and so on

CONFIG_CMD_DHCP DHCP support

CONFIG_CMD_DIAG Diagnostics

CONFIG_CMD_DISPLAY Display support

CONFIG_CMD_DOC Disk-on-chip support

CONFIG_CMD_DTT Digital therm and thermostat

CONFIG_CMD_ECHO echo arguments

CONFIG_CMD_EDITENV Interactively edit an environment variable

CONFIG_CMD_EEPROM EEPROM read/write support

CONFIG_CMD_ELF ELF (VxWorks) load/boot command

558
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TABLE B-1 Continued

Command Set Commands

CONFIG_CMD_EXT2 EXT2 support

CONFIG_CMD_FAT FAT support

CONFIG_CMD_FDC Floppy disk support

CONFIG_CMD_FDOS Floppy DOS support

CONFIG_CMD_FLASH flinfo, erase, protect

CONFIG_CMD_FPGA FPGA configuration support

CONFIG_CMD_HWFLOW RTS/CTS hardware flow control

CONFIG_CMD_I2C I2C serial bus support

CONFIG_CMD_IDE IDE hard disk support

CONFIG_CMD_IMI iminfo

CONFIG_CMD_IMLS Lists all found images

CONFIG_CMD_IMMAP IMMR dump support

CONFIG_CMD_IRQ irqinfo

CONFIG_CMD_ITEST Integer (and string) test

CONFIG_CMD_JFFS2 JFFS2 support

CONFIG_CMD_KGDB kgdb

CONFIG_CMD_LICENSE Print GPL license text

CONFIG_CMD_LOADB loadb

CONFIG_CMD_LOADS loads

CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base, loop, mtest

CONFIG_CMD_MFSL Microblaze FSL support  

CONFIG_CMD_MG_DISK Mflash support

CONFIG_CMD_MII MII support

CONFIG_CMD_MISC Miscellaneous functions, such as sleep

CONFIG_CMD_MMC MMC support

CONFIG_CMD_MTDPARTS Support for managing MTD partitions

CONFIG_CMD_NAND NAND support

CONFIG_CMD_NET bootp, tftpboot, rarpboot
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TABLE B-1 Continued

Command Set Commands

CONFIG_CMD_NFS NFS support

CONFIG_CMD_ONENAND Support for OneNAND subsystem

CONFIG_CMD_PCI pciinfo

CONFIG_CMD_PCMCIA PCMCIA support

CONFIG_CMD_PING Ping support

CONFIG_CMD_PORTIO Port I/O

CONFIG_CMD_REGINFO Register dump

CONFIG_CMD_REISER Reiserfs support

CONFIG_CMD_RUN run command in environment variable

CONFIG_CMD_SAVEENV Save environment command

CONFIG_CMD_SAVES Save S record dump

CONFIG_CMD_SCSI SCSI support

CONFIG_CMD_SDRAM SDRAM DIMM SPD info printout

CONFIG_CMD_SETEXPR Set environment variable from eval expression

CONFIG_CMD_SETGETDCR DCR support on 4xx

CONFIG_CMD_SNTP SNTP support

CONFIG_CMD_SOURCE Run script (source) from memory

CONFIG_CMD_SPI SPI utility

CONFIG_CMD_TERMINAL Start terminal emulator on a port

CONFIG_CMD_UNIVERSE Tundra Universe support

CONFIG_CMD_UNZIP Unzip a memory region

CONFIG_CMD_USB USB support  

CONFIG_CMD_VFD VFD support (TRAB)

CONFIG_CMD_XIMG Loads part of multi-image   
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BusyBox has many useful commands. Table C-1 lists the commands docu-
mented in a recent BusyBox snapshot.

TABLE C-1 Documented BusyBox Commands

Command Description

adduser Add a user   

adjtimex Read and optionally set system timebase parameters   

ar Extract or list FILES from an ar archive   

arp Manipulate the ARP cache   

arping Send ARP requests/replies   

ash Small shell, usually the default   

basename Strip directory path and suffixes from FILE   

bbconfig Print the config file that built BusyBox   

bbsh The bbsh shell (command interpreter)   

blkid Print UUIDs of all filesystems   

brctl Manage Ethernet bridges   

bunzip2 Uncompress FILE   

busybox Hello world!   

bzcat Uncompress to stdout   

bzip2 Compress FILE(s) with bzip2 algorithm   

cal Display a calendar   

cat Concatenate FILE(s) and print them to stdout   

catv Display nonprinting characters as ^x or M\-x   

chat Useful for interacting with a modem connected to stdin/stdout   

chattr Change file attributes on an ext2 fs   

chcon Change the security context of each FILE to CONTEXT   

chgrp Change the group membership of each FILE to GROUP   

chmod Change permissions on a file   

chown Change the owner and/or group of each FILE to OWNER and/or GROUP   

chpasswd Read user:password information from stdin and update /etc/passwd accordingly   

chpst Change the process state and run PROG   

chroot Run COMMAND with root directory set to NEWROOT   
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TABLE C-1 Continued

Command Description

chrt Manipulate real-time attributes of a process   

chvt Change the foreground virtual terminal to /dev/ttyN   

cksum Calculate the CRC32 checksums of FILES   

clear Clear screen   

cmp Compare FILE1 to stdin if FILE2 is not specified   

comm Compare FILE1 to FILE2, or to stdin if - is specified   

cp Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY   

cpio Extract or list files from a cpio archive, or create a cpio archive   

crond Daemon to execute scheduled commands   

crontab Maintain crontab files for individual users   

cryptpw Output a crypted string     

cttyhack Print selected fields from each input FILE to standard output   

date Display time (using +FMT) or set time   

dc Tiny RPN calculator   

dd Copy a file with converting and formatting   

deallocvt Deallocate unused virtual terminal /dev/ttyN   

delgroup Delete group GROUP from the system or user USER from group GROUP   

deluser Delete USER from the system   

depmod Manage devfs permissions and old device name symlinks   

devmem Read/write from a physical address   

df Print filesystem usage statistics   

dhcprelay Relay DHCP requests from client devices to server device   

diff Compare files line by line and output the differences   

dirname Strip a nondirectory suffix from FILENAME   

dmesg Print or control the kernel ring buffer   

dnsd Small static DNS server daemon   

dos2unix Convert FILE from DOS to UNIX format   

dpkg Install, remove, and manage Debian packages   

dpkg-deb Perform actions on Debian packages (.debs)   

du Summarize disk space used for each FILE and/or directory   

dumpkmap Print a binary keyboard translation table to standard output   

dumpleases Display DHCP leases granted by udhcpd   

e2fsck Check ext2/ext3 filesystem   

echo Print the specified ARGs to stdout   

ed Eject the specified DEVICE (or default /dev/cdrom)   

env Print the current environment or run a program after setting   

envdir Set various environment variables as specified by files   
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TABLE C-1 Continued

Command Description

envuidgid Set $UID to account’s UID and $GID to account’s GID and run PROG   

ether-wake Send a magic packet to wake up sleeping machines   

expand Convert tabs to spaces, writing to standard output   

expr Print the value of EXPRESSION to standard output   

fakeidentd Provide fake ident (auth) service   

FALSE Return an exit code of FALSE (1)     

fbset Show and modify frame buffer settings   

fbsplash Splash image   

fdflush Force floppy disk drive to detect disk change   

fdformat Format floppy disk   

fdisk Change partition table   

fgrep Search for files   

findfs Find a filesystem device based on a label or UUID   

fold Wrap input lines in each FILE (standard input by default)   

free Display the amount of free and used system memory   

freeramdisk Free all memory used by the specified ramdisk   

fsck Check and repair filesystems   

fsck.minix Check MINIX filesystem   

ftpget Retrieve a remote file via FTP   

ftpput Store a local file on a remote machine via FTP   

fuser Find processes that use FILEs or PORTs   

getenforce Parse command options   

getsebool Get SELinux boolean value(s)   

getty Open a tty, prompt for a login name, and then invoke /bin/login   

grep Search for PATTERN in each FILE or standard input   

gunzip Uncompress FILEs (or standard input)   

gzip Compress FILEs (or standard input)   

halt Halt the system   

hd hd is an alias for hexdump   

hdparm Get/set hd device parameters   

head Print first ten lines of each FILE to standard output   

hexdump Display file(s) or standard input in a user-specified format   

hostid Print a unique 32-bit identifier for the machine   

hostname Get or set hostname or DNS domain name   

httpd Listen for incoming HTTP requests   

hush Query and set hardware clock (RTC)   

id Print information about USER or the current user   
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TABLE C-1 Continued

Command Description

ifconfig Configure a network interface   

ifdown Take down a network interface   

ifenslave Configure network interfaces for parallel routing   

ifup Bring up a network interface   

inetd Listen for network connections and launch programs   

init init is the parent of all processes   

inotifyd Spawn user space agent on filesystem changes     

insmod Load the specified kernel modules into the kernel   

install Copy files and set attributes   

ip Show/manipulate routing, devices, policy routing, and tunnels   

ipaddr ipaddr {add | delete} IFADDR dev STRING   

ipcalc Calculate IP network settings from an IP address   

ipcrm Uppercase options MQS remove an object by shmkey value   

ipcs Provide information on ipc facilities   

iplink iplink set DEVICE { up | down | arp | multicast { on | off }   

iproute iproute { list | flush } SELECTOR   

iprule iprule [list | add | del] SELECTOR ACTION   

iptunnel iptunnel { add | change | del | show } [NAME]   

kbd_mode Report or set the keyboard mode   

kill Send a signal (default is TERM) to given PIDs   

killall Send a signal (default is TERM) to given processes   

killall5 Send a signal (default is TERM) to all processes outside the current session   

klogd Kernel logger   

lash lash is deprecated, so use hush   

last Show a listing of the last users who logged in to the system   

length Print STRING’s length   

less View a file or list of files   

linux32 Create a link named LINK_NAME or DIRECTORY to the specified TARGET   

load_policy Load a console font from standard input   

loadkmap Load a binary keyboard translation table from standard input   

logger Write MESSAGE to the system log   

login Begin a new session on the system   

logname Print the name of the current user   

logread Show messages in syslogd’s circular buffer   

losetup Set up and control loop devices     

lpd SPOOLDIR must contain (symlinks to) device nodes or directories   

lpq Line printer daemon   
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TABLE C-1 Continued

Command Description

lpr Line printer remote   

ls List directory contents   

lsattr List file attributes on an ext2 fs   

lsmod List the currently loaded kernel modules   

lzmacat Uncompress to stdout   

makedevs Create a range of special files as specified in a device table   

makemime Create MIME-encoded message   

man Format and display a manual page   

matchpathcon Get the default SELinux security context   

md5sum Print or check MD5 checksums   

mdev Mini-udev implementation   

mesg Control write access to your terminal   

microcom Copy bytes for stdin to TTY and from TTY to stdout   

mkdir Create DIRECTORY   

mke2fs Create an ext2/ext3 filesystem   

mkfifo Create a named pipe (identical to mknod name p)   

mkfs.minix Make a MINIX filesystem   

mknod Create a special file (block, character, or pipe)   

mkswap Prepare a block device to be used as a swap partition   

mktemp  Create a temporary file  

modprobe Add or remove modules to or from the Linux kernel   

more View FILE or standard input one screen at a time   

mount Mount a filesystem   

mountpoint Check if the directory is a mountpoint   

msh Control magnetic tape drive operation   

mv Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY   

nameif Rename the network interface while it’s in the down state   

nc TCP/IP Swiss army knife   

netstat Display networking information   

nice Run a program with a modified scheduling priority   

nmeter Monitor the system in real time   

nohup Run a command immune to hangups, with output to a non-tty   

nslookup Query the nameserver for the IP address of the given HOST   

od Write an unambiguous representation of FILE   

openvt Start COMMAND on a new virtual terminal   

parse Parse tokens     

passwd Change the user’s password   
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TABLE C-1 Continued

Command Description

patch Apply a diff file to an original   

pgrep Display process(es) selected by the regex pattern   

pidof List PIDs of all processes with names that match NAMEs   

ping Send ICMP ECHO_REQUEST packets to network hosts   

ping6 Send ICMP ECHO_REQUEST packets to network hosts   

pipe_progress Move the current root filesystem to PUT_OLD and make NEW_ROOT   

pkill Send a signal to process(es) selected by the regex pattern   

popmaildir Fetch content of the remote mailbox to local maildir   

poweroff Halt and shut off power   

printenv Print all or part of the environment   

printf Format and print ARGUMENT(s) according to FORMAT   

ps Report process status   

pscan Scan a host and print all open ports   

pwd Print the full filename of the current working directory   

raidautorun Tell the kernel to automatically search and start RAID arrays   

rdate Get and possibly set the system date and time from a remote HOST   

rdev Print the device node associated with the filesystem mounted at /

readahead Preload FILE(s) in RAM cache so that subsequent reads for those files do not block on 
disk I/O   

readlink Display the value of a symlink   

readprofile Read kernel profiling information   

realpath Return the absolute pathnames of a given argument   

reboot Reboot the system   

reformime Parse a MIME-encoded message   

renice Change the priority of running processes   

reset Reset the screen   

resize Resize the screen   

restorecon Reset security contexts of files in the pathname   

rm Remove (unlink) files   

rmdir Remove the DIRECTORY if it is empty   

rmmod Unload the specified kernel modules from the kernel   

route Edit kernel routing tables   

rpm Manipulate RPM packages   

rpm2cpio Output a cpio archive of the rpm file   

rtcwake Enter a system sleep state until the specified wakeup time   

run-parts Run a bunch of scripts in a directory   

runcon Run a program in a different security context   
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TABLE C-1 Continued

