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To the memory of my father, who predicted I’d someday 

get tired of rock and want to understand other 

musical styles as well.
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introduction

When I was about 15 years old, I decided I wanted to be a composer, rather than a 

physicist or mathematician. I had recently switched from classical piano to electric 

guitar, and although I exhibited no obvious signs of compositional talent, I was fasci-

nated by the amazing variety of twentieth-century music: the suavely ferocious Rite of 

Spring, which made tubas sound cool; the encyclopedic Sgt. Pepper, which contained 

multitudes; the hypnotic repetitions of Philip Glass, whose spirit seemed also to infuse 

the music of Brian Eno and Robert Fripp; and the geeky sophistication of art rock 

and new wave. I was aware of but intimidated by jazz, which seemed to be perpetually 

beyond reach, like the gold at the end of a rainbow. (Told by my guitar teacher that 

certain chords or scales were jazzy, I would inevitably fi nd that they sounded fl at and 

lifeless in my hands.) To a kid growing up in a college town in the 1980s, the musical 

world seemed wide open: you could play The Rite of Spring with your rock band, write 

symphonies for electric guitars, or do anything else you might imagine.

I was somewhat surprised, therefore, to fi nd that my college teachers—famous 

academics and composers—inhabited an entirely different musical universe. They 

knew nothing about, and cared little for, the music I had grown up with. Instead, 

their world revolved around the dissonant, cerebral music of Arnold Schoenberg and 

his followers. As I quickly learned, in this environment not everything was possible: 

tonality was considered passé and “unserious”; electric guitars and saxophones were 

not to be mixed with violins and pianos; and success was judged by criteria I could 

not immediately fathom. Music, it seemed, was not so much to be composed as con-

structed—assembled painstakingly, note by note, according to complicated artifi cial 

systems. Questions like “does this chord sound good?” or “does this compositional 

system produce likeable music?” were frowned upon as naive or even incoherent.

I studied many things in college: seventeenth-century masses, eighteenth- century 

Lutheran chorales, and twentieth-century avant-garde music. I learned about 

 Heinrich Schenker, who purported to reduce all good tonal pieces to a small num-

ber of basic templates. I absorbed mathematical tools for constructing and decon-

structing atonal compositions. But I did not learn anything whatsoever about jazz, 

Debussy, Ravel, Shostakovich, Messiaen, or minimalism. In fact, even the music of 

Wagner and Chopin was treated with a certain embarrassment—acknowledged to be 

important, but deemed suspiciously illogical in its construction. Looking back, I can 

see that the music I encountered was the music my teachers knew how to talk about. 

Unfortunately, this was not the music I had come to college wanting to understand.

Twenty years later, things are different, and a number of the barriers between musi-

cal styles have fallen. Many composers have returned to the tonal ideas that my own 
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teachers deemed irrelevant. Electric guitars now mix freely with violins, and everything 

is indeed permitted. But despite this new freedom, tonality remains poorly under-

stood. We lack even the most rudimentary sense of the musical ingredients that con-

tribute to the sense of “tonalness.” The chromatic music of the late nineteenth century 

continues to be shrouded in mystery. We have no systematic vocabulary for discussing 

Debussy’s early 20th-century music or its relation to subsequent styles. Graduate stu-

dents in music often know nothing about bebop, or about how this language relates 

backward to classical music and forward to contemporary concert music. As a result, 

many young musicians are essentially fl ying by the seat of their pants, rediscovering for 

themselves the basic techniques of modern tonal composition.

The goal of this book is to understand tonality afresh—to provide some new theo-

retical tools for thinking about tonal coherence, and to illuminate some of the hidden 

roads connecting modern tonality to that of the past. My aim is to retell the history 

of Western music so that twentieth-century tonality appears not as an aberration, the 

atavistic remnant of an exhausted tradition, but as a vital continuation of what came 

before. I hope that this effort will be useful to composers who want new ways to write 

tonal pieces, as well as to theorists, performers, and analysts who are looking for new 

ways to think about existing music.

While my primary audience consists of composers and music theorists, I have 

tried to write in a way that is accessible to students and dedicated amateurs: technical 

terms are explained along the way, and only a basic familiarity with elementary music 

theory (including Roman numeral analysis) is presumed. (Specialists will therefore 

need to endure the occasional review of music-theoretical basics, particularly in the 

early chapters.) More than anything else, I have attempted to write the sort of book 

I wish had existed back when I fi rst began to study music. It would make me happy 

to think that these ideas will be helpful to some young musician, brimming with 

excitement over the world of musical possibilities, eager to understand how classical 

music, jazz, and rock all fi t together—and raring to make some new contribution to 

musical culture.



PART I

Theory
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chapter 1

Five Components of Tonality

The word “tonal” is contested territory. Some writers use it restrictively, to describe 

only the Western art music of the eighteenth and nineteenth centuries. For them, 

more recent music is “post-tonal”—a catch-all term including everything from Arvo 

Pärt’s consonances to the organized sonic assaults of Varèse and Xenakis. This way 

of categorizing music makes it seem as if Pärt, Varèse, and Xenakis are clearly and 

obviously of a kind, resembling one another more than any of them resembles earlier 

composers.

“Tonal” can also be used expansively. Here, the term describes not just eighteenth- 

and nineteenth-century Western art music, but rock, folk, jazz, impressionism, mini-

malism, medieval and Renaissance music, and a good deal of non-Western music 

besides. “Tonality” in this sense is almost synonymous with “non-atonality”—a 

double negative, most naturally understood in contrast to music that was deliber-

ately written to contrast with it. The expansive usage accords with the intuition that 

Schubert, the Beatles, and Pärt share musical preoccupations that are not shared by 

composers such as Varèse, Xenakis, and Cage. But it also raises awkward questions. 

What musical feature or features lead us to consider works to be tonal? Is “tonality” a 

single property, or does it have several components? And how does tonality manifest 

itself across the broad spectrum of Western and non-Western styles? Faced with these 

questions, contemporary music theory stares at its feet in awkward silence.1

The purpose of this book is to provide general categories for discussing music 

that is neither classically tonal nor completely atonal. This, in my view, includes 

some of the most fascinating music of the twentieth century, from impressionism to 

postminimalism. It also includes some of the most mysterious and alluring music of 

Chopin, Liszt, and Wagner—music that is as beloved by audiences as it is recalcitrant 

to analytical scrutiny. My goal is to try to develop a set of theoretical tools that will 

help us think about these sophisticated tonal styles, which are in some ways freer and 

less rule-bound than either eighteenth-century classical music or twentieth-century 

modernism.

1 Fétis (1840/1994), who popularized the term “tonality” in the early nineteenth century, was one of the 
fi rst scholars to try to provide a general account of the phenomenon. (For more on the early history of the 
term “tonality” see Simms 1975 and Dahlhaus 1990.) More recently, Joseph Yasser (1975), Richard Nor-
ton (1984), William Thomson (1999), Brian Hyer (2002), Carol Krumhansl (2004), and Matthew Brown 
(2005) have offered different perspectives on the subject.
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More specifi cally, I will argue that fi ve features are present in a wide range of 

genres, Western and non-Western, past and present, and that they jointly contribute 

to a sense of tonality:

1. Conjunct melodic motion. Melodies tend to move by short distances from note 

to note.

2. Acoustic consonance. Consonant harmonies are preferred to dissonant 

harmonies, and tend to be used at points of musical stability.

3. Harmonic consistency. The harmonies in a passage of music, whatever they 

may be, tend to be structurally similar to one another.

4. Limited macroharmony. I use the term “macroharmony” to refer to the total 

collection of notes heard over moderate spans of musical time. Tonal music 

tends to use relatively small macroharmonies, often involving fi ve to eight notes.

5. Centricity. Over moderate spans of musical time, one note is heard as being 

more prominent than the others, appearing more frequently and serving as a 

goal of musical motion.

The aim of this book is to investigate the ways composers can use these fi ve features 

to produce interesting musical effects. This project has empirical, theoretical, and 

historical components. Empirically, we might ask how each of the fi ve features con-

tributes to listeners’ perceptions of tonality: which is the most infl uential, and are 

there any interesting interactions between them? For instance, is harmonic consis-

tency more important in the context of some scales than others? Theoretically, we 

might ask how the various features can in principle be combined. Is it the case, for 

example, that diatonic music necessarily involves a tonic? Conversely, is chromatic 

music necessarily non-centric? Finally, we can ask historical questions about how 

different Western styles have combined these fi ve tonal ingredients—treating the fea-

tures as determining a space of possibilities, and investigating the ways composers 

have explored that space.

This book is primarily concerned with the theoretical and historical questions. 

I am a musician, not a scientist, and although I will sometimes touch on perceptual 

issues, I will largely leave empirical psychology to the professionals. Instead, I will 

ask how composers have combined and might combine the fi ve features. Part I of the 

book develops theoretical tools for thinking about the fi ve features. Part II uses these 

tools to argue for a broader, more continuous conception of the Western musical 

tradition. Rather than focusing narrowly on the eighteenth and nineteenth centuries 

(the so-called “common practice period”), I attempt to identify an “extended com-

mon practice” stretching from the beginning of Western counterpoint to the music of 

recent decades. The point is to retell the history of Western music in such a way that 

the tonal styles of the last century—including jazz, rock, and minimalism—emerge as 

vibrant and interesting successors to the tonal music of earlier periods.

My central conclusion is that the fi ve features impose much stronger constraints 

than we would intuitively expect. For example, if we want to combine conjunct 

melodic motion and harmonic consistency, then we have only a few options, the most 

important of which involve acoustically consonant sonorities. And if we want to 
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combine harmonic consistency with limited macroharmony, then we are led to a col-

lection of very familiar scales and modes. Thus the materials of tonal music are, in 

Richard Cohn’s apt description, “overdetermined,” in the sense that they are special or 

distinctive for multiple different reasons.2 This suggests that when we look closely, we 

should fi nd important similarities between different tonal styles: since there are only 

a few ways to combine the fi ve features, different composers—from before Palestrina 

to after Bill Evans—will necessarily use the same basic techniques. In the second part 

of this book I make good on this claim, tracing common practices that connect the 

earliest examples of Western counterpoint to music of the very recent past.

1.1 the five features

Let’s consider the fi ve features in more detail, with an eye toward understanding 

why they might be so widespread throughout Western and non-Western music. 

A preference for conjunct melodic motion likely derives from the features of the audi-

tory system that create a three-dimensional “auditory scene.”3 An eardrum, in effect, 

is a one-dimensional system that can only move back and forth. From this meager 

input our brains create a vivid three-dimensional sonic space consisting of individ-

ually localized sounds: the phone ringing in front of you, the honk of a car horn 

outside your window, and the sound of a droning music theorist off to your right. 

To accomplish this dazzling transfi guration, the brain relies on a number of compu-

tational tricks, one of which is to group sonic events that are nearby in pitch.4 Thus, 

a sequence like Figure 1.1.1a tends to be heard as belonging to a single sound source, 

whereas Figure 1.1.1b creates the impression of multiple sources. In this sense, small 

melodic steps are intrinsic to the very notion of “melody.”

Acoustic consonance, or intrinsic sonic restful-

ness, is another very widespread musical feature.5 

Many styles make heavy use of consonant inter-

vals such as the octave and perfect fi fth, assign-

ing them privileged melodic and harmonic roles. 

Scales containing a large number of consonant 

intervals are found in seemingly independent 

musical cultures, and there is evidence from infant 

psychology that the preference for consonance 

is innate.6 At  present, however, we do not know 

2 See Cohn 1997.
3 See Bregman 1990, Narmour 1990, and Vos and Troost 1989. Huron 2007 contains data about statisti-

cal properties of Western melodies, including conjunct melodic motion.
4 Wessel (1979) suggests that the relevant variable might be the “spectral centroid,” which in normal 

listening circumstances is highly correlated with pitch.
5 Izumi (2000) and Hulse et al. (1995) indicate that nonhuman animals such as monkeys and birds can 

distinguish consonance from dissonance.
6 Crowder, Reznick, and Rosenkrantz 1991, Zentner and Kagan 1996 and 1998, Trainor and Heinmiller 

1998, Trainor, Tsang and Cheung 2002, and McDermott and Hauser 2005.

