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Preface 

Writing for Computer Science is an introduction to doing and describing re­

search. For the most part the book is a discussion of good writing style and 

effective research strategies. Some of the material is accepted wisdom, some 

is controversial, and some is my opinions. Although the book is brief, it is 
designed to be comprehensive: some readers may be interested in exploring 

topics further, but for most readers this book should be sufficient. 

The first edition of this book was almost entirely about writing. This edi­

tion, partly in response to reader feedback and partly in response to issues that 

arose in my own experiences as an advisor, researcher, and referee, is also about 

research methods. Indeed, the two topics-writing about and doing research­
are not clearly separated. It is a small step from asking how do I write? to 

asking what is it that I write about? 
As previously, the guidance on writing focuses on research, but much of 

the material is applicable to general technical and professional communication. 
Likewise, the guidance on the practice of research has broader lessons. A prac­

titioner trying a new algorithm or explaining to colleagues why one solution is 
preferable to another should be confident that the arguments are built on robust 

foundations. And, while this edition has a stronger emphasis on research than 

did the first, nothing has been deleted; there is additional material on research, 

but the guidance on writing has not been taken away. 

Since the first edition appeared, there have been many changes in the culture 

and environment of research. The web has become universal, whereas, for 

example, few papers were online. There are also more subtle changes. It now 

seems to be rare that a spoken presentation is truly unprofessional; a decade ago 

many talks were unendurably awful. The growth in the use of good tools for 

presentations has been a key factor in this development, and the use of overhead 
transparencies has become archaic. 
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On the other hand, it now seems common that a talk does not have a clear 

message and is merely a compilation of clever visuals. Writing style has be­

come less stilted, which is a change for the better, but too many authors are sub­

mitting work too early. Today, algorithms are often poorly described; a well­

described algorithm has become a welcome, rare exception. The web provides 

easy access to literature, but perhaps the necessity of using a library imposed 

discipline, as, increasingly, past work appears to be neglected. 

The perspectives of all scientists are shaped by the research cultures in 

which they work. My research has involved some theoretical studies, but the 

bulk of my work has been experimental. I appreciate theoretical work for its 

elegance, yet find it sterile when it is too detached from practical value. While 

experimental work can be ad hoc, it can also be deeply satisfying, with the re­

wards of probing the space of possible algorithms and producing technology 

that can be applied to the things we do in practice. My perspective on research 

comes from this background, as does the use of experimental work as examples 

in this book (an approach that is also justified by the fact that such work is gen­
erally easier to outline than is a theoretical contribution). But that doesn't mean 

that my opinions are simply private biases. They are-I hope!-the considered 

views of a scientist with experience of different kinds of research. 

Many people helped with this book in one way or another. For the first 

edition, thanks were due in particular to Alistair Moffat, who contributed to 

Chapters 6, 7, 8, 9, and 12; and to Philip Dart, who also contributed to Chap­

ter 12. I remain grateful to both Alistair and Philip for our collaborations. 
Additionally, I thanked Isaac Balbin, Gill Dobbie, Evan Harris, Michael Fuller, 

Mary and Werner Pelz, Kotagiri Ramamohanarao, Ron Sacks-Davis, Ian Shel­

ley, James Thorn, Rodney Topor, Ross Wilkinson, and Hugh Williams. I also 

thanked my research students and the students who participated in my research 

methods lectures. To all these people-thanks again. 
For this edition, I thank Timothy A.H. Bell, Bodo Billerbeck, Beverley 

Ford, Michael Fuller (again), Paul Gruba, Lin Padgham, Jenny Wolkowicki, 

and the many readers who pointed out mistakes or made helpful suggestions. 

My children showed remarkable patience and I thank them for their forbear­

ance. The person I thank the most is my wife, Penny Tolhurst. 

Justin Zobel 

Melbourne, Australia 

February 2004 
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1 Introduction 

This writing seemeth to me . . .  not much better 
than the noise or sound which musicians make 

while they are in tuning their instruments. 

Francis Bacon 

The Advancement of Learning 

No tale is so good that it can't be spoiled in the telling. 

Proverb 

A scientific paper presents new ideas and demonstrates their correctness. A 
paper can remain relevant for many years and, if published in a major journal 

or conference, may be read by thousands of students and scientists. 

Unfortunately, many scientists do not write well. Bacon's remark was made 

four hundred years ago yet applies to much science writing today. Perhaps 
we should not always expect scientists to communicate well; surely the skills 

required for science and writing are different. Or are they? The best science 

is based on straightforward, logical thinking, and it isn't artistic prose that we 

expect in a research paper-we expect clarity. If the ideas are clearly expressed 

and well organized, the paper should be easy to read. 

Scientists should not be content to write badly. Everyone whose work is 

affected by a poorly written paper will suffer: ambiguity leads to misunder­

standing; omissions frustrate; obscurity makes readers struggle to reconstruct 

the author's intention. Effort used to understand the structure of a paper or the 

syntax of its sentences is effort not used to understand its content. And, as the 
proverb tells us, no tale is so good that it can't be spoiled in the telling. Ir­
respective of the importance and validity of a paper, it cannot be convincing 
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if it is difficult to understand. The more important the results-or the more 
startling or unlikely they seem-the better the supporting arguments and their 
presentation should be. 

It may seem unjust, but good writing and presentation can persuade readers 
that work is of value. Poorly presented material carries a strong subconscious 

message; for example, readers tend to judge statements to be wrong if they 
contain numerous spelling errors. Layout issues such as font and spacing are 
also important-if they weren't, we would be as comfortable reading fixed­

width fonts on a computer screen as we are reading text in a book. A lazy 
presentation suggests to the reader that little care has been taken with the work. 

Thus the ability to write well is a key skill of science. Like many aspects 
of research, writing can only be thoroughly learnt while working with other 
scientists. Too often, however, the only help a novice receives is an advisor's 
feedback on drafts of papers. Such interaction can be far from adequate: many 

scientists have little experience of writing extended documents, and may be 
confronting the difficulties of writing in English when it is not their first lan­
guage. It is not surprising that some scientists struggle. Many are intimidated 
by writing, and avoid it because describing research is less entertaining than 
actually doing it. For some advisors, the task of helping a student to write well 
is not one that comes naturally, and it can be a distraction from the day-to-day 
work of research and teaching. 

Few scientists are natural writers. Those who do write well have, largely, 
learnt through experience; their early papers are often embarrassingly poor. 
Yet it is not so difficult to become a good writer. Most scientists can produce 
competent papers simply by following elementary steps: create a logical orga­
nization, use concise sentences, revise against checklists of possible problems, 
seek feedback. Like many skills, writing improves through practice and a will­
ingness to accept and learn from criticism. 

Kinds of publication 

Scientific results can be presented in a book, a thesis, a journal article, a com­
plete paper or extended abstract in a conference or workshop proceedings, a 
technical report, or a manuscript. Each kind of publication has its own charac­
teristics. Books are usually texts that tend not to contain new results or prove 
the correctness of the information they present. The main purpose of a textbook 

is to collect information and present it in an accessible, readable form, and thus 
textbooks are generally better written than are papers. 

The other forms of publication are for describing the outcomes of new re-
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search. A thesis is usually a deep----or even definitive--exploration of a sin­
gle problem. Journals and conference proceedings consist of contributions that 

range from substantial papers to extended abstracts. A journal paper is typically 
an end product of the research process, a careful presentation of new ideas that 

has been revised, sometimes over several iterations, according to referees' or 
advisors' suggestions and criticisms. 

A paper or extended abstract in a conference proceedings can likewise be 
an end-product, but conferences are also used to report work in progress. Con­
ference papers are usually refereed, but with more limited opportunities for 
iteration and revision, and may be constrained by strict length limits. There is 
no universal definition of "extended abstract", but a common meaning is that 

the detail of the work is omitted. That is, an extended abstract may review the 
results of a research program, but not in enough detail to make a solid argu­

ment for the hypothesis. It follows that refereeing of extended abstracts must 
be superficial. 

In contrast to books-which can represent an author's opinions as well as 
established scientific knowledge-the content of a paper must be defended and 
justified. This is the purpose of refereeing: to attempt to ensure that papers pub­
lished in a reputable journal or conference are trustworthy, high-quality work. 
Indeed, in a common usage a published paper is distinguished from a mere 
paper by having been refereed. 

A typical research paper consists of the arguments, evidence, experiments, 
proofs, and background required to support and explain a central hypothesis. In 
contrast, the process of research that leads to a paper can include uninteresting 
failures, invalid hypotheses, misconceptions, and experimental mistakes. With 
few exceptions these do not belong in a paper. A paper should be an objective 
addition to scientific knowledge, not a description of the path you took to the 
result. Style is not just about how to write, but is also about what to say. 

Writing, science, and skepticism 

Science is a system for accumulating reliable knowledge. Broadly speaking, 
the process of science begins with speculation, observation, and a growing un­

derstanding of some idea or phenomenon. This understanding is used to de­
velop hypotheses that can be tested by proof or experimentation. The results 
are described in a paper, which is then submitted for independent review before 

(hopefully) being published. 
Writing underpins the research cycle. A key aspect of writing is that the 

discipline of stating ideas as organized text forces you to formulate and clarify 
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your thoughts. Vague concepts become concrete, the act of writing suggests 
new concepts to consider, written material is easier to discuss and debate with 

colleagues, and the only effective way to develop complex arguments or threads 
of reasoning and evaluate whether they are sound is to write them down. That 
is, writing is not the end of the research process, but instead shapes it. Only the 

styling of a paper, the polishing process, truly follows the research. 
It is writing, too, that defines what we consider to be knowledge. Scientific 

results are only accepted as correct once they are refereed and published; if they 
aren't published, they aren't confirmed. Each new contribution builds on a bed 
of existing concepts that are known and, within limits, trusted. New research 
may be wrong or misguided, but the process of refereeing eliminates some work 

of poor quality, while the scientific culture of questioning ideas and requiring 
convincing demonstrations of their correctness weeds out (perhaps gradually) 
published falsehoods. 

A unifying principle for the scientific culture that determines the value of 
research is that of skepticism. Within science, skepticism is an open-minded 
approach to knowledge: a scientist should accept ideas provisionally given rea­
sonable evidence and given agreement (or at least absence of contradiction) 
with other provisionally accepted ideas. A skeptic seeks the most accurate de­
scription or solution that fits the known facts, without concern for issues such 
as the need to seek favour with authorities, while suspending judgement until 
decisive information is available. Effective research programs are designed to 
seek the evidence needed to convince a reasonable skeptic. Absolute skepti­
cism is unsustainable, but credulity-the willingness to believe anything-is 
pointless, as it means that it is impossible to learn anything new. 

Skepticism is key to good science. For an idea to survive, other scientists 
must be persuaded of its relevance and correctness-not with rhetoric, but in the 
established framework of a scientific publication. New ideas must be explained 
clearly to give them the best possible chance of being understood, believed, 
remembered, and used. This begins with the task of explaining our ideas to the 
person at the next desk, or even to ourselves. It ends with publication, that is, 
an explanation of results to the research community. Thus good writing is a 
crucial part of the process of good science. 

Using this book 

There are many good books on writing style and research methods, but the 
conventions of style vary from discipline to discipline, and general guidance 

on science writing can be wrong or irrelevant for a specific subject. Some 
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topics-such as algorithms, mathematics, and research methods for computer 
science-are not discussed in these books at all. 

The role of this book is to help computer scientists with their writing and re­
search. For novices, it introduces the elements of a scientific paper and reviews 
a wide range of issues that working scientists need to consider. For experienced 
researchers, it provides a reference point against which they can judge their own 
views and abilities, and is an exposure to wider cultures of research. This book 
is also intended to encourage reflection; the later chapters pose questions about 
research that a responsible scientist should address. Nobody can learn to write 
or become a scientist just by reading this book, or indeed any book. To become 
competent it is necessary to do research and write it up with other scientists. 
However, familiarity with the elements of writing and research is essential in 
scientific training. 

Style is in some respects a matter of taste. The advice in this book is not a 

code of law to be rigidly obeyed; it is a collection of guidelines, not rules, and 
there are inevitably situations in which the "correct" style seems wrong. But 
generally there are good reasons for writing in a certain way. Almost certainly 
you will disagree with some of the points given in this book, but at least expo­
sure to another's opinion should lead you to justify your own choice of style, 
rather than by habit continue with what may be poor writing. A good principle 
is: By all means break a rule, but have a good reason for doing so. 

Most computer scientists can benefit from reading a book about writing and 
research. This book can be used as the principal text for a senior research meth­
ods subject, or for a series of lectures on the practice of research. Such a subject 
would not necessarily follow this book chapter by chapter, but instead use it as 
a resource. In my own teaching of research methods, lectures on writing style 
seem to work best as introductions to the key topics of good writing; talking 
students through the detailed advice given here is less effective than getting 
them to read the book while writing for themselves. Topics such as statistics, 

formal reasoning, or philosophies of science should be discussed in far more 
detail than they are here. However, for a range of topics-figures, algorithms, 
presentations, drafting a paper, ethics, and experimentation, for example-the 
relevant chapter can be used as the basis of one or two lectures. 

This book includes material on the major facets of writing in computer sci­
ence: writing style (Chapters 2, 3, and 4), mathematical style (Chapter 5), de­
sign of figures and graphs (Chapter 6), presentation of algorithms (Chapter 7), 
editing (Chapter 8), writing and organization of papers and theses (Chapter 9), 
and presentations (Chapter 14). A chapter on refereeing (Chapter 12) gives a 
perspective from the other side, by outlining what is expected of a completed 
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paper. The quality of a paper rests on both the writing and the underlying work, 
and thus part of the book is about the doing of science: becoming a researcher, 

beginning a research project, and asking research questions (Chapter 10), ex­
perimentation (Chapter 1 1), and research ethics (Chapter 13). If you are new to 
research, Chapter 10 may be the right place to begin. There are also exercises 
to help develop writing and research skills. 

This book has been written with the intention that it be browsed, not mem­
orized or learnt by rote. Read through it once or twice, absorb whatever advice 
seems of value to you, then consult it for specific problems. Use the checklists 
as a reference for evaluating your work; for example, see pages 134, 155, 182, 
204, 213, 224, and 237, as well as the many reference lists. 

The book's website, www. justinzobel. com, has a range of supporting 
material. This includes an annotated bibliography (extended from the bibliog­
raphy included in the print version of the first edition) and pointers to relevant 
material on the web. 

Spelling and terminology 

British spelling is used throughout this book, with just a couple of quirks, such 
as use of "program" rather than "programme". American readers: There is 
an "e" in 'judgement" and a "u" in "rigour"-within these pages. Australian 
readers: There is a "z" in "customize". These are choices, not mistakes. 

Choosing terminology is less straightforward. An undergraduate is an un­
dergraduate, but the American graduate student is the British or Australian 
postgraduate. The generic "research student" is used throughout, and, mak­
ing arbitrary choices, "thesis" rather than "dissertation" and "PhD" rather than 
"doctorate". The academic staff member (faculty in North America) who works 
with-"supervises"-a research student is, in this book, an "advisor" rather 
than a "supervisor". Researchers write articles, papers, reports, theses, ex­
tended abstracts, and reviews; in this book, the generic term for these forms of 
research writing is a "write-up", while "paper" is used for both refereed publi­
cations and for work submitted for refereeing. 

Some of the examples are based on projects I've been involved in. Most 
of my research has been collaborative; rather than use circumlocutions such as 
"my colleagues and I", or "together with my students", the simple shorthand 
"we" is used to indicate that the work was not mine alone. Many of the exam­
ples of language use are drawn from other people's papers; in some cases, the 
text has been altered to disguise its origin. 
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Everything written with vitality expresses that vitality; 
there are no dull subjects, only dull minds. 

Raymond Chandler 

The Simple Art of Murder 

It is a golden rule always to use, if possible, a short old Saxon 
word. Such a sentence as "so purely dependent is the incipient 
plant on the specific morphological tendency " does not sound 

to my ears like good mother-English-it wants translating. 

Charles Darwin 
Letter to John Scott 

There are many ways in which an idea can be expressed in English; writing 
can be verbose or cryptic, flowery or plain, poetic or literal. The manner of 
expression is the writing style. Style is not about correct use of grammar, but 
about how well you communicate with likely readers. 

Conventions and styles are valuable because some forms of presentation 
are difficult to understand or are simply boring, and because conformity to 
commonly used styles reduces the effort required from readers. Flouting an 
established convention has the impact of this exclamation! It arrests attention 
and distracts from the message. 

Science writing must by its nature be prosaic-the need for it to be accu­

rate and clear makes poetry inappropriate. But this does not mean that science 

writing has to be dull. It can have style, and moreover the desire to communi­
cate clearly is not the only reason to make good use of English. Lively writ­
ing suggests a lively mind with interesting ideas to discuss, while poor usage 
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is distracting, suggests disorganized thinking, and prejudices readers against 
whatever is being presented. 

This chapter, and Chapters 3 and 4, concern writing style, including issues 
that are specific to science and general issues that many scientists ignore. Good 
style for science is, ultimately, nothing more than writing that is easy to under­

stand. Most of the points in these chapters are about the basic aims of science 
writing: to be clear, unambiguous, correct, interesting, and direct. 

Economy 

Text should be taut. The length of a paper should reflect its content-it is 
admirable to say much in a small space. Every sentence should be necessary. 

Papers are not made more important by padding with long-winded sentences; 
they are made less readable. In the following example, the italicized text can 
be discarded without affecting the intent. 

The volume of information has been rapidly increasing in the past few dec­
ades. While computer technology has played a significant role in encouraging 
the information growth, the latter has also had a great impact on the evolution 
of computer technology in processing data throughout the years. Historically, 
many different kinds of databases have been developed to handle information, 
including the early hierarchical and network models, the relational model, 
as well as the latest object-oriented and deductive databases. However, no 
matter how much these databases have improved, they still have their defi­
ciencies. Much information is in textual format. This unstructured style 
of data, in contrast to the old structured record format data, cannot be man­
aged properly by the traditional database models. Furthermore, since 
so much information is available, storage and indexing are not the only 
problems. We need to ensure that relevant information can be obtained 
upon querying the database. 

Waffle, such as the italicized material above, is deadwood that readers must cut 
away before they can get to the meaning of the text. 

Taut writing is a consequence of careful, frequent revision. Aim to delete 
superfluous words, simplify sentence structure, and establish a logical flow. 
That is, convey information without unnecessary dressing. Revise in a critical 
frame of mind, and avoid a sense of showing off or being clever. Be ego less­
ready to dislike anything you have previously written. Expect to revise several 
times, perhaps many times. 
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Tone 

If someone dislikes anything you have written, remember that it is readers 
you need to please, not yourself. Again, it helps to set aside your ego. For 
example, when you are making changes to a paper in response to comments 
from a reader, you may find that the reader has made a claim that is wrong or 
meaningless. However, rather than telling yourself "the reader is wrong", ask 
yourself "what did I write that led the reader astray?" Even misguided feedback 
tells you something about your writing. 

Text can be condensed too far. Don't omit words that make the writing 
easier to understand. 

X Bit-stream interpretation requires external description of stored struc­

tures. Stored descriptions are encoded, not external. 

./ Interpretation of bit-streams requires external information such as de­

scriptions of stored structures. Such descriptions are themselves data, 
and if stored with the bit-stream become part of it, so that further exter­
nal information is required. 

Science writing should be objective and accurate. Many of the elements that 
give literature its strength-nuance, ambiguity, metaphor, sensuality-are inap­
propriate for technical work. In contrast to popular science writing, the primary 
objective is to inform, not entertain. On the other hand, use of turgid, convo­
luted language is perhaps the most common fault in scientific writing; a direct, 
simple style is appropriate. Aim for austerity, not pomposity. 

Simple writing follows from a few simple rules: 

• Have one idea per sentence or paragraph and one topic per section. 

• Have a simple, logical organization. 

• Use short words. 

• Use short sentences with simple structure. 

• Keep paragraphs short. 

• Avoid buzzwords, cliches, and slang. 

• Avoid excess, in length or style. 

• Omit any unnecessary material. 
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• Be specific, not vague or abstract. 

• Break these rules if there is a good reason to do so. 

Sometimes a long word or a complex sentence is the best option. Use them 

when necessary, but not otherwise. 
Another common fault in science writing is to overqualify, that is, to modify 

every claim with caveats and cautions. Such writing is a natural consequence of 
the scientist's desire to not make unfounded claims, but it can be taken too far. 

X The results show that, for the given data, less memory is likely to be 

required by the new structure, depending on the magnitude of the num­
bers to be stored and the access pattern . 

./ The results show that less memory was required by the new structure. 

Whether this result holds for other data sets will depend on the magni­
tude of the numbers and the access pattern, but we expect that the new 
structure will usually require less memory than the old. 

The first version is vague; the author has ventured an opinion that the new 
structure is likely to be better, but has buried it. 

Use direct statements and expressions involving "we" or "1"-that is, the 
active voice-to make reading more pleasant and to help distinguish new re­
sults from old. (Voice is discussed on page 14.) There is nothing wrong with 
using a casual or conversational tone in technical writing, so long as it does not 
degenerate into slang. 

Technical writing is not a good outlet for artistic impulses. The following 

is from a commercial software requirements document. 

X The system should be developed with the end users clearly in view. It 
must therefore run the gamut from simplicity to sophistication, robust­
ness to flexibility, all in the context of the individual user. From the first 
tentative familiarization steps, the consultation process has been used 
to refine the requirements by continued scrutiny and rigorous analysis 
until, by some alchemical process, those needs have been transmuted 
into specifications. These specifications distill the quintessence of the 

existing system. 

The above extract has the excuse that it forms part of a sales pitch, but the 

following is from a scientific paper on concurrent database systems. 
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X We have already seen, in our consideration of what is, that the usual 
simplified assumptions lead inexorably to a representation that is desir­
able, because a solution is always desirable; but repugnant, because it 

is false. And we have presented what should be, assumptions whose 
nature is not susceptible to easy analysis but are the only tenable alter­
native to ignorance (absence of solution) or a false model (an incorrect 

solution). Our choice is then Hobson's choice, to make do with what 
material we have-viable assumptions-and to discover whether the 
intractable can be teased into a useful form. 

1 1  

Deciphering this paper was hard work. The following is a rough translation, 
with no guarantee that the intended meaning is preserved . 

../ We have seen that the usual assumptions lead to a tractable model, but 

this model is only a poor representation of real behaviour. We therefore 
proposed better assumptions, which however are difficult to analyze. 
Now we consider whether there is any way in which our assumptions 
can be usefully applied. 

Novice writers can be tempted to imitate the style of, not science writing, but 
popular science writing. 

X As each value is passed to the server, the "heart" of the system, it is 
checked to see whether it is in the appropriate range . 

../ Each value passed to the central server is checked to see whether it is 
in the appropriate range. 

Don't dress up your ideas as if they were on sale. In the following I have 
changed the author's name to "Grimwade". 

X Sometimes the local network stalls completely for a few seconds. This 

is what we call the "Grimwade effect", discovered serendipitously dur­
ing an experiment to measure the impact of server configuration on 
network traffic . 

../ Sometimes the local network stalls for a few seconds. We first noticed 
this effect during an experimental measurement of the impact of server 
configuration on network traffic. 

But consider the following extract from a paper on some pragmatics for index­

ing, which illustrates that it is not necessary to write in a literary or pedantic 
style. It is colloquial, poorly punctuated, and there were spelling errors (not 

reproduced here), but it is direct and frank. 
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../ To improve the chance of a cache hit almost a complete recode was 
necessary to the data structure routines but no run with the new code 
showed any improvement. The cache may have been too small but more 
likely the problem was the operating system and instruction prefetch 

getting the cache dirty. Also after recoding a couple of extra machine 
instructions were needed for each access so the saving of having a few 
more hits was lost. 

For researchers educated in an English-speaking country, it is easy to forget 
that English is not the first language of a great many readers. Simple writing 
allows these people to easily understand your work. Also, popular writing of­
ten uses shared cultural elements as references. Slang ("home run"), values 
("cool"), analogies ("like turning left from the right lane"), and events ("the 

Northeastern power outage") may well be meaningless to people in other coun­
tries. Even dates can be confusing: in the United States, dates are often writ­
ten month/day/year, but elsewhere this notation almost invariably means day/­
month/year. Write for everybody. 

Examples 

Use an example whenever it adds clarification. A small example often means 
the difference between communication and confusion, particularly if the con­
cept being illustrated is fundamental to understanding the paper. People learn 
by generalizing from concrete instances to abstractions, and examples can give 
substance to abstract concepts . 

../ In a semi-static model, each symbol has an associated probability rep­
resenting its likelihood of occurrence. For example, if the symbols are 
characters in text, then a common character such as "e" might have an 
associated probability of 12%. 

Each example should be an illustration of one concept; if you don't know what 
an example is illustrating, change it. 

Examples can be blocks of text with a heading such as "Example 3.5" or 

detailed discussions of specific instances where a technique can be used, but 
often an informative example is just a few words . 

../ Large document collections, such as a repository of newspaper articles, 
can be managed with the same techniques. 
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../ Special cases, such as the empty set, need to be handled separately . 

../ Algorithms that involve bit manipulation cannot be efficiently implem­

ented in these languages. For example, Huffman coding is impractical 
because it involves processing a stream one bit at a time. 

Motivation 

13 

Many authors take considerable trouble over the structure of their papers but 
don't make the structure obvious to the reader. Not only should the parts of a 
paper be ordered in a logical way, but this logic needs to be communicated. 

The introduction usually gives some indication of the organization of the 
paper, by outlining the results and their context, and may include a list of the 
parts of the paper, but these measures by themselves are not sufficient. Brief 
summaries at the start and end of each section are helpful, as are sentences 
linking one section to the next; for example, a well-written section might con­
clude with: 

../ Together these results show that the hypothesis holds for linear coeffi­
cients. The difficulties presented by non-linear coefficients are consid­
ered in the next section. 

Link text together as a narrative--each section should have a clear story to tell. 
The connection between one paragraph and the next should be obvious. This 
principle is sometimes expressed as: Tell the reader what you are going to say, 
then say it, and then tell the reader that you have said it. 

A common error is to include material such as definitions or theorems with­
out indicating why the material is useful. Usually the problem is lack of expla­

nation; sometimes it is symptomatic of an ordering problem, such as includ­
ing material before the need for it is obvious. Never assume that a series of 
definitions, theorems, or algorithms--or even the need for the series-is self­
explanatory. Motivate the reader at each major step in the exposition: explain 
how a definition (theorem, lemma, whatever) is to be used, or why it is inter­
esting, or how it fits into the overall plan. 

The authors of a paper are almost always better informed than their read­
ers. Even expert readers won't be familiar with some of the details of a prob­

lem, whereas the author has probably been studying the problem intimately for 
months or years and takes many difficult issues for granted. You should ex­

plain everything that is not common knowledge to the paper's readership; what 
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constitutes common knowledge depends on the paper's subject and on where 
it is published. At each part of a paper you should consider what the reader 
has learnt so far, whether this knowledge is sufficient to allow understanding of 
what follows, and whether each part follows from what has already been said. 

Balance 

Within a paper, each topic should be discussed to a similar depth. A paragraph 
on a previous algorithm followed by seven pages on your refinements to it is 
unbalanced. If one relevant paper merits half a page, other papers of equal 
worth should not be dismissed in a line. An algorithm that is only sketched 

does not merit twenty graphs and tables; an algorithm that it is described in 

detail needs a substantial analysis or other justification. A four-page rambling 
introduction is unlikely to be readable. 

The length of a paper is a consequence of how much material is included 
and of how much detail is given, that is, the depth to which each topic is dis­
cussed. When a paper must be kept within a length limit, some compromise is 
required. Some of the discussion must be omitted, or the graphs selected more 
carefully, or the text condensed. Perhaps it will even be necessary to omit a 
proof or a series of results. Such changes should not be used as an excuse for 
unbalancing the paper. 

Voice 

Avoid excessive use of indirect statements (or passive voice), particularly de­
scriptions of actions that don't indicate who or what performs them. 

X The following theorem can now be proved . 

../ We can now prove the following theorem. 

The direct style (or active voice) is often less stilted and easier to read. 
Another unpleasant indirect style is the artificial use of verbs like "perform" 

or "utilize", in the false belief that such writing is more precise or scientific. 
These words can often be removed. 

X Tree structures can be utilized for dynamic storage of terms . 

../ Terms can be stored in dynamic tree structures. 
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X Local packet transmission was performed to test error rates . 

../ Error rates were tested by local packet transmission. 

Other words often used in this way include "achieved", "carried out", "con­
ducted", "done", "occurred", and "effected". 

Change of voice sometimes changes meaning and often changes empha­
sis. If passive voice is necessary, use it. Complete absence of active voice is 
unpleasant, but that does not mean that all use of passive voice is poor. 

Use of "we" is valuable when trying to distinguish between the contribution 
made in your paper and existing results in a field, particularly in an abstract or 
introduction. For example, in "it is shown that stable graphs are closed", the 

reader may have difficulty deciding who is doing the showing, and in "it is 
hypothesized that . . .  ", the reader will be unsure whether the hypothesis was 
posed in your paper or elsewhere. Use of "we" can allow some kinds of state­
ments to be simplified--consider "we show" versus "in this paper it is shown 
that". "We" is preferable to pretentious expressions such as "the authors". 

Some authors use phrases such as "this paper shows" and "this section ar­
gues". These phrases, with their implication that the paper is sentient, should 
not be used. 

In some cases the use of "we" is wrong. 

X When we conducted the experiment it showed that our conjecture was 
correct. 

Here, the use of "we" suggests that if someone else ran the experiment it would 
behave differently . 

../ The experiment showed that our conjecture was correct. 

I do not particularly like the use of "I" in scientific writing, except when it is 
used to indicate that what follows is the author's opinion. The use of "I" in 
place of "we" in papers with only one author is uncommon. 

Use of personal pronouns has been a contentious issue in technical writing. 

Some people argue that it undermines objectivity by introducing the author's 
personality and is therefore unacceptable, even unscientific. Others argue that 
to suggest that a paper is not the work of individuals is intellectually dishon­
est, and that use of personal pronouns makes papers easier to read. Although 
opinions on this topic are divided, use of "we" is an accepted norm. 
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The upper hand 

Some authors seem to have a superiority complex-a need to prove that they 
know more or are smarter than their readers. Perhaps the most appropriate word 
for this behaviour is swagger. One form of swagger is implying familiarity with 

material that most scientists will never read; an example is reference to philoso­
phers such as Wittgenstein or Hegel, or statements such as "the argument pro­
ceeds on Voltarian principles". Another form is the unnecessary inclusion of 
difficult mathematics, or offhand remarks such as "analysis of this method is 
of course a straightforward application of tensor calculus". Yet another form is 
citation of obscure, inaccessible references. 

This kind of showing off, of attempting to gain the upper hand over the 
reader, is snobbish and tiresome. Since the intention is to make statements the 
reader won't understand, the only information conveyed is an impression of the 
author's ego. Write for an ordinary reader, as your equal. 

Obfuscation 

Obfuscation is the making of statements in ambiguous or convoluted terms, 
with the intention of hiding meaning, or of appearing to say much while actu­
ally saying little. It can be used, for example, to give the impression of having 
done something without actually claiming to have done it. 

X Experiments, with the improved version of the algorithm as we have 
described, are the step that confirms our speculation that performance 
would improve. The previous version of the algorithm is rather slow on 
our test data and improvements lead to better performance. 

Note the use of bland statements such as "experiments . . .  are the step that con­
firms our speculation" (true, but not informative) and "improvements lead to 
better performance" (tautologous). The implication is that experiments were 

undertaken, but there is no direct claim that experiments actually took place. 
In science writing, vague statements are common. It is always preferable to 

be specific: exceptions are or are not possible; data was transmitted at a certain 
rate; and so on. Stating that "there may be exceptions in some circumstances" 
or "data was transmitted fast" is not helpful. 

X Amelioration can lead to large savings . 

./ Amelioration led to savings of 12%-33% in our experiments. 
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Obfuscation can arise in other ways: exaggeration, omission of relevant in­
formation, or bold statements of conclusions based on flimsy evidence. Use 
of stilted or long-winded sentences--often due to an unnecessary attempt to 

introduce formality-can obfuscate. 

X The status of the system is such that a number of components are now 
able to be operated . 

../ Several of the system's components are working. 

X In respect to the relative costs, the features of memory mean that with 
regard to systems today disk has greater associated expense for the 
elapsed time requirements of tasks involving access to stored data . 

../ Memory can be accessed more quickly than disk. 

Some obfuscation arises because processes are unnecessarily complex, are 
presented in unnecessary detail, or are outright unnecessary. The following was 
written as part of a tender process. 

X These draft guidelines are part of a process for seeking comments on the 
proposed stages for identifying the officers responsible for participating 
in the development of the initial specification. 

Analogies 

Analogies are curious things: what seems perfectly alike or parallel to one 
person may seem entirely unalike to another. 

X Writing a program is like building a model with connector blocks. 

What are "connector blocks"? How are they like programming? Even if the 
similarity is obvious to a programmer, is it obvious to a novice? This analogy 
(made in an introduction to computer science) seems to me to fail because it 
captures neither logic nor repetition. For an analogy to be worthwhile, it should 
significantly reduce the work of understanding the concept being described. 

Another drawback to analogies is that they can take your reasoning astray­

two situations with marked similarities may nonetheless have fundamental dif­

ferences that the analogy leads you to ignore. I have seen more bad analogies 
than good in computing research papers; however, simple analogies can un­
doubtedly help illustrate unfamiliar concepts. 
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./ Contrasting look-ahead graph traversal with standard approaches, look­
ahead uses a bird's-eye view of the local neighbourhood to avoid dead 

ends, but at significant cost: it is necessary to feed the bird and wait for 

it to return after each observation. 

Beware of analogies with situations that may be unfamiliar to the reader. 

X One-sided protocols are like signals in football. 

Straw men 

A straw man is an indefensible hypothesis that an author describes for the sole 

purpose of criticizing it. A paraphrasing of an instance in a published paper is 
"it can be argued that databases do not require indexes", in which the author 
and reader are well aware that a database without an index is as practical as a 
library without a catalogue. Such writing says more about the author than it 
does about the subject. 

Another form of straw man is the contrasting of a new idea with some 
impossibly bad alternative, to put the new idea in a favourable light. This form 
is obnoxious because it can lead the reader to believe that the impossibly bad 
idea might be worthwhile, and that the new idea is more important than is in 
fact the case. Contrasts should be between the new and the current, not the new 
and the fictitious. 

X Query languages have changed over the years. For the first database 
systems there were no query languages and records were retrieved with 
programs. Before then data was kept in filing cabinets and indexes were 
printed on paper. Records were retrieved by getting them from the cab­
inets and queries were verbal, which led to many mistakes being made. 
Such mistakes are impossible with new query languages like QIL. 

A more subtle form of straw man is comparison between the new and the an­
cient. For example, criticisms based on results in old papers are unreasonable 
because, in all likelihood, the state of the art has changed in the meanwhile. 

A straw man is an example of rhetoric--of attempting to win an argument 
through presentation rather than reasoning. Other forms of rhetoric are appeal 
to authority, appeal to intuitively obvious truth, and presentation of received 
wisdom as fact. 
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X We did not investigate partial interpretation because it is known to be 
ineffective. 
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If  there is  evidence-a study or proof, not someone else's opinion-then cite 
it. Unsubstantiated claims should be clearly noted as such, not dressed up as 

accepted knowledge. 

X Most users prefer the graphical style of interface . 

./ We believe that most users prefer the graphical style of interface. 

X Another possibility would be a disk-based method, but this approach is 
unlikely to be successful. 

./ Another possibility would be a disk-based method, but our experience 
suggests that this approach is unlikely to be successful. 

Reference and citation 

You need to explain the relationship of your new work to existing work, show­
ing how your work builds on previous knowledge and how it differs from con­
tributions in other, relevant papers. The existing work is identified by reference 

to published theses, articles, books, and reports. All papers include a bibliog­
raphy, that is, a list of such references in a standardized format, and embedded 
in each paper's text there are citations to the publications. 

References, and discussion of them, serve three main purposes. They help 
demonstrate that work is new: claims of originality are much more convincing 
in the context of references to existing work that (from the reader's perspective) 
appears to be similar. They demonstrate your knowledge of the research area, 
which helps the reader to judge whether your statements are reliable. And they 
are pointers to background reading. 

Before including a reference, consider whether it will be of service to the 
reader. A reference should be relevant, it should be up-to-date, it should be 
reasonably accessible, and it should be necessary. Don't add citations just to 
pad the bibliography. Refer to an original paper in preference to a secondary 

source; to well-written material in preference to bad; to a book or journal ar­

ticle in preference to a conference paper; to a conference paper in preference 

to a technical report or manuscript (which have the disadvantage of being un­
refereed); and to printed documents rather than web pages. Avoid reference to 
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private communications and information provided in forums such as seminars 
or talks-such information cannot be accessed or verified by the reader. In the 
rare circumstance that you must refer to such material, do so via a footnote, 

parenthetical remark, or acknowledgement. 

If you discuss a paper in detail or note some particular contribution it 
makes, it must be cited. Otherwise, consider whether a reader needs the pa­
per for knowledge in addition to that in the other papers you cite. If the answer 
is no, perhaps it should be omitted. At the same time, ensure that it is clear to 

the reader that you know all the pertinent background literature. 
Don't cite to support common knowledge. For example, use of a binary tree 

in an algorithm doesn't require a reference to a data structures text. But claims, 
statements of fact, and discussion of previous work should be substantiated by 
reference if not substantiated within your write-up. This rule even applies to 
minor points. For some readers the minor points could be of major interest. 

In many papers, some of the references are to previous papers by the same 
author. Such references establish the author's credentials as someone who un­
derstands the area, establish a research history for the paper, and allow the inter­
ested reader to gain a deeper understanding of the research by following it from 
its inception. Gratuitous self-reference, however, undermines these purposes; it 
is frustrating for readers to discover that references are not relevant. Technical 
reports in particular should not be self-referenced, unless they contain material 
that is genuinely important and not available elsewhere. 

On rare occasions it is necessary to refer to a result in an inaccessible paper. 
For example, suppose that in 1 9 8 1  Dawson wrote "Kelly ( 1 959) shows that 
stable graphs are closed", but Kelly ( 1959) is inaccessible and Dawson ( 198 1)  
does not give the details. In your write-up, do not refer directly to Kelly-after 
all, you can't check the details yourself, and Dawson may have made a mistake . 

./ According to Dawson (198 1), stable graphs have been shown to be 
closed . 

./ According to Kelly ( 1959; as quoted by Dawson, 198 1 ), stable graphs 
are closed. 

The second form tells readers who originated the result without the effort of 

obtaining Dawson first. Kelly's entry in the bibliography should clearly show 
that the reference is second-hand. 

Regardless of whether you have access to original sources, be careful to 

attribute work correctly. For example, some authors have referred to "Knuth's 
Soundex algorithm", although Knuth is not the author and the algorithm was at 
least fifty years old when Knuth discussed it. 
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Some readers of a paper will not have access to the publications it  cites, 
and so may rely on the paper's description of them. For this reason alone you 

should describe results from other papers fairly and accurately. Any criticisms 

should be based on sound argument. That is, it is acceptable to make reasoned 

criticisms, and a careful assessment of past work is of great value because ul­
timately it is how a paper is regarded that determines its worth. However, only 
rarely is it acceptable to offer opinions, and it is never acceptable to use flattery 
or scorn. Neither belittle papers, regardless of your personal opinion of their 
merits, nor overstate their significance; and beware of statements that might be 
interpreted as pejorative. 

X Robinson's theory suggests that a cycle of handshaking can be elimi­
nated, but he did not perform experiments to confirm his results [22] . 

./ Robinson's theory suggests that a cycle of handshaking can be elimi­
nated [22], but as yet there is no experimental confirmation. 

Careful wording is needed in these circumstances. When referring to the work 
of Robinson, you might write that "Robinson thinks that . . .  ", but this implies 
that you believe he is wrong, and has a faint odour of insult; you might write 
that "Robinson has shown that . . .  ", but this implies that he is incontrovertably 
right; or you might write that "Robinson has argued that . . .  ", but then should 
make clear whether you agree. 

A simple method of avoiding such pitfalls is to quote from the reference, 
particularly if it contains a short, memorable statement--one or two sentences, 
say-that is directly pertinent. Quotation also allows you to clearly distinguish 
between what you are saying and what others have said, and is far preferable to 
plagiarism. 

Cited material often uses different terminology, spelling, or notation, or 
is written for an entirely different context. When you use results from other 
papers, be sure to show the relationship to your own work. For example, a 
reference might show a general case, but you use a special case; then you need 
to show that it is a special case. If you claim that concepts are equivalent, ensure 
that the equivalence is clear to the reader. 

References that are discussed should not be anonymous. 

X Other work [ 16] has used an approach in which . . .  

./ Marsden [16] has used an approach in which . . .  
Other work (Marsden 1991) has used an approach in which . . .  
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The modified versions provide more information to the reader, and "Marsden" 
is easier to remember than "[16]" if the same paper is discussed later on. Self­
references should not be anonymous-it should be clear to the reader that ref­
erences used to support your argument are your own papers, not independent 

authorities. Other references that are not discussed can just be listed . 

../ Better performance might be possible with string hashing techniques 
that do not use multiplication [1 1 ,  30]. 

Avoid unnecessary discussion of references. 

X Several authors have considered the problem of unbounded delay. We 

cite, for example, Hong and Lu (1991) and Wesley (1987) . 

../ Several authors have considered the problem of unbounded delay (Hong 
and Lu 1991 ;  Wesley 1987). 

Two styles of citation are illustrated above. One is the ordinal-number style, 
in which entries in the reference list are numbered and are cited by their num­
ber, as in " . . .  is discussed elsewhere [ 16]". The other is the name-and-date or 

Harvard style-my preferred style-in which entries are cited by author name 
using either square or round brackets: 

../ . . .  is discussed by Whelks and Babb (1972) . 
. . . is discussed elsewhere (Whelks and Babb 1972) . 
. . . is discussed by Whelks and Babb [ 1972] . 
. . . is discussed elsewhere [Whelks and Babb 1972]. 

A third common style is to use superscripted ordinal numbers, as in " . . .  is dis­
cussed elsewhere16". Another style is use of uppercase abbreviations, where 
references are denoted by strings such as "[MAR91]" .  This is not a good 
style: the abbreviations seem encourage poor writing such as " . . .  is discussed 
in [WHB72]" and, because uppercase characters stand out from text, they are 
rather distracting. 

Note, however, that many publishers insist on a particular style. (Some also 
insist that bibliographic entries be ordered alphabetically, which is convenient 
for the reader, or that they appear by order of citation, which is convenient for 
typesetting.) Your writing should be designed to survive a change in the style 

of citation. 
When discussing a reference with more than three authors, all but the first 

author's name can be replaced by "et al." 
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./ Rowers, Mann, Thompson, and Wills [9] provide another example . 

./ Rowers et al. [9] provide another example. 

23 

In a variant of this style, the full list is given at the first citation, and the abbre­

viated form thereafter. Note the stop: "et al." is an abbreviation. 
Each entry in the reference list should include enough detail to allow read­

ers to find the paper. Other than in extreme cases, the names of all authors 
should be given-don't use "et al." in the reference list. An exception is the 
rare case in which the authors list themselves as "et al." (I have only seen one 

paper with such an author list: "The Story of Oz" by 0. Deux et al.) 
Format fields of the same type in the same way. For example, don't list one 

author as "Heinrich, J.", the next as "Peter Hurst", the next as "R. Johnson", 
and the next as "SL Klows". Capitalization, explained on pages 64-65, should 
be consistent. Don't use unfamiliar abbreviations of journal names. (One that 
has puzzled me is "J. Comp. ") 

Journal articles. The journal name should be given in full, and author names, 
paper title, year, volume, number, and pages must be provided. Consider also 

giving the month. Thus: 

X T. Wendell, "Completeness of open negation in quasi-inductive pro­
grams", J. Dd. Lang. , 34. 

is inadequate. Revise it to, say: 

./ T. Wendell, "Completeness of open negation in quasi-inductive pro­
grams", ICSS Journal of Deductive Languages, 34(3):217-222, Nov­
ember 1994. 

Conference papers. The conference name should be complete, and authors, 
title, year, and pages must be provided. Information such as publisher, confer­
ence location, month, and editors should also be given. 

Books. Give title, authors, publisher and publisher's address, year, and, where 
relevant, edition and volume. If the reference is to a specific part of the book, 
give page numbers; for example, write "(Rowing 1994; pp. 22-31)" rather than 
just "(Rowing 1994)". If the reference is to a chapter, give its title, pages, and, 
if applicable, authors. 
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Technical reports. In addition to title, authors, year, and report number you 
need to provide the address of the publisher (which is usually the authors' home 
institution). If the report is available online, say via the web, consider giving 

its electronic address. 

Web pages. If you cite a web page, attempt to find a durable URL that is 
unlikely to change when, for example, a researcher changes institution. In ad­
dition to the usual details, give the URL and perhaps some search terms. URLs 
can include unusual characters; make sure you represent these correctly. 

Obscure references. Take particular care to provide as much information as 
possible. If you must refer to the First Scandinavian Workshop on Backward 
Compatibility, consider explaining how to obtain the proceedings or a copy of 
the paper. 

Punctuation of citations is considered on page 67, and ethical issues with 
regard to citations and references are discussed in Chapter 13. 

Quotation 

Quotations are text from another source, usually included in a paper to support 
an argument. The copied text, if short, is enclosed in double quotes (which 
are more visible than single quotes and cannot be confused with apostrophes). 
Longer quotes are set aside in an indented block. 

./ Computer security forensics is "the study of matching an intrusion event 
to an IP address, location, and individual" (Brinton 1997) . 

./ As described by Kang [ 1 6], there are three stages: 

First, each distinct word is extracted from the data. During 
this phase, statistics are gathered about frequency of occur­
rence. Second, the set of words is analyzed, to decide which 
are to be discarded and what weights to allocate to those 
that remain. Third, the data is processed again to determine 
likely aliases for the remaining words. 

The quoted material should be an exact transcription of the original text; 

some syntactic changes are permissible, so long as the meaning of the text is 
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unaltered, but the changes should be held to a minimum. Changes of font, par­
ticularly addition of emphasis by changing words to italics, should be explicitly 

identified, as should changes of nomenclature. 
The expression "[sic]" is used to indicate that an error is from the original 

quote, as in "Davis regards it as 'not worty [sic] of consideration' [ 1 1 ]". It is 

not polite to point out errors; avoid such use of "[sic]" and of quotes that seem 
to require it. More rarely "[sic]" is used to indicate that terminology or jargon 

is being used in a different way. 

X Hamad and Quinn (1990) show that "similarity [sic] is functionally 

equivalent to identity"; note that similarity in this context means ho­
mology only, not the more general meaning used in this paper. 

The long explanation renders the quote pointless. 

,/ Hamad and Quinn (1990) show that homology "is functionally equiva­
lent to identity". 

For a short, natural statement of this kind the quotes are preferable but not 

essential. 

,/ Hamad and Quinn (1990) show that homology is functionally equiva­
lent to identity. 

Other changes are insertions, replacements, or remarks, delimited by square 
brackets; and short omissions, represented by ellipses. 

,/ They describe the methodology as "a hideous mess . . .  that somehow 
manages to work in the cases considered [but] shouldn't". 

(Note that an ellipsis consists of three stops, neither more nor less.) Ellipses are 
unnecessary at the start of quotes, and at the end of quotes except where they 
imply "et cetera" or "and so on", or where the sentence is left hanging. For 
long omissions, don't use an ellipsis; separate the material into two quotations. 
Material in square brackets is used for comments or to make the quote parse 

when read in its new context. 
Don't mutilate quotations. 

X According to Fier and Byke such an approach is "simple and . . .  fast, 
[but] fairly crude and . . .  could be improved" [8]. 

It would be better to paraphrase. 
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../ Pier and Byke describe the approach as simple and fast, but fairly crude 
and open to improvement [8]. 

Long quotations, and quotation in full of material such as algorithms or fig­
ures, require permission from the publisher and from the author of the original. 
(Plagiarism and inappropriate quotation are discussed in Chapter 13.) 

Words can be quoted to show that they are inadequately defined. 

X This language has more "power" than the functional form. 

Here the author must assume that "power" will be understood in a consistent 
way by the reader. Such use of quotes indicates woolly thinking-that the 
author is not quite sure what "power" means, for example . 

../ This language allows simpler expression of queries than does the func­
tional form. 

More rarely, words can be quoted to indicate irony. The expression "in their 
'methodology' " can be interpreted as in their so-called methodology, and is 
therefore insulting. This is not an appropriate use of quotes. 

Acknowledgements 

In the acknowledgements of a scientific paper you should thank everyone who 
made a contribution, whether advice, proofreading, or whatever: include re­
search students, research assistants, technical support, and colleagues. Funding 
sources should also be acknowledged. It is usual to thank only those who con­
tributed to the scientific content-don't thank your parents or your cat unless 
they really helped with the research. Books and theses often have broader ac­
knowledgements, however, to include thanks for people who have helped in 
non-technical ways. Consider showing your acknowledgement to the people 
you wish to thank, in case they object to the wording or to the presence of their 
name in the paper. 

There are two common forms of acknowledgement. One is to simply list 
the people who have helped with the paper . 

../ I am grateful to Dale Washman, Kim Micale, and Dong Wen. I thank 
the Foundation for Science and Development for financial support. 
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Even in this little example there is some scope for bruised egos-Kim might 
wonder why Dale was listed first, for example. 

The other common form is to explain each person's contribution. On the 
one hand, don't make your thanks too broad; if Kim and Dong constructed the 
proof, why aren't they listed as authors? On the other hand, too much detail 
can damn with faint praise. 

X I am grateful to Dale Washman for discussing aspects of the proof of 
Proposition 4. 1 ,  to Kim Micale for identifying some technical errors in 
Theorem 3, and to Dong Wen for helping with use of the debugging 
tools. I thank the Foundation for Science and Development for a year 
of financial support . 

./ I am grateful to Dale Washman and Kim Micale for our fruitful dis­
cussions, and to Dong Wen for programming assistance. I thank the 
Foundation for Science and Development for financial support. 

This form has the advantage of identifying which of your colleagues con­
tributed to the intellectual content. 

Some authors write their thanks as "I would like to thank" or "I wish to 
thank". To me this seems to imply that I wish to thank . . .  but for some reason 
I am unable to do so. Consider instead using "I am grateful to" or simply 
"I thank" or "Thanks to". 

Grammar 

In this book I have not given advice on grammar, because the clarity of writing 
largely depends on whether it conforms to accepted usage. One aspect of gram­
mar is, however, worth considering: that some people use traditional grammar 
to criticize other people's text, based on rules such as don 't split infinitives or 
don 't begin a sentence with "and" or "but". I dislike this attitude to writing: 
grammatical rules should be observed, but not at the cost of clarity or meaning. 
However, be aware that an excess of sloppy grammar annoys some readers. 

Beauty 

Authors of style guides like to apply artistic judgements to text. This does not 
mean that scientific writing should be judged as literary prose; indeed, such 
prose would be inappropriate. But some authorities on writing style argue that 
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everyone's text should be crystalline, transparent, and have good rhythm and 
cadence; and that one should dislike stuffy, soft, stodgy, and sagging sentences. 

How useful such judgements are to most writers is not clear. Doubtless, 
well-crafted text is a pleasure to read, ill-written text can be hard going, and 
good rhythm in text helps us to parse. But appreciation of well-written text 
does not always help a novice to write it, nor is it evident that, to a poor writer, 
the argument that text should be elegant is meaningful. It is sufficient to aim 
for simplicity and clarity. 
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Those complicated sentences seemed to him very pearls . . .  
"The reason for the unreason with which you treat my reason, 

so weakens my reason that with reason I complain of your 
beauty " . . . These writings drove the poor knight out of his wits. 

Cervantes 
Don Quixote 

Underneath the knocker there was a notice that said: 

PLES RING IF AN RNSER IS REQIRD 

Underneath the bell-pull there was a notice that said: 

PLEZ CNOKE IF AN RNSR IS NOT REQID 

These notices had been written by Christopher Robin, 
who was the only one in the forest who could spell. 