Command Description

runlevel Report the previous and current runlevel     

runsv Start and monitor a service and optionally an appendant log service   

runsvdir Start a runsv process for each subdirectory. If it exits, restart it.   

rx Receive a file using the xmodem protocol   

script Make a typescript of a terminal session   

sed Stream editor for filtering and transforming text   

selinuxenabled Determine if SELinux is enabled   

seq Print numbers from FIRST to LAST, in steps of INCREMENT   

sestatus SELinux status tool   

setarch Change the reported architecture   

setconsole Redirect system console output to DEVICE (default: /dev/tty)   

setenforce Reset file contexts under pathname according to spec_file   

setfont Load a console font   

setkeycodes Set entries into the kernel’s scancode-to-keycode map   

setlogcons Redirect the kernel output to console N   

setsebool Change SELinux boolean setting   

setsid Run PROG in a new session   

setuidgid Set uid and gid to account’s uid and gid   

sh Print or check SHA1 checksums   

showkey Show keys pressed   

slattach Attach network interface(s) to serial line(s)   

sleep Delay for a specified amount of time   

softlimit Set soft resource limits, and then run PROG   

sort Sort lines of text   

split Split a file into pieces   

start-stop-daemon Start and stop system daemon programs   

stat Display file (default) or filesystem status   

strings Display printable strings in a binary file   

stty Change and print terminal line settings   

su Change user ID or become root   

sulogin Single user login   

sum Checksum and count the blocks in a file     

sv Control services monitored by runsv supervisor   

svlogd Read log data from standard input, optionally filter log messages, and write the data to 
one or more automatically rotated logs   

swapoff Stop swapping on DEVICE   

swapon Start swapping on DEVICE   
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TABLE C-1 Continued

Command Description

switch_root Switch to another filesystem as the root of the mount tree   

sync Write all buffered filesystem blocks to disk   

sysctl Configure kernel parameters at runtime   

syslogd System logging utility   

tac Concatenate FILE(s) and print them in reverse   

tail Print last ten lines of each FILE to standard output   

tar Create, extract, or list files from a tar file   

taskset Set or get CPU affinity   

tc Show/manipulate traffic control settings   

tcpsvd Create TCP socket, bind it to ip:port, and listen   

tee Copy standard input to each FILE, and also to standard output   

telnet Connect to telnet server   

telnetd Handle incoming telnet connections   

test Check file types, compare values, and so on. Return a 0/1 exit code.   

tftp Transfer a file from/to the TFTP server   

tftpd Transfer a file on the TFTP client’s request   

time Run programs and summarize system resource usage   

top Provide a view of process activity in real time   

touch Update the last-modified date on the given FILE(s)   

tr Translate, squeeze, and/or delete characters   

traceroute Trace the route to HOST   

TRUE Return an exit code of TRUE (0)   

tty Print filename of standard input’s terminal    

ttysize Print dimension(s) of standard input’s terminal   

tune2fs Adjust filesystem options on ext[23] filesystems   

udhcpc Very small DHCP client   

udhcpd Very small DHCP server   

udpsvd Create UDP socket, bind it to ip:port, and wait   

umount Unmount filesystems   

uname Print system information   

uncompress Uncompress .Z file(s)     

unexpand Convert spaces to tabs, writing to standard output   

uniq Discard duplicate lines   

unix2dos Convert FILE from UNIX to DOS format   

unlzma Uncompress FILE   

unzip Extract files from ZIP archives   

uptime Display the time since the last boot   
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TABLE C-1 Continued

Command Description

usleep Pause for N microseconds   

uudecode Uudecode a file   

uuencode Uuencode a file to stdout   

vconfig Create and remove virtual Ethernet devices   

vi Edit a FILE   

vlock Lock a virtual terminal   

watch Execute a program periodically   

watchdog Periodically write to watchdog device DEV   

wc Print line, word, and byte counts for each FILE   

wget Retrieve files via HTTP or FTP   

which Locate a COMMAND   

who Show who is logged on   

whoami Print the username associated with the current effective user ID   

xargs Execute COMMAND on every item given by standard input   

yes Output a string repeatedly until killed   

zcat Uncompress to stdout

zcip Manage a ZeroConf IPv4 link-local address     
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At first glance, programming an SDRAM controller can seem like a formi-
 dable task. Indeed, there are numerous   Synchronous Dynamic Random 

Access Memory (DRAM) technologies. In a never-ending quest for perfor-
mance and density, many different architectures and modes of operation have 
been developed.

We will examine the AMCC PowerPC 405GP processor for this discussion of 
SDRAM interface considerations. You might want to have a copy of the User’s 
Manual to reference while we explore the issues related to SDRAM interfacing. 
This document is referenced in the last section of this appendix.

D.1 SDRAM Basics

To understand SDRAM setup, you must understand the basics of how an SDRAM 
device operates. Without going into the details of the hardware design, an SDRAM 
device is organized as a matrix   of cells, with a number of address bits dedicated to 
row addressing, and some dedicated to column addressing, as shown in Figure D-1.

Inside the memory matrix, the circuitry is quite complex. A simplified example 
of a read operation is as follows: A given memory location is referenced by placing 
a row address on the row address lines and then placing a column address on the 
column address lines. After some time has passed, the data stored at the location 
addressed by the row and column inputs is made available to the processor on the 
data bus.

The processor outputs a row address on the SDRAM address bus and asserts 
its Row Address Select (RAS) signal. After a short preprogrammed delay to allow 
the SDRAM circuitry to capture the row address, the processor outputs a column 
address and asserts its Column Address Select (CAS) signal. It is the SDRAM con-
troller that translates the actual physical memory address into row and column ad-
dresses. Many SDRAM controllers can be configured with the row and column 
width sizes, and the PPC405GP is one of those examples. Later you will see that this 
must be configured as part of the SDRAM controller setup.
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FIGURE D-1 Simplified SDRAM block diagram

This example is much simplified,  but the concepts are the same. A burst read, for 
example, reads four memory locations at once and outputs a single RAS and CAS 
cycle. The internal SDRAM circuitry automatically increments the column address for 
the subsequent three locations of the burst read, eliminating the need for the processor 
to issue four separate CAS cycles. This is but one example of performance optimiza-
tion. The best way to understand this is to absorb the details of an actual memory chip. 
The last section of this appendix mentions an example of a well-written data sheet.

D.1.1 SDRAM Refresh

An SDRAM is composed   of a single transistor and a capacitor. The transistor supplies 
the charge, and the capacitor’s job is to retain (store) the value of the individual cell. 
For reasons beyond the scope of this discussion, the capacitor can hold the value for 
only a short time. One of the fundamental concepts of dynamic memory is that the ca-
pacitors representing each cell must be periodically recharged to maintain their value. 
This is called SDRAM refresh.
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A refresh cycle is a special memory cycle that neither reads nor writes data to the 
memory. It simply performs the required refresh cycle. One of the primary responsi-
bilities of an SDRAM controller is to guarantee that refresh cycles are issued in time to 
meet the chip’s requirements.

The chip manufacturers specify minimum refresh intervals, and it is the designer’s 
job to guarantee them. Usually the SDRAM controller can be configured directly to 
select the refresh interval. The PowerPC 405GP presented here has a register specifi-
cally for this purpose. You will read about this shortly.

D.2 Clocking

The term synchronous implies that the data read and write cycles of an SDRAM device 
coincide with the clock signal from the CPU. Single data rate (SDR) SDRAM is read 
and written on each    SDRAM clock cycle. Dual data rate (DDR) SDRAM is read and 
written twice on each clock cycle—once on the rising edge of the clock and once on 
the falling edge.

Modern processors have complex clocking subsystems. Many have multiple clock 
rates that are used for different parts of the system. A typical processor uses a relatively 
low-frequency crystal-generated clock source for its primary clock signal. A phase-
locked loop (PLL) internal to the processor generates the CPU’s primary clock (the 
clock rate we speak of when comparing processor speeds). Since the CPU typically 
runs much faster than the memory subsystem, the processor generates a submultiple 
of the main CPU clock to feed to the SDRAM subsystem. You need to configure this 
clocking ratio for your particular CPU and SDRAM combination.

The processor and memory subsystem clocks must be correctly configured for your 
SDRAM to work properly. Your processor manual contains a section on clock setup 
and management. You should consult this section for proper setup of your particular 
board design.

The AMCC 405GP is typical of processors because of its feature set. It takes a single 
crystal-generated clock input source and generates several internal and external clocks 
required of its subsystems. It generates clocks for the CPU, PCI interface, Onboard 
Peripheral Bus (OPB), Processor Local Bus (PLB), Memory Clock (MemClk), and 
several internal clocks for peripherals such as the timer and UART blocks. Table D-1 
shows what a typical configuration might look like.
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TABLE D-1 Sample Clock Configuration

Clock Rate Comments

Crystal reference 33MHz A fundamental reference supplied to the processor.

CPU clock 133MHz  Derived from the processor’s internal PLL. Controlled by hardware pin strap-
ping and register settings.

PLB clock 66MHz  Derived from the CPU clock and configured via hardware pin strapping and 
register settings. Used for internal processor local bus data interchange among 
its high-speed modules.

OPB clock 66MHz  Derived from the PLB clock and configured via register settings. Used for 
internal connection of peripherals that do not need high-speed connection.

PCI clock 33MHz Derived from the PLB clock and configured via register settings.

MemClk 100MHz  Drives the SDRAM chips directly. Derived from the CPU clock and config-
ured via register settings.

Decisions about clock setup normally must be made at hardware design time. Pin 
strapping options determine initial clock configurations upon application of power to 
the processor. You often can get some control over derived clocks by setting divider bits 
accessible through processor internal registers dedicated to clock and subsystem control. 
In the example we present here based on the 405GP, final clock configuration is deter-
mined by pin strapping and firmware configuration. It is the bootloader’s responsibility 
to set the initial dividers and any other clock options    that can be configured via proces-
sor register bits very early after power is applied.

D.3 SDRAM Setup

After the clocks have been configured, the next step is to configure the SDRAM con-
troller. Controllers    vary widely from processor to processor, but the end result is always 
the same: You must provide the correct clocking and timing values to enable and opti-
mize the performance of the SDRAM subsystem.

As with other material in this book, there is no substitute for detailed knowledge 
of the hardware you are trying to configure. This is especially true for SDRAM. It is 
beyond the scope of this appendix to explore the design of SDRAM, but you need to 
understand some basics. Many manufacturers’ data sheets on SDRAM devices contain 
helpful technical descriptions. You are urged to familiarize yourself with the content of 
these data sheets. You don’t need a degree in hardware engineering to understand what 
you must do to properly configure your SDRAM subsystem, but you need to achieve 
some level of understanding.
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We will examine how the SDRAM controller is configured on the 405GP processor 
as configured by the U-Boot bootloader we covered in Chapter 7, “Bootloaders.” Re-
call from Chapter 7 that U-Boot provides a hook for SDRAM initialization from the 
assembly language startup code found in start.S in the 4xx-specific CPU directory. 
Refer to Section 7.4.5, “Board-Specific Initialization,” in Chapter 7. Listing D-1       shows 
the sdram_init() function from U-Boot’s .../cpu/ppc4xx/sdram.c file.

LISTING D-1 ppc4xx sdram_init() from U-Boot

01 void sdr7am_init(void)

02 {

03         ulong sdtr1;

04         ulong rtr;

05         int i;

06

07         /*

08          * Support for 100MHz and 133MHz SDRAM

09          */

10         if (get_bus_freq(0) > 100000000) {

11                 /*

12                  * 133 MHz SDRAM

13                  */

14                 sdtr1 = 0x01074015;

15                 rtr = 0x07f00000;

16         } else {

17                 /*

18                  * default: 100 MHz SDRAM

19                  */

20                 sdtr1 = 0x0086400d;

21                 rtr = 0x05f00000;

22         }

23

24         for (i=0; i<N_MB0CF; i++) {

25                 /*

26                  * Disable memory controller.

27                  */

28                 mtsdram0(mem_mcopt1, 0x00000000);

29

30                 /*

31                  * Set MB0CF for bank 0.

32                  */

33                 mtsdram0(mem_mb0cf, mb0cf[i].reg);
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LISTING D-1 Continued

34                 mtsdram0(mem_sdtr1, sdtr1);

35                 mtsdram0(mem_rtr, rtr);

36

37                 udelay(200);

38

39                 /*

40                  * Set memory controller options reg, MCOPT1.

41                  * Set DC_EN to ‘1’ and BRD_PRF to ‘01’ for 16 byte PLB Burst

42                  * read/prefetch.

43                  */

44                 mtsdram0(mem_mcopt1, 0x80800000);

45

46                 udelay(10000);

47

48                 if (get_ram_size(0, mb0cf[i].size) == mb0cf[i].size) {

49                         /*

50                          * OK, size detected -> all done

51                          */

52                         return;

53                 }

54         }

55 }

 

The first action reads the pin strapping   on the 405GP processor to determine the 
design value for the SDRAM clock. In this case, we can see that two possible values are 
accommodated: 100MHz and 133MHz. Based on this choice, constants are chosen 
that will be used later in the function to set the appropriate register bits in the SDRAM 
controller.