Figure 1.1.1 Small movements 

sound melodic (a), while large 

registral leaps create the impression 

of multiple melodies (b).
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for certain how universal or innate this preference is. Fortunately, this issue is largely 

irrelevant in the present context: what matters is just that many listeners, both Western 

and non-Western, do have a fairly deep-seated preference for consonant sonorities.

Slightly more general than acoustic consonance is harmonic consistency, or the use 

of sonorities that resemble one another. For example, Figure 1.1.2a features a series 

of major and minor chords, all audibly similar. Their resemblance gives the passage 

a kind of smoothness, and we experience the chords as belonging together. Likewise, 

Figure 1.1.2b uses a series of very dissonant chromatic clusters that also seem to 

belong together. By contrast, Figure 1.1.2c uses very different-sounding harmonies, 

switching aimlessly between different sonic worlds. This sort of harmonic incongru-

ity is quite unusual in Western music, and often provokes spontaneous laughter—

suggesting that the expectation of harmonic consistency is very strong, even though 

it is rarely discussed.

In most Western and non-Western music, pitches are drawn from a relatively 

small reservoir of available notes—typically, between fi ve and eight.7 As a result, 

Western music has a two-tiered harmonic consistency: at the local (or instantaneous) 

level, a passage like Figure 1.1.3 presents a series of major and minor chords, which 

are audibly related, while over larger time spans it articulates a scale by using only 

seven different notes. The scale can thus be considered a kind of “large” or macro 

harmony that subsumes the individual chords.8 Even though there is no one instant 

at which this larger harmony is presented, it nevertheless has a signifi cant effect on 

our listening experience: scale-based melodies are easier to remember than nonscalar 

melodies, and notes outside the scale sound more pungent than notes in the scale. As 

we will see, macroharmonies can be relatively consonant, like the diatonic or penta-

tonic scale, or relatively dissonant, like the chromatic scale. They can also participate 

in larger-level voice leadings analogous to those connecting individual chords.

Finally, we often hear some pitches or notes as being more important (or “central”) 

than others. These pitches tend to serve as points of musical arrival, to which others 

are heard as “leading” or “tending.” Thus, one and the same sequence of notes—such 

as that in Figure 1.1.4—can be heard in a variety of ways. If we hear it in a musical 

Figure 1.1.2 Harmonic consistency using consonant sonorities 

(a) and dissonant sonorities (b). Sequence (c) does not exhibit 

harmonic consistency.

7 Burns 1999 and Dowling and Harwood 1986. The range “fi ve to eight” recalls familiar facts about the 
limitations on human short-term memory (see Miller 1956 on “seven plus or minus two”).

8 Thanks to Ciro Scotto for suggesting this term.
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context where C is the most stable pitch, then it sounds like a beginning that is in 

need of some sort of continuation, ending with a comma rather than a period. But 

in a context where F is stable, it sounds more complete, as if it ends with a period or 

exclamation point. Centricity is again a very widespread feature of human music, 

appearing in a large number of seemingly unrelated musical cultures. However, dif-

ferent styles can emphasize the tonic note to different extents: as Harold Powers once 

noted, there is a much stronger feeling of centricity in Indian music than in Renais-

sance polyphony.9

Of these fi ve features, harmonic consistency is clearly the most culturally specifi c. 

The idea that music should consist of rapidly changing chords is a deeply Western 

idea, in a double sense: it is deep, insofar as it characterizes much Western music 

since before the Renaissance; and it is Western, since there are many cultures in which 

the notion of a “chord progression” simply plays no role. (Many traditional non-

Western styles are purely monophonic, or feature an unchanging “drone” harmony; 

however, there are now a large number of syncretistic styles that combine Western 

harmonies with non-Western melodic and rhythmic ideas.) Acoustic consonance is 

also somewhat culture-specifi c: although many cultures make some use of consonant 

intervals, and although some have recognizably Western conceptions of consonance, 

other non-Western styles sound quite dissonant to Western ears. By contrast, the three 

other features—conjunct melodic motion, limited macroharmony, and centricity—

are common to virtually all human music. This near universality may be attributable, 

at least in part, to features of our biological inheritance.10

Now for an important disclaimer. While I think that typical Western listeners pre-

fer music that exemplifi es the fi ve features, I do not mean to suggest that such music is 

intrinsically better than any other kind of music. “Tonal,” for me, is not synonymous 

with “good.” (Nor is “popular,” for that matter: there is plenty of unpopular, nontonal 

music that I happen to like, from Nancarrow to Xenakis to Ligeti.) In particular, I 

have no interest in arguing that atonal composers are misguided, fi ghting against 

biology, or anything of the sort. Instead, the purpose of this book is an affi rmative 

one: to develop new theoretical tools for thinking about tonality, and to provide new 

insights into the relations between various musical styles. My hope is that this investi-

gation will be useful to composers and theorists of all varieties, as even the advocates 

of atonality will stand to gain from a deeper understanding of that which they are 

trying to avoid.

Figure 1.1.3 Major and minor triads 

belonging to the same diatonic scale.

Figure 1.1.4 A single melody will sound 

different in different harmonic contexts.

 9 Powers 1958.
10 Dowling and Harwood 1986, Narmour 1990.
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1.2 perception and the five features

This book is primarily concerned with what composers do, rather than what listeners 

hear: the goal is to describe various ways in which the fi ve features have been or might 

be combined. But it is not possible to avoid perceptual issues altogether. After all, read-

ers have a right to wonder whether my fi ve features do indeed contribute to the experi-

ence of tonality, and if so, whether they are the only factors that contribute.

The fi rst question can be easily answered: all one needs to do is constrain randomly 

generated notes according to each of the fi ve features. Insofar as the constraints cause 

random music to sound increasingly tonal, or at least ordered, then I am right about 

their psychological importance. Furthermore, the same experiment can be used not 

just to show that these features have important psychological effects, but also what 

particular psychological effects they have. This is useful because familiar styles tend 

either to combine many of the features, and hence be fully tonal in a traditional sense, 

or else to abandon most of them à la radical atonality. Consequently, existing musical 

works do not always help us to understand the specifi c contributions made by each 

of our fi ve components individually.

I strongly urge you to try this experiment for yourself: the results are not subtle, 

and they demonstrate the powerful psychological effects that can be obtained with 

simple musical means. (In particular, I encourage you to use the book’s compan-

ion website, which contains a number of illustrative examples.11) Unfortunately, 

this is a case where a musical experience is worth a thousand words: no amount 

of merely verbal description on my part will substitute for your own investigation. 

Nevertheless, it is worth trying to describe these effects, if only to persuade you 

to actually perform the experiment. Figure 1.2.1a presents a series of completely 

random three-note chords, with pitches chosen arbitrarily from the range C2 to 

C7. It provides a baseline against which subsequent examples can be judged. (Some 

people, myself included, fi nd this sort of random texture to be oddly appealing.) 

Figure 1.2.1b constrains the randomness by requiring that the notes move just a few 

semitones from chord to chord. What results is very rudimentary sort of counter-

point, consisting of three independent melodic strands. Although it is considerably 

less random-sounding than the pointillistic texture of (a), the harmonic structure 

of the sequence still sounds somewhat indistinct, providing the ear with relatively 

little to grab onto.  Figure 1.2.1c combines conjunct melodic motion with harmonic 

consistency, requiring that each chord be a “stack of fourths.” The melodic lines, 

rather than wandering aimlessly, now seem to create chords with a distinctive har-

monic identity, which in turn gives the passage a feeling of increased consistency.12 

(This example might seem reminiscent of some Stravinsky or Hindemith.) Finally, 

11 www.oup.com/us/ageometryofmusic
12 With a little practice it is easy to distinguish harmonically consistent sequences from those involving 

random, unrelated chords. However, it should be said that some chords (such as the major triad or stack 
of fourths) have a very distinctive sound, while others (such as C-Cs-Ds) are more generic. It takes more 
compositional work to create a palpable sense of harmonic consistency using these generic chords.

www.oup.com/us/ageometryofmusic
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 Figure 1.2.1d restricts the chords to the same diatonic scale. To complete the transi-

tion from utter randomness to something recognizably tonal, I have replaced the 

“fourth chords” of (c) with more consonant diatonic triads. Although the result will 

not win any composition prizes, it does demonstrate that a kind of rudimentary 

tonalness is in fact generated by my fi ve features. Indeed, the differences between 

Figures 1.2.1a–d are striking and unmistakable, even for a layperson with no special-

ized musical training.

Informal experiments like these suggest that, for typical listeners, the fi ve features 

play an important role in determining the tonalness (or perhaps “orderedness”) of 

musical stimuli. Furthermore, I strongly suspect that for many listeners, “tonalness,” 

“orderedness,” and “pleasantness” are correlated: all else being equal, music displaying 

many of the fi ve features will be preferred to music that does not.13 This constitutes 

the testable psychological theory lurking at the core of this book. Personally, I think 

it would be interesting to try to determine not just that the fi ve features have impor-

tant psychological effects, but also their relative importance. What makes a larger 

difference to listeners’ perceptions, harmonic consistency, acoustic consonance, or 

conjunct melodic motion? We lack even the most rudimentary data that would allow 

Figure 1.2.1 Four randomly generated sequences. Sequence (a) is completely random; 

(b) exhibits effi cient voice leading; (c) exhibits harmonic consistency and effi cient 

voice leading; (d) exhibits harmonic consistency, effi cient voice leading, and limited 

macroharmony.

13 Some preliminary studies, conducted by John Muniz, Cynthia Weaver, and Asher Yamplosky (gradu-
ate students at Yale University), suggest that conjunct melodic motion may contribute more to “ordered-
ness” than “pleasantness.” Disentangling these issues is a subject for future research.
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us to answer this question. One of my hopes is that some psychologist readers will 

be motivated to undertake the obvious experiments suggested by the ideas I will be 

discussing.

Figure 1.2.1 shows that the fi ve features can contribute fairly dramatically to the 

sense of tonality. But are they necessary for creating tonal effects? And if so, are they 

the only such features or are there others?

In some ways, I think the question is misguided. The point here is not to police 

the use of the word “tonality” by setting strict limits on what may or may not be 

described with the term, but rather to replace the crude opposition “tonal/atonal” 

with a more nuanced set of distinctions. You can decide for yourself whether to use 

“tonal” to describe (say) diatonic music without a tonal center, or chromatic music 

with a strong sense of harmonic consistency; my job is just to show that the term 

“tonality” typically applies to music that exhibits my fi ve basic features. I should also 

point out that I am neglecting important issues such as rhythm, motivic variation, 

timbre, form, performance, and rubato, all of which can contribute to the sense of 

tonality. (My goal is not to provide a complete theory of all music, but rather to 

discuss a few general features whose musical importance is for the most part unques-

tioned.) That said, however, I confess that it is diffi cult for me to imagine that I would 

ever want to use the term “tonal” to describe music in which acoustic consonance 

plays no role, in which there is no conjunct melodic motion or harmonic consistency, 

in which no tone is heard as central, and which does not limit itself to a relatively 

small number of pitch classes over short stretches of time. In this sense, it seems that 

at least some of the fi ve features are necessary for tonality, at least as I personally 

understand it.

Throughout the twentieth century, composers devised new musical languages—

some idiosyncratic, some very widely used—intended to replace traditional tonality. 

