
© Copyright IBM Corporation 2006 Trademarks
Inside the Linux boot process Page 1 of 9

Inside the Linux boot process
Take a guided tour from the Master Boot Record to the first user-
space application

M. Tim Jones (mtj@mtjones.com)
Consultant Engineer
Emulex

31 May 2006

The process of booting a Linux® system consists of a number of stages. But whether you're
booting a standard x86 desktop or a deeply embedded PowerPC® target, much of the flow is
surprisingly similar. This article explores the Linux boot process from the initial bootstrap to the
start of the first user-space application. Along the way, you'll learn about various other boot-
related topics such as the boot loaders, kernel decompression, the initial RAM disk, and other
elements of Linux boot.

In the early days, bootstrapping a computer meant feeding a paper tape containing a boot program
or manually loading a boot program using the front panel address/data/control switches. Today's
computers are equipped with facilities to simplify the boot process, but that doesn't necessarily
make it simple.

Let's start with a high-level view of Linux boot so you can see the entire landscape. Then we'll
review what's going on at each of the individual steps. Source references along the way will help
you navigate the kernel tree and dig in further.

Overview

Figure 1 gives you the 20,000-foot view.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:mtj@mtjones.com

developerWorks® ibm.com/developerWorks/

Inside the Linux boot process Page 2 of 9

Figure 1. The 20,000-foot view of the Linux boot process

When a system is first booted, or is reset, the processor executes code at a well-known location. In
a personal computer (PC), this location is in the basic input/output system (BIOS), which is stored
in flash memory on the motherboard. The central processing unit (CPU) in an embedded system
invokes the reset vector to start a program at a known address in flash/ROM. In either case, the
result is the same. Because PCs offer so much flexibility, the BIOS must determine which devices
are candidates for boot. We'll look at this in more detail later.

When a boot device is found, the first-stage boot loader is loaded into RAM and executed. This
boot loader is less than 512 bytes in length (a single sector), and its job is to load the second-stage
boot loader.

When the second-stage boot loader is in RAM and executing, a splash screen is commonly
displayed, and Linux and an optional initial RAM disk (temporary root file system) are loaded into
memory. When the images are loaded, the second-stage boot loader passes control to the kernel
image and the kernel is decompressed and initialized. At this stage, the second-stage boot loader
checks the system hardware, enumerates the attached hardware devices, mounts the root device,
and then loads the necessary kernel modules. When complete, the first user-space program (init)
starts, and high-level system initialization is performed.

That's Linux boot in a nutshell. Now let's dig in a little further and explore some of the details of the
Linux boot process.

System startup
The system startup stage depends on the hardware that Linux is being booted on. On an
embedded platform, a bootstrap environment is used when the system is powered on, or reset.
Examples include U-Boot, RedBoot, and MicroMonitor from Lucent. Embedded platforms are
commonly shipped with a boot monitor. These programs reside in special region of flash memory
on the target hardware and provide the means to download a Linux kernel image into flash
memory and subsequently execute it. In addition to having the ability to store and boot a Linux
image, these boot monitors perform some level of system test and hardware initialization. In an

ibm.com/developerWorks/ developerWorks®

Inside the Linux boot process Page 3 of 9

embedded target, these boot monitors commonly cover both the first- and second-stage boot
loaders.

Extracting the MBR

To see the contents of your MBR, use this command:

dd if=/dev/hda of=mbr.bin bs=512 count=1
od -xa mbr.bin

The dd command, which needs to be run from root, reads the first 512 bytes from /dev/hda
(the first Integrated Drive Electronics, or IDE drive) and writes them to the mbr.bin file.
The od command prints the binary file in hex and ASCII formats.

In a PC, booting Linux begins in the BIOS at address 0xFFFF0. The first step of the BIOS is
the power-on self test (POST). The job of the POST is to perform a check of the hardware. The
second step of the BIOS is local device enumeration and initialization.

Given the different uses of BIOS functions, the BIOS is made up of two parts: the POST code and
runtime services. After the POST is complete, it is flushed from memory, but the BIOS runtime
services remain and are available to the target operating system.

To boot an operating system, the BIOS runtime searches for devices that are both active and
bootable in the order of preference defined by the complementary metal oxide semiconductor
(CMOS) settings. A boot device can be a floppy disk, a CD-ROM, a partition on a hard disk, a
device on the network, or even a USB flash memory stick.

Commonly, Linux is booted from a hard disk, where the Master Boot Record (MBR) contains the
primary boot loader. The MBR is a 512-byte sector, located in the first sector on the disk (sector 1
of cylinder 0, head 0). After the MBR is loaded into RAM, the BIOS yields control to it.

Stage 1 boot loader

The primary boot loader that resides in the MBR is a 512-byte image containing both program
code and a small partition table (see Figure 2). The first 446 bytes are the primary boot loader,
which contains both executable code and error message text. The next sixty-four bytes are the
partition table, which contains a record for each of four partitions (sixteen bytes each). The MBR
ends with two bytes that are defined as the magic number (0xAA55). The magic number serves as
a validation check of the MBR.

developerWorks® ibm.com/developerWorks/

Inside the Linux boot process Page 4 of 9

Figure 2. Anatomy of the MBR

The job of the primary boot loader is to find and load the secondary boot loader (stage 2). It does
this by looking through the partition table for an active partition. When it finds an active partition, it
scans the remaining partitions in the table to ensure that they're all inactive. When this is verified,
the active partition's boot record is read from the device into RAM and executed.