Starting on line 24, a loop is used to set the parameters for each of up to five pre-
defined memory sizes. Currently U-Boot has logic to support a single bank of memory 
sized at one of 4MB, 16MB, 32MB, 64MB, or 128MB. These sizes are defined in a 
table called mb0cf in .../cpu/ppc4xx/sdram.c. The table associates a constant with 
each of these memory sizes, based on the value required in the 405GP memory bank 
configuration register. The loop does this:

for (i = each possible memory bank size, largest first) {

    select timing constant based on SDRAM clock speed;

    disable SDRAM memory controller;

    configure bank 0 with size[i], timing constants[i]
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    re-enable SDRAM memory controller;

    run simple memory test to dynamically determine size;

      /* This is done using get_ram_size() */

    if ( tested size == configured size )

        done;

}

This simple logic simply plugs in the correct timing constants in the SDRAM 
controller based on SDRAM clock speed and configured memory bank size from the 
hard-coded table in U-Boot. Using this explanation, you can easily correlate the bank 
configuration values using the 405GP reference manual. For a 64MB DRAM size, the 
memory bank control register is set as follows:

Memory Bank 0 Control Register = 0x000a4001

 The PowerPC 405GP User’s Manual describes the    fields shown in Table D-2 for the 
memory bank 0 control register.

TABLE D-2 405GP Memory Bank 0-3 Configuration Register Fields

Field Value Comments

Bank Address (BA) 0x00 Starting memory address of this bank.

Size (SZ) 0x4 Size of this memory bank—in this case, 64MB.

Addressing Mode (AM) 0x2  Determines the organization of memory, including the number of row and 
column bits. In this case, Mode 2 equals 12 row address bits, and either 9 or 
10 column address bits, and up to four internal SDRAM banks. This data is 
provided in a table in the 405GP User’s Manual.

Bank Enable (BE) 0x1  Enable bit for the bank configured by this register. The 405GP has four of 
these memory bank configuration registers.

The designer must determine the   values in this table based on the memory module in use 

on the board.

Let’s look at a timing example to see more details on the timing requirements of a typical
SDRAM controller. Assuming a 100MHz SDRAM clock speed and 64MB memory 
size, the timing constants selected    by the sdram_init() function in Listing D-1 are 
selected as follows:

SDRAM Timing Register          = 0x0086400d

Refresh Timing Register        = 0x05f00000
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 The PowerPC 405GP User’s Manual describes the fields shown in Table D-3 for the 
SDRAM Timing Register.

TABLE D-3 405GP SDRAM Timing Register Fields

Field Value Comments

CAS Latency (CASL) 0x1  SDRAM CAS latency. This value comes directly from the SDRAM 
chip specifications. It is the delay in clock cycles required by the chip 
between the time the read command is issued (CAS signal) and the 
time the data is available on the data bus. In this case, the 0x1 repre-
sents two clock cycles, as seen from the 405GP User’s Manual.

Precharge Command to  0x1 The SDRAM Precharge command deactivates a given row. In
Next Activate (PTA)   contrast, the Activate command enables a given row for subsequent 

access, such as during a burst cycle. This timing parameter enforces 
the minimum time between Precharge and a subsequent Activate 
cycle, and it is dictated by the SDRAM chip. The correct value must 
be obtained from the SDRAM chip specification. In this case, 0x1 
represents two clock cycles, as determined from the 405GP User’s 
Manual.

Read/Write to Precharge  0x2 This timing parameter enforces the minimum time delay between a
Command Minimum (CTP)   given SDRAM read or write command to a subsequent Precharge 

command. The correct value must be obtained from the SDRAM 
chip specification. In this case, 0x2 represents three clock cycles, as 
determined from the 405GP User’s Manual.

SDRAM Command Leadoff  0x1 This timing parameter enforces the minimum time delay between
(LDF)   assertion of address or command cycle to bank select cycle. The 

correct value must be obtained from the SDRAM chip specification. 
In this case, 0x1 represents two clock cycles, as determined from the 
405GP User’s Manual.

 
The final timing parameter configured by the   U-Boot example in Listing D-1 is 

the refresh timing register value. This register requires a single field that determines the 
refresh interval enforced by the SDRAM controller. The field representing the interval 
is treated as a simple counter running at the SDRAM clock frequency. In the example 
here, we assume 100MHz as the SDRAM clock frequency. The value programmed into 
this register in our example is 0x05f0_0000. From the PowerPC 405GP User’s Manual, 
we determine that this will produce a refresh request every 15.2 microseconds. As with 
the other timing parameters, this value is dictated by the SDRAM chip specifications.

A typical SDRAM chip   requires one refresh cycle for each row. Each row must be 
refreshed in the minimum time specified by the manufacturer. In the chip referenced 
in the final section of this appendix, the manufacturer specifies that 8,192 rows must 
be refreshed every 64 milliseconds. This would require generating a refresh cycle every 
7.8 microseconds to meet the specifications for this particular device.
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D.4 Summary

SDRAM devices are complex. This appendix presented a simple example to help you 
navigate the complexities of SDRAM controller setup. The SDRAM controllers per-
form a critical function, and they must be set up properly. There is no substitute for 
diving into a specification and digesting the information presented. The two sample 
documents referenced in this appendix are an excellent starting point.

D.4.1 Suggestions for Additional Reading

AMCC 405GP Embedded Processor User’s Manual   
AMCC Corporation
www.amcc.com/Embedded/

Micron Technology, Inc.
Synchronous DRAM MT48LC64M4A2 Data Sheet
http://download.micron.com/pdf/datasheets/dram/sdram/256MSDRAM.pdf

  

www.amcc.com/Embedded/
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T his appendix brings together a number of useful resources for open source 
developers. Source repositories and mailing lists are included. News and infor-

mation sources are also listed.

Source Repositories and Developer Information

Linux development is    centered at several locations on the web. Here is a list of the most 
important ones for the various architectures and projects:

Home of the Linux kernel and many related projects
www.kernel.org

Primary kernel GIT repository
http://git.kernel.org/

MIPS-related developments
www.linux-mips.org

ARM-related Linux development
www.arm.linux.org.uk

Primary home for a huge collection of open source projects
http://sourceforge.net

Mailing Lists

Hundreds, if not thousands, of    mailing lists cater to every aspect of Linux and open 
source development. Here are a few to consider. Make sure you familiarize yourself 
with mailing list etiquette before posting to these lists.

Most of these lists maintain searchable archives. This is the first place you should 
consult. In a great majority of the cases, your question will have already been asked 
and answered.

Start your reading here for advice on how to best utilize the public mailing lists:

The Linux Kernel Mailing List FAQ
www.tux.org/lkml

List Server serving various Linux kernel-related mailing lists
http://vger.kernel.org
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Linux Kernel Mailing: very high volume; kernel development only
http://vger.kernel.org/vger-lists.html#linux-kernel

Linux News and Developments

These web resources    can help you keep track of the rapidly moving landscape in the 
open source communities:

LinuxDevices.com
www.linuxdevices.com

PowerPC News and other information
http://penguinppc.org

General Linux News and Developments
Linux Weekly News
www.lwn.net

Open Source Legal Insight and Discussion

This website presents information    and education focusing on intellectual property law 
as it applies to open source:

Open-Bar website
www.open-bar.org
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; bdiGDB configuration file for the UEI PPC 5200 Board 

; Revision 1.0

; Revision 1.1  (Added serial port setup)

; -----------------------------------------------------------

; 4 MB Flash (Am29DL323)

; 128 MB Micron DDR DRAM

;

[INIT]

; init core register

WREG    MSR        0x00003002  ;MSR  : FP,ME,RI

WM32    0x80000000  0x00008000  ;MBAR : internal registers at 0x80000000

                ; Default after RESET, MBAR sits at 0x80000000

                ; because its POR value is 0x0000_8000 (!)

WSPR    311         0x80000000  ; MBAR : save internal register offset

                              ; SPR311 is the MBAR in G2_LE

WSPR    279         0x80000000  ;SPRG7: save internal memory offsetReg: 279

; Init CDM (Clock Distribution Module)

;  Hardware Reset config {

;     ppc_pll_cfg[0..4] = 01000b

:     XLB:Core -> 1:3

:     Core:f(VCO) -> 1:2

:     XLB:f(VCO) -> 1:6

;

;     xlb_clk_sel = 0 -> XLB_CLK=f(sys) / 4 = 132 MHz

;

;     sys_pll_cfg_1 = 0 -> NOP

;     sys_pll_cfg_0 = 0 -> f(sys) = 16x SYS_XTAL_IN = 528 MHz

;  }

;

;  CDM Configuration Register

WM32    0x8000020c  0x01000101

          ; enable DDR Mode

          ; ipb_clk_sel = 1 -> XLB_CLK / 2 (ipb_clk = 66 MHz)

          ; pci_clk_sel = 01 -> IPB_CLK/2

; CS0 Flash

WM32    0x80000004  0x0000ff00  ;CS0 start = 0xff000000 - Flash memory is on CS0

WM32    0x80000008  0x0000ffff  ;CS0 stop  = 0xffffffff

; IPBI Register and Wait State Enable
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WM32    0x80000054  0x00050001 ;CSE: enable CS0, disable CSBOOT,

                             ;Wait state enable\

                             ; CS2 also enabled

WM32    0x80000300  0x00045d30 ;BOOT ctrl

             ; bits 0-7: WaitP  (try 0xff)

             ; bits 8-15: WaitX  (try 0xff)

             ; bit 16: Multiplex or non-muxed (0x0 = non-muxed)

             ; bit 17: reserved (Reset value = 0x1, keep it)

             ; bit 18: Ack Active (0x0)

             ; bit 19: CE (Enable) 0x1

             ; bits 20-21: Address Size (0x11 = 25/6 bits)

             ; bits 22:23: Data size field (0x01 = 16-bits)

             ; bits 24:25: Bank bits (0x00)

             ; bits 26-27: WaitType (0x11)

             ; bits 28: Write Swap (0x0 = no swap)

             ; bits 29: Read Swap (0x0 = no swap)

             ; bit 30: Write Only (0x0 = read enable)

             ; bit 31: Read Only (0x0 = write enable)

; CS2 Logic Registers

WM32    0x80000014  0x0000e00e

WM32    0x80000018  0x0000efff

; LEDS:

;  LED1 - bits 0-7

;  LED2 - bits 8-15

;  LED3 - bits 16-23

;  LED4 - bits 24-31

;  off = 0x01

;  on  = 0x02

; mm 0xe00e2030 0x02020202 1 (all on)

; mm 0xe00e2030 0x01020102 1 (2 on, 2 off)

WM32    0x80000308  0x00045b30  ; CS2 Configuration Register

                              ; bits 0-7: WaitP  (try 0xff)

                              ; bits 8-15: WaitX  (try 0xff)

                              ; bit 16: Multiplex or non-muxed (0x0 = non-muxed)

                              ; bit 17: reserved (Reset value = 0x1, keep it)

                              ; bit 18: Ack Active (0x0)

                              ; bit 19: CE (Enable) 0x1

                              ; bits 20-21: Address Size (0x10 = 24 bits)

                              ; bits 22:23: Data size field (0x11 = 32-bits)
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                              ; bits 24:25: Bank bits (0x00)

                              ; bits 26-27: WaitType (0x11)

                              ; bits 28: Write Swap (0x0 = no swap)

                              ; bits 29: Read Swap (0x0 = no swap)

                              ; bit 30: Write Only (0x0 = read enable)

                              ; bit 31: Read Only (0x0 = write enable)

WM32  0x80000318  0x01000000    ; Master LPC Enable

;

; init SDRAM controller

;

; For the UEI PPC 5200 Board,

;   Micron 46V32M16-75E (8 MEG x 16 x 4 banks)

;   64 MB per Chip, for a total of 128 MB

;   arranged as a single “space” (i.e 1 CS)

;   with the following configuration:

;      8 Mb x 16 x 4 banks

;      Refresh count 8K

;      Row addressing: 8K (A0..12) 13 bits

;      Column addressing: 1K (A0..9) 10 bits

;      Bank Addressing: 4 (BA0..1) 2 bits

;   Key Timing Parameters: (-75E)

;         Clockrate (CL=2) 133 MHz

;         DO Window 2.5 ns

;         Access Window: +/- 75 ns

;         DQS - DQ Skew: +0.5 ns

;         t(REFI): 7.8 us MAX

;

; Initialization Requirements (General Notes)

;  The memory Mode/Extended Mode registers must be

;  initialized during the system boot sequence. But before

;  writing to the controller Mode register, the mode_en and

;  cke bits in the Control register must be set to 1. After

;  memory initialization is complete, the Control register

;  mode_en bit should be cleared to prevent subsequent access

;  to the controller Mode register.