It is instructive to subject these alternative systems to the experimental test described 

above: that is, to constrain random musical notes according to their basic principles, 

and to listen for the perceptual differences that result.14 To that end, Figure 1.2.2 uses 

“constrained randomness” to investigate one of the most prominent alternatives to 

tonality, the twelve-tone system.15 On a fi rst (or even tenth) listening, I do not fi nd 

the sequences in Figure 1.2.2 to be dramatically different from randomly generated 

sequences such as Figure 1.2.1b. Indeed, if someone were to present the three  passages 

in a psychology experiment, I doubt I would notice that one was random while 

the other two were not. This is not to say that twelve-tone structure makes no audible 

difference, or that one cannot learn to hear the coherence in Figure 1.2.2, but rather 

14 It is exceedingly diffi cult to judge the effects of a musical syntax if we only encounter it in the context 
of complete compositions, since compositional skill may mask the contributions of the syntax itself.

15 Figure 1.2.2a uses three successive rows to generate a sequence of 12 three-note chords. Figure 1.2.2b 
sets the row in counterpoint against its inversional and retrograde-inversional forms, producing a series 
of 12 three-note chords. I have borrowed the 12-tone row from Schoenberg’s fi rst consistently twelve-tone 
piece, his Op. 25 Suite for piano.
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that the psychological effects here are relatively subtle—considerably less dramatic 

than those produced by our fi ve features.

Does this show that twelve-tone music is aesthetically problematic? Or that the 

twentieth-century quest for alternatives to traditional tonality is fruitless? Not at all.16 

But it does suggest that twelve-tone rows produce less powerful psychological conse-

quences than harmonic consistency, conjunct melodic motion, acoustic consonance, 

macroharmony, and centricity.17 And while twelve-tone music is just one twentieth-

century musical system, similar comments might be made about other approaches. 

To my mind, this suggests that the fi ve features are unusually powerful tools for creat-

ing musical coherence. To say this is not to deny that alternative tools may in principle 

exist, but simply to reiterate the basic point that tonality constitutes a fairly unique 

solution to some elementary compositional problems. If this is right, then the task of 

providing an alternative to tonality is much more  diffi cult than one might intuitively 

have imagined.

1.3 four claims

The argument of this book revolves around four basic claims, each of which concerns 

ways in which the fi ve features can interact with or constrain one another. In this 

section I’ll briefl y outline these claims as a way of foreshadowing some of my central 

preoccupations.

Figure 1.2.2 

Randomly 

generated twelve-

tone music.

16 First, it is possible that there are gifted listeners who respond strongly and immediately to the non-
random features of the sequences in Figure 1.2.2. Second, it is possible that with extensive training ordi-
nary listeners can sensitize themselves to the sequences’ structure—as when one gradually starts to discern 
the details in an all-gray painting. Third, it is possible that there are specifi c compositional techniques that 
can make twelve-tone structure psychologically transparent. Fourth, it is possible that some listeners sim-
ply enjoy random pitch structures. And fi fth, it is possible that twelve-tone music can be attractive in ways 
that make up for any potential absence of interesting pitch structure.

17 Schoenberg (1975, p. 215) observed that “composing [using twelve-tone techniques] does not 
become easier, but rather ten times more diffi cult” (see also Dubiel 1997).



theory12

1.3.1  Harmony and Counterpoint Constrain 
One Another

Imagine a composer, Lyrico, who would like to combine conjunct melodic motion 

with harmonic consistency; that is, he would like to write melodies that move by 

short distances while using harmonies that are structurally similar to one another. 

Intuitively, it might seem that there are innumerable ways to satisfy these two con-

straints—that there is an entire universe of syntaxes consistent with these fundamen-

tal principles. But in fact, there are just a few ways in which they can be combined.

Consider the simplest possible situation. Suppose Lyrico decides to combine an 

unchanging “drone” harmony with a moving melodic voice. Harmonic consistency 

is thus obtained trivially: the chords in the passage will all be similar because there 

is only one chord. Let us further imagine that Lyrico chooses to use a C major chord 

as his drone. If he were to confi ne the melody to the notes of this chord, the result 

would be a series of unmelodic leaps (Figure 1.3.1a). This is because its notes are all 

reasonably far apart. To obtain conjunct melodic motion, Lyrico can therefore intro-

duce “passing tones” that connect the chord tones by short melodic steps. The result, 

shown in Figure 1.3.1b, is a scale covering an entire octave, in which successive notes 

are connected by relatively small distances, and in which chord tones alternate with 

nonchordal “passing tones.” Lyrico can now write melodies that move freely along 

this scale, alternating between stable and unstable notes.

But suppose Lyrico wakes up 

one day in a more ornery mood 

and decides to use the dissonant 

chromatic cluster {B, C, Df} as 

his drone. Here the compositional 

situation is reversed: where the 

major chord is consonant, and has 

its notes spread relatively far apart, 

this chord is very dissonant and has 

all its notes close together. Conse-

quently, by confi ning himself to the 

notes of the chord, Lyrico can obtain conjunct melodies, as in Figure 1.3.2. However, 

it takes a large number of passing tones to connect the Df in one octave to the B in the 

Figure 1.3.1 (a) Confi ning a melody to the notes 

of the C major chord produces large leaps, so it is 

necessary to add “passing tones” (b).

Figure 1.3.2 (a) Confi ning a melody to the notes of the cluster 

{B, C, Df} produces conjunct melodic motion, but changing 

octaves requires a large number of passing tones (b).
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next. Since the resulting scale does not exhibit a regular alternation of stable “chord 

tones” and unstable “passing tones,” it is diffi cult to hear the nonharmonic tones as 

connective devices that simply decorate an underlying harmony.

These two examples suggest a general moral: harmony and melody constrain one 

another. Different types of chords suggest different musical uses. In particular there is 

a fundamental difference between chords like {C, E, G}, whose notes are all far away 

from each other, and chords like {B, C, Df}, whose notes are clustered close together. 

When a chord’s notes are clustered close together, it is possible to create conjunct 

melodies that use only the chord’s notes, but it is not possible to create scales that 

have a regular alternation between chord tones and passing tones. When a chord’s 

notes are relatively spread out, it is not possible to create conjunct melodies by using 

only the notes of the chord, but it is possible to create scales with a nice arrangement 

of chord and non-chord tones.

Now consider a more sophisticated problem. Suppose Lyrico decides to write a 

C major chord followed by an F major chord, its transposition by ascending perfect 

fourth. As shown in Figure 1.3.3, every note in the C major chord is near some note 

in an F major chord: C is common to both, 

E is one semitone from F, and G is two semi-

tones from both F and A. This means that 

Lyrico can write a sequence of C and F major 

chords that articulates three separate melodies, 

each moving by small distances. This is coun-

terpoint—a group of simultaneous melodies, 

or voices, articulating mappings, or voice lead-

ings, between  successive chords. For example, 

the fi rst voice leading in Figure 1.3.3b maps 

G to A, E to F, and C to C. This voice lead-

ing is effi cient because all the voices move by 

short distances. Clearly, effi cient voice leading 

is simply conjunct melodic motion in all parts 

of a contrapuntal texture.

As it happens, the major chord is particularly well suited for contrapuntal music. 

Figure 1.3.4 shows that any two major chords can be connected by stepwise voice lead-

ing in which no voice moves by more than two semitones. This means that Lyrico can 

write a harmonic progression without worrying about melody; that is, for any sequence 

Figure 1.3.3 (a) Every note of the 

C major triad is near some note of 

the F major triad. (b) It is possible to 

use a series of C and F major triads to 

construct three simultaneous melodies.
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Figure 1.3.4 Any 

two major triads 

can be linked by 

stepwise voice 

leading; in the 

case of the tritone, 

this requires 

four voices.
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of major triads, there is always some way to connect the notes so as to form step-

wise melodies. Conversely, Lyrico can write any melody whatsoever without worrying 

about harmony, as there will always be some way to harmonize it with a sequence of 

effi cient voice leadings between major chords.

But what if Lyrico writes the chromatic cluster {B, C, Df} followed by {E, F, Gf}, 

its transposition by ascending fourth? Here, none of the notes of the fi rst chord are 

within two semitones of any note in the second, and hence there is no way to combine 

a sequence of these chords so as to produce conjunct melodies (Figure 1.3.5). At the 

same time, however, the chromatic cluster can do things that the C major chord can’t: 

Figure 1.3.6 shows that it is possible to write contrapuntal music in which individual 

melodic lines move by short distances within a single, unchanging harmony. Clearly, 

this is possible only because the chord’s notes are all clustered together, ensuring that 

there is always a short path between any two of them. The resulting music produces 

a feeling of burbling within stasis, a kind of melodic activity within overall harmonic 

restfulness.18

Once again, we see that different kinds of chords are useful for different purposes. 

Chords that divide the octave very unevenly, such as {B, C, Df}, are ideally suited 

for static music in which harmonies do not change. By contrast, chords that divide 

the octave relatively evenly, like C major, can be connected to their transpositions 

by effi cient voice leading, and are therefore suited for 

contrapuntal music in which harmonies change quickly. 

Remarkably, the most nearly even chords in twelve-tone 

equal temperament are the familiar chords of West-

ern music: perfect fi fths, triads, seventh chords, ninth 

chords, and familiar scales. Besides being well suited for 

contrapuntal music, these chords are all acoustically con-

sonant, or restful and stable-sounding. This, then, is an 

example of Cohn’s “overdetermination,” a situation in 

which a familiar musical object is remarkable for mul-

tiple reasons: nearly even chords are interesting not just 

because they permit the combination of harmonic con-

sistency and conjunct melodic motion, but also because 

they can be acoustically consonant.19

More generally, it would seem that composers who 

wish to combine harmonic consistency and conjunct 

melodic motion have relatively few options: they can either use familiar sonorities in 

more or less familiar ways, or they can use chromatic chords whose notes are  clustered 

18 This sort of texture was popularized during the 1960s by composers such as Ligeti and Lutosławski; 
precursors to the technique include Bartók’s Out of Doors (“Night Music”) and Ruth Crawford Seeger’s 
String Quartet.

19 This observation has been made by Agmon (1991) and Cohn (1996), in the special case of the triad. 
Both writers explained the specialness of the triad in terms of the way it is embedded in a larger collection. 
In the following chapters, I provide an account that applies to consonant chords more generally and that 
does not presuppose embedding into a larger scale.

Figure 1.3.5 
Chromatic 

clusters cannot 

always be linked 

by effi cient voice 

leading.

Figure 1.3.6 
Chromatic 

clusters allow 

conjunct melodic 

motion to be 

combined with 

harmonic stasis.
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together. The next few chapters will elaborate on this point, using the notion of near 

symmetry to explain exactly how chord structure constrains contrapuntal function. 

Later chapters will trace the practical consequences of this interdependence, consid-

ering a range of superfi cially different styles, from Renaissance polyphony to contem-

porary jazz, and showing that they all utilize fundamentally similar procedures. Our 

theoretical work will demonstrate that these similarities are not simply the byproduct 

of historical infl uence, but also of the more fundamental ways in which the fi ve fea-

tures constrain one another. In other words, they testify to the fact that there are only 

a few ways to combine harmonic consistency and stepwise melodies.

1.3.2  Scale, Macroharmony, and Centricity are 
Independent

My second claim is that we need to distinguish the closely related phenomena of 

scale, macroharmony, and centricity. A scale, as I use the term, is a means of measur-

ing musical distance—a kind of musical ruler whose unit is the “scale step.” Relative 

to the C diatonic scale, the notes E and G are two scale steps apart, since there is 

precisely one white note between them (Figure 1.3.7).20 These same notes are one 

step apart relative to the pentatonic scale C-D-E-G-A and three steps apart relative 

to the chromatic scale. Similarly, C and E are two steps apart relative to the diatonic 

and pentatonic scales, and four apart relative to the chromatic scale. The three scales 

therefore give us three different ways of measuring musical distance, and three differ-

ent estimates of the relative sizes of the intervals C-E and E-G. In principle, we should 

not ask whether the intervals C-E and E-G are “the same size” unless we also specify a 

particular musical “ruler.” As we will see, the richness of tonal music lies partly in the 

way it exploits these various conceptions of musical distance.