A. A. Milne 
Winnie the Pooh 

Good style is about clear, easy-to-read writing, which can be achieved by fol­
lowing well-defined guidelines. These are not arbitrary rules, but are principles 
that have been observed by experienced writers to lead to good text. In the pre­
vious chapter, some of these principles were reviewed. This chapter concerns a 
range of specific problems that are common in technical writing. 
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Titles and headings 

Titles of papers and sections should be concise and informative, have specific 
rather than general terms, and accurately describe the content. Complicated 
titles with long words are hard to swallow. 

X A New Signature File Scheme Based on Multiple-Block Descriptor 
Files for Indexing Very Large Data Bases 

../ Signature File Indexes Based on Multiple-Block Descriptor Files 

X An Investigation of the Effectiveness of Extensions to Standard Rank­
ing Techniques for Large Text Collections 

../ Extensions to Ranking Techniques for Large Text Collections 

Don't make the title so short that it is contentless. "Limited-Memory Huff­
man Coding for Databases of Textual and Numeric Data" is awkward, but it is 
superior to "Huffman Coding for Databases", which is far too general. 

Accuracy is more important than catchiness-"Strong Modes Can Change 
the World!" is excessive, not to mention uninformative. The more interesting 
the title, however, the more likely that the text underneath it will be read. The 
title is the only part of your paper that most people see; if the title does not 
reflect the paper's contents, the paper will not be read by the right readership. 

Titles and section headings do not have to be complete sentences; indeed, 
such titles can look rather odd. 

X Duplication of Data Leads to Reduction in Network Traffic 

../ Duplicating Data to Reduce Network Traffic 

Section headings should reflect the paper's structure. If a section is headed 
"Lists and Trees" and the first subsection is "Lists", another should be "Trees"; 
don't use, say, "Other Data Structures". If a section is headed "Index Organiza­
tions" the subsection heading should be "B-trees" rather than "B-tree indexes". 

A paper (or thesis chapter) consists of sections and possibly subsections. 
There is rarely any need to break subsections into sub-subsections. Don't break 
text into small blocks; three headings on a page is too many. Headings below 
the level of subsections should be paragraph leads, not lines by themselves. 
Beware of having too few sections, because it is difficult to continue the logical 
flow of a section over more than a few pages. 
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Headings may or may not be numbered. In a paper, my preference is to 
use only two levels of headings, major and minor, and to only number major 
headings. In a thesis, numbered chapters, sections, and possibly subsections 
are appropriate. Deeper numbering allows more precise referencing, but often 
seems fussy. If all headings are unnumbered-as is required in some journals­
make sure that major and minor headings are clearly distinguished by font, size, 
or placement. 

The opening paragraphs 

The opening paragraphs can set the reader's attitude to the whole paper, so 
begin well. All of a document should be created and edited with care, but take 
the most care with the opening, to create the best possible impression. The 
abstract should be written especially well, without an unnecessary word, and 
the opening sentence should be direct and straightforward. 

X Trees, especially binary trees, are often applied-indeed indiscrimi­
nately applied-to management of dictionaries . 

./ Dictionaries are often managed by a data structure such as a tree, but 
trees are not always the best choice for this application. 

The following example of how not to begin is the first sentence of a paper. 

X This paper does not describe a general algorithm for transactions. 

Only later does the reader discover than the paper describes an algorithm for a 
special case . 

./ General-purpose transaction algorithms guarantee freedom from dead­
lock but can be inefficient. In this paper we describe a new transaction 
algorithm that is particularly efficient for a special case, the class of 
linear queries. 

The first paragraphs must be intelligible to any likely reader; save technicalities 
for later on, so that readers who can't understand the details of your paper are 
still able to understand your results and the importance of your work. That is, 
describe what you have done without the details of how it was done. 

Starting an abstract or introduction with "This paper concerns" or "In this 
paper" often means that results are going to be stated out of context. 
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X In this paper we describe a new programming language with matrix 
manipulation operators . 

../ Most numerical computation is dedicated to manipulation of matrices, 
but matrix operations are difficult to implement efficiently in current 
high-level programming languages. In this paper we describe a new 
programming language with matrix manipulation operators. 

The second version describes the context of the paper's contribution. 
Beginning a paper by stating that a topic is popular or that a problem is 

important is fiat and uninspiring. 

X Use of digital libraries is increasingly common. 

X It is important that the cost of disk accesses be reduced in query pro­
cessing. 

Such openings succeed in establishing context but fail in motivation, often be­
cause they are an assertion that a reasonable person might disagree with. A 
simpler or more specific statement may well be preferable . 

../ Digital libraries provide fast access to large numbers of documents . 

../ Query processing can involve many disk accesses. 

A typical organization for the introduction of a paper is to use the first 
paragraphs to describe the context. It is these paragraphs that convince the 
reader that the paper is likely to be interesting. The opening sentences should 
clearly indicate the topic. 

X Underutilization of main memory impairs the performance of operating 
systems . 

../ Operating systems are traditionally designed to use the least possible 
amount of main memory, but such design impairs their performance. 

The second version is better for several reasons. It is clear; it states the context, 
which can be paraphrased as operating systems don 't use much memory; and, 
in contrast to the first version, it is positive. 

Take care to distinguish description of existing knowledge from the descrip­
tion of the paper's contribution. 
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X Many user interfaces are confusing and poorly arranged. Interfaces are 
superior if developed according to rigorous principles . 

../ Many user interfaces are confusing and poorly arranged. We demon­
strate that interfaces are superior if developed according to rigorous 
principles. 
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In most papers, the introduction should not flow from the abstract, which is a 
summary of a paper rather than its opening. The paper should be complete even 
with the abstract removed. However, a few journals require otherwise. 

Variation 

Diversity-in organization, structure, length of sentences and paragraphs, and 
choice of words-is a useful device for keeping the reader's attention. 

X The system of rational numbers is incomplete. This was discovered 
2000 years ago by the Greeks. The problem arises in squares with sides 
of unit length. The length of the diagonals of these squares is irrational. 
This discovery was a serious blow to the Greek mathematicians . 

../ The Greeks discovered 2000 years ago that the system of rational num­
bers is incomplete. The problem is that some quantities, such as the 
length of the diagonal of a square with unit sides, are irrational. This 
discovery was a serious blow to the Greek mathematicians. 

Note how, in the second version, the final statement is more effective although 
it hasn't been changed. 

Paragraphing 

A paragraph consists of discussion on a single topic or issue. The outline or the 
argument is typically captured in the first sentence of each paragraph, with the 
rest of the paragraph used for amplification or example. Every sentence in a 
paragraph should be on the topic announced in the opening. The last sentence 
has higher impact than those in the body, so pay attention to sentence order. 

Long paragraphs can indicate that several lines of argument have not been 
sufficiently disentangled. If a long paragraph can be broken, break it. Lack of 
variation in paragraph length makes the page monotonous, however, so don't 
divide your text into paragraphs of uniform size. 
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Contextual information can be forgotten between paragraphs, and refer­

ences between paragraphs can be difficult to follow. For example, if a para­

graph discusses a fast sorting algorithm, the next paragraph should not begin 

"This algorithm" but rather "The fast sorting algorithm"; if one paragraph refers 

to Harvey, the next should not refer to "his" but rather to "Harvey's". Link para­

graphs by re-use of key words or phrases, and by using expressions that connect 

the content of one paragraph to that of the next. 

The use of formatted lists as an occasional alternative to paragraphs is com­

mon. Lists are useful for the following reasons: 

• They highlight each main point clearly. 

• The context remains obvious, whereas, in a long list of points made in a 

paragraph, it is hard to tell whether the later points are part of the original 

issue or belong to some subsequent discussion. 

• An individual point can be considered in detail without confusing the main 

thread of narrative. 

• They are easy to refer to. 

List points can be numbered, named, or tagged. Use numbers only when order­

ing or reference is important. If it is necessary to refer to an individual point, 

use numbers or names. Otherwise use tags, as in the list above. Acceptable 

tags are bullets and dashes; fancy symbols such as '----> , *• or graphic icons look 

childish. 
A disadvantage of lists is that they highlight rather too well: a list of trivia 

can be more attention-getting than a paragraph of crucial information. Reserve 
lists for material that is both significant and in need of enumeration. 

Ambiguity 

Check carefully for ambiguity. It is often hard to detect in your own text be­

cause you know what is intended. 1 

1 A safe-sex guide issued by the Australian Government included "a table on which sexual 
practices are safe"; it transpired that this was not a piece of furniture. Government guidelines on 
planning for emergencies had a list of "events that emergency recovery agencies have assisted'', 
including "destruction of homes . . .  toxic chemical spillage . . .  holding of hostages". 

Newspaper headlines can be a rich source of ambiguity: 

Enraged Cow Injures Farmer with Axe 
Miners Refuse to Work After Death 
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X The compiler did not accept the program because it contained errors. 

J The program did not compile because it contained errors. 

The next example is from a manual. 

X There is a new version of the operating system, so when using the 
"fetch" utility, the error messages can be ignored. 

J There is a new version of the operating system, so the "fetch" utility's 
error messages can be ignored. 
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Part of the confusion comes from the redundant phrase "when using": there 
would be no error messages if the utility was not being used. 

Ensure that pronouns such as "it", "this", and "they" have a clear referent. 

X The next stage was the test of the complete system, but it failed. 

What failed, the test or the system? 

X In addition to skiplists we have tried trees. They are superior because 
they are slow in some circumstances but have lower asymptotic cost. 

J In addition to skiplists we have tried trees. Skiplists are superior be­
cause, although slow in some circumstances, they have lower asymp­
totic cost. 

Another problem with "it" is that it is overused. 

X The machine crashed and it was necessary to reboot it. 

J The machine crashed and a reboot was necessary. 

The first sentence is not ambiguous, but "it" has been used in two senses. Use 
a more specific term whenever doing so doesn't make the text too clumsy. 

Premature pronouns also lead to difficulties. 

X When it was first developed, recursive compilation was impractically 
slow and required too much memory. 

While not exactly ambiguous, the report that 

the pilot of a plane that crashed killing six people was flying "out of his depth" 

does convey the wrong impression. 
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./ When recursive compilation was first developed, it was impractically 
slow and required too much memory. 

A common source of confusion is between speed and time. Although not am­
biguous, the phrase "increasing speed" is easily read as increasing time, which 
has quite the opposite meaning. There are similar problems with phrases such 
as "improving affordability". 

A clumsy sentence is preferable to an ambiguous one. But remember that 
stilted sentences slow the reader, and it is difficult to entirely avoid ambiguity.2 

Sentence structure 

Sentences should have simple structure, which usually means that they will be 
no more than a line or two. Don't say too much all at once.3 

2The following my-dog-has-no-nose joke, due to Andy Clews, is not ambiguous. 

First circumlocutionist: I have in my possession a male animal belonging to the fam­
ily Canidae, and it appears that he does not possess any extra-facial olfactory 
organs. 

Second circumlocutionist: Could you therefore impart to me such knowledge as is 
necessary to describe how that animal circumvents the problem of satisfying his 
olfactory senses? 

First circumlocutionist: Unfortunately the non-ambiguity of your enquiry does not 
easily permit me to provide a clever answer, but I am in fact thinking of refer­
ring the animal to an olfactologist. However, the animal does have an unpleasant 
body odour, should you be interested. 

3The following quote is a single sentence from a version of the standard lease agreement of 
the Real Estate Institute of Victoria, Australia. It is 477 words long, but the punctuation amounts 
to only three pairs of parentheses, one comma, and one stop. This clause is an example of "the 
fine print"-for example, the holder of a lease containing this clause has agreed not to take action 
if, in circumstances such as failure to pay rent, assaulted by the property's owner. 

If the Lessee shall commit a breach or fails to observe or perform any of the covenants 
contained or implied in the Lease and on his part to be observed and performed or fails 
to pay the rent reserved as provided herein (whether expressly demanded or not) or 
if the Lessee or other person or persons in whom for the time being the term hereby 
created shall be vested, shall be found guilty of any indictable offence or felony or shall 
commit any act of bankruptcy or become bankrupt or make any assignment for the 
benefit of his her or their creditors or enter into an agreement or make any arrangement 
with his her or their creditors for liquidation of his her or their debts by composition or 
otherwise or being a company if proceedings shall be taken to wind up the same either 
voluntarily or compulsorily under any Act or Acts relating to Companies (except for 
the purposes of reconstruction or amalgamation) then and in any of the said cases the 
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X When the kernel process takes over, that is when in the default state, 

the time that is required for the kernel to deliver a message from a send­

ing application process to another application process and to recompute 

the importance levels of these two application processes to determine 

which one has the higher priority is assumed to be randomly distributed 

with a constant service rateR . 

../ When the kernel process takes over, one of its activities is to deliver 

a message from a sending application process to another application 

process, and to then recompute the importance levels of these two ap­

plication processes to determine which has the higher priority. The time 

required for this activity is assumed to be randomly distributed with a 

constant service rate R. 

37 

That the kernel process is the default state is irrelevant here, and should have 

been explained elsewhere. 

This example also illustrates the consequence of having too many words 

between related phrases. The original version said that "the time that is required 

for something is assumed to be ... ", where something was 34 words long. The 

main reason that the revision is clearer is that something has been reduced to 

two words; the structure of the sentence is much easier to see. 

Lessor notwithstanding the waiver by the Lessor of any previous breach or default by 

the Lessee or the failure of the Lessor to have taken advantage of any previous breach 

or default at any time thereafter (in addition to its other power) may forthwith re-enter 
either by himself or by his agent upon the Premises or any part thereof in the name 
of the whole and the same have again repossess and enjoy as in their first and former 

estate and for that purpose may break open any inner or outer doorfastening or other 

obstruction to the Premises and forcibly eject and put out the Lessee or as permitted 

assigns any transferees and any other persons therefrom and any furniture property 
and other things found therein respectively without being liable for trespass assault 

or any other proceedings whatsoever for so doing but with liberty to plead the leave 

and licence which is hereby granted in bar of any such action or proceedings if any 

such be brought or otherwise and upon such re-entry this Lease and the said term shall 

absolutely determine but without prejudice to the right of action of the Lessor in respect 

of any antecedent breach of any of the Lessee's covenants herein contained provided 

that such right of re-entry for any breach of any covenant term agreement stipulation 

or condition herein contained or implied to which Section 146 of the Property Law 

Act 1958 extends shall not be exercisable unless and until the expiration of fourteen 

days after the Lessor has served on the Lessee the Notice required by Sub-section( I) of 

the said Section 146 specifying the particular breach complained of and if the breach 

is capable of remedy requiring the Lessee to remedy the breach and make reasonable 

compensation in money to the satisfaction of the Lessor for the breach. 
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It is likewise helpful to avoid nested sentences, that is, information embed­
ded within a sentence that is not part of its main statement. 

X In the first stage, the backtracking tokenizer with a two-element retry 
buffer, errors, including illegal adjacencies as well as unrecognized to­
kens, are stored on an error stack for collation into a complete report. 

First, this is poor because crucial words are missing. The beginning should read 
"In the first stage, which is the backtracking tokenizer . . .  ". Second, the main 
information-how errors are handled-is intermixed with definitions. Nested 
content, particularly if in parentheses, should be omitted. If such content really 
is required, then put it in a separate sentence . 

./ The first stage is the backtracking tokenizer with a two-element retry 
buffer. In this stage possible errors include illegal adjacencies as well 
as unrecognized tokens; when detected, errors are stored on a stack for 
collation into a complete report. 

Watch out for fractured "if" expressions. 

X If the machine is lightly loaded, then speed is acceptable whenever the 
data is on local disks . 

./ If the machine is lightly loaded and data is on local disks, then speed is 
acceptable . 

../ Speed is acceptable when the machine is lightly loaded and data is on 
local disks. 

The first version is poor because the conditions of the "if' have been separated 
by the consequent. 

It is easy to construct long, winding sentences by, for example, stating a 
principle, then qualifying it-a habit that is not necessarily bad, but does often 
lead to poor sentence structure-then explaining the qualification, the circum­
stances in which it applies, and in effect allowing the sentence to continue to 
another topic, such as the ideas underlying the principle, cases in which the 
qualification does or does not apply, or material which no longer belongs in the 
sentence at all, a property that is arguably true of most of this sentence, which 
should definitely be revised. 

Sometimes longer sentences can be divided by, say, simply replacing an 
"and" or a semicolon with a period. If there is no particular reason to join two 
sentences, keep them separate. 

Beware of misplaced modifiers. 
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X We collated the responses from the users, which were usually short, 
into the following table . 

./ The users' responses, most of which were short, were collated into the 
following table. 

Double negatives are difficult to parse and are ambiguous. 

X There do not seem to be any reasons not to adopt the new approach. 
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The impression here is of condemnation-we don 't like the new approach but 
we 're not sure why-but praise was intended; the quote is from a paper advo­
cating the new approach. This is another example of the academic tendency to 
overqualification. The revision "There is no reason not to adopt the new ap­
proach" is punchier, but still negative. It is difficult to suggest further improve­
ment with the same meaning, because the meaning was probably unintended; 
the following better reflects the original aims . 

./ The new approach is at least as good as the old and should be adopted. 

Sing-song phrases are distracting, as are rhymes and alliteration. 

X We propose that the principal procedure of proof be use of primary 
predicates. 

X Semantics and phonetics are combined by heuristics to give a mix that 
is new for computational linguistics. 

Organize your sentences so that they can be parsed without too much back­
tracking. Ambiguous words or phraseology, even if clear in the context of a 
whole sentence, can slow the reader down. 

X Classifying handles can involve opening the files they represent. 

The opening phrase can, without the context provided by the rest of the sen­
tence, be interpreted as handles for classifying . 

./ Classification of handles can involve opening the files they represent. 

Know your limits. Experienced writers can construct complex sentences 
that are easy to read, but don't make the mistake of believing that something 
is easy to understand because you-the author-understand it. Build your text 
from simple sentences and concise paragraphs. 
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Tense 

In science writing, most text is in past or present tense. Present tense is used 
for eternal truths. Thus we write "the algorithm has complexity O(n)", not 
"the algorithm had complexity O(n)". Present tense is also used for statements 
about the text itself. It is better to write "related issues are discussed below" 
than to write "related issues will be discussed below". 

Past tense is used for describing work and outcomes. Thus we write "the 
ideas were tested by experiment", not "the ideas are tested by experiment". It 
follows that occasionally it is correct to use past and present tense together . 

./ Although theory suggests that the Klein algorithm has asymptotic com­
plexity O(n2) ,  in our experiments the trend observed was O(n). 

Either past or present tense can be used for discussion of references. Present 
tense is preferable but past tense can be forced by context. 

./ Willert ( 1999) shows that the space is open . 

./ Haast (1986) postulated that the space is bounded, but Willert (1999) 
has since shown that it is open. 

Other than in conclusions, future tense is rarely used in science writing. 

Repetition and parallelism 

Text that consists of the same form of sentence used again and again is mo­
notonous. Watch out for sequences of sentences beginning with "however", 
"moreover", "therefore", "hence", "thus", "and", "but", "then", "so", "never­
theless", or "nonetheless". Likewise, don't overuse the pattern "First, . . .  Sec­
ond, . . . Last, . . .  ". 

Complementary concepts should be explained as parallels, or the reader 
will have difficulty seeing how the concepts relate. 

X In SIMD, the same instructions are applied simultaneously to multi­
ple data sets, whereas in MIMD different data sets are processed with 
different instructions . 

./ In SIMD, multiple data sets are processed simultaneously by the same 
instructions, whereas in MIMD multiple data sets are processed simul­
taneously by different instructions. 
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Parallels can be based on antonyms. 

X Access is fast, but at the expense of slow update . 

./ Access is fast but update is slow. 

Lack of parallel structure can result in ambiguity. 

X The performance gains are the result of tuning the low-level code used 
for data access and improved interface design . 

./ The performance gains are the result of tuning the low-level code used 
for data access and of improved interface design. 
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This can be further improved. It is kinder to the reader to move the longer 
clauses in a list to the end . 

./ The performance gains are the result of improved interface design and 
of tuning the low-level code used for data access. 

There are some standard forms of parallel. The phrase "on the one hand" should 
have a matching "on the other hand". A sentence beginning "One . . .  " suggests 
that a sentence beginning "Another . . .  " is imminent. If you flag a point with 
"First" then every following point should have a similar flag, such as "Second", 
"Next", or "Last". 

Parallel structures should be used in lists. 

X For real-time response there should be sufficient memory, parallel disk 
arrays should be used, and fast processors. 

The syntax can be fixed by adding "should be used" at the end but the result is 
clumsy. A complete revision is preferable . 

./ Real-time response requires sufficient memory, parallel disk arrays, and 
fast processors. 

Comparisons and relative statements should be complete. If "the Entity-Rela­
tionship model is a better method for developing schema", then it is better than 
something else. Say what that something is. 
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Emphasis 

The structure of a sentence places implicit emphasis, or stress, on some words. 
Reorganizing a sentence changes the emphasis. 

X A static model is appropriate because each item is written once and read 
often. 

It is not clear what makes the model's behaviour appropriate; the emphasis 
should be on the last two words, not the last five . 

./ A static model is appropriate because each item is only written once but 
is read often. 

Inappropriate stress can lead to ambiguity. 

X Additional memory can lead to faster response, but user surveys have 
indicated that it is not required . 

./ Faster response is possible with additional memory, but user surveys 
have indicated that it is not required. 

The first version, which has the stress on "additional memory", incorrectly im­
plies that users had commented on memory rather than response. Since the 
sentence is about "response", that is where the stress should be. 

Explicit stress can be provided with italics, but is almost never necessary. 
Don't italicize words unnecessarily-let sentence structure provide the empha­
sis. Few papers require explicit stress more than once or twice. DON'T use 
capitals for emphasis. Some authors use the word "emphatic" to provide em­
phasis, as in "which are emphatically not equivalent". Other words used in this 
way are "certainly" and "indeed". The resulting wordiness weakens rather than 
strengthens; use of this form of emphasis should be rare. 

Italicized passages of any length are hard to read. Rather than italicize a 
whole sentence, say, stress it in some other way: italicize one or two words 
only, or make it the opening sentence of a paragraph. 

When a key word is used for the first time, consider placing it in italics . 

./ The data structure has two components, a vocabulary containing all of 
the distinct words and, for each word, a hit list of references. 
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Definitions 

Terminology, variables, abbreviations, and acronyms should be defined or ex­
plained the first time they are used. Definitions should be specific and concrete. 
Don't create questions by defining in terms of concepts that are unknown or 
uncertain. 

Use a consistent format for introducing new terminology. Implicit or ex­
plicit emphasis on the first occurrence of a new word is often helpful, because 
it stresses what is being introduced. 

X We use homogeneous sets to represent these events. 

The reader has not been told that "homogeneous" is a new term that is about to 
be defined, and may look back for an explanation . 

../ We use homogeneous sets to represent these events . 

../ To represent these events we use homogeneous sets, whose members 
are all of the same type. 

It can be helpful to give multiple explanations or illustrations of unfamiliar 
concepts . 

../ Compaction, in contrast to compression, does not preserve information; 
that is, compacted data cannot be exactly restored to the original form. 

Sometimes a discursion-a discussion that is not part of the main thread of 
argument-is needed to motivate a definition. The discursion might consider 
negative examples, showing what happens in the absence of the definition, or it 
might lead the reader by steps to agree that the definition is necessary. 

Choice of words 

Use short, direct words rather than long, circumlocutionary ones; the result is 
vigorous, emphatic writing. For example, use "begin" rather than "initiate", 
"first" and "second" rather than "firstly" and "secondly", "part" rather than 
"component", and "use" rather than "utilize". Use short words in preference to 
long, but use an exact long word rather than an approximate short one. 

The words you choose should be specific and familiar_ Abstract, vague, or 

broad terms have different meanings for different readers and lead to confusion. 
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X The analysis derives information about programs. 

The "information" could be anything: optimizations, function-point descrip­
tions, bug reports, or complexity . 

../ The analysis estimates the resource costs of programs. 

Other abstract terms that are overused include "important", "intelligent", 
"method", "paradigm", "performance", and "semantic". "Difficult" is often 
used when a better term is available: if something is "difficult to compute", 
does that mean that it is slow, or memory-hungry, or requires double precision, 
or something else altogether? "Efficient" is another word that is often vague. 
Use the most precise term available. 

A common reason for using vague terms is that some authors feel they are 
writing badly if they use the same word twice in a sentence or paragraph, and 
thus substitute a synonym, which is usually less specific. 

X The database executes on a remote machine to provide better security 
for the system and insulation from network difficulties . 

../ The database executes on a remote machine to provide better security 
for the database and insulation from network difficulties. 

The "don't repeat words" rule might apply to creative writing, but not to tech­
nical terms that must be clearly understood. 

Some sequences of words are awkward because they can be run together to 
form another, valid word. 

X There are some times that appear inconsistent. 

../ Some of the times appear inconsistent. 

This form is awkward for another reason-"some of the time" is a common 
phrase . 

../ Several of the times appear inconsistent. 

Language is not static. Words enter the language, or go out of vogue, or 
change in meaning. A word whose meaning has changed-at least, some peo­
ple still use the old meaning, but most use the new-is "data". Since "data" 
is by etymology a plural, expressions such as "the data is stored on disk" have 
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been regarded as grammatically incorrect, but "the data are stored on disk" sim­
ply seems wrong. Correspondingly, "datum" is now rare. "Data" is appropriate 
for both singular and plural. On the other hand, use "automaton" rather than 
"automata" for the singular case. 

Use a word only if you are sure that you know the meaning and can apply 
it correctly. Some words are familiar because of their use in a certain context­
perhaps in a saying such as "hoist by his own petard" or a cliche such as "crit­
ical juncture''-but have otherwise lost their meaning. Other words, such as 
"notwithstanding", "whilst", and "amongst", have an archaic feel and are out 
of place in new writing. Some words have acquired meanings in computing 
that are distinct from their meaning elsewhere. Besides re-use of nouns such as 
"bus" there are more subtle cases. For example, "iterate" in computing means 
to loop, but in other writing it can mean to do again. 

If you are unsure about a word, check it in a dictionary. For technical writ­
ing, I use the Collins English dictionary, which gives both British and American 
spelling and, in contrast to some other dictionaries, for technical terms often 
gives the meaning appropriate to computing or mathematics. But there are 
many reasons for choosing a particular dictionary and you should make your 
own decision. A rule of thumb is that a dictionary small enough to conveniently 
carry around is unlikely to be satisfactory. Check the dictionary whenever you 
are not sure that you are using a word correctly. A thesaurus is useful too. 
Sometimes it can help you to find the right word; more often, it can help to il­
lustrate the meaning of a word that is unfamiliar, giving a broader context than 
is common in a dictionary. 

Slang should not be used in technical writing. Nor should the choice of 
words suggest that the writing is careless; avoid sloppy-looking abbreviations 
and contractions. Use "cannot" in preference to "can't", for example. 

Don't make excessive claims about your own work. Phrases such as "our 
method is an ideal solution to these problems" or "our work is remarkable" are 
not acceptable. Claims about your own work should be unarguable. 

Qualifiers 

Don't pile qualifiers on top of one another. Within a sentence, use at most one 
qualifier such as "might", "may", "perhaps", "possibly", "likely", "likelihood", 
or "could". Overuse of qualifiers results in text that is lame and timid. 

X It is perhaps possible that the algorithm might fail on unusual input. 

../ The algorithm might fail on unusual input. 
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./ It is possible that the algorithm would fail on unusual input. 

Here is another example, from the conclusions of a paper. 

X We are planning to consider possible options for extending our results . 

./ We are considering how to extend our results. 

Double negatives are a form of qualifier; they are commonly used to express 
uncertainty. 

X Merten's algorithm is not dissimilar to ours. 

Such statements tell the reader little. 
Qualifiers such as "very" and "quite" should be avoided altogether, because 

they are in effect meaningless. If an algorithm is "very fast", is an algorithm 
that is merely "fast" deficient in some way? Writing is invariably more forceful 
without "very". 

X There is very little advantage to the networked approach . 

./ There is little advantage to the networked approach. 

Likewise, "simply" can often be deleted. 

X The standard method is simply too slow . 

./ The standard method is too slow. 

Other words of this kind are "totally", "completely", "truly", "highly", "usu­
ally", "accordingly", "certainly", "necessarily", and "somewhat". 

Misused words 

The upper table on page 48 lists words that are often used incorrectly because of 
confusion with another word of similar form or sound. The "usually correct" 
form is shown on the left; the form with which each word gets confused is 
shown on the right. Some other problem words are as follows. 
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Which, that, the. Many writers use "which" when they mean "that". Use 
"that" in preference to "which"; use "which" only when it cannot be replaced 
by "that". 

X There is one method which is acceptable . 

../ There is one method that is acceptable . 

../ There are three options, of which only one is tractable. 

The word "that" is often underused. Use of "that" can make a sentence seem 
stilted, but its absence can make the sentence unclear. 

X It is true the result is hard to generalize . 

../ It is true that the result is hard to generalize. 

On the other hand, "the" is often used unnecessarily; delete it where doing so 
does not change the meaning. 

Less, fewer. Use "less" for continuous quantities ("it used less space") and 
"fewer" for discrete quantities ("there were fewer errors"). 

Affect, effect. The "effect", or consequence, of an action is to "affect", or 
influence, outcomes. 

Alternate, alternative, choice. The word "alternate" means other or switch 
between, whereas an "alternative" is something that can be chosen. If there 
is but one alternative, there is no choice; "alternative" and "choice" are not 
synonyms. 

Assume, presume. "Assume" means for now, take as being true, while "pre­
sume" means take for granted. A fact is assumed as the basis of an argument, 
an event is presumed to have occurred. 

May, might, can. Many writers use "may" or "might" when they mean "can". 
Use "may" to indicate personal choice, and "can" to indicate capability . 

../ Users can access this facility, but may not wish to do so. 
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Misused words 

Usual Other Usual Other 

alternative alternate foregoing forgoing 

comparable comparative further farther 

complement compliment elusive illusive 

dependent dependant manyfold manifold 

descendant descendent omit emit 

discrete discreet partly partially 

emit omit principle principal 

ensure insure simple simplistic 

ensure assure solvable soluble 

excerpt exert stationary stationery 

Misspelt words 

Right Wrong Right Wrong 

adaptation adaption miniature minature 
apparent apparant occasional occaisional 
argument arguement occurred occured 
comparison comparision participate particepate 
consistent consistant primitive primative 
definite definate propagate propogate 
existence existance pronunciation pronounciation 
foreign foriegn pseudo psuedo 
grammar grarnmer referred refered 
heterogeneous heterogenous repository repositery 
homogeneous homogenous separate seperate 
independent in dependant supersede supercede 
insoluble insolvable transparent transparant 
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Basic, fundamental. Some writers confuse ''basic" with "fundamental": the 
former means elementary as well as a foundation. A result should only be 
described as "basic" if elementary is meant, or readers may get the wrong idea. 

Novel, complex, sophisticated. 
but either advanced or complex. 
are intended. 

"Sophisticated" does not mean new or novel, 
Use "novel" or "complex" if these meanings 

Will, shall. The word "shall" can seem archaic and is rarely preferable to 
"will". Both "will" and "shall" are often used unnecessarily and in many cases 
can be deleted. 

Compile, compose. In general usage, "compile" means assemble, gather, or 
collect, but it has such a strong specific meaning in computing that it should not 
be used for other purposes. To "compose" is to invent or perhaps prepare; it is 
not a synonym of "compile", even though "composed of" means made up of. 

Conflate, merge, confuse. The word "conflate" means regard distinct things 
as similar, while "merge" means join distinct things to form one new thing. If 
two things are "confused", then one has been mistaken for the other. These 
three terms are not equivalent. 

Continual, continuous. "Continual" is not equivalent to "continuous". The 
former means ceaselessly; the latter means unbroken. 

Conversely, inversely, similarly, likewise. Only use "conversely" if the state­
ment that follows really is the opposite of the preceding material. Don't use 
"similarly" or "likewise" unless whatever follows has a strong parallel to the 
preceding material. Some authors use "inversely", but the meaning is rarely 
clear; avoid it. 

Fast, quickly, presently, timely, currently. A process is "fast" if it runs 
quickly; "quickly" means fast, but does not necessarily mean in the near fu­
ture. Something is "timely" if it is opportune; timeliness has nothing to do 
with rapidity. Also on the subject of time, "presently" means soon, whereas 
"currently" means at present. 
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Optimize, minimize, maximize. Absolute terms are often misused. One 
such word is "optimize", which means find an optimum or find the best solution, 
but is often used to mean improve. The latter usage is now so common that it 
could be argued that the meaning of "optimize" has changed, but as there is no 
synonym for "optimize" such a change would be unfortunate. Other absolute 
terms that are misused are "maximize" and "minimize". 

Overlook, oversee. To "overlook" is to fail to notice, or to ignore. To "over­
see" is to manage or look after. They are not synonyms t 

Spelling conventions 

The lower table on page 48 lists some words that are often spelt incorrectly 
in science writing. Use a spell checker to locate such mistakes, but learn to 
recognize them by yourself-studies have found that writers who depend on 
spell checkers have more errors in their work. A problem word with regard 
to spelling is "disk"; both this spelling and "disc" are so common that either 
is acceptable, but be consistent. However, "hard disk" is more common than 
"hard disc", and "compact disk" is incorrect. Other words that don't have a sta­
ble spelling include "enquire" ("inquire"), "biased" ("biassed"), and "dispatch" 
("despatch"). Note that "ae" is obsolete in many words: "encyclopaedia" has 
become "encyclopedia", for example. 

The English-speaking countries have different spelling conventions. For ex­
ample, the American "traveler" becomes the British "traveller'' while "fulfill" 
becomes "fulfil". In Britain it is incorrect to spell "-our" words as "-or", but, 
for example, "vigour" and "vigorous" are both correct.4 The American "cen­
ter'' is the British "centre", "program" is "programme" (except for computer 
program), "catalog" is "catalogue", and "judgment" is "judgement". Perhaps 
the greatest confusion is with regard to the suffixes "-ize" and "-yze", which 
have the same recommended spelling in both countries, but are often spelt as 
"-ise" and "-yse" outside the United States.5 As discussed in Chapter 1 ,  British 
spelling has been used throughout this book. 

Science is international-technical writing is usually for a readership that 
is accustomed to reading text from around the world-and it is accepted that a 
national of one country won't necessarily use the spelling of another. The most 

4 An editor of the first edition of this book suggested that the material should have "an inter­
national flavor". 

5However, these problems are overrated. Of the 6000 or so distinct words used to write this 
book, for example, other than "-ize" words only 20 or so have a nationality-specific spelling. 
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important thing is to spell consistently and to be consistent with suffixes such 
as "-ize" without introducing errors such as "expertize" or "otherwize". Note 
that many journals insist on their own standards for spelling and presentation, 
or insist that the spelling be consistently of one nationality or another, and thus 
may choose to modify anything they publish. 

The best authority for national spelling is a respectable dictionary written 
for that country. However, dictionaries are primarily a record of current non­
technical spelling; the presence of a particular spelling in a dictionary does not 
prove that it is used in your discipline. The choice of spelling for a technical 
term may be dictated by the usage in other papers, not by your nationality. 

Jargon 

The word "jargon" means terms used in a specialized vocabulary or mode of 
speech familiar only to a group or profession. 6 As such, the use of jargon is 
an important part of scientific communication-how convenient it is to be able 
to say "CPU" rather than "the part of the computer that executes instructions". 
Some use of technical language, which inevitably makes the writing inaccessi­
ble to a wider readership, is essential for communication with specialists. But 
the more technical the language in a paper, the smaller the audience will be. 

In mathematical writing, formal notation is a commonly used jargon. Math­
ematics is often unavoidable, but that doesn't mean that it must be impenetrable. 

X Theorem. Let D1 , . . .  , Dn , n > 2 be such that D1 f--+Q1 <)z, . . .  , Dn- 1 f--+Qn- l 

Dn. Let 17 ' ,  11 " E f!l be such that 01 p 11 ' and On-1 p 11"· Then 

such that 'vi1Ji, 1 ::; i ::;  r, :Jn1, 1 ::; j < n, such that QJ p Tli· 
Mathematics as jargon is discussed further on page 73. 

Jargon does not have to consist of obscure terms; indeed, it can be at its 
most confusing when words in common use are given a new meaning; and 
some words have multiple meanings even within computing. 

X The transaction log is a record of changes to the database . 

./ The transaction log is a history of changes to the database. 

6From the Oxford Shorter Dictionary, which also lists unintelligible or meaningless talk or 
writing; nonsense; gibberish; twittering. 
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The first version is confusing because databases consist of records . Likewise, 
consider "the program's function". Synonyms also cause such problems. 

X Hughes describes an array of algorithms for list processing . 

./ Hughes describes several algorithms for list processing. 

New jargon inevitably arises during research, as ideas are debated and simple 
labels are attached to new concepts. Consider whether your terminology con­
veys the intended meaning (or any meaning at all) to likely readers. 

The need to name variants of existing ideas or systems presents a dilemma, 
because if the new name is dissimilar to the old then the relationship is not ob­
vious, but prefixing a modifier to the old name-for example, to obtain "binary 
tree" from "tree" --can result in ridiculous constructs such as the "variable­
length bitstring multiple-descriptor floating bucket extensible hashing scheme". 
If you need to qualify a name, choose a meaningful adjective. There are already 
too many "intelligent" algorithms, for example. 

Where new terminology or jargon is introduced, use it consistently. Exist­
ing terminology or notation should only be changed with good reason. Some­
times your problem requires new terminology that is inconsistent with the ter­
minology already being used, thus making change essential; but remember that 
any change is likely to make your paper harder to read. 

Cliche and idiom 

Some expressions are cliches, that is, stock phrases whose meaning has little 
relationship to their words. Many readers, especially those from other cul­
tures, may misunderstand such phrases. Examples include "follow suit", "up to 
scratch", "reinvent the wheel", "go through with a fine-tooth comb", "fiat out", 
"cut and dried", and "bells and whistles". Idiomatic phrases are also poor, 
for similar reasons. Examples include "crop up", "lose track", "come to grips 
with", "it turned out that", "play up", and "right out". Do not use such phrases. 

Foreign words 

If you use a foreign word that you feel needs to go in italics, consider instead 
using an English equivalent. Some writers feel that use of foreign words is de 
rigueur because it lends the work a certain je ne sais quoi and shows savoir­
vivre, but such writing is hard to understand. 
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Latin expressions are occasionally used-but more often misused-in tech­
nical writing. Examples include mutatis mutandis, prima facie, circa, mea 
culpa, and vice versa. Such phrases are not universally understood, and should 
only be used if you are confident of the meaning. 

It is polite to use appropriate characters for foreign names. Don't write 
"B!Ilrstedt" as "Borstedt", for example. 

Overuse of words 

Repetition of a word is annoying when it makes the reader feel they have read 
the same phrase twice, or have read a phrase and an inversion of it. 

X Ada was used for this project because the underlying operating system 
is implemented in Ada . 

./ Ada was used for this project because it is the language used for imple­
mentation of the underlying operating system. 

Repetition should be eliminated when the same word is used in different senses, 
or when a word and a synonym of it are used together. 

X Values are stored in a set of accumulators, each initially set to zero . 

./ Values are stored in a set of accumulators, each initialized to zero. 

Some words grate when they are used too frequently. Common offenders 
include "this", "very", and "case". Other words are even more memorable­
unusual words, other than technical terms, should only be used once or twice 
in a paper. Watch out for tics: excessive use of some stock word or phrase. 
Typical tics include "so", "also", "hence", "note that", and "thus". 

There are cases in which repetition is useful. In the phrase "discrete quan­
tities and continuous quantities", the first "quantities" can be omitted, but such 
omissions are ambiguous surprisingly often and can result in text that is diffi­
cult to parse. What, for example, is intended by "from two to four hundred"? 
A common error relating to this form of expression is to shorten phrases by 
deleting adjectives, such as the second "long" in the expression "long lists and 
long arrays". Overuse of a word can lead to ambiguity,7 but technical concepts 
should always be described in the same way, not by a series of synonyms. 

7The following requirement was once in the Australian Tax Act. 

Where the amount of an annuity derived by the taxpayer during a year of income is 
more than, or less than, the amount payable for a whole year, the amount to be excluded 
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Some phrases are worn out from overuse and, like cliches and the words 
listed earlier, should be avoided. Examples include "vicious circle", "as a 
matter of fact", "tip of the iceberg", "knotty problem", "in the final analysis", 
"every effort was made", and "vexed question". 

Padding 

Padding is the use of pedantic phrases such as "the fact that" or "in general", 
which should be deleted, not least because they are irritating. The phrase "of 
course" can be patronizing or even insulting-"of course it is now clear that that 
the order is stable". The phrase "note that" is not padding, but is typically used 
to introduce something that readers should be able to deduce for themselves. 

Phrases involving the word "case" ("in any case", "it is perhaps the case") 
are also suspect. There is no reason to use "it is frequently the case that . . .  " 
instead of "often . . .  ", for example. Unnecessary introduction of quantities, or 
the concept of quantities, is a form of padding. For example, the phrase "a 
number of" can be replaced by "several", and "a large number of" by "many". 

Adjectives are another form of padding. 

X A well-known method such as the venerable quicksort is a potential 
practical alternative in instances of this kind. 

In all likelihood, the context has made clear that impractical alternatives are not 
being discussed . 

.,/ A method such as quicksort is a potential alternative. 

Use the minimum number of words, of minimum length, in your writing. 
The table on page 55 lists common redundant or wordy expressions and possi­
ble substitutes for them. The list is illustrative rather than exhaustive; there are 
some typical forms of redundancy, such as "completely unique" for "unique", 
for which there are hundreds of examples. Sometimes a wordy expression is 
the right choice-to emphasise a key point, for example, or to lend the writing 
a conversational style-but in most cases a concise form is preferable. 

from the amount so derived is the amount which bears to the amount which, but for this 
sub-section, would be the amount to be so excluded the same proportion as the amount 
so derived bears to the amount payable for a whole year. 
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Examples of redundant or wordy expressions 

Wordy Concise 

adding together adding 
after the end of after 
in the region of approximately 
cancel out cancel 
conflated together conflated 
let us now consider consider 
cooperate together cooperate 
currently . . .  today currently . . .  
divided up divided 
give a description of describe 
during the course of during 
totally eliminated eliminated 
of fast speed fast 
first of all first 
for the purpose of for 
free up free 
in view of the fact given 
joined up joined 
of large size large 
semantic meaning meaning 
merged together merged 
the vast majority of most 
it is frequently the case that often 
completely optimized optimized 
separate into partitions partition 
at a fast rate quickly 
completely random random 
reason why reason 
a number of several 
such as . . . etc. such as . . .  
completely unique unique 
in the majority of cases usually 
whether or not whether 
the fact that 
it can be seen that 
it is a fact that 
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Plurals 

A common problem in English for writers educated in another language is 
agreement of plurals-a plural noun can require a differently formed verb to 
that required by a singular noun. For example, "a parser checks syntax" whereas 
"compilers check programs". Simple errors such as "the instructions is" are 
easy to identify, but care needs to be taken with complex sentence construc­
tions. A particular problem is with collectives. 

X The set of positive matches are then discarded. 
The range of numbers that must be considered are easy to identify . 

../ The set of positive matches is then discarded. 
The range of numbers that must be considered is easy to identify. 

Consider proofreading your paper just to check for plural agreement. 
When describing classes of things, excessive use of plurals can be confus­

ing. The following is from a paper on minimum redundancy codes. 

X Packets that contain an error are automatically corrected. 

X Packets that contain errors are automatically corrected. 

The first version implies that packets with a particular error are corrected, the 
second that packets with multiple errors are corrected. Both of these interpreta­
tions are wrong. Whenever it is reasonable to do so, convert plurals to singular . 

../ A packet that contains an error is automatically corrected. 

Classes may not need a plural. 

X These kinds of algorithms are irrelevant. 

../ These kinds of algorithm are irrelevant. 
Algorithms of this kind are irrelevant. 

The use of variant plurals is becoming less common. Where once it was 
thought correct to base the plural form on that of the language of the root of the 
word, now it is almost always acceptable to use "-s" or "-es". Thus "schemata" 
can be "schemas", "formulae" can be "formulas", and "indices" can be "in­
dexes"; but, while "indices" is used in the context of arrays, it is almost never 
used in the context of databases. However, "radii" is not yet "radiuses", and 
"matrices" is not yet "matrixes". Special cases remain, in particular where the 
plural form has replaced the singular as in "data", and in old-English forms 
such as "children". 
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Abbreviations 

It is often tempting to use abbreviations such as "no.", "i.e.", "e.g.", "c.f.", and 
"w.r.t." These save a little space on the page, but slow readers down. It is al­
most always desirable to expand these abbreviations, to "number", "that is", 
"for example", "compared with" (or more accurately "in contrast to", since 
that is the sense in which "c.f." should be used), and "with respect to", or syn­
onyms of these expressions. Where such abbreviations are used, the punctu­
ation should be as if the expanded form were used. Also consider expanding 
abbreviations such as "Fig." and "Alg." and don't use concoctions such as "1st" 
or "2nd". Months should not be abbreviated. Make sure that all abbreviations 
and acronyms are explained when they are first used. 

Avoid use of "etc." and "and so on". They are clumsy, and sometimes 
patronizing, as they can imply that the reader ought to be able to complete the 
list without the author's help. 

X Methods available are random probing, extrapolation, etc. 

J Methods available include random probing and extrapolation. 
Methods such as random probing and extrapolation can be used. 

Never write "etc., etc." or "etc . . . .  ". 
The ellipsis is a useful notation for indicating that text has been omitted. It 

should, therefore, only be used in quotations. 
A slash, also known as a virgule or solidus, is often used for abbreviation, 

as in "save time and/or space" or "used for list/tree processing". Use of slashes 
betrays confusion, since it is often not clear whether the intended meaning is or 
(in the usual English sense of either but not both), or (in the usual computing 
sense of either or both), and, or also. If you want to be clear, don't use slashes. 

An exception is "1/0", meaning input and output. There was once a variety 
of forms for this expression; now, all forms other than "1/0" are rare. 

Acronyms 

In technical documents with many compound terms it can be helpful to use 
acronyms, but as with abbreviations they can confuse the reader. An acronym 
is desirable if it replaces an otherwise indigestible name such as "pneumono­
ultramicroscopicsilicovolcanoconiosis" (miner's black lung disease), in which 
case the acronym becomes the name-as has happened with DNA for "deoxyri­

bonucleic acid". Frequently used sequences of ordinary words, such as "central 
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processing unit", are usually more convenient as acronyms; in a paper about a 
"dynamic multiprocessing operating system", it is probably best to introduce 
the DMOS right at the start. However, a surfeit of acronyms will force read­
ers to flip back and forth through the paper to search for definitions. Don't 
introduce an acronym unless it is to be used frequently. 

Acronyms can be fashionable. It was once common to write "WWW" 
to denote the World Wide Web, but today it is most often denoted by "the 
web"-it isn't even capitalized. And watch out for redundant acronyms, such 
as "the CPU unit". How, exactly, does a "local area LAN network" differ from 
a "LAN"? 

Abbreviations end with a stop but it is unusual to put stops in acronyms. 
Thus "CPU" is correct, "C.P.U." is acceptable, and "CPU." is incorrect. 

Sexism 

Forms of expression that unnecessarily specify gender are widely regarded as 
sexist. In technical writing, sexist usage is easy to avoid. 

X A user may be disconnected when he makes a mistake . 

./ A user may be disconnected when they make a mistake . 

./ Users may be disconnected when they make a mistake. 

The first use of "they", as a singular pronoun, is acceptable but, to some readers, 
jarring. The second use, as a plural, removes sexism at the cost of clarity. It is 
preferable to recast the sentence . 

./ A user who makes a mistake may be disconnected. 

Don't use ugly constructs such as "s/he" or engage in reverse sexism by using 
"she" unless it is absolutely impossible to avoid a generic reference. Remember 
that some readers find use of "he" or "his" for a generic case offensive and 
dislike writing that employs such usage. 



4 Punctuation 

Taste and common sense are more important than 
any rules; you put in stops to help your readers to 

understand you, not to please grammarians. 

Ernest Gowers 
The Complete Plain Words 

Punctuation is a fundamental skill. Anyone reading this book is familiar with 
the functions of spaces, commas, stops, and capital letters. Stylistic issues of 
punctuation and common punctuation errors in science writing are the topic of 
this chapter. 

Fonts and formatting 

There is no obligation to use fancy typesetting just because a word processor 
provides it. Most computing or mathematical writing uses three fonts (plain, 
italic, and bold) or four (if, say, a fixed-width font is used for the text of pro­
grams) but use of more is likely to be annoying, and all but the plain font 
should be used sparingly. Overuse of fonts results in messy-looking text. Some 
authors prefer bold to italic for emphasis, but bold print is distracting. Use of 
underlining for emphasis, once common because of the limitations of typewrit­
ers as typesetting devices, is obsolete. 

Use standard fonts for the text of papers. This book is set in Times Roman. 
An alternative is Computer Modern, the default font in Jb.'IE;X. Fonts such 
as Helvetica and Courier are awkward and hard to read; sans-serif fonts are 
widely used in advertising and create the wrong impression. An elaborate or 
unfamiliar font is almost always inappropriate. A font that is too similar to 
the main text has no effect other than to look untidy. 
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Visual clutter of any kind is distracting and should be eliminated unless 
there is a clear need for it. Emphasis is one kind of clutter. Another is the 
use of graphic devices such as boxes around important points or icons next to 
results. Yet another kind of clutter is punctuation: excessive use of parentheses, 
quotes, italics, hyphens, semicolons, and uppercase letters. 

Indentation is an important tool of layout, used primarily to indicate the 
start of a new paragraph. Some authors prefer to use a blank line instead, a de­
cision that is often unwise; the meaning is unclear at a page break, for example. 
In literature, a blank line can be used to signal the start of a new topic, but this 
convention has not been adopted by technical writers. Changes of topic should 
be signalled by headings. 

Indentation is also used to offset material that is not part of the textual flow, 
such as quotes, programs, and displayed mathematics. The indentation is useful 
because it allows easier scanning of the page. 

In papers submitted for review, use wide margins, a decent font size, and 
don't cram lines together; referees need space for red ink. Text looks tidier 
if it is right-justified as well as left-justified (although it is not always easier 
to read). Consider using a running header, of say the authors' surnames or 
the paper's title, so that the paper can be reconstructed if the pages become 
separated. Pages should be numbered. For some journals and conferences the 
author information needs be on a separate face sheet, and many venues have 
specific formatting guidelines in their "Information for Authors". 

Stops 

Stops (or full-stops or periods) end sentences. Some writers don't use any other 
punctuation. Sentences should usually be short but commas and other marks 
give text variety. Lack of other marks makes text telegrammatic. Such text can 
be tiring to read. 

Stops are also used in abbreviations, acronyms, and ellipses. When these 
occur at the end of sentence, the sentence's stop is omitted. Problems with 
stops are a good reason to avoid abbreviations. 

X The process required less than a second (except when the machine was 
heavily loaded, the network was saturated, etc.) . 

./ The process required less than a second (unless, for example, the ma­
chine was heavily loaded or the network was saturated). 

It is not usual to put a stop at the end of a heading. 
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X 3. Neural Nets for Image Classification. 

,J 3. Neural Nets for Image Classification 

Commas 

61 

The primary uses of commas are to mark pauses, indicate the correct parsing, 
form lists, and indicate that a phrase is a parenthetical remark (that is, a com­
ment) rather than a qualifier. Thus "the four processes that use the network are 
almost never idle" means of the processes, the four that use the network are 
almost never idle, while "the four processes, which use the network, are almost 
never idle" means the four processes use the network and are almost never idle. 
Incorrect use of commas in parenthetical remarks, in particular omission of the 
first of a pair of commas, is a frequent error. 

X The process may be waiting for a signal, or even if processing input, 
may be delayed by network interrupts. 

,J The process may be waiting for a signal, or, even if processing input, 
may be delayed by network interrupts. 

Use the minimum number of commas needed to avoid ambiguity. Sen­
tences with many commas often have strangulated syntax; if the commas seem 
necessary, consider breaking the sentence into shorter ones or rewriting it alto­
gether. But don't omit too many commas. 

X When using disk tree algorithms were found to be particularly poor. 

,J When using disk, tree algorithms were found to be particularly poor. 

Here is another example. 

X One node was allocated for each of the states, but of the nine seven 
were not used. 

,J One node was allocated for each of the states, but, of the nine, seven 
were not used. 

,J Nine nodes were allocated, one for each of the states, but seven were 
not used. 
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Another exception to the minimal-commas rule is in lists. A simple example of 
a list is "the structures were arrays, trees, and hash tables". Many authors (and 
editors) prefer to omit the last comma from a list, a process that rarely adds 
clarity and often does it serious damage. 