; SDRAM init sequence

;  1) Setup and enable chip selects

;  2) Setup config registers

;  3) Setup TAP Delay
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; Setup and enable SDRAM CS

WM32    0x80000034  0x0000001a  ;SDRAM CS0, 128MB @ 0x00000000

WM32    0x80000038  0x08000000  ;SDRAM CS1, disabled @ 0x08000000

WM32    0x80000108  0x73722930 ;SDRAM Config 1 Samsung

                      ; Assume CL=2

                      ; bits 0-3: srd2rwp: in clocks (0x6)

                      ; bits 507: swt2rwp: in clocks -> Data sheet suggests

                      ;   0x3 for DDR (0x3)

                      ; bits 8-11: rd_latency -> for DDR 0x7

                      ; bits 13-15: act2rw -> 0x2

                      ; bit 16: reserved

                      ; bits 17-19: pre2act -> 0x02

                      ; bits 20-23: ref2act -> 0x09

                      ; bits 25-27: wr_latency -> for DDR 0x03

                      ; bits 28-31: Reserved

WM32    0x8000010c  0x46770000 ;SDRAM Config 2 Samsung

                       ; bits 0-3: brd2rp -> for DDR 0x4

                              ; bits 4-7: bwt2rwp -> for DDR 0x6

                              ; bits 8-11: brd2wt -> 0x6

                              ; bits 12-15: burst_length -> 0x07 (bl - 1)

                              ; bits 16-13: Reserved

; Setup initial Tap delay

WM32  0x80000204  0x18000000  ; Start in the end of the range (24 = 0x18) Samsung

WM32    0x80000104  0xf10f0f00 ;SDRAM Control (was 0xd14f0000)

                              ; bit 0: mode_en (1=write)

                              ; bit 1: cke (MEM_CLK_EN)

                              ; bit 2: ddr (DDR mode on)

                              ; bit 3: ref_en (Refresh enable)

                              ; bits 4-6: Reserved

                              ; bit 7: hi_addr (XLA[4:7] as row/col

                              ;   must be set to ‘1’ ‘cuz we need 13 RA bits

                              ;   for the Micron chip above

                              ; bit 8: reserved

                              ; bit 9: drive_rule - 0x0

                              ; bit 10-15: ref_interval, see UM 0x0f

                              ; bits 16-19: reserved

                              ; bits 20-23: dgs_oe[3:0] (not sure)

                              ;  but I think this is req’d for DDR 0xf

                              ; bits 24-28: Resv’d
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                              ; bit 29: 1 = soft refresh

                              ; bit 30 1 = soft_precharge

                              ; bit 31: reserved

WM32    0x80000104  0xf10f0f02 ;SDRAM Control: precharge all

WM32    0x80000104  0xf10f0f04 ;SDRAM Control: refresh

WM32    0x80000104  0xf10f0f04 ;SDRAM Control: refresh

WM32    0x80000100  0x018d0000  ; SDRAM Mode Samsung

                          ; bits 0-1: MEM_MBA - selects std or extended MODE reg 
0x0

                          ; bits 2-13: MEM_MA (see DDR DRAM Data sheet)

                          ; bits 2-7: Operating Mode -> 0x0 = normal

                          ; bits 8-10: CAS Latency (CL) -> Set to CL=2 for DDR

(0x2)

                          ; bit 11: Burst Type: Sequential for PMC5200 -> 0x0

                          ; bits 12-14: Set to 8 for MPC5200 -> 0x3

                          ; bit 15: cmd = 1 for MODE REG WRITE

WM32    0x80000104  0x710f0f00 ;SDRAM Control: Lock Mode Register (was 0x514f0000)

; *********** Initialize the serial port ***********

; Pin Configuration

WM32   0x80000b00   0x00008004  ; UART1

; Reset PSC

WM8    0x80002008   0X10        ; Reset - Select MR1

WM16   0x80002004   0           ; Clock Select Register - 0 enables both Rx &

Tx Clocks

WM32   0x80002040   0           ; SICR - UART Mode

WM8    0x80002000   0x13        ; Write MR1 (default after reset)

                               ; 8-bit, no parity

WM8    0x80002000   0x07        ; Write MR2 (after MR1) (one stop bit)

WM8    0x80002018   0x0         ; Counter/Timer Upper Reg (115.2KB)

WM8    0x8000201c   0x12        ; Counter/Timer Lower Reg (divider = 18)

; Reset and enable serial port Rx/Tx

WM8    0x80002008   0x20

WM8    0x80002008   0x30

WM8    0x80002008   0x05
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;

; define maximal transfer size

TSZ4    0x80000000  0x80003FFF  ;internal registers

;

; define the valid memory map

MMAP    0x00000000  0x07FFFFFF  ;Memory range for SDRAM

MMAP    0xFF000000  0xFFFFFFFF  ;ROM space

MMAP    0xE00E0000  0xE00EFFFF  ; PowerPC Logic

MMAP    0x80000000  0x8fffffff  ; Default MBAR

MMAP    0xC0000000  0XCFFFFFFF  ; Linux Kernal

[TARGET]

CPUTYPE     5200       ;the CPU type

JTAGCLOCK   0          ;use 16 MHz JTAG clock

WORKSPACE   0x80008000  ;workspace for fast download

WAKEUP      1000       ;give reset time to complete

STARTUP     RESET

MEMDELAY    2000       ;additional memory access delay

BOOTADDR    0xfff00100

REGLIST     ALL

BREAKMODE   SOFT  ; or HARD

POWERUP     1000

WAKEUP      500

MMU         XLAT

PTBASE      0x000000f0

[HOST]

IP          192.168.1.9

FORMAT      ELF

LOAD        MANUAL      ;load code MANUAL or AUTO after reset

PROMPT      uei>

[FLASH]

CHIPTYPE    AM29BX16       ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8

| I28BX16)

CHIPSIZE    0x00400000   ;The size of one flash chip in bytes

BUSWIDTH    16          ;The width of the flash memory bus in bits (8 | 16 | 32)

WORKSPACE   0x80008000   ;workspace in internal SRAM

FILE        u-boot.bin

FORMAT      BIN 0xFFF00000

ERASE       0xFFF00000   ;erase a sector of flash

ERASE       0xFFF10000   ;erase a sector of flash
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ERASE       0xFFF20000   ;erase a sector of flash

ERASE       0xFFF30000   ;erase a sector of flash

ERASE       0xFFF40000   ;erase a sector of flash

[REGS]

FILE        $reg5200.def 
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Symbol

\ (UNIX line-continuation character), 119

A

“A Non-Technical Look Inside the EXT2 File 
System” website, 259

Abatron website, 410
access rights, 26
add-symbol-file command, 403
addr2line utility, 361
adduser BusyBox command, 562
adjtimex BusyBox command, 562
Almesberger, Werner, 157
AltiVec, 41
AMCC

Power Architecture processors, 50-53
Yosemite board kernel debugging example,  

381-382
announcement of Linux, 64
applications, multithreaded, 438-441
ar BusyBox command, 562
architecture

device drivers, 204
embedded systems, 12

init user space process, 19
kernel, booting, 16-18
kernel initialization, 18-19
setup, 13-14
target boards, starting, 15-16

setup routine, 114
specific targets, 193

ARM
Corporate Backgrounder website, 56
processors, 55

additional companies, 59
Freescale, 58-59
TI, 56-57

website, 59

arp BusyBox command, 562
arping BusyBox command, 562
ash BusyBox command, 562
ATCA hardware platforms, 60-61
autoconf.h file, 82-83
automating root file system builds, 137
autotools.bbclass class, 461

B

backtrace command, 330
basename BusyBox command, 562
bbconfig BusyBox command, 562
bbsh BusyBox command, 562
BDI-2000 configuration file sample, 586-592
BeagleBoard, 57, 62, 513
big kernel locks (BKLs), 473
binary tools

addr2line, 361
ldd, 362-363
nm, 363-364
objcopy, 360-361
objdump, 359
prelink, 364
readelf, 355-359
resources, 365
strings, 362
strip, 361

BIOS, 11
BitBake Hello World recipe processing, 458-459
BitBake (OpenEmbedded), 137, 456
BKLs (big kernel locks), 473
blkid BusyBox command, 562
board-specific initialization, 181-184
boot blocks, 21-22
booting

from disks, 174
kernel, 16-18
KGDB enabled with U-Boot, 373-374
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messages, 106-109
troubleshooting, 417-420

“Booting Linux: The History and the Future,” 157
bootloaders, 11

challenges
DRAM controllers, 161-162
execution context, 165
image complexity, 162-165
storage, 162

debugging, 441
GRUB, 195-196
initial serial output, 15
initrd support, 148-150
Lilo, 194-195
Micromonitor, 197
Redboot, 197
roles, 160-161
selecting, 197
startup tasks, 11
U-Boot

booting from disks, 174
BOOTP client/server handshakes, 171
commands, 169-170
configuring, 167-169
DHCP target identification, 172-173
DTBs on boot sequence, 187-188
Ethernet interface support, 170
finding, 166
image formats, 185-186
porting, 174-185
reference website, 198
storage subsystems, 173
website, 166

bootm command, 17
BOOTP (Bootstrap Protocol), 171

servers, configuring, 313-316
U-Boot bootloader support, 171
website, 198, 323

bootstrap loaders, 105-106
bottom-half processing, 468
brctl BusyBox command, 562
breakpoints

KGDB, 376
target memory, 383

Broadcom SiByte processors, 54-55
building

file systems, 256-257
JFFS2 images, 240-242
UBIFS images, 284-287

build numbers, 109
Buildroot, 137, 451

configuring, 451-452
installing, 451

output, 452-454
website, 464

build systems
benefits, 446-447
Buildroot, 451-454
kernel

autoconf.h file, 82-83
configuration editors, 80-82
custom configuration options, 91-94
dot-config file, 78-80
final sequence example, 101
Kconfig files, 89-91
makefiles, 95
makefile targets, 83-89

OpenEmbedded, 454-463
Scratchbox, 447-450

bunzip2 BusyBox command, 562
BusyBox

applets, 302-303
commands, listing of, 563-570
configuring, 291-293
cross-compiling, 293
default startup, 298
description, 295
launching, 293
mdev, 545-547
output example, 294-295
overview, 290-291
rcs initialization script, 299-300
symlinks, 300-302
system initialization, 297-299
target directory structure, 295
toolkit, 135
website, 304

busybox command, 562
bzcat BusyBox command, 562
bzImage targets, 83
bzip2 BusyBox command, 562

C

C function with local variables listing, 163
cable assemblies (USB), 494
cal BusyBox command, 562
carrier-grade, 6
cat BusyBox command, 562
catv BusyBox command, 562
cbrowser utility, 335-336, 365
CDC (Communications Device Class) drivers,  

512-515
cell write lifetimes (Flash memory), 22
CFI (Common Flash Interface), 270
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chat BusyBox command, 562
chattr BusyBox command, 562
chcon BusyBox command, 562
checking file system integrity, 233-235
chgrp BusyBox command, 562
chipsets, 41-43
chmod BusyBox command, 562
chown BusyBox command, 562
chpasswd BusyBox command, 562
chpst BusyBox command, 562
chroot BusyBox command, 562
chrt BusyBox command, 563
chvt BusyBox command, 563
cksum BusyBox command, 563
classes (OpenEmbedded metadata), 461-462
clear BusyBox command, 563
clocks, configuring, 574-575
cmp BusyBox command, 563
coldplug processing (udev), 537-538
command-line

options, 341-342
partitions, 273-274
processing, 115-116

code listing, 119-121
parameters, 115-116
setup macro, 116-118

commands. See also utilities
add-symbol-file, 403
backtrace, 330
bootm, 17
BusyBox, listing of, 563-570
connect, 393
continue, 382
dd, 257
detach, 443
e2fsck, 233-235
GDB user-defined, 392-393
git, 166
i shared, 432
iminfo, 186
kgdboc, 380
kgdbwait, 380
ldd, 139, 362-363, 432-433
make distclean, 78
make gconfig, 81
make menuconfig, 291
mkcramfs, 242
mkfs.ext2, 257
mkfs.jffs2, 241
modinfo, 539
modprobe, 532-533
mount, 232

shutdown, 156
stop-on-solib-events, 432
tftp, 17
ubiformat, 286
U-Boot bootloader supported, 169-170
U-Boot configurable, 558-560
udevadm, 523-524, 543-544

commBusyBox command, 563
commercial distributions, 33
Common Flash Interface (CFI), 270
Common Flash Memory Interface Specification, 288
Communications Device Class (CDC), 512-515
CompactPCI hardware platform, 60
companion chipsets, 41-43
compiling

DTBs, 192-193
dtc, 192-193
kernel, 70-72
native compilation, 30

components required, 97
composite kernel image

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

configuration descriptors, 491
configuration editors, 80-82
configuring

board-specific MTD partitions, 276-278
BOOTP servers, 313-316
Buildroot, 451-452
BusyBox, 291-293
busybox mdev, 547
clocks, 574-575
device drivers, 205-208

ARM system example, 208
directory, creating, 206
makefile, editing, 208
menu items, adding, 206-207
output, 208

DHCP servers, 313-316
DRAM controllers, 161-162
inittab file, 143-144
KGDB

kernel, 371
runtime, 380-381

MTD, 263, 267
NFS kernel support, 247
NFS servers, 316-318
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OpenEmbedded, 462-463
Scratchbox environment, 449
SDRAM controllers, 575-579

memory bank control register, 578
timing requirements, 578-579
U-Boot sdram_init() function, 576-577

TFTP servers, 312-313
UBIFS, 284
U-Boot

bootloader, 167-169
build tree, 177-178
makefile targets, 176-177

udev rules, 533-535
USB, 495-497

core makefile, 496-497
Freescale Semiconductor iMX31 Applications 

Processor example, 496
volume of options, 495

connect command, 393
connections

Ethernet, 512-515
KGDB, 374-375

connectors (USB), 492-493
contexts (execution), 26
continue command, 382
controllers (SDRAM), configuring, 575-579
core dumps, debugging, 327-329
cp BusyBox command, 563
cpio BusyBox command, 563
cpp search directories, 309
cramfs file system, 242-244
cramfs project README file website, 259
crond BusyBox command, 563
crontab BusyBox command, 563
cross-compiling