If a scale is a musical ruler, then a macroharmony is the total collection of notes 

used over small stretches of musical time. Typically, macroharmonies are also scales: a 

composer might (for example) use only the white notes on the piano keyboard, while 

also exploiting the unit of distance defi ned by adjacent notes (the “scale step”). But in 

20 Here and elsewhere, I use the term “C diatonic scale” to refer to the notes of the C major scale (i.e. 
the white notes) without suggesting that the note C is special in any way. I use the term “C major” (or “C 
ionian”) in contexts where C is a tonal center.

Figure 1.3.7 Scale steps provide a means of measuring musical distance. The intervals C-E 

and E-G are two steps large relative to the diatonic scale (a), two and one steps large relative 

to the pentatonic scale (b), and four and three steps large relative to the chromatic scale (c).
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principle it is possible to separate the 

two phenomena. Figure 1.3.8 shows a 

passage of “polytonal” music in which 

the upper staff moves systematically 

along the C diatonic scale, while the 

lower staff moves along Gf penta-

tonic. To explain how this music works, we need to postulate two different scales, one 

for each staff. (Of course it would be possible to combine the notes in both staves into 

a single chromatic scale, but the resulting collection would be useless for explaining 

why the individual voices move as they do.) Here, then, is a passage of music that uses 

pentatonic and diatonic scales to create a chromatic macroharmony. The concept of 

“scale” allows us to describe the structure within each voice, while the concept “mac-

roharmony” allows us to describe the global harmony they produce.

A second fundamental distinction is between macroharmony and centricity. “Cen-

tricity” refers to the phenomenon whereby a particular pitch is felt as being more 

stable or important than the others. (In traditional tonality this is the tonic note; in 

modal theory, it is the “fi nal.”) Chapters 4 and 5 will suggest that macroharmony and 

centricity are completely independent: it is entirely possible, for example, to write 

diatonic music in which no note is heard as a tonal center, just as one can write chro-

matic music with a very clear center. There is, however, a strong historical associa-

tion between the two, with diatonic music often being centric and chromatic music 

centerless. The explanation for this connection lies in the fact that some prominent 

musicians believed that the diatonic scale had a unique “natural” tonic, and hence 

that a centerless chromaticism was the main alternative to traditional tonality. Other 

musicians, believing that centricity and macroharmony were independent, felt free to 

explore a much wider range of scales and modes. Chapter 5 will thus propose that the 

cleavage between the “scalar” and “chromatic” traditions, exemplifi ed by composers 

such as Debussy and Schoenberg, was exacerbated by a fundamental disagreement 

about the relationship between macroharmony and centricity.

Together, scale, macroharmony, and centricity are the three principal compo-

nents of what I think of as the “general theory of keys”—a set of tools for describing 

music that is tonal in the broad sense, even though it may not conform to the specifi c 

conventions of eighteenth-century tonality. One of this book’s goals is to consider 

various sorts of “generalized keys” in Western music. Particularly interesting here is 

the gradual emergence of a musical language that combines a wide variety of mac-

roharmonies and tonal centers. The earliest Western music explored the tonal cen-

ters contained within a relatively static and largely diatonic macroharmony (Figure 

1.3.9).21 Classical music, which reduced the available modes to just major and minor, 

created large-scale harmonic contrasts by juxtaposing different scalar collections (e.g. 

G major and C major). It was only in the last decades of the nineteenth century 

that these two procedures were combined, as composers began to feel free to use any 

Figure 1.3.8 

The music 

makes use of two 

scales to create 

a chromatic 

macroharmony.

21 The presence of unnotated accidentals (musica fi cta) complicates matters somewhat.
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of the seven modes of any of the twelve diatonic collections. This scalar vocabulary 

was further extended with the use of additional nondiatonic scales—including the 

pentatonic, whole tone, melodic minor, harmonic minor, and octatonic—creating 

hundreds of possible combinations of macroharmony and tonal center. What results 

is a dazzling proliferation of “generalized keys” providing a wealth of alternatives to 

traditional major and minor modes.

1.3.3 Modulation Involves Voice Leading

My third claim is that tonal music makes use of the same voice-leading techniques 

on two different temporal levels: chord progressions use effi cient voice leading to link 

structurally similar chords, and modulations use effi cient voice leading to link struc-

turally similar scales.22 As a result, tonal music is both self-similar and hierarchical, 

exploiting the same procedures at two different time scales.

Figure 1.3.10 shows the opening of the last movement of Clementi’s D major 

Piano Sonata, Op. 25 No. 6. The two parallel phrases present a series of three-voice 

chord progressions: I–V6–I followed by I–IV–I and then V7/V–V. The bottom staff 

shows that we can fi nd a higher-level harmonic motion relating two diatonic collec-

tions: the fi rst six measures limit themselves to the seven notes of D major, while the 

rest of the phrase abandons the Gn in favor of the Gs. As we will see in Chapter 4, this 

modulation, or motion between macroharmonies, can be represented as a voice lead-

ing in which the Gn moves by semitone to Gs. This means that the music exhibits two 

sorts of effi cient voice leading: on the level of the half measure, there is a sequence of 

eight effi cient voice leadings between triads; while on a larger temporal level there is a 

Figure 1.3.9 (a) In earlier music, composers emphasized different centers within a single 

fi xed diatonic collection. (b) In classical music, composers restricted the available modes to 

two, creating long-term harmonic change by emphasizing different major or minor scales. 

(c) Only in the twentieth-century were these two techniques systematically combined, 

creating a much wider range of tonal areas to choose from.

22 This is not all that modulation does, of course, but it is typically part of it.
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single effi cient voice leading between D major and A major scales, occurring some-

where near the seventh measure of the example.

Figure 1.3.11 shows that similar processes occur in twentieth-century music. The 

top system depicts the main theme of Debussy’s prelude “Le vent dans la plaine,” 

which uses the pitches of Ef natural minor. When the theme returns, Bf moves by 

semitone to Bff, producing a collection that is enharmonically equivalent to Fs 

melodic minor ascending. Debussy’s “modulation” is thus analogous to Clementi’s, 

although it involves modes that Clementi himself would never have used. Here, then, 

we have a familiar tonal technique appearing in the context of a signifi cantly expanded 

modal vocabulary. As we will see in Chapter 9, this same technique has been used by 

a number of twentieth-century composers, including Stravinsky, Shostakovich, and 

the minimalists. There are also a few non-Western styles that use voice leading to link 

closely related scales.23

The idea that tonal music is hierarchically self-similar is central to the work of 

Heinrich Schenker, who claimed that tonal pieces consisted of recursively embedded 

patterns. The theory I have described is similar to Schenker’s insofar as I consider 

23 Morton 1976 and Hall 2009.

Figure 1.3.10 

Two levels of 

voice leading in 

Clementi’s Op. 25 

No. 6.
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tonal music to utilize effi cient voice leading at two temporal levels. Unlike Schenker, 

however, I view macroharmonies and scales (rather than chords or melodic lines) 

as the primary vehicles of long-range harmonic progression: for me, the long-term 

voice leading in  Figure 1.3.10 connects the D and A major scales rather than D and A 

major tonic triads. By contrast, a Schenkerian would likely interpret the passage—and 

indeed the entire piece—as involving chord progressions at all hierarchical levels. In 

Chapter 7 I will return to these issues, suggesting that my approach, though perhaps 

less unifi ed than Schenker’s, more closely refl ects the cognitive processes involved in 

 composition.

1.3.4  Music Can Be Understood Geometrically

My fourth claim is that geometry provides a powerful tool for modeling musical 

structure. This is because there exists a family of geometrical spaces that depict the 

voice-leading relationships among virtually any chords we might care to imagine. 

Some of these (such as the familiar “circle of fi fths”) are relatively simple, but oth-

ers (such as the Möbius strip containing two-note chords) are considerably more 

complex. One goal of the book is to provide a user-friendly introduction to these 

musico-geometrical spaces, explaining how they work, and showing how they allow 

us to visualize a wealth of musical possibilities at a glance.

Suppose, by way of illustration, that our friend Lyrico decides to write music using 

only the seven triads in the C diatonic collection. After a little exploration, he fi nds 

that some of these are closer together than others: for example, he can turn a C major 

triad into an A minor triad by moving only one note by one diatonic step, whereas 

he must move each voice to turn C major into D minor (Figure 1.3.12). Pondering 

this a little further, Lyrico eventually realizes that the diatonic triads can be linked in a 

“circle of thirds” (Figure 1.3.13), where each chord can be connected to its neighbors 

by a single-step motion. This circle allows him to defi ne a kind of “distance”  according 

Figure 1.3.11 

Voice leading 

between 

macroharmonies 

in Debussy’s 

“Le vent dans la 

plaine.”
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to which C major and A minor are one step apart (since they are adjacent on the circle) 

while C major and D minor are three steps apart (since there are two chords between 

them).

Now suppose that Lyrico’s rival Avanta becomes frustrated with all this conser-

vatism. “Why limit yourself to just the triads in that one seven-note scale?” she asks, 

stamping her foot. “There’s a whole world out there beyond 

the white notes, you know!” Avanta then proceeds to dem-

onstrate some of the musical possibilities not represented in 

Lyrico’s simple circular model: she shows that in the famil-

iar chromatic scale, the C major chord can be linked to four 

separate triads by single-semitone voice leading, and to seven 

triads by a pair of semitone steps (Figure 1.3.14). What is the 

analogue, in Avanta’s expanded musical world, to Lyrico’s cir-

cular map? How can she depict the voice-leading possibilities between all the triads 

in the chromatic scale?

The answer turns out to be surprisingly complicated: instead of a simple seven-

chord circular model, Avanta needs the three-dimensional, 40-chord lattice shown in 

Figure 1.3.15. This fi gure provides a map of all the contrapuntal possibilities avail-

able to a composer who wants to use traditional triads, but is willing to step outside 

the confi nes of a single diatonic scale. This complex-looking construction provides 

the fi rst hint that ordinary musical questions might sometimes lead to nontrivial 

geometrical answers. In fact, Chapter 3 shows that Avanta’s lattice lives in what math-

ematicians would call “the interior of a twisted triangular two-torus,” otherwise 

known as a triangular doughnut. This space contains all possible three-note chords 

in any conceivable scale and any  conceivable tuning system. Analogous spaces depict 

Figure 1.3.13 
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voice-leading relations among four-note chords, fi ve-note chords, and so on. We will 

use them throughout this book, both for modeling chords and scales and for analyz-

ing specifi c pieces.

For now, it is enough to note that the world of chromatic voice leading, as rep-

resented by Figure 1.3.15, is signifi cantly more complicated than the simple circle 

representing diatonic triads. Because of this complexity, the fundamental logic ani-

mating nineteenth-century music has not always been clearly understood: theorists 

have sometimes depicted chromaticism as involving whimsical aberrations, depar-

tures from compositional good sense, rather than as the systematic exploration of a 

complex but coherent terrain. This has in turn led historians and composers to depict 

nineteenth-century chromaticism as pushing tonal logic to its breaking point, such 

that the step to complete atonality became all but inevitable. I will argue against this 

point of view, using new geometrical tools to demonstrate that the music of Chopin 

and Wagner can be just as rigorous as the music that preceded it.

Figure 1.3.14 

(a) One-

semitone voice 

leading and (b) 

two-semitone 

voice leading 

among triads.

Figure 1.3.15 This three-dimensional graph represents single-semitone voice leading 

between major, minor, augmented, and diminished triads—represented by dark spheres, 

light spheres, dark cubes, and light cubes respectively. Chords on the same horizontal  cross-

section are related by major-third transposition; vertical motion corresponds to semitonal 

transposition, and the top face is glued to the bottom with a 120° twist. We will explore this 

fi gure more thoroughly in Chapter 3.
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1.4 music, magic, and language

Having sketched some major themes, let me now step back to make a few remarks 

about my approach to music theory. In this book I am primarily interested in the 

idealized composer’s point of view: my goal is to describe conceptual structures 

that can be used to create musical works, rather than those involved in perceiving 

music. I stress the adjective “idealized,” as my goal is not to undertake a histori-

cal investigation of the way past composers actually conceived of their music, but 

rather to describe concepts contemporary composers might fi nd useful—in other 

words, to answer the question “what concepts would be helpful if I wanted to com-

pose music like this?” Music theory, understood in this way, helps composers steal 

from one another in a sophisticated fashion, allowing us to appropriate general 

procedures and techniques rather than particular chords or melodies. Of course 

it can also help performers and analysts understand music “from the inside,” by 

showing how composers make use of the options available to them.