Commas can be used to give the reader time to breathe. 

X As illustrated by the techniques listed at the end of the section there are 
recent advances in parallel algorithms and multiprocessor hardware that 
indicate the possibility of optimal use of shared disk arrays by indexing 
algorithms such as those of interest here . 

../ As illustrated by the techniques listed at the end of the section, recent 
advances in parallel algorithms and multiprocessor hardware may al­
low optimal use of shared disk arrays by some algorithms, including 
indexing algorithms such as those of interest here. 

Cutting this into several sentences would undoubtedly improve it further. 

Colons and semicolons 

Colons are used to join related statements . 

../ These small additional structures allow a large saving: the worst case is 
reduced from O(n) to O(logn) . 

Colons are also used to introduce lists . 

../ There are three phases: accumulation of distinct symbols, construction 
of the tree, and the compression itself. 

The elements in a list can be separated by semicolons, allowing commas or 
other marks within each element. 

../ There are three phases :  accumulation of distinct symbols in a hash ta­
ble; construction of the tree, using a temporary array to hold the sym­
bols for sorting; and the compression itself. 

A semicolon can also be used to divide a long sentence, or to set off part of a 
sentence for emphasis . 

../ In theory the algorithm would be more efficient with an array; but in 
practice a tree is preferable. 

Colons and semicolons are valuable but should not be overused. 
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Apostrophes 

Many people seem to have trouble with apostrophes. Even professional writers 
get them wrong now and again. But the rules are quite simple. 

• Singular possessives such as "the student's algorithm", "Brandt's book", 
and "Su and Ling's method" require an apostrophe and an "s". (Some peo­
ple would write "Su's and Ling's method", which is fine too.) For some 
names ending in "-s", such as in "Williams's book", you can optionally 
omit the "s" after the apostrophe. If you are unsure, then the "s" should be 
given. 

• Plural possessives such as "students' passwords" require an apostrophe but 
no "s". 

• Pronoun possessives such as "its" (as in "its speed") and "hers" do not 
require an apostrophe. 

• Contractions such as "it's" (as in "it is blue") and "can't" require an apos­
trophe; but note that contractions should be avoided in technical writing. 

Other than in the cases above, apostrophes are not required. The uses "in the 
1980's", "each of the CPU's", "the computers's power supplies", and "Goss' 
approach" are all incorrect. 

Exclamations 

Avoid exclamation marks ! Never use more than one ! !  
The proper place for an exclamation mark is after an exclamation (such 

as "Oh!"-not a common expression in technical writing), or, rarely, after a 
genuine surprise . 

../ Performance deteriorated after addition of resources! 

This is acceptable but not particularly desirable. It would be better to omit the 
exclamation and add emphasis some other way . 

../ Remarkably, performance deteriorated after addition of resources. 
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Hyphenation 

Many compound words, such as "website", would originally have been written 

as two separate words, "web site". When the combination becomes common, 
it is hyphenated, "web-site", then eventually the hyphen is dropped to give the 
final form. Some words are in a state of transition from one form to another. In 

the database literature, for example, all three of "data base", "data-base", and 
"database" are used, and in general writing both "co-ordinate" and "coordinate" 

are common. Make sure that you are consistent. 
Hyphens are also used to override right associativity. By default we parse 

phrases such as "randomized data structure" into randomized data-structure, 
and thus realize that the topic is not a structure for randomized data. In some 
phrases that are not right-associative, such as "skew-data hashing", we need 
the hyphen to disambiguate (although in this case it might be better to write 
"hashing for skew data").8 Sometimes there is no correct hyphenation and the 
sentence has to be rewritten. The phrase "array based data structure" should 

be written "array-based data structure", but "binary tree based data structure" 
should probably be written, albeit awkwardly, as "data structure based on bi­
nary trees". 

Good word-processors hyphenate words when they run over the end of a 
line, to preserve right-justification. Automatic hyphenation is not always cor­
rect and should be checked, to ensure that none of the syllables are broken 
or that the break is not too close to the word's end. For example, the hy­
phenations "mac-hine" and "availab-le" should be changed (to "mach-ine" and 
"avail-able"), and "edited" should probably not be hyphenated at all. 

Note that there are three different "dash" symbols: the hyphen "-" used for 
joining words, the minus sign or en-dash "-" used in arithmetic and for ranges 
such as "pages 101-127", and the em-dash "-" used for punctuation. 

Capitalization 

Capital letters were once used more liberally than they are now; in the eigh­
teenth century writers commonly used capitalization (that is, an initial capital 

letter) to denote nouns. Today, only proper names are capitalized, and even 

these can be in lowercase if the name is in common use; for example, the capi­
tals in the phrase "the Extensible Hashing method" should be in lowercase. 

Some names are not consistently capitalized, particularly those of program-

8There is a hyphen missing in the headline "Squad helps dog bite victim". 
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ming languages. Acronyms that cannot be sounded, such as ''APL'', should al­
ways be written that way, but the only general rule for other cases is to follow 
other authors. For example, both of the names "FORTRAN" and "Prolog" are 
abbreviations derived from truncated words. These are however proper names 
and should always have an initial capital; "lisp" and "pascal" are incorrect. 

In technical writing it is usual to capitalize names such as "Theorem 3. 1", 
"Figure 4", and "Section 1 1  ". In other writing, lowercase is preferred, but in 
technical writing lowercase looks sloppy to some readers. 

Headings can be either minimally or maximally capitalized. In the former, 
words are capitalized as they would be in normal text, except that the word 
following a colon is capitalized . 

./ The use of jump statements: Advice for Prolog programmers 

In the latter, words other than articles, conjunctions, or prepositions are capi­
talized; even these may be capitalized if they are over three letters long . 

./ The Use of Jump Statements: Advice for Prolog Programmers 

The same rules apply to captions and titles of references. 
Be consistent in your style of capitalization. It is acceptable to use max­

imum capitalization for sections and minimum capitalization for subsections, 
but not the other way around. 

Quotations 

One convention for quotations is that some punctuation marks are placed inside 
the quotation even when they are not part of the original material. An alternative 
is to place a punctuation mark within the quotation only if it was used in the 
original text-such as when a complete sentence is being quoted-as is done 
throughout this book. 

./ Crosley [2000] argues that "open sets are of insufficient power", but 
Davies [2002] disagrees: "If a concept is interesting, open sets can ex­
press it." 

(But note that it is not essential to quote such a dull statement as "open sets 
are of insufficient power"; paraphrase, or even simply omitting the quote sym­
bols, would be more appropriate. Omission of quotation marks in this case is 
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acceptable-that is, not plagiarism-because Crosley's statement is a natural 
way to express the concept.) 

If the material in the quotation marks is a literal string, the punctuation must 

go outside. Since most punctuation symbols have meaning in programming 
languages, when programming statements are quoted the matter in the quote 
will be syntactically incorrect if the punctuation is in the wrong place. 

X One of the reserved words in C is "for." 

./ One of the reserved words in C is "for". 

Some editors change this to the wrong form. You may prefer to avoid the 

problem altogether . 

./ One of the reserved words in C is for. 

Note that the angled or smart quotation symbols (" and ") are not the same as 
the straight ASCII double-quote symbol (") .  

Parentheses 

A sentence containing a statement in parentheses should be punctuated exactly 
as if the parenthetical statement was not there. 

X Most quantities are small (but there are exceptions.) 

./ Most quantities are small (but there are exceptions). 

X (Note that outlying points have been omitted) . 

./ (Note that outlying points have been omitted.) 

Parenthetical remarks should be asides that the reader can ignore-important 
text should not be in parentheses. The same rule applies to footnotes. If you 
think some text should be relegated to a footnote, perhaps it can be deleted. 

Overuse of parentheses looks crowded. Avoid having more than one paren­
thesized remark per paragraph, or more than a couple per page. Parentheses 
within parentheses are hard to read and look like typing errors. Get rid of them. 

The use of "(s)" to denote the possibility of a plural, as in "any observed 
error(s)", is ugly and unnecessary; omit the parentheses or recast the sentence. 
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Citations 

Citations should be punctuated as if they were parenthetical remarks. 

X In [2] such cases are shown to be rare. 
In (Wilson 1984) such cases are shown to be rare. 

Some journals typeset citation numbers as superscripts, in which case this ex­
ample becomes "In2 such cases are shown to be rare". Never treat a bracketed 
expression, whether a citation or otherwise, as a word . 

./ Such cases have been shown to be rare [2]. 
Such cases have been shown to be rare (Wilson 1984). 
Wilson [2] has shown that such cases are rare. 
Wilson has shown that such cases are rare [2]. 
Wilson ( 1984) has shown that such cases are rare. 

The cite should be close to the material it relates to-poor placement of cites 
can be ambiguous. 

X The original algorithm has asymptotic complexity O(n2) but low mem­
ory usage, so it is not entirely superseded by Ahlberg's approach, which 
although of complexity O(nlog n) requires a large in-memory array 
(Ahlberg 1996, Keele 1989). 

Since Ahlberg did not recognize the array as a problem and does not describe 
the old approach, this sentence is misleading . 

./ The original algorithm has asymptotic complexity O(n2) but low mem­
ory usage (Keele 1989). Thus it is not entirely superseded by Ahlberg's 
approach (Ahlberg 1996), which, although of complexity O(n log n) , 
requires a large in-memory array. 

The placement of citations depends partly on the citation style used. With the 
superscript style, for example, it is usual to try and place citations at the end of 
the sentence. 





5 Mathematics 

Mathematics is no more than a symbolism. But it is the only 
symbolism invented by the human mind which steadfastly 

resists the constant attempts of the mind to shift and smudge 
the meaning . . . . Our confidence in any science is roughly 

proportional to the amount of mathematics it employs-that 
is, to its ability to formulate its concepts with enough 

precision to allow them to be handled mathematically. 

Jacob Bronowski and Bruce Mazlish 
The Western Intellectual Tradition 

Mathematics gives solidity to abstract concepts. As for writing in general, there 
are well-established conventions of presentation for mathematics and mathe­
matical concepts. Reading of mathematics is difficult work at the best of times, 

unpleasant work if the mathematics is badly presented, and pointless if the 
mathematics does not make sense. 

The use of mathematics for expressing ideas is often the difference between 
a vague paper and a clear one. Mathematical notation can be used to describe 
algorithms, data structures, automata, or just about any of the objects that com­
puter scientists study. The discipline of describing work in a mathematical form 
can expose inconsistencies and gaps, and provides a basis for making formal 
statements about the ideas being studied. While mathematics should not be 
used unnecessarily-to dress up uninteresting ideas, for example-ultimately 
a great deal of computer science has a mathematical foundation. 

Clarity 

In mathematical writing it is essential to be precise. For example, an ambiguous 

statement of a theorem can make its proof incomprehensible. The principles of 
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mathematical writing can be applied to technical writing in general, and many 
discussions can be clarified through the use of mathematical notation. 

X An inverted list for a given term is a sequence of pairs, where the first 
element in each pair is a document identifier and the second is the fre­
quency of the term in the document to which the identifier corresponds . 

./ An inverted list for a term t is a sequence of pairs of the form ( d, f) , 
where each d is a document identifier and f is the frequency of t in d. 

In the first version, the author has had to struggle to avoid ambiguity. 
Many terms have well-defined mathematical meanings and are confusing if 

used in another way. 

Normal, usual. The word "normal" has several mathematical meanings; it is 
often best to use, say, "usual" if a non-mathematical meaning is intended. 

Definite, strict, proper, all, some. Avoid "definite", "strict", and "proper" in 
their non-mathematical meanings, and be careful with "all" and "some". 

Intractable. An algorithm or problem is "intractable" only if it is NP-hard, 
that is, the computational complexity is worse than polynomial. "Intractable" is 
sometimes used to mean hard to do, which is acceptable if there is no possibility 
of confusion. 

Formula, equation. A "formula" is not necessarily an "equation"; the latter 
involves an equality. 

Equivalent, similar. Two things are "equivalent" if they are indistinguishable 
with regard to some criteria. If they are not indistinguishable, they are at best 
"similar". 

Element, partition. An "element" is a member of a set (or list or array) and 
should not be used to refer to a subpart of an expression. If a set is "partitioned" 
into subsets, the subsets are disjoint and form the original set under union. 

Average, mean. "Average" is used loosely to mean typical. Only use it in the 
formal sense--of arithmetic mean-if it is clear to the reader that the formal 

sense is intended. Otherwise use "mean" or even "arithmetic mean". 
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Subset, strict. "Subset" should not be used to mean subproblem. Orderings 
(or partial orderings) specified in writing are assumed to be non-strict. For 
example, ''A is a subset of B" means that A �  B; to specify A c B use "A is 
a strict subset of B". The same rule applies to "less than", "greater than", and 
"monotonic". 

Metric, measure. "Metric" is sometimes used informally to mean measure, 
but has specific meanings in mathematics. Use "measure" if that is the meaning 
intended. 

Theorems 

When you submit a paper containing a proof of a theorem, always be satisfied 
that the proof is correct. However, the details of the proof may not be important 
to the reader and can often be omitted. Steps in the logic of a proof should 
be simple enough that the gaps can be completed by a reader mechanically, 
without too much invention. A common mistake is to unnecessarily include 
mechanical algebraic transformations; you need to work through these to check 
the proof, but the reader is unlikely to find them valuable. 

Theorems, definitions, lemmas, and propositions should be numbered, even 
if there are only two or three of each in the paper, and you could consider 
numbering key examples. Not only does numbering allow reference within the 
paper, but it simplifies discussion of the paper later on. It is much easier for 
a correspondent to refer to "Definition 4.2" than "the definition towards the 
bottom of page 6". Many readers skim papers to find theorems (or other results 
such as illustrations or tables). For this reason, and because they may be quoted 
verbatim in other papers, theorems should be stated as completely as possible. 

Some presentation problems are not easily resolved. For a theorem with 
a complex proof, if the lemmas are proved early they appear irrelevant, and if 
they are proved late the main proof is harder to understand. One approach is 
to state the main theorem first, then state and prove the lemmas before giving 
the main proof, but in other cases all that can be done is to take extra care in 
the motivation and make liberal use of examples. Explain the structure of long 
proofs before getting to the detail, and explain how each part of the proof relates 
to the structure. 

Proof by contradiction is overused. By all means use contradiction to de­
velop your understanding of the problem, if it helps you to get the details right, 
but it is always worthwhile exploring how to achieve the result directly instead 
of by contradiction. 
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When stating your proof in a paper-that is, making it comprehensible to 
a reader-remember that you are presenting a reasoned argument. Use any 
available means to convey your argument with the greatest possible clarity; a 
diagram, for example, is perfectly acceptable. The end of each proof, example, 
or definition can be marked with a symbol such as a box. Alternatively, proofs 
and so on can be indented to set them apart from the running text. 

Readability 

Mathematics is usually presented in italics, to distinguish it from other text. For 
example, in the expression "of length n" it is clear that n is a variable of some 
kind. The main exception is names such as log or sin, which are written in an 
upright font. Always use the same font for the same variable, and use the same 
font for all variables unless there is a good reason not to. 

Brackets or square brackets ( [, ]), parentheses ( ( , ) ), and braces ({ , }) are 
all used to delimit subexpressions, but braces can be confusing because they 
are also used to denote sets. Angle brackets ( (, ) ) can also be used; these are 
not the same symbols as the relational operators ( < ,  > ). Use parentheses of 
appropriate size; they should stand out from the expressions they enclose. 

X (p · (I�oAi)) 
../ ( p · (I?=oAi) ) 

Sentences with embedded mathematics should be structured as if each formula 
was a simple phrase. Phrases indicate how the following text will be structured, 
but mathematics does not, and so should not be used at the start of a sentence. 

X p <--- q1 1\ · · · 1\ qn is a conditional dependency . 

../ The dependency p <--- q1 1\ · · · 1\ qn is conditional. 

Give the type of each variable every time it is used, so that the reader doesn't 
have to remember as many details and can concentrate on understanding the 
content. Watch out for misplaced types or variables. 

X The values are represented as a list of numbers L. 

../ The values are represented as a list L of numbers. 
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The former version is ambiguous-the symbol L might denote an individual 
member of the set. 

Mathematics should not take the place of text: readers quickly get lost if 
they need to decipher a stream of complex expressions. 

X Let (S) = { L.i=1 aixi I a; E F, 1 ::::; i ::::; n } .  For x = L,�1 a;x; and y 
= L.i=1 /3;x;, so that x,y E (S) , we have ax+ f3y = a ( 'Li=1 a;x; ) + 
f3 ( Lt=1 f3;x; ) = L.i=1 ( a a; + f3 /3; ) x; E (S) . 

Although the mathematics in this example is straightforward, there is no moti­
vation, and the thicket of symbols is daunting . 

./ Let (S) be a vector space defined by 

We now show that (S) is closed under addition. Consider any two vec­
tors x, y E (S) . Then x = Lt= 1 a;x; and y = L,� 1 f3ixi. For any constants 
a, /3 E F, we have 

ax+ f3y 
n 

L ( aa; + f3f3i ) xi , 
i=l 

so that ax+ f3y E (S) . 

Note the vertical alignment of the equality symbols. 
Mathematical expressions should not run together. 

X For each x;, 1 ::::; i ::::; n, x; is positive . 

./ Each x;, where 1 ::::; i ::::; n, is positive. 

If a formula is complex, or is a key result, it should be displayed. In such 
displays, the formula can be either centred or indented; choose either, but be 
consistent. However, if part of the display is an algorithm or program, cen­
tering can look peculiar. Displayed formulas (or graphs or diagrams) should 
be positive results, not counter-examples, so that readers who skim through the 
paper won't be misled. If a displayed formula is sufficiently important it should 

be numbered, to allow discussion of it elsewhere in the paper and for reference 
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once the paper is published. As in the example above, a displayed formula 
should be treated as a phrase. 

Mathematical symbols should, if possible, be the same font size as other 
characters. For example, the expression (n(n + 1 )  + 1)  /2 is more legible than n(n+2

I)+I even though the former uses more characters; but take care with poten­
tially ambiguous expressions such as ajb + c. Font sizes should be consistent 
(though not necessarily identical) in text and displayed equations; large sym­
bols are ugly and tiny symbols are illegible. 

Consider breaking down expressions to make them more readable, espe­
cially if doing so enlarges small symbols. 

- �xJJ-5 
X f(x) = e2 

/ f(x) -- ezg(x) h ( ) b �1 a2 ..., w ere g x = - -axy 1 - xz 

Avoid unnecessary subscripts: use x andy rather than XI and xz. Also, don't nest 
subscripts on top of each other: the symbol i is legible in Xi, barely acceptable 
in Xjp and ridiculous in Xkh · Mix subscripts and superscripts with caution: the 
expression x? is a mess. Be careful with choice of letters for subscripts: in 
some small fonts, the letters i, j, and l are not easy to distinguish. 

The presence of subscripts may be due to poor use of notation. For ex­
ample, if W = {WI , . . .  , wk} then you might write L.7=I fwi , but the equivalent 
expression LwEW fw is easier to read. 

As illustrated in these examples, even simple mathematical expressions re­
quire competent typesetting. Such typesetting may involve use of advanced 
word-processing facilities, but failure to learn such facilities is no excuse for 
sloppy presentation. 

Notation 

Ensure that the symbols you use will be correctly understood by, and familiar 
to, the reader. For example, there are several symbols (including =?, �---+, f-, ::J ,  
::J ,  /=, and probably others) that are used in one context or another for logi­
cal implication. These symbols also have other meanings, so there is plenty of 
scope for confusion. The symbols "', ::::::, and :::::; are all used to mean approxi­
mately equal to, but "' is also used in other contexts. The symbol � means is 
congruent to, not approximately equal. Don't be lazy; use �. not <=. for less 
than or equal to. 
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The symbols for floor ( l, J )  and ceiling ( I, l )  seem to cause particular prob­
lems in typesetting. In more than one of my papers the typesetters changed 

these to square brackets ( [, ]), and in the process utterly destroyed the meaning 
of the equations. Similarly, mistakes in placement are common with subscripts. 

Watch out for such errors. 

Symbols such as V, :3, <,  >, =, and =?, and abbreviations such as "iff", 
should not be used as substitutes for words. These symbols may be compact 
but they are hard for readers to digest. But don't replace symbols by words 
unnecessarily; for example, write "a ::; b" rather than "a is less than or equal 
to b". Concocted or amusing symbols are not a good idea; don't use .. as an 
operator, for example. Use each operator for one purpose only. Compilers may 
understand overloading, but people do not. 

Don't re-use notation: an excellent way of confusing readers is to use N for 

one quantity on page 6 and for another on page 13 .  But expressions with similar 
meaning should have similar notation that follows consistent rules. Adhere to 
conventions such as using i and j for integer subscripts and calligraphic letters 
for classes. And don't vary an existing notation without good reason. 

Take care with accents. Don't use a, a, a, and Zi together, and don't pile 
up primes: the symbol a" may be clear, but what about Di?? Some authors put 
powers on primes, as in a'4 to represent a"" , but this notation is often unclear. If 
you have such deep primes, consider reworking your notation to get rid of them. 

Ranges and sequences 

The closed range of real numbers r where a ::;  r ::;  b is represented by "[a, b] "; 
the open range a < r < b is represented by " (a, b)"; the range a ::; r < b is 

represented by "[a, b)"; and the range a <  r ::;  b is represented by "(a, b]". 
It is common practice to use an ellipsis to describe a sequence of integers; 

thus m, . . .  , n represents all integers between m and n inclusive. An infinite se­
quence is usually represented by m1 , m2 , . . .  , where it is assumed that the reader 
can extrapolate from the initial values to the other members of the sequence. 
Thus "2, 4, 8, . . .  " would be assumed to be the sequence of positive powers of 2. 
Always state both the lower and the upper bound if the sequence is finite and 

ensure that the intended sequence is clear. 
An expression such as 1 ::; i ::; 6 should be replaced by i = 1 ,  . . .  , 6 if it is 

not clear that i should be an integer. 
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Alphabets 

Use of characters from the Greek alphabet to denote variables and quantities 
can add clarity to mathematical writing, because these characters cannot be 
confused with English text. 

Most readers are familiar with only a few Greek letters, so use of unfamiliar 
letters should be minimized, if only because use of any new notation should be 
minimized. Most people find it easier to remember that a letter denotes a certain 
quantity if they know the name of the letter; if they do not know the name they 
invent one, but this invention is generally not as effective a label as a real name. 
For example, reading the statement "sets are denoted by a" might result in the 
thought sets are denoted by alpha while reading "sets are denoted by p" (a form 
of rho) might result in the thought sets are denoted by a squiggle-that-looks­
like-a-backwards-g. Other characters that have this effect are the Greek letters 
s (zeta), � and :S (xi), and symbols such as � ,  9t, and g .  

Some mathematical symbols and characters from other alphabets have a 
superficial resemblance to more familiar symbols. Some pairs that can cause 
confusion, particularly after imperfect reproduction, are as follows. 

Symbol Confused with 

e epsilon e 
11 eta n 

iota 
J.l mu u 
p rho p 
v upsilon v 
(I) omega w 
v or v 
oc proportional a alpha 
0 empty set cp phi 

Never use handwritten symbols. If you can't print the symbol you want to use, 
change it. 

Line breaks 

Avoid letting a number, symbol, or abbreviation appear at the start of the line, 
particularly if it is the end of a sentence. 



Mathematics 

X We have therefore introduced an additional variable, denoted by 
x. It allows . . .  

../ We therefore introduce an additional variable, denoted by x. 
It allows . . .  

X Accesses to the new kind of disk typically require about 12 
ms using our techniques . 

../ Accesses to the new kind of disk typically require about 12 ms 
using our techniques. 
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Most word processors provide an unbreakable-space character that prevents this 
behaviour. However, some word processors insist on breaking lines at awkward 
places in mathematical expressions. 

X The problem can be simplified by using the term f(x1 , . . .  , 
Xn) as a descriptor. 

Sometimes the only solution is to rewrite the surrounding text. 

../ The problem is simplified if the term f(xl , . . .  , xn )  is used as a 
descriptor. 

Numbers 

In technical writing, numbers should usually be written as figures, not spelt 
out. The common exceptions are approximate numbers; numbers up to twenty, 
unless they are literal values or part of an expression of measurement; and 
numbers at the start of a sentence, although it is generally better to recast the 
sentence so that the number is elsewhere. Percentages should always be in 
figures. 

X 1024 computers were linked into the ring. 
Partial compilation gave a 4-fold improvement. 
The increase was over five per cent. 
The method requires 2 passes . 

../ There were 1024 computers linked into the ring. 
Partial compilation gave a four-fold improvement. 
The increase was over 5 per cent. 
The increase was over 5%. 
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Method 2 is illustrated in Figure 1. 

The leftmost 2 in the sequence was changed to a 1. 

The method requires two passes. 

Don't mix modes. 

X There were between four and 32 processors in each machine . 

./ There were between 4 and 32 processors in each machine. 

In English-speaking countries, the traditional method for separating long se­

quences of digits into groups of three is to use commas, as in "1,897,600". 

This method has two disadvantages: it can be confusing if the numbers are 

part of a comma-separated list, and decimal points are denoted by commas in 

many countries, so a number such as "1,375" could be misinterpreted. It is 

for these reasons that the alternative of using thin spaces was introduced, as in 

"1 897 600" or "73 802". But the comma-separated style remains popular and 

the use of thin spaces has not become established in computer science papers. 

Comma separation is used throughout this book. 

Fractions are only rarely used for values, and should not be used as abbre­

viations. 

X About 1/3 of the data was noise . 

./ About one-third of the data was noise. 

As for mathematical symbols in general, numbers should not be used to start a 

sentence. Nor should they be adjacent. 

X There were 14 512-Kb sets . 

./ There were fourteen 512-Kb sets. 

Never omit the leading 0 in numbers whose magnitude is less than 1; write "the 

size was 0.3 Kb", not "the size was .3 Kb". 

Avoid the phrase "orders of magnitude". 

X The new algorithm is at least two orders of magnitude faster. 

In this example, is the unit of magnitude binary or decimal? It would be better 

to be explicit. 

./ The new algorithm is at least a hundred times faster. 
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Be clear about which base a number is in.9 

Numbers of the same units should, for consistency, be represented to the 
same precision. In physical experiments, it is usual to represent numbers to the 
same relative precision, that is, the same number of digits. In computer science, 
in which values are usually measured to the same absolute precision, it is more 
logical to represent numbers to the same units. 

X The sizes were 7 .31  Kb and 18 1  Kb, respectively. 

,./ The sizes were 7.3 Kb and 18 1 .4 Kb, respectively. 

A paper gave the same figure in different places as "almost 200,000", "about 
170,000", "173,000", and "173,255"-an entirely unnecessary inconsistency. 

Be realistic about accuracy and error. Your system may report that a pro­
cess required 13.271844 CPU seconds, but in all likelihood the last four or five 
digits are meaningless. You should not imply accuracy by including spurious 
numbers. For example, "0.5 second" is not equivalent to "half a second", since 
the former implies that careful measurements were taken. Guesses and approx­
imations should be clearly indicated as such, with words such as "roughly", 
"nearly", "approximately", "about", "almost", or "over"; but don't use wordy 
phrases such as "in the region of". 

Percentages 

Use percentages with caution. 

X The error rate grew by 4%. 

This example is ambiguous because an error rate is presumably a percentage. 
It is better to be explicit, and to avoid mixing kinds of percentages. 

X The error rate grew by 4%, from 52% to 54%. 

,./ The error rate grew by 2%, from 52% to 54%. 

When stating a percentage, ensure that the reader knows what is a percentage 
of what. If you write that "the capacity decreased by 30%", is this 30% of the 
old figure or the new? The convention is to use 100% as the starting point, but 
in a seri.es of statements of percentages it is easy to get lost. Use percentages 
rather than odds to express probabilities. 

9I'm told that there are 10 kinds of people in the world, those that understand binary and 

those that don't. (And how true it is. A reader suggested that "10" be changed to "ten".) 
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X The likelihood of failure is 2: I .  

,/ The likelihood of failure is one in three. 

,J The likelihood of failure is about 30%. 

Don't use probabilities to describe small sets of observations. Success in two 
of five cases does not mean that the method "works 40% of the time". The 
percentage gives the result an authority it does not deserve. 

Units of measurement 

Two quantities are commonly measured in computer science: space and time. 
For time, the basic units are the second (sec), minute (min) and hour (hr); note 
that it is unusual to give the abbreviated forms of these units. For the divisions 
of the second-the millisecond (ms or msec), microsecond (f..Ls or f..Lsec), and 
nanosecond (ns or nsec)-some readers may be unsure of the notation. For 
example, "ms" might be interpreted as microsecond. State such units in un­
abbreviated form at least once. When writing about hours or minutes use a 
colon rather than a stop to separate the components of the time. That is, write 
"3:30 minutes" rather than "3.30 minutes". 

For space, the basic units are bit and byte. These are combined in tenth 
powers of 2 rather than third powers of 10. 

Unit 

kilobyte 
megabyte 
gigabyte 
terabyte 
petabyte 
exabyte 
zettabyte 
yottabyte 

value (bytes) 

210 � 103 

220 � 106 
230 � 109 

240 � 1012 

250 � 1015 

260 � 1018 

270 � 1021 

280 � 1024 

denotation 

Kb, Kbyte 
Mb, Mbyte 
Gb, Gbyte 
Tb, Tbyte 
Pb, Pbyte 
Eb, Ebyte 
Zb, Zbyte 
Yb, Ybyte 

If there is any likelihood that, for example, a reader could interpret "Mb" as 
megabit, use "Mbyte" or "megabyte" instead. The larger units, especially "Pb", 
"Eb", "Zb", and "Yb", are unfamiliar to most readers and should be written in 
full at least once, preferably with an explanation. 

There are few derived units in computing other than the transfer rate of 
bytes per second, as in "18  Mb/sec". It was surprising to see "millibits" in a 
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paper on arithmetic coding (in which symbols can be represented in a fraction 
of a bit). The unit is so unusual that "thousandths of a bit" is preferable. 

Choose units that are easy to understand. For example, seconds can be 
preferable to minutes because fractions of a minute can be confusing: does 
" 1 .50 minutes" mean one and a half minutes or one minute and fifty seconds? 
(This problem can be avoided by using colons instead of stops, as discussed 
above.) Also, as values such as clock speeds and transfer rates are quoted in 
seconds, use of minutes makes comparison more difficult. On the other hand, 
"13:21 hours" is perhaps kinder to the reader than "47.8 x 103 seconds". 

Some units, although in general use, are not well-defined. For example, 
MIPS (a million instructions per second) and gigaflops (a billion instructions 
per second) are increasingly meaningless; they cannot be used to compare ma­
chines of different architectures, in particular asynchronous processors without 
a central clock. Also, "gigaflops" strictly means a billion floating point op­
erations per second, but is widely used to mean a billion instructions of any 
kind. Architecture-independent measures such as benchmarks may be more 
appropriate. 

For quantities greater than 1 ,  the unit is plural. For smaller quantities, the 
convention is that the unit is singular, but in computer science this convention 
is often not observed . 

./ The average run took 1 .3  seconds, and the fastest took 0.8 second. 
The average run took 1 .3 seconds, and the fastest took 0.8 seconds. 

Units should be typeset in the font used in the paper for text, even when they 
are part of a mathematical expression. 

X The volume is rP Kb in total. 

./ The volume is rP Kb in total. 

Put white space between values and units. Write "1 1 .2 Kbytes" rather than 
" 1 1 .2Kbytes"; the second form may be common, but it is much harder to read. 
Numbers and their units should be hyphenated when used as an adjective . 

./ We also tried the method on the 2.7-Kb input. 





6 Graphs, figures, and tables 

"And what is the use of a book", thought Alice, 
"without pictures or conversations?"  

Lewis Carroll 
Alice in Wonderland 

Well-chosen illustrations breathe life into a paper, giving the reader interesting 
visual elements to browse and highlighting the central results and ideas. A 
typical figure is of visual matter such as a graph or diagram, or of textual matter 
such as a table, algorithm, or, less commonly, complex mathematics. Some 
information is best presented in a pictorial form, such as a graph or figure, to 
show trends and relationships. Other information is best as a table, to show 
regularities. This chapter concerns style issues related to such material. 

Graphs 

Graphs are usually the best way to present numerical results. Numbers should 
be used sparingly. Instead, use graphs wherever appropriate, to elegantly sum­
marize numbers so that the behaviour under discussion is obvious. If you must 
list the numbers as well, put a detailed table of results in an appendix, but in 
many cases the trend is the interesting outcome; the numbers are only of tran­
sient significance and can be omitted. 

Don't flood your paper with statistics, even in graphical form, and avoid 
repetition; each graph should convey interesting new information. It is all too 
easy to generate reams of numbers by running software with different combi­
nations of parameters, but, even though these numbers may contribute to your 
analysis and understanding of the phenomena being observed, they are unlikely 
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to be of value to a reader. You should present information because it is support­
ing evidence for a hypothesis, not because it is an output of some program. 

Graphs should be simple, with no more than a few plotted lines and a mini­
mum of clutter. The horizontal or x-axis should be used for the parameter being 

varied, or the input; the vertical or y-axis is for the function of the parameter, 
or the output. Plotted lines of discrete data should always have points marked 
by distinctive marks such as circles, boxes, or triangles. Ticks or crosses are 

acceptable if they are easy to see. 
Consider using greys and line thickness rather than dots and dashes to dis­

tinguish between lines. If you use shades of grey to distinguish different el­

ements in the graph, ensure that the shades are sufficiently distinct; lines in 

lighter grey sometimes need to be a little thicker than other lines. Greys are 
preferable to cross-hatching, which can create the optical illusion of shimmer­
ing and does not photocopy well. Only use colour in a write-up if colour print­
ing is used to produce the final version. 

Minimize use of unnecessary elements and remove all decoration. Are the 
secondary ticks on the axes useful? If not, discard them. Is a legend necessary? 
If not, remove it, and label the lines directly. Do the captions have to be in a 
large font? If not, diminish them. Axes should be inconspicuous; ink should be 
used for data, not dressing. Gridlines and boxing are other forms of unnecessary 
ornamentation. Secondary marks, such as axis ticks, should be a little lighter 
than the other elements. The lines and other elements should be of similar 
weight�on't mix a large, bold font with lightly drawn lines, for example. 

Many of the commonly used graphing tools provide features that are only 
rarely of value; worse, some of these features are invoked by default. Poor 
versions of a graph are shown on page 86, with revisions of it on page 87. A 
slightly more complex graph is shown on page 88. See also the graphs on pages 
89-92 and 95-98. 

Note the shape of these graphs: rectangular rather than square, with the 
legends placed in spare space within the body of the graph. The legend needs 
to be placed where it can't be confused with other material; default placement 
may mean that the legend obscures part of a curve. The emphasis is on creating 
as much space as possible for presentation of data, while other elements are 
held to a minimum. 

You may need a little imagination to allow the desired picture to emerge. 
Logarithmic axes are useful because they show behaviour at different orders of 

magnitude. An example of changing to a logarithmic axis is shown on page 89. 
Graphs with logarithmic axes are also useful when plotting problem size against 
algorithm running time, as different asymptotic growth rates give straight lines 
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of different slope. If the relationship is more complex, some sort of transfor­
mation on the data may yield a straight line or some other simple curve. 

Log scaling is not always appropriate. If one algorithm is 30% faster than 
another at all scales, then their performance will be almost indistinguishable on 
a log-log graph. Even if one algorithm is twice as fast as the other, a log-log 
graph will show one line just a little below the other. 

In some cases data that seems innately tabular can be represented as a graph. 
Often a bar graph is suitable because the items being compared are not ordered, 
as illustrated in the graph on page 90. (Such data should not be represented 
by joined points, which would imply that the axes were related by a function.) 
A more complex example is shown on page 91. Another example of how to 
represent tabular data as a graph, for the more complex problem of comparing 
space and time simultaneously, is the graph on page 92. 

Graph-drawing tools allow bar graphs to be three-dimensional, but the ad­
dition of depth is deceptive; if one bar is twice the height of another, the use of 
depth exaggerates the difference. 

Graphs are used to illustrate change in one parameter as another is varied. 
In some cases more than two parameters can interact in complex ways. If two 
parameters, say A and B, depend on a third, C, then a good solution is to plot 
C on the x-axis and have two y axes, one for each of A and B, as illustrated 
in the graph on page 88. If two parameters, say D and E, jointly determine a 
third, F, in some complex way-thus describing a three-dimensional space­
the problem is more difficult. A three-dimensional representation can be used, 
but these are rarely clear. The best solution is to experimentally graph D against 
F for several fixed values of E, and use these results to choose an E value that 
yields a representative graph; and similarly vary E for several fixed D, to choose 
a representative D. 

Where several methods of achieving the same aim are being illustrated, 
the axes in each graph should have the same scale. For example, if you are 
comparing different data structures and a separate graph is used for each one, 
the axes should be consistent from one graph to the next. That is, if y, say, 
ranges from 0 to 80 on one graph, it should also range from 0 to 80 on the 
other, to allow direct comparison between the methods. Comparison is easier 
with several (but not too many) lines on one graph. 

Beware of using graphs to make unsupported claims. For example, con­
sider the "space wastage" line in the graph on page 88: it would not be possible 
to identify the slope of this line with any confidence, nor identify it as a partic­
ular kind of curve. The only reasonable inference would be that increasing list 
length increases space wastage. 
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Badly designed graphs. These graphs show the same data. In the upper ver­
sion, poor use has been made of the vertical space available, and the legend is 
awkwardly placed. Fonts and size are changed unnecessarily, and are inconsis­
tent with the main text. In the lower version, the vertical scaling and fonts have 
been corrected, but unnecessary ornamentation has been introduced. The grid 
lines and heavy border now greatly outweigh the data being presented. 
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Graphs reconsidered. These graphs show the same data as those on the pre­
vious page. Vertical scale is now completely corrected, and unnecessary tick 
marks have been removed. In the lower version, the data lines are stronger and 
the legend has been replaced with direct labelling. Line ticks have been intro­
duced to reflect the fact that the data is discrete, that is, non-integer values are 
not meaningful. 

87 



88 Writing for Computer Science 

100 

1500 80 
';;' 
£ 

J >, .D "' 0/J 1000 " 5 " 
·� 
� 500 -o- total size 

-- space wastage 20 

25 30 35 40 45 50 
List length 

FIGURE 2 .  Size and space wastage as a function of average list length. 

100 

1500 80 'U;' £ Cl:l '0 

J 
;>, � � OIJ 60 " 
! 1000 � 

! <]) 40 ·� " 
.... 500 � � 20 

30 35 40 45 50 
List length 
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Two functions plotted on one graph. It is necessary to label the axes to 
correspond with the curves; otherwise it would be difficult to identify which 
curve matched which axis. The upper version is (almost) as in the first edition 
of this book; the lower version is a revision with distracting elements removed 
or de-emphasised and several other minor alterations. 
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Choice of axis scaling. For these graphs showing the same data, in the lower 
graph the logarithmic scaling on the x-axis allows the behaviour for small 
thresholds to be seen. 

89 
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Data set Method 
A B 

Small, random 1 1 .5 1 1 .6 
Large, random 27.9 17. 1 
Small, clustered 9.7 8.2 
Large, clustered 24.0 13.5 
All documents 49.4 60. 1  
First 1000 21 . 1  35.4 
Last 1000 1 .0 5.5 

TABLE 2. Elapsed time (milliseconds) for methods A and B applied to data 
sets 1-7. 
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FIGURE 2. Elapsed time (milliseconds) for methods A and B applied to data 
sets 1-7. 

A table compared to a graph. The data shows how two methods compare 
over seven experiments. The graph is a better choice for this data because the 
pattern is more obvious. 
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FIGURE 2. Average score in each category. There were 75 responses overall. 
The proportion of responses in each category, for the possible scores of -3, 
-2, - 1, 0, 1, 2, and 3, is shown as a vertical histogram. The solid bar is the 
mean in each case. 
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FIGURE 9 .  Range of scores with each method, at each depth. The principle 
mark in each range is the average score. As can be seen, each method returns 
results within a reasonably narrow band, but they are surprisingly different 
from each other. Combination is highly effective in this case. 

Further bargraphs. The upper graph shows an approach to comparing dis­
tributions across a set of related statistics. The lower graph has error bars to 
show range and scale. 

91  
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Method Space Time 

(%) (ms) 

A 1 .0 7,564.5 

B 31 .7 895.6 

c 44.7 458.4 

D 97.8 7 1 .8 

E 158. 1 1 8.9 

F 173.7 1 .4 

G 300.0 0.9 

TABLE 8 .4 .  Tradeoff of space against time for methods A to G. 
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FIGURE 8.4.  Tradeoff of space against time for methods A to G. The boxed 
area to the right and above each point is of unacceptable peiformance: any 
method in that area will be less efficient with respect to both space and time 
than the point at the box's corner. 

Another table compared to a graph. The data shows how different methods 
compare with respect to space and time. The table is difficult to interpret. 
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There are several good software packages for drawing graphs. Valuable 
features include: 

• Placing of several lines on one graph. 

• A range of symbols (such as crosses, squares, and triangles) for marking 
points. 

• The ability to create custom symbols of custom size for marking points. 

• Optional connection of points with solid, dotted, or dashed lines, and op-
tional omission of the point marks. 

• The ability to place text at specified places in the graph. 

• Multiple font sizes and line thicknesses. 

• Availability of greys and colours. 

• Optional logarithmic or exponential scaling on both axes. 

• Axis editing, to specify where the ticks are placed, how many digits of 
precision to use, and what range to cover. 

• The ability to move and rotate the legend or key, line labels, axis labels, and 
the graph label. 

• The ability to apply simple functions or external programs to (x,y) values. 

Most of these features were used in the example graphs in this chapter. 
Graphs and diagrams attract the attention of readers, so should be reserved 

for material that is central to the paper. 

Visualization of results 

We use computers to produce results, and can also use computers to digest 
them. One approach is to apply statistics. Another approach is to use visual­
ization. For example, curve fitting can be used to summarize data; and a graph 
showing the fitted curve can give a strong sense of whether the fitting was ac­
curate. Graphs can also be used to interpret data from a variety of perspectives. 

The upper graph on page 95 shows the number of events observed as a 
parameter "depth" is increased. (This is real data from an experiment in infor­
mation retrieval.) The crosses, joined by a jagged line, show the actual number 
of events. This graph illustrates that the number of events declines with increas­
ing depth, but inconsistently; the long-term trend is unclear. A line has been 

used to connect the crosses to indicate overall behaviour. However, including 
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the jagged line in such a graph is a mistake, especially if the number of points 
is small, as it wrongly suggests that there is a trend from point to point. A line 
is an interpolation between two points; if no data can be validly said to lie in 
that space, omit the line. 

The lower graph on page 95 shows the same events, without the jagged 
line. It instead shows, as a solid line, a linear regression on log( depth) and 
log( events) that has been used to find parameters C and p for the equation 

events = C · depthP - 1 . 

The computation of linear regression returns a measure of error, but what this 
value means in practice is difficult to interpret. However, the visualization of 
the fit is striking: the line rides neatly between the points. 

The quality of the fit is further illustrated in the graphs on page 96, where 
two additional curves have been added. In the upper graph, the first line is a fit 
determined from points 1-50 and the second line is a fit determined from points 
1-20. What this graph demonstrates is that the first 50 or even 20 points are an 
excellent predictor of the remainder. The lower graph expands the detail in the 
upper graph, further confirming the closeness of the fit. 

Another use for visualization is shown in the graphs on page 97, where two 
systems are being compared by their ability to respond to 50 events (the score 
is a human-assigned value for quality of response; again, this is data from a real 
experiment). In the upper graph, System 1 ,  with the crosses, often appears to 
be better than System 2, with the triangles; but in a reasonable number of cases 
the reverse is observed. 

Which is better? Wilcoxon's signed rank hypothesis test reports that, for a 
specified level of 99% confidence, System 1 is superior. This can be confirmed 
through visualization. One possible visualization is shown in the lower graph 
on page 97, where the events have been sorted by the performance on System 1 .  
The crosses now form a clear line; while a few of the triangles are above, the 
majority are below. It is a simple transformation, but highly informative. 

Another example of visualization is shown on page 98. In the upper figure, 
a dot plot has been used to capture the relationship between the effectiveness of 
a baseline query evaluation technique and the improvement available through 
an alternative method. The hypothesis was that queries that were originally 
successful would be less amenable to further improvement than queries that 
originally were poor. Original effectiveness and new effectiveness are strongly 
correlated: a query that can be resolved with one method can also be resolved 
with the other. However, as the figure illustrates, there is no clear indication 
that poor queries can be improved more than others. 
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FIGURE 7 .  The number of events observed at each depth; depths 1 and 2 have 
been omitted for reasons of scale. 
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FIGURE 7 .  The number of events observed at each depth; depths I and 2 have 
been omitted for reasons of scale. The solid line shows a best-fit to the points. 

Curve fitting. In the upper graph, it is an error to show a line that implic­
itly interpolates the points, as such interpolation is not meaningful. The lower 
graph shows the quality of the fitted line, visualizing information that would 
not otherwise be intuitive. 

95 



96 Writing for Computer Science 

x Number of events 

100 
� 

J 
<!) > <!) ""' 

-- Estimated number, on depths 1-100 
-- Estimated number, on depths 1-50 
-� Estimated number, on depths 1-20 

0 
t 
"8 50 

i 

0 
0 20 40 60 80 100 

Depth 

FIGURE 7 .  The number of events observed at each depth; depths 1 and 2 
have been omitted for reasons of scale. The first solid line shows a best-fit to 
all 100 points. The other lines show a fit based on the first 50 and 20 points 
respectively. 
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FIGURE 8 .  Ten-fold magnification of the right-hand side of Figure 7. Even at 
this resolution, the fit based on 50 points is extremely close to the fit based on 
100 points. 

Curve fitting continued. The upper graph shows that a fit based on the first 
50 or 20 points is highly consistent with a fit based on all of the points. The 
lower graph shows the right-hand end of the upper graph in more detail, thus 
confirming that the fits are indeed very close. 
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FIGURE 3 . 3 .  The ability of each system to respond to an event, for each of 
50 events. The events have been sorted on the score allocated to System 1, 
demonstrating that in most cases it has outpeiformed System 2. 

Revisualization. The simple action of sorting the points according to score 
achieved by one of the systems shows how the performance of the systems 
compares. Even though System 2 is occasionally superior, the lower graph 
clearly shows that System 1 is better in most cases. 

97 



98 Writing for Computer Science 

X 
"' 0.6 = 

� "' "' 0.5 OS ,D 
.... 

.j "' 0.4 > 0 X 
= 0.3 8 X X "' X > 0.2 xX X 
j X XX X X xxx � �X � X X 0.1 X X X X X X X X X X X X X 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Baseline effectiveness 

FIGURE 3 .  For each query on the FINNEGAN data, original effectiveness versus 
improvement. 
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FIGURE 3 .  Average improvement against original effectiveness, for queries 
on the FINNEGAN data. Each triangle is the average over a range of 0.05. 
Thus, for example, the average improvement for queries with effectiveness in 
the range 0.20 to 0.25 is 0.166. 

Correlation. In the upper figure, no clear correlation can be seen between the 
two variables. In the lower figure, the same data is revisualized by plotting the 
average improvement in each of 20 sub-ranges. In this figure, averaging has 
removed the extreme data points and the trend is clear -there is no correlation. 
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An alternative view is presented in the lower figure, where the effective­
ness values on the horizontal axis have been averaged across subranges of 
width 0.05. This graph shows that the improvements are more or less the same, 
independent of the original effectiveness of each query, and thus shows that 
there is no correlation. 

Good visualization requires inventiveness and care, but it is time well spent. 
Such analysis is often the best way to explore and explain data. 

Diagrams 

Diagrams are put to many uses in papers about computing. They illustrate pro­
cesses or architectures, explain data structures and algorithms, present relation­
ships, and show examples of interfaces. There are areas of computer science in 
which the diagrams are, in some sense, the result being presented in the paper: 
entity-relationship models are diagrams conforming to a well-defined notation, 
for example, and automata are often described by diagrams. Many areas of re­
search have highly developed conventions and standards for diagrams. Brows­
ing a few relevant papers in the same area as your work should you give a good 
idea of what elements a diagram should incorporate and of how it should be 
presented. 

Broadly speaking, diagrams are used to show either a structure, a process, 
or a state. Although these are high-level distinctions, they are valuable be­
cause a common mistake in design of diagrams is to attempt to combine these 
purposes inappropriately. For example, a schematic showing data flow in an 
architecture is likely to be unclear if control flow is also illustrated. 

Use preliminary hand sketches to develop the diagram. This early stage 
is the appropriate time to balance the diagram, by checking that it is well­
proportioned, that it makes good use of the space, that it is laid out well and 
doesn't have the elements bunched to one side, and that the relative sizes of the 
elements look reasonable. However, never submit a paper with a hand-drawn 
diagram unless it has been prepared by a professional; almost any diagram can 
be drawn well with the tools available on a typical computer. 

A diagram should not be too dark; keep it as open as possible. This is best 
achieved by eliminating all clutter. A diagram does not have to be too faithful to 
every detail of the concept being illustrated; fine details can always be clarified 
in the supporting text and even the best diagram requires some explanation. 
Use meaningful labels, which should be displayed horizontally, and make the 
point size and font of the labels similar to that of the other text. As for text in 

general, there should be no more than two or three fonts and font sizes. 
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Lines should not be too heavy, but at most a little thicker than the lines used 
to draw the text font. Shades of grey can be used to distinguish between solids 
but are not as effective for distinguishing between lines, and don't use shades 
that are too light or too similar. Pictorial elements should be used consistently, 
so that, for example, arrows and lines of the same kind have the same meaning. 
Use shading rather than cross-hatching. As for graphs, do not use colour if 
the paper will ultimately be printed in black-and-white. If arrows are used to 
show arcs as well as to point at features, distinguish them by, say, using dashed 
lines in one case and solid lines in another. Lines should not touch each other 
unless separating them would create an unnatural break. Thus, for example, 
there should usually be a small gap between an arrowhead and the thing the 
arrow is pointing at. 

Diagrams, like graphs, can add greatly to the clarity of a paper. But be 
aware that the design of good diagrams is not easy. Expect to revise your pic­
tures as often as you would your writing. Some simple diagrams are shown on 
pages 101 ,  1 12, and 1 19. A weak diagram is shown on page 102 and a revision 
of it is on page 103. 

Diagrams illustrating system structure often seem to be poor. In too many 
of these pictures the symbolism is used inconsistently: boxes have different 
meanings in different places, lines represent both control flow and data flow, 
objects of primary interest are not distinguished from minor components, and 
so on. Unnecessary elements are included, such as cheesy clip-art or com­
puter components that are irrelevant to the system. A poor structural diagram 
is shown on page 104, with a revision on page 105. 

Illustrations are covered by copyright; figures from another source can only 
be re-used with permission of the author and the publisher of the original. If 
you re-use a figure, get permission to do so and identify the original author and 
source, preferably in the caption. You may also need to include the original 
copyright statement. 

Tables 

Tables are used for presentation of information that is unsuitable for graphs 
or figures, such as the properties of each of a series of datasets or data where 
the exact values are important. The tables on pages 107-1 10 have appropriate 
content, although two are poorly laid out. The table on page 90 is of debatable 
value, as the graph explains the data well and the precise timings may not be 
interesting. The table on page 92 is much less informative than the graph; in 
this case the table should not be used. 
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FIGURE C. Revised network, incorporating firewall and hub with hosts and 
workstations on separate cables. 
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FIGURE 1 . 3 .  Tree data structure, showing internal nodes in memory and ex­
ternal /eaves on disk; omitted nodes are indicated by dotted lines. Nodes allow 
fast search and contain only keys and pointers. Leaves use compact storage 
and contain the records. 

Shading and dashing in diagrams. In these illustrations, consistent use of 
shading and dashing distinguishes between different kinds of entities. 
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Schema 
manager 

FIGURE 1 .3 .  System architecture, showing the relationship between the major 
components. Each component is an independent process. Note the lack of a 
single inteiface to the file system. 

Too much clutter. A carefully constructed figure, but flawed. The font is too 
small and the lines are too light. The overall structure (the division into four 
major components) is probably the most interesting feature, but other details are 
more highly emphasized. Some of the internal detail should be omitted. The 
arrows add little information, and should point both ways, because information 
flows out as well as in. 
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FIGURE 1 . 3 .  System architecture, showing the relationship between the major 
components. Each component is an independent process. Note the lack of a 
single inteiface to the file system. 