BusyBox, 293
targets, 448-450

cross debugging, 424
cross-development environments, 30-31

default cross-search directories, 310
flexibility, 307
Hello World program, 307-309
hosts, 306
layout, 307
overview, 306
targets, 306

cross-strip utility, 426-427
cross tools, distributions, 33
cryptpw BusyBox command, 563
cttyhack BusyBox command, 563
customizing

initramfs, 154-155
udev, 540

D

Das U-Boot. See U-Boot bootloader
dateBusyBox command, 563
dc BusyBox command, 563
dd BusyBox command, 563
dd command, 257
DDD (Data Display Debugger), 333-335

debug session, 335
invoking, 334
resources, 365

deallocvt BusyBox command, 563
debugging

booting, 417
early serial debug output, 417
KGDB trapping crashes on panic, 420
printk log buffer, dumping, 417-419

bootloaders, 441
cbrowser, 335-336, 365
core dumps, 327-329
cross, 424
DDD, 333-335, 365
dmalloc, 365
Flash code, 441
GDB, 326

backtrace command, 330
core dumps, 327-329
debug sessions, 331-333
invoking, 329-331
resources, 365
sessions, 331-333
stack frames, 330
website, 422

hardware-assisted. See JTAG probes
with JTAG probes, 413-417
kernel. See kernel debugging
multiple processes, 435-438
multithreaded applications, 438-441
real time kernel patch, 473-475

features, 475-476
O(1) scheduler, 476
preemption modes, 474-475
real-time processes, creating, 477

remote. See remote debugging
shared libraries, 429

events, 431-434
finding, 433
initial target memory segment mapping, 430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430
viewing, 432
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target, 424
USB, 516-518

device driver support, 518
Ethernet dongle insertion debug output  

example, 516
platform-specific options, 517
usbmon utility, 517-518

delgroup BusyBox command, 563
deluser BusyBox command, 563
Denx, Wolfgang, 166
depmod BusyBox command, 563
depmod utility, 214-215
“Design and Implementation of the Second 

Extended Filesystem” website, 259
detach command, 443
/dev directory, 522
development

cross-development environments. See
cross-development environments

hosts
BOOTP/DHCP servers, configuring, 313-316
NFS servers, configuring, 316-318
requirements, 311-312
target NFS root mount, 318-321
TFTP servers, configuring, 312-313

setup, 13-14
device drivers

architecture, 204
build configuration, 205-208
debugging, 402-406

init code, 406-407
initializing, 403-404
loopback breakpoints, 405
sessions, initiating, 404-405
symbolic debug information, accessing, 402

dependencies, 214-215
dynamic, 80
ext3 and jbd relationship, 213-214
GPL, 224
information, viewing, 216
installing, 209-210
listing of, viewing, 213
loading/unloading, 203, 210, 528
methods

device nodes, 220-221
file system operations, 217-220
numbers, allocating, 220

minimal example, 204-205
out-of-tree, 223-224
parameters, 211-212
platform, loading, 538-539
removing from kernels, 215-216

resources, 226
running kernels, adding, 212
USB support, debugging, 518
user space application example, 222-223
utilities

depmod, 214-215
insmod, 212
lsmod, 213
modinfo, 216
modprobe, 213-214
rmmod, 215-216

devices
descriptors, 490
discovery, 523-524
loopback, 256
nodes, 220-221, 522
persistent naming, 541-545
trees

blobs. See DTBs
compiler, 192-193
loading, 17
source, 189-192
website, 199

devmem BusyBox command, 563
df BusyBox command, 563
DHCP (Dynamic Host Configuration  

Protocol), 171
servers, configuring, 313-316
U-Boot bootloader support, 172-173
website, 198

dhcprelay BusyBox command, 563
diff BusyBox command, 563
directories

/dev, 522
root file systems, 134
runlevels, 142
top-level kernel source, 69

dirname BusyBox command, 563
disassembled object code, viewing, 359
discovering devices, 523-524
distributions

commercial, 33
components, 97
cross tools, 33
defined, 32
do-it-yourself, 33-34
file sizes, 239
installing, 33
packages, 32
targets, 33

dmalloc utility, 350-353
libraries, generating, 350
log output example, 351-352
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requirements, 350
resources, 365

dmesg BusyBox command, 563
dnsd BusyBox command, 563
do-it-yourself distributions, 33-34
dongles, 515
dos2unix BusyBox command, 563
dot-config file, 78

code snippet listing, 79-80
customizations, 93-94
deleting, 78
hidden, 78

downloading kernel, 68
dpkg BusyBox command, 563
dpkg-deb BusyBox command, 563
DRAM (Dynamic Random Access Memory),  

161-162, 198
drivers

device. See device drivers
Flash chips, 276
g_ether, 513
KGDB I/O, 379-380
mapping, 274-276
platform device, loading, 538-539
sd-mod, adding, 509
USB

CDC, 512-515
HID class support, 511
host controller, installing, 498

usb_storage, 508
DTBs (device tree blobs), 187

architecture-specific targets, 193
boot sequence role, 187-188
compiling, 192-193
device tree source, 189-192

dtc (device tree compiler), 192-193
DTS (device tree source), 189-192
du BusyBox command, 563
dumpkmap BusyBox command, 563
dumpleases BusyBox command, 563
dynamically loadable modules, 80
Dynamic Host Configuration Protocol. See DHCP
Dynamic Random Access Memory (DRAM),  

161-162, 198

E

e2fsck BusyBox command, 563
e2fsck command, 233-235
echo BusyBox command, 563
Eclipse Project website, 365
ed BusyBox command, 563

EHCI (Enhanced Host Controller Interface),  
498, 519

ELF files, 356-359
embedded systems

architecture, 12
init user space process, 19
kernel, booting, 16-18
kernel initialization, 18-19
setup, 13-14
target boards, starting, 15-16

characteristics, 10-11
endpoints, 489-491
Enhanced Host Controller Interface (EHCI),  

498, 519
env BusyBox command, 563
envdir BusyBox command, 563
envuidgid BusyBox command, 564
EP405 U-Boot port, 175-176
erase blocks, 21
Ethernet

connectivity (USB), 512-515
interfaces, 170

ether-wake BusyBox command, 564
events

locations, 433
shared library, 431-434

exbibytes, 237
execution contexts, 26
expand BusyBox command, 564
expr BusyBox command, 564
ext2 file systems, 257
ext3 file systems, 235-237
ext4 file systems, 237
external bus controller initialization listing, 181-182

F

fakeidentd BusyBox command, 564
FALSE BusyBox command, 564
fbset BusyBox command, 564
fbsplash BusyBox command, 564
fdflush BusyBox command, 564
fdformat BusyBox command, 564
fdisk BusyBox command, 564
fdisk utility, 229-230
fgrep BusyBox command, 564
FHS (File System Hierarchy Standard), 133, 226
File System Hierarchy Standard (FHS), 133, 226
“File System Performance: The Solaris OS, UFS, 

Linux ext3, and Reiser FS” website, 259
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files
autoconf.h, 82-83
BDI-2000 configuration, 586-592
device trees, loading, 17
dot-config file, 78

code snippet listing, 79-80
customizations, 93-94
deleting, 78
hidden, 78

ELF, 356-359
GDB initialization, 393
GRUB configuration, 196
inittab, configuring, 143-144
Kconfig, 89-92
kernel-parameters.txt, 115
linuxrc, 150-151
main.c, 113-114
makefiles

targets, 83-89
U-Boot configuration target, 176-177
uImage target wrapper script, 185
USB core, 496-497
Vega and Constellation example, 95

object
formats, converting, 360
symbols, viewing, 363-364

piggy assembly, 104
size distribution, 239
system.map, 70
systems

building, 256-257
cramfs, 242-244
ext2, 257
ext3, 235-237
ext4, 237
Flash, 24
integrity, checking, 233-235
JFFS2. See JFFS2
journaling, 235
mounting, 232-233
NFS, 244-248
partition relationship, 229
pseudo. See /proc file system; sysfs file system
ramfs, 255-256
ReiserFS, 238
resources, 259
root. See root file systems
sysfs, 252-255, 500-502
tmpfs, 256
UBI, 284
UBIFS, 284-287, 500-502
USBFS, 502-504

ubinize configuration, 285

versions, 109
vmlinux, 70-72

image components, 73-76
listing, 72-73

find_next_task macro, 400
find_task macro, 394-395
findfs BusyBox command, 564
finding

kernels, 96
shared libraries, 433
U-Boot bootloader, 166

Flash, 24
chip drivers, 276
code, debugging, 441
device listing, 232
memory. See memory, Flash

flash_erase utility, 280
flashcp utility, 280
flashing, 280
flat device tree websites

references, 199
syntax, 192

flow of control, 109-111
architecture setup, 114
head.o module, 111-113
startup file, 113-114

fold BusyBox command, 564
fork() function, 435-437
founder of Linux, 6
free BusyBox command, 564
freedom versus free, 4-5
freeramdisk BusyBox command, 564
Freescale processors

ARM, 58-59
MPC7448, 40-41
Power Architecture, 44-48

PowerQUICC I, 45-46
PowerQUICC II, 46-47
PowerQUICC II Pro, 47
PowerQUICC III, 48

QorIQ, 48-50
Semiconductor iMX31 Applications Processor 

USB example, 496
bus topology, 507
configuration options, 496
device node, creating, 510
host controller drivers, installing, 498
partition, mounting, 510
sysfs file system output, 500-502
usbview output, 504-507
website, 62

free versus freedom, 4-5
fsck BusyBox command, 564
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fsck.minix BusyBox command, 564
ftpget BusyBox command, 564
ftpput BusyBox command, 564
Ftrace utility

interrupt off timing measurements, 484
kernel performance analysis, 478-479
preemption off measurements, 479-481
wakeup latency measurements, 481-483

functions. See also methods
fork(), 435-437
gethostbyname(), 432
prepare_namespace, 151
pthread_create(), 438
sdram_init(), 576-577
setup_arch(), 114
start_kernel(), 114

fuser BusyBox command, 564

G

g_ether driver example, 513
Garzik, Jeff ’s git utility website, 68
GCC website, 323
GDB (GNU Debugger), 326. See also KGDB

backtrace command, 330
bootloaders, 441
core dumps, 327-329
cross debugging, 424
debug sessions, 331-333
detach command, 443
Flash code, 441
invoking, 329-331
multiple processes, 435-438
multithreaded applications, 438-441
remote debugging

file stripping, 426-427
gdbserver utility, 427-429
sample program ELF file debug information, 

425-426
remote serial protocol, 382-385
resources, 365, 444
shared libraries, 429

events, 431-434
finding, 433
initial target memory segement mapping,  

430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430
viewing, 432

stack frames, 330
website, 444

gdbserver utility, 427-429
General Public License. See GNU, GPL
getenforce BusyBox command, 564
gethostbyname() function, 432
getsebool BusyBox command, 564
getty BusyBox command, 564
git command

kernel downloads, 68
U-Boot bootloader, 166

GNU
Compiler Collection documentation website, 130
Debugger. See GDB
GPL (General Public License), 3-4, 550

device drivers, 224
exact reproduction, 550-556
website, 550

linker website, 130, 198
Press website, 422

grep BusyBox command, 564
growth of embedded Linux, 2
GRUB (Grand Unified Bootloader), 195-196, 199
gunzip BusyBox command, 564
gzip applet, 302
gzip BusyBox command, 564

H

halt BusyBox command, 564
hard real time, 467
hardware-assisted debugging, 312
hardware-debug probe. See JTAG probes
hardware platforms, 60-61
hd BusyBox command, 564
hdparm BusyBox command, 564
head BusyBox command, 564
head.o module, 111-113
Hello World program, 28-29

cross-development environments, 307-310
cpp search directories, 309
default cross-search directories, 310
listing, 307-308

OpenEmbedded version, 457-459
Scratchbox example, 449

hexdump BusyBox command, 564
HID (Human Input Device), 511-512
hosted BusyBox command, 564
hostname BusyBox command, 564
hosts

controllers, 489
cross-development environments, 306
mode (USB), 494
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requirements, 311-312
target boards

BOOTP/DHCP servers, configuring, 313-316
NFS root mount, 318-321
NFS servers, configuring, 316-318
TFTP servers, configuring, 312-313

httpd BusyBox command, 564
hush BusyBox command, 564

I

i shared command, 432
IBM 970FX processor, 39
id BusyBox command, 564
ifconfig BusyBox command, 565
ifdown BusyBox command, 565
ifenslave BusyBox command, 565
ifup BusyBox command, 565
images, 103

bootloader complexities, 162-165
composite kernel

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

initrd, 148
creating, 152-153
decompressing, 151

JFFS2, building, 240-242
OpenEmbedded recipes, 463
U-Boot bootloader format, 185-186
UBIFS, building, 284-287
vmlinux file, 73-76

iminfo command, 186
inetd BusyBox command, 565
init BusyBox command, 565
initcall_debug parameter, 127
initcall macros, 122-126
initialization

board-specific, 181-184
details, viewing, 127
flow of control, 109-111

architecture setup, 114
head.o module, 111-113
startup file, 113-114

inittab file, 143-144
kernel, 18-19

creating, 125-126
details, viewing, 127

final boot steps, 127-129
flow of control, 109-114
initcall macros, 126
user space process, 19

library dependencies, resolving, 139
processors, 178-180
runlevels, 141-142
startup scripts, 144-145
subsystems, 122-124
System V Init. See System V Init
udev setup, 535

coldplug processing, 537-538
default static device nodes, 536
startup script, 535-536