Stage 2 boot loader
The secondary, or second-stage, boot loader could be more aptly called the kernel loader. The
task at this stage is to load the Linux kernel and optional initial RAM disk.

GRUB stage boot loaders
The /boot/grub directory contains the stage1, stage1.5, and stage2 boot
loaders, as well as a number of alternate loaders (for example, CR-ROMs use the
iso9660_stage_1_5).

The first- and second-stage boot loaders combined are called Linux Loader (LILO) or GRand
Unified Bootloader (GRUB) in the x86 PC environment. Because LILO has some disadvantages
that were corrected in GRUB, let's look into GRUB. (See many additional resources on GRUB,
LILO, and related topics in the Resources section later in this article.)

The great thing about GRUB is that it includes knowledge of Linux file systems. Instead of using
raw sectors on the disk, as LILO does, GRUB can load a Linux kernel from an ext2 or ext3 file
system. It does this by making the two-stage boot loader into a three-stage boot loader. Stage 1
(MBR) boots a stage 1.5 boot loader that understands the particular file system containing the

ibm.com/developerWorks/ developerWorks®

Inside the Linux boot process Page 5 of 9

Linux kernel image. Examples include reiserfs_stage1_5 (to load from a Reiser journaling file
system) or e2fs_stage1_5 (to load from an ext2 or ext3 file system). When the stage 1.5 boot
loader is loaded and running, the stage 2 boot loader can be loaded.

With stage 2 loaded, GRUB can, upon request, display a list of available kernels (defined in /etc/
grub.conf, with soft links from /etc/grub/menu.lst and /etc/grub.conf). You can select a kernel
and even amend it with additional kernel parameters. Optionally, you can use a command-line
shell for greater manual control over the boot process.

With the second-stage boot loader in memory, the file system is consulted, and the default kernel
image and initrd image are loaded into memory. With the images ready, the stage 2 boot loader
invokes the kernel image.

Kernel

Manual boot in GRUB
From the GRUB command-line, you can boot a specific kernel with a named initrd image
as follows:

grub> kernel /bzImage-2.6.14.2
 [Linux-bzImage, setup=0x1400, size=0x29672e]
grub> initrd /initrd-2.6.14.2.img
 [Linux-initrd @ 0x5f13000, 0xcc199 bytes]
grub> boot
Uncompressing Linux... Ok, booting the kernel.

If you don't know the name of the kernel to boot, just type a forward slash (/) and press the
Tab key. GRUB will display the list of kernels and initrd images.

With the kernel image in memory and control given from the stage 2 boot loader, the kernel
stage begins. The kernel image isn't so much an executable kernel, but a compressed kernel
image. Typically this is a zImage (compressed image, less than 512KB) or a bzImage (big
compressed image, greater than 512KB), that has been previously compressed with zlib. At the
head of this kernel image is a routine that does some minimal amount of hardware setup and then
decompresses the kernel contained within the kernel image and places it into high memory. If an
initial RAM disk image is present, this routine moves it into memory and notes it for later use. The
routine then calls the kernel and the kernel boot begins.

When the bzImage (for an i386 image) is invoked, you begin at ./arch/i386/boot/head.S in the
start assembly routine (see Figure 3 for the major flow). This routine does some basic hardware
setup and invokes the startup_32 routine in ./arch/i386/boot/compressed/head.S. This routine
sets up a basic environment (stack, etc.) and clears the Block Started by Symbol (BSS). The
kernel is then decompressed through a call to a C function called decompress_kernel (located in ./
arch/i386/boot/compressed/misc.c). When the kernel is decompressed into memory, it is called.
This is yet another startup_32 function, but this function is in ./arch/i386/kernel/head.S.

In the new startup_32 function (also called the swapper or process 0), the page tables are
initialized and memory paging is enabled. The type of CPU is detected along with any optional

developerWorks® ibm.com/developerWorks/

Inside the Linux boot process Page 6 of 9

floating-point unit (FPU) and stored away for later use. The start_kernel function is then invoked
(init/main.c), which takes you to the non-architecture specific Linux kernel. This is, in essence,
the main function for the Linux kernel.

Figure 3. Major functions flow for the Linux kernel i386 boot

With the call to start_kernel, a long list of initialization functions are called to set up interrupts,
perform further memory configuration, and load the initial RAM disk. In the end, a call is made to
kernel_thread (in arch/i386/kernel/process.c) to start the init function, which is the first user-
space process. Finally, the idle task is started and the scheduler can now take control (after the
call to cpu_idle). With interrupts enabled, the pre-emptive scheduler periodically takes control to
provide multitasking.