Clutter simplified. A revision of the figure on page 102. The overall struc­
ture is more prominent, while some minor features have been discarded and 
the unnecessary inner boxes have been removed. Use of shading would give 
further improvements. 
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FIGURE 7 .  The QUIRK system for matching written queries to speech. Each 
input document is translated into a string of phonemes and then stored. Queries 
are also translated into phonemes, which can be matched to the documents. 
Answers are returned to the user. 

Disorganization. This figure is poorly designed. The elements are incon­
sistent; data is in both ovals and boxes, and some lines represent data flow 
while one represents a transformation. The arrowheads touch other lines, cre­
ating messy intersections. There is unnecessary material such as the auxiliary 
databases (write-only, apparently) and the user. 
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FIGURE 7 .  The QUIRK system for matching written queries to speech. Each 
input document is translated into a string of phonemes and then stored. Queries 
are also translated into phonemes, which can be matched to the documents. 

Clarification. A revision of the figure on page 104. The parallels between 
document processing and query processing are emphasized, and the unneces­
sary material has been removed. The two-headed arrow is replaced by two 
arrows, to show that data is exchanged. 
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A well-designed table has a logical hierarchical structure. Simple tables are 
an arrangement of columns and rows, in which each column has a heading at 
the top and each row has a label or stub at the left. In more complex tables, 
columns and rows may be partitioned or have internal structure. The hierarchy 
can be indicated in several ways: rows or columns can be separated by double 
lines, single lines, or white space; headings can span several columns; labels 
can refer to several rows. Deeper structure-which is sometimes necessary 
but is usually unwise-can be indicated by markup within the table such as 
embedded headings. (A complex table is shown on page 108.) The items below 
a column head should be of the same kind or about the same thing. Items to 
the right of a row label should all be properties of that label. The column of 
labels does not need to have a heading, but this position, the top-left corner of 
the table, should not be a label for the other column headings. If there is no 
heading for the column of labels, leave the position blank. 

Tables should be open and uncluttered, with ample white space. Don't 
have too many horizontal or vertical rules. In particular, there is no need to 
have a rule between every row or column. (An example of this error is shown 
on page 107.) But do have rules between groups of rows, and, in rare cases, 
between groups of columns, to act as guides and to separate items that don't be­
long together. Don't make tables too dense. Rather than cram in a large number 
of columns, have two tables, or, even better, be selective about the information 
you present. In most tables no position should be blank; if there is no applica­
ble value, put in a dash, and explain somewhere what it means. Values of the 
same units in a column should be aligned in a logical way. Numbers should be 
aligned on the decimal point. 

Using tables to show function values at different points is usually not a 
good idea because graphs serve this purpose well; a possible exception is when 
a function only has two or three values, in which case a graph would be too sim­
ple or sparse to be of interest. In some cases, such as a table or graph that does 
no more than illustrate a simple relationship, consider stating the relationship 
and omitting the illustration altogether. 

X As illustrated in Table 6, temporary space requirements were 60% to 
65% of the data size . 

./ In our experiments, temporary space requirements were 60% to 65% of 
the data size. 

Small tables can be part of the running text, displayed in the same way as 
mathematics. Larger tables should be labelled and positioned at the top or 

bottom of a page. 
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X 

STATISTICS SMALL LARGE 

Characters 1 8,621 1 ,23 1 , 109 

Words 2,060 173, 145 

After stopping 1 ,200 98,234 

Index size 1 .3 1  Kb 109.0 Kb 

TABLE 6. Statistics of text collections used in experiments. 

File size (Kb) 
Index size (Kb) 
Number of words 
After stopping 

Collection 
Small Large 
18.2 1 ,202.3 

1 .3  109.0 

2,060 173, 145 

1 ,200 98,234 

TABLE 6. Statistics of text collections used in experiments. 

Two versions of a table. The upper version is poor. No use has been made 
of table hierarchy-all the elements are at the same level, so that case has to be 
used to differentiate between headings and content. Different units have been 
used for file sizes in different lines (assuming characters are one byte each). 
Units haven't been factored out in the last line and the precision is inconsistent. 
The heading of the first column is unnecessary and the table has too many 
horizontal lines. 

In the lower version there are no vertical lines. Rows of the same type are 
now adjacent so that they can be compared by the reader. Note that the values 
of different units do not need to be vertically aligned on the decimal point or 
presented with the same precision. 
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Parameter Data set 
SINGLE MULTIPLE 

CPU Effective CPU Effective 
(msec) (%) (msec) (%) 

n (k = 10, p = 100) 

2 57.5 55.5 174.2 22.2 

3 21 .5 50.4 79.4 19.9 

4 16.9 47.5 66. 1 16.3 

.j k (n = 2, p = 100) 

10 57.5 5 1 .3 171 .4 21 .7 

100 60.0 56. 1 163 . 1  21 .3  

1000 1 1 1 .3 55.9 228.8 21 .4 

p (n = 2, k = 10) 

100 3.3 5.5 6. 1 1 .2  

1000 13.8 12.6 19.8 2. 1 

10,000 84.5 56.0 126.4 6.3 

100,000 290.7 2 1 .9 

TABLE 2. 1 .  Impact on peiformance (processing time and effectiveness) of 
varying each of the three parameters in turn, for both data sets. Default param­
eter values are shown in parentheses. Note that p = 100,000 is not meaningful 
for the data set SINGLE. 

Table with a deep hierarchy. There are two columns, one for parameters and 
one for data sets. The latter is divided into two columns, one for each data set. 
Each data set has two columns of figures. There are four rows, one of headings 
and one for each of the parameters n, k, and p. Each of these is subdivided. 
Note that even this rather complex table does not require vertical rules. 

This table might benefit from being separated into parts, but it is helpful to 
have all the data together. There are insufficient data points for each parameter 
to justify use of a graph. 
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I Pass II Output 

Pass 1 :  

Compression Model 
Inversion Vocabulary 
Overhead 
Total 

Pass 2: 
X Compression Text 

Doc. map 
Inversion Index 

Index map 
Doc. lens 
Approx. lens 

Overhead 
Total 

I Overall I I  

Size 
Mb 

4.2 

6.4 

10.6 

I CPU I Mem 
% Hr:Min Mb 

0.2 2:37 25.6 

0.3 3:02 18.7 

0: 19 2.5 

0.5 5:58 46.8 

605 . 1  29.4 3:27 25.6 

2.8 0. 1 

132.2 6.4 5:25 162. 1 

2. 1 0. 1 

2.8 0. 1 

0.7 0.0 

0:23 2.5 

745.8 36.3 9 :15  190.2 

1 756.4 36.8 1 15 : 13  1 190.2 1 

109 

TABLE 1 1 . Resources used during compression and indexing. Only the vocab­
ulary is constructed in the first pass; the other structures are built in the second 
pass. 

Jumbled table. Columns have been crammed together and are hard to under­
stand. The numbers don't line up vertically. The percentage column is myste­
rious, since it doesn't total to 100. It seems unlikely that all the detail is inter­
esting; consider in particular the "Index map", "Doc. lens", and "Appr. lens" 
rows, which could presumably be gathered into a single row with a label such 
as "Other" or discarded altogether. 
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Task Size CPU Memory 
(Mb) (Hr:Min) (Mb) 

Pass 1: 
Compression 4.2 2:37 25.6 

Inversion 6.4 3:02 1 8.7 

Overhead 0: 19 2.5 

Total 10.6 5:58 46.8 

Pass 2: 
Compression 607.9 3:27 25.6 

Inversion 137.8 5 :25 162. 1 

Overhead 0:23 2.5 

Total 745.8 9 : 15  190.2 

Overall 756.4 15 : 13  190.2 

TABLE 1 1 .  Resources used during compression and indexing. Only the vocab-
ulary is constructed in the first pass; the other structures are built in the second 
pass. 

Table simplified. A revision of the table on page 109. The confusing per­
centage column has been deleted. The "Output" column has been deleted; since 
most of the values in this column are small, they are relatively unimportant and 
could if necessary be discussed in the text. 
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Tables are used not only for numbers but for textual analysis. For example, 
a list of approaches to system modelling could be compared in a table, one row 
per approach, with columns used for positives, negatives, and number of known 
successful applications of the approach. In such tables, each cell may contain a 
brief paragraph of text and a single table may occupy a page or more, and thus 
the overall appearance is quite different to that of a table of numerical data. 
Nonetheless, the same design guidelines apply. 

Understanding a table of any complexity is hard work. For presentation 
of results, graphs or explanatory text are preferable; have a table to which the 
interested reader can refer, but don't rely on a table to convey essential infor­
mation. 

Captions and labels 

Captions and labels should be informative. It is common in computer science 
papers for captions to be only a few words, but is it preferable for captions to 
fully describe the figure's major elements. (A diagram and caption are shown 
on page 1 12.) Use either minimum or maximum capitalization, but minimum is 
better, particularly if the caption is a description rather than a label. Use italics 
for the caption so that it is distinct from other text. 

Since figures and tables should be fairly self-contained, the caption is an 
appropriate place to explain important details. For example, a graph might 
show running time for an algorithm over various data sets; the caption could 
include parameter values. The caption can also be used to expand abbreviations 
or notation used in headings. 

Each figure and table should be numbered to allow easy reference and have 
a descriptive caption so that the figure is, as far as possible, independent of the 
text. If your word processor does not provide automatic numbering, you must 
number the figures yourself. A figure is usually at the top or the bottom of a 
page, or on a page by itself, to set it apart from ordinary text. An illustration 
should always be introduced and discussed, preferably just before or on the 
page on which it occurs. If you don't have anything to say about an illustration, 
leave it out. 

Axes, labels, and headings 

The space constraints on axes, labels, and headings may mean that some terms 
have to be abbreviated; for example, see the table on page 109.  It is helpful 
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FIGURE 5 .  Fan data structure. 
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FIGURE 5 .  Fan data structure, of lists with a common tail. The crossed node 
is a sentinel. Solid lines are within-list pointers. Dashed lines are inter-list 
pointers. 

Styles of caption. For these identical figures, the lower caption is preferable 
because it allows the figure to be less dependent on the paper's text. 
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to state these terms in full in the text discussing the illustration, but do so in a 
natural way. 

X The abbreviations "camp.", "doc.", and "map." stand for "compres­
sion", "document", and "mapping table" respectively . 

../ The effect of compression on the documents and the mapping table is 
illustrated in the second and third rows. 

Where appropriate, units should be stated in labels. Write "Size (bytes)", not 
just "Size". 

Some readers get confused by scaling on axes and labels. Suppose, for ex­
ample, that an axis is labelled as "CPU time (seconds x 10-2)". The convention 
is that the reader should multiply axis values by 10-2, so that 50 means 0.5. But 
some readers may assume that the axis values have already been multiplied by 
10-2, so that they read 50 as 5000. In the text where the illustration is refer­
enced, typical values can be discussed to avoid this problem. The problem also 
arises with graphs; it is helpful to include some representative numbers in the 
text, because graphs are hard to read with any precision . 

../ Figure 4 shows how time and space trade off as node size is varied; 
as can be seen, response of under a second is only possible when size 
exceeds 1 1  Kb. 

Sometimes the terminology of a paper gets changed at a late stage, perhaps 
with a global substitution. Ensure that graphs and diagrams get updated too. 





7 Algorithnts 

Mostly gobbledygook . . .  

Eric Partridge, defining computation 
Usage and Abusage 

The core contribution in many papers in computer science is an algorithm. 
These algorithms are often the product of months of work; the version that 
the researchers have decided to submit for publication is typically based on 
a great deal of discussion, brainstorming, prototyping, testing, analysis, and 
debate over details. Yet in many cases this effort is not reflected in the pre­
sentation. Not only are the steps of the algorithm often unclear, but there is 
no discussion of why the reader should believe that the algorithm is correct or 
that its behaviour is reasonable. An algorithm by itself is uninteresting; what 
is of value is an algorithm that has been shown to solve a problem. Issues with 
presentation of algorithms are the subject of this chapter. 

Presentation of algorithms 

When an algorithm is presented in a computer science paper, the details of 
the algorithm by themselves-the program steps, for example-do not show 
that it is worthwhile. You must demonstrate that the algorithm is a worthwhile 
contribution: for example, show that it is correct (given appropriate input, it 
terminates with appropriate results) or show, by proof, experiment, or both, 
that it meets some claimed performance bound. 

There are many reasons why you might choose to describe an algorithm. 
One is that it provides a new or better way to compute a result. What is usually 
meant by "better" is that the algorithm can compute the result with asymp­

totically fewer resources as measured by a complexity analysis: less time or 
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memory, or some desirable tradeoff of time and memory. It may be that the 
worst case is improved, at no saving in the average case; or that the average 
case is improved, but at the expense of space; or that all cases are improved, 
asymptotically, but with constant factors so large that there will no improve­
ment in any conceivable practical situation. All of these are valid results, but 
it is crucial that the scope of the improvement be clearly specified-"better" is 
too vague. 

Validation by experiment is often an important part of the presentation of 
such algorithms. The experiment provides concrete evidence that, for some 
data, the algorithm terminates correctly and performs as predicted. Experi­
ments are discussed in detail in Chapter 1 1 . 

Thus, as part of a description of an algorithm, a reader would expect to find 
of some or all of the following: 

• The steps that make up the algorithm. 

• The input and output, and the internal data structures used by the algorithm. 

• The scope of application of the algorithm and its limitations. 

• The properties that will allow demonstration of correctness, such as pre-
conditions, postconditions, and loop invariants. 

• A demonstration of correctness. 

• A complexity analysis, for both space and time requirements. 

• Experiments confirming the theoretical results. 

But note that, while experiments on an algorithm may support an asymptotic 
analysis, they cannot replace it. 

Another reason for describing an algorithm is to explain a complex process. 
For example, a paper about a distributed architecture might include a descrip­
tion of the steps used to communicate a packet from one processor to another. 
These steps certainly constitute an algorithm, and, while readers would not ex­
pect a complexity analysis, you would have to give an argument to show that the 
steps did indeed result in packet transmission. Other examples are algorithms 
such as parsers. That is, there is no blanket requirement that a complexity anal­
ysis must be given (different norms apply to different areas and readerships), 
but that does not excuse you from giving a complexity analysis where it is ap­
propriate to do so. 

Yet another reason for describing an algorithm is to show that it is feasible 
to compute a result, regardless of the cost, or to show that a problem is decid­
able. Again, different norms apply. In such cases a formal proof of correctness 
is essential, while an asymptotic analysis may be of little interest. 
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In summary, in the presentation of an algorithm it is usual to give a formal 
demonstration of correctness and performance, and perhaps an experimental 
validation. When such demonstrations are absent, the reason for the absence 
should be clear. 

Formalisms 

The description of an algorithm usually consists of the algorithm itself and the 
environment it requires. There are several common formalisms for present­
ing algorithms. One is the list style, in which the algorithm is broken down 
into a series of numbered or named steps and loops involving several steps are 
represented by "go to step X" statements. This form has the advantage that 
the algorithm can be discussed as it is presented: there is no restriction on the 
amount of text used to describe a step (although a step should be a single activ­
ity), so there is room for a clear statement of each step and for remarks on its 
properties. But the control structure is often obscure and it is all too easy for 
the discussion to bury the algorithm. 

Another common formalism is pseudocode, in which the algorithm is pre­
sented as if written in a block-structured language and each line is numbered. 
An example is shown on page 120. Pseudocode has the advantage that the 
structure of the algorithm is immediately obvious; but each statement is forced 
by formatting considerations to be fairly terse, and it is not easy to include de­
tailed comments. Also, as discussed below, the use of programming language 
constructs and notation is usually a mistake. It takes experience to present algo­
rithms well in pseudocode, and, although it is straightforward to translate such 
pseudocode into an imperative programming language, pseudocode is unnec­
essarily difficult to understand. 

A better option is to use what might be called prosecode: number each 
step, never break a loop over several steps, use subnumbering for the parts of 
a step, and include explanatory text. An example is shown on page 121 .  In 
the example, input and output are described in the preamble, and statements 
and explanatory text are mixed freely in the algorithm itself. Despite the in­
formality, the specification of the algorithm is direct and clear. The assignment 
symbol "+--" is a good choice because it is unambiguous, in contrast to symbols 
such as "=". Note the use of nested labelling for nested statements. However, 
the prosecode style of presentation is only effective when the concepts under­
lying the algorithm have been discussed before the algorithm is given. 

Another effective approach to description of algorithms is what might be 

called literate code, in which the detail of the algorithm is introduced grad-
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ually, intermingled with discussion of the underlying ideas and perhaps with 
the asymptotic analysis and proof of correctness. An example is shown on 
page 122. (This example is incomplete-most algorithms worth presenting 
need a substantial explanation that can't be condensed into a page or two.) 

An element in any of these forms of presentation is the degree to which the 
algorithm, or its components, can be presented as mathematical abstractions. 
Can a loop be described as an operation on a set? Does the order in which array 
elements are processed matter? To understand pseudocode, a reader must rein­
terpret the sequence of statements as a higher-level abstraction; the algorithm 
should be presented at such a level. 

Flowcharts should not be used to describe algorithms, for many reasons:  
lack of modularity, promotion of the use of goto statements, lack of space 
for explanatory text, insufficient space for complex conditions, and inability to 
clearly represent algorithms of any complexity. 

Level of detail 

Algorithms should be specified in sufficient detail to allow them to be imple­
mented without undue inventiveness. 

X 5. (Matching.) For each pair of strings s, t E S, find Ns,r, the maxi-
mum number of non-overlapping substrings that s and t have in 
common. 

The way in which a step of this kind is implemented may greatly affect the 
behaviour of the final algorithm, so the matching process needs to be made 
explicit. But don't provide too much detail. For example, loops are sometimes 
used unnecessarily in specification of algorithms. 

X 3. (Summation.) Set sum +- 0. For each j, where 1 :::; j :::; n, 

(a) Set c +- 1 ;  the variable c is a temporary accumulator. 

(b) For each k, where 1 :::; k :::; m, set c +- c x A ik· 
(c) Set sum +- sum + c. 

This is poor because it is cumbersome and no more informative than the equiva­
lent mathematical expression. It is safe to assume that most programmers know 
how to use loops to implement sums and products . 

../ 3. (Summation.) Set sum +- LJ=I ( TI�=I A ik ) . 
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As this form of the step illustrates, the step is probably unnecessary unless sum 
is used more than once: use of sum could be replaced by the summation it 
represents. The one reason to have a step just for the summation would be to 
include explanation of any difficult issues; for example, if the matrix A was 
sparse and stored as a list rather than a two-dimensional array, there might be 
an explanation of how to compute the summation efficiently. 

In specifications of algorithms, use text rather than mathematics if the for­
mer is sufficiently clear. 

X 2. for 1 5: i 5: l s i  
(a) set c +-- s[i] 

(b) set Ac +-- Ac + 1 

../ 2. For each character c in string s, increment Ac. 

Figures 

Figures are an effective way of conveying the intricacies of data structures; 
and even quite simple structures can require complex descriptions. General 
guidelines for figures are given in Chapter 6 . 

../ A single rotation can be used to bring a node one level closer to the 
root. In a left-rotation, a node x and its right child y are exchanged as 
follows: given that B is the left child of y, then assign B to be the new 
right child of x and assign x to be the new left child of y. The reverse 
operation is a right-rotation. Left- and right-rotations are shown in the 
following diagram. 

right rotate 

left rotate 
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Example of pseudocode. This is not the best style of presentation: the algo­
rithm is cryptic and the numbering does not reflect the indentation. Also, the 
author has unnecessarily introduced a trivial optimization (at lines 10 and 12) 
and the notation for variables is ugly. It is like a program meant for a machine, 
not an explanation meant for a reader. 

The WeightedEdit function computes the edit distance between two strings, 
assigning a higher penalty for errors closer to the front. 

Input: 

Output: 

Variables: 

S1 ,S2: strings to be compared. 

weighted edit distance 

L1 , L2: string lengths 
F[L1 ,L2] : array of minimum distances 
W: current weighting 
M: maximum penalty 
C: current penalty 

WeightedEdit(S1 , S2) : 
1 .  L1 = len(S1) 
2. L2 = len(S2) 
3. M = 2 x  (L1 + L2) 
4. F[O, O] = 0 
5 .  for i from 1 to L1 
6. F[i, O] = F[i - 1 , 0] + M - i 
7.  for j from 1 to L2 
8.  F[O, j] = F[O, j - 1] + M - j 
9.  for i from 1 to L1  
10. C = M - i  
1 1 . for j from 1 to L2 
12. C = C - 1  
13 .  F[i, j] = min(F[i - 1 , j] + C, 

F[i, j - 1] + C, 
F [i - l , j - 1] + C x isdif.f(Sl [i] , S2[j] ))  

14. WeightedEdit = F[Ll ,L2] 
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Example of prosecode. The longer introduction and use of text in the pre­
sentation help make the algorithm easy to understand. 

WeightedEdit(s, t) compares two strings s and t, of lengths ks and kt respec­
tively, to determine their edit distance-the minimum cost in insertions, dele­
tions, and replacements required to convert one into the other. These costs are 
weighted so that errors near the start of the strings attract a higher penalty than 
errors near the end. 

We denote the ith character of string s by Si · The principal internal data 
structure is a 2-dimensional array F in which the dimensions have ranges 0 to ks 
and 0 to kt , respectively. When the array is filled, Fi,J is the minimum edit 
distance between the strings s1 · · · Si and t1 · · · t1 ; and Fks,k, is the minimum edit 
distance between s and t. 

The value p is the maximum penalty, and the penalty for a discrepancy 
between positions i and j of s and t, respectively, is p - i - j, so that the mini­
mum penalty is p - ks - kt = p /2 and the next -smallest penalty is p /2 + 1 .  Two 
errors, wherever they occur, will outweigh one. 

1 .  (Set penalty.) Set p +--- 2 x (ks + kt ) . 

2. (Initialize data structure.) The boundaries of array F are initialized with the 
penalty for deletions at start of string; for example, Fi,o is the penalty for 
deleting i characters from the start of s. 

(a) Set Fo,o +--- 0. 

(b) For each position i in s, set Fi,o +--- Fi-1,0 + p - i. 

(c) For each position j in t, set Fo,j +--- Fo,j- 1  + p - j. 

3. (Compute edit distance.) For each position i in s and position j in t: 

(a) The penalty is C = p - i - j. 

(b) The cost of inserting a character into t (equivalently, deleting from s) 
is I =  Fi-1 ,1 + C. 

(c) The cost of deleting a character from t is D = Fi,J- 1 + C. 

(d) If si is identical to t1, the replacement cost is R = Fi-1,}-1 ·  Otherwise, 
the replacement cost is R = Fi-1 ,1-1 + C. 

(e) Set Fi,J +--- min(I,D,R). 
4. (Return.) Return Fks,k, . 
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Example of literate code. The algorithm is explained and presented simulta­
neously. This is the most verbose style, but, usually, the clearest. Note that this 
example is incomplete. 

WeightedEdit(s, t) compares two strings s and t, of lengths ks and kt respec­
tively, to determine their edit distance-the minimum cost in insertions, dele­
tions, and replacements required to convert one into the other. These costs are 
weighted so that errors near the start of the strings attract a higher penalty than 
errors near the end. 

The major steps of the algorithm are as follows. 
1 .  Set the penalty. 
2. Initialize the data structure. 
3 .  Compute the edit distance. 

We now examine these steps in detail. 

1 .  Set the penalty. 

The main property that we require of the penalty scheme is that costs re­
duce smoothly from start to end of string. As we will see, the algorithm 
proceeds by comparing each position i in s to each position j in t. Thus a 
diminishing penalty can be computed with the expression p - i - j, where 
p is the maximum penalty. By setting the penalty with 

(a) Set p <- 2 x  (ks + kt)  

the minimum penalty is  p - ks - kt = p /2 and the next-smallest penalty is 
p /2 + 1. This means that two errors-regardless of position in the strings­
will outweigh one. 

2. Initialize data structures . . .  
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Notation 

Mathematical notation is preferable to programming notation for presentation 
of algorithms. Use "xi" rather than "x [i] ", for example. Don't use "*" or "x" 
to denote multiplication; most word processors provide a multiplication symbol 
such as " x " or "·", and in any case multiplication is often implicit. Likewise, 
avoid using constructs from specific programming languages. For example, ex­
pressions such as ==, a = b = 0, a++, and for ( i=O ; i <n ; i ++ ) may 
have little meaning, or even the wrong meaning, to readers who are unfamiliar 
with C. Block-bounding statements such as begin and end are usually unnec­
essary; nesting can be shown by indentation or by the numbering style, as in 
the examples on pages 120 and 121 .  

Mathematics provides many handy conventions and symbols that can be 
used in description of algorithms, including set notation, subscripts and su­
perscripts, and symbols such as f and l ,  L,, and TI. But remember that such 
notation has a widely understood formal meaning that should not be abused. 
Also, good programming style does not necessarily imply good style for de­
scription of algorithms. For example, take care with variable names of more 
than one character-don't use "pq" if it might be interpreted as "p x q". 

It was once common to include the text of a program in a paper, in addition 
to a description of the algorithm it embodies. This practice was valuable be­
cause, for short programs at least, it was the simplest way for readers to obtain 
the code. However, there are now better ways of making code available (such 
as the web) and few readers are eager to key in a program of any size. 

Environment of algorithms 

The steps that comprise an algorithm are only part of its description. The other 

part is its environment: the data structures on which it operates, input and out­
put data types, and, in some cases, factors such as properties of the underlying 
operating system and hardware. If the environment of an algorithm is not de­
scribed the algorithm is likely to be difficult to understand. For example, a 
presentation of a list-processing algorithm should include descriptions of the 
list type, the input, and the possible outputs. If the list is stored on secondary 
storage and speed is being analyzed, it might also be appropriate to describe 
assumed disk characteristics. For algorithms in which there are hardware con­
siderations, such as memory size or disk throughput, for the environment to 
seem realistic any assumptions about the hardware should reflect current tech­
nology or likely improvements in the near future. 
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Specify the types of all variables, other than trivial items such as counters; 
describe expected input and output, including assumptions about the correct­
ness of the input; state any limitations of the algorithm; and discuss possible 
errors that are not explicitly captured by the algorithm. Most importantly, say 
what the algorithm does. 

Describe data structures carefully. This does not mean that you should give 
record definitions in a pseudo-language; instead, use, say, a simple mathemati­
cal notation to unambiguously specify the structure . 

./ Each element is a triple 

(string , length , positions) 
in which positions is a set of byte offsets at which string has been 
observed. 

Be consistent. When presenting several algorithms for the same task, they 
should as far as possible be defined over the same input and output. It may 
be the case that some of the algorithms are more powerful than the others­
they can process a richer input language, for example. Variations of this kind 
should be made explicit. 

Performance of algorithms 

The tools for evaluating the performance of algorithms, and for comparing al­
gorithms, are formal proof, mathematical modelling, simulation, and experi­
mentation. These and other issues related to testing are discussed in Chap­
ters 10 and 1 1 . Here is discussed the aspects of algorithms that might be con­
sidered in an evaluation. 

Basis of evaluation. The basis of evaluation should be made explicit. Where 
algorithms are being compared, specify not only the environment but also the 
criteria used for comparison. For example, are the algorithms being compared 
for functionality or speed? Is speed to be examined asymptotically or for typical 
data? Is the data real or synthetic? When describing the performance of a new 
technique, it is helpful to compare it to a well-known standard. 

A comparison should have a realistic basis. In particular, the basis should 
not appear to favour the algorithm being demonstrated over existing algorithms. 
If the basis of comparison is questionable, the results are questionable too. 
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Simplifying assumptions can be used to make mathematical analysis tract­
able, but can give unrealistic models. Non-trivial simplifications should be 
carefully justified. 

Processing time. Time (or speed) over some given input is one of the princi­
pal resources used by algorithms; others are memory, disk space, and disk and 
network traffic. Time is not always easy to measure, since it depends on factors 
such as CPU speed, cache sizes, system load, and hardware dependencies such 
as prefetch strategy. Nonetheless, some absolute indication of time should be 
part of the description of most new algorithms. Times based on a mathematical 
model rather than on experiment should be clearly indicated as such. 

Measurements of CPU time can be unreliable. CPU times in most systems 
are counted as multiples of some fixed fraction of a second, say a sixty-fourth 
or a thousandth. Each of these fractions of time is allocated to a process, often 
by heuristics such as simply choosing the process that is active at that moment. 
Thus the reported CPU time for a process may be no more than a good estimate, 
particularly if the system is busy. 

Memory and disk requirements. It is often possible to trade memory re­
quirements against time, not only by choice of algorithm but also by changing 
the way disk is used and memory is accessed. You should take care to specify 
how your algorithms use memory. 

Disk and network traffic. Disk costs have two components, the time to fetch 
the first bit of requested data (seek and latency time) and the time required to 
transmit the requested data (at a transfer rate). Thus sequential accesses and 
random accesses have greatly different costs. For current hardware, in which 
there are several levels of caching and buffering between disk and user process, 

it may also be appropriate to consider repeat accesses, in which case there is 
some likelihood that the access cost will be low. The behaviour of network 
traffic is similar-the cost of transmitting the first byte is greater than the cost 
for subsequent bytes, for example. 

Because of the sophistication of current disk drives and the complexity of 
their interaction with CPU and operating system, exact mathematical descrip­
tions of algorithm behaviour are unattainable; broad approximations are often 
the only manageable way of describing disk performance. 

Applicability. Algorithms can be compared not only with regard to their re­

source requirements, but with regard to functionality. The basis of such com-
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parisons will be quite different to those based on, say, asymptotic analysis. 
A common error is to compare the resource requirements of two algorithms 

that perform subtly different tasks. For example, the various approximate string 
matching algorithms do not yield the same results-strings that are alike ac­
cording to one algorithm can be dissimilar according to another. Comparing 
the costs of these algorithms is not particularly informative. 

Asymptotic complexity 

The performance of algorithms is often measured by asymptotic analysis; the 
reader should learn how an algorithm behaves as the scale of the problem 
changes. Big-0 notation can be defined as follows :  a function f(n) is said 
to be O(g(n))-that is, g(n) is an upper bound of f(n)-if for some constants c 
and k we have f(n) ::; c · g(n) for all n > k. Other bounds are as follows. If 
f(n) is O(g(n)) and g(n) is O(f(n)) ,  then f(n) is e(g(n) ) ;  that is, e is used to 
define tight bounds. A function f(n) is o(g(n)) if f is O(g(n)) but not 8(g(n) ) .  
Likewise, Q and m are used to describe lower bounds. Other definitions are 
given by some authors, and the use of the notation is slightly inconsistent, so 
it is helpful to define what you mean by, for example, Q(g(n)) .  For a precise 
discussion, consult an algorithms text. 

Big-0 notation is also used in another, less formal sense, to mean the com­
plexity rather than an upper bound on the complexity. An author might write 
that "comparison-based sorting takes O(nlog n) time" or that "linear inser­
tion sort always takes at least O(n) time"; which, although an abuse, is per­
fectly clear and has stronger emphasis than "linear insertion sort has complex­
ity n(n)". But beware of loose usage that could be misunderstood. When you 
describe an algorithm as "quadratic", some readers may assume that complex­
ity 8(n2) is meant, while others make a different interpretation. Similarly be 
careful with "constant", "linear", "logarithmic", and "exponential". 

For algorithms that operate on static data structures, it may be appropriate 
to consider the cost of creating that data structure. For example, binary search 
in a sorted array takes O(logn) time, but O(nlog n) time is required to initially 
sort the array. 

Make sure that the domain of the analysis is clear, and be careful to analyze 
the right component of the data. It would usually be appropriate, for example, 
to analyze database algorithms as a function of the number of records, not of 
the length of individual records. However, if record length can substantially 
vary then it too should be considered. For algorithms that apply arithmetic to 
integers it may be appropriate to regard each arithmetic operation as having 
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unit cost. On the other hand, if the integers involved can be of arbitrary length 
(consider for example public-key encryption algorithms that rely for privacy on 
the expense of prime factorization) it is appropriate to regard the cost of the 
arithmetic operations as a function of the number of bits in each integer. 

Subtle problems are that the dominant cost may change with scale, and 
that the cost that is dominant in theory may never dominate in practice. For 
example, a certain algorithm might require O(nlogn) comparisons and O(n) 
disk accesses. In principle the complexity of the algorithm is O (nlogn) , but, 
given that a disk access may require 5 milliseconds and a comparison less than 
a nanosecond, in practice the cost of the disk accesses might well dominate for 
any possible application. 

Some authors misunderstand the logic of asymptotic claims. For example, 
Amdahl's law states that the lower bound for the time taken for an algorithm to 
complete is determined by the part of the algorithm that is inherently sequential. 
The remainder can be executed in parallel and hence time for this part can be 
reduced by addition of processors, but no increase in the number of processors 
can affect the lower bound. However, it has been claimed that Amdahl's law 
was broken by, for a certain algorithm, increasing both the size of the input 
data and the number of processors. These changes had minimal impact on the 
sequential part of the algorithm, so that the proportion of total processing time 
spent in the sequential part was reduced; but this result does not contradict 
Amdahl's law, and so the claim was false. 

Another fallacious claim was that, for a certain indexing technique, the time 
required to find matches to a pattern in a database was asymptotically sub linear 

in the database size-a remarkable result, because the probability that a record 
is a match to a given pattern is fixed, so that in the limit the number of matches 
must be linear in database size. The error was that the author had assumed that 
the length of the pattern was a logarithmic function of database size, so that the 
number of answers was constant. The technique gave the appearance of being 
sublinear because the task was changing. 

Sometimes a formal analysis is inappropriate or only a minor consideration. 
For example, an algorithm for arranging line breaks in paragraphs of text will 
only rarely have to operate on a large input, so showing that a new algorithm 
is better than an existing algorithm in the limit may be of less interest than 
showing it is better on a typical case. More generally, although some results can 
be conclusively obtained by analysis, others cannot. Analytical results often 
say nothing about constant factors, for example, or behaviour in practice where 
CPU, cache, bus, and disk can interact in unpredictable ways. Such properties 
can only be determined by experiment. Thus, while an asymptotic analysis tells 
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us that a hash table should be faster than a B-tree, in practice the B-tree may be 
superior for storage of records in a large database system. 

Moreover, an analysis is no more reliable than its assumptions. In an anal­
ysis of a data structure, the data must be modelled in some way, perhaps with 
simplifying assumptions to make the analysis tractable; but there is no guaran­
tee that the modelling is realistic. Analytical results can be powerful indeed­
with, in some cases, implications for performance in practice on all machines 
for all time-but, as discussed further in Chapter 10, they are not necessarily 
sufficient by themselves. 



8 Editing 

( 1) The reader should be able to find out what the story is about. 
(2) Some inkling of the general idea should be apparent in the 

first five hundred words. (3) If the writer has decided to change 
the name of the protagonist from Ketcham to McTavish, 

Ketcham should not keep bobbing up in the last five pages. 

James Thurber's standing rules for writing of humour 
What's So Funny? 

If you give me an eight-page article and 1 tell you to cut 
it to four pages, you'll howl and say it can't be done. 

Then you 'll go home and do it, and it will be much better. 

William Zinsser 
On Writing Well, Sixth Edition 

The writing of a paper begins with a rough draft, perhaps based on notes of 
experiments or sketches of a couple of theorems. The next phase usually con­
sists of filling out the draft to form a contiguous whole: explaining concepts, 
adding background material, arranging the structure to give a logical flow of 
ideas. Finally, the paper is polished by correcting mistakes, improving written 
expression, and taking care of layout. Although it does not change the quality 
of the research, it is this last phase-the styling of the paper-that has the most 
impact on a reader. It should not be neglected, however strong the ideas being 
communicated. 

Few writers are good at judging their own writing. Discovery of shortcom­
ings in your text takes time and effort: careful reading, a willingness to admit 
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to mistakes, the cost of discarding text that was hard to create, and the labour 
of writing it afresh. We know what we meant to say, but what we actually said 
may only be obvious to others. Yet the difference between a weak writer and 
a strong writer is often not the ability to write fluently, but the effort taken to 
diligently edit and revise. 

Consistency 

Style 

Editing is the process of making a document ready for publication. Much of 
editing consists of checking the document for errors that fall under the heading 
of consistency (or lack of it). Use the checklist on page 134 when revising 
your papers, or when proofreading papers for others. A surprisingly effective 
editing exercise is to pretend to be a reader, a member of the paper's intended 
audience. This shift of framework, of consciously adopting the pose of external 
critic, often exposes problems that would otherwise go unnoticed. 

My experience is that early drafts tend to be repetitive and long-winded. 
Often, not only are concepts awkwardly expressed and sentences unwieldy, but 
material on one theme might be in separate parts of the paper. It is common to 
find similar material included several times, particularly when there are several 
authors. Another problem is that some material becomes irrelevant as the paper 
evolves. 

The ordering too may need to be reconsidered once the paper is complete. 
When material is moved· from one place to another, check that the text in each 
location is intelligible and appropriate in the new context. Beware, for example, 
of moving definitions of terms or of breaking the flow of an argument. 

For many papers, then, editing leads to excision of text. Don't be afraid 
to shorten your papers: cutting will improve the quality. Edit for brevity and 
balance. Omit or condense any material whose content or relevance to the 
paper's main themes does not justify its length. 

Another kind of editing is for style and clarity, and is perhaps the hardest part 
of finishing a paper. Much of this book is concerned with points of style that 
should be checked during editing; these should be considered during every re­
vision. Keep in mind the basic aim, which is to make the paper clear. Lapses 
will be forgiven so long as you are easy to understand. 
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When revising the text of other writers, it is often preferable to make mini­
mal changes: correct the presentation but retain the flavour of the original text. 
Don't expect to impose your style on someone else. 

Most journals have a preferred style for elements such as references, figure 
numbering, spelling, table layout, and capitalization. If you are planning to 
submit to a particular journal, consider using its style. 

Proofreading 

There is no excuse for a report that contains spelling errors. They jump out and 
glare, displaying not only your inability to spell, but also your casual attitude 
to your work. Find a spell checker that you like and get into the habit of using 
it, and use a style checker too. But spell checkers won't find missing words, re­
peated words, misused words, or double stops. Nor will they find misspellings 
that form another correct word; a typical example is the substitution of "or" for 
"on" or "of". (Another example is from a newspaper: an article about a couple 
who, in their wedding ceremony, "stood, faced the floral setting, and exchanged 
cows".) Adopt a convenient set of symbols for correcting proofs; many dictio­
naries and style guides have good examples of notation for copy-editing. 

A common error of mine is, when intending to type a word, to instead 
type some other word that shares a few initial letters. A related error is that 
of replacing words by their anagrams; I type "being" for "begin", "form" for 
"from", "relation" for "relative", "compute" for "complete", and so on. I also 
replace words by their homonyms, such as "two" for "too". Undoubtedly there 
are a few of these errors in this book-they are hard to find. 10 

Identify and look for your own common errors. Typical examples include 
incomplete sentences and sentences that have been run together inappropriately. 
Check for errors in tense and in number, that is, in the use of plural and singular 
forms. When you identify an error that you often make, add it to a checklist, 
and look for it whenever you revise. But put the list aside when writing-it will 
distract you. 

Examining your document in a text editor is no substitute for reading it 
on paper after it has been formatted. It is vital to read it at least once in its 
entirety, to check flow and consistency. Set the draft aside for a day or two 
before proofreading it yourself, as doing so increases the likelihood of finding 

1 0When the final draft of the first edition was being checked, a reader noticed that this sentence 

said: "Undoubtedly there are few of these errors in this book-they are hard to find." 
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mistakes. 1 1  (Many people have an emotional attachment to their writing; the 
delay allows this attachment to fade.) Read each sentence carefully, and ask 
yourself how easy it is to understand. 

It is particularly important to check the bibliography. Readers will use it to 
track down references, so any garbling of information can lead them astray, and 
other writers may be offended if you have misreferenced their papers. Format 
should be consistent and each reference should include enough information to 
allow readers to locate it. 

Always get someone else to read your work before you submit it or dis­
tribute it. You may have misunderstood a relevant article, or made a logical 
error; most authors are poor at detecting ambiguity in their own text; and there 
may be relevant results of which you are unaware; explanations may be too 
concise for the uninitiated; and a proof that is obvious to you may be obscure 
to others. And a proofreader's comments should never be ignored. If some­
thing has been misunderstood, the paper needs to be changed, although not 
necessarily in the way the proofreader recommends. 

Publication-quality word-processing is so widely used that poorly presented 
reports look cheap. But word-processors, no matter how good, can glitch on the 
final draft. The last word of a section might be the first word on a page, a line of 
text might be isolated between two tables, or a formula might be broken across 

1 1 Newspapers, with their short deadlines, inevitably overlook some mistakes. The following 
is the complete text of a newspaper article (as quoted in The New Yorker). 

The Soviet Union has welded a massive naval force "far beyond the needs of defence 
of the Soviet sea frontiers," and is beefing up its armada with a powerful new nuclear­
powered aircraft carrier and two giant battle cruisers, the authorative "Jane's Fighting 
Ships" reported Thursday. 

"The Soviet navy at the start of the 1980s is truly a formidable force," said the usually­
truly is a unique formidable is too smoothy as the usually are lenience on truly a 
formidable Thursday's naives is frames analysis of the world's annual reference work, 
said the first frames of the worlds' navies in its 1980-81 edition. 

"The Soviet navy at the start usually-repair-led Capt. John Moore, a retired British 
Royal News Services. 

"The Soviet navy as the navy of the struggle started," she reportable Thursday. 

"The Soviet navy at the start of the 1 980s is truly a formidable force," said beef carry 
on the adults of defence block identical analysis 1 980s is truly formidable force, said 

the usually-reliable of the 1980s is unusually reliable, lake his off the world's reported 

Thursday. 

The following is from a paper in a conference proceedings where the authors provided camera­
ready copy. 

Not only is the algorithm fast on the small set, but the results show that it can even be 
faster for the large set. (This can't be right, run the experiment again?) 
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two pages. This is also the last chance to correct bad line breaks. Some editing 
may be required to fix such errors, to move or change the offending text or to 
relocate a table. In desperate cases, such as a long piece of displayed mathe­
matics that is broken, consider putting the offending material into a figure. 

Fussy people like me clean up widows and orphans. If the last line of 
a paragraph contains only a single, short word, that line is a widow; use an 
unbreakable space to join the short word onto the previous one. When the last 
line prior to a heading is by itself at the top of a page, or a heading or the first 
line of the following paragraph are alone at the bottom of a page, that line is an 
orphan; rewrite until it goes away. 

Choice of word-processor 

When you start to write a paper you need to choose a word-processor. The 
choice is dictated by availability, but also by how well the available word­
processors cope with the demands of authoring. In addition to text, much re­
search writing involves figures, tables, mathematics, use of multiple fonts and 
sizes, and cross-references to figures, tables, equations, sections, and biblio­
graphic entries. Most authors of technical papers find at one stage or another 
that they must contend with the limitations of word-processing software. 

Further problems are presented by the lifecycle of technical papers. For 
example, a paper might initially be drafted for circulation amongst colleagues, 
revised for submission to a conference, then accepted after further revision and 
experiments; but, because the paper is too long, some text must be omitted. 
Subsequently, after rethinking, new work, and reintroduction of omitted text, 
the paper is combined with a report on earlier work and submitted to a journal, 
where, after revision to meet referees '  comments, it is accepted, perhaps as 
long as three years after the initial draft was written. Word-processors need to 
be able to handle this high level of revision and re-organization. 

There are, broadly speaking, two kinds of word-processor, the visual or 
WYSIWYG style typified by Microsoft® Word and web-page editors, and the 
compiler style typified by troff and Jb.T}3X, which compile marked-up text into 
a page description language such as PostScript. The visual word-processors are 
generally superior at production of documents for immediate use such as letters 
and web pages, and for first drafts, but for technical writing the compiler word­
processors are preferable. The compiler word-processors have historically been 
highly stable; files created twenty or more years ago can still be processed cor­
rectly. They have features such as transparent methods for commenting-out 
text, making omission and re-inclusion straightforward, and macro facilities 
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that make it easy to generate multiple distinct documents (such as a conference 
version and a more complete technical report) from one source file. Docu­
ments produced with visual word-processors can look amateurish, particularly 
if mathematics is involved. 

The Jb.TEX word-processing system was used for this book, and is today ar­
guably the best word-processor for technical writing. The first edition was writ­
ten under Unix; the second edition was written under both Unix and Windows, 
using the MiKTeX and Cygwin environments. There are many circumstances 
in which I choose to use a visual word-processor, but technical writing is not 
among them. 

An editing checklist 

• Are the titles and headings consistent with the content? 

• Have all terms been defined? 

• Is the style of definition consistent? For example, were all new terms intro­
duced in italics, or only some? 

• Has terminology been used consistently? 

• Are defined objects always described in the same way? For example, if the 
expression "all regular elements E" has been used, is "regular" implicit in 
the expression "all elements E"? 

• Are abbreviations and acronyms stated in full when first used? Are any ab­
breviations or acronyms introduced more than once? Are the full statements 
subsequently used unnecessarily? 

• Are any abbreviations used less than, say, four times? If not, can they be 
removed? 

• Do all headings have maximum or minimum capitalization? Has a term 
been capitalized in one place and not in another? 

• Is the style and wording of headings and captions consistent? 

• Are names always used in the same way? Has a consistent convention been 
used for the formation of new names? 

• Is spelling consistent? What about "-ise" versus "-ize", "dispatch" versus 
"despatch", or "disc" versus "disk"? 
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• Is tense used correctly? Are references discussed in a consistent way? 

• Have bold and italic been used logically? 

• Are any words hyphenated in some places but not others? 

• Have units been used logically? If milliseconds have been used for some 
measurements and microseconds for others, is there a logical reason for 
doing so? Is the reason clear to the reader? Has "megabyte" been written 
as "Mb" in some places and "Mbyte" in others? 

• Are all values of the same type presented with the same precision? 

• Are the graphs all the same size? Are the axis units always given? If, say, 
the x-axes on different graphs measure the same units, do the axes have the 
same label? 

• Are all tables in the same format? Does the use of double and single lines 
follow a logical pattern? Are units given for every value? Are labels and 
headings named consistently? If, say, columns have been used for proper­
ties A to E in one table, have rows been used elsewhere? That is, do all 
tables have the same orientation? 

• Has the same style been used for all algorithms and programs? Is there a 
consistent scheme for naming of variables? Do all pseudocode statements 
have the same syntax? Is the use of indentation consistent? 

• In the references, has each field been formatted consistently? Have italics 
and quotes been used appropriately for titles? Is capitalization consistent? 
Are journal and conference names abbreviated in the same way? Is the style 
of author names consistent? Has the same core set of fields been provided 
for each reference of the same type? 

• Is formatting consistent? Has the same indentation been used for all dis­
plays? Are some displays centred and others indented? Do some sections 
begin with an unindented paragraph and others not? 

• Do the parentheses match? 





9 Writing up 

I used to think about my sentences before writing 
them down; but . . .  I have found that it saves time to 

scribble in a vile hand whole pages as quickly as I 
possibly can . . . . Sentences thus scribbled down are 

often better ones than I could have written deliberately. 

Charles Darwin 
Autobiography 

Science is more than a body of 
knowledge; it is a way of thinking. 

Carl Sagan 
The Demon-Haunted World 

In every research project, a stage is reached at which it makes sense to begin 
to write up. A good principle is to begin early: if it is possible to start writing 
then the writing should start, typically well before the project's half-way mark. 
Shaping the research and its outcomes into a write-up is an effective way of 
giving structure to a project, even if the outcomes are not yet clear or months 
are needed to complete system development. 

The task of writing up research is the topic of this chapter: gathering ma­
terial, organizing it so that the work tells a story, giving this story the structure 
of a thesis or of an academic paper, and starting to write. The research that 
precedes the write-up is the topic of Chapters 10 and 1 1 . 
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The scope of a paper 

To begin a paper, the first task is to identify your aims. Write down everything 
that motivated you to start the research. What did you want to achieve? What 
problems did you expect to address? What makes the problems interesting? 
Next, define the scope of the work that you plan to write up. To do so, it is 
necessary to make choices about what to include, and thus it is necessary to 
identify what might be included. Typically, by this stage your research has 
become focused on investigation of a small number of specific questions, and 
you have preliminary experimental or theoretical results that suggest what the 
core contribution of the work is going to be. 

You might start, for example, by asking questions such as: 

• Which results are the most surprising? 

• What is the one result that other researchers might adopt in their work? 

• Are the other outcomes independent enough to be published separately later 
on? Are they interesting enough to justify their being included? 

• Does it make sense to explain the new algorithms first, followed by de­
scription of the previous algorithms in terms of how they differ from the 
new work? Or is the contribution of the new work more obvious if the old 
approaches are described first, to set the context? 

• What assumptions or definitions need to be formalized before the main 
theorem can be presented? 

• What is the key background work that has to be discussed? 

• Who is the readership? For example, are you writing for specialists in your 
area, your examiners, or a general computer science audience? 

Other questions are given in the checklist on page 155. 
A valuable exercise at this stage is to speculate on the format and scope 

of the results. Early in the investigation, decisions will have been made about 
how the results are to be evaluated-that is, about which measures are to be 
used to determine whether the research has succeeded or failed. For example, 
it may be that network congestion is the main respect in which the research 
is expected to have yielded improvements in performance. But how is network 
congestion to be measured? As a function of data volume, number of machines, 
network bandwidth, or something else? Answering this question suggests a 
form of presentation into which the experimental results can be inserted: a 

graph, perhaps. The form of this graph can be sketched even before any coding 
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has begun, and doing so identifies the kind of output that the code is required 
to produce. 

Consider a detailed example: an investigation of external sorting in data­
base systems. In this task, a large relation-tens of millions of records, say, 
constituting several gigabytes-must be sorted on a field specified in a query. 
An effective sorting method is to sort the relation one block at a time, storing 
the sorted blocks in a temporary file then merging them to give the final result. 
Costs include processing time for sorting and merging, transfer time to and 
from disk, and temporary space requirements. The balance between these costs 
is governed by available in-memory buffer space, as large blocks are expensive 
to sort but cheap to merge. The specific research question being investigated is 
whether disk costs can be reduced by compressing the data while it is sorted. 

Speculation about how compression might affect costs suggest how the 
work should be measured. For small relations, compression seems unlikely 
to be of help--compressing and then decompressing adds processing costs but 
does not provide savings if all the data fits in memory. For large relations, on 
the other hand, the savings due to reduced disk traffic, increased numbers of 
records per block, and use of less temporary space may be significant. Thus it 
seems likely that the savings due to compression would increase with the size 
of relation to be sorted, suggesting use of a graph of data volume against sorting 
time for fixed block size. Note too that the question of what to measure identi­
fies an implicit assumption: that the data was uncompressed to begin with and 
is returned uncompressed. All of these decisions and steps help to determine 
the paper's content. 

The content of a paper is to a significant extent determined by the reader­
ship. You may be reporting a particular piece of work, but the way it is reported 
is determined by the characteristics of the audience. For example, a paper on 
machine learning for computer vision may have entirely different implications 
for the two fields, and thus different aspects of the results might be empha­
sized. Also, an expert on vision cannot be assumed to have any experience 
with machine learning, so the way in which the material is explained to the two 
readerships must be based on your judgement, in each case, of what is com­
mon knowledge and what is unfamiliar. The nature of the audience may even 
determine the scope of what can be reported. 

Making choices about the content of a paper places limits on its scope; these 
choices identify material to be excluded. Broadly speaking, many research pro­
grams are a cycle of innovation and evaluation, with the answers or resolution 
of one investigation creating the questions that lead to the next. An advance 
in, say, string sorting might well have implications for integer sorting, and fur-
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ther work could pursue these implications. But at some point it is necessary to 
stop undertaking new work and write up what has been achieved so far. The 
new ideas may well be exciting-and less stale than the work that has been 
preoccupying you for months-but they are likely to be less well understood, 
and completing the old work is more important than trying to include too many 
results. If the newer work can be published independently, then write it up sep­
arately. A long, complex paper, however big a breakthrough it represents, is 
hard to referee. From an editor's perspective, accepting such a paper may be 
difficult to justify if it squeezes out several other contributions. 