USB, 499-500
host controllers, 498-499
usbcore module, loading, 497

user space process, 19
user-specified, 140
web server startup script example, 145-146

initramfs, 153
customizing, 154-155
file specification, 154
initrd, compared, 153
kernel build directory contents, 153

initrd root file system, 146
booting, 147-148
bootloader support, 148-150
images, 148

creating, 152-153
decompressing, 151

initramfs, compared, 153
linuxrc file, 150-151
mounting, 151

inittab file, configuring, 143-144
inodes, 231
inotifyd BusyBox command, 565
insmod BusyBox command, 565
insmod utility, 212
install BusyBox command, 565
installing

Buildroot, 451
device drivers, 209-210
distributions, 33
Scratchbox, 447-448

integrated SOC processors, 43
AMCC Power Architecture, 50-53
ARM, 55-59
Broadcom SiByte, 54-55
Freescale. See Freescale processors
MIPS, 53-55
Power Architecture, 44
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Intel processors
Atom, 40, 62
Pentium M, 39-40
XScale website, 62

interfaces
descriptors, 491
Ethernet, 170

interrupt context, 28
interrupt off timing measurements, 483-484
interrupt service routine (ISR), 467
invoking

configuration editors, 81
DDD, 334
GDB, 329-331
ps macro, 395-396

ioctl() method, 217-219
ipaddr BusyBox command, 565
ip BusyBox command, 565
ipcalc BusyBox command, 565
ipcrm BusyBox command, 565
ipcs BusyBox command, 565
iplink BusyBox command, 565
iproute BusyBox command, 565
iprule BusyBox command, 565
iptunnel BusyBox command, 565
ISR (interrupt service routine), 467

J

JFFS: The Journaling Flash File System website, 259
JFFS2 (Journaling Flash File System 2), 24, 239-240

directory layout, 241
Flash memory limitations, 239-240
images, building, 240-242
mkfs.jffs2 command, 241
mounting on MTD RAM drive, 265-266

journaling, 235
JTAG (Joint Test Action Group) probes, 410

debugging, 413-417
Flash, programming, 411-413
setting up, 411

K

kbd_mode BusyBox command, 565
Kbuild documentation website, 98
Kconfig files, 89-92
kernel

booting, 16-18
build system

autoconf.h file, 82-83
configuration editors, 80-82

custom configuration options, 91-94
dot-config file, 78-80
final sequence example, 101
Kconfig files, 89-91
makefiles, 95
makefile targets, 83-89

command-line processing, 115-116
code listing, 119-121
parameters, 115-116
setup macro, 116-118

compiling, 70-72
composite image

architecture objects, 104
boot messages, 106-109
bootstrap loaders, 105-106
constructing, 100-102
final build sequence example, 101
Image object, 103
piggy assembly file, 104

context, 19, 26
debugging. See kernel debugging
documentation, 96
downloading with git utility, 68
final boot

messages, 18
steps, 137-138

finding, 96
GDB. See KGDB
HOWTO website, 98
initialization, 18-19, 125

creating, 125-126
details, viewing, 127
final boot steps, 127-129
flow of control, 109-114
initcall macros, 126
user space process, 19

KGDB configuration, 371
NFS configuration, 247
oops, 353-355
parameters.txt file, 115
preemption, 469

challenges, 469-471
checking for, 471-472
concurrency errors, 470
critical sections, locking, 470
latency sources, 473
models, 471-472
off measurements, 479-481
real time patch modes, 474-475
SMP, 472

real time patch, 473-475
features, 475-476
O(1) scheduler, 476
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preemption modes, 474-475
real-time processes, creating, 477

real time performance analysis, 478
Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

source repositories, 65-68
subdirectory, 77-78
subsystem initialization, 122-124
top-level source directory, 69
versions, 66-67
vmlinux file, 72-76
website, 65

kernel debugging, 368-369
JTAG probes, 410

debugging, 413-417
Flash memory, programming, 411-413
setting up, 411

KGDB, 369
booting with U-Boot, 373-374
breakpoints, 376
connections, 374-375
console serial port, sharing, 377-379
debug session in progress, 377
early kernel code support, 379-380
enabling, 372
kernel configuration, 371
loadable modules, 402-406
logic, 372
macros, 393-402
optimized code, 385-392
platform-specific code, 381-382
remote, 382-385
runtime configuration, 380-381
serial ports, 372
setting up, 370
trapping crashes on panic, 420
user-defined commands, 392-393
websites, 422

Magic SysReq key, 409-410
optimized kernel code, 389
printk, 407-409
resources, 422

KERNELRELEASE macro, 67
KGDB (Kernel GDB), 369

booting with U-Boot, 373-374
breakpoints, 376
connections, 374-375
console serial port, sharing, 377-379
debug session in progress, 377

early kernel code support, 379-380
enabling, 372
I/O drivers, 379-380
kernel configuration, 371
loadable modules, 402-406

init code, 406-407
initializing, 403-404
loopback breakpoints, 405
sessions, initiating, 404-405
symbolic debug information, accessing, 402

logic, 372
macros, 393-402

find_next_task, 400
find_task, 394-395
ps, 395-397
task_struct_show, 398-399

optimized code, 385-392
platform-specific code, debugging, 381-382
remote serial protocol, 382-385
runtime configuration, 380-381
serial ports, 372
setting up, 370
trapping crashes on panic, 420
user-defined commands, 392-393
websites, 422

kgdb8250 I/O driver, 379-380
kgdboc command, 380
kgdbwait command, 380
kill BusyBox command, 565
killall BusyBox command, 565
killall5 BusyBox command, 565
klogd BusyBox command, 565
Kroah-Hartman, Greg, 504
ksoftirqd task, promoting, 476

L

lash BusyBox command, 565
last BusyBox command, 565
latency

interrupt off timing, 483-484
kernel preemption sources, 473
preemption off measurements, 479-481
real time, 467-468
wakeup measurements, 481-483

layout
cross-development environments, 307
root file systems, 133-134

ldd command, 139, 362-363, 432-433
Lehrbaum, Rick, 3
length BusyBox command, 565
lessBusyBox command, 565
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Library Optimizer Tool website, 136
Lilo

bootloader, 194-195
website, 199

linker command scripts, 163
linux32BusyBox command, 565
Linux

Allocated Devices website, 548
Documentation Project, 96, 157
Foundation, 6-8
news and developments resources, 583
Standard Base, 5, 8

LinuxDevices.com, 3
linuxrc file, 150-151
listings

architecture-specific targets, 193
autoconf.h file, 82-83
backtrace command, 330
BDI-2000 configuration file, 586-592
booting with DTBs, 187-188
bootloaders, initial serial output, 15
boot messages on IPX425, 106-108
Buildroot output directory, 453
BusyBox

build options, 291
default startup, 298
gzip applet, 302
library dependencies, 292
mdev startup script, 546
output, 294-295
rcs initialization script, 299-300
root file system example, 297
root file system installation, 301
target directory structure, 295

C function with local variables, 163
command-line MTD partitions, 273
cramfs file system, 242-243
device drivers

build configuration, 206-208
file system operations methods, 217-219
loading/unloading, 210
lsmod output, 213
minimal example, 204
modinfo output, 216
modprobe configuration file, 214
parameter example, 211
user space application, 222-223

DHCP
exchange, 314
server configuration, 315
target identification, 172

dmalloc utility, 351-352

dot-config file, 79-80
DTBs, 189-192
ext2 file system, 257
ext3 file system, 236
file system check, 233-234
find_next_task, 400
find_task macro, 394
Flash device, 232
fork(), 435-437
GDB

core dump analysis, 328
debug sessions, initiating, 332
initialization file, 393
stack frames, 330

gdbserver utility
invoking, 429
starting on target board, 427
target board connection, 427-428

GRUB configuration file, 196
Hello World, 28-29, 307-308

cpp search directories, 309
default cross-search directories, 310

init process, 125-126
initcall macros, 123-124
initramfs

build directory, 153
file specification, 154
minimal contents, 155

initrd
boot sequence, 148-150
images, creating, 152

inittab file, 143
JFFS2

booting as root file system, 283
copying to root partition, 282
directory layout, 241
mkfs.jffs2 command, 241

JTAG, 412-414
Kconfig file for ARM architecture, 90
kernel

booting, 16-17
build output, 70-72
command-line processing, 119-121
.config file customizations, 93-94
final boot messages, 18
final boot steps, 127-129
final build sequence example, 101
IXP4xx-specific Kconfig file, 92
loading with TFTP servers, 320
makefiles example, 95
oops, 353
preemption, 470-472
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subdirectory, 77-78
top-level ARM Kconfig file, 92
vmlinux file, 72-73

KGDB
booting with U-Boot, 373-374
breakpoints, 376
connecting, 374-375
console serial port, sharing, 378-379
debug session in progress, 377
runtime configuration, 380-381
trapping crashes on panic, 420

Lilo bootloader, 194
linker command script, 163
linuxrc file, 150-151
loadable modules

debug sessions, initiating, 404-405
debugging init code, 406-407
initializing, 403-404

ltrace utility, 343
makefiles

targets, 83-89
U-Boot configuration, 176

minimal root file system, 134-135
mstrace utility, 349
MTD

configuring, 263
JFFS2file system, mounting, 265-266

MTD partitions
board-specific configuration, 276-278
Flash partition mounting, 280
kernel partition list, 279
PQ2FADS Flash mapping driver, 274-276

mtrace utility, 348
multithreaded applications, debugging, 438-439
NFS

exports configuration file, 244, 317
root mount, booting, 320
target example, 246

nm utility output, 363
objdump utility, 359
OpenEmbedded

autotools.bbclass example, 461
BitBake Hello recipe processing, 458-459
recipe example, 457
tasks, 460

optimized kernel code, debugging
code, 385-386
disassemble command, 387-389
local variable output example, 391
source file, 389-390

partitions
formatting, 230-231
information, viewing, 229-230

piggy assembly file, 104
platform-specific kernel debugging, 381-382
preemption off measurements, 480
printk log buffer, dumping, 418-419
/proc file system, 249-251
processes, listing, 345
ps macro, 395-397
ramfs file systems, 255
readelf utility, 356-358
real time, 476-477
Redboot partitions

creating, 272
detecting, 270
Flash partition listing, 269
Flash partitions, 271
new partition list, 272
power-up messages, 269

remote debugging
continue command, 382
ELF file debug information, 425-426
file stripping, 426-427
target memory breakpoints, 384

resetvec source definition, 164
runlevels, 141-142
Scratchbox, 448-449
SDRAM controllers, configuring, 576-577
setup macro, 117-118
shared libraries

debugging, 430-431
event alerts, 431
invoking ldd command, 432-433
</proc/pid>/maps memory segments, 434

startup scripts, 144-145
strace utility

profiling, 341
web demo application example, 337-340

subsystem initialization, 122
sysfs file system, 252-255
task_struct_show, 398-399
TFTP configuration, 313
top utility default configuration, 347
UBIFS images, building, 284-286
U-Boot bootloader

4xx startup code, 179
build tree, configuring, 177
configuration header file, 168-169
EP405 port summary, 184
external bus controller, 181-182
iminfo command, 186
uImage target wrapper script, 185

udev
default static device nodes, 536
device discovery, 523-524
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device nodes, creating, 525-526
mouse device example, 529
persistent device naming, 541
platform device driver, loading, 538
rules configuration, 533-535
rules example, 528
startup script, 535-536
udevadm device query, 543-544
uevents emitted on USB mouse insertion,  

530-531
uevents for USB interface 1-1:1.0, 531
uevents on four-port hub insertion, 525
USB automounting, 540-541

USB
core makefile, 496-497
device node, creating, 510
direct host and peripheral links, 513
Ethernet dongle insertion debug output, 516
host controllers, 498-499
lsusb utility, 507
partition, mounting, 510
sd-mod driver, adding, 509
sysfs file system output, 500-502
usb-storage module, 509
USBFS directory listing, 502
usbmon utility, 517
usbview utility output, 504-507

wakeup latency measurements, 481-483
web server startup script, 145-146

load_policy BusyBox command, 565
loadable modules. See device drivers
loading

device drivers, 210, 528
platform device drivers, 538-539

loadkmap BusyBox command, 565
logger BusyBox command, 565
login BusyBox command, 565
logname BusyBox command, 565
logread BusyBox command, 565
loopback devices, 256
losetup BusyBox command, 565
lpd BusyBox command, 565
lpq BusyBox command, 565
lpr BusyBox command, 566
lsattr BusyBox command, 566
LSB (Linux Standard Base), 5, 8
ls BusyBox command, 566
lsmod BusyBox command, 566
lsmod utility, 213
lsusb utility, 507-508
ltrace utility, 343-344
lzmacat BusyBox command, 566