Of course, composer-based music theory cannot ignore listeners entirely: the 

point is to write music that other people want to listen to, and this can only occur 

if composers are dealing with musical features that listeners care about. But though 

composers and listeners need to be synchronized in general, there is room for con-

siderable divergence when it comes to the details. For example, classical composers 

evidently considered it important to conclude a piece in the tonic key, even though 

listeners are relatively insensitive to this feature of musical organization.24 This means 

that theorists should not assume that the cognitive structures involved in making 

music are the same as those involved in perceiving it: ideas that are central to the com-

poser’s craft, such as the principle that a classical sonata should recapitulate the sec-

ond theme in the tonic key, may have only a glancing relevance to ordinary listeners.

I fi nd it useful here to consider the analogy with magic. A stage magician uses var-

ious tricks to cause the audience to have extraordinary experiences—bunnies seem to 

disappear, beautiful assistants seem to be sawed in half, and so on. Enjoying a magi-

cian’s performance does not require you to understand how the tricks are done; in 

fact, understanding may actually diminish your astonishment. Nor is the magician’s 

“ideal audience” composed of professional magicians: the point is to perform the 

trick for people who will genuinely be fooled. In much the same way, I understand 

composition to be a process of using technical musical tools to ensure that audiences 

have certain kinds of extraordinary experiences. When composing, I make various 

choices about chords, scales, rhythm, and instrumentation to create feelings of ten-

sion, relaxation, terror, and ecstasy, to recall earlier moments in the piece or antici-

pate later events. But I do not in general expect listeners to be consciously tracking 

these choices. Listeners who do (“ooh, a dissonant s9 chord in the trombones, in 

polyrhythm against the fl utes and inverting the opening notes of the piece!”) are like 

professional magicians watching each others’ routines—at best, engaged in a  different 

24 Cook 1987, Marvin and Brinkman 1999.
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sort of appreciation, and, at worst too intellectually engaged to enjoy the music as 

deeply as they might.

One might contrast this approach with an alternative, on which the composer’s 

and listener’s perspectives are thought to be more closely aligned. Here the relevant 

analogy is not to magic, but to language: the idea is that composers write music that 

contains various sorts of patterns, including familiar sequences of chords and keys, 

thematic recurrences, and so on, while the listener’s job is to recover these patterns. 

Expert listeners recover more patterns than inexpert listeners, and are consequently 

more qualifi ed to pass aesthetic judgment on particular pieces of music. Insofar as 

some composers place patterns in their music that cannot be decoded aurally by 

expert listeners, their compositions are thereby aesthetically fl awed.25 On this view, 

music essentially involves a language-like transmission of syntactic patterns from 

producer to receiver.

The linguistic model is attractive, and there is no doubt some truth to it. But I 

think it understates the extraordinary distinctiveness of human language. Linguistic 

abilities are remarkable both for their accuracy and for their homogeneity: if you say 

“there is a tiger nearby,” I have no trouble repeating the sentence word for word, writ-

ing it down, or explaining what it means. Furthermore, almost any English speaker 

can effortlessly distinguish grammatical utterances such as “there is a tiger nearby” 

from nongrammatical ones like “nearby tiger is.” By contrast, musical abilities are 

both heterogeneous and fairly inaccurate. First, there is an enormous spectrum rang-

ing from congenital amusics to gifted listeners with extraordinarily accurate abso-

lute pitch. These individuals have radically different musical capabilities as both 

producers and consumers of music. Second, while competent language-listeners 

are typically also competent language-speakers, this is not the case for music: most 

people enjoy listening to music, while only a few enjoy creating it. Third, even expert 

listeners lose a large amount of the “signal” in even moderately complicated music. 

I have had more than three decades of musical training, and yet I—like most other 

“expert” listeners—would have trouble notating, or recreating at the piano, the notes 

and rhythms in a ten-second excerpt from an unfamiliar four-voice Baroque fugue. 

Musically, in other words, I am analogous to a person who cannot reliably under-

stand all the words in the sentence “there is a tiger nearby.”26

These differences no doubt refl ect the fact that music largely lacks semantic con-

tent. A listener who does not understand “be quiet, there’s a tiger nearby” is a serious 

danger to himself and others; consequently, there is tremendous pressure for speak-

ers and listeners to converge on the same interpretation of sentences. By contrast, a 

listener who does not follow the detailed syntax of a Beethoven symphony, but who 

nevertheless enjoys it, creates no problems whatsoever. In some important sense it 

25 See Babbitt 1958, Lerdahl 1988, Raffman 2003, and Temperley 2007.
26 Of course, musical signals are in some respects more complex than spoken sentences: listening to a 

Bach fugue is like listening to four people speak at the same time. But this should make us wonder why we 
tolerate higher information content in music.
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simply does not matter whether you follow all the details of a piece’s syntax; what mat-

ters is that you follow the piece well enough to enjoy what you hear. For in the end, 

the composer’s well-being depends on your willingness to listen, not on whether you 

interpret music in the same way that he or she does. Or to revert to our earlier anal-

ogy: what is important is not that you understand the magic trick, but simply that 

you feel the force of the illusion.

I should pause here to mention that I have a personal perspective on these 

issues, since I sometimes create music with the aid of algorithms and computers. 

In these cases I can be fairly removed from the underlying syntactical structure 

of the music I create, whether that be some complex melodic process, a gradually 

shifting probability distribution over the twelve chromatic notes, or a harmonic 

structure derived from a mathematical analysis of Mozart’s music. Here my com-

positional role is that of a gatekeeper or judge, selecting the computer-generated 

passages that strike me as intuitively compelling, and arranging them, in a collage-

like fashion, so as to produce the best musical effect. (Typically, I augment these 

algorithmic passages with music composed intuitively, producing a fi nal prod-

uct that blends the human and the inhuman.) The fact that some people seem to 

like this music only serves to highlight the oddness of the linguistic approach. For 

here the composer is only vaguely aware of the structures that, on the linguistic 

model, the listener is supposed to be recovering. Given that I am not at all sure 

that I am hearing these structures accurately, it seems presumptuous for me to 

demand much more from my listeners. Instead, I am hoping that listeners will 

be directly affected by the music in the same way I am—that is, tickled, amused, 

impressed, or awed.

Faced with this situation, I draw several morals.

First, there is a potential for real divergence between what we might call “com-

poser’s grammar” and “listener’s grammar.” Listeners may potentially grasp only a 

fraction of the underlying syntax of a Bach fugue, a Beethoven symphony, or a John 

Coltrane solo. (Some authors have claimed that this is particularly true when we con-

sider the artifi cial syntaxes of twentieth-century atonality, and this may be true; but 

the more important point is that there will be signifi cant gaps whenever we consider 

music of any complexity.27) In this sense, listening is like trying to catch up to a train 

that is forever just beyond your reach; indeed, the very fact that we miss so much 

structure is no doubt part of what leads us to study scores, or listen repeatedly to 

the same pieces. This means that there are at least two separate projects that music 

theorists can engage in: modeling what composers actually do, and modeling what 

listeners actually experience. We should be careful not to confl ate these by acting as if 

listening is “composing in reverse.”

27 See Lerdahl (1988, 2001) and Raffman (2003). Lerdahl asserts that it is desirable for “composer’s 
grammar” and “listener’s grammar” to be close together, and suggests this is true for classical music. Fur-
thermore, he postulates lossless musical perception, in which listeners have subconscious but completely 
accurate access to most of the details in a musical score. He therefore believes the gap between composer 
and listener is signifi cantly less severe than I do.
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Second, we should be careful not to assume that there is any one thing that “listen-

ing” is. It is possible that some listeners are adept at recovering a large amount of the 

structure in muscial pieces, but many listeners are not. The heterogeneity of musical 

abilities makes it diffi cult to abstract away from individual variation in favor of some 

idealized “competent” listener. Can we describe as “competent” the listener who loves 

Beethoven, but who performs poorly on standard ear-training tests? What about the 

listener who hates music but perceives it very accurately? Does the “ideal” musical 

listener have absolute pitch? A perfect memory for every musical detail? Is the point of 

listening to music to experience aesthetic enjoyment, or is it to recover a kind of musi-

cal “syntax” that the composer placed in his or her music? Personally, I suspect there is 

no uncontroversial answer to these questions: there simply is no “competent” or “ideal” 

listener that is analogous to the “idealized speaker” of contemporary linguistics.

Third, listeners’ perceptions may in some respects be more crude and statisti-

cal than we would initially think. We do not determine the meaning of sentences 

by estimating the proportion of nouns to verbs, but we do respond very strongly to 

relatively crude global features of the musical stimulus. Does the piece use consonant 

or dissonant harmonies? Does it restrict itself, over moderate spans of musical time, 

to a small set of notes, and do these notes themselves change over larger time spans? 

Do melodies in general move by short distances? The answers to these questions tell 

us an enormous amount about how untrained listeners will respond to a piece. Hence 

my fi ve features might be compared to a set of basic tools which composers can use 

to perform their musical magic.

Fourth, musical heterogeneity poses special problems for composers, who con-

front an audience of widely varying interests and abilities. Traditional tonal compos-

ers dealt with this by writing music that was immediately attractive, largely by virtue 

of exploiting the fi ve features. Many composers also built into their music layers of 

additional, more complicated structure—complex thematic and formal interrela-

tionships, intricate rhythmic devices, sophisticated contrapuntal tricks, and so on. 

The result was a kind of music that listeners could engage with in multiple ways: 

laypersons could simply enjoy a piece for the gross statistical features it shared with 

many other compositions in the same style, while cognoscenti could become more 

involved in the subtleties particular to that work.

I fi nd it fascinating that so many twentieth-century musicians chose to aban-

don this strategy. Composers such as Schoenberg, Webern, Berg, and Varèse—and 

later Babbitt, Boulez, Cage, Xenakis, and Stockhausen—wrote music that listen-

ers often found quite unpleasant. In many cases, this was because these compos-

ers rejected not just acoustic consonance, but also harmonic consistency, conjunct 

melodic motion, limited macroharmony, and centricity. Some early modernist com-

posers may have hoped that ordinary listeners would adapt to this new musical style, 

adjusting their ears to the absence of familiar musical structures and coming to enjoy 

atonality as deeply and directly as traditional music. But after several decades of 

avant-garde exploration, composers began to realize that this might never occur. The 

locus classicus of this new perspective is Milton Babbitt’s 1958 manifesto “Who Cares 

if You Listen?”—in which he cheerfully acknowledged that his music was not enjoyed 
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by laypersons, but only by a specialist musical community analogous to the specialist 

community of professional mathematicians.28

Rather than criticizing this point of view, let me just say that I am interested 

in music that does not make this choice: I like music that brings people together, 

rather than dividing them, and I think the traditional strategy—writing immediately 

attractive music that also contains deeper levels of structure—is as potent as it ever 

was. (Indeed, it may be all the more necessary in an economic and cultural environ-

ment in which notated music is somewhat marginal.) In this book, therefore, I will 

be primarily concerned with effects that can be achieved within a broadly attrac-

tive sound-world. From a technical standpoint, this restriction is relatively uncon-

straining, as a large number of avant-garde techniques are easily applied within a 

 consonant  harmonic context: it is perfectly possible, for example, to write music that 

is diatonic, or more generally macroharmonically consonant, while also being serial, 

aleatoric, indeterminate, wildly polyrhythmic, and so on.29 Thus, the choice between 

superfi cial accessibility and off-putting dissonance is not forced on us by our interest 

in particular musical techniques. Instead, it is a relatively independent refl ection of 

our own aesthetic preferences.