Another element in the process of developing a paper is deciding where the 
work might be published. There are many factors that should be considered 
when making this decision, such as relevance to your topic and how your work 
measures against the standard for that forum. In particular, the venue partly 
determines the scope of a paper. For example, is there a page limit? Are there 
specific conventions to be observed? Are the other papers in that venue pri­
marily theoretical or experimental? What prior knowledge or background is a 
reader likely to have? Do the editors require that your code be available online? 
If you select a particular forum but haven't cited any papers that have appeared 
there, you may have made the wrong choice. 

Once the material for a paper has been collected it has to be organized into 
a coherent self-contained narrative, which ultimately will form the body of the 
write-up. Turning this narrative into a write-up involves putting it in the form of 
an academic paper: including an introduction, a bibliography, and so on. These 
issues are discussed later. 

Telling a story 

A cornerstone of good writing is identifying what the reader needs to learn. 
A paper is a sequence of concepts, building from a foundation of knowledge 
assumed to be common to all readers up to new ideas and results. Thus an 
effective paper educates its readers. It leads readers from what they already 
know to new knowledge you want them to learn. For this reason, the body of a 
good paper--everything between the introduction and the conclusions-should 
have a logical flow that has the feel of a narrative. 

The narrative told by a paper is a walk through the ideas and outcomes. It 
isn't a commentary on the research program or the day-to-day activities of the 
participants, nor is it meant to be mysterious. Instead, it is like a guided tour 
through a gallery, in which each room contains something new for the readers 

to comprehend. There is also an expectation of logical closure. The early parts 
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of the paper's body typically explain hypotheses or claims; the reader expects 
to discover by the end whether these are justified. 

There are several common ways for structuring the body of a paper, includ­
ing as a chain, by specificity, by example, and by complexity. Perhaps the most 
common structure is the first of these alternatives, a chain in which the results 
and the background on which they build dictate a logical order for presenta­
tion of the material. First might come, say, a problem statement, then a review 
of previous solutions and their drawbacks, then the new solution, and finally a 
demonstration that the solution improves on its predecessors. 

The "compression for fast external sorting" project suggests a structure of 
this kind. The problem statement consists of an explanation of external sorting 
and an argument that disk access costs are a crucial bottleneck. The review 
explains standard compression methods and why they cannot be integrated into 
external sorting. The new solution is the compression method developed in the 
research. The demonstration is a series of graphs and tables based on experi­
ments that compare the costs of sorting with and without compression. 

For some kinds of results, other structures may be preferable. One option 
is to structure by specificity, an approach that is particularly appropriate for 
results that can be divided into several stages. The material is first outlined in 
general terms, then the details are progressively filled in. Most technical papers 
have this organization at the high level, but it can also be used within sections. 

Material that might have such a structure is an explanation of a retrieval 
system. Such systems generally have several components. For example, in 
text retrieval a parser is required to extract words from the text that is being 
indexed; this information must be passed to a procedure for building an index; 
queries must likewise be parsed into a format that is consistent with that of the 
stored text; and a query evaluator uses the index to identify the records that 
match a given query. The explanation might begin with a review of this overall 
structure, then proceed to the detail of the elements. 

Another structure is by example, in which the idea or result is initially ex­
plained by, say, applying it to some typical problem. Then the idea can be 
explained more formally, in a framework the example has made concrete and 
familiar. The "compression for fast external sorting" could also be approached 
in this way. The explanation could begin by considering, hypothetically, the 
likely impact of compression on sorting. To make the discussion more concrete, 
a couple of specific instances-a small relation and a large relation, say-could 
be used to illustrate the expected behaviour in different circumstances. Given 
a clear explanation of the hypothetical scenario, you can then proceed to fill in 
details of the method that was tested in the research. 
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Another alternative is to structure the body by complexity. For example, a 
simple case can be given first, then a more complex case can be explained as an 
extension, thus avoiding the difficulty of explaining basic concepts in a com­
plex framework. This approach is a kind of tutorial: the reader is brought by 
small steps to the full result. For example, a mathematical result for an object­
oriented programming language might initially be applied to some simple case, 
such as programs in which all objects are of the same class. Then the result 
could be extended by considering programs with inheritance. 12 

Some other structures are inappropriate for a write-up. For example, the 
paper should not be a chronological list of experiments and results. The aim 
is to present the evidence needed to explain an argument, not to list the work 
undertaken. 

Most experiments yield far more data than can be presented in a paper of 
reasonable length. Important results can be summarized in a graph or a table, 
and other outcomes reported in a line or two. It is acceptable to state that ex­
periments have yielded a certain outcome without providing details, so long as 
those experiments do not affect the main conclusions of the paper (and have 
actually been performed). Similarly, there may be no need to include the de­
tails of proofs of lemmas or minor theorems. This does not excuse you from 
conducting the experiments or convincing yourself that the results are correct, 
but such information can be kept in logs of the research rather than included in 
the paper. 

The traditional structure for organizing research papers can encourage you 
to list all proofs or results, then analyze them later; with this structure, however, 

the narrative flow is often poor. It usually makes more sense to analyze proofs 
or experimental results as they are presented, particularly since experiments or 
theorems often follow a logical sequence in which the outcome of one dictates 
the parameters of the next. 

When describing specific results, it is helpful, although not always possible, 
to begin with a brief overview of whatever has been observed. The rest of the 
discussion can then be used for amplification rather than further observations. 
Newspaper articles are often written in this way. The first sentence summarizes 
the story; the next few sentences review the story again, giving some context; 
then the remainder of the article presents the whole story in detail. Sections of 
research papers can sometimes be organized in this way. 

12 Structuring by complexity is good for a paper but, often, inappropriate for ongoing research. 
It is not uncommon to see a paper in which the authors have solved an easy case of a problem, 
say optimizations for iteration-free programs, motivated by hopeful claims such as "we expect 
these results to throw light on optimization of programs with loops and recursion". All too often 
the follow-up paper never appears. 
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Organization 

Scientific papers follow a standard structure that allows readers to quickly dis­
cover the main results, and then, if interested, to examine the supporting evi­
dence. Many readers accept or reject conclusions based on a quick scan, not 
having time to read all the papers they see. A well-structured write-up accom­
modates this behaviour by having important statements as near the beginning 
as possible. You need to: 

• Describe the work in the context of accepted scientific knowledge. 

• State the idea that is being investigated, often as a theory or hypothesis. 

• Explain what is new about the idea, what is being evaluated, or what con­
tribution the paper is making. 

• Justify the theory, by methods such as proof or experiment. 

Theses, journal articles, and conference papers have much the same organiza­
tion when viewed in outline. There are distinctions in emphasis rather than 
specific detail. For a thesis, for example, the literature review may be expected 
to include a historical discussion outlining the development of the key ideas. 
There is also an expectation that a thesis is a completed, rounded piece of 
work-a consolidation of the achievements of a research program as well as a 
report on specific scientific results. Nonetheless, these forms of write-up have 
similar structure. 

A typical write-up has most of the following components: 

Title and author 

Papers begin with their title and information about authors including name, 
affiliation, and address. The convention in computer science is to not give your 
position, title, or qualifications; but whether you give your name as A. B .  Cee, 
Ae Cee, Ae B. Cee, or whatever, is a personal decision. Use the same style 
for your name on all your papers, so that they are indexed together. Include a 
durable email address or web address. 

Also include a date. Take the trouble to type in the date rather than using 
"today" facilities that print the date on which the document was last processed, 
or later you may not be able to tell when the document was completed. 

The front matter of a paper may also include other elements. One is ac­
knowledgements, as discussed on page 26, which may alternatively follow the 
conclusions. Another element is a collection of search terms, keywords, or 
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key phrases-additional terminology that can be used to describe the topic of 
the paper. Sometimes these keywords must be selected from a specific list. In 
other cases, the conventions for choosing such terms are not always clear, but 
in general it is unhelpful to use words that, for example, are a description of 
the experimental methodology: don't write "timing experiments", for example. 
Use words that concern the paper's principal themes. 

Abstract 

An abstract is typically a single paragraph of about 50 to 200 words. The func­
tion of an abstract is to allow readers to judge whether or not the paper is of rel­
evance to them. It should therefore be a concise summary of the paper's aims, 
scope, and conclusions. There is no space for unnecessary text; an abstract 
should be kept to as few words as possible while remaining clear and infor­
mative. Irrelevancies, such as minor details or a description of the structure of 
the paper, are inappropriate, as are acronyms, abbreviations, and mathematics. 
Sentences such as "We review relevant literature" should be omitted. 

The more specific an abstract is, the more interesting it is likely to be. In­
stead of writing "space requirements can be significantly reduced", write "space 
requirements can be reduced by 60%". Instead of writing "we have a new in­
version algorithm", write "we have a new inversion algorithm, based on move­
to-front lists". 

Many scientists browse research papers outside their area of expertise. You 
should not assume that all likely readers will be specialists in the topic of their 
paper-abstracts should be self-contained and written for as broad a readership 
as possible. Only in rare circumstances should an abstract cite another paper 
(for example, when one paper consists entirely of analysis of results in another), 
in which case the reference should be given in full, not as a citation to the 
bibliography. 

Introduction 

An introduction can be regarded as an expanded version of the abstract. It 
should describe the paper's topic, the problem being studied, references to key 
papers, the approach to the solution, the scope and limitations of the solution, 
and the outcomes. There needs to be enough detail to allow readers to decide 
whether or not they need to read further. It should include motivation: the 
introduction should explain why the problem is interesting, what the relevant 
scientific issues are, and why the solution is a good one. 
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That is, the introduction should show that the paper is worth reading and it 
should allow the reader to understand your perspective, so that the reader and 
you can proceed on a basis of common understanding. 

Many introductions follow a five-element organization: 

1 .  A general statement introducing the broad research area of the particular 
topic being investigated. 

2. An explanation of the specific problem (difficulty, obstacle, challenge) to 
be solved. 

3. A brief review of existing or standard solutions to this problem and their 
limitations. 

4. An outline of the proposed new solution. 

5. A summary of how the solution was evaluated and what the outcomes of 
the evaluation were. 

An interesting exercise is to read other papers, analyze their introductions to 
see if they have this form, and then decide whether they are effective. 

The introduction can discuss the importance or ramifications of the conclu­
sions but should omit supporting evidence, which the interested reader can find 
in the body of the paper. Relevant literature can be cited in the introduction, 
but unnecessary jargon, complex mathematics, and in-depth discussion of the 
literature belong elsewhere. 

A paper isn't a story in which results are kept secret until a surprise ending. 
The introduction should clearly tell the reader what in the paper is new and 
what the outcomes are. There may still be a little suspense: revealing what the 
results are does not necessarily reveal how they were achieved. If, however, the 
existence of results is concealed until later on, the reader might assume there 
are no results and discard the paper as worthless. 

Body 

The body of a paper should present the results. The presentation should pro­
vide necessary background and terminology, explain the chain of reasoning 
that leads to the conclusions, provide the details of central proofs, summarize 
any experimental outcomes, and state in detail the conclusions outlined in the 
introduction. Descriptions of experiments should permit reproduction and ver­
ification, as discussed in Chapter 1 1 .  There should also be careful definitions 
of the hypothesis and major concepts, even those described informally in the 
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introduction. The structure should be evident in the section headings. Since the 
body can be long, narrative flow and a clear logical structure are essential. 

The body should be reasonably independent of other papers. If, to under­
stand your paper, the reader must find specialized literature such as your earlier 
papers or an obscure paper by your advisor, then its audience will be limited. 

In some disciplines, research papers have highly standardized structures. 
Editors may require, for example, that you use only the four headings Intro­
duction-Methods-Results-Discussion. This convention has not taken hold in 
computer science, and in some cases such a structure impedes a clear explana­
tion of the work. For example, use of fixed headings may prohibit development 
of a complex explanation in stages. In work combining two query resolution 
techniques, we had to determine how they would interact, based on a fresh 
evaluation of how they behaved independently. The final structure was, in ef­
fect, Introduction-Background-Methods-Results-Discussion-Methods-Results­
Discussion. 

Even if the standardized section names are not used, the body needs these 
elements, if not necessarily under their standard headings. Components of the 
body might include, among other things, background, previous work, propos­
als, experimental design, analysis, results, and discussion. Specific research 
projects suggest specific headings. For the "compression for fast external sort­
ing" project sketched earlier, the complete set of section headings might be: 

1 .  Introduction 

2. External sorting 

3 .  Compression techniques for database systems 

4. Sorting with compression 

5. Experimental setup 

6. Results and discussion 

7. Conclusions 

The wording of these headings does not follow the standard form, but the intent 
of the wording is the same. Sections 2 and 3 are the background; Section 4 

contains novel algorithms, and Sections 4 and 5 together are the methods. 
The background material can be entirely separate from the discussion of 

previous work on the same problem. The former is the knowledge the reader 
needs to understand your contribution. The latter is, often, alternative solutions 
that are superseded by your work. Together, the discussion of background and 
previous work also introduce the state of the art and its failings, the importance 
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and circumstances of the research question, and benchmarks or baselines that 
the new work should be compared to. 

A body that consists of descriptions of algorithms followed by a dump of 
experimental results is not sound science. In such a paper, the context of prior 
work is not explained, as readers are left to draw their own inferences about 
what the results mean. 

In a thesis, each chapter has structure, including an introduction and a sum­
mary or conclusions. This structure varies with the chapter's purpose. A back­
ground chapter may gather a variety of topics necessary to understanding of 
the contribution of the thesis, for example, whereas a chapter on a new algo­
rithm may have a simple linear organization in which the parts of the algorithm 
are presented in tum. However, the introduction and summary should help to 
link the thesis together-how the chapter builds on previous chapters and how 
subsequent chapters make use of it. 

Literature review 

Few results or experiments are entirely new. Most often they are extensions 
of or corrections to previous research-that is, most results are an incremental 
addition to existing knowledge. A literature review, or survey, is used to com­
pare the new results to similar previously published results, to describe existing 
knowledge, and to explain how it is extended by the new results. A survey can 
also help a reader who is not expert in the field to understand the paper and may 
point to standard references such as texts or survey articles. 

In an ideal paper, the literature review is as interesting and thorough as 
the description of the paper's contribution. There is great value for the reader 
in a precise analysis of previous work that explains, for example, how exist­
ing methods differ from one another and what their respective strengths and 
weaknesses are. Such a review also creates a specific expectation of what the 
contribution of the paper should be-it shapes what the readers expect of your 
work, and thus shapes how they will respond to your ideas. 

The literature review can be early in a paper, to describe the context of the 
work, and might in that case be part of the introduction; or the literature review 
can follow or be part of the main body, at which point a detailed comparison 
between the old and the new can be made. If the literature review is late in a 
paper, it is easier to present the surveyed results in a consistent terminology, 
even when the cited papers have differing nomenclature and notation. 

In many papers the literature review material is not gathered into a single 
section, but is discussed where it is used-background material in the introduc-
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tion, analysis of other researchers' work as new results are introduced, and so 
on. This approach can help you to write the paper as a flowing narrative. 

An issue that is difficult in some research is the relationship between new 
scientific results and proprietary commercial technology. It often is the case that 
scientists investigate problems that appear to be solved or addressed in commer­
cial products. For example, there is ongoing academic research into methods 
for information retrieval despite the success of the search engines deployed on 
the web. From the perspective of high research principle, the existence of a 
commercial product is irrelevant: the ideas are not in the public domain, it is 
not known how the problems were solved in the product, and the researcher's 
contribution is valid. However, it may well be reckless to ignore the product; it 
should be cited and discussed, while noting, for example, that the methods and 
effectiveness of the commercial solution are unknown. 

Conclusions 

The closing section, or summary, is used to draw together the topics discussed 
in the paper. It should include a concise statement of the paper's important 
results and an explanation of their significance. This is an appropriate place to 
state (or restate) any limitations of the work: shortcomings in the experiments, 
problems that the theory does not address, and so on. 

The conclusions are an appropriate place for a scientist to look beyond the 
current context to other problems that were not addressed, to questions that 
were not answered, to variations that could be explored. They may include 

speculation, such as discussion of possible consequences of the results. 
A conclusion is that which concludes, or the end. Conclusions are the in­

ferences drawn from a collection of information. Write "Conclusions", not 
"Conclusion". If you have no conclusions to draw, write "Summary". 

Bibliography 

A paper's bibliography, or its set of references, is a complete list of theses, 
papers, books, and reports cited in the text. No other items should be included. 
Citation and bibliographies are discussed in detail starting on page 19. 

Appendices 

Some papers have appendices giving detail of proofs or experimental results, 
and, where appropriate, material such as listings of computer programs. The 
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purpose of an appendix is to hold bulky material that would otherwise interfere 
with the narrative flow of the paper, or material that even interested readers do 
not need to refer to. Appendices are rarely necessary. 

The first draft 

For the first draft of a write-up you may find it helpful to write freely-without 
particular regard to style, layout, or even punctuation-so that you can concen­
trate on presenting a smooth flow of ideas in a logical structure. Worrying about 
how to phrase each sentence tends to result in text that is clear but doesn't form 
a continuous whole, and authors who are too critical on the first draft are often 
unable to write anything at all. If you tend to get stuck, just write anything, no 
matter how awful; but be sure to delete any ravings later. 

Some people, when told to just say anything, find they can write freely­
if anything is acceptable, then nothing is wrong. For others, finding words is 
still a struggle. A last resort is to write in brief sentences making the simplest 
possible statements . 

../ In-memory sorting algorithms require random access to records. For 
large files stored on disk, random access is impractically slow. These 
files must be sorted in blocks. Each block is loaded into memory and 
sorted in turn. Sorted blocks are written to temporary files. These tem­
porary files are then merged. There may be many files but in practice 
the merge can be completed in one pass. Thus each record is read twice 
and written twice. Temporary space is required for a complete copy of 
the original file. 

This text certainly isn't elegant-it is annoying to read and should be thor­
oughly edited long before the paper is submitted. But it is capturing the ideas, 
and the writing is proceeding. 

A consequence of having a sloppy first draft is that you must edit and revise 
carefully; initial drafts are often turgid and full of mistakes. But few authors 
write well on the first draft anyway; the best writing is the result of frequent, 
thorough revision. 

Mathematical content, definitions, and the problem statement should be 
made precise as early in the writing process as possible. The hypothesis and the 
results flow from a clear statement of the problem being tackled. Describing the 
problem forces you to consider in depth the scope and nature of the research. 
If you find that you cannot describe the problem precisely, then perhaps your 

understanding is lacking or the ideas are insufficiently developed. 
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It was said earlier, but is worth repeating: the writing should begin long 
before the research is finished, and perhaps as soon as it is started. The later 
the writing is begun, the harder it will be. Delay increases the time between 
having ideas and having to write about them, increases the number of papers to 
discuss, and increases the number of experiments to describe. Completing your 
reading, for example, is a poor reason to defer writing, because reading is never 
complete. Writing is a stimulus to research, suggesting fresh ideas and clari­
fying vague concepts and misunderstandings; and developing the presentation 
of the results oftens suggest the form the proofs or experiments should take. 
Gaps in the research may not be apparent until it has been at least preliminarily 
described. Research is also a stimulus to writing-fine points are quickly for­
gotten once the work is complete. Don't expect the writing to progress steadily, 
but do expect progress overall. If the writing seems to have stalled, it is time to 
put other tasks aside for a while. 

From draft to submission 

There are many approaches to the process of assembling a technical paper. The 
technique I use for composing is to brainstorm, writing down in point form what 
has been learnt, what has been achieved, and what the results are. The next step 
is to prepare a skeleton, choosing results to emphasize and discarding material 
that on reflection seems irrelevant, and then work out a logical sequence of 
sections that leads the reader naturally to the results. A useful discipline is 
to choose the section titles before writing any text, because if material to be 
included doesn't seem to belong in any section then the paper's structure is 
probably faulty. The introduction is completed first and includes an overview 
of the paper's intended structure, that is, an outline of the order and content 
of the sections. When the structure is complete, each section can be sketched 

in perhaps 20 to 200 words. This approach has the advantage of making the 
writing task less daunting-it is broken into parts of manageable size. 

When the body and the closing summary are complete, the introduction 
usually needs substantial revision because the arguments presented in the paper 
are likely to mature and evolve as the writing proceeds. The final version of the 
abstract is the last part to be written. 

With a reasonably thorough draft completed, it is time to review the paper's 
content and contribution. Anticipate likely concerns or objections, and address 
them; if they can't be addressed, acknowledge them. Consider whether extra 
work is needed to fill a hole. Ask the probing, critical questions that you would 

ask of other people's  work. The burden of proof is on you, not the reader, so be 
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conservative in your claims and thorough with your evidence. 
During drafting and revision, ensure that the topic of the paper does not 

drift. At the start of the writing process, you wrote down your aims, motivation, 
and scope. Use these as a reference. If you feel that you need to write something 
that is not obviously relevant to your original aims, then either establish the 
connection clearly or alter the aims. Changing the aims can affect the work in 
many ways, however, so only do so with great care. 

For a novice writer who doesn't know where to begin, a good starting 
point is imitation. Choose a paper whose results are of a similar flavour to 
your own, analyze its organization, and sketch an organization for your results 
based on the same pattern. The habit of using similar patterns for papers-their 
standardization-helps to make them easier to read. 

The practice of building a file of notes as you proceed is invaluable. Keep 
a dated log with records of the following: 

• Meetings. 

• Decisions. 

• Ideas. 

• Expectations of outcomes. 

• Papers you have read. 

• Sketches of algorithms. 

• Code versions. 

• Theorems. 

• Experiments. 

• Sketches of proofs. 

• Outcomes. 

Expect the log to be a mixture of a written notebook and data kept electroni­
cally. In its raw state, the content of a file of notes is not suitable for inclusion 
in a paper, but the themes and issues of the paper can be drawn from the file, 
and it serves as a memory of issues to discuss and material to include. 

In computer science, most papers are co-authored. The inclusion of several 
people as authors means that, in principle, all these people contributed in some 
non-trivial way to the intellectual content of the paper. In many cases, it also 
means that the task of writing was shared. There are a range of strategies for 
co-authoring, which vary from colleague to colleague and paper to paper. It is 

not unusual, for example, for an advisor to use a student's thesis as the basis 
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of a paper, in which case both advisor and student are listed as authors. In this 
process, the advisor may well dramatically revise the student's work, if only 
because a typical paper is much shorter than a typical thesis. 

In cases where scientists are working more or less as equals, one strategy 
is to brainstorm the contents of the paper, then for each author to write a des­
ignated section. Another strategy-my preferred model for collaboration-is 
to take turns. One person writes a draft, the next revises and extends, and so 
on, with each person holding an exclusive lock on the paper while amending it. 
With this approach, the final paper is likely to be a fairly seamless integration 
of the styles and contributions of each of the authors (especially if each author 
contributes to revision of the other authors' work). In contrast, the strategy of 
writing sections separately tends to lead to papers in which the authorial voice 
makes dramatic shifts, the tables and figures are inconsistent, and there is a 
great deal of repetition and omission. 

Taking turns is effective, but it does have pitfalls, and agreed ground rules 
are needed to make it work. For example, I rarely delete anything a co-author 
has written, but may comment it out; thus no-one feels that their work has been 
thrown away. Another element of successful co-authoring is respect. Accept 
your colleagues' views unless you have a good reason not to. 

Co-authoring is a form of research training. It is an opportunity for advisors 
to learn in detail where their students are weak as scientists, while a paper that 
has been revised by an advisor is an opportunity for a student to contrast an 
attempt at research writing with that of an experienced scientist. An advisor's 
revision of a student's draft can involve a great deal of work, and may be the 

most thorough feedback on writing that the student receives during the course 
of a research program. 

Prepublication 

Traditionally, prior to a paper appearing in a refereed venue it might have been 
made available as a manuscript or technical report. These forms of publication 
once had the advantage of making the work available quickly-a particular 
concern if there is likely to be a substantial delay between submission and pub­
lication. (In some journals, the delay is years.) Departments prided themselves 
on the quality of their technical report series. However, this form of publica­
tion has withered away as the web has grown in importance; some academic 
institutions and large corporate research labs still publish significant numbers 
of reports, reflecting perhaps internal publication-approval processes, but these 
are the exception. 
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The web allows academics to readily publish their own work, independent 
even of the structures imposed by their departments. Most computer science 
researchers have websites on which they list their publications, and many re­
searchers additionally list papers that are not yet published (and may never be 
published). An alternative is to place such papers in public archives. 13 Addi­
tionally, some research groups maintain topic-specific repositories. 

Web publication has a range of advantages. Most importantly, it makes the 
work available immediately. While there is still an expectation that the work 
follows the conventions of a scientific paper, additional material can easily be 
included, such as links to data and source code. Many researchers access papers 
exclusively-both from academic publishers and from individuals-through 
the web, and there is growing acceptance amongst publishers that preliminary 
versions of papers are made publicly available by their authors. 

The papers in most journals and conferences are available on the web via 
their publishers' websites. The fact that a paper is available through such a 
website tells the reader that the work has probably been refereed, that is, in­
dependently assessed by other scientists. (The quality of the refereeing varies 
from one conference or journal to another. When making an assessment of 
a paper, consider the reputation of the venue in which it appeared and issues 
such as those raised in Chapters 10 and 12.) While work that is published by an 
author on the web is immediately available, the lack of refereeing means that 
readers cannot be as confident of its validity. 

Theses 

A thesis (or, in some universities, a dissertation) is how research students pres­
ent their work for examination. A thesis may have longer-term importance as 
a description of significant research results, but your primary goal should be to 
produce a piece of work that the examiners will pass. 

The questions that examiners respond to are much the same as those a ref­
eree would ask of a paper. That is, the examiners seek evidence of an original, 
valid contribution developed to an appropriate standard. However, it is a mis­
take to view a thesis as no more than an extended paper. A paper stands (or 

13The role of these archives is shifting. Originally, the main advantage of adding a paper to 

an archive was that it then became searchable; at that time, the major web search engines did not 

index formats such as PostScript. Today, their role is increasingly to ensure permanence-the 

content of a paper in an archive cannot be changed as easily as can that of a paper on an indi­

vidual's website, for example-and to promote rapid dissemination of new work, for example 
through mailing lists. 
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does not stand) on the strength of the results. A thesis passes (or fails) on 
the strength of your demonstration of competence; even if good results are not 
achieved, the thesis should pass if you have shown the ability to undertake high­
quality research. Questions that examiners might be asked to address include 
whether you have demonstrated command of the fundamentals of the disci­
pline, whether you have the ability to correctly interpret results, and whether 
you have sufficiently strong communication skills. 

A particular element of theses that is often weak is the analysis of the out­
comes. All too often the discussion can be summarized as "the code ran", "it 
seems plausible", or "look at the pretty feature". To a greater degree than in 
a paper, it is necessary to probe why the outcomes occurred or what factors 
or variables were significant in the experiments. The guidelines to examiners 
issued by many universities state that the candidate must demonstrate critical 
thinking. Application of critical thinking and skeptical questioning to the work 
is an excellent way of persuading an examiner that the candidate understands 
their own methods and results; many of the questions explored in Chapter 10 
concern critical thinking and skeptical examination of research. 

Examiners are unlikely to be impressed by students who make grandiose 
claims about their work. Many researchers-and not just students-are reluc­
tant to admit that their discoveries have any limitations; yet one of the clearest 
demonstrations of research ability is to ask incisive questions. Was the algo­
rithm an improvement because of better cache use or fewer CPU cycles? What 
else would explain these results? In what circumstances is the theorem not 
applicable? A thesis with negative results can, if appropriately written, demon­
strate the ability of the candidate just as well as a thesis with positive results. 
The outcomes may be less interesting, but the capability to undertake research 
has still been shown. 

Examiners are also unlikely to be impressed by a student who accepts the 
word of established authority without question, or rejects other ideas without 
giving them due consideration, or appears reluctant to suggest any change or 
to make unfavourable comment. If you have a relevant point to make, and 
can defend it by reasonable argument, then make it. Be thorough. A PhD is 
an opportunity to do research in depth; shortcuts and incomplete experiments 
suggest shoddy work. 

Issues such as whether results have been critically analyzed are of impor­
tance in papers, but there is a different emphasis for theses-it is you, not the 
research, that is the primary object of scrutiny. 

For an extended research degree such as a PhD, another difference between 
a thesis and a paper is that the former may report on a series of more or less 
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independent research discoveries. In contrast, a typical paper concerns a sin­
gle consistent investigation. A thesis may, moreover, include work drawn from 
multiple papers. For this reason, there is more variation in structure from the­
sis to thesis than from paper to paper. An example of the problems faced in 
organizing a thesis is how to consolidate descriptions of new algorithms. It 
may make sense to bring all of them into a single chapter and then compara­
tively evaluate them in subsequent chapters, or it may be preferable to describe 
them one by one, evaluating each in tum. Factors to consider in choosing an 
organization include how cohesive the algorithms are (for example, whether 
they address the same problem) and whether an explanation of one algorithm 
is meaningful if the previous one has not yet been evaluated. 

As the scope of a thesis is more substantial than that of a paper, the in­
troduction may need to be broad in topic and conversational in tone. It could 
introduce a whole area rather than a single problem, for example, if the thesis 
happens to concerns a range of topics. Another reason to develop a substantial 
introduction is that a thesis is a more thorough, detailed document than is a 
paper. Why was the problem worth investigating in depth? How do the parts 
of the investigation relate to each other? What are some practical, concrete 
ways in which the outcomes of the work might be used? Running examples 
may be outlined in the introduction, to give unity to the thesis overall. The role 
of a thesis's introduction is, however, much the same as in a paper. As in the 
introduction of a paper, theory, jargon, and notation are inappropriate. 

Take the time to learn about thesis writing as soon as possible. Browse 
other theses, from your own institution, from other institutions, and from other 
disciplines. Form views about the strengths and weaknesses of these theses; 
these views will help to shape your own work. 

A writing-up checklist 

• Have you identified your aims and scope? 

• Are you maintaining a log and notebook? 

• Does the paper follow a narrative? 

• In what forum, or kind of forum, do you plan to publish? 

• What other papers should your write-up resemble? 

• Are you writing to a well-defined structure and organization? 
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• Have you chosen a form for the argument and results? 

• Have you established a clear connection between the background, methods, 
and results? 

• How are results being selected for presentation? 

• How do the results relate to your original aims? 

• Have you used any unusual patterns of organization? 

• Have the results been critically analyzed? 

• Are the requirements for a thesis met? 

• Do you and your co-authors have an agreed methodology for sharing the 
work of completing the write-up? 



10 Doing research 

The intensity of the conviction that a hypothesis 
is true has no bearing on whether it is true or not. 

P. B.  Medawar 
Advice to a Young Scientist 

The great tragedy of Science, the slaying 
of a beautiful hypothesis by an ugly fact. 

T. H. Huxley 
Biogenesis and Abiogenesis 

An argument is a connected series of statements 
intended to establish a proposition . . . . Argument 
is an intellectual process. Contradiction is just the 

automatic gainsaying of anything the other person says. 

Monty Python 
The Argument Sketch 

A research paper, written up and submitted for refereeing, is the result of a 
process of research that may have been proceeding for months or years. It is not 
an end-product, but more typically describes recent results or is a preliminary 
study. It is rare that a write-up is final, concluding forever a program of research 
on a topic; however, the write-up is based on a great deal of activity. Indeed, 
with just a few pages representing months or more of work by several people, 
a paper may be only a tiny window into the research. 
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A paper, then, is an outcome of a cycle of activity, from speculation through 
definition and experimentation to write-up, with a range of obstacles and issues 
that can arise on the way. In this chapter I review the process of research, in par­
ticular the early stages of a project. The perspective taken is from the ground, 
as a working scientist: What kinds of stages and events does a researcher have 
to manage in order to produce an interesting, valid piece of research? This 
chapter and Chapter 1 1  complement the preceding parts of the book-on the 
topic of how research should be described-by considering how the content of 
a paper is arrived at. 

Philosophers and historians of science have reflected at length on the mean­
ing, elements, and methods of research, from both practical and abstract points 
of view. These reflections can be of great benefit to a working scientist. Any 
competent researcher can learn from an alternative perspective on their work, 
and being able to describe what we do helps us to understand whether we are 
doing it well. 

At the same time, learning to do research involves piecemeal acquisition of 
a range of specific skills. Only with experience does a student see these skills 
as part of a single integrated "process of research". That is, many people learn 
to be scientists by doing research stage-by-stage under supervision, and only 
after having been through the research process does the bigger picture become 
evident. For that reason, for novices the correspondence between abstractions 
of research and a particular investigation can be hard to identify. 

A related problem is that newcomers to research may initially draw inappro­
priate analogies to activities with which they are already familiar. For example, 
in computer science many research students see experimentation as a form of 
software development, and undertake a research write-up as if they were as­
sembling a user manual or software documentation. Part of learning to be a 
computer scientist is recognizing how the aims of research differ from those of 
coursework or programming. 

Beginnings 

The origin of a research investigation is typically a moment of insight. A stu­
dent attending a lecture wonders why search engines do not provide better 
spelling correction. A researcher investigating external sorting is at a semi­
nar on file compression, and ponders whether one could be of benefit to the 
other. A user is frustrated by network delays and questions whether the routing 
algorithm is working well. A student asks a professor about the possibility of 

research on evaluation of code functionality; the professor, who hadn't previ-
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ously contemplated such work, realises that it could build on recent advances 
in type theory. 

Research ideas often come to mind when the brain is idling, or when sep­
arate topics coincidentally arise at the same time. Tea-room arguments are a 
rich source of seed ideas. One person is idly speculating, just to make con­
versation; another pursues the speculation and a research topic is created. Or 
someone claims that a researcher's idea is unworkable, and a listener starts to 
turn over the arguments. What makes it unworkable? How might those issues 
be addressed? 

This first step is a subjective one: to choose to explore ideas that seem likely 
to succeed, or are intriguing, or have the potential to lead to something new, or 
contradict received wisdom. At this stage, it isn't possible to know whether 
the work can lead to valuable results; otherwise there would be no scope for 
research. The final outcome is an objective scientific report, but curiosity and 
guesswork are what establish research directions. 

It is typically at this stage that a student becomes involved in the research. 
Some students have a clear idea of what they want to pursue-whether it is 
feasible, rational, or has research potential is another matter-but the majority 
are in effect shopping for a topic and advisor. They have a desire to work on 
research and to be creative, perhaps without any definite idea of what research 
is. They are drawn by a particular area or problem, or want to work with a 
particular individual. Students may talk through a range of possible projects 
with several alternative advisors before making a definite choice and starting to 
work on a research problem in earnest. 

Shaping a research project 

How a potential research topic is shaped into a concrete project depends on 
context. Experienced scientists aiming to write a paper on a subject of mutual 
interest tend to be fairly focused: they quickly design a series of experiments 
or theoretical goals, investigate the relevant literature, and set deadlines. 

For students, undertaking research involves training, which affects how the 
work proceeds. Also, for a larger research program such as a PhD, there are 
both short-term and long-term goals: the current specific explorations, which 
may be intended to lead to a research paper, and their role as a part of a wider 
investigation that will eventually form the basis of the student's thesis. 

At the beginning of a research program, then, you need to establish an­
swers to two key questions. First, what is the broad problem to be investigated? 
Second, what are the specific initial activities to undertake and outcomes to pur-
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sue? Having clear short-term research goals gives shape to a research program. 
It also gives the student training in the elements of research: planning, reading, 
programming, testing, analysis, critical thinking, writing, and presentation. 

For example, in research in the early 1990s into algorithms for information 
retrieval, we observed that the time to retrieve documents from a repository 
could be reduced if they were first compressed; the cost of decompression after 
retrieval was outweighed by savings in transfer times. A broad research prob­
lem suggested by this topic is whether compression can be of benefit within a 
database even if the data is stored uncompressed. Pursuing this problem with 
a research student led to a specific initial research goal (used as a running ex­
ample in Chapter 9): given a large relation that is compressed as it is read into 
memory, is it possible to sort it more rapidly than if it were not compressed 
at all? What kinds of compression algorithm are suitable? Success in these 
specific explorations leads to questions such as, where else in a database sys­
tem can compression be used? Failure leads to questions such as, under what 
conditions might compression be useful? 

When developing a question into a research topic, it is helpful to explore 
what makes the question interesting. Productive research is often driven by a 
strong motivating example, which also helps focus the activity towards useful 
goals. It is easy to explore problems that are entirely hypothetical, but difficult 
to evaluate the effectiveness of any solutions. Sometimes it is necessary to make 
a conscious decision to explore questions where work can be done, rather than 
where we would like to work; just as medical studies may involve molecular 
simulations rather than real patients, robotics may involve the artifice of soccer­
playing rather than the reality of planetary exploration. 

In choosing a topic and advisor, many students focus on the question of "is 
this the most interesting topic on offer?", often to the exclusion of other ques­
tions that are equally important. One such question is "is this advisor right for 
me?" Students and advisors form close working relationships that, in the case 
of a PhD, must endure for several years. The student is typically responsible 
for most of the effort, but the intellectual input is shared, and the relationship 
can grow over time to be a partnership of equals. However, most relationships 
have moments that are less than harmonious. Choosing the right person­
considering the advisor as an individual, not just a respected researcher-is 
as important as choosing the right topic. A charismatic or famous advisor isn't 
necessarily likeable or easy to work with. 

The fact that a topic is in a fashionable area should be at most a minor con­
sideration; the fashion may well have passed before the student has graduated. 
Some trends are profound shifts that have ongoing effects, such as the oppor-
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tunities created by the web for new technologies; others, such as  the thin-client 
systems proposed in the late 1990s, are gone before they almost arrive. While it 
isn't necessarily obvious which category a new trend belongs in, a topic should 
not be investigated unless you are confident that it will continue to be relevant. 

Another important question is, is this project at the right kind of technical 
level? Some brilliant students are neither fast programmers nor systems ex­
perts, while others do not have strong mathematical ability. It is not wise to 
select a project for which you do not have the skills or that doesn't make use 
of your particular strengths. An alternative perspective on this question is that 
most projects that are intellectually challenging are interesting to undertake; ag­
onizing over whether it is the project may not be productive. However, it is also 
true that some researchers only enjoy their work if they can identify a broader 
value: for example, they can see likely practical outcomes. Highly speculative 
projects leave some people dissatisfied, while others are excited by a possible 
leap into the future. 

Project scope is a related issue. Students can be wildly ambitious, entering 
research with the hope of achieving something of dramatic significance. How­
ever, major breakthroughs are by definition rare--otherwise they wouldn't be 
major-while, as most researchers discover, even incremental work can be pro­
foundly rewarding. Moreover, an ambitious project creates a high potential for 
failure, especially in a limited-term context such as a minor thesis. There is a 
piece of folklore that says that most scientists do their best work in their PhD, 
as it is the one opportunity to undertake a lengthy, focused research program. 
This is a myth, and is certainly not a good reason for tackling a problem that is 
too large to resolve. 

Most research is incremental: improvements or variants that improve or 
repair or extend or replace work done by others. The issue is the scope of the 
increment. A trivial step that does no more than explore the obvious solution 
to a simple problem-a change, say, to the fields in a network packet to save a 
couple of bits-is not worth investigating. There needs to be challenge and the 
possibility of unexpected discovery for research to be interesting. 

For a novice researcher, it makes sense to identify easily achieved out­
comes; this is research training, after all, not research olympics. If these out­
comes are reached, in a well-designed project it should be easy to move on to 
more challenging goals. 

Some research concerns problems that appear to be solved in commercial 
software. Often, however, research on such problems is not hard to justify. In 
a typical implementation the task is to find a workable solution, while in re­
search the task is to measure the quality of the solution, and thus work on the 
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same problem that produces similar solutions can nonetheless have different 
outcomes. Moreover, while it is in a company's interests to claim that a prob­
lem is solved by their technology, such claims are not easily verified. From 
this perspective, investigation of a problem for which there is already a com­
mercial solution can be of more value than investigation of a problem of purely 
academic interest. 

Students and advisors 

The role of an advisor is a rich one. There are said to be as many scientific 
methods as there are scientists, but there are more advising styles than there are 
advisors. Every student-advisor relationship is different. 

Advisors are powerful figures in their students' lives. Some professors at 
the peak of their careers still have strong views--often outrage or amazement­
about their own advisors, despite many years of experience on the other side 
of the fence. Tales include that of the student who saw his advisor twice, once 
to choose a topic and once to submit; and that of the advisor who casually ad­
vised a student to "have another look at some of those famous open problems". 
Thankfully these are rare exceptions, and are even less acceptable today than 
they were a decade or two ago. 

The purpose of a research program-a PhD, masters, or minor thesis-is 
for the university to provide a student with research training, while the student 
demonstrates the capability to undertake research from conception to write-up. 
A side-benefit is that the student, often with the advisor, should produce some 
publishable research. There are a range of approaches to advising that achieve 
these aims, but they are all based on the strategy of learning while doing. 

Some advisors, for example, set their students problems such as verifying 
a proof in a published paper and seeing whether it can be applied to variants of 
the theorem, thus beginning to explore the limits at which the theorem no longer 
applies. Another example is to attempt to confirm someone else's results, by 
downloading code or by developing a fresh implementation. The difficulties 
encountered in such efforts are a fertile source of research questions. Other 
advisors immediately start their students on activities that are expected to lead 
to a research publication. It is in such cases that the model of advising as 
apprenticeship is most evident. 

Typically, in the early stages the advisor specifies each small step the stu­
dent should take: running a certain experiment, searching the literature to re­
solve a particular question, or writing one small section of a proposed paper. 

As students mature as researchers, they become more independent, often by 
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anticipating what their advisors will ask, while advisors gradually leave more 
space for their students to assert this independence. Over time, the relationship 
becomes one of guidance rather than management. 

The trade-offs implicit in such a relationship are complex. One is the ques­
tion of authorship of work the student has undertaken, as discussed in Chap­
ter 13. Another is the degree of independence. Advisors often believe that their 
students are either demanding or overconfident; students, on the other hand, 
can feel either confined by excessive control or at a loss due to being expected 
to undertake tasks without guidance. The needs of students who are working 
more or less alone may be very different to those of students who are part of an 
extended research group. 

An area where the advisor's expertise is critical is in scoping the project. 
It needs to stand sufficiently alone from other current work, yet be relevant to 
a group's wider activities. It should be open enough to allow innovation and 
freedom, yet have a good likelihood of success. It should be close enough to 
the advisor's core expertise to allow the advisor to verify that the work is suf­
ficiently novel, and to verify that the appropriate literature has been thoroughly 
explored. The fact that an advisor finds a topic interesting does not by itself 
justify asking a student to work on it. Likewise, a student who is keen on a 
topic must consider whether competent supervision is available in that area. 

Advisors can be busy people. Prepare for your meetings-bring printouts 
of results or lists of questions, for example. Be honest; if you are trying to 
convince your advisor that you have completed some particular piece of work, 
then the work should have been done. Advisors are not fools. Saying that 
you have been reading for a week sounds like an excuse; and, if it is true, you 
probably haven't spent your time effectively. 

The student-advisor relationship is not only concerned with research train­
ing, but is a means for advisors to be involved in research on a particular topic. 
Thus students and advisors often write papers together. At times, this can be a 
source of conflict, when, for example, an advisor wants a student to work on a 
paper while the student wants to make progress on a thesis. On the other hand, 
the involvement of the advisor-and the incentive for the advisor to take an 
active role-means that the research is undertaken as teamwork. 

Finding research literature 

Each research project builds on a body of prior work. The doing and describing 
of research requires a thorough knowledge of the work of others. 

However, locating prior work can be a tremendous challenge. The number 
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of papers published in computer science each year is at least tens of thousands. 
Not only is a great deal of this work relatively inaccessible, but the volume of it 
prohibits reading or understanding more than a fraction of the papers appearing 
in any one field. 

A consolation is that, in an active field, other researchers have to a certain 
extent already explored and digested the older literature. Their work provides 
a guide to earlier research-as will your work, once it is published-and thus 
a complete exploration of the archives is rarely necessary. However, this is one 
more reason to carefully explore current work. And note: reading about a paper 
that seems relevant is never a substitute for reading the paper itself. If you need 
to discuss or cite a paper, read it first. 

Comprehensively exploring relevant literature involves following several 
intertwined paths. 

• Visit the web sites of research groups and researchers working in the area. 
The web site of your advisor or department is likely to be a good place to 
start. These sites should give several kinds of links into the wider literature: 
the names of researchers whose work you should investigate, the names of 
their co-authors, conferences where relevant work appears, and papers with 
lists of references to explore. 

• Follow up references in research papers. These indicate relevant individu­
als, conferences, and journals. 

• Browse the recent issues of the journals and conferences in the area; search 
other journals and conferences that might carry relevant papers. 

• Use obvious search terms to explore the web. With the right terms you 
are likely to find the sites of projects and teams concerned with the same 
research area. You are also likely to find documents that suggest further 
valuable search terms. 

• Search the publisher-specific digital libraries. These include publishers 
such as Wiley and Springer, and professional societies such as the ACM and 
IEEE. There are also a wide range of online archives and abstract-indexing 
services. 

• Most conferences have web sites that list the program, that is, the papers to 
appear in the conference that year. Within a conference, papers are often 
grouped by topic-another hint of relevance. 

• Use the citation indexes. The traditional printed citation indexes have mi­
grated to the web, but in practice their value for computer science is lim­
ited, as only a fraction of publications are included. Of mUch greater value 
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are the public-domain indexes, which can be used to search by document 
content and by citing or cited document. Some of these are constructed au­
tomatically; others are built by contribution from users. Thus their contents 
are unreliable, and the origin of documents found in these indexes should 
be verified elsewhere. 

• Go to the library. The simple strategy of having similar material shelved 
together often leads to unexpected discoveries, without the distractions that 
arise when web browsing. 

• Discuss your work with as many people as possible. Some of them may 
well know of relevant work you haven't encountered. Similar problems 
often arise in disparate research areas, but the difficulties of keeping up 
with other fields-the phenomenon sometimes characterized as "working 
in silos" -mean that people investigating similar problems can be unaware 
of one another. 

Take a broad definition of "relevant" when searching for papers. It doesn't 
just mean those papers that have, say, proposals for competing methods. Does 
the paper have interesting insights into other research literature? Does it estab­
lish a benchmark? Have the authors found a clever way of proving a theorem 
that you can apply in your own work? Does the paper justify not pursuing 
some particular line of investigation? Other people's research can have many 
different kinds of effect on your work. 

Reading 

A thorough search of the literature can easily lead to discovery of dozens or 
hundred of relevant papers-a volume of reading that can be deeply intimidat­
ing. However, papers are not textbooks, and should not be treated as textbooks. 
A researcher reading a paper is not cramming for an exam; there is rarely a 
need to understand every line. The number of papers that a researcher work­
ing on a particular project has to know well is usually small, even though the 
number the researcher should have read to establish their relevance is large. A 
brief browse through a paper takes no more than a few minutes, if the aim is to 
identify whether the paper is relevant to a particular project. 

A problem with dredging the web for research literature is whether to be­
lieve what you read. Work published in a reputable journal or conference is 
peer-reviewed; work available online could have any history, from being a pre­
publication version of an accepted journal paper to plagiarised work taken from 



166 Writing for Computer Science 

a non-English original and rejected from three conferences. A cynical but often 
accurate rule of thumb is that work that is more than one or two years old and 
has not been published in a reputable venue probably has some serious defect. 
When you find a version of a paper on the web, establish whether it has been 
published somewhere. Use evidence such as the quality of the authors' other 
publications to establish whether it is part of a serious program of research. 

Much research-far too much-is just misguided. People investigate prob­
lems that are already solved and well understood, or solve problems that tech­
nology has made irrelevant, or try to square the circle (such as attempting to 
adjust optimal codes to achieve better compression), or don't realise that the 
proposed improvement actually makes the algorithm worse. Mathematics may 
be pointless; the wrong property may be proved, such as complexity instead 
of correctness; assumptions may be implausible; evaluation strategies may not 
make sense. The data set used may be so tiny that the results are meaningless ;  
results on toy problems rarely scale up. Some results are just plain wrong. 

And, while the fact that a paper is refereed is an indicator that it is of value, 
it is not a guarantee. Too many people submit work that did not deserve to be 
written; sometimes it gets published. 

Indeed, few papers are perfect. They are a presentation of new work rather 
than a considered explanation of well-known results, and the constraints of 
writing to a deadline mean that mistakes are undiscovered and some issues 
unexplored. Some aspects of the work may be superseded or irrelevant, or 
may rely on false or limited or technically outdated assumptions. A paper can 
be seen as a snapshot of a research program at a moment in time-what the 
researchers knew when they submitted. For all these reasons, a reader needs to 
be questioning and skeptical. 

But that does not justify researchers being dismissive of past work; rather, 
they should respect it and learn from it, because their own work will have the 
same strengths and weaknesses. While many papers may be flawed, they are 
the repository of all scientific knowledge-they define scientific knowledge. 
(Textbooks are almost invariably consolidations of older, established work that 
is no longer at the frontier.) Moreover, a general view that some papers are 
unreliable is a poor reason to neglect a particular paper with which you happen 
to disagree; it may contain an unpalatable truth. And this general view is an 
extremely poor reason to curtail either your reading or your attempts to under­
stand the contributions made by others. If many researchers trust a particular 
paper, it is still reasonable to be skeptical of its results, but this needs to be 
balanced against the fact that, if skepticism is justified, these other researchers 
are all mistaken. 
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Read papers by asking questions of them, such as: 

• What is the main result? 

• How precise are the claims? 

• How could the outcomes be used? 

• What is the evidence? 

• How was the evidence gathered? 

• How were measurements taken? 

• How carefully are the algorithms and experiments described? 

• Why is the paper trustworthy? 

• Has the right background literature been discussed? 

• What would reproduction of the results involve? 

That is, actively attempt to identify the contributions and shortcomings rather 
than simply reading from one end to the other. Detailed analysis can be diffi­
cult before you have developed the perspective of undertaking your own work, 
however. Literature review should continue alongside research, not precede it. 

Capture information about each paper you expect to cite, or of even periph­
eral relevance. Many of the online services link to a bibtex citation; take a 
copy and annotate it with your own views on the paper. Classify the paper, and 
cross-index it with others on the same topic. Be organized with such material 
from the start--don't expect to have time to reinvestigate the literature in detail 
when completion date is looming. 

Having explored the literature, you may discover that your original idea is 
not so original after all. If so, be honest-review your work to see what aspects 
may be novel, but don't fool yourself into working on a problem that is already 
solved. Occasionally it happens, for example, that the same problem has been 
investigated by several other teams over a considerable period. At the same 
time, the fact that other people have worked on the same problem do_�B :nOt 
mean that it is impossible to make further contributions in the-area:----------

Research planning 

Students commencing their first research project are accustomed to the patterns 
of undergraduate study: attending lectures, completing assignments, revising 
for exams. Activity is determined by a succession of deadlines that impose a 
great deal of structure. 
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In contrast, a typical research project has just one deadline: completion. 
Administrative requirements may impose some additional milestones, such as 
submission of a project outline or a progress report, but many students (and 
advisors) do not take these milestones seriously. However, having a series of 
deadlines is critical to the success of a project. The question then is, what 
should these deadlines be and how should they be determined? 

Some people appear to plan their projects directly in terms of the aspects 
of the problem that attracted them in the first place. For example, they down­
load some code or implement something, then experiment, then write up. A 
common failing that seems to arise with this approach to research is that each 
stage takes longer than anticipated, the time for write-up is compressed, and 
the final report is compromised. Yet the write-up is the only part of the work 
that survives or is assessed. Arguably, an even more significant failing is that 
the scientific validity of the outcomes can be compromised. It is a mistake, for 
example, to implement a complete system rather than ask what code is needed 
to explore the research questions. 

A better approach to the task of scoping a project and setting milestones is 
to explicitly consider what is needed at the end, then reason backwards. The 
final thing required is the write-up in the form of a thesis, paper, or report; so 
plan in terms of the steps necessary to produce the write-up. Considering as 
an example research that is expected to have a substantial experimental com­
ponent, the write-up is likely to involve a background review, explanations of 
previous and new algorithms, descriptions of experiments, and analysis of out­
comes. Completion of each of these elements is a milestone. 

Continuing to reason backwards, the next step is to identify what form the 
experiments will take. Chapter 1 1  concerns experiments and how they are re­
ported, but prior to designing experiments the researcher must consider how 
they are to be used. What will the experiments show, assuming the hypothesis 
to be true? How will the results be different if the hypothesis is false? That is, 
the experiments are an evaluation of whether some hypothesised phenomena 
is actually observed. Experiments involve data, code, and some kind of plat­
form. Running of experiments requires that all three of these be obtained, and 
that skeptical questions be asked about them: whether the data is realistic, for 
example. 