M

macros
initcall, 122-126
KERNELRELEASE, 67
KGDB, 393-402

find_next_task, 400
find_task, 394-395
ps, 395-397
task_struct_show, 398-399

setup
command-line processing, 116-121
console setup code snippet, 117
family definitions, 118

used, 119
Magic SysReq key, 409-410
mailing list resources, 582
main.c file, 113-114
make distclean command, 78
make gconfig command, 81
make menuconfig command, 291
makedevs BusyBox command, 566
makefiles

targets, 83-89
U-Boot configuration target, 176-177
uImage target wrapper script, 185
USB core, 496-497
Vega and Constellation example, 95

makemine BusyBox command, 566
man BusyBox command, 566
mapping drivers, 274-276
marketplace momentum, 3
mass storage class (USB), 508-511

device node, creating, 510
mounting, 510
partition, mounting, 510
SCSI support, 508
sd-mod driver, adding, 509
usb_storage driver, 508
usb-storage module, 509

matchpathcon BusyBox command, 566
md5sum BusyBox command, 566
mdev BusyBox command, 566
memory

analysis tool. See dmalloc utility
cross-development environments, 30-31
DRAM, 161-162, 198
execution contexts, 26
Flash, 20-22

boot blocks, 21-22
cell write lifetimes, 22
erasing, 239
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file systems, 24
lifetime, 240
NAND, 22-23
programming, 411-413
typical layouts, 23
writing to/erasing, 20-21

layout, 25-26
leaks, detecting, 349
MMUs, 26
process virtual, 28-30
translation, 26
virtual, 26-30

Memory Management Units (MMUs), 26
Memory Technology Devices (MTD), 262
mesg BusyBox command, 566
methods. See also functions

device drivers
device nodes, 220-221
file system operations, 217-220
numbers, allocating, 220

ioctl(), 217-219
open(), 217-219
release(), 217-219

microcom BusyBox command, 566
Micromonitor bootloader, 197
mini connectors, 493
minimal device driver example, 204-205
minimal root file systems, 134-136
MIPS processors, 53-55, 67
mkcramfs command, 242
mkdir BusyBox command, 566
mke2fs BusyBox command, 566
mkfifo BusyBox command, 566
mkfs.ext2 utility, 230-231, 257
mkfs.jffs2 command, 241
mkfs.minix BusyBox command, 566
mkimage utility, 185
mknod BusyBox command, 566
mkswap BusyBox command, 566
mktemp BusyBox command, 566
MMUs (Memory Management Units), 26
Moblin (Mobile Linux Initiative), 7
MODALIAS field, 532-533
modinfo utility, 216, 539
modprobe BusyBox command, 566
modprobe utility, 213-214, 532-533
more BusyBox command, 566
mount BusyBox command, 566
mount command, 232
mounting

dependencies, 249
file systems, 232-233

initrd, 151
root file systems, 18
USB, 510-540-541
USBFS, 502

mountpoint BusyBox command, 566
mount points, 151, 232
mouse device udev example, 529
msh BusyBox command, 566
MTD (Memory Technology Device), 262

CFI support, 270
configuring, 263-267
JFFS2 file systems, mounting, 265-266
overview, 262-263
partitions, 267-268

board-specific configuration, 276-278
command-line, 273-274
configuring, 267
Flash chips, 276
kernel partition list, 279
mapping drivers, 274-276
Redboot, 269-273

resources, 288
services, enabling, 263-265
utilities, 279-283

flash_erase, 280
flashcp, 280
JFFS2, 282-283
kernel MTD partition list, 279
MTD Flash partition, mounting, 280

mtrace utility, 348-349
multiple processes, debugging, 435-438
multithreaded applications, debugging, 438-441
mv BusyBox command, 566

N

nameif BusyBox command, 566
NAND Flash, 22-23
native compilation, 30
nc BusyBox command, 566
netstat BusyBox command, 566
NFS (Network File System), 244-246

configuration file, 244
kernel configuration, 247
mounting workspace on target embedded system, 

245-246
restarting, 141-142
root file system, 246-248
servers, configuring, 316-318
targets

example, 246
root mount, 318-321

website, 259
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nice BusyBox command, 566
nm utility, 363-364
nmeter BusyBox command, 566
nohup BusyBox command, 566
northbridge chips, 42
nslookup BusyBox command, 566

O

objcopy utility, 360-361
objdump utility, 359
objects

disassembled code, viewing, 359
formats, converting, 360
Image. See images
piggy, 104
symbols, viewing, 363-364

od BusyBox command, 566
On-The-Go (OTG) USB, 495
open() method, 217-219
open source legal insight website, 583
OpenEmbedded, 454

benefits, 454
BitBake, 456
configuring, 462-463
image recipes, 463
metadata, 456

classes, 461-462
recipes, 456-459
tasks, 460

website, 137, 454, 464
openvt BusyBox command, 566
optimized kernel code, debugging, 385-392

code example, 385-386
disassemble command, 387-389
local variable output example, 391
source file, 389-390

options. See parameters
OTG (On-The-Go) USB, 495
out-of-tree drivers, 223-224

P

packages, 32
parameters

command-line, 115-116
device drivers, 211-212
initcall_debug, 127
rdinit=, 155

parse BusyBox command, 566
partitions, 229

file system relationship, 229
formatting, 230-231

information, viewing, 229-230
MTD. See MTD, partitions

passwd BusyBox command, 566
patch BusyBox command, 567
performance, real time analysis, 478

Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

persistent device naming, 541-542
pgrep BusyBox command, 567
pidof BusyBox command, 567
PIDs (process IDs), 250
piggy assembly file, 104
ping BusyBox command, 567
ping6 BusyBox command, 567
pipe_progress BusyBox command, 567
pkill BusyBox command, 567
platforms (hardware), 60-61

device drivers, loading, 538-539
specific kernel debugging, 381-382

popmaildir BusyBox command, 567
populating root file systems, 137
porting U-Boot bootloaders, 174

board-specific initialization, 181-184
build tree, configuring, 177-178
EP405 board, 175-176
makefile configuration targets, 176-177
processor initialization, 178-180
summary, 184-185

Power Architecture processors, 44, 62
Power.org website, 62
poweroff BusyBox command, 567
PowerPC 64-bit architecture reference manual 

website, 62
PowerQUICC processors, 44

PowerQUICC I processor, 45-46
PowerQUICC II processor, 46-47
PowerQUICC II Pro processor, 47
PowerQUICC III processor, 48

PQ2FADS Flash mapping driver, 274-276
preemption. See kernel, preemption
prelink utility, 364
prepare_namespace() function, 151
printenv BusyBox command, 567
printf BusyBox command, 567
printk debugging, 407-409
printk log buffers, dumping, 417-419
/proc file system, 249-252

common entries, 252
debugging with maps entry, 251

  



Index 609

mount dependency, 249
original purpose, 249
process IDs, 250
virtual memory addresses, 251
website, 259

process IDs (PIDs), 250
processes

bottom-half processing, 468
context, 28
init. See initialization
listing, 345
multiple, debugging, 435-438
real-time, creating, 477
user space. See user space, processes
virtual memory, 28-30

processors
initializing, 178-180
integrated SOCs, 43

additional ARM, 59
AMCC Power Architecture, 50-53
ARM, 55
Broadcom SiByte, 54-55
Freescale ARM, 58-59
Freescale Power Architecture, 44-45
Freescale PowerQUICC, 45-48
Freescale QorIQ, 48-50
MIPS, 53-55
TI ARM, 56-57

stand-alone
companion chipsets, 41-43
Freescale MPC7448, 40-41
IBM 970FX, 39
Intel Atom M, 40
Intel Pentium M, 39-40
overview, 38

program dependencies, 32
protocols

BOOTP
servers, configuring, 313-316
U-Boot bootloader support, 171
website, 198

DHCP
servers, configuring, 313-316
U-Boot bootloader support, 172-173
website, 198

gdb remote serial protocol, 382-385
TFTP

servers, configuring, 312-313
website, 198

ps BusyBox command, 567
ps macro, 344-346

invoking, 395-396
output, 396-397

pscan BusyBox command, 567
pseudo file systems. See /proc file system; 

sysfs file system
pthread_create() function, 438
pwd BusyBox command, 567

Q – R

QorIQ processors, 45-50

raidautorun BusyBox command, 567
ramfs file system, 255-256
rcs initialization scripts, 299-300
rdate BusyBox command, 567
rdev BusyBox command, 567
rdinit= parameter, 155
readahead BusyBox command, 567
readelf utility, 355-357

ELF file debug information, 357-359
section headers, 356

readlink BusyBox command, 567
readprofile BusyBox command, 567
real time

hard, 467
kernel patch, 473-475

features, 475-476
O(1) scheduler, 476
preemption modes, 474-475
real-time processes, creating, 477

kernel performance analysis, 478
Ftrace, 478-479
interrupt off timing measurements, 483-484
preemption off measurements, 479-481
soft lockup detection, 484
wakeup latency measurements, 481-483

kernel preemption, 469
challenges, 469-471
checking, 471-472
concurrency errors, 470
critical sections, locking, 470
latency sources, 473
models, 471-472
SMP, 472

latency, 467-468
processes, creating, 477
scheduling, 467
soft, 466

realpath BusyBox command, 567
reboot BusyBox command, 567
recipes (OpenEmbedded metadata), 456-459

BitBake Hello World processing, 458-459
Hello World example, 457
images, 463
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Red Hat’s New Journaling File System: ext3  
website, 259

Redboot
bootloaders, 197
partitions, 269-273

CFI support, 270
creating, 272
detecting, 270
Flash partitions, 269-271
new partition list, 272
power-up messages, 269

user documentation website, 288
reformime BusyBox command, 567
refreshing SDRAM, 573
Reiser4 File System website, 259
ReiserFS file system, 238
release() method, 217-219
remote debugging

file stripping, 426-427
gdbserver utility, 427-429
kernel, 382-385
running processes, connecting, 442-443
sample program ELF file debug information,  

425-426
serial ports, 442

renice BusyBox command, 567
requirements

dependencies, 32
development, 13-14
distribution components, 97
hosts, 311-312

reset BusyBox command, 567
resize BusyBox command, 567
resources

binary tools, 365
Buildroot, 464
BusyBox, 304
cbrowser, 365
DDD, 365
device drivers, 226
dmalloc, 365
file systems, 259
GDB, 365, 444
kernel debugging, 422
Linux Kernel Development, 3rd Edition, 485
Linux news and developments, 583
mailing lists, 582
MTD, 288
open source legal insight, 583
OpenEmbedded, 464
Scratchbox, 464
SDRAM, 580

source repositories, 582
udev, 548
USB, 519

restorecon BusyBox command, 567
rm BusyBox command, 567
rmdir BusyBox command, 567
rmmod BusyBox command, 567
rmmod utility, 215-216
roles

bootloaders, 160-161
DTBs in boot sequences, 187-188

root file systems
automated build tools, 137
defined, 132
directories, 134
embedded challenges, 136
FHS, 133, 226
layout, 133-134
minimal, 134-136
mounting, 18
NFS. See NFS
populating, 137
UBIFS as, 287

root hubs, 489
route BusyBox command, 567
rpm BusyBox command, 567
rpm2cpio BusyBox command, 567
rtcwake BusyBox command, 567
rules (udev), 527-530

configuring, 533-535
cumulative, 534
distribution-specific attributes/actions, 534
event-driven, 535
example, 528
loading device drivers example, 528
MODALIAS field, 532-533
mouse device example, 529
storage location, 527
uevents, USB, 530-531

run-parts BusyBox command, 567
runcon BusyBox command, 567
runlevel BusyBox command, 568
runlevels, 141-142
runsv BusyBox command, 568
runsvdir BusyBox command, 568
Rusty’s Linux Kernel Page website, 226
rx BusyBox command, 568

S

sb-menu utility, 448
SCCs (Serial Communication Controllers), 45
scheduling real time, 467
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Scratchbox, 447
cross-compilation targets, creating, 448-450
environment, configuring, 449
Hello World example, 449
installing, 447-448
menuconfig, 449
remote shell feature, 450
website, 449, 464

script BusyBox command, 568
scripts

linker command, 163
rcs initialization, 299-300
startup, 144-146
uImage target wrapper, 185

sd-mod driver, adding, 509
SDRAM (Synchronous Dynamic Random Access 

Memory), 572
clocking, 574-575
controllers, configuring, 575-579

memory bank control register, 578
timing requirements, 578-579
U-Boot sdram_init() function, 576-577

operation basics, 572-573
refresh, 573
resources, 580

sdram_init() function, 576-577
sed BusyBox command, 568
selinuxenabled BusyBox command, 568
seq BusyBox command, 568
Serial Communication Controllers (SCCs), 45
Serial Management Controllers (SMCs), 45
serial ports

KGDB, 372
remote debugging, 442
sharing console with KGDB, 377-379

servers
BOOTP, 313-316
DHCP, 313-316
NFS

configuring, 316-318
target root mount, 318-321

TFTP, 312-313
Service Availability Forum, 7
services

MTD, enabling, 263-265
NFS, restarting, 141-142

sestatus BusyBox command, 568
setarch BusyBox command, 568
setconsole BusyBox command, 568
setenforce BusyBox command, 568
setfont BusyBox command, 568
setkeycodes BusyBox command, 568

setlogcons BusyBox command, 568
setsebool BusyBox command, 568
setsid BusyBox command, 568
setuidgid BusyBox command, 568
setup_arch() function, 114
setup macro, command-line processing, 116-118

code listing, 119-121
console setup code, 117
family definitions, 118

sh BusyBox command, 568
shared libraries

debugging with, 429
events, 431-434
initial target memory segment mapping, 430-431
invoking ldd command, 432-433
locations, 433
</proc/pid>/maps memory segments, 434
requirements, 430

finding, 433
viewing, 432

showkey BusyBox command, 568
shutdown command, 156
shutting down, 156
slattach BusyBox command, 568
sleep BusyBox command, 568
SMCs (Serial Management Controllers), 45
SMP (Symmetric multiprocessing), 472
SOCs (system on chips), 43