1.5  outline of the book, and a suggestion for 
impatient readers

The book is divided into two halves, with the theoretical material front-loaded into the 

fi rst fi ve chapters. Chapter 2 reviews basic theoretical concepts and introduces simple 

geometrical models of musical structure, representing pitches as points on a line and 

pitch classes as points on a circle. These models are then used to investigate the rela-

tions between conjunct melodic motion, harmonic consistency, and acoustic conso-

nance. Chapter 3 introduces higher-dimensional “maps” of musical space, providing 

powerful tools for visualizing the interactions between harmony and counterpoint. 

Chapter 4 introduces scales, describing them as musical “rulers” that allow musicians 

to measure the distance between notes; it then identifi es a set of familiar scales that are 

interesting for a number of distinct reasons. Finally, Chapter 5 describes the compo-

nents of the generalized theory of keys. It proposes various tools for representing mac-

roharmony and centricity, and contrasts two traditions in twentieth-century music: 

the chromatic tradition, which largely abandons scales in favor of highly chromatic 

textures, and the scalar tradition, which makes use of an expanded range of scales and 

modes. Since Chapters 2–4 are the most technically demanding portion of the book, 

Appendix F provides a series of study questions to help reinforce the material. These 

questions make good homework assignments when the book is used in a classroom.

28 Babbitt 1958.
29 Avant-garde techniques have been used in consonant contexts by composers like Conlon Nancarrow, 

Paul Lansky, Steve Reich (Cohn 1992), and “totalists” such as Mikel Rouse (Gann 2006).
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The second part uses these ideas to reinterpret the history of Western music. 

Chapter 6 proposes that there is an “extended common practice” stretching from the 

beginning of Western counterpoint to the tonal music of the twentieth century. What 

links these different styles is the combination of harmonic consistency and conjunct 

melodic motion: the idea that music should have a two-dimensional coherence, both 

harmonic (or vertical) and melodic (or horizontal). Chapter 7 uses geometrical mod-

els to investigate the functional harmony of the classical period, briefl y considering 

the relation between traditional harmonic theory and the views of Heinrich Schen-

ker. Chapter 8 explores the ways in which nineteenth-century composers exploited 

effi cient voice leading in chromatic space, suggesting that there is more structure 

to chromatic music than we might expect. Chapter 9 argues that twentieth-century 

tonal composers used scales to counteract the trend toward a saturated chromaticism, 

fusing chromatic voice-leading techniques with the limited macroharmony of earlier 

periods. Finally, Chapter 10 treats what I call the “modern jazz synthesis,” a contem-

porary common practice that unites impressionist chords and scales, chromatic voice 

leading, and the functional harmony of the classical era.

The design of the book means that readers will need to absorb a considerable 

amount of theoretical material before reaching the analytical payoff in the second 

half. Readers who are less interested in theory for its own sake may therefore want 

to read the book out of order. Chapter 8 can largely be read directly after Chapters 2 

and 3, although the discussion of Tristan will be enhanced by familiarity with the 

material in §§4.8–10. Chapter 9 can be read directly after Chapter 4. This abbreviated 

path hits the main theoretical highlights (new tools for understanding voice leading 

and scales), as well as the most important analytical applications: to the chromatic 

tonality of Schubert, Chopin and Wagner, and to the twentieth-century scale-based 

tonality of Debussy, Stravinsky and Reich. When using the book in an advanced 

undergraduate theory class, I have assigned pieces from Chapters 8–9 as homework 

assignments early in the semester, while students are still reading the introductory 

chapters. (For instance, I assign Chopin’s E minor prelude and F minor mazurka in 

the week when students are reading Chapter 3.) That way, students have an oppor-

tunity to work with the music on their own before being introduced to my own par-

ticular perspective on these remarkable works.

Finally, a word of encouragement: it is possible to understand the gist of later chap-

ters even while remaining somewhat fuzzy about the technical material in Chapters 2–4.  

So don’t be afraid to forge ahead, returning to earlier sections as the need arises.
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Harmony and Voice Leading

The enterprise of “musical set theory” aspires to catalogue all the chords available 

to contemporary composers. Unfortunately, this project turns out to be more com-

plicated than one might imagine. This is, fi rst, because chords have an intrinsic and 

sophisticated geometry, with distance being determined by voice-leading size. Sec-

ond, basic musical concepts such as “transposition,” “inversion,” “triad,” and “chord 

type” can all be relativized to scales; thus two chords may belong to the same category 

relative to one scale but not another. (To make matters worse, we can also do set 

theory in an unquantized space that admits a continuous infi nity of notes between B 

and C. This perspective can even teach us useful lessons about the discrete world of 

ordinary musical experience.) Third, chord tones themselves can be differentiated in 

terms of their importance, leading to phenomena such as rootedness and centricity. 

Finally, in the most sophisticated versions of set theory, the objects of comparison 

may themselves be chord progressions, with musical categorization proceeding fl ex-

ibly and according to an ever-changing variety of symmetry operations (to be dis-

cussed shortly).

The next four chapters will try to address these issues, describing a new approach 

to chords and rebuilding “musical set theory” from the ground up. This chapter 

introduces the basic concepts and defi nitions. We begin with elementary geometrical 

models of musical structure, representing notes as points on a line (pitch space) and 

on a circle (pitch-class space). We then turn to higher-order objects—chord progres-

sions and voice leadings—that describe motion through time. (Because this formal-

ism sets the stage for much of the rest of the book, I encourage you to work through 

the study questions in Appendix F.) Next we consider the importance of symme-

try in music theory, asking under what conditions harmonic consistency and con-

junct melodic motion can be combined. This leads to our fi rst signifi cant theoretical 

result: a general understanding of the interdependence between acoustic consonance, 

 effi cient voice leading, and harmonic consistency.

2.1 linear pitch space

Sound consists of small fl uctuations in air pressure, akin to changes in barometric 

pressure. These fl uctuations are heard as having a defi nite pitch when they repeat 

themselves (at least approximately) after some period of time t (Figure 2.1.1). The 
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reciprocal of the period, 1/t, is the fundamental frequency of the sound—a number 

that measures how many repetitions occur per unit of time. Musicians without abso-

lute pitch are sensitive not to fundamental frequencies as such, but rather to the ratios 

between them. Suppose, on Tuesday, a typical person whistles a tune whose pitches 

have frequencies f, g, h,. . . . On Wednesday, if asked to reproduce the tune, she is likely 

to whistle the frequencies cf, cg, ch, . . ., where c is some number close to one. Musicians 

say that the whistler has transposed the notes, changing their fundamental frequencies 

so as to preserve the ratios between them. This suggests that frequency ratios repre-

sent a kind of musical distance, and that listeners are more attuned to the distances 

between notes than to their absolute positions in frequency space.1

Musicians do not like to work with fundamental frequencies, since ratios are awk-

ward and division is hard; furthermore, we typically measure numerical distances 

using subtraction rather than division. It is useful, therefore, to relabel pitches by 

mapping every fundamental frequency f onto a number p according to an equation 

of the form

 p = c
1
 + c

2
log

2
 ( f/440)

Don’t be put off by the logarithm: the important point is that in the new system, 

the whistler whistles the pitches p, q, r, . . . on Tuesday, and p + x, q + x, r + x, . . . on 

Wednesday. The distance between two pitches p and q is now calculated by subtrac-

tion (|p − q|) rather than division ( f/g).

The equation in the preceding paragraph has two constants, c
1
 and c

2
, the fi rst of 

which determines the number corresponding to the frequency A440, and the second 

of which determines the size of the octave. In this book, I will always choose c
1
 = 69 

and c
2
 = 12. This creates a linear pitch space in which the unit of distance is the semitone 

and middle C is (arbitrarily) assigned the number 60. (Note that the term “semitone” 

is defi ned in continuous space, without presupposing any particular  temperament or 

chromatic scale.) As shown in Figure 2.1.2, labels for familiar equal-tempered pitches 

1 Transposition preserves these distances, since f/g = cf/cg. McDermott and Hauser (2005) suggest that 
this measure of musical distance is innate and that it is common to at least some nonhuman animals. 
Dowling and Harwood (1986) suggest it is a musical universal.

Figure 2.1.1 Pitched sounds are periodic. The fundamental frequency is equal to 

1/t, where t is the duration of the cycle.
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can be determined by counting keys on an ordinary piano, so that the Cs above mid-

dle C is 61, the D above that is 62, and so on. Since the space is continuous, we can 

use fractional numbers, labeling the pitch 17 hundredths of a semitone (or cents) 

above middle C as 60.17. In principle, we could eschew letter-names for the remain-

der of this book, conducting the discussion entirely in numerical terms. For clarity, 

however, I will use familiar letter names whenever possible. These should be taken as 

shorthand for numerical pitch labels: “Cs4” and “61,” like “Bob Dylan” and “Robert 

Zimmerman,” are different ways of referring to the same thing.

2.2 circular pitch-class space

In linear pitch space octaves are not special, and the distance 12 is no different from 

any other. However, human beings hear octave-related pitches as having the same 

quality, color, or—as psychologists call it—chroma.2 (As Maria puts it in The Sound 

of Music, the note “Ti” brings us back to “Do.”) Music theorists express this by saying 

that two pitches an octave apart belong to the same pitch class. Geometrically, pitch 

classes can be represented using a circle (Figure 2.2.1). A single point in this space 

Figure 2.1.2 Linear pitch space is a continuous line, containing a 

point for every conceivable pitch.

2 Octave equivalence seems to be nearly universal in human cultures (Dowling and Harwood 1986), 
and there is some evidence for it in nonhuman animals (Wright et al. 2000).

Figure 2.2.1 Circular pitch class space. The 

number 0.17 refers to the pitch class seventeen 

cents above the pitch class C, while the number 

2.5 refers to the pitch class Dμ, or D quarter-

tone sharp, halfway between D and Ef.
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corresponds to the quality that is common to all the pitches sharing the same chroma: 

thus, the point “2” represents the quality (“D-ishness”) that is shared by the pitches 

D0, D1, D2, D3, and so on.3  Alternatively, we can take points on the circle to represent 

categories of notes all sharing the same chroma.

It is important to understand that pitch and pitch-class space are not separate 

and independent: pitch-class space is formed out of pitch space when we choose to 

ignore, or abstract away from, octave information.4 As a result, many properties of 

linear pitch space are transferred to circular pitch-class space. For example, it is not 

necessary to devise a new system of naming pitch classes, as we can simply use pitch 

names in the range 0 £ x < 12 to refer to the chromas they possess (Figure 2.2.1). The 

terms “above” and “below” also inherit their meaning from pitch space: the phrase 

“the pitch class a quarter tone above pitch class D” simply refers to the chroma pos-

sessed by any pitch a quarter tone above any pitch with chroma D. (Of course, since 

pitch-class space is circular, it is not meaningful to say that one pitch class is abso-

lutely above or below another; the pitch class E is both two semitones above D and 

ten semitones below it.) Finally, the distance between two pitch classes can be defi ned 

as the shortest distance between any two pitches belonging to those pitch classes. 

Thus, when a musician says “pitch class E is four semitones away from C,” this means 

that for every pitch with chroma C, the nearest pitch with chroma E is precisely four 

semitones away.