Experiments may also involve users. Who will they be? Is ethics clear­
ance required? Computer scientists, accustomed to working with algorithms 
and proofs, are often surprised by how wide-ranging their university ethics re­
quirements can be. 

Considering work that is not expected to have an experimental component, 
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there are two general kinds: formal investigations of the properties of systems 
and algorithms; and a wide range of studies that are difficult to classify, from 
proposals for new programming language features and sketches of XML tem­
plates for particular kinds of data to reflections on and comparisons of trends in 
research. Each of these can be staged to identify research milestones. 

Drawing these issues together, several themes emerge. One is that the com­
ponents of research have to be identified; however, these components do not 
necessarily have to be completed in turn. 

Another theme is that an attitude to research has been shaped: what infor­
mation must be collected in order to convince a skeptical reader that the results 
are correct? Arguably, answering this one question is all that is needed to have 
a strong research outcome. 

Having identified specific goals, another purpose of research planning is 
to estimate dates when milestones should be reached. One of the axioms of 
research, however, is that everything takes longer than planned for, even after 
taking this axiom into account. A standard research strategy is to first read 
the literature, then design, then analyse or implement, then test or evaluate, 
then write up. A more effective strategy is to overlap these stages as much as 
possible. Begin the implementation, or analysis, or write up as soon as it is 
reasonable to do so. 

For the longer-term research of, for example, a PhD, other considerations 
become significant. A typical question in the later stages of a PhD is whether 
enough research has yet been done, or whether new additional work needs to 
be undertaken. Often the best response to this question is to write the thesis. 
Once your thesis is more or less complete, it is relatively easy to assess whether 
further work is justified. Doing such additional work in all likelihood involves 
filling a well-defined hole, a task that is much better defined than that of fum­
bling around for further questions to investigate. 

Thus, rather than working to a schedule of long-term timelines that may 
be unrealistic, be flexible. Adjust the work you are doing on a day-to-day 
basis-pruning your research goals, giving more time to the writing, addressing 
whatever the current bottleneck happens to be-to ensure that you are reaching 
overall aims. 

Hypotheses 

The first stages of a research program involve identifying interesting topics or 
problems and focusing on particular issues to investigate. A typical way of 
giving direction to research is to develop specific questions that the program 
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aims to answer. These questions are based on an understanding, an informal 
model perhaps, of how something works, or interacts, or behaves. They estab­
lish a framework for making observations about the object being studied. This 
framework can be characterised as a statement of belief about how the object 
behaves-in other words, a hypothesis. 

In the traditional sciences, a hypothesis typically concerns some phenom­
enon in the physical world: whether something is occurring, or whether it is 
possible to alter something in a predictable way. Astronomy and genetics typify 
such research. In computer science, some hypotheses are of this kind. Other 
hypotheses involve construction, such as whether a proposed method is fit for 

a certain purpose, and solvability. 

For example, a researcher investigating algorithms might ask as a research 
question whether it is possible to make better use of CPU cache to reduce com­
putational costs; reducing the number of memory accesses can make a program 
faster even if the number of instructions executed is unchanged. Preliminary 
investigation might lead to the hypothesis that a particular sorting algorithm 
can be improved by replacing a tree-based structure with poor locality by an 
array-based structure with high locality. The research goal is to test this hy­
pothesis. The phenomenon that should be observed if the hypothesis is correct 
is a trend: as the number of items to be sorted is increased, the tree-based 
method should increasingly show a high rate of cache misses compared to the 
array-based method. The data is the number of cache misses for several sets of 
items to be sorted. 

A hypothesis should be specified clearly and precisely, and should be un­
ambiguous. (The more loosely a concept is defined, the more easily it will 
satisfy many needs simultaneously, even when these are contradictory.) Often 
it is important to state what is not being proposed-what the limits on the con­
clusions will be. Consider an example. Suppose P-lists are a well-known data 
structure used for a range of applications, in particular as an in-memory search 
structure that is fast and compact. A scientist has developed a new data struc­
ture called the Q-list. Formal analysis has shown the two structures to have the 
same asymptotic complexity in both space and time, but the scientist intuitively 
believes the Q-list to be superior in practice and has decided to demonstrate this 
by experiment. 

(This motivation by belief, or instinct, is a crucial element of the process of 
science: since ideas cannot be known to be correct when first conceived, it is 
intuition or plausibility that suggests them as worthy of consideration. That is, 
the investigation may well have been undertaken for subjective reasons; but the 
final report on the research, the published paper, must be objective.) 
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The hypothesis might be encapsulated as 

X Q-lists are superior to P-lists. 

But this statement does not suffice as the basis of experiment: success would 
have to apply in all applications, in all conditions, for all time. Formal analysis 
might be able to justify such a result, but no experiment will be so far-reaching. 
In any case, it is rare indeed for a data structure to be completely superseded­
consider the durability of arrays and linked lists-so in all probability this hy­
pothesis is incorrect. A testable hypothesis might be 

../ As an in-memory search structure for large data sets, Q-lists are faster 
and more compact than P-lists. 

Further qualification may well be necessary . 

../ We assume there is a skew access pattern, that is, that the majority of 
accesses will be to a small proportion of the data. 

The qualifying statement imposes a scope on the claims made on behalf of Q­
lists. A reader of the hypothesis has enough information to reasonably conclude 
that Q-lists do not suit a certain application, which in no way invalidates the 
result. Another scientist would be free to explore the behaviour of Q-lists under 
another set of conditions, in which they might be inferior to P-lists, but again 
the original result remains valid. 

As the example illustrates, a hypothesis must be testable. One aspect of 
testability is that the scope be limited to a domain that can feasibly be explored. 
Another, crucial aspect is that the hypothesis should be capable of falsification. 
Vague claims are unlikely to meet this criterion. 

X Q-list performance is comparable to P-list performance. 

X Our proposed query language is relatively easy to learn. 

The exercise of refining and clarifying a hypothesis may expose that it is 
not worth pursuing. For example, if complex restrictions must be imposed to 
make the hypothesis work, or if it is necessary to assume that current insoluble 
problems need to be addressed before the work can be used, how interesting is 
the research? 

A form of research where poor hypotheses seem particularly common is 

"black box" work, where the black box is an algorithm whose properties are 
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incompletely understood. For example, some research consists of applying a 
black-box learning algorithm to new data, with the outcome that the results are 
an improvement on a baseline method. (Often, the claim is to the effect that 
"our black box is significantly better than random".) The apparent ability of 
these black boxes to solve problems without creative input from a scientist at­
tracts research of low value. A weakness of such research is that it provides no 
learning about the data or the black box, and has no implications for other inves­
tigations. In particular, such results rarely tell us whether the same behaviour 
would occur the next time the same approach was used. 

A related problem is the renaming fallacy, often observed in the work of 
scientists who are attempting to reposition their research within a fashionable 
area. Calling a network cache a "local storage agent" doesn't change its be­
haviour, and if the term "agent" can legitimately be applied to any executable 
process then its explanatory power is slim. Another instance: a paper on natural 
language processing for "web documents" should concern some issues specific 
to the web, not just any text; a debatable applicability to the web does not add 
to the contribution. And another: it seems unlikely that a text indexing algo­
rithm is made "intelligent" by improvements to the parsing. Renaming existing 
research to place it in another field is bad science. 

It may be necessary to refine a hypothesis as a result of initial testing; in­
deed, much of scientific progress can be viewed as refinement and development 
of hypotheses to fit new observations. Occasionally there is no room for refine­
ment, a classic example being Einstein's prediction of the deflection of light by 
massive bodies-a hypothesis much exposed to disproof, since it was believed 

that significant deviation from the predicted value would invalidate the theory 
of general relativity. But more typically a hypothesis evolves in tandem with 
refinements in the experiments. 

This is not, however, to say that the hypothesis should follow the exper­
iments. A hypothesis will often be based on observations, but can only be 
regarded as confirmed if able to make successful predictions. There is a vast 
difference between an observation such as "the algorithm worked on our data" 
and a tested hypothesis such as "the algorithm was predicted to work on any 
data of this class, and this prediction has been confirmed on our data". Another 
way of regarding this issue is that, as far as possible, tests should be blind. If an 
experiment and hypothesis have been fine-tuned on the data, it cannot be said 
that the experiment provides confirmation. At best the experiment has provided 
observations on which the hypothesis is based. 

Where two hypotheses fit the observations equally well and one is clearly 
simpler than the other, the simpler should be chosen. This principle, known as 
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Occam's razor, is purely a convenience; but it is well-established and there is 
certainly no reason to choose a complex explanation when another is at hand. 

Defending hypotheses 

One component of a strong paper is a precise, interesting hypothesis. Another 
component is the testing of the hypothesis and the presentation of the support­
ing evidence. As part of the research process you need to test your hypothesis 
and if it is correct-or, at least, not falsified-assemble supporting evidence. 
For the presentation of the hypothesis you need to construct an argument relat­
ing your hypothesis to the evidence. 

For example, the hypothesis "the new range searching method is faster than 
previous methods" might be supported by the evidence "range search amongst n 
elements requires 2log2 log2 n + c comparisons". This may or may not be good 
evidence, but it is not convincing because there is no argument connecting the 
evidence to the hypothesis. What is missing is information such as "previous 
results indicated a complexity of E>(log n)". It is the role of the connecting 
argument to show that the evidence does indeed support the hypothesis, and to 
show that conclusions have been drawn correctly. 

In constructing an argument, it can be helpful to imagine yourself defending 
your hypothesis to a colleague, so that you play the role of inquisitor. That is, 
raising objections and defending yourself against them is a way of gathering the 
material needed to convince the reader that your argument is correct. Starting 
from the hypothesis that "the new string hashing algorithm is fast because it 
doesn't use multiplication or division" you might debate as follows: 

• I don't see why multiplication and division are a problem. 

On most machines they use several cycles, or may not be implemented in 
hardware at all. The new algorithm instead uses two exclusive-or operations 
per character and a modulo in the final step. I agree that for pipelined 
machines with floating-point accelerators the difference may not be great. 

• Modulo isn't always in hardware either. 

True, but it is only required once. 

• So there is also an array lookup? That can be slow. 

Not if the array is cache-resident. 

• What happens if the hash table size is not 28 ? 
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Good point. This function is most effective for hash tables of size 28, 216 , 
and so on. 

In an argument you need to rebut likely objections while conceding points that 
can't be rebutted and admitting when you are uncertain. If, in the process of 
developing your hypothesis, you raised an objection but reasoned it away, it 
can be valuable to include the reasoning in the paper. Doing so helps the reader 
to follow your train of thought, and certainly helps the reader who indepen­
dently raises the same objection. That is, you need to anticipate problems the 
reader may have with your hypothesis. Likewise, you should actively search 
for counter-examples. 

If you think of an objection that you cannot refute, don't just put it aside. 
At the very least you should raise it yourself in the paper, but it may well mean 
that you must reconsider your results. 

A hypothesis can be tested in a preliminary way by considering its effect, 
that is, by examining whether there is a simple argument for keeping or discard­
ing it. For example, are there any improbable consequences if the hypothesis is 
true? If so, there is a good chance that the hypothesis is wrong. For a hypothe­
sis that displaces or contradicts some currently held belief, is the contradiction 
such that the belief can only have been held out of stupidity? Again, the hy­
pothesis is probably wrong. Does the hypothesis cover all of the observations 
explained by the current belief? If not, the hypothesis is probably uninteresting. 

Always consider the possibility that your hypothesis is wrong. It is often 
the case that a correct hypothesis at times seems dubious-perhaps initially, 
before it is fully developed, or when it appears to be contradicted by some 
experimental evidence-but the hypothesis survives and is even strengthened 
by test and refinement in the face of doubt. But equally often a hypothesis is 
false, in which case clinging to it is a waste of time. Persist for long enough to 
establish whether or not it is likely to be true, but to persist longer is foolish. 

A corollary is that the stronger your intuitive liking for a hypothesis, the 
more rigorously you should test it-attempt to confirm it or disprove it-rather 
than twist results, and yourself, defending it. 

Be persuasive. Using research into the properties of an algorithm as an 
example, issues such as the following need to be addressed. 

• Will the reader believe that the algorithm is new? 

Only if the researcher does a careful literature review, and fully explores 
and explains previous relevant work. Doing so includes giving credit to sig­
nificant advances, and not overrating work where the contribution is small. 
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• Will the reader believe that the algorithm is sensible? 

It had better be explained carefully. Potential problems should be identi­
fied, and either conceded-with an explanation, for example, of why the 
algorithm is not universally applicable-or dismissed through some cogent 
argument. 

• Are the experiments convincing? 

If the code isn't good enough to be made publicly available, is it because 
there is something wrong with it? Has the right data been used? Has enough 
data been used? 

Every research program suggests its own questions. Such questioning is also 
appropriate later in a research program, where it provides an opportunity for 
critical assessment of the work. 

Evidence 

A view of papers is that they are an assembly of evidence and supporting ex­
planation, that is, an attempt to persuade others to share your conclusions. In 
a write-up you pose a hypothesis, then present evidence to support your case. 
The evidence needs to be convincing because the processes of science rely on 
readers being critical and skeptical; there is no reason for a reader to be inter­
ested in work that is inconclusive. There are, broadly speaking, four kinds of 
evidence that can be used to support a hypothesis: analysis or proof, modelling, 
simulation, and experiment. 

An analysis or proof is a formal argument that the hypothesis is correct. It 
is a mistake to suppose that the correctness of a proof is absolute--confidence 
in a proof may be high, but that does not guarantee that it is free from error. 
(In my experience it is not uncommon for a researcher to feel certain that a 
theorem is correct but have doubts about the mechanics of the proof, which 
all too often leads to the discovery that the theorem is wrong after all.) And 
it is a mistake to suppose that all hypotheses are amenable to formal analysis, 
particularly hypotheses that involve the real world in some way. For example, 
human behaviour is intrinsic to questions about interface design, and system 
properties can be intractably complex. Consider an exploration to determine 
whether a new method is better than a previous one at compressing text-is it 
likely that something as diverse as text can be modelled well enough to predict 
the performance of a compression algorithm? It is also a mistake to suppose 
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that a complexity analysis is always sufficient. Nonetheless, the possibility of 
formal analysis should never be overlooked. 

A model is a mathematical description of the hypothesis (or some compo­
nent of the hypothesis such as an algorithm whose properties are being consid­
ered) and there will usually be a demonstration that the hypothesis and model 
do indeed correspond. 

In choosing to use a model, consider how realistic it will be, or conversely 
how many simplifying assumptions need to be made for analysis to be feasi­
ble. Consider the example of modelling the cost of a Boolean query on a text 
collection, in which the task is to find the documents that contain each of a 
set of words. We need to estimate the frequency of each word (because words 
that are frequent in queries may be rare in documents); the likelihood of query 
terms occurring in the same document (in practice, query terms are themati­
cally related, and do not model well as random co-occurrences); the fact that 
longer documents contain more words, but are more expensive to fetch; and, in 
a practical system, the probability that the same query had been issued recently 
and the answers are cached in memory. It is possible to define a model based 
on these factors, but, with so much guesswork to make, it is unlikely that the 
model would be realistic. 

A simulation is usually an implementation or partial implementation of a 
simplified form of the hypothesis, in which the difficulties of a full implemen­
tation are sidestepped by omission or approximation. At one extreme a simula­
tion might be skeletal, so that, for example, a parallel algorithm could be tested 
on a sequential machine by use of an interpreter that counts machine cycles 
and communication costs between simulated processors; at the other extreme a 
simulation could be an implementation of the hypothesis, but tested by artificial 
data. A simulation is a "white coats" test: artificial, isolated, and conducted in 
a tightly controlled environment. 

An experiment is a full test of the hypothesis, based on an implementation 
of the proposal and on real--or at least realistic--data. In an experiment there 
is a sense of really doing it, while in a simulation there is a sense of only 
pretending. However, the distinction between simulation and experiment can 
be blurry. 

Ideally an experiment should be conducted in the light of predictions made 
by a model, so that it confirms some expected behaviour. An experiment should 
be severe; look for tests that are likely to fail if the hypothesis is false. The tra­
ditional sciences, and physics in particular, proceed in this way. Theoreticians 
develop models of phenomena that fit known observations; experimentalists 
seek confirmation through fresh experiments. 
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Different forms of evidence can be used to confirm one another, with say 
a simulation used to provide further evidence that a proof is correct. But they 
should not be confused with one another. For example, suppose that for some 
algorithm there is a mathematical model of expected performance. Encoding 
this model in a program and computing predicted performance for certain val­
ues of the model parameters is in no way an experimental test of the algorithm 
and should never be called an experiment; it does not even confirm that the 
model is a description of the algorithm. At best it confirms claimed properties 
of the model. 

When choosing whether to use a proof, model, simulation, or experiment 
as evidence, consider how convincing each is likely to be to the reader. If your 
evidence is questionable-say a model based on simplifications and assump­
tions, an involved algebraic analysis and application of advanced statistics, or 
an experiment on limited data-the reader may well be skeptical of the result. 
Select a form of evidence, not so as to keep your own effort to a minimum, but 
to be as persuasive as possible. 

Having identified the elements a research plan should cover, end-to-start 
reasoning also suggests priorities. The write-up is the most important thing; so 
perhaps it should be started first. Completing the report is certainly more im­
portant than hastily running some last-minute experiments, or quickly browsing 
the literature to make it appear as if past work has been fully evaluated. 

Good and bad science 

Questions about the quality of evidence can be used to evaluate other people's 
research, and provide an opportunity to reflect on whether the outcomes of your 
work are worthwhile. There isn't a simple division of research into "good" and 
"'bad", but it is not difficult to distinguish valuable research from work that is 
weak or pointless. 

The merits of formal studies are easy to appreciate. They provide the kind 
of mathematical link between the possible and the practical that physics pro­
vides between the universe and engineering. 

The merits of well-designed experimental work are also clear. Work that 
experimentally confirms or contradicts the correctness of formal studies has 
historically been undervalued in computer science: perhaps because standards 
for experimentation have not been high; perhaps because the great diversity 
of computer systems, languages, and data has made truly general experiments 
difficult to devise; perhaps because theoretical work with advanced mathemat­

ics is more intellectually imposing than work that some people regard as mere 
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code-cutting. However, many questions cannot be readily answered through 
analysis, and a theory without practical confirmation is no more interesting in 
computing than in the rest of science. 

However, research that consists of proposals-without a serious attempt at 
evaluation--can be more difficult to respect. Why should a reader regard such 
work as valid? If the author cannot offer anything to measure, arguably it isn't 
science. As discussed in Chapter 1 1 ,  there are many ways of measuring a sys­
tem or result. And research isn't theoretical just because it isn't experimental. 
Theoretical work describes testable theories. 

Some science is not simply weak, but can be classed as pseudoscience. A 
great deal of money can be made by appearing to have solved major problems, 
and scientists seek prestige through their research achievements. Inevitably, 
some claimed achievements are delusional or bogus. 

Pseudoscience is a broad label covering a range of scientific sins, from self­
deception and confusion to outright fraud. A definition is that pseudoscience is 
work that uses the language and respectability of science to gain credibility for 
statements that are not based on evidence that meets scientific standards. Much 
pseudoscience shares a range of characteristics: the results and ideas don't seem 
to develop over time, systems are never quite ready for demonstration, the work 
proceeds in a vacuum and is unaffected by other advances, protagonists argue 
rather than seek evidence, and the results are inconsistent with accepted facts. 
Often such work is strenuously promoted by one individual or a small number 
of devotees while the rest of the scientific community ignores it. 

An example of pseudoscience in commercial computing is some of the 
schemes for high-performance video compression, which promise delivery of 
TV-quality data over 56 kilobaud modems. The commercial implications of 
such systems are enormous, and this incentive creates ample opportunities for 
fraud; in one case, for example, millions of dollars were scammed from in­
vestors with tricks such as hiding a video player inside a PC tower and hiding a 
network cable inside a power cable. Yet, skeptically considered, such schemes 
are implausible. For example, with current technology, even a comer of a single 
TV-resolution image-let alone 25 frames per second--cannot be compressed 
into 7 kilobytes. Uncompressed, the bandwidth of a modem is only sufficient 
for one byte per row per image, or, per image, about the space needed to trans­
mit a desktop icon. A further skeptical consideration in this case was that an 
audio signal was also transmitted. Had the system been legitimate, the inven­
tor must have solved the independent problems of image compression, motion 
encoding, and audio compression. 

It is not hard to find similar work in the academic world. An example 
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is the variety of "universal" indexing methods that have been proposed. In 
these methods, the object to be indexed-whether an image, movie, audio file, 
or text document-is manipulated in some way, for example by a particular 
kind of hash function. After this manipulation, objects of different type can 
be compared: thus, somehow, documents about swimming pools and images 
of swimming pools would have the same representation. Such matching is 
clearly an extremely difficult problem, if not entirely insoluble; for instance, 
how does the method know to focus on the swimming pool rather than some 
other element of the image, such as children, sunshine, or a metaphor for middle 
class aspirations? Yet proposals for such methods continue to appear. In a 
recent version, objects of the same type were clustered together using some 
kind of similarity metric. Then the patterns of clustering were analysed, and 
objects that clustered in similar ways were supposed to have similar subject 
matter. Although it is disguised by the use of clustering, to be successful such 
an approach assumes an underlying universal matching method. 

In some work, the evidence or methods are inconsistent. For example, in 
a paper on how to find documents on a particular topic, the authors reported 
that the method correctly identified 20,000 matches in a large document col­
lection. But this is a deeply improbable outcome. The figure of 20,000 hints 
at imprecision-it is too round a number. More significantly, verifying that all 
20,000 were matches would require many months of effort. No mention was 
made of the the documents that weren't matches, implying that the method was 
100% accurate; but even the best document-matching methods have high er­
ror rates .  A later paper by the same authors gave entirely different results for 
the same method, while claiming similar good results for a new method, thus 
throwing doubt on the whole research program. And it is a failure of logic to 
suppose that the fact that two documents match according to some arbitrary 
algorithm implies that the match is useful to a user. 

The logic underlying some papers is downright mystifying. It may seem a 
major step to identify and solve a new problem, but such steps can go too far. 
A paper on retrieval for a specific form of graph used a new query language 
and matching technique, a new way of evaluating similarity, and data based on 
a new technique for deriving the graphs from text and semantically labelling 
the edges. Every element of this paper was a separate contribution whose merit 
could be disputed. Presented in a brief paper, the work seemed worthless. In­
venting a problem, a solution to the problem, and a measure of the solution-all 
without external justification-is a widespread form of bad science. 

An interesting question is how to regard "Zipf's law". This observation­
"law" seems a poor choice of terminology in this context-is if nothing else 
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a curious case study. Zipf's books may be widely cited but they are not, I 
suspect, widely read. In Human Behaviour and the Principle of Least Effort 
(Addison-Wesley, 1949), Zipf used languages and word frequencies as one of 
several examples to illustrate his observation, but his motivation for the work 
is not quite what might be expected. He states, for example, that his research 
"define[s] objectively what we mean by the term personality" (p. 18), explains 
the "drives of the Freudian death wish" (p. 17), and "will provide an objec­
tive language in terms of which persons can discuss social problems imperson­
ally" (p. 543). It "will help to protect mankind from the virtual criminal action 
of persons in strategic political, commercial, social, intellectual and academic 
positions" (p. 544) and "as the authority of revealed religion and its attendant 
ethics declines, something must take its place . . .  I feel that this type of research 
may yield results that will fulfill those needs" (p. 544). Perhaps these extraor­
dinary claims are quirks, and in any case opinions do not invalidate scientific 
results. But it has been argued that the behaviour captured by Zipf's conjec­
ture is a simple consequence of randomness, and, for the motivating example 
for which the conjecture is often cited (distribution of words in text), the fit 
between hypothesis and observation is not always strong. 

A lesson is that we need to be wary of claimed results, not only because 
we might disagree for technical reasons but because the behaviour of other re­
searchers may not be objective or reasonable. Another lesson is that acceptance 
of (or silence about) pseudoscience erodes the perceived need for responsible 
research, and that it is always reasonable to ask skeptical questions. Yet an­
other lesson is that we need to take care to ensure that our own research is 

well founded. When results are defended by assertion, with no evaluation or 
evidence, it is easy to wonder whether the work is an instance of pseudoscience. 

Reflections on research 

Philosophies and definitions of science establish guidelines for what scientists 
do and set boundaries on what we can know. However, there are limits to how 
precise (or interesting) such definitions can be. For example, the question "is 
computer science a science?" has a low information content.14 Questions of 
this kind are sometimes in terms of definitions of science such as "a process 

14Two philosophers are arguing in a bar. The bannan goes over to them and asks, "What are 
you arguing about?" 

"We're debating whether computer science is a science", answers one of them. 
"And what do you conclude?" asks the bannan. 
"We're not sure yet," says the other. "We can't agree on what 'is' means." 
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for discovering laws that model observed natural phenomena". Such defini­
tions not only exclude disciplines such as computing, but also exclude much of 
the research now undertaken in disciplines such as biology and medicine. In 
considering definitions of science, a certain degree of skepticism is valuable; 
these definitions are made by scientists working within particular disciplines 
and within the viewpoints that those disciplines impose. In fairness, I note that 
the views below have the same limitations, as they are those of a computer sci­
entist who believes that the discipline stands alongside the traditional sciences. 

It is true that, considered as a science, computing is difficult to categorize. 
The underlying theories-information theory and computability, for example­
appear to describe properties as eternal as those of physics. (Such properties 
can be seen as constraints separating the possible from the impossible.) In 
recent years the distinction between the laws of computing and the laws of 
physics has blurred, with for example properties of black holes being described 
by information theory. Yet most research in computer science is many steps 
removed from foundational theory and more closely resembles engineering or 
psychology. 

A widely agreed description of science is that it is a method for accumu­
lating reliable knowledge. In this viewpoint, scientists adopt the belief that 
rationality and skepticism are how we learn about the universe and shape new 
principles, while recognizing that this belief limits the application of science to 
those ideas that can be examined in a logical way. If the arguments and experi­
ments are sound, if the theory can withstand skeptical scrutiny, if the work was 
undertaken within a framework of past research and provides a basis for further 
discovery, then it is science. Much computer science has this form. 

Many writers and philosophers have debated the nature of science, and as­
pects of it such as the validity of different approaches to reasoning. The direct 
impact of this debate on the day-to-day activity of scientists is small, but it 
has undoubtedly shaped how scientists approach their work. It also provides 
elements of the ethical framework within which scientists work. 

A key effect of philosophy on the practice of science has been to undermine 
belief in certainty and absolute scientific truth. Several developments in the 
early years of the twentieth century contributed to this development, including 
relativity, quantum mechanics, incompleteness, and undecidability. In philoso­
phy, the ideal of scientific truth was undermined by the concept of falsification. 
The core idea is simple: experimental evidence, no matter how substantial or 
voluminous, cannot prove a theory true, while a single counter-example can 
prove a theory false. 

A practical consequence of the principle of falsification is that a reasonable 
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scientific method is to search for counter-examples to hypotheses. In this line 
of reasoning, to search for supporting evidence is pointless, as such evidence 
cannot tell us that the theory is true. A drawback of this line of reasoning is that, 
using falsification alone, we cannot learn any new theories; we can only learn 
that some theories are wrong. Another issue is that, in practice, experiments are 
often unsuccessful, but the explanation is not that the hypothesis is wrong, but 
rather that some other assumption was wrong. The response of a scientist to a 
failed experiment may well be to redesign it. For example, in the decades-long 
search for gravity waves, there have been many unsuccessful experiments, but 
a general interpretation of these experiments has been that they show that the 
equipment is insufficiently sensitive. 

Thus falsification can be a valuable guide to the conduct of research, but 
other guides are also required if the research is to be productive. One such 
guide is the concept of confirmation. In science, "confirmation" has a weaker 
meaning than in general usage; when a theory is confirmed, the intended mean­
ing is not that the theory is proved, but that the weight of belief in the theory has 
been strengthened. Seeking experiments that confirm theories is an alternative 
reasonable view of method. 

A further consequence is that a hypothesis should allow some possibility 
of being disproved-there should be some experiment whose outcomes could 
show that they hypothesis is wrong. If not, the hypothesis is simply uninterest­
ing. Consider, for example, the hypothesis "a search engine can find interesting 
web pages in response to queries". It is difficult to see how this supposition 
might be contradicted. Thus falsification and other descriptions of method help 
shape research questions as well as research processes. 

A research checklist 

• Are the ideas clear and consistent? 

• Is the problem worthy of investigation? 

• Does the project have appropriate scope? 

• What are the specific research questions? 

• Is there a hypothesis? 

• What would disprove the hypothesis? Does it have any improbable conse­
quences? 

• Are the premises sensible? 
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• Has the work been critically questioned? Have you satisfied yourself that it 
is sound science? 

• How are the outcomes to be evaluated? Why are the chosen methods of 
evaluation appropriate or reasonable? 

• Are the roles of the participants clear? What are your responsibilities? 
What activities will the others undertake? 

• What are the likely weaknesses of your solution? 

• Is there a written research plan? 

• What forms of evidence are to be used? 

• Have milestones, timelines, and deadlines been identified? 

• Do the deadlines leave enough time for your advisor to provide feedback 
on your drafts, or for your colleagues to contribute to the material? 

• Has the literature been explored in appropriate depth? Once the work is 
largely done-and your perspective has changed-does it need to be ex­
plored again? 





1 1  Experimentation 

There are as many scientific methods 
as there are individual scientists. 

Percy W. Bridgman 
On "Scientific Method" 

A hypothesis is . . . a mere trial idea, a tentative 
suggestion concerning the nature of things. Until 

it has been tested, it should not be confused with a 
law . . . . Plausibility is not a substitute for evidence, 
however great may be the emotional wish to believe. 

E. Bright Wilson, Jr. 
An Introduction to Scientific Research 

Even the clearest and most peifect circumstantial 
evidence is likely to be at fault, after all, and 

therefore ought to be received with great caution. 

Mark Twain 
Pudd'nhead Wilson 's Calendar 

The use of experiments to verify hypotheses is one of the central elements of 
science. In computing, experiments-most commonly an implementation tried 
against test data-are used for purposes such as confirming hypotheses about 
algorithms. An experiment can verify, for example, that a system can complete 
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a specified task, and can do so with reasonable use of resources. A tested hy­
pothesis becomes part of scientific knowledge if it is sufficiently well described 
and constructed, and if it is convincingly demonstrated. 

Experiments in computing take diverse forms, from tests of algorithm per­
formance to human factors analysis. However, the principles underlying good 
experimentation are much the same regardless of what is being investigated. 
As elsewhere in this book, the material here draws on my experience as a re­
searcher. These examples are for the most part work that was successful­
which is not to imply that all my research has succeeded to this extent. 

Some people disagree with the view that rigorous experiments are essential 
in computer science; or, if they do not explicitly disagree, may hold a low 
opinion of papers that have no new theory and are "merely" experimental. Yet, 
for example, such views are in stark contrast to the role of experiments in other 
disciplines. Experiments are an essential part of sound science. 

Designing experiments 

Tests should be fair rather than constructed to support the hypothesis. This 
problem is arguably most acute when a new idea is being compared to an ex­
isting one. In this case, the test environment should be designed to be seen as 
reasonable by readers who support the existing idea. If the tests seem biased 
towards the new idea, these readers will not be persuaded by the results. 

You need to carefully choose which method your contribution is to be com­
pared to. That is, it is essential to identify an appropriate baseline. For example, 
no sensible researcher would advocate that their sorting algorithm was a break­
through on the basis that it is faster than bubblesort; instead, the algorithm 
should be compared· to the best previous method. 

It may be that comparison to a baseline is difficult because it means that an 
implementation for a competing method must be obtained. However, without 
such a comparison it may be impossible for the reader to know whether the new 
method is interesting. This is a barrier to entry: before you can begin to produce 
competitive work in an area, it is necessary to not only become familiar with 
the methods and ideas described in a body of literature but also to have access 
to a collection of appropriate tools and resources. But the fact that there is a 
barrier to entry does not excuse poor science. 

A danger in an ongoing research program is to fail to update the choice of 
baseline. In the context of text indexing, for example, early work on signa­
ture files compared performance to that of inverted files as reported in papers 
from before 1 980. (One of these papers gave a figure for inverted file size of 
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50%-300% of the indexed data; simple skeptical considerations suggest that 
the larger figure does not make sense.) Work on signature files even in the late 
1990s continued to quote these baselines, despite dramatic improvements in 
inverted files and detailed experiments reporting sizes such as 7%-10%. New 
work in signature files was compared to old work in the same area, but not to 
relevant work on other pertinent technology. 

Some new algorithms solve a novel problem, or solve an existing problem 
in a novel way that is for some reason not comparable to previous work. There 
may still be a clear baseline to compare to, however. For example, there may 
be an obvious algorithm that an intelligent, informed person might use if asked 
to solve the problem. That is, one potential point of comparison is the first 
workable option that a reasonable person might suggest. 

In the process of developing new algorithms, researchers typically use a 
data set with which they are familiar as a testbed. If the algorithm is parameter­
ized in some way-by buffer size, say-this testbed can be used for tuning, that 
is, to identify the parameter values that give the best performance. What this 
tuning process almost certainly cannot do is identify the best parameters for all 
data sets, or even identify whether there are stable best parameters to choose. 
It is for this reason that descriptions of the research cycle strongly distinguish 
between an observation phase (used to learn about the object under study) and 
a testing or confirmation phase (used to validate hypotheses). If parameters 
have been derived by tuning, the only way to establish their validity is to see if 
they give good behaviour on other data. Choosing parameters to suit data, or 
choosing data to suit parameters, in all likelihood invalidates the research. 

When considering what experiments to try, identify the cases in which the 
hypothesis is least likely to hold. These are the interesting cases: if they are 
not tested-if only the cases where the hypothesis is most likely to hold are 
tested-then the experiments won't prove much at all. The experiment should 
of course be a test of the hypothesis; you need to verify that what you are 
testing is what you intended to test, and an experiment should only succeed if 
the hypothesis is correct. 

When checking experimental design or outcomes, consider whether there 
are other possible interpretations of the results; and if so, design further tests 
to eliminate these possibilities. Consider for instance the problem of finding 
whether a file stored on disk contains a given string. One algorithm directly 
scans the file; another algorithm, which has been found to give faster response, 
scans a compressed form of the file. Further tests would be needed to identify 
whether the speed gain was because the second algorithm used fewer machine 
cycles or because the compressed file was fetched more quickly from disk. 



188  Writing for Computer Science 

Care is particularly needed when checking the outcome of negative or failed 
experiments. A reader of the statement "we have shown that it is not possible to 
make further improvement" may wonder whether what has actually been shown 
is that the author is not competent to make further improvement. Moreover, the 
failure of an experiment typically leads to it being redesigned-such failure is 
as likely to expose problems in the tests as in the hypothesis itself. Design of 
experiments to demonstrate failure is particularly difficult. 

It is also worth considering whether the results obtained are sensible. For 
example, are there rules of conservation that should apply to this experiment? 
Sometimes boundary conditions are highly predictable--do the results appear 
to be right as they approach the boundaries? For a typical case it should be 
possible to make a rough guess as to expected outcome-is this observed? 

Conclusions should be sufficiently supported by the results. Success in a 
special case does not prove success in general, so be aware of factors in the 
test that may make it special. A common problem is scale-whether the same 
result would be observed with a larger data set, for example. 

Don't draw undue conclusions or inferences. If, say, one method is faster 
than another on a large data set, and they are of the same speed on a medium 
data set, that does not imply that the second is faster on a small data set; it only 
implies that different costs dominate at different scales. Also, don't overstate 
your conclusions. For example, if a new algorithm is somewhat worse than an 
existing one, it is wrong to describe them as equivalent. A reader might infer 
that they are equivalent if the difference is small, but it is not honest for you to 
make that claim. 

Experiments should as far as possible be independent of the accuracy of 
measurements or quality of the implementation. Ideally an experiment should 
be designed to yield a result that is unambiguously either true or false; where 
this is not possible, another form of confirmation is to demonstrate a trend or 
pattern of behaviour. 

A simple example is the behaviour of query evaluation on a database sys­
tem with and without indexes. For a small database, the most efficient solution 
is exhaustive search, because use of an index involves access to auxiliary struc­
tures and does not greatly reduce the cost of accessing the data. As database 
size grows, the cost of data access grows linearly, while index access costs may 
be more or less fixed. Thus the hypothesis "indexes reduce search cost in large 
databases" can be confirmed by experiments measuring search costs with and 
without indexes over a range of database sizes. The trend-that the advantage 
given by indexes increases with database size-is independent of the machine 
and data. The exact size at which indexes become beneficial will vary, but this 
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value is not being studied; it is the trend that is being studied. 

That is, success or otherwise should be obvious, not subject to interpreta­

tion. An example of this principle is the work of Pons and Fleischman on cold 

fusion. Their claims of success were founded on small discrepancies--only a 

few percent-between measured input energy and output energy. Admission 

of only a small experimental error would confound their claims. In contrast, 

the claims that they had failed were based on the almost complete absence of a 

particular form of radiation, effectively a straightforward binary test. 

Another example of this principle is provided by the various improvements 

that can be made to the standard quicksort algorithm, such as better choice of 

pivot and loops that avoid expensive procedure calls. With test data chosen to 

exercise the various cases-such as initially unsorted, initially sorted, or many 

repetitions of some values--experiments can show that the improvements do 

indeed lead to faster sorting. What such experiments cannot show is that quick­

sort is inherently better than, say, mergesort. While it might, for example, be 

possible to deduce that the same kinds of improvement do not yield benefits for 

mergesort, nothing can be deduced about the relative merits of the algorithms 

because the relative quality of the implementations is unknown, and because the 

data has not been selected to examine trends such as asymptotic performance. 

For speed experiments based on a series of runs, the published results will 

be either minimum, average, median, or maximum times. Maximum times can 

include anomalies, such as a run during which a greedy process (a tape dump, 

for example) shuts out other processes. Minimums can be underestimates, for 

example when the time slice allocated to a process does not include any clock 
ticks. But nor are averages always appropriate-outlying points may be the 

result of system dependencies. Statistical considerations are discussed later. 

Results may include some anomalies or peculiarities. These should be ex­
plained or at least discussed. Don't discard anomalies unless you are certain 
they are irrelevant; they may represent problems you haven't considered . 

./ As the graph shows, the algorithm was much slower on two of the data 

sets. We are still investigating this behaviour. 

It is likewise valuable to discuss behaviour at limits and to explain trends. 

Measurements and coding 

The purpose of experimentation is to take measurements that can be used as 
evidence. The measurements are intended to be a consequence of some under­

lying phenomenon that is described by a theory or hypothesis. In this approach 
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to research, phenomena-the eternal truths studied by science--cannot change, 
but the measurements can, because they depend on the context of the specific 
experiment. 

Measurements can be quantitative, such as number or duration or volume­
the speed of a system, say, or an algorithm's efficiency relative to a baseline. 
They can also be qualitative, such as occurrence or difference-whether an 
outcome was achieved, or whether particular features were observed. Measure­
ments can be mechanical or human. 

In the approach to research planning outlined in Chapters 9 and 10, one of 
the first steps is deciding what to measure. In computer science research, the 
sole reason for coding is to build tools and probes for observing and measuring 
phenomena. Thus the choice of what to measure guides the process of coding 
and implementation--or, perhaps, indicates what does not have to be coded. 

The basic rule is to keep things simple. If efficiency is not being measured, 
for example, don't waste time squeezing cycles from code. If a database join 
algorithm is being measured, it is probably not necessary to implement indexes, 
and it is almost certainly unnecessary to write an SQL interpreter. All too often, 
computer scientists get distracted froin the main task of producing research 
tools, and instead, for example, develop complete systems. A related principle 
is that of "one task, one tool". In most cases, integrating the code for every 
research task into a single piece of software is simply unproductive. 

In environments such as the Unix family of operating systems, a program 
is often tested by being run from the command-line, with output directed to 
the screen. Parameters may be passed in as arguments, but to simplify coding 
they may be defined as constants within programs. All too often, though, a 
researcher discovers that an experiment run in this way cannot be repeated a 
day or two later. 

A more reliable, repeatable approach is to run all experiments from scripts. 
Parameter settings are captured within the script; the settings used last time can 
be commented out. Output from the script can be directed to a logfile and kept 
indefinitely. If the output is well designed, it should include information such 
as input file names, code versions, parameter values, and date and time. 

Using simple Unix tools it is straightforward to take data directly from a 
log file and produce a graph or other summary of the results. These steps too 
can be encoded in a script; the process for completing any stages undertaken 
by hand may well be forgotten if the work is rested for a few months, such as 
while a paper is under review. A corollary is that the output of your code should 
be amenable to scripting, with, for example, consideration given to consistent 
use of fields in each line. 
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Describing experiments 

Your interpretation and understanding of the results is as important as the re­
sults themselves. When describing the outcomes of an experiment, don't just 
compile dry lists of figures or a sequence of graphs. Analyze the results and 
explain their significance, select typical results and explain why they are typ­
ical, theorize about anomalies, show why the results confirm or disprove the 
hypothesis, and make the results interesting. That is, motivate the work. 

Experiments are only valuable if they are carefully described. The descrip­
tion should reflect the care taken-it should be clear to the reader that the pos­
sible problems were considered and addressed, and that the experiments do 
indeed provide confirmation (or otherwise) of the hypothesis. A key princi­
ple is that the experiment should be verifiable and reproducible. Results are 
valueless if they are some kind of singleton event: repetition of the experiment 
should yield the same outcomes. And results are equally valueless if they can­
not be repeated by other researchers. The description, of both hypothesis and 
experiment, should be in sufficient detail to allow some form of replication by 
others. The alternative is a result that cannot be trusted. 

Researchers must decide which results to report. As discussed earlier, re­
searchers should have logs of experiments recording their history, including 
design decisions and false trails as well as the results, but such logs usually con­
tain much material of no interest to others. And some results are anomalous­
the product of experimental error or freak event-and thus not relevant. But 
reported results should be a fair reflection of the experiment's outcomes. 

If a test fails on some data sets and succeeds on others, it is unethical to 
conceal the failures, and the existence of failure should be stated as prominently 
as that of success. Likewise, reporting just one success might lead the reader to 
wonder whether it was no more than a fluke. 

Not all experiments are directly relevant to the hypothesis. An experiment 
might be used, for example, to make a preliminary choice between possible 
approaches to a problem; other experiments might be inconclusive or lead to 
a dead end. It may nonetheless be interesting to the reader to know that these 
experiments were undertaken-to know why a certain approach was chosen, 
for example. For such experiments, if the detail is unlikely to be interesting it 
is usually sufficient to briefly sketch the experiment and the outcome. 

The experimental outcomes reported in a paper may represent only a frac­
tion of the work that was undertaken in a research program. There will have 
been exploratory stages and different kinds of failures, and the reported runs 
may well be carefully chosen representatives of a broad range of experiments. 
Thus the published record of the work is highly incomplete. 
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In other disciplines of science, researchers are expected to keep detailed 
notebooks recording ideas, methods, experiments, data, participants, outcomes, 
and so on. These notebooks fill a variety of roles, in particular providing a 
complete history of the research, allowing the experiments to be reproduced, 
and proving that the published work took place as described-in labs in the 
biological sciences, for example, it may be required that a senior scientist sign 
and date each page. 

Notebooks have not acquired these roles in computer science. However, 
they are invaluable. They can be used to record versions and locations of soft­
ware, parameters used in a particular experiment, data used as input (or the 
filenames of the data), logs of output (or the filenames of the logs), interpreta­
tions of results, minutes of decisions and agreed actions, and so on. They allow 
easy reconstruction of old research, and simplify the process of write-up. They 
are particularly helpful if a paper is accepted after a long reviewing process and 
experiments have to be freshly run; all too often the code no longer produces 
anything like the original results, because too many details of the experiments 
have been lost and the code has been modified. Most of all, notebooks keep 
researchers honest. 

While there are obvious reasons to consider maintaining notebooks elec­
tronically, in my experience written notebooks are more effective. In either 
form, it is good discipline to include dates, never change an entry, and use the 
notebook as often as possible. 

Another strategy that keeps researchers honest, and helps to describe and 
publicize their work, is to make code and data available online. Doing so shows 
that you have high confidence in the correctness of your claims. In an informal 
survey some years ago, several computer scientists commented to me that they 
would not have made some of the claims in their papers if they had had to 
publish their code or to run their experiments under external scrutiny. More 
positively, publishing code reduces the barrier to entry for other researchers, 
and helps to establish baselines against which new work should be measured. 

Variables 

The ideal experiment examines the effect of one variable on the behaviour of 
an object being studied. How does increasing the volume of data affect exe­
cution time? Can the vision system track rapidly moving objects? How much 
compression can be achieved without visibly degrading the image? If no other 
variables are present, it is easy to be confident that the variable does indeed 

affect the behaviour in the way observed. The test environment should be de-
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signed to minimize the effect of extraneous factors-that is, to unambiguously 
relate variations in one property to variations in another. 15 

In practice, elimination of variables is remarkably difficult. Even elemen­
tary properties can be surprisingly hard to measure: for example, access time 
to material stored on disk is not just a property of disk hardware, but is affected 
by access pattern, presence and size of disk cache, and file system design. Tests 
should be designed to yield results that are independent of properties such as 
system characteristics or constant-factor overheads that are not part of the hy­
pothesis. 

Consider the measurement of performance of two compression techniques. 
If tested on different data, the results will be incomparable: we have no way 
of knowing whether the better performance is due to use of a better method, or 
due to choice of data that is inherently more compressible. Thus one particular 
component of a test environment is choice of test data. For some experiments 
standard data is available, such as benchmark problems in machine learning 
or the corpora used to test compression methods. The use of such standard 
resources is essential to experimentation on these problems. Where standard 
data is not available, care should be taken to ensure that the chosen test data is 
representative. 

Another component of many test environments is the hardware. A good 
option is to describe performance in terms of the characteristics of some com­
monly available hardware, as for example specified by clock speed, disk access 
time, and so on. This allows readers to relate published results to observed 
performance on another system. 

In some circumstances it is possible for an experiment to succeed, or at 
least appear to succeed, by luck; there might be an atypical pattern to the data, 

15In careful research published in 1648, Jan-Baptista van Helmont concluded that plants con­
sist of water: 

That all plants immediately and substantially stem from the element water alone I have 

learnt from the following experiment. I took an earthen vessel in which I placed two 

hundred pounds of earth dried in an oven, and watered with rain water. I planted in it 

the stem of a willow tree weighing five pounds. Five years later it had developed into 

a tree weighing one hundred and sixty-nine pounds and about three ounces. Nothing 

but rain (and distilled water) had been added. The large vessel was placed in earth and 

covered by an iron lid with a tin-surface that was pierced with many holes [to allow 

the soil to breathe while preventing dust from adding to it -JZ]. I have not weighed the 

leaves that carne off in the four autumn seasons. Finally I dried the earth in the vessel 

again and found the same two hundred pounds of it diminished by about two ounces. 

Hence one hundred and sixty-four pounds of wood, bark and roots had come up from 

water alone. 
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or variations in system response might favour one run over another. Where such 
variations are possible, many runs should be made, to reduce the probability of 
accidental success and (in the statistical sense) to give confidence in the results. 
This is particularly true for timings, which can be affected by other users, sys­
tem overheads, inability of most operating systems to accurately allocate clock 
cycles to processes, and caching effects. 

For example, consider the apparently simple experiment of measuring how 
fast a block can be accessed from a file stored on disk. Under a typical oper­
ating system, the first access is slow, because locating the first block of a file 
requires that header blocks be fetched first; but subsequent accesses to the same 
block are fast, because in all likelihood it will be cached in memory. Some de­
viousness is required to ensure that averages over a series of runs are realistic. 
Now consider a more typical experiment: real time taken to evaluate queries to 
a database system. If the queries are poorly chosen, the times will vary because 
of the caching and the complex ways in which the system components interact, 
and multiple runs will not give realistic figures. 

Now consider another elementary experiment-comparing the speed of two 
algorithms for the same task. The implementations (NEW and OLD) to be used 
for the experiments take the same input and produce the same output, and thus 
are externally indistinguishable. The algorithms are run in tum on the same 
data, and it is observed that NEW is faster than OLD by several percent. 

It would be easy to conclude that NEW is the better algorithm. However, on 
the evidence so far, it would also be possible to conclude that: 

• NEW is better implemented than was OLD. After all, NEW is your invention, 
and it is reasonable to take the care that is necessary to ensure that it runs 
well. Perhaps the same care was not taken with OLD. 

• OLD uses more buffer space than NEW, leading to poor behaviour on this 

particular computer. The same results might not be observed on another 
machine. 

• OLD uses floating-point operations that are not supported in hardware. 

• At compile-time, OLD was accidentally built with debug options enabled, 
slowing it down. 

• Inaccuracies in the timing mechanism randomly favoured NEW. Although, 
for example, Unix-style timing mechanisms can return values in nanosec­
onds, their accuracy below tenths of a second is often questionable. 

• OLD was run first, and was delayed while the input was copied to memory; 

NEW accessed the input directly from cache. 
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• The particular input chosen happened to favour NEW. 

Further experiments are required to distinguish which of these conclusions is 
most likely to be correct. 

Some such effects are random, some are systematic-the same wrong mea­
surement is recorded every time the experiment is run. In work on text indexes 
some years ago, we had some deeply puzzling results. The first stage went ex­
actly as predicted: we built an index for a small text collection (250 megabytes, 
in an era when the capacity of a typical disk drive was a couple of gigabytes) 
and tested a heuristic improvement to the query evaluation algorithm. The test 
showed that the new method was about twice as fast as the old. But how would 
it scale? My research assistant then built an index for a gigabyte of data, and ran 
the same queries. The same result was observed, with the new method about 
twice as fast as the old; but the queries on a gigabyte used only 65% of the 
time needed for a quarter gigabyte. Considering the detail of the experiment, 
this result made no sense at all. Two quantities were independent of scale-the 
number of documents fetched and the total number of disk accesses-but the 
index size scaled linearly with data volume, and other measurements showed 
that four times as much index was being processed; yet only two-thirds of the 
time was required. The explanation, it developed, was that the smaller collec­
tion was kept with its index on a single disk drive while, for the larger collec­
tion, the index had been placed on a separate drive due to space constraints. 
In the case of the smaller collection, the accesses to data and index had been 
interfering with each other, causing disk access delays that were largely absent 
when two drives were used. 

(Problems of this kind, and their solutions, can be highly illuminating. In 
this case, we discovered that disk seek times were a major component of total 
costs, accounting for around half of all elapsed time. Had we been explicitly 
investigating the significance of seek costs, we might not have thought of this 
experiment. Another aspect of research that this incident illustrates is the need 
for inventive experiments. Identifying a range of ways to alter the behaviour of 
a system, then measuring their effect, can lead to unexpected revelations.) 

Compilers are a substantial cause of systematic error. Versions of the same 
compiler can vary dramatically for particular programs, as can system software 
such as file managers. After an upgrade from one version of Linux to the next 
release, the time to run an external sort routine we were testing rose from 3500 
seconds to 7500 seconds. However, a code profiler showed that some individual 
routines were running more quickly. 

In another experiment, we were troubled by a random error. Sometimes a 

run completed in around an hour, but often took an hour and a half. Interme-
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diate times were not observed. The experiment involved a complex interaction 
between stored data, a memory buffer, and temporary files, so some variability 
was reasonable, but we expected a spread of results-not two widely separated 
clusters. The explanation was the screen lock; while earlier experiments had 
been run on a server, we had recently moved to a high-performance desktop PC. 
The slower runs had been overnight, when the PC was not in use. 

Test your intuition on the following example. Suppose you write a program 
for searching a large file of randomly selected strings. The first stage of the 
program reads the set of strings into memory, creates an array of pointers (one 
to the start of each string), then sorts the pointers so that the strings are in 
lexicographic order. The program then reads a query string and uses binary 
search in the array to find whether the query is present in the original string set. 

1 .  If two searches in a row are for the same string, do both searches take about 
the same length of time? 

2. Suppose the number of strings in the file is increased by a factor of sixteen. 
Do searches then take about four times as long? 

3 .  Suppose linear search is used instead of binary search. If the original file is 
already sorted, are searches the same speed as for an unsorted file? (Recall 
that the pointers to the strings are sorted after the strings are read in.) 