AMCC Power Architecture, 50-53
ARM, 55

additional companies, 59
Freescale, 58-59
TI, 56-57

Broadcom SiByte, 54-55
Freescale Power Architecture, 44-45

PowerQUICC I, 45-46
PowerQUICC II, 46-47
PowerQUICC II Pro, 47
PowerQUICC III, 48

Freescale QorIQ, 48-50
MIPS, 53-55

soft lockup detection, 484
soft real time, 466
softlimit BusyBox command, 568
sort BusyBox command, 568
source repositories, 67-68, 582
southbridge chips, 42
split BusyBox command, 568
stack frames (GDB), 330
stand-alone processors

companion chipsets, 41-43
Freescale MPC7448, 40-41
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IBM 970FX, 39
Intel, 39-40
overview, 38

standards
carrier-grade, 6
Linux Foundation, 6-7
LSB, 5
Moblin, 7
Service Availability Forum, 7

start_kernel() function, 114
startup

scripts, 144-146
tasks, 11

stat BusyBox command, 568
stop-on-solib-event command, 432
storage

bootloaders, 162
cross-development environments, 30-31
execution contexts, 26
memory. See memory
MMUs, 26
U-Boot bootloader support, 173
udev rules, 527

strace utility, 337
command-line options, 341-342
profiling, 341
web demo application example, 337-340

strings BusyBox command, 568
strings utility, 362
strip utility, 361
stty BusyBox command, 568
subdirectories (kernel), 77-78
su BusyBox command, 568
subsystems (USB), 508

CDC (Communications Device Class) drivers, 
512-515

HID (Human Input Device), 511-512
initializing, 122-124
mass storage, 508-511

device node, creating, 510
mounting, 510
partition, mounting, 510
SCSI support, 508
sd-mod driver, adding, 509
usb_storage driver, 508
usb-storage module, 509

sulogin BusyBox command, 568
sum BusyBox command, 568
sv BusyBox command, 568
svlogd BusyBox command, 568
swapoff BusyBox command, 568
swapon BusyBox command, 568

switch_root BusyBox command, 569
symlinks, 300-302
Symmetric multiprocessing (SMP), 472
sync BusyBox command, 569
Synchronous Dynamic Random Access Memory. See 

SDRAM
syntax

command-line parameters, 116
flat device tree, 192

sysctl BusyBox command, 569
sysfs file system, 252-255

browsing, 253
directory structure, 252-253
systool output example, 253-255
USB devices, 500-502

syslogd BusyBox command, 569
system initialization, 297-299
system.map file, 70
system on chips. See SOCs
System V Init, 140

inittab file, 143-144
runlevels, 141-142
startup scripts, 144-145
web server startup script example, 145-146
website, 157

systool utility, 253

T

tac BusyBox command, 569
tail BusyBox command, 569
tar BusyBox command, 569
target boards

BOOTP/DHCP servers, configuring, 313-316
NFS

root mount, 318-321
servers, configuring, 316-318

starting, 15-16
TFTP servers, configuring, 312-313

targets
architecture-specific, 193
bzImage, 83
cross-compilation, 448-450
cross-development environments, 306
debugging, 424
DHCP identification, 172-173
distributions, 33
makefile, 83-89
memory breakpoints, 383
U-Boot makefiles, 176-177
zImage, 83
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task_struct_show macro, 398-399
tasks

ksoftirqd, 476
OpenEmbedded metadata, 460
startup, 11

taskset BusyBox command, 569
tc BusyBox command, 569
tcpsvd BusyBox command, 569
tee BusyBox command, 569
telnet BusyBox command, 569
telnetd BusyBox command, 569
test BusyBox command, 569
Texas Instruments (TI) ARM processors, 56-57
TFTP (Trivial File transfer Protocol), 171

servers, configuring, 312-313
website, 198, 323

tftp BusyBox command, 569
tftp command, 17
tftpd BusyBox command, 569
time BusyBox command, 569
TI (Texas Instruments) ARM processors, 56-57
tmpfs file system, 256
Tool Interface Standard (TIS) Executable and 

Linking Format, 98
tools. See utilities
top BusyBox command, 569
top-level kernel source directory, 69
topologies (USB)

logical, 490-491
physical, 488-490

top utility, 346-348
Torvalds, Linus, 6, 64
touch BusyBox command, 569
tr BusyBox command, 569
traceroute BusyBox command, 569
tracing and profiling tools

dmalloc, 350-353
kernel oops, 353-355
ltrace, 343-344
mtrace, 348-349
ps, 344-346
strace, 337

command-line options, 341-342
profiling, 341
web demo application example, 337-340

top, 346-348
Trivial File Transfer Protocol. See TFTP
troubleshooting. See debugging
TRUE BusyBox command, 569
tty BusyBox command, 569
ttysize BusyBox command, 569
Tundra chip, 42
tune2fs BusyBox command, 569

U

U-Boot bootloader
booting from disks, 174
commands, 169-170, 558-560
configuring, 167-169
debugging with JTAG probes, 414
DTBs on boot sequence, 187-188
finding, 166
image formats, 185-186
KGDB enabled booting, 373-374
network support

BOOTP client/server, 171
DHCP target, 172-173
Ethernet interfaces, 170

NFS root mount example, 320-321
porting, 174

board-specific initialization, 181-184
build tree, configuring, 177-178
EP405 board, 175-176
makefile configuration targets, 176-177
processor initialization, 178-180
summary, 184-185

reference website, 198
storage subsystems, 173
website, 166

ubiformat command, 286
UBIFS (Unsorted Block Image File System), 284

as root file system, 287
configuring, 284
images, building, 284-287

ubinize configuration file, 285
udev

busybox mdev, 545-547
customizing, 540
devices 

discovery, 523-524
nodes, creating, 525-526

initial system setup, 535
coldplug processing, 537-538
default static device nodes, 536
startup script, 535-536

persistent device naming, 541-542
/dev directory contents, 541
helper utilities, 542-545

platform device drivers, loading, 538-539
resources, 548
rules, 527-530

configuring, 533-535
cumulative, 534
distribution-specific attributes/actions, 534
event-driven, 535
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example, 528
loading device drivers example, 528
MODALIAS field, 532-533
mouse device example, 529
storage location, 527
uevents emitted on USB mouse insertion,  

530-531
uevents for USB interface 1-1:1.0, 531

uevents on four-port hub insertion, 525
USB automounting, 540-541

“Udev: A Userspace Implementation of devfs” 
website, 548

udevadm command, 523-524
udevadm info command, 543-544
udhcpc BusyBox command, 569
udhcpd BusyBox command, 569
udpscd BusyBox command, 569
uevents, 523-524

device discovery, 523
four-port hub insertion, 525
USB, 530-531

umount BusyBox command, 569
uname BusyBox command, 569
uncompress BusyBox command, 569
unexpand BusyBox command, 569
uniq BusyBox command, 569
Universal Serial Bus. See USB
unix2dos BusyBox command, 569
UNIX line-continuation character (\), 119
unlzma BusyBox command, 569
Unsorted Block Image File System. See UBIFS
unzip BusyBox command, 569
uptime BusyBox command, 569
USB (Universal Serial Bus), 488

automounting, 540-541
bus topology, 507
cable assemblies, 494
configuring, 495-497

core makefile, 496-497
descriptors, 491
volume of options, 495

connectors, 492-493
debugging, 516

device driver support, 518
Ethernet dongle insertion debug output  

example, 516
platform-specific options, 517
usbmon utility, 517-518

device descriptors, 490
EHCI, 498
endpoints, 491

Ethernet connectivity, 513-515
file system, 502-504
Freescale Semiconductor iMX31 Applications 

Processor example. See Freescale processors, 
Semiconductor iMX31 Applications Processor 
USB example

initializing, 499-500
host controllers, 498-499
usbcore module, loading, 497

interface descriptors, 491
modes, 494-495
resources, 519
revisions, 491
subsystems, 508

CDC drivers, 512-514
HID, 511-512
mass storage, 508-511

sysfs file system, 500-502
tools

lsusb utility, 507-508
USBFS, 502-504
usbview utility, 504-507

topologies
logical, 490-491
physical, 488-490
usbfs, viewing, 504

usb_id utility, 542-543
usb_storage driver, 508-509
USB-USB direct networking example, 513
usbcore module, loading, 497
USBFS (USB File System), 502-504
usbmon utility, 517-518
usbview utility, 504-507
used macro, 119
user space

context, 26
processes

dependencies, resolving, 139-140
first user space program, 139
init, 19, 140
initial RAM disk method. See initrd
initramfs, 153-155

usleep BusyBox command, 570
utilities. See also commands

addr2line, 361
automated root file system builds, 137
bitbake, 137
buildroot, 137
busybox, 135
cbrowser, 335-336, 365
cross, 33
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cross-strip, 426-427
DDD, 333-335, 365
depmod, 214-215
dmalloc, 350-353

libraries, generating, 350
log output example, 351-352
requirements, 350
resources, 365

fdisk, 229-230
Ftrace

interrupt off timing measurements, 484
kernel performance analysis, 478-479
preemption off measurements, 479-481
wakeup measurements, 481-483

GDB, 326
backtrace command, 330
core dumps, 327-329
debug sessions, 331-333
invoking, 329-331
resources, 365
stack frames, 330

gdbserver, 427-429
git, 68
insmod, 212
kernel oops, 353-355
ldd, 139, 362-363
Library Optimizer, 136
lsmod, 213
lsusb, 507-508
ltrace, 343-344
Magic SysReq key, 409-410
mkfs.ext2, 230-231
mkiage, 185
modinfo, 216
modprobe, 213-214
MTD, 279-283

flash_erase, 280
flashcp, 280
JFFS2 as root file system, 283
JFFS2 images, copying, 282
kernel MTD partition list, 279
MTD Flash partition, mounting, 280

mtrace, 348-349
nm, 363-364
objcopy, 360-361
objdump, 359
prelink, 364
printk, 407-409
ps, 344-346
readelf, 355-357
rmmod, 215-216
sb-menu, 448

strace, 337
command-line options, 341-342
profiling, 341
web demo application example, 337-340

strings, 362
strip, 361
systool, 253
top, 346-348
udev helper, 542-545
USB

lsusb utility, 507-508
USBFS, 502-504
usb_id, 542-543
usbmon, 517-518
usbview, 504-507

uudecode BusyBox command, 570
uuencode BusyBox command, 570

V

vconfig BusyBox command, 570
versions (kernel), 66-67
vi BusyBox command, 570
viewing

disassembled object code, 359
kernel initialization details, 127
.modinfo sections, 539
shared libraries, 432

virtual memory, 26-30
vlock BusyBox command, 570
vmlinux file, 70-72

image components, 73-76
listing, 72-73

W

wakeup measurements, 481-483
watch BusyBox command, 570
watchdog BusyBox command, 570
wc BusyBox command, 570
wear leveling, 240
web demo application, 337-340
websites

A Non-Technical Look Inside the EXT2 File 
System, 259

Abatron, 410
ARM Technologies, 56, 59
BeagleBoard, 62
binary tool resources, 365
Booting Linux: The History and the Future, 157
BOOTP, 198, 323
buildroot utility, 137, 464
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BusyBox, 304
cbrowser utility, 365
Common Flash Memory Interface  

Specification, 288
CompactPCI, 60
cramfs project README, 259
DDD resources, 365
Debugging with GDB, 422
“Design and Implementation of the Second 

Extended Filesystem,” 259
device trees, 199
DHCP protocol, 198
dmalloc utility, 365
DRAM, 198
dtc compiler, 189
Dynamic Host Configuration, 323
Eclipse Project, 365
EHCI, 519
“File System Performance: The Solaris OS, UFS, 

Linux ext3, and Reiser FS,” 259
Filesystem Hierarchy Standard, 226
flat device trees

references, 199
syntax, 192

Freescale Semiconductor, 62
FSH, 157
Garzik, Jeff ’s git utility, 68
GCC, 323
GDB: The GNU Project Debugger, 444
GDB resources, 365
GNU

Compiler Collection documentation, 130
linker, 130-198
Press, 422

GPL, 550
GRUB, 199
Intel, 62
JFFS: The Journaling Flash File System, 259
Kbuild, 98
kernel, 65

debugging resources, 422
HOWTO, 98

KGDB, 422
Library Optimizer Tool, 136
Lilo, 199
Linux

Documentation Project, 96, 157
Foundation, 8
news and developments, 583
Standard Base Project, 8

LinuxDevices.com, 3
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MIPS architecture, 67
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NFS, 259
open source legal insight, 583
OpenEmbedded, 137, 454, 464
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Power.org, 62
PowerPC 64-bit architecture reference manual, 62
/proc file system, 259
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System: ext3,” 259
Redboot user documentation, 288
Reiser4 File System, 259
Rusty’s Linux Kernel Page, 226
Scratchbox, 449, 464
SDRAM resources, 580
Service Availability Forum, 7
source repositories, 582
System V init, 157
TFTP protocol, 198, 323
Tool Interface Standard (TIS) Executable and, 98
U-Boot, 166, 198
udev, 548
USB resources, 519

wget BusyBox command, 570
which BusyBox command, 570
who BusyBox command, 570
whoami BusyBox command, 570
wrapper script, 185
“Writing udev Rules” website, 548

X–Z

xargs BusyBox command, 570

yes BusyBox command, 570

zcat BusyBox command, 570
zcip BusyBox command, 570
zImage targets, 83
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