During the boot of the kernel, the initial-RAM disk (initrd) that was loaded into memory by the
stage 2 boot loader is copied into RAM and mounted. This initrd serves as a temporary root file
system in RAM and allows the kernel to fully boot without having to mount any physical disks.
Since the necessary modules needed to interface with peripherals can be part of the initrd, the
kernel can be very small, but still support a large number of possible hardware configurations.
After the kernel is booted, the root file system is pivoted (via pivot_root) where the initrd root file
system is unmounted and the real root file system is mounted.

decompress_kernel output
The decompress_kernel function is where you see the usual decompression messages
emitted to the display:

Uncompressing Linux... Ok, booting the kernel.

The initrd function allows you to create a small Linux kernel with drivers compiled as loadable
modules. These loadable modules give the kernel the means to access disks and the file systems
on those disks, as well as drivers for other hardware assets. Because the root file system is a file
system on a disk, the initrd function provides a means of bootstrapping to gain access to the disk
and mount the real root file system. In an embedded target without a hard disk, the initrd can be
the final root file system, or the final root file system can be mounted via the Network File System
(NFS).

ibm.com/developerWorks/ developerWorks®

Inside the Linux boot process Page 7 of 9

Init

After the kernel is booted and initialized, the kernel starts the first user-space application. This
is the first program invoked that is compiled with the standard C library. Prior to this point in the
process, no standard C applications have been executed.

In a desktop Linux system, the first application started is commonly /sbin/init. But it need
not be. Rarely do embedded systems require the extensive initialization provided by init (as
configured through /etc/inittab). In many cases, you can invoke a simple shell script that starts
the necessary embedded applications.

Summary

Much like Linux itself, the Linux boot process is highly flexible, supporting a huge number of
processors and hardware platforms. In the beginning, the loadlin boot loader provided a simple
way to boot Linux without any frills. The LILO boot loader expanded the boot capabilities, but
lacked any file system awareness. The latest generation of boot loaders, such as GRUB, permits
Linux to boot from a range of file systems (from Minix to Reiser).

developerWorks® ibm.com/developerWorks/

Inside the Linux boot process Page 8 of 9

Resources

Learn

• Boot Records Revealed is a great resource on MBRs and the various boot loaders. This
resource not only disassembles MBRs, but also discusses GRUB, LILO, and the various
Windows® boot loaders.

• Check out the Disk Geometry page to understand disks and their geometries. You'll find an
interesting summary of disk attributes.

• A live CD is an operating system that's bootable from a CD or DVD without needing a hard
drive.

• "Boot loader showdown: Getting to know LILO and GRUB" (developerWorks, August 2005)
gives you a detailed look at the LILO and GRUB boot loaders.

• In the Linux Professional Institute (LPI) exam prep series of developerWorks tutorials, get a
comprehensive introduction to booting a Linux system and many other fundamental Linux
tasks while you prepare for system administrator certification.

• LILO was the precursor to GRUB, but you can still find it booting Linux.
• The mkintrd command is used to create an initial RAM disk image. This command is useful

for building an initial root file system for boot configuration that allows preloading of block
devices needed to access the real root file system.

• At the Debian Linux Kernel Project, find more information on the Linux kernel, boot, and
embedded development.

• In the developerWorks Linux zone, find more resources for Linux developers.
• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• The MicroMonitor provides a boot environment for a variety of small target devices. You can
use this monitor to boot Linux in an embedded environment. It has ports for ARM, XScale,
MIPS, PowerPC, Coldfire, and Hitachi's Super-H.

• GNU GRUB is a boot shell filled with options and flexibility.
• LinuxBIOS is a BIOS replacement. Not only does it boot Linux, LinuxBIOS, itself, is a

compressed Linux kernel.
• OpenBIOS is another portable BIOS project that operates on a variety of architectures such

as x86, Alpha, and AMD64.
• At kernel.org, grab the latest kernel tree.
• With IBM trial software, available for download directly from developerWorks, build your next

development project on Linux.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks community.

http://mirror.href.com/thestarman/asm/mbr/MBR_in_detail.htm
http://www.rwc.uc.edu/koehler/comath/42.html
http://en.wikipedia.org/wiki/LiveCD
http://www.ibm.com/developerworks/linux/library/l-bootload.html
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=art
http://www.freshmeat.net/projects/lilo/
http://www.netadmintools.com/html/mkinitrd.man.html
http://debianlinux.net/linux.html
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.linuxdevices.com/articles/AT8516113114.html
http://www.gnu.org/software/grub/
http://www.linuxbios.org/index.php/Main_Page
http://www.openbios.org/
http://www.kernel.org
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community

ibm.com/developerWorks/ developerWorks®

Inside the Linux boot process Page 9 of 9

About the author

M. Tim Jones

M. Tim Jones is an embedded software architect and the author of GNU/Linux
Application Programming, AI Application Programming, and BSD Sockets
Programming from a Multilanguage Perspective. His engineering background ranges
from the development of kernels for geosynchronous spacecraft to embedded
systems architecture and networking protocols development. Tim is a Consultant
Engineer for Emulex Corp. in Longmont, Colorado.

© Copyright IBM Corporation 2006
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview
	System startup
	Stage 1 boot loader
	Stage 2 boot loader
	Kernel
	Init
	Summary
	Resources
	About the author
	Trademarks