Ultimately, pitch classes are important because they provide a language for making 

generalizations about pitches. The statement “pitch class E is four semitones above C” 

implies the statements “E4 is four semitones above C4,” “E5 is four semitones above 

C5,” and so on. Since it would take too long to list these statements individually, musi-

cians instead use the convenient shorthand that pitch classes provide. Readers may 

fi nd it useful here to consider the analogy between pitch class and time of day. The 

question “what’s the distance from C to Cs?” is exactly analogous to “how long is it 

from 8 am to 9 am?” The answer “there is one hour between 8 am and 9 am,” means 

that on any given day, 9 am occurs precisely one hour after 8 am. (Similarly, we can 

say “9 am is one hour after 8 am” or even “9 am is 23 hours before 8 am,” much as 

we might observe that pitch class A is both one semitone above and eleven semitones 

below Gs.) Here we use time of day to summarize infi nitely many facts about times: 

the statement “there is one hour between 8 am and 9 am” implies that there is one 

3 Here I am using scientifi c pitch notation, in which numbers refer to octaves, with octave 4 ranging 
from middle C to the B above and with octave 5 starting at the next C. (Thus B4 is a semitone below C5.) 
Note that there is a subtle difference between the languages of psychology and music theory: psycholo-
gists say that the pitches D3 and D4 possess the same chroma (“D-ishness”), while music theorists say that 
the pitches belong to the same category (“the pitch class D”). The difference is analogous to the contrast 
between whiteness (a property) and the collection of all white things (a group). Points in pitch-class space 
can be taken to represent either of these.

4 Consequently, pitch-class space is circular only in an abstract sense. One shouldn’t think of it as being 
embedded in a larger two-dimensional space, the way an ordinary circle exists on a two-dimensional piece 
of paper. Instead, one should think of it as a one-dimensional space unto itself. Here it can be useful to imag-
ine a pointlike inhabitant of the space: from its perspective, “circularity” consists in the fact that a “straight 
line”—for example, a counterclockwise path—eventually returns to its starting point.
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hour between 8 am and 9 am on Monday, August 8, 2006, one hour between 8 am and 

9 am on Tuesday, August 9, 2006, and so on ad infi nitum.

One unusual feature of this book is that I use paths in pitch-class space to represent 

intervals, or particular ways of moving from one pitch class to another.5 The motiva-

tion here is that progressions like the fi rst three in Figure 2.2.2 are closely related: in 

each case a C moves up by four semitones to an E, with the only difference being the 

octave in which the motion occurs. In the fi nal three cases, C also moves to E, but 

differently—by eight descending semitones or 16 ascending semitones. We can cap-

ture what is similar about the fi rst three cases, and their difference from the others, by 

modeling intervals using phrases such as “start at C and move up by four semitones.” 

These combine an initial pitch class (C), a direction (up), and a distance (4), and 

can be notated C  ±›  E. Geometrically, these phrases correspond to ways of moving 

around the pitch-class circle: C  ±›  E is represented by a four-semitone clockwise 

(ascending) path, whereas C  —°  E is represented by an eight-semitone counterclock-

wise (descending) path. (Motions can even wrap around the circle one or more times, 

as shown on the fi gure.) By contrast, music theorists have traditionally represented 

motion in pitch-class space using phrases like “start at C and move to E however you 

5 For more on paths in pitch-class space see Tymoczko 2005 and 2008b. Mazzola 2002 contains related 
ideas.

Figure 2.2.2 The passages in (a)−(c) are similar in that they move C to E by four ascending 

semitones. The passages in (d)−( f  ) also move C to E, but differently—by eight descending 

semitones or by sixteen ascending semitones. We can capture what is similar about (a)−(c) 

by modeling these progressions as paths in pitch-class space. The progressions in (a)−(c) 

move C to E clockwise by four semitones along the pitch-class circle; (d) and ( f  ) move eight 

semitones counterclockwise, and (e) moves sixteen clockwise semitones.
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want.” This gives us no way to formalize the elementary musical observation that the 

fi rst three progressions in Figure 2.2.2 are particularly closely related.6

2.3  transposition and inversion as 
distance-preserving functions

Since musicians are primarily sensitive to the distances between notes, we have reason 

to be interested in the distance-preserving transformations of musical space. It turns 

out that there are only two of these—transposition and inversion, corresponding to 

the geometrical operations of translation and refl ection. These transformations play 

an important role in many different musical styles, and are central to contemporary 

music theory.

Transposition, discussed in §2.1, moves every pitch in the same direction by the 

same amount: the transposition of pitch p by x semitones, written T
x
(p), is equal 

to p + x (Figure 2.3.1). The distance moved represents the size of the transposition: 

virtually any listener can immediately distinguish a passage of music from its trans-

position by fi ve octaves, while even the most subtle absolute-pitch listeners, exten-

sively trained at the best conservatories, cannot discern the effects of transposition by 

0.00001 of a semitone.

The second type of distance-preserving transformation, inversion, turns musical 

space upside-down. (Warning: music theorists use the term “inversion” in two unre-

lated senses, which go by the names of “registral inversion” and “pitch-space inver-

sion”; I am talking about the second of these.7) Figure 2.3.2 depicts inversion as it 

operates on the theme of Bach’s A minor prelude from Book II of the Well-Tempered 

Clavier. Where the left hand of (a) begins with an ascending octave leap, followed by 

a series of descending semitones, the left hand of (b) begins with a descending octave 

leap followed by a series of ascending semitones. In other words, the direction of 

motion has changed while the distances remain the same. (The passages in the upper 

Figure 2.3.1 Transposition moves every point in the same 

direction by the same amount. Here, the arrows indicate ascending 

transposition by two semitones.

6 Traditional pitch-class intervals can sometimes be useful, however—for instance when we would like 
to categorize root progressions in functionally tonal music (§7.1).

7 Registral inversion changes the octave in which notes appear (for instance, transforming a root posi-
tion chord C4-E4-G4 into a fi rst-inversion E4-G4-C5). In §2.4 I call this “the O symmetry.” Pitch-space 
inversion turns all of pitch space upside-down (for instance, transforming a major chord C4-E4-G4 into a 
minor chord G4-Ef4-C4). In §2.4 I call this “the I symmetry.”
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staff are also related by inversion, although the 

fi rst and last notes are altered slightly.) Because 

they are direction reversing, inversions change the 

character of musical passages more dramatically 

than transpositions: nobody would ever mistake 

the inverted form of Bach’s theme for the original. 

Nevertheless, inversionally related chords often 

sound reasonably similar, at least in the grand 

scheme of things: the chords in Figure 2.3.3a con-

tain a minor third, a minor seventh, and a perfect fi fth, and sound reasonably restful, 

while those in (b) contain a perfect fi fth, a tritone, and a minor second, and have 

a distinctive, dissonant “bite.”8 For this reason, many twentieth-century composers 

consider inversionally related chords to be similar.

Inversion can be represented mathematically by subtraction from a constant value: 

the inversion that maps pitch x to pitch y, written x
yI (p), is (x + y) − p.9 Geometrically, 

inversion corresponds to refl ection: if we were to place a two-sided mirror at point 

A3 on Figure 2.3.2c, then every pitch would be sent to the place where its refl ection 

Figure 2.3.3 The chords in each 

measure are inversionally related, 

and sound more similar to each 

other than to either of the chords 

in the other measure.

8 Major and minor triads are of course importantly different, even though they are related by inver-
sion; nevertheless, they are more similar to one another than to three-note chromatic clusters. With other 
chords, inversional relationships are even more striking: in informal tests with undergraduate music 
majors, students could easily distinguish the two categories of chords in Figure 2.3.3, but had much more 
trouble distinguishing the inversionally related chords within each category.

9 The notation is a tad confusing, since the variables x and y serve to label the function x
yI (p). For a 

particular choice of x and y, we get a general function that takes any pitch p as input, and outputs another 
pitch. Thus A3

B3I (p) is a function acting on any pitch p; when p = A3, the function outputs B3.

Figure 2.3.2 (a−b) Inversionally related passages in Bach’s A minor prelude, WTC II. 

(c) Inversion as refl ection in pitch space. Here, the note A3 is unaltered by the inversion, so 

the inversion can be written A3
A3I . All other notes move by twice their distance from A3.
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would be. The point A3 is a fi xed point of the 

inversion, since it is unaltered by the refl ection. 

Every inversion has a fi xed point, although it 

may lie between piano keys: for instance, the 

inversion that maps E4 to F4 has a fi xed point 

at Eμ4—the E quarter-tone sharp halfway 

between E4 and F4.10 (Note that inversions 

move each pitch by twice its distance to this 

fi xed point.) Inversions, unlike transpositions, 

cannot be distinguished by their size, since for 

any distance x, an inversion will move some 

pair of pitches by that amount.

Transposition and inversion can also be 

defi ned in pitch-class space. Figure 2.3.4 shows 

that transposition is represented by rotation 

while inversion is represented by refl ection: 

the inversion around C sends every pitch class 

to the point where its image would appear, if there were a pointlike mirror at C. Note 

that every pitch-class inversion fi xes two antipodal points on the circle, whereas pitch 

inversion fi xes only a single point.11 Our earlier mathematical formulas continue to 

apply: if p is a pitch class, then its transposition by x semitones is p + x, while the 

inversion that sends x to y is (x + y) − p. However, when operating with pitch classes 

we should always add or subtract 12 until the result lies in the range 0 £ x < 12. This 

can lead to odd-looking equations like 6 + 3 + 1.5 + 1.5 = 0, since 12 and 0 are equiva-

lent in pitch-class arithmetic.12

2.4 musical objects

Understanding music is a matter of ignoring, or abstracting away from, information: 

we interpret the violinist’s C4 and the cellist’s C4 to be two instances of the same 

pitch, ignoring subtle differences in timbre and instrument. Similarly, we concep-

tualize the violinist’s note, a little sharp and ever-so-slightly before the beat, as an 

in-tune note played on the beat. We can model this process using the mathematical 

concept of symmetry: to abstract away from musical information is to defi ne a col-

lection of symmetry operations that leave the object’s “essential identity” unchanged. 

 Mathematicians say that objects related by a symmetry operation belong to the 

same equivalence class—the group of objects that are mutually “equivalent” under   

Figure 2.3.4 In circular pitch class 

space, transposition corresponds to 

rotation, while inversion corresponds 

to refl ection.

10 The fi xed point of x
yI  is (x + y)/2.

11 Pitch inversion around middle C sends Fs4 to Fs3, preserving the chroma of the note, but changing 
its register. If we ignore octaves, Fs becomes a second fi xed point of the inversion.

12 Pitch-class arithmetic is simply a continuous version of what mathematicians call “modular” (or 
“clock”) arithmetic. Transposing pitch class 2.5, or Dμ, by −5 semitones produces 2.5 − 5 = −2.5. To move 
this pitch into the range 0 £ x < 12, we add 12, shifting the octave. The result is the pitch class 9.5, or Aμ.
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the effects of the symmetry operation. These equivalence classes can in turn be taken 

to represent the properties or attributes the objects share, much as the group of all 

white things can be taken to represent the property of whiteness. As we will see, many 

different music-theoretical concepts can be understood in this way.

We can begin by defi ning a basic musical object as an ordered series of pitches, 

uncategorized and uninterpreted.13 Basic musical objects can be ordered in time or 

by instrumental voice: thus the object (C4, E4, G4) could represent an ascending C 

major arpeggio or a simultaneous chord in which the fi rst instrument plays C4, the 

second E4, and the third G4 (Figure 2.4.1). (Instruments can be labeled arbitrarily; 

what matters is simply that we distinguish them somehow.) Basic musical objects are 

so particular as to be uninteresting. Until we have defi ned some symmetry opera-

tions, some way of grouping objects into larger categories, the object (C4, E4, G4) 

is absolutely different from and absolutely unrelated to (E4, C4, G4). Of course, the 

fact that we instinctively consider them to be similar 

shows that we categorize musical objects unthinkingly; 

indeed, it is diffi cult to conceive of music without 

grouping objects together in some way.

During the early eighteenth century, Jean-Philippe 

Rameau articulated the modern notion of a chord, clas-

sifying basic musical objects based on their pitch-class 

content rather than their order or registral arrange-

ment.14 Rameau implicitly suggested that three basic operations preserve the “chordal” 

or “harmonic” identity of a musical object: octave shifts, permutation (or reordering), 

and cardinality change (or note duplication). For instance, one can transform (C4, E4, 

G4) by reordering its notes to produce (E4, G4, C4), transposing the second note up 

an octave to produce (C4, E5, G4), or duplicating the third note to produce (C4, E4, 

G4, G4)—all without changing its right to be called a “C major chord.” Furthermore, 

as shown in Figure 2.4.2, these transformations can be combined to produce an end-

less collection of objects, all representing the same chord: (E4, G4, C5), (G3, G4, C5, 

E4), (E2, G3, C4, E4, E5), and so on. To be a C major chord is simply to belong to this 

equivalence class—or in other words, to contain all and only the three pitch classes 

C, E, and G. We can therefore represent the C major chord as the unordered set of 

pitch classes {C, E, G}. (Note that I use curly braces to represent unordered collections, 

reserving parentheses for ordered collections.) Geometrically, chords correspond to 

particular collections of points on a circle, as in Figure 2.4.2.