Many programmers answer yes to these questions, but in each case the correct 
answer is no, largely because of the impact of cache on running time. ( 1 )  The 
first search loads the strings into cache. Memory access costs are a large com­
ponent of total time, so the second search is much faster. (2) Two factors affect 
search time as data set size increases. One is that adjacent strings share longer 
prefixes, so the cost of a string comparison grows, as well as the total number 
of comparisons. The other is that, at some point, cache becomes ineffective be­
cause the volume of data means that there are too many collisions, and memory 
access costs rise. (3) If the file is sorted, the strings are likely to be sorted in 
memory, and will be prefetched during the linear search. If the file is not sorted, 
each string comparison requires a random memory access. 

A variable in many studies is the user. Humans need to be involved to re­
solve many kinds of research question: whether the compressed image is satis­
factory, whether the list of responses from the search engine is useful, whether a 
programming language feature is of value. Design of human studies is treated in 
detail in research methods texts written for psychology and for business meth­
ods. However, far too many human studies in computer science are amateurish 
and invalid. Instructions to the experimental subjects should be clear; the sam­
ple of human subjects should be representative (a class of computer science 
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students may not be typical of users of operating systems); the subjects should 
be unaware of which of the competing methods under review was proposed 
by the researcher; anonymity should be preserved; and controls-analogous 
to placebos in medical trials-should be in place. The ethical guidelines for 
human studies at most universities are far-reaching, and in all likelihood any 
investigation involving people evaluating a system needs ethics clearance. 

There is no doubt, however, that human studies are an essential element 
of computer science research. Without a productivity study, for example, it 
is difficult to see how to support assertions such as that C++ is superior to C. 
However, human studies of such questions continue to be a rarity. Much of 
the work in these areas is sound, but it does seem clear that more than a little 
research in this and a range of other areas is flawed by lack of consideration or 
measurement of the human element. 

One of the longest-running experiments in computer science is the TREC 
evaluation of information retrieval systems at the U.S. National Institute of 
Standards and Technology, which has a significant human-factors component. 
Each year, participants-a large number of research groups from around the 
world-apply their retrieval systems to standard data and queries. This side 
of the experiment is blind; the researchers do not know which documents are 
answers and which are noise. The output of the systems is then manually eval­
uated by human assessors. This side of the experiment is also blind: the outputs 
are merged prior to inspection and the assessors do not know which system has 
done what. Another aspect of the TREC work is that the use of standardized 
resources means that there is direct control of the principal variables, and ex­

periments are comparable between research groups; existing published results 
provide a baseline against which new results can be directly compared. 

By the standards of computer science, the TREC experiment is expensive, 
with, for example, around a week or two of assessor time required per query 
per year. However, TREC illustrates that robust experiments can have high im­
pact. When TREC began (in 1992, a couple of years before the web began to be 
significant), there was a large range of competing theories about the best way 
to match documents to queries. Weak methods were rapidly culled by TREC, 
and a great many dramatic improvements in information retrieval were spurred 
by the opportunity TREC created. The web search engines drew substantial in­
spiration from the TREC work and, in contrast to some other areas of computer 
science, the links between academia and commerce remain strong. This impact 
could not have been achieved without the large-scale involvement of human 
subjects, or without the commitment to robust experimentation. 
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Statistics 

Much computer science experimentation consists of "doing a run" of some kind 
and measuring the outcome. From this perspective, in computer science re­
search many people view statistics as no more than reporting of averages and 
deviations. However, the role of statistics in experimental research is a rich 
one, and seeking to answer elementary statistical questions can illuminate ex­
perimental design. Your research may well benefit from a statistical approach. 

An approach to understanding these issues is to explore the meaning of 
simple statements about the behaviour of a system. When we state, for example, 
that "algorithm NEW is typically faster than algorithm OLD", it is reasonable to 
suppose that the intention is to claim that NEW is faster on average. (Such a 
statement could as easily be made on the basis of a theoretical analysis as on 
the basis of experiments. )  But an average of what? If the intended meaning 
is only that NEW is faster than OLD on average for the runs undertaken in the 
experiments, what is it about these runs that makes them representative? 

A key concept here is of population: the set of all possible runs. If NEW 

is indeed faster than OLD on average across the whole population, the claim 
is a reasonable one, but in all likelihood the population is infinite, as it must 
contain all possible combinations of input data-if the volume of input can 
be arbitrarily large, even so simple a property as the typical size of an input 
is ill-defined. As taking the average across such a population is likely to be 
impossible, it is necessary to resort to taking a sample, and to assume that it is 
representative. 

To take a sample, it is necessary to understand what the population consists 
of. In medicine, to evaluate the benefit of a new antibiotic, the population could 
be all people, or perhaps all sick people, or possibly just all people for whom 
other medications have failed. Designing an experiment includes deciding what 
the possible, or reasonable, inputs are. 

Consider how to identify the likely worst case of a particular class of string­
hashing functions-that is, to find out how many strings might conceivably 
hash to the same slot in practice. We faced this problem in work on string 
hashing, where analysis of the functions would be suspect. (The distribution 
of characters in words is not uniform, and the distribution varies according to 
character position within words. Thus an analysis would involve assumptions 
that could easily be confounded in practice.) Theory tells us that the worst 
case of all strings hashing to the same slot is ridiculously improbable for an 
ideal function; the specific question is to identify how close to ideal a randomly 
chosen member of a class of hash functions is. 

In evaluating the properties of string-hashing functions, there are several 
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variables in the population of inputs: the hash table size, the number of input 
strings, the strings themselves, and a hash function chosen from the class. In 
this particular class, hash functions are determined by seed value, so the class 
is finite for an efficient implementation in a language such as C, with say 232 

or 264 members. A constraint was that there were theoretical predictions only 
for some table sizes and load factors. It would be possible to explore other 
table sizes and input sizes, to seek a wide picture of behaviour, but intuitively it 
seemed unlikely that different observations would be made. The hash functions 
were chosen by randomly generating 32-bit seeds. The strings were chosen 
randomly from about a dozen sources: text, programs, DNA fragments, binary 
files, and exhaustive sets of strings of some given fixed length. 

These strings are clearly not "typical", even assuming we know what "typ­
ical" means in such cases; there are many possible sources of strings, and who 
can say which is most likely to be hashed. Had the behaviour of the functions 
varied significantly between the different sources of string, it would have been 
difficult to draw any meaningful conclusion; however, the behaviour for ev­
ery set was virtually identical, and moreover was indistinguishable from ideal. 
(Note, too, that this is an example of a multi-variable experiment. The be­
haviour under each variable can be evaluated by holding the others constant.) 

As another example of the pitfalls of sampling and populations, consider 
natural-language processing, with say the goal of evaluating the accuracy with 
which a parser can identify nouns. The result depends on the input: perhaps 
text derived by optical-character recognition from printed material, or randomly 
chosen web pages, or articles from newspapers. Evaluation of typical accuracy 
depends on assumptions about the population, and on the sampling process. A 
truly random sample, if sufficiently large, should have in miniature all of the 
characteristics of the population it represents. 

Given that experiments should be based on explicit assumptions about un­
derlying populations and samples, some interesting consequences follow. Con­
sider a thought experiment: the simple task of measuring the average height of 
the students at a particular university. Choose a sample of students at random, 
measure their height, and take the average. It might be found that all the stu­
dents in the sample, excepting one or two outliers, are between 150 and 200 
centimetres, with an average of 172. Now choose one student at random. It 
should be obvious that the likelihood that this student's height is average, say 
172 ± 1 centimetres, is low. 

We thus conclude that a randomly chosen individual is likely to be atypical ! 
By the same reasoning, conclusions based on a single input, outcome, or event 
may well be meaningless. 
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Whether an average is a reasonable estimate of typical behaviour depends 
on the kind of event being measured. It makes no sense to report average run­
ning time when input size varies, for example. For evaluating the accuracy of 
noun detection of a sample of documents, average may well be appropriate; but 
for evaluating typical network delay for a round-trip of a packet, average may 
well be meaningless. First, some delays are effectively infinite (the packet is 
lost). Second, the distribution of such delays often consists of a large number 
of fast responses and a small number of extremely slow responses; the aver­
age is therefore somewhat slower than the fast times, but in a range where no 
values were observed at all. (An analogy is averaging the duration of a plane 
flight and of a car journey from Paris to Moscow, and stating that this middle 
value is typical.) In such cases, it may be appropriate to report the fastest time 
observed, while noting the variance. 

Statistical tools that have wide application in computer science research 
include correlation, regression, and hypothesis testing. Measures of correlation 
are used to determine whether two variables depend on each other. Regression 
is used to identify the relationship between two variables. These can be used, 
for example, to determine whether input size affects speed or whether light 
intensity affects object recognition. 

Hypothesis tests are used to investigate whether improvements are signif­
icant. It is often the case that, in a series of comparisons of two techniques 
for the same task, one is better than the other some but not all of the time. In 
statistical terms, in such a case the researcher needs to determine whether the 
two sets of results-two samples-are drawn from the same population. 

We may have experimentally determined, for example, that NEW is faster 
than OLD "on average". That is, perhaps NEW was faster than OLD on balance 
when measured over a variety of inputs, or was faster in the majority of runs on 
the same input. In many experiments, execution times can vary substantially 
from one run to the next, for all the reasons discussed earlier-the layout of a 
file on disk, for example, could be different each time it is constructed, due to 
operating system variables. 

Whatever the cause of the variability, this experiment is based on two sets 
of times, one for NEW and one for OLD. But suppose that we have a large 
population of running times for NEW alone, and we draw two samples from 
this population. It is unlikely that the two samples will have identical averages. 
Either we conclude that NEW is faster than itself, or that NEW and OLD might 
in fact not be meaningfully different. This problem is particularly acute when 
in some cases OLD is faster (by, say, only a small margin) and in other cases 
NEW is faster (by a large margin). 
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The issue can be resolved with a hypothesis test, which compares the dis­
tribution of observations. Consider the figures on page 202. Both of the graphs 
show a pair of normal distributions in which the means are different. In the 
upper graph, the distributions cover much of the same area; most of the points 
under one are under the other. Intuitively, it seems quite possible that a single 
underlying population is involved, and that the differences are due to the ran­
domness of sampling choosing slightly larger instances in one case than in the 
other. In the lower graph, the distributions barely overlap at all. For the same 
underlying population to be involved, the sampling process would have had to 
be highly biased, choosing first a series of small values and then a series of 
high values. It seems improbable that this could happen by chance, so we con­
clude that the samples are in all likelihood drawn from separate populations. 
An example of application of a hypothesis test is shown later. 

There is a variety of hypothesis or significance tests. Statistics texts explain 
this material, as well as related topics such as confidence intervals. Always 
consider whether your work requires statistics to confirm its validity. 

Some researchers are deterred from considering statistics because of the 
high-powered mathematical analysis that may be involved. However, first, there 
are packages that do much of the hard work. Second, many statistical problems 
can be couched in terms of elementary probability and then resolved computa­
tionally. For example, consider the problem of identifying the likelihood that 
a particular tennis player will win a match, given that this player has an inde­
pendent probability of 60% of winning each point. The rules are: a game is 
won when either player has at least four points and a two-point advantage; a 
set is won when either player has at least six games and a two-game advan­
tage; a match is won when either player has a two-set advantage, or by the 
winner of the fifth set. Determining the probability of a win is non-trivial for 
the statistically innocent. 

However, it is easy to write a program that runs a series of matches with 
a simple random-number generator for determining who wins each point; over 
a few thousand matches the average converges on a reliable value. A more 
computationally sensible option is to run a large series of trials to determine the 
likelihood of winning a game, then use this value as input to determination of 
likelihood of winning a set, and so on. It is not difficult to check that such code 
provides reasonable answers and that the values do indeed converge. 16 Many 

16 A typical guess of the likelihood of the better player winning the match is 90% or 95%; in 

fact, the likelihood is close to certainty. 

When I once suggested to students that they test the code by running it with a probability of 
50% of winning each point, several argued strongly that the program wouldn't terminate--which 
is more or less equivalent to arguing that, when tossing coins, you can't get some given number 
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Hypothesis tests. In the upper figure, the means are different, but there is a 
reasonable likelihood that the samples are drawn from the same population, as 
the distributions have high overlap. In the lower figure, the means are different, 
and the distributions are well-separated; a hypothesis test should identify that 
these samples are drawn from different populations. 
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statistics can be estimated in this way; it was used, for example, to confirm 
the outcomes of the string-hashing experiments and to confirm the theoretical 
predictions for an ideal hash function, where random numbers and 32-bit pieces 
of pi were used in place of hash values. 

Intuition 

Intuition is often unreliable in the context of statistics. Perceptual fallacies are 
well known, such as the elementary mistake that, if the last few coin tosses were 
heads, then the next is likely to be tails. Coincidences are more memorable than 
non-coincidences; thus they seem more common than is in fact the case. A long 
random sequence will have short subsequences that appear non-random. If a 
selected subsequence has pattern, it is easy to jump to an incorrect conclusion. 

A well-known example is the three-box problem. A contestant in a game is 
told that one of X, Y, or Z contains a prize. The contestant chooses X but does 
not open it. The host then opens Y and shows that it is empty. Should the con­
testant change to Z or stay with X? Intuition says that it doesn't matter, as the 
probability of X containing the prize is 112. Careful analysis of the alternatives 
shows that Z contains the prize with probability 2/3, but when this problem was 
presented many mathematicians publicly argued that 112 was correct. 

In a variation of this error, suppose that person P has tossed two coins. 
Person Q asks if one of them is heads, and P says yes. Then the intuitive es­
timate of the probability that the other coin is heads is 112, on the basis that 
the status of one coin is independent of the other, but again this is wrong. The 
correct response is 1/3. The reason is that there are four possible configura­
tions: heads-heads, heads-tails, tails-heads, and tails-tails. Only tails-tails is 
eliminated by Q's question. 

Intuition often seems to fail in the context of randomness and hashing. For 
example, given a uniform random hash function, the likelihood of a given key 
hashing to any particular one of 1000 slots in a hash table is 1/1000. However, 
this does not mean that 1000 random keys will be allocated evenly amongst 
the slots; the likelihood of this event is an infitesimally low Tif��o i/1000. Nor 
is it feasible for all values to hash to the same slot; the probability of even 
twenty values hashing to any one slot is absurdly small. On the other hand, 
simple statistical estimators such as the Poisson distribution can make accurate 
predictions of values such as the number of empty slots (around 368). 

of heads in a row. They had confused the short-term variability (any number of consecutive 
throws of a head will come up eventually) with long-term averages. Such are the pitfalls of 
intuition. 
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Observers tend to make unsupported extrapolations from small numbers of 
events. A sequence of observations can be thought of as a tiny sample drawn 
from a vast population, and in statistical terms we would not expect a small 
sample to be representative. However, if a robot successfully traverses a room 
once, a researcher may well jump to the conclusion that the robot can always do 
so. The researcher has reasoned that the robot was designed to avoid obstacles ;  
i t  successfully did so; and therefore the robot was working as intended. But 
whether this conclusion is reasonable depends on other context. For example, 
consider a robot that moves entirely at random. It may nonetheless traverse the 
room without encountering obstacles-sometimes, but not always. If we ob­
served such a robot traversing a room, we could draw the inference that it was 
doing so by design. The general lesson from such cases is that a cautious re­
searcher should consider whether any assumptions are statistically reasonable. 

An experimentation checklist 

• What is to be measured? How is it be evaluated? 

• What code has to be obtained? What data has to be gathered? What has to 
be implemented? 

• Should the experimental results correspond to predictions made by a model? 

• What enduring properties might be observed by other people attempting to 
validate the work with different hardware, data, and implementation? 

• Have appropriate baselines been identified? 

• Do the results make sense? Are they consistent with any obvious points of 
comparison? 

• Is the code going to be made publicly available? If not, why not? 

• What variables might influence the results? How do the experiments dis-
tinguish between the effects of the variables? 

• Are statistical methods necessary for validation of the results? 

• What is the population? How is a sample to be taken? 

• Are notebooks being kept? What is being recorded in the notebooks? 

• Is ethics clearance required? 
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And diff'ring judgements serve but to declare, 
That truth lies somewhere, if we knew but where. 

William Cowper 
Hope 

Refereeing is a central part of the scientific process. Criticism and analysis of 
papers written by other scientists is the main mechanism for identifying good 
research and eliminating bad, and is arguably as important an activity as re­
search itself. This chapter is written for referees, to help guide reviewing, and 
for authors, to explain the standards expected of a submitted paper. 

Every new scientist eventually faces the task of refereeing a paper. Many 
find it intimidating, bringing as it does the possibility of wrongly criticizing 
somebody else's hard work, or of recommending that some irretrievably flawed 
research be published. Often the work to be refereed is unfamiliar and outside 
the referee's domain of expertise, yet a review must be written. Learning to 
referee is part of the apprenticeship of being a research student, and even mature 
researchers do not always referee well. It is easy to fall into a habit of careless 
or superficial refereeing-most researchers have stories to tell of good work 
rejected with only a few hasty words of explanation, or (if they are honest) of 
the most glaring errors going unnoticed by every member of a team of referees. 

Refereeing can be a chore, but deserves the same effort, care, and ethical 
standards as any other research activity. Careful refereeing has its rewards, and 
not just the gratitude of editors and authors. It can lead you to look at your 
own work from a fresh perspective. It can stretch you and so improve your 
capacity for productive and interesting research. And it exposes you to different 
kinds of error or failure in research; the typical standard of work submitted for 
publication is well below that of work that gets published. 
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Responsibilities 

When an author completes a paper, it is submitted to the editor of a journal (or 
the program chair of a conference) for publication. The editor sends the paper 
to referees, who evaluate the paper and return assessments. The editor then 
uses these assessments to decide whether the paper should be accepted, or, in 
the case of a journal paper, whether further refereeing or revision is required. 

Authors are expected to be honest, ethical, careful, and thorough in their 
preparation of papers. It is ultimately the responsibility of the author-not of 
the journal, the editor, or the referees-to ensure that the contents of a paper are 
correct. It is also the author's responsibility to ensure that the presentation is at 
an appropriate standard and that it is their own work unless otherwise stated. 

Referees should be fair, objective, maintain confidentiality, and avoid con­
flict of interest. In addition, they should complete reviews reasonably quickly 
(since delay can hurt an author's career), declare their limitations as reviewers, 
take proper care in evaluating the paper, and only recommend acceptance when 
confident that the paper is of adequate standard. Although referees can usually 
assume that authors have behaved ethically, many weak or flawed papers are 
submitted, and a disproportionate amount of refereeing is spent on such pa­
pers because they are often resubmitted after rejection. Moreover, it would be 
negligent of a referee to assume that a paper is correct and interesting for super­
ficial reasons such as good writing, impressive mathematics, or author prestige. 
Referees must also ensure that their reports are accurate and of an appropriate 
standard. 

The editor's responsibilities are to choose referees appropriately, ensure 
that the refereeing is completed promptly and to an adequate standard, arbitrate 
when the referees' evaluations differ or when the authors argue that a referee's 
evaluation is incorrect, and use the reports to decide whether the paper should 
be accepted. 

Contribution 

Contribution is the main criterion for judging a paper. However, there is no sin­
gle, straightforward definition of what a contribution is. It is primarily defined 
by the peer review process-if you like, by the opinions of referees. In broad 
terms, however, a paper is a contribution if it has two properties: originality 
and validity. 

The originality of a paper is the degree to which the ideas presented are 

significant, new, and interesting. Most papers are to some degree extensions or 
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variations of previously published work; really groundbreaking ideas are rare. 
Nonetheless, interesting or important ideas are more valuable than trivial in­
crements to existing work. Deciding whether there is sufficient originality to 
warrant publication is the main task of the referee. Only a truly excellent pre­
sentation, thorough and written well, can save a paper with marginal new ideas, 
while a revolutionary paper must be appalling in some respect to be rejected. 

When evaluating the significance of a contribution, it is helpful to consider 
its effect: to judge how much change would follow from the paper being pub­
lished and widely read. If the only likely effect is passing interest from a few 
specialists in the area, the paper is minor. If, on the other hand, the likely effect 
is a widespread change of practice or a flow of interesting new results from 
other researchers, the paper is indeed groundbreaking. 

That some ideas appear obvious does not detract from their originality. 
Many excellent ideas are obvious in retrospect. Moreover, the ideas in a well­
presented paper often seem less sophisticated than those in a poorly presented 
paper, simply because authors of the former have a better knack for explana­
tion. Obviousness is not grounds for rejecting a paper. The real achievement 
may have been to ask the right question in the first place or to ask it in the right 
way, that is, to notice that the problem even existed. Organization of existing 
ideas in a new way or within an alternative framework can also be an original 
contribution, as can reevaluation of existing ideas or methods. 

The validity of a paper is the degree to which the ideas have been shown to 
be sound. A paper that does no more than claim from intuition that the proposal 
should hold is not valid. Good science requires a demonstration of correctness, 
in a form that allows verification by other scientists. As discussed in Chapter 10 
such a demonstration is usually by proof or analysis, modelling, simulation, or 
experiment, or preferably several of these methods together, and is likely to 
involve some kind of comparison to existing ideas. 

In the area of algorithms, proof and analysis are the accepted means of 
showing that a proposal is worthwhile. The use of theory and mathematical 
analysis is one of the cornerstones of computer science: computer technology 
is ephemeral but theoretical results are timeless. Their very durability, however, 
creates a need for certainty: an untrustworthy analysis is not valuable. Thus a 
paper reporting experimental work can be a contribution. The experiment, to 
be of sufficient interest, should test behaviour that had not previously been 
examined empirically, or contradict "known" results. 

Demonstrations of validity, whether by theory or experiment, should be 
rigorous: carefully described, thorough, and verifiable. Experiments for as­
sessment of algorithms should be based on a good implementation; experi-
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ments based on statistical tests of subjects should use sufficiently large samples 
and appropriate controls. Comparison to existing work is an important part of 
demonstration of validity. A new algorithm that is inferior to existing alterna­
tives is unlikely to be significant. 

Evaluation of papers 

The process of evaluating a paper involves answering questions such as: 

• Is there a contribution? Is it significant? 

• Is the contribution of interest? 

• Is the contribution timely or only of historical interest? 

• Is the topic relevant to the likely readership? 

• Are the results correct? 

• Are the proposals and results critically analyzed? 

• Are appropriate conclusions drawn from the results, or are there other pos-
sible interpretations? 

• Are all the technical details correct? Are they sensible? 

• Could the results be verified? 

• Are there any serious ambiguities or inconsistencies? 

• What is missing? What would complete the presentation? Is any of the 
material unnecessary? 

• How broad is the likely readership? 

• Can the paper be understood? Is it clearly written? Is the presentation at an 
adequate standard? 

• Does the content justify the length? 

Of these, contribution is the single most important component, and requires a 
value judgement. It is not uncommon to have to referee a string of poor papers, 
but try to retain a long-term perspective. 

The presence of a critical analysis is also important: authors should cor­
rectly identify the strengths, weaknesses, and implications of their work, and 
not ignore problems or shortcomings. It is easier to trust results when they are 
described fairly. 

Most papers have an explicit or implicit hypothesis-some assertion that 
is claimed to be true-and a proposal or innovation. Try to identify what the 
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hypothesis is : if you can't identify it, there is probably something wrong, and 
if you can, it helps you to recognize whether all of the paper is pertinent to the 
hypothesis, and whether important material is missing. 

The quality of a paper can be reflected in its bibliography. For example, 
how many references are there? This is a crude rule-of-thumb, but often effec­
tive. For some research problems there are only a few relevant papers, but such 
cases are the exception. Giving only a few references may be evidence of bad 
scholarship. Also, some authors cite a reasonable number of papers without 
actually citing related literature, thus disguising a core bibliography that is far 
too short. If many of the references are by the author, it may be that some of 
them are redundant. If only a couple of the references are recent, how sure can 
you be that the paper is valid? The author doesn't appear to be familiar with 
other research. Similarly, be suspicious of papers with no references to the ma­
jor journals or conferences in the area. Also, some references age more quickly 
than others. Most technical reports describe work in preparation and are not 
refereed, and thus readers have less confidence that their contents are correct. 
Once the technical report has been accepted for publication somewhere, it is 
the refereed version that should be cited. A corollary is that, often, old techni­
cal reports are papers of dubious merit that have been persistently rejected, and 
shouldn't be cited. 

Occasionally an author submits a paper that is seriously incomplete. No 
effort has been made to find relevant literature, or the proofs are only sketched, 
or the paper has quite obviously never been proofread, or, in an extreme case, 
the paper does little more than outline the basic idea. With such papers the 
author is possibly just kite-flying, with no real expectation that the paper be 
accepted. Such authors perhaps want to establish that an idea is theirs, without 
going to the trouble of demonstrating its correctness, or are simply tired of 
the work and hope referees will supply details they haven't bothered to obtain 
themselves. Such papers don't deserve a thorough evaluation. However, don't 
be too quick to judge a paper as being in this category. 

Referees should undertake at least elementary nitpicking, to search for er­
rors that don't affect the quality of the work but should be corrected before 
going into print. These include spelling and syntax, written expression, errors 
in the bibliography, whether all concepts and terms have been defined or ex­
plained, errors in any formulas or mathematics, and inconsistency in just about 
anything from variable names to table layout to formatting of the bibliography. 

Nitpicking errors can become more serious defects that might make the 
paper unacceptable. A few typographic errors in the mathematics are to be 
expected, for example, but if the subscripts are often mixed up or the notation 
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keeps changing case then it is quite likely that the author has not checked the 
results with sufficient care. 

Similar arguments apply to the presentation: to a certain extent poorly writ­
ten papers must be accepted (however reluctantly), but real incompetence in the 
presentation is grounds for rejection, because a paper is of no value if it cannot 
be read. But note that the converse does not apply: excellence in presentation 
does not justify acceptance. Occasionally a referee receives a paper that is well 
written and shows real care in the development of the results, but which does no 
more than reproduce existing work. Such papers must, regrettably, be rejected. 

A difficult issue for some papers is whether to recommend outright rejec­
tion or to recommend resubmission after major changes. The latter means that, 
with no more than a reasonable amount of additional work, the paper could 
be of acceptable standard. This recommendation should not be used as a form 
of "soft reject", to spare the author's feelings or some such, while asking for 
changes that are in practice impossible; eventual acceptance, perhaps after sev­
eral more rounds of refereeing, is the usual final result of such a recommen­
dation. If getting the work to an acceptable standard will involve substantial 
additional research and writing, rejection is appropriate. This verdict can be 
softened in other ways, such as suggesting that the paper be resubmitted once 
the problems have been addressed. 

As a consequence of the peer review system, active researchers should ex­
pect to referee about two to three times as many papers as they submit (or 
somewhat less if their papers are usually co-authored) and only decline to ref­
eree a paper with good reason. For many papers, there may be no potential 
reviewer who is truly expert in the area, so be prepared to referee even when 
not confident in your judgement of the paper. Always state your limitations as 
a reviewer-that you are unfamiliar with the literature in the area, for example, 
or were not able to check that certain proofs were correct. That is, you need to 
admit your ignorance. 

A referee should not recommend acceptance if the paper is not of adequate 
standard in some respect-the onus is on the referee to fully evaluate the paper. 
Referees who are unable to assure the quality of the paper should not recom­
mend acceptance without an appropriate caveat. 

Referees' reports 

Refereeing of papers serves two purposes. The explicit purpose is that it is the 
mechanism used by editors to decide whether papers should be accepted for 

publication. The implicit purpose-equally important, and often overlooked-
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is that it is a means of sharing expertise between scientists, via comments for 
the authors. Reviews usually include other things besides written comments 
(such as scores on certain criteria, used to determine whether the paper should 
be accepted), but it is the comments that authors find valuable. The report 
should make some kind of case about the paper: whether it is of an adequate 
standard and what its flaws are. That is, it is an analysis of the paper, explaining 
why it is or is not suitable for publication. 

There are two main criteria for measuring referees '  reports. 

• Is the case for or against the paper convincing? 

When recommending that a paper be accepted, the editor must be persuaded 
that it is of an adequate standard. Brief, superficial comments with no dis­
cussion of the detail of the paper provoke the suspicion that the paper has 
not been carefully refereed. A positive report should not just be a summary 
of the paper; it should contain a clear statement of what you believe the 
contribution to be. 

When recommending that a paper be rejected, a clear explanation of the 
faults should be provided. It is not acceptable, for example, to simply claim 
without references and explanation that the work is not original or that it 
has been done before-why should the author believe such a claim if no 
evidence is given? Having gone to considerable lengths to conduct and 
present their work, few authors will be persuaded to discard it by a couple of 
dismissive comments, and will instead resubmit elsewhere without making 
changes. 

• Is there adequate guidance for the authors? 

When recommending that a paper be accepted, referees should describe 
any changes required to fix residual faults or to improve the paper in any 
way-technically, stylistically, whatever. If the referee doesn't suggest 
such changes, they won't get made. 

When recommending that a paper be rejected, a referee should consider 
what the authors might do next-how they can proceed from the rejection to 
good research. There are two cases. One is that the paper has some worth­
while core that, with further work, will be acceptable. A referee should 
highlight that core and explain at least in general terms how the authors 
should alter and improve their work. The other case is that nothing of the 
work is worthwhile, in which event the referee should explain to the author 
how to come to the same conclusion. Sometimes the referee just cannot tell 
whether there is worthwhile material because of defects in the presentation. 

It is helpful to explain to the authors how they might judge the significance 
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of their work for themselves by, for example, sketching questions the au­
thors should consider. 

There are many reasons why these criteria should be observed. The scientific 
community prides itself on its spirit of collaboration, and it is in that spirit 
that referees should help others to improve their work. Poor reviews, although 
saving the referee effort, make more work for the research community as a 
whole: if a paper's shortcomings are not adequately explained, they will still 
be present if the paper is resubmitted. Most of all, poor refereeing is self­
reinforcing and is bad for scientific standards. It creates a culture of lacklustre 
checking of other people's work and ultimately saps confidence in published 
research. 

In a review recommending acceptance, there is no further chance to correct 
mistakes-the referee is the last expert who will carefully examine the paper 
prior to its going into print. Only obvious errors such as spelling and punc­
tuation may be caught later. The referee is obliged to carefully check that the 
paper is substantially correct: no obvious mathematical errors, no logical errors 
in proofs, no improbable experimental results, no problems in the bibliography, 
no bogus or inflated claims, and no serious omission of vital information or 
inclusion of irrelevant text. 

In reviews that recommend rejection or substantial revision, such fine-grain 
checking is not as important, since (presumably) the paper contains gross errors 
of some kind. Nonetheless some level of care is essential, if only to prevent a 
cycle of correction and resubmission with a few points addressed each time. 
Specific, clear guidance on improving the paper is always welcome. 

First impressions of papers can be misleading. My refereeing process is to 
read the paper and make marginal notes, then decide whether the paper should 
be accepted, then write the comments to the authors. But often, even in that last 
stage, my opinion of a paper changes, sometimes dramatically. Perhaps what 
seemed a minor problem is revealed as a major defect, or perhaps the depth 
of the paper becomes more evident, so that it has greater significance than had 
seemed to be the case. The lesson is that referees should always be prepared to 
change their minds, and not get committed to one point of view. 

Another lesson is that positives are as important as negatives: reviews 
should be constructive. For example, in the refereeing process it is sometimes 
possible to strengthen the paper anonymously on behalf of the author. The ref­
ereeing process can all too easily consist of fault-finding, but it is valuable for 
authors to learn which aspects of their papers are good as well as which aspects 
are bad. The good aspects will form the basis of any reworking of the material 
and should thus be highlighted in a review. Even in the case of a paper that a 
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referee believes to be totally without contribution, it i s  helpful to explain how 
the author might verify for themselves whether this evaluation is correct. 

Some referees construct flaws in papers where none exist. For example, an 
assessment may include generic statements that could be made almost regard­
less of relevance to the paper's topic, such as "the authors have not considered 
parallel architectures" on a paper about document processing. Other examples 
are vague complaints such as "the problem could have been investigated more 
deeply" or "aspects of the problem were not considered". Comments of this 
kind suggest that the referee is not concerned with making a fair evaluation. If 
there is a genuine problem, then describe it, preferably with examples; other­
wise say nothing. 

Referees should offer obvious or essential references that have been over­
looked (if they are reasonably accessible), but should not send authors hunt­
ing for papers unnecessarily, and should refrain from pointing to inaccessible 
references such as their own technical reports. A referee who recommends ac­
ceptance requires at least a passing familiarity with the literature-enough to 
have reasonable confidence that the work is new and to recommend references 
as required. 

Reviewers need to be at least reasonably polite. It can be tempting to break 
this rule (particularly when evaluating an especially frustrating or ill-considered 
paper) and be patronizing, sarcastic, or downright insulting, but such comments 
are not acceptable. 

Some review processes allow for confidential remarks that are not seen by 
the author. You can use these remarks to emphasize particular aspects of your 
report or, if the editor requested a score rather than a recommendation to accept 
or reject, to state explicitly whether the paper should be accepted. However, 
since authors have no opportunity to defend themselves against comments they 
cannot see, it is not appropriate to make criticisms in addition to those visible 
to the author. 

A refereeing checklist 

When you recommend that a paper be accepted, you should do the following: 

• Convince yourself that it has no serious defects. 

• Convince the editor that it is of an acceptable standard, by explaining why 
it is original, valid, and clear. 

• List the changes, major and minor, that should be made before it appears 

in print, and where possible help the author by indicating not just what to 
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change but what to change it to (but if there are excessive numbers of errors 
of some kind, you may instead want to give a few examples and recommend 
that the paper be proofread). 

• Take reasonable care in checking details such as mathematics, formulas, 
and the bibliography. 

When you recommend that a paper be rejected, or recommend that it be resub­
mitted after major changes, you should do the following: 

• Give a clear explanation of the faults and, where possible, discuss how they 
could be rectified. 

• Indicate which parts of the work are of value and which should be dis­
carded, that is, discuss what you believe the contribution to be. 

• Check the paper to a reasonable level of detail, unless it is unusually sloppy 
or ill-thought. 

In either case you should do the following: 

• Provide good references with which the authors should be familiar. 

• Ask yourself whether your comments are fair, specific, and polite. 

• Be honest about your limitations as a referee of that paper. 

• Check your review as carefully as you would check one of your own papers 
prior to submission. 
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People will work every bit as hard to fool 
themselves as they will to fool others. 

Robert Park 
Voodoo Science 

The Piltdown hoax . . .  seriously delayed and distorted the 
urgent work of science . . .  Young scientists and old alike wasted 
untold thousands of hours on the Piltdown phenomenon . . .  [It] 

was nothing short of despicable, an ugly trick played by a 
warped and unscrupulous mind on unsuspecting scholars. 

John Evangelist Walsh 
Unravelling Piltdown 

These words hereafter thy tormentors bel 

William Shakespeare 
Richard II 

Science is built on trust. Researchers are expected to be honest and research 
is assumed to have been undertaken ethically. For example, referees assess 
whether results are significant but rarely investigate whether the reported ex­
periments actually took place, because it is assumed that the authors have not 
lied about their work. 

The major societies of science have codes of conduct that scientists are ex­

pected to adhere to. Breaches of these codes are regarded as extremely serious; 
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even the most senior academics have been sacked for offences committed many 
years earlier. Familiarity with these codes and their implications for day-to-day 
work is essential for a practicing scientist. In brief, the scientific community 
expects published research to be new, objective, and fair; researchers should not 
present opinion as fact, distort truths, plagiarize others, or imply that previously 
published results are original. 

The most conspicuous form of unethical behaviour is plagiarism, because 
it steals work from other scientists and the hurt to others is obvious. (Also, it 
is relatively easy to detect.) However, other forms of misconduct are arguably 
as pervasive. One is abuse of power, such as when senior academics insist 
on being listed as authors of papers they have not contributed to. Another is 
fraud, in which claimed results were not in fact observed. In medicine, fraud is 
viewed as serious because of issues such as the potential consequences--deaths 
and vast financial liabilities-and because of high-profile cases in which fraud 
has been detected. In computer science, there is also the potential for such 
issues. The safety, reliability, and security of computer systems is increasingly 
a central element of our social infrastructure. Researchers who make grandiose 
claims based on poor evidence and whose work is subsequently acted on are 
creating risks, and may be held responsible for the consequences. For example, 
in some cases the software replaced due to concerns raised by the Y2K "bug" 
was in fact perfectly reliable; some software replacement may have increased 
risk rather than otherwise. 

Issues of ethical concern for science include misrepresentation, plagiarism 
and self-plagiarism, authorship, confidentiality and conflict of interest, harrass­
ment and abuse of power, and use of human subjects. The ethics of studies of 
human subjects are complex, and are beyond the scope of this book. The other 
issues are discussed in this chapter. 

It would be satisfying to be able to give a formula for handling ethical 
issues. However, the two principal pieces of advice on this topic contradict 
each other. One is that problems that at first sight seem to be intractable ethical 
conflicts often turn out to be more superficial; it is sensible to wait and reflect 
before pursuing action. The other piece of advice is that unresolved tensions 
can fester, with the potential to permanently damage a relationship; it is sensible 
to take steps before too much harm is done. 

A difficulty in resolving such issues is the imbalance between advisor and 
student, or between senior and junior academics. If you believe that there is an 
issue to resolve that cannot be resolved fairly by a direct approach, you need to 
seek confidential advice and support, preferably from a senior academic who 
knows the individuals involved and who can understand the issues. It can be 
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difficult to take this step, but it i s  essential. Keep in mind that public accusa­
tion, justified or otherwise, can end a career. Mishandled, a genuine grievance 
can become a scandal in which any of the participants is a potential victim. 
Moreover, while issues such as whistleblowing and breaches of research ethics 
can be highly politicized, and it can be intimidating to approach a senior figure 
with accusations about a colleague, academics are in the main highly principled 
people who can be relied on to be fair. 

Plagiarism 

A central element of the process of science is that each paper is an original 
contribution of new work. Scientists' reputations are built primarily on their 
papers: both the work and how it is reported. 

Plagiarism is re-use in one paper of material that has appeared in another, 
without appropriate acknowledgement. The theft may involve ideas, illustra­
tions, results, text, or even whole papers; and includes, not just copying from 
published papers, but from material in electronic form, such as web pages, news 
articles, or email. By plagiarizing, a researcher hopes to obtain credit for work 
that has already been published, and not necessarily by someone else (the is­
sue of self-plagiarism is discussed in the next section). However, while some 
people do make a deliberate decision to steal and there is a complex range of 
factors that lead people to plagiarize, one cause of plagiarism seems particularly 
common: misjudgement by an inexperienced researcher. 

Such misjudgements can arise when a research student is unaware of ap­
propriate academic style. For example, a researcher investigating B-trees may 
find an elegant illustration in a textbook and decide that it is perfect for a forth­
coming paper; but copying this illustration (either by scanning it or drawing an 
imitation of it) is plagiarism. Similarly, a researcher describing B-trees may 
feel that a paragraph in a reference cannot be improved on; but copying it ver­
batim is plagiarism. Even a close paraphrase of it is likely to be plagiarism. 

Another form of misjudgement is inappropriate or inadequate citation. Sup­
pose that Barlman and Trey (2001)  wrote the following: 

The impact of viruses has become a major issue in many large organi­
zations, but most still rely on individual users maintaining virus defini­
tions, with no internal firewalls to protect one user from another. How­
ever, any structure is only as strong as its weakest link; these organiza­
tions are highly vulnerable. 

It would then be considered plagiarism to write the following: 
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X Viruses have become a major issue in many large organizations, but 
most organizations still rely on users maintaining virus definitions on 
their individual computers, with no internal firewalls to protect one 
computer from another. However, any structure is only as strong as 
its weakest link; these organizations are highly vulnerable to infection 
(Barlman and Trey 2001 ). 

In this example, a citation is given, but it isn't clear that it refers to the whole 
block of text. Also, there is nothing to indicate that the wording is unoriginal­
despite a few small changes, the text is copied. If the wording or the sense of 
the original text is required, it would instead be appropriate to write something 
like the following: 

,/ As discussed by Barlman and Trey (2001 ), who investigated the impact 
of viruses in large organizations, "most still rely on individual users 
maintaining virus definitions, with no internal firewalls to protect one 
user from another. However, any structure is only as strong as its weak­
est link; these organizations are highly vulnerable." 

Alternatively, the essence of the original can be concisely summarized, with 
clear attribution: 

,/ Barlman and Trey (2001 )  investigated the impact of viruses in large or­
ganizations. They found that organizations are vulnerable if individuals 
fail to keep virus definitions up to date, as internal firewalls are rare. 

The lesson of this example is that citation by itself is not sufficient. It is nec­
essary to indicate exactly what material is taken from the reference, and to 
identify that material as a quote. 

The following is adapted (to protect the guilty) from a real example: 

X This distribution of costs follows a power law [2] in which only a few 
tasks have high impact. The form of the law is [13] for fixed cost C 
given by P(x > C) "'  2-ak where a >  1 and k > 1 .  The parameter a 
describes user behaviour. Determination of k for a specific application 
can be achieved through modelling as a Poisson distribution. 

In this example, everything but the citations are copied from the reference "[2]", 
including the erroneous misplacement of k, which should be a superscript. 

Paraphrase of the structure of a paper is also plagiarism. If one paper fol­
lows another to the extent that they use the same headings, have tables of the 
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same layout, cite much the same background literature, describe the literature 
with respect to the same criteria, and have similarly designed experiments with 
similar data exploring the same properties, then the second paper is plagiarized. 

These kinds of plagiarism can arise when trying to start a paper (or impress 
an advisor). An author might, for example, copy the background of a paper 
with the intention of replacing it later on; or an advisor might give a student 
an existing paper to use as a model, and the student might then keep some of 
the text; or any of a range of such scenarios. Without adequate guidance about 
plagiarism, it is understandable that inexperienced scientists make mistakes, 
especially when other similar mistakes are in published papers. 

It is easy to avoid plagiarism. When writing fresh text, avoid using other 
text as a guide, even if you are discussing outcomes reported by someone else. 
Cite other text, and be explicit about which material in your work is derived 
from elsewhere: mark where the cited material begins and where it ends. Use 
quotation marks for borrowed text. Construct reference lists by enumerating 
the papers you have read, not by copying the lists in other papers. And design 
all your own pictures. 

For advisors, a lesson is that na.lve students may copy, unintentionally or 
otherwise. Advisors need to ensure that their students understand what pla­
giarism is and that their material is original. All of the authors are culpable if 
published material turns out to be plagiarized. 

Self-plagiarism 

Authors who re-use their own text may well be plagiarizing. Using the same 
text in two papers is a step in the direction of publishing the same work twice. 

Some scientists feel that it is acceptable to re-use their own background 
material from paper to paper. A series of papers may be based on the same 

ideas or previous work, and-it might be argued-rewriting the background 
each time is pointless. However, there are both ideological and pragmatic ar­
guments against this practice. First, if an author is in the habit of copying the 
background in each paper, the material is likely to rapidly become stale, and 
authors who adopt this practice often seem unwilling to adapt the material even 
for papers on a different topic; in contrast, the discipline of writing new text 
each time helps to keep the material fresh. Second, a high-quality discussion 
of background material or of competing proposals adds weight to a paper, and 
increases the chance of it being accepted; by copying, the author is obtaining 
credit for old work. Third, some scientists view any significant re-use as im­
proper, and authors presumably do not wish even a minority of their colleagues 
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to view them as lazy or unethical. Fourth, most researchers work in teams of 
shifting membership. The authors of a paper collectively own its text; for some 
of the authors to take text and re-use it is inappropriate. The safe approach is to 
write fresh text for each new paper. 

Publication of more than one paper based on the same results is prohib­
ited under the standard scientific codes of conduct. An exception is when there 
is explicit cross-referencing, such as by reference to a preliminary publication 
from a more complete article that is a later outcome of the same research. (This 
is the one instance in which significant re-use of text can be acceptable.) Si­
multaneous submission to more than one journal or conference of papers based 
on the same results should be disclosed at the time of submission; the usual re­
sponse to such a disclosure is to ask you to withdraw the paper. In this context, 
"the same results" does not necessarily mean a particular experimental run; if 
an experiment has been tried on some data, running the same experiment on 
other data is not new work unless it leads to new conclusions. 

In the context of plagiarism and self-plagiarism, remember that publica­
tions are a permanent record. It may well be that a researcher successfully 
publishes the same results twice, or publishes a series of papers with figures 
and text in common, and in so doing rapidly develops an impressive publica­
tion list. But as time passes it is increasingly likely that such abuses of the 
system will be noticed, and there is no statute of limitations on plagiarism. The 
zeal of young researchers to publish should not blind them to the possibility of 
disciplinary action years or decades in the future. (In 2002, the Vice Chancellor 
of the largest Australian university had to resign when it was discovered that he 
had plagiarized as a junior academic.) 

Self-plagiarism can also be considered from the point of view of copyright. 
In most instances, when you publish a research paper the copyright is assigned 
to the publisher, who thus owns, not the ideas, but your expression of them. The 
publisher also owns the paper's illustrations. The issue of re-use of material is 
then one of property. Technically, an author who re-uses more than a couple 
of paragraphs or a figure requires the publisher's permission. Although it is 
improbable that a publisher would be concerned by a minor breach, copyright 
law does establish an alternative benchmark for what is acceptable. Moreover, 
although some academics regard copyright law as excessively restrictive of free 
speech and would prefer to see alternative forms of refereed publication, this 
does not mean that these academics approve of self-plagiarism. 

Many authors make their papers available via the web. Such informal pub­
lication opens the issue of copyright: editors of journals or conferences might 
regard a paper that has been made available in this way as already published, 
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and decline to consider it for formal publication. However, publishers increas­
ingly accept that authors use the web in this way, while, for example, requiring 
that an appropriate copyright notice be inserted. 

Misrepresentation 

Misrepresentation is when a paper does not accurately reflect the outcomes that 
were observed or the contribution of previous research. (Misrepresentation in 
the context of pseudoscience was discussed on page 178.) When presenting 
results, researchers are expected to ensure that they are accurate, describe any 
experimental issues or limitations that could have affected the outcome, provide 
enough detail to enable reproduction or verification, be fair in description of 
other work, report negative as well as positive results, not state falsehoods, and 
take the effort to ensure that statements are complete and accurate. However, 
an honest mistake is not misconduct. 

In its clearest form, misrepresentation is fraud: the making of claims that 
are outright false. Other forms of misrepresentation are more subtle. A be­
haviour that is far too common and, arguably, is fraud is to understate other 
people's work. It can be tempting for authors to exaggerate the significance 
and originality of their results, and to diminish the status of previous results in 
the field, to increase the likelihood of their work being published. If you would 
be uncomfortable defending what you have written about other people's work, 
then your text should probably be changed. 

Another form of misrepresentation is when authors imply that they have 
high confidence in their results when in fact the experiments were preliminary 
or were limited in some way. For example, reported running times may be 
based on a small number of runs with high variance, or there may be uncer­
tainties about the quality of the implementation. Even more dubious are cases 
where the efficiency of a method being tested is based on some parameters, and 
the reported times are those achieved by tuning the parameters to the input data. 
Failure to report relevant unsuccessful experiments is explicitly condemned in 
the academic codes of conduct. 

The issue of misrepresentation arises with online publication. When an 
author discovers an error in an online paper it is all to easy to correct it silently, 
with no explicit indication that the paper has changed. (Such changes can be 
made to a printed technical report, but the continued existence of the original 
version means that there is a fixed document to refer to.) Modifications to 
online papers should always be made explicit, by use of a version number and 

date of publication; and the original version should continue to be available, as 
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others may have referred to it. Retrospective alteration of a document is not 
something that should be done lightly. 

It is because of the possibility of misrepresentation that codes of conduct 
require that scientists and departments retain their research data. A typical 
requirement is that the data must be held for five years from the date of publi­
cation and must be accessible to other researchers. In computer science, a rea­
sonable interpretation of this guideline is that it is necessary to keep notebooks, 
software, results, and descriptions of inputs-the material that establishes that 
the research took place with the claimed outcomes. In computer science, im­
plementation of such guidelines is at best inconsistent, but a central lesson is 
that it is reasonable for other scientists to seek to view your experimental setup 
as reported in a paper. 

Authorship 

Deciding who has merited authorship of a paper can be a difficult and emo­
tional issue. A broadly accepted view is that each author must have made some 
significant contribution to the intellectual content of the paper. Thus directed 
activities such as programming do not usually merit authorship, nor does proof­
reading. An author should have participated in the conception, execution, or 
interpretation of the results, and usually an author should have participated to 
some degree in all of these activities. The point at which a contribution be­
comes "significant" is impossible to define, and every case is different, but nei­
ther code-cutting under the direction of a researcher nor management roles such 
as obtaining funding justify authorship. Nor is it appropriate to give authorship 
as a reward or favour. 

A researcher who has contributed to the research must be given an oppor­
tunity to be included as an author, but authors should not be listed without their 
permission. On the other hand, involvement in an extended project does not 
guarantee authorship on every paper that results from the project. Contributors 
who are not authors should be acknowledged in some way. 

Papers that are generated during the course of a student's research program 
are often jointly attributed to both student and advisor. Usually the student has 
undertaken the bulk of the task: capturing some idea in writing, running exper­
iments, and locating background literature, for example. However, often the 
work would not have reached a reportable outcome without the involvement of 
the advisor. When students work independently, the research is theirs alone, but 
a student who has put in the majority of the effort while working under super­
vision should remember that it is intellectual input that determines authorship. 



Ethics 223 

An advantage to inclusion of the advisor as an author is that the advisor is 
committing to responsibility for the quality and originality of the work. 

It is not appropriate for an advisor to publish the work of a student with­
out the student's permission; if the student has completed a thesis reporting 
some research results, then the student has earned authorship on papers derived 
from these results. Nor is it appropriate for the student to publish without the 
permission of the advisor. 

A related issue is that of author order, since readers may assume that the 
first author is the main contributor. A researcher who is clearly the main con­
tributor should be listed first-don't believe Alfred Aaby when he tells you that 
alphabetic ordering is the norm. 

Confidentiality and conflict of interest 

Researchers need to respect each other's privacy. Sharing of a computer sys­
tem with other people does not mean that one has the right to use their data 
without permission, for example, or to disclose their results to other people. 
Code or executables may be made available under terms such as commercial­
in-confidence, and the fact that many people use software they haven't paid for 
does not mean that it is appropriate for researchers to do so. 

Commercial relationships may need to be disclosed to editors or in the text 
of a submitted paper. Researchers who are publishing work on products or 
technologies should not conceal their involvement with the companies that own 
these products. 

Another area where there is potential for conflict of interest is in refereeing 
of papers and grant proposals, and examination of theses. Researchers should 
not referee a paper where there is a possible conflict of interest, or where there 
is some reasonable likelihood that it will be difficult for the referee to main­
tain objectivity; or even where others might reasonably suspect that the referee 
would be unable to maintain objectivity. Examples include papers by a recent 
advisor, student, or co-author of the referee, or an author with whom the referee 
recently had close interaction, including not only personal or employment re­
lationships but also situations such as competition for an appointment. In such 
cases, the referee should return the paper to the editor (and explain why). 

It can be difficult to maintain objectivity if the author's opinions strongly 
conflict with your own. Make every effort to be fair, or seek an alternative 
referee. Also, your evaluation should be based on the paper alone; don't be 
swayed by the stature of the author or institution. Perhaps the trickiest case 

is that of a paper replicating your current work, or worse, is a faulty version 
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of work you are currently doing but illustrates that you have made mistakes 
too. Probably the only solution is to contact the editor, state the case, and seek 
guidance. Whatever you do, act quickly; delay hurts the author. 

A related issue is of confidentiality: papers are submitted in confidence and 
are not in the public domain. Papers you are reviewing should not be shown 
to colleagues, except as part of the refereeing process; nor should they be used 
as a basis for the your own research. In practice there is something of a grey 
area-it is impossible not to learn from papers you are refereeing, or to ignore 
the impact of their contents on your own work. Nonetheless, the confidentiality 
of papers should be respected. 

An ethics checklist 

• Is all the text yours? 

• Are you the copyright holder for all figures and illustrations? 

• Have any authors been listed without their knowledge? 

• Have other potential authors been omitted? Do they know that publication 
is proceeding without them? 

• Is any of the material confidential? 

• Was clearance obtained for any human studies? 

• Is the scope of citation and attribution clear? Is there a clear distinction 
between new work and previous knowledge? 

• Has other work with similar results been appropriately cited and discussed? 

• If any material is shared with another paper, has the sharing been explained 
to the reader? Has it been explained to the editor? 

• Does the paper include material recycled from your earlier work? 

• Are other papers accurately described? 

• Do you know which version of the code was used to run the experiments? 
Could you run the experiments again and get the same outcome? 

• Are there any weaknesses or limitations in the experiments that need to 
be described? Would you be prepared to show other researchers the raw 
experimental materials? 

• Are any claims overstated? 
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Members [use] a close, naked, natural way of 
speaking; natural expressions; positive expressions; 

clear senses; a native easiness: bringing all things 
as near the Mathematical plainness, as they can. 

Bishop Thomas Sprat 
History of the Royal Society 

You, having a large and fruitful mind, should not 
so much labour what to speak as to find what to 

leave unspoken. Rich soils are often to be weeded. 

Francis Bacon 

Letter to Coke 

Scientists often have to talk about their work in front of an audience. The 
success of a talk depends on factors such as the skill of the speaker and the 
audience's interest in the topic. There are many common problems in presen­
tation of talks that can be addressed by careful preparation and familiarity with 
the possible pitfalls. Only practice can tum a nervous researcher into an ac­
complished public speaker, but with the right preparation even a first talk can 
be successful. 

In contrast to a paper, a talk leaves no permanent record for the audience to 
dissect at leisure. The purpose of a talk is to introduce a research program and 
persuade the audience that the work is significant and interesting. There can 
be inaccuracies or generalizations that would be unacceptable in a paper, while 
obvious mistakes--or even correct statements that have not yet been justified­

may be criticized immediately. Detail that is essential to a paper is often of little 
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value in a talk. The principles of organization and presentation for a talk are 

quite different to those of a write-up. 

Presentations (half-hour or one-hour explanations of research) are the topic 

of this chapter. Some issues, such as speaking skills and good design of slides, 

are applicable to any form of presentation. Others are primarily of relevance 

to brief research talks. For example, in contrast to the task of giving lectures, 

in talks it is more important to get the timing right, while detailed explanations 

may be unimportant, and the audience management skills may be very differ­

ent. Experience with any kind of audience is of value, but may be only a partial 

preparation for learning to talk about research. 

Content 

The first step in preparation of a research talk is deciding what to cover. Such 

talks are usually based on a paper or thesis, or on work in preparation, but most 

papers have far more detail than can be conveyed in half an hour. Problems 

of this kind are highlighted in the experiences of research students. The initial 

reaction of a typical student preparing a talk is concern that there isn't enough 

to say, but the initial reaction of an advisor is, often, that the student's draft talk 

is far too long. Thus the content must be selected carefully. 

What and how much to select depends not only on the time available but 
also on the expertise of the audience. A workshop attended by specialists in 

a narrow topic would suggest a different talk to one to be given to researchers 
in your department. Papers are usually specialized, but a diverse audience may 

be unfamiliar with even the area of your research, so it may be necessary to 

introduce basic concepts before proceeding to the results. For any audience, 

there is no need for a talk to be an overview of the paper; it is an introduction to 

the ideas and research results described in the paper, and many paths can lead 

to that same outcome of teaching the audience about your work. 

When constructing a talk, begin by choosing the single main goal, that is, 
the particular idea or result the audience should learn. Then work out what 

information is required before the result can be understood. Often this infor­

mation is in effect a tree whose branches are chains of concepts leading to the 

result at the root. Much of the hard work of assembling the talk is pruning the 

tree, both to suit the audience and to strip the talk down to essential points that 

listeners should remember. 

An approach to gathering material for a talk is "uncritical brainstorming, 
critical selection" (which can also be applied to writing). In the first phase, jot 

down every idea or point that might be of value to the audience, that is, list 
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the topics you might conceivably have to cover. Imagine yourself chatting with 
someone about your work, and note down the things you might say. During 
this first phase it is helpful to not judge each point, because questioning as you 
write tends to stall the brainstorming process. It can be helpful to set a time 
limit on this phase of no more than twenty minutes. 

In the second phase, assemble the talk by critically selecting the important 
points and ordering them into sequence. During the second phase you should 
judge harshly because otherwise the talk will contain too much material; be 
lean and leisurely, not crowded and hasty. 

A talk should be straightforward, although it can be used to convey com­
plex ideas. Rather than asking yourself what you want to tell the audience-the 
interesting little issues explored, the technical problems confronted, the failings 
of the previous research-consider what the audience needs to know to under­
stand the main . result. Remember that a talk is a discussion with peers, not a 
sales pitch or a political speech. There should be a logical reason for the inclu­
sion of each part of the talk. Provide the minimum of detail that allows the au­
dience to understand the result, while being inclusive. If the audience believes 
that they have learnt enough to confidently discuss the work with someone else, 
they will feel that the talk was of value. Think of the talk as a demonstration 
that the work is of value and, in particular, that your papers are worth reading. 

Context can be as important as the ideas themselves. Take the time to ex­
plain why a problem is important, where it arises, or why previous approaches 
are unsatisfactory. Motivate the listeners so that they want to hear how a prob­
lem was solved. Use repetition to emphasize major points; present a second 
example, or explain the impact of the work in several contexts. And use key 
examples: show how it works, why it works, or problems it solves. 

Complex issues should be presented slowly and in stages; avoid detail that 
the audience is unlikely to follow. Once listeners do not understand the flow 
of the discussion, they are lost and will remain that way. Material that some 
speakers present but shouldn't includes messy details such as the internals of a 
system, a proof of a theorem (attempting to walk the audience through a long 
series of logical steps is a particularly bad idea), the elements of an architecture, 
technicalities, or arcane information that is only of interest to a few specialists. 
There are of course cases in which such material is necessary-the proof might 
be the main idea to be conveyed, for example, or the theorem so unlikely that 
the proof, or its outline, is required to convince likely skeptics-but as a rule the 
audience is more satisfied if not exposed to intricate material that is unnecessary 
to understanding of the overall result. 

Some material, panicularly abstract theory, is dry and difficult to present 
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in an interesting way. However, there are alternatives to using the presentation 
to work through the details of a theory. Rather than just discuss the research, 
explain the relationship of the results to the broader research area. Explain 
why the project was worth investigating or consider the effect of the results on 
related research. Listeners who are interested in the theory itself can speak to 
you privately or read the paper afterwards. 

A talk is an opportunity to discuss problems. A speaker who is not frank 
about shortcomings or difficulties, but is then exposed during questioning, can 
look foolish. Obstacles are part of doing research and, not only can they add 
interest to a talk, but just possibly the audience may offer solutions. 

Never have too much material for the alloted time. Either you hurry through 
your talk, not explaining the ideas well and getting flustered, or you run over 
time, the audience is irritated, and the time for subsequent speakers is cut-not 
something for which they will thank you. 

Organization 

A crucial difference between a talk and a paper is that talks are inherently linear. 
A reader can move back and forth in a paper and has the leisure of putting the 
paper aside for a time; but in a talk the audience must learn at the speaker's 
pace and cannot refer to material that was presented earlier on. Talks must be 
designed within this constraint. A standard structure is of a sequence of steps 
leading the audience to the single main point. Broadly, the structure might be: 
the topic of the talk, any necessary background, the experiments or results, and 
the conclusions and implications of the results. 

This structure is not without potential pitfalls. In particular, take care to 
ensure that the relevance of the background is obvious. You will lose the au­
dience's attention if they are wondering why you are discussing an apparently 
unrelated topic. Whatever the structure, ensure that all topics are relevant and 
follow an obvious sequence. 

For the audience to follow the flow of argument in a talk, they need to under­
stand its logical structure. The preview-do-review strategy is highly effective. 
Use backward and forward references ("I previously showed you that . . .  ", "I 
will shortly demonstrate that . . .  , but first I must explain . . .  ") to show how the 
current topic relates to rest of the talk. At changes of topic, summarize what 
should have been learnt by the audience and explain the role of the new topic in 
the talk overall. Distinguish between material that the audience must know to 
understand the main point and material that is minor or incidental. If you skip 
important detail, say so. 
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Getting the timing right, particularly for a short talk, can be difficult. Some­
how the pace is never quite as you expect. It helps if your talk is designed so 
that there is material towards the end that can be skipped without breaking con­
tinuity, or included seamlessly if time permits. 

The introduction 

Begin well. The audience's opinion of you and of the topic will form quickly 
and a bad first impression is hard to erase. The first few sentences should 
show that the talk will be interesting-make a surprising claim, argue that some 
familiar or intuitive solution is incorrect, or show why the problem to be solved 
is of practical consequence. 

Many speakers begin with an outline that lists the topics to be covered. 
At the beginning of the talk, however, the audience may not even understand 
the terminology, and such outlines are quickly forgotten because they have no 
context. Outline the talk's structure if you want to, but not on the first slide. 
Before you reach the outline, make sure that the goal of the talk is clear. That 
is, explain where you are going before explaining how you will get there. 

X "This talk is about new graph data structures. I'll begin by explaining 
graph theory and show some data structures for representing graphs. 
Then I'll talk about existing algorithms for graphs, then I'll show my 
new algorithms. I'll show experimental results on our cluster machine 
and then show why the algorithms are useful for some practical graph 
traversal problems." 

Not only is this a poor introduction, but the outlined structure is poor too. (But 
note that the speaking style in this example is fine; it is my impression of a 
typical fluent speaker, punctuated for readability.) A better introduction is as 
follows, of a talk in which interesting material is discussed much earlier on . 

./ "My talk today is about new graph data structures. There are many 
practical problems that can be solved by graph methods, such as the 
travelling salesman problem, where good solutions can be found with 
reasonable complexity so long as an optimal solution isn't needed. But 
even these solutions are slow if the wrong data structures are used. I'll 
begin by explaining approximate solutions to the salesman problem and 
showing why existing data structures aren't ideal, then I'll explain my 
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new data structures and show how to use them to speed up the travel­
ling salesman algorithms. I conclude with examples of where the new 
method makes a real difference." 

The speaker should then continue on the topic of why the algorithm is useful, 
and, once the main concepts have been introduced, present the outline of the 
main part of the talk. 

Some talks can be introduced with a tale or anecdote, to motivate the need 
for a solution to the problem or to illustrate what would happen if the problem 
were not solved. For example, a talk on automatic generation of acceptable 
timetables began with an account of the timetabling problems at a certain large 
university; the speaker made a good story of the estimate that, without computer 
support, the timetabling of a new degree utilizing existing subjects from several 
faculties would require 200 years. But in no circumstances should you try to 
tell a funny story unless you are an experienced speaker and are certain it will 
be funny. 

All talks need a few words of preamble and warm-up. A surprisingly fre­
quent omission is that speakers forget to say who they are ! Begin with the title 
of the talk, your name, the names of any co-authors, and your affiliation. If 
there are several authors, make sure the audience knows which one is you. 

The conclusion 

End the talk cleanly; don't let it just fade away. 

X "So the output of the algorithm is always positive. Yes, that's about 
all I wanted to say, except that there is an implementation but it's not 
currently working. That's all." 

Clearly signal the end. Use the last few moments to revise the main points and 
ideas you want the audience to remember, and you may also want to outline 
future work or work in progress. Consider saying something emphatic-predict 
something, or recommend a change of practice, or make a judgement. Such 
statements should of course be a logical consequence of the talk. 

Preparation 

As a research student I was advised that the best way to prepare for a talk was 
to write it out in full so that (supposedly) if I froze I could just start reading 
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from my notes. This was terrible advice. Text that is fluid when spoken is an 
art few people master. Written English sounds stilted, most speakers cannot 
scan far enough ahead to predict the right intonation and emphasis, and the act 
of reading prevents you from looking at the audience. Even the vocabulary of 
written and spoken English differ; for example, written English has "do not", 
"will", and "that" where spoken English has "don't", "shall", and "which". 

Supporting notes can be helpful, if they are treated as prompts for issues 
to discuss rather than a script. Write notes as points of a few words each, in 
a large print that is easy to read while you are standing at a podium and doing 
things such as operating a computer. 

Rehearse the talk often enough and the right words will come at the right 
time. You want to appear spontaneous, but this takes practice. A casual style 
is not the product of casual preparation. You will only be relaxed and deliver 
well if you have prepared thoroughly and are confident that you have prepared 
thoroughly. However, don't memorize your talk as a speech; decide what you 
want to say but not every word of how you will say it. Recitation sounds as 
stilted as reading and you are likely to freeze when trying to remember an exact 
phrasing. 

Time the talk and note what stage you expect to reach at 5 minutes, 10  min­
utes, and so on, to help you finish on time. An effective exercise is to rehearse 
in front of a mirror or onto tape. Rehearse while standing, because that is how 
you will deliver. Think about possible questions. Familiarize yourself with 
equipment: for example, find out how to start up the computer, connect it to 
the projector, and run the presentation software. Last, get someone to give you 

feedback, and make use of it. If one person dislikes something it is likely that 
others will too. 

Delivery 

Assembly of the material is one aspect of a successful talk. Another aspect is 
creation of a cohesive sequence of slides, as discussed later. The other main 
aspect is presentation: speaking well, making good use of slides, and relating 
to the audience. 

An obvious point is that you must speak clearly: develop sufficient volume 
and project your voice without shouting. Use a natural tone of voice. Breathe 
deeply, not by gulping air like a swimmer but by inhaling slowly to the bottom 
of your chest. Speak a little slower than you would in normal conversation; 
around 400-500 words per three minutes is right for most people. Slightly 
overemphasize consonants, a habit that is particularly helpful to the 10% or 
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so of your audience who are at least a little deaf. Keep your head up, thus 

deconstricting your throat. And face the audience. 

Consider your style of speech. Avoid monotony, both in pace and tone. 

Pause occasionally, particularly when you have given the audience something 

to think about, and pause in preference to filling gaps with noise such as "urn" 

or "I mean". Pause to collect your thoughts before speaking rather than pausing 

mid-sentence. 

Also consider the personality you present. As a speaker you want to be 

taken seriously, but this does not mean that you cannot be relaxed, vivid, even 

amusing. Show your enthusiasm. Avoid sudden movements or distracting man­

nerisms such as pacing, bouncing, or gesticulating, but don't freeze; gestures 

should be natural. Vary what you are doing: move away from the computer 

to talk to the audience directly, for example, spend a couple of minutes with 

a non-technical slide after working through complex material. Make frequent 

eye contact with the audience; find some friendly faces to check with every now 
and again. Above all, be yourself--don't adopt a false persona and don't show 

off. The right note to hit is of a conversation with friends. 

Showing off, swagger, or vanity of any kind, is if anything worse in a talk 

than in a paper. Be modest. Don't talk down to the audience or make aggrieved 

statements such as "people all said it couldn't work, but my work proves them 

wrong". Maybe the work is indeed remarkable, but that doesn't mean that the 

speaker is too; keep the distinction between presentation and presenter clear. 

At the same time, you shouldn't diminish your achievements. Avoid excess 
humility, don't suggest that the outcomes are unimportant or uninteresting, and 

don't begin by saying that the talk will be dull or that you are nervous. Too 

many talks begin with a disclaimer such as "the talk was only written last night" 

or "I haven't had time to prepare". The intention is to lower the audience's 

expectations and thus mute any possible criticism, but the effect is to diminish 
their interest; and, if the talk turns out to be excellent, the disclaimer is then an 

unfortunate boast. 
Beware of irritating habits. "Umming", pacing, and gesticulating were 

mentioned above. Consider taking off your watch; if it is on your wrist you 

cannot check the time inconspicuously. Only drink if you absolutely have to; if 

you have to drink, don't gulp. Don't read directly from slides or written notes, 

or stand behind the projector so that your face can't be seen and you cast a 

shadow on the screen. When referring to the screen, use a stick or laser pointer 

rather than the computer's mouse. Don't overact, use slang, or laugh at your 

own jokes. Don't act nervous, mumble, look at your feet, face the wrong way, 
scratch, fiddle, or fidget. If you think you might be tempted to rattle the coins 
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in your pocket, put them somewhere else. If you are using an overhead pro­
jector, don't use sheets of paper (or worse, your hands) to mask off parts of 
slides, particularly in darkened theatres,  because masking the projector varies 
the ambient light level. And don't change slides before the audience has had a 
chance to read them. 

Handle distractions tactfully. If someone persistently interrupts, or excludes 
the rest of the audience by asking too many questions, offer to talk to them 
afterwards. 

Expect to be nervous-adrenaline helps you to talk well. Even experienced 
speakers can be highly agitated, despite their cool calm on the podium. The 
best cure for serious attacks of fright is to give a preparatory talk or two, so 
if possible practice before a friendly (but critical) audience. A constructive 
attitude is to view each talk you give as training for the next one. Don't be 
too ambitious ;  master the basics of getting a clear message across before, for 
example, attempting to tell jokes or make advanced use of presentation tools. 

Standing in front of an audience of your peers or superiors can be intim­
idating, particularly if the audience is silent. But silence is a good sign; it 
means people are paying attention. Even yawning isn't necessarily a disaster; 
lecture halls are often stuffy, and nobody stays focused indefinitely. A typi­
cal listener's attention drifts away momentarily now and again, no matter how 
good the speaker is. 

Most importantly, remember that the audience wants to enjoy your talk­
their attitude is positive. People don't attend talks with the intention of being 
bored, and welcome any sign that the talk is interesting. The need to build on 

this initial goodwill is why opening well is so important. 

Question time 

Question time at the end of a talk is used to clarify misunderstandings and to 
amplify any points that listeners want discussed in more detail. Five or ten 
minutes is too brief for serious discussion: you need to keep answers short and 
avoid debating with an audience member, because it is unedifying for everyone 
else. Some questions can't be answered on the spot: they are too complex, 
or the questioner has misunderstood a fundamental issue, or you simply don't 
know the answer. 

Involve the audience in question time. Repeat the question in your own 
words and talk to the whole audience, not just the questioner, in your reply. 
Respond positively and honestly to all questions. Never try to bluff when you 
don't know-doing so inevitably looks stupid. It is far better to be frank and 
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admit ignorance. It is equally important to never be rude to audience members 
or dismissive of their questions. Questions can be misguided, irrelevant, or 
amazingly inane, but more than one audience member may think such a ques­
tion to be reasonable, and the only appropriate response is to answer as politely 
and accurately as the question permits. 

Slides 

Slides (or overheads, transparencies, or foils) are a point of focus for the at­
tention of the audience. The traditional technology for slides is to use an over­
head projector, but these are increasingly rare, and the great majority of talks in 
computer science use software and a projection system. A typical slide consists 
either of text or of a figure with a few words of explanation. Text slides are a 
visual guide to what the speaker is saying. Figures-graphs, images, diagrams, 
or tables-show results or illustrate a point. 

However, keep in mind that the focus of the talk is you, not the slides. What 
you are saying, rather than the sketchy content of a slide, should be the centre 
of attention. Don't use slides as a way of avoiding contact with the audience. 

Each slide should have a heading and be fairly self-contained; don't rely on 
the audience remembering complex details or notation introduced elsewhere. 
Aim for about one slide per minute or so-too few is dull and too many is be­
wildering. It is a mistake to design a talk so that rapid back-and-forth switching 
between slides is required. Consider instead repeating crucial information. For 
instance, show a whole algorithm, then on successive slides show each step 
with an example. Some example slides are at the end of this chapter. 

Slide tools 

The tools for making and presenting slides continue to develop. Those in wide 
use--currently, Microsoft® PowerPoint and �TJ3X-provide an excellent envi­
ronment for writing slides, and both include a range of elaborate features. Even 
the most inexperienced speaker can use these tools to produce a professional­
looking talk, and they protect novices from some of the mistakes that can seem 
particularly amateurish, such as the difficulties of managing a pile of printed 
overheads in the confined space next to an overhead projector. 

However, the fact that a tool provides features does not mean that the fea­
tures have to be used--ease of use and necessity of use are not the same thing. 
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The principles of a good presentation have not changed since the era of hand­
written overheads: legibility, simplicity, and relevance. In far too many talks, 
the speaker has decided to use some element of the software that neither enter­
tains the audience nor helps them to learn. The goal of a well-written talk is for 
the audience to listen to the speaker; distractions, no matter how nifty, should 
be eliminated. Another perspective is that a simple, elegant slide design may 
be less dramatic than the alternatives, but does not annoy; and people are not 
impressed by the ability to use the latest software. 

Slide layout is a basic issue. To begin with, dark backgrounds do not work. 
In a dimly lit auditorium, if the projected image is dark the atmosphere is un­
pleasant. Light fonts on dark background do not display as well as dark fonts 
on white. Variable-brightness backgrounds are even worse-text that is legi­
ble in some areas is inscrutable in others. The use of logos and images should 
be limited to borders. If you have something to communicate to the audience, 
screen area is precious;  don't waste it on meaningless graphics. 

Animation is entertaining at most once. Animated entry and exit amuses 
small children; use it for that age group, if at all. 

A specific form of animation is point-at-a-time display. There are several 
reasons why such display works against the success of a typical presentation. 
One is that it is a constraint on the speaker, who must keep to a rigid script 
and remember several times a minute to click a button to get the next point 
displayed. (All too often the speaker does not remember, and then has to click­
click-click to catch up.) In contrast, if a whole slide is displayed, the speaker 
can focus on talking to the audience and can improvise more easily. Another 

reason is that audiences want to know where the speaker is going; typically a 
listener reads a slide, then waits to hear the speaker explain it. Point-at-a-time 
display makes it harder for the listener to focus. 

Some speakers decide to use the computer to draw during a talk, using the 
mouse as a pencil, but even in ideal conditions such drawings are dreadful. 
If you need to draw, use a whiteboard, but it is preferable to avoid drawing 
altogether, as doing so may involve fiddling with lights and projection gear. 
Many projection systems allow you to add music or noises to individual slides. 
Don't do it. Most of the audience shares neither your taste in music nor your 
sense of humour. 

This is not an exhaustive list, so use it to guide your own sense of what is 
appropriate; some other issues are considered below in the context of particular 
kinds of slides. 
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Text slides 

Text slides provide structure and context. They are usually written in point 
form, and should be brief summaries in short sentences of the information you 
want to convey. The audience will expect you to discuss every point listed on 
each slide, or, rather, expect that by the time you switch to the next slide every 
point will have been covered. Never read your slides to the audience-they can 
read faster than you can speak. Each point should be a topic to discuss, not 
necessarily a complete statement in itself. A slide may be a series of points, but 
that doesn't mean that the points need to be numbered or even bulleted. Some 
people argue that bullets add interest. Slide after slide of slabs of text can be 
dull, but bullets, which are greatly overused, do not make much difference. 

Some speakers use a kind of pidgin-English for their slides. 

X Coding technique log-based, integer codes. 

Be brief, but not meaningless . 

./ The coding technique is logarithmic but yields integer codes. 

Another example is on pages 245-246. 
Explain all variables and where possible simplify formulas. In papers it 

is helpful to state types of variables when they are used; in talks it is crucial. 
Minimize the volume of information, especially detail of any kind, that the 
audience must remember from previous slides. 

Overheads should not be crowded with text; see page 246 for a slide with 
a reasonable maximum of text and page 242 for a slide that is unacceptable. 
Never display a page from a paper: even a well-designed page is almost cer­
tainly unreadable in the context of a presentation. Don't break words between 
lines; instead, have an uneven right margin. Keep the layout simple-minimize 
clutter such as frames, shading, cross-hatching, shadows, and artwork. 

Use a font of reasonable size and have plenty of white space. Huge or small 
fonts look ridiculous (see the examples). Explore the available fonts, but don't 
worry too much: while to some people sans serif may look cleaner than the 
alternatives, for example, any modem font is fine. Be consistent, however; one 
talk needs no more than three fonts and a couple of font sizes. 

Strings of exclamation marks and text in uppercase do not add a sense of 
excitement. They add a sense of ineptitude. 
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Figures 

Good figures and graphs can make ideas much easier to understand. Figures 
should be simple, illustrating a concept or result with minimum fuss; messy or 
crowded figures have no impact. Don't use a table unless it is necessary-they 
can be hard to digest. 

An illustration from a paper may not be appropriate for a talk. Smaller 
details may not be clearly visible. In a paper, the reader can consider the figure 
at leisure, but in a talk it is only shown for a limited time, and the freedom of the 
presenter to point to the parts of a figure and to add to it incrementally means 
that it may be appropriate to organize the figure rather differently. Perhaps 
most significantly, in a talk a figure can be coloured. For example, text can be 
in different colours to show an ordering of events; different kinds of entities can 
have different colours; or colouring can be used to show how routes through a 
process relate to outcomes. If the slides are to be printed, note that differences 
between shades of grey can be lost in reproduction. 

Figures in slides, as in papers, should focus on the technical content. Dis­
tracting elements should be removed. Present the bars of a histograms in three 
dimensions only if the third dimension carries some information. Keep all ob­
jects to a reasonable size-why include a gigantic block-coloured arrow when 
a simple line will do? Include an image or movie only if there is a need to do 
so. Animate only if necessary, such as when explaining a data structure. 

Clip art, especially of stylised people, can inspire hilarity and is often ugly. 
It does not add class. Use it only when necessary, and select the simplest picture 
that suits the need. 

Label everything, or at least every kind of thing. The labels should be 
meaningful to the audience-if you have omitted material from the talk, omit 
corresponding material from the figure. When checking a figure, ask yourself: 
Does it illustrate a major point? Does it illustrate the point unambiguously? Is 
it self-contained? Is it uncluttered? Is all of the text legible? Is all of the text 
(other than axes of graphs) horizontal? 

A presentations checklist 

• What is the key thing the audience should remember? 

• Is there enough background material for the intended audience? 

• Is any material unnecessary? 

• Could some of the material be left for people to read about later? 
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• Is the talk self-contained? 

• Does the talk have a motivating preamble? 

• Have complex issues been explained in gentle stages? 

• Are the results explained? 

• Are the numbers necessary? 

• Are more diagrams needed? 

• Are the slides simple? Do they have unnecessary ornamentation or distract-
ing use of colour? 

• Is there any unnecessary animation? 

• Are the font sizes reasonable? 

• Are there enough examples? 

• Have you rehearsed the talk? 

• Have you prepared something to say about each slide? 

• What were the limitations of the research? 

• Do you explain why the research is interesting or important? 

• Is there a clear conclusion? 

• Have you memorized the talk? 

• If you are asked a question you can't answer, how will you respond? 

• Have you rehearsed your manner? Will your enthusiasm show? 

• Do you know how to use the equipment? 

Examples of slides 

Examples of problems in slides are shown on the following pages. These illus­
trate some common mistakes, but are not intended to be a comprehensive intro­
duction to the design of slides. Indeed, they are all in much the same layout, so 
that design changes don't distract from the content issues being discussed, and 
cover only a few of the aspects of style for presentations. 
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Optim iz ing skip length 

How long should a skip be? 

With a length p vector and skips of length j, suppose 
there are b accumulators =} searching for b values. 

Average cost (at one per skip) is � + hj . Differentiating 
. p b g1ves - p + 2 .  

Thus j =  j¥-. 
Example: b = 2, 000 and p = 100, 000 =} j = 10  and the 
cost is 20, 000, or 20% of base. 

X This is not an effective slide. The division of text into points is untidy. 
Terminology is not carefully used-words such as "accumulators" have 
been introduced unnecessarily. Average cost of what? What does "one 
per skip" mean? What is the "base"? 

A slide is unlikely to be entirely self-contained; the audience expects it to 
be explained by the speaker and to be based on material introduced earlier. 
But some effort should be taken to make the slide self-explanatory. This 
slide is puzzling. 

239 
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Optim iz ing skip length 

Skip length j can be optimized for vector length p. 

Assume that we are searching for b entries in a vector 
where b << p. Without skips, the decoding cost is c = p. 

With skips, the average decoding cost is c' = p / j + b j /2. 

The cost is minimized when j = V2Pfh. 
Example: b = 2,000, p = 100,000. 

Then j = 10 and the cost is c' 
= 20,000 . 

./ A possible revision of the slide on page 239. This is a minimalist 
revision-a better result might be achieved by starting from scratch. 

The slide style here is extremely plain. In practice it would be common 
to include a logo and the speaker's name somewhere, and the text and 
background might be coloured. Such details are enough to give the slide 
some interest; more ornamentation is unnecessary. 
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Optim iz ing skip length 
---------p entries i n  sort order-------

I< ,.1  
• I • I 

"-__ __ Blocks of j entries each 

Search for each of b entries 

Without skips, the decoding cost is c = p. 

With skips, the average decoding cost is c' = p / j + b j /2. 

, 
The cost is minimized when j = J2i7h. 
If b = 2,000 and p = 100,000 then j = 10  and the cost is 
c' = 20,000. 

,./ Another possible revision of the slide on page 239. This version is more 
dependent on the speaker explaining the task (choice of j for indexed 
search through a sorted array), but the picture makes the task easier to 
explain. 

The picture itself is extremely simple, and required only a few minutes 
with a simple drawing tool (xf ig). However, the picture makes a con­
siderable difference both to the appearance of the slide and the way the 
material might be delivered. 

241 
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Approximating number sets 

One technique for coding a b-bit approximation of a set of numbers is as follows. 
Each number x is such that L ::; x < U for some positive lower bound L and upper 
bound U. In practice U = Max + £ for some small £. 
For a base 

( 1 )  

f(x) = llogB (x/L) j  (2) 

is integral in the range 0 ::;  f(x) < 2b and will require only b bits as a binary code. 
If x is represented by code c, that is, f(x) = c, an approximation x to x can be 
computed as x = g(c + 0.5) where g is the inverse function 

g(c) = L X Bc (3) 

Each code value c corresponds to a range of values x such that g (c) <::: x < g ( c + 1 ) .  

X Another poor effort. The font is too small. There is too much text; so 
much that the speaker is almost irrelevant. There is also too much detail. 
The equation numbers aren' t  valuable, since, to refer the equations later 
on, the speaker must display them again. 
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Approximating number sets 

Assume that each number x is such that 0 < L < x < U. 
In practice U = Max + e for some small e .  

Consider a base B = (U /L?-b . 

Then c = f(x) = llogB(x/L)J is an integer where 
0 < c < 2b. 

The inverse function is g(c) = L x Be. 

c = f(x) corresponds to a range of x values :  

g(c) < x < g(c + 1 )  

./ A revision of the slide on page 242. Some detail has been removed and 

the terminology has been made more accessible. 

243 
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Proof of injectivity 
Let 1: = {a, s}, where a is a constant symbol and s has arity 1 .  

Let G = {x-+a, x-+sx' , x1 -+ sx, y-+a,  y-+ sy' , y1 -+sy'' , y'' -+sy} . 

That is, [x]a = { s2naln � 0 }  and [y]c = {s3naln � 0}. 

x n y  --+ (a u sx') n (a U sy') --+ (a n a) u (a n sy') u (sx' n a) u (sx' n sy') 
x' ny' --+ sx n sy" --+ s(x ny") 
x n y" --+ (a u sx') n sy --+ (a n sy) U (sx' n sy) --+ s(x' ny) 
x' ny --+ sx n (a U sy') --+ (sx n a) U (sxn sy') --+ s(x ny') 
x n y' --+ (a U sx') n sy11 --+ (a n sy") U (sc' n sy") --+ s(x' ny") 
x' ny" --+ sx n sy --+ s(x ny) 

G' = GU {x ny-+a, xny-+s(x' ny') ,  . . .  , x' ny" -+s(x ny)} and 
V' = {xny, x' ny', . . .  , x' ny"}.  

It follows that [x ny]G' = { s6naln 2: 0 } .  

X Only the most specialized audience could reasonably be expected to make 
an attempt to understand this. There is nothing wrong with the math 
itself-and it is carefully typeset although woefully underexplained-but 
a talk is the wrong environment for trying to convey material of this kind. 
Explain what the math is for; the math itself belongs in your paper. 
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Total access costs 

Inverted file vocabulary disk-resident. 

Small (� 50 Kb) memory-resident index. 

One access per term. 

In total two per query term, two per answer. 

Ordered disk accesses => lower average cost. 

X Too cryptic; it gives so little support to the speaker that it is almost irrele­

vant. The text is difficult to parse because the form of the sentences is too 

far removed from that of ordinary text. 

245 
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Total access costs 

The vocabulary of the inverted file is on disk. 

A small ( � 50 Kb) index to the vocabulary is in memory. 

Only one disk access to the vocabulary is required, 
followed by one further access to fetch the inverted list. 

• Two accesses in total per query term, two per answer. 

If the accesses to the vocabulary, lists, and answers are 
ordered, then average costs are reduced . 

../ A revision of the slide on page 245. The statements have been fleshed out 
into complete sentences and a little information has been added. This is 
about the maximum amount of text that is reasonable for a slide. 

The single bullet adds emphasis, identifying the key conclusion the audi­
ence should be aware of. 
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Total access costs 

+ The vocabulary of the inverted file is on disk 

+ A  sn1all (� 50 Kb) index to the vocabulary is in memory 

+ The accesses are 
0 One disk access to the vocabulary 
0 One further access to fetch the inverted list 
0 Thus the accesses in total are 

* two per query term 

* two per answer 

+ If all of the accesses are ordered 
0 Average costs are reduced 

X A bulleted version of the slide on page 246. The use of bullets encourages 
speakers to add more structure to slides; the structure can be useful, but it 
can also be noise. There is something slightly patronizing about reducing 
each point to an elementary statement. Sometimes bullets are valuable, 
but in this instance they have been overused. 

If you do use bullets, make them inconspicuous: small, grey or pastel 
rather than bright, and simple rather than elaborate. Two levels of bullets 
is sufficient. 

247 
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Total access costs 
+ The vocabulary of the inverted f i le is on disk 

+ A  small <� 50 Kb) vocabulary index is in memory 

+ The accesses are 

0 One disk access to the vocabulary 
0 One further access to fetch the inverted list 
0 Thus the accesses in total are 

* two per query term 

* two per answer 

+ If al l  of the accesses are ordered 

0 Average costs are reduced 

X Variation in font and font size almost never works. Use one or at most two 
fonts and sizes. 



Afterword 

Ready, set, go. 

Schoolyard expression 

The only way to produce a well-written paper is to start early and revise often. 
Write about what you plan to do, or what the project will be, or related litera­
ture, or anything of relevance. A researcher who argues that it is not yet time to 
start writing is mistaken: once you have a topic, you are ready to go. 

Every stage of research benefits from writing. Once you have described 
your project, it is easier to ask skeptical questions about the direction and aims. 
Describing a project forces you to analyze it, and fruitful research directions 
may suggest themselves. Sketching an algorithm can highlight the fact that 
you do not yet understand some of its properties. A description of experiments 
allows examination of whether they are consistent and complete. 

Procrastination is the enemy of good writing. There are always plenty of 
things you might do first-whether they are sufficiently important is another 
question. To do good science, it is necessary to write. Start now. 
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Exercises 

The skill of good writing is acquired through practice. Pushing yourself, de­
liberately testing your ability to write new kinds of material and to write faster 
and better, can make a remarkable difference to the ease with which you can 
create polished text. Below is a series of exercises, intended not just for novice 
writers but also to help more experienced writers test and maintain their skills. 

Some of these exercises are self-contained; others will be most helpful if 
adapted to your area of research, in particular by involving papers or passages 
that are relevant to your work. Educators may wish to choose standard papers 
and passages to be used by their students. 

These exercises require substantial effort to complete--don't expect to run 
through one or two in a few spare minutes. Set aside a block of time that will 
be free of interruptions, say two hours, and in that time aim to do one exercise 
well. The exercises are loosely ordered by the kind of activity they involve, so 
if you only do a few, choose them carefully. 
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1 .  Choose a paper from your research area and write a brief answer to each of 
the following questions. 

(a) What are the researchers trying to find out? 

(b) Why is the research important? 

(c) What things were measured? 

(d) What were the results? 

(e) What do the authors conclude and to what factors do they attribute 
their findings? 

(f) Can you accept the findings as true? Discuss any failings or short-
comings of the method used to support the findings. 

(These questions are not just an exercise: to some degree you should ask 
them for every paper you read.) 

Justify your opinions as carefully as you can. As part of the answers to 
these questions you should summarize the proposed method and the re­
sults achieved. The answers should be substantially your own writing, not 
quotes, paraphrases, or illustrations from the paper. 

Alternatively, use the questions on pages 167 and 208 to assess the paper. 

2. Choose a paper, perhaps the same paper as for Exercise 1 ,  and criticize the 
structure and presentation. 

(a) Is the ordering (of sections and within sections) reasonable? 

(b) Are sections linked together? 

(c) Does the paper flow? Are important elements appropriately motivated 
and introduced? 

(d) Where is the survey? 

(e) Is there a non-technical introduction? 

(f) How carefully has the paper been edited? 

(g) Are there aspects of the presentation that could be improved? 

Based on your criticism, write a referee's report for the paper, including a 
recommendation as to whether to accept or reject. Take care to discuss all 
of the paper's major problems. 

Now read your review as if you were the paper's author. Is the review fair 

or harsh? 
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3. Some journals have special issues of a series of papers on a related topic. 
Choose two (or more) papers presenting a similar kind of result and com­
pare them. Have the authors designed and organized the papers in the same 
way? Where the design choices differ, is one of the alternatives preferable? 

4. Various services provide abstracts online. In an area where you have some 
technical knowledge, choose an abstract, but do not look at the paper. Using 
only the abstract and your experience to guide you, suggest section head­
ings and sketch likely content for each section. Draft the first few para­
graphs of the introduction. How do these compare to the actual paper? 
What strengths and weaknesses does your version have? 

5. Some of the papers in the Communications of the ACM argue for a point 
of view rather than present technical results; for example, there are often 
papers on legal or ethical issues or about computing practice. Choose such 
a paper and answer the questions in Exercise 1 .  Carefully analyze the argu­
ment used to defend the author's opinion, identifying the major steps in the 
reasoning. Are the conclusions sufficiently justified? 

6. Choose a paper with substantial technical content from ACM Computing 
Surveys. In many such papers the authors are placing their own work in the 
context of other research results in the area. Do you regard the survey as 
fair? That is, is the survey an unbiased reflection of the relative strengths of 
the work in the area? 

7. Choose a journal paper presenting new technical results. (Journal papers 
are usually more carefully written and revised than are conference papers.) 
Based on the content of the introduction-you should not read the rest of 
the paper--do the following tasks. 

(a) Identify the hypothesis. 

(b) Suggest a suitable methodology for testing the hypothesis. 

(c) Suggest an organization for the paper, with headings and specific sug­
gestions for the content of each section. 

Now compare your proposals to the body of the paper. Where there are 
differences, decide which alternative is better. The authors had much more 
time to think about the paper than you did, but are there any problems with 
the original organization? 

8. Summarize a passage, perhaps the introduction of a paper, by jotting down 

the important points. These notes should be as brief as possible. Now write 
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your own version of the passage using only your notes, without reference to 

the original. (Mary-Claire van Leunen attributes this exercise to Benjamin 

Franklin. ) 

9. Choose a popular article about computer science (from Scientific American, 

say) and summarize it in 500 words. Put the summary aside for a day or 

two, then review it. Did you include all the important details? Have you 

represented the article fairly? Would a reader of the summary arrive at the 

same conclusions about the work as a reader of the original article? 

10. Iteratively edit a passage to reduce its length. Start with a passage of, say 

300 words, then reduce it in length by 10%, that is, about 30 words; then 

reduce by a further 30 words; and so on, for at least seven iterations. (To 

make this exercise more challenging, reduce by exactly 30 words at each 

step.) The aim at each step is to preserve the information content but not 

necessarily the original wording. 

Consider the resulting sequence of versions. With this exercise it is not 

uncommon for the passage to improve during the first couple of iterations, 

then become cryptic or incomplete as the text becomes too short for the 

content. Rate the versions: Which is best? Which is worst? 

11. Rewrite the following passage to make it easier to understand. You may 

find it helpful to introduce mathematical symbols. 

The cross-reference algorithm has two data structures: an array 
of documents, each of which is a linked list of words; and a bi­

nary tree of distinct words, each node of which contains a linked 

list of pointers to documents. When a document is added its 

linked list of words is traversed, and for each word in the list 
a pointer to the document is added to the word's linked list of 

documents. An order-one expansion of a document is achieved 

by pooling the linked lists of document pointers for each word 

in the document's linked list of words. 

12. Choose a passage of 1,000 words or so, either a piece of your own work or 

any passage that you understand well. Revise it to improve the writing­

that is, edit for flow, expression, clarity, and so on. Make the changes on 

paper, then type up the result, retaining the paper copy as a record. 

Put the revised passage aside for a few days, then repeat the exercise. Aim 
to make significant further improvements. (Did you undo any of the pre­

vious changes?) Revise again after a break of a few days; and continue 
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until you have five revisions in total. Such revision is the best way to learn 

how to produce really good text, and many of the best writers revise this 

thoroughly. 

13. The following fragments are flawed. They are ambiguous, or inelegant, 

or do not parse, or do not make sense. For each fragment, identify the 

problems-many of them have multiple shortcomings-and suggest revi­

sions. If you need to make assumptions, state them clearly. (Most of these 

examples are from papers.) 

(a) As search engine systems emerge as the principle information finding 

tool within commercial enterprises due to the enormous popularity of 

WWW technology, the lack of options for integrating text and rela­

tional data on the web is becoming crucial. 

(b) Information retrieval systems appear in the Web with the purpose of 

managing, retrieving and filtering the information available there. 

(c) The first approach is not practical. Thus the changes to the archi­

tecture of the system, including threads for the dictionary and client 

response components. 

(d) Concerning answer locality, usual tools tolerate lower first guess ac­

curacy by returning multiple responses and allow the user to interact 

with the system to localize answers. 

(e) The difference in the previous results and the results from this study 
can be an artifact of the different collections that are being used in the 

two studies. 

(t) Authority work, the need to discover and reconcile variant forms of 

the same record will become more critical in the future. 

(g) The age of the mobile internet is dawning rapidly day by day and 

will demand more and more efficient solutions as disparate online re­

sources are integrated in numbers of new ways. 

(h) There are increasingly more online databases in the current climate of 

electronic publishing. 

(i) There are several challenges to be associated with the data manage­

ment of this information because the associated databases are highly 

multidimensional and dynamic. 

(j) Ambiguity resolution was investigated by Klein [4]. Reverse parsing 
was shown in [ 4] to be a better method. 

(k) Costing was performed on each option. 
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(1) The method, to be chosen is active mapping, as it is definitely superior 
in each experiment. 

(m) One of these tools is one which automatically creates a short version 
which contains as much of the content as possible as the original. 

(n) To compute whether the expected performance is achieved in a way 
that is automatic the only difficulty is to have a definition of similarity 
that is consistent with the user's perception. 

( o) An effective alignment method that employs dynamic programming 
is presented to locate optimal points of match between the original 
text and the optically recognized version provided. 

(p) An important phase of any system development process is the evalua­
tion phase. 

( q) It is also of interest how well the terms reflect the content of the in­
dexed document as it is well known that assessing the quality of man­
ual keywords is difficult, due to the fact that there is no general correct 
set of keywords for any given document and the preferred terms may 
vary from task to task, user to user, and even system to system, de­
pending on the factors to be considered such as retrieval mechanism 
and search context. 

(r) There are some audio-visual speech recognition systems that pro­
cesses both the audio and visual channels, and complete recognition 
in real-time. 

(s) The sudden growth of the WWW observed over recent times has trig­
gered a lot of research fields to occur, web services being only one of 
them. 

(t) Association rules are rules that identify associations between items in 
transactions. 

(u) A number of software packages exist, which are capable of designing 
relational models online. 

(v) Most oftoday's complex systems are based on a hardware architecture 
that makes a physical separation of memory and processing and a 
software architecture that divides functionality into a hierarchy. 

(w) The rest of this paper is organized, as follows. 

(x) Given a range of options usually people are more interested in the 
extremes than in the middle part of the range since the two ends are 
more distinctive. 
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(y) Given a set of reference points, or cluster centroids, for a vector space 
and a quantization rule that provides a mapping to no more than 2b 
distinct values then a filtering method consists of no more than build­
ing an injection from each site in the vector space to a binary signature 
which is just the concatenation of the binary expression of the quan­
tized values. 

(z) There are many applications, however, whose needs relational data­
base systems do not meet, including diverse applications such as geo­
graphical information systems, CAD/CAM systems, expert systems, 
and the new kid on the block, text retrieval systems. And although not 
common today, text retrieval systems will undoubtably propagate as 
paper technologies such as offices and libraries are automated and the 
volume of text available in electronic form to the average user grows 
far beyond what it is today, already much more than it was in the re­
cent past. Text retrieval is not well served by the current generation 
of database systems, despite the improvements they represent over 
earlier network, hierarchical, and file systems. Ironically, relational 
systems have only superficially incorporated text support, while the 
many purpose-built text retrieval systems usually don't support other 
kinds of data, or even complex forms of text, that might well be useful 
and important in some applications. 

14. Typeset the following mathematical expressions. 

(a) J3o = I,y;-!J ·'Lx; 
(b) y = f3o + /31 · X 

( ) "k- 1 < "k C £...j=1 Vj < X _ £...j=1 Vj 

(d) b = l log(2-p) l I - log( 1-p) 

(e) f(x) = e28(x) where g(x) = -�xA 
<f) Po ± fwj2,m-2 · o- · J { � + ( �) 2 

· I.xr-(L;)2 Jm } 
15.  Revise a mathematical argument to use less mathematics and more expla­

nation. In a paper with a long proof or mathematical argument, identify the 
pivotal points of the argument. Is the argument complete? Are too many or 
too few details provided? 
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16. Choose a simple algorithm and a standard description of it, such as linear 
search in a sorted array. Rewrite the algorithm in prosecode. Repeat the 
exercise with a more interesting algorithm, such as heapsort. Now choose 
an algorithm with a complexity analysis. Rewrite the algorithm as literate 
code, incorporating the important elements of the analysis into the algo­
rithm's description. 

17.  Design an experiment to compare two well-known algorithms for solving 
some problem. An elementary example is binary search in an array versus a 
hash table with separate chaining, but a more sophisticated example such as 
a comparison of sorting algorithms will make the exercise more interesting. 

(a) What outcome do you expect-that is, what is the hypothesis? 

(b) Will successful results confirm a complexity analysis? 

(c) What resources should be measured? How should they be measured? 

(d) What are appropriate sources of test data? 

(e) To what extent are the results likely to be dependent on characteristics 
or peculiarities of the data? 

(f) What properties would the test data have to have to confound your 
hypothesis? 

(g) Is quality of implementation likely to affect the results? 

(h) In the light of these issues, do you expect the experiment to yield 
unambiguous results? 

18 .  Write a program to find out how likely a tennis player is to win a match. 
(See page 201 .) How many matches are needed to converge on the result to 
a reasonable level of accuracy? 

Suppose a tennis tournament is to be played under the usual rules: players 
who lose a match are immediately eliminated, producing rounds in which 
the number of surviving players is successively halved, starting initially 
with 128 participants. Suppose all the players are equally good, with one 
exception, the champ, who wins 60% of the points. What is the likelihood 
that the champ wins the tournament? 

Suppose instead that the players are ranked from 1 to 128, and that player 
n wins 5 1 %  of the points against player n + 1 .  Can the probability of the 
top-ranked player winning the tournament be investigated with the same 
method? Explain. 



Exercises 261 

19. Choose a well-known researcher and identify the area in which the re­
searcher is expert. Using the web, identify other researchers in the same 
area. Which of these researchers might be regarded as authorities? Which 
are the key papers in the area? What evidence did you use to make these 
judgements? 

20. The following bibliography has several faults and inconsistencies. Identify 
them. 

T. Cornish and J. Warren, "Networks without wires", 16(3): 1 1-17, 2001 .  

Frank Dean, "Wireless transaction resolution with do-nothing devices", In­
ternational Journal of Portable Computing, 2(1):75-81 ,  2003. 

L .T. Lee, B. Clarke, and C. C. Cheng, "Systems analysis and systems de­
sign in Mobile Databases", Jour. Portable Computing, vol. 2, pp. 72-74, 
May 2003. 

Macic, V., et al. ,  "Connectedness in low-bandwith local area networks", 
Proc. International Mobile and Wireless Computing Conference, Toby Tho­
mas (ed.), ICM, June 2002, pp. 166-176. 
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of citations, 67 
of parentheses, 66 
in quotations, 65-66 

quadratic, 126 
qualifiers, 10, 39, 45-46, 61 
quantities, 47, 54 
question time, 233-234 
quickly, 49 
quite, 46 
quotation, 218 
quotations, 21 ,  24-26 

punctuation of, 65-66 

radii, 56 
ranges, 75 
readership, 13, 5 1 ,  1 16, 130, 138-140, 

146, 208 
records, experimental, 142, 191 ,  192 
redundancy, 54 
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refereeing, 3, 6, 19, 140, 153, 1 66, 205-
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references, see citations 
regression, 200 
renaming fallacy, 172 
repetition, 40-41 

of words, 53-54 
replication, see reproduction 
reproduction, 145, 19 1 ,  221 
research 

goah, 1 38, 1 5 1 , 1 59-161 , 169, 170 
methods, 3, 1 57-183, 1 85-204 
planning, 162, 167-169 
projects, 1 57-1 83 
questions, 1 39, 170 
topics, 140, 144, 145, 1 5 1 ,  1 58-163, 

169 
training, 5, 1 52, 1 59, 162 

research cycle, see process of research 
research literature, see literature 
results, 10, 19 1 ,  226 

analysis of, 124, 1 86-192 
reproduction of, 191 ,  193, 194 
scope of, 1 38, 147 

reviewing, see refereeing 
revision, 8, 129-1 35, 149 
rhetoric, 1 8  

roughly, 79 

sampling, 196, 198-200, 204 
scale of data, 1 88 
scaling in graphs, 1 13 
schemas, 56 
science, 3, 1 57, 1 80-1 82 
scientific process, see process of research 
scope of research, 138-140, 1 55, 161 ,  

1 68 
scripts, 190 
second, 40, 41 , 43, 80 
secondly, 43 
sections, 30, 3 1  
self-plagiarism, 219-221 
self-reference, 20, 22 
semantic, 44 
semicolons, 62 

sentences, 33 
nested, 38 
opening, 3 1  
structure of, 17, 36-39, 61 ,  62 

sequences, 75 
several, 54 
sexist language, 58 
shall, 49 
she, 58 
shriek, see exclamations 
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significance, 148, 1 53, 16 1 ,  19 1 ,  200, 
206, 215 , 221 , 225 

significance testing, see hypothesis test-
ing 

similar, 70 
similarly, 49 
simple, 48 
simplicity, 9 
simplistic, 48 
simply, 46 
simulation, 176, 207 
skepticism, 4, 154, 1 66, 168, 169, 175, 

1 80-1 82 
slang, 10, 1 2, 45 
slash, 57 
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so, 40, 53 
so-called, 26 
solvable, 48 
some, 70 
somewhat, 46 
sophisticated, 49 
space, units of, 80 
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statistics, 198-203 
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stress, see emphasis 
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subscripts, 74 
subset, 71  
summaries, 1 3 ,  148 
supervisor, see advisor 
survey, see literature, literature review 
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symbols, choice of, 74-76 
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conclusion of, 230 
content of, 226-228 
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citation of, 24 
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terabyte, 80 
terminology, 6, 2 1 ,  43, 5 1-52, 134, 145 
test data, 187, 189 
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textbooks, see books 
that, 47, 23 1 
that is, 57 
the, 47 
the authors, 15  
the fact that, 54 
then, 40 
theorems, 13,  7 1-72, 142 
theories, see hypotheses 
therefore, 40 
theses, 2, 3, 6, 143, 153-155, 162, 169 

examination of, 154 
structure of, 30, 3 1 ,  147 

they, 35, 58 
this, 35, 53 
this paper concerns, 3 1  
thus, 40, 53 
tics, 53 
time, units of, 80 
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timely, 49 
timing 
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in talks, 229 

titles, see headings 
tone, 9-12 
totally, 46 
transparencies, see slides 
truly, 46 
tuning in experiments, 187 

units, 79-8 1 ,  106, 1 13, 135 
use, 43 
usual, 70 
usually, 46 
utilize, 14, 43 

vague writing, 16 
validity, 124, 153, 187, 196, 201 ,  207 
variables, 43, 75, 123, 124, 135, 192-

197, 236 
very, 46, 53 
visualization, 93-99 
voice, 10, 14-15 

w.r. t. , 57 
waffle, see padding 
we, 10, 15  
we show, 15  
web, see online, 152 

searching of, 164, 165 
web pages, citation of, 19, 24 
which, 47, 23 1 
whilst, 45 
will, 49 
with respect to, 57 
word-processing, 74, 132-134 
words, choice of, 33, 43-45, 53-54 
write-up, 6, 137-156 

yottabyte, 80 

zettabyte, 80 
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