Traditional theory uses terms like “major chord” and “minor chord” to represent 

chord types, or collections of transpositionally related chords. We can interpret these 

terms as referring to equivalence classes formed by four symmetry operations: octave 

shifts, permutations, cardinality changes, and transpositions (Figure 2.4.3).15 (Note 

Figure 2.4.1 
The basic 

musical object 

(C4, E4, G4) can 

appear either 

harmonically or 

melodically.

13 For more on this general approach to chord classifi cation, see Callender, Quinn, and Tymoczko 2008.
14 See Lester 1974 and Rameau 1722/1971.
15 Octave shifts allow us to change the octave of just one note in an object. Transposition, by con-

trast, moves all the notes in an object in exactly the same way. (If we were to let transposition act on just
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one of the notes in an object, then we could transform any n-note object into any other, and we would no 
longer be able to make any distinctions among them.) It is also worth noting that the “cardinality change” 
operation is rather delicate mathematically; for details, see Callender, Quinn, and Tymoczko 2008.

that contemporary music theorists sometimes prefer the term transpositional set class 

to the more colloquial “chord type.”) Geometrically, two chords belong to the same 

type if one can be rotated into the other in circular pitch-class space (Figure 2.4.3b). 

Such chords will share the same sequence of distances between their adjacent notes: 

Figure 2.4.2 (a) All of these musical objects represent the C major chord, and are related 

by some sequence of octave shifts, permutations (or rearrangement of voices), and note 

duplication. (b) The C major chord can be represented by an unordered set of points in 

pitch-class space.

Figure 2.4.3 (a) All of these musical objects represent major chords, and are related by 

some combination of octave shifts, reordering of voices, note duplication, and transposition. 

(b) Any two major chords relate by rotation on the pitch-class circle and divide the pitch 

class circle into arcs that are 4, 3, and 5 semitones large, moving clockwise from the root. The 

fi gure shows the C and D major triads.
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for example, major chords divide the pitch-class circle into arcs of four, three, and fi ve 

semitones, reading clockwise from the root.

Since inversionally related chords share many properties (and sound reasonably 

similar), contemporary theorists often group them together as well. Music theorists 

say that two objects belong to the same set class if they are related by any combina-

tion of fi ve symmetry operations (the “OPTIC” symmetries): octave shifts (O), per-

mutations (P), transpositions (T), inversions (I), and cardinality changes (C) (Figure 

2.4.4).16 Figure 2.4.5 shows that the C major chord divides pitch-class space into arcs 

that are four, three, and fi ve semitones large, reading clockwise from C, while its inver-

sion, the C minor chord, divides the pitch-class circle into arcs that are four, three, 

Operation Allowable Action 

Octave Move any note
into a new octave.

Permutation Reorder the object, changing 
which voice is assigned to 

which note. 

Transposition Transpose the object, moving
all of its notes in the same

direction by the same amount. 

Inversion Invert the object by turning it  
“upside down.” 

Cardinality change Add a new voice duplicating
one of the notes in the object.

Figure 2.4.4 (a) Each of the fi ve OPTIC operations allows you to transform a musical object 

in some way. Musical objects belong to the same set class if they can be transformed into each 

other (or into some third chord) by some sequence of OPTIC transformations. (b) These 

objects all belong to the same set class, and relate to the initial (C4, E4, G4) by octave shift, 

reordering of voices, transposition, inversion, or cardinality change.

16 Huron (2007, p. 121) expresses some doubt about the musical signifi cance of both chord types and 
set classes; however, in my experience students readily confuse inversionally related three-note chords such 
as those in Figure 2.3.3. Furthermore, when listening to sequences such as Figure 1.2.1c I can easily deter-
mine what set class is being used, though I sometimes have trouble identifying which inversion is present.
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and fi ve semitones large reading counterclock-

wise from G. Chords belonging to the same set 

class will always share the same sequence of arc 

lengths, although this sequence may progress 

either clockwise or counterclockwise around 

the pitch-class circle.

A specifi c example will help reinforce this 

approach to chord classifi cation. Figure 2.4.6 

begins with the basic musical object (E4, G4, 

Bf4, D5)—a half-diminished chord starting 

on the E above middle C. We then exploit the 

octave symmetry to produce (E3, G4, Bf3, 

D4). The permutation symmetry then rear-

ranges the voices in which the notes appear, 

transforming (E3, G4, Bf3, D4) into (E3, Bf3, D4, G4); now the order of the voices 

corresponds to their registral order. We then use the transposition symmetry to 

shift the entire object up by semitone, giving (F3, B3, Ds4, Gs4)—recognizable 

as the fi rst chord in Wagner’s Tristan. Next, we apply the I symmetry to invert the 

chord around the point halfway between A3 and Bf3, transforming (F3, B3, Ds4, 

Figure 2.4.5 
Major and minor 

chords relate by 

inversion, and 

divide the pitch-

class circle into 

arcs that are 4, 3, 

and 5 semitones 

large, proceeding 

either clockwise 

(major) or 

counterclockwise 

(minor).

Figure 2.4.6 
Using OPTIC 

operations 

to transform 

musical objects.
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Gs4) into (D4, Gs3, E3, B2). The octave and permutation symmetries can then be 

used to give us (E3, Gs3, D4, B4), which is the second chord in Tristan. Finally, we 

can use cardinality changes to create additional voices that double notes already 

in the chord.

Musical classifi cation thus proceeds by the progressive discarding of informa-

tion. When we understand music as a sequence of pitches, we disregard many spe-

cifi c features of the acoustic signal, such as timbre, vibrato, duration, and rhythm. 

When we think in terms of pitch classes, we disregard the particular octave in which 

notes appear. To form chords, we ignore even more information, considering only the 

pitch-class content of a group of notes, rather than their order or multiplicity. Finally, 

we form chord types (or set classes) by focusing on the distances between a chord’s 

notes rather than its pitch classes. Thus when we say that an object is a major chord, 

we are neglecting an enormous number of musical details, leaving behind something 

that is very abstract—an ordered sequence of clockwise distances around the pitch-

class circle.

Although chords, chord types, and set classes are central to contemporary theory, 

they are not the only possibilities to consider. In certain situations it may be useful to 

talk about unordered sets of pitches rather than pitch classes (“chords” of pitches), or 

to distinguish the multiset {C, C, E, G}, which contains two copies of the pitch class C, 

from {C, E, G}, which contains only one C. We may at other times want to consider 

“tone rows” or ordered sequences of pitch classes, such as (C, E, G). (Order is particu-

larly important when modeling melody, of course.) As shown in Figure 2.4.7, each 

of these terms corresponds to a unique combination of the fi ve OPTIC symmetries. 

These alternatives all represent potentially useful ways of classifying musical objects, 

and there is no one optimal degree of abstraction: since different musical purposes 

require different kinds of information, we need to remain somewhat fl exible about 

how we conceptualize music. To this end, it can be quite instructive to work out the 

musical signifi cance of all 32 combinations of the OPTIC symmetries.

Term Symmetry 

chord OPC 

“chord type” or transpositional set class OPTC 

set class OPTIC 

multiset of pitch classes OP 

chord (of pitches) PC 

“tone row” (ordered set of pitch classes) OC 

Figure 2.4.7 Music-theoretical terms and the symmetry operations to which they 

correspond. A “chord” is a group of musical objects related by octave shifts, permutations, 

and note-duplications, while a “multiset” is a group of objects related by octave shifts and 

permutation. (Thus, when we are talking about multisets, the number of times a note appears 

is important; when we are talking about chords it is not.) In a “tone row,” as defi ned by 

Schoenberg, order is important: we are permitted only to shift octaves and introduce note 

duplications.
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2.5  voice leadings and chord progressions

Having reviewed some basic objects of music theory, our next task is to consider 

progressions, or sequences of musical objects, as musical entities in their own right. 

In other words, we will shift from an object-based approach (whose subject is single 

chords such as {C, E, G}) to a transformational approach (whose subject is progres-

sions such as “C4, E4, G4 followed by C4, F4, A4”).17 This increased level of abstrac-

tion can be a little confusing, and readers may want to brace themselves for a slight 

uptick in the level of theoretical diffi culty.

We can classify progressions using the very same OPTIC symmetries described in 

the preceding section. The main complication is that progressions are “higher-order” 

constructions containing multiple individual objects, which means that each symme-

try can be applied in two different ways: we can either apply the exact same operation to 

each object in a progression or we can use different versions of the same symmetry on 

the progression’s two objects. Take the progression (C4, E4, G4)–(C4, F4, A4), whose 

fi rst object is (C4, E4, G4) and whose second is (C4, F4, A4). To apply the permuta-

tion symmetry uniformly is to reorder each of the two objects in precisely the same 

way, for instance producing (E4, G4, C4)–(F4, A4, C4) (Figure 2.5.1). (Here we have 

moved the fi rst note in each object to the end.) Individual permutations apply differ-

ent reorderings to the two objects in the progression, and can produce results such as 

(C4, E4, G4)–(F4, C4, A4). (Here we leave the fi rst object unchanged, while switching 

the fi rst two notes in the second object.) The distinction between “individual” and 

“uniform” can be applied to the other symmetries as well: the progression (C4, E4, 

G4)–(C4, F4, A4) can be transposed uniformly to produce (D4, Fs4, A4)–(D4, G4, B4) 

and individually to produce (D4, 

Fs4, A4)–(Ef4, Af4, C5). Since 

each of the fi ve OPTIC symmetry 

operations can be applied uni-

formly, individually, or not at all, 

there are many more categories 

of  progressions than there are of 

individual objects.

Of these, two are particularly 

important for our purposes: 

voice leadings, which describe 

how individual musical “voices” 

move from chord to chord, 

and chord progressions, which 

describe  successions of harmo-

nies with no regard for musical 

Figure 2.5.1 (b) relates to (a) by uniform 

permutation. To get from (a) to (b) move all notes 

downward by one staff, shifting the bottom staff to 

the top. (c) relates to (a) by individual permutation, 

since it applies different permutations to each chord. 

Similarly, (d) and (e) relate to (a) by uniform and 

individual transposition, respectively.

17 The shift from objects to transformations is central to Lewin 1987, though he favors group-theoret-
ical models of harmonic relationships, whereas I am oriented toward geometrical models that represent 
counterpoint as well. For more, see Tymoczko 2007, 2008a and 2009b.
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voices. Intuitively, voice leadings can be represented by phrases such as “move the 

C major triad to a Cs diminished triad by shifting the note C up by semitone,” 

while chord progressions correspond to phrases such as “move the C major triad 

to the Cs diminished triad however you want.” Mathematically, it turns out that 

voice leadings arise from uniform applications of the permutation symmetry, while 

chord progressions arise from individual applications of the permutation and car-

dinality-change symmetries. (These individual transformations destroy the iden-

tity of musical “voices,” since they change the two chords in different ways.) One 

way or another, voice leadings and chord progressions will occupy us for the rest 

of the book.

We’ll begin with voice leadings in pitch space, which represent mappings from one 

collection of pitches to another.18 For example, Figure 2.5.2a presents the voice lead-

ing (G2, G3, B3, D4, F4)®(C3, G3, C4, C4, E4), in which the voice sounding G2 in the 

fi rst chord moves to C3 in the second chord, the voice sounding G3 in the fi rst chord 

continues to sound G3 in the second, the voice sounding B3 moves up to C4, and so 

on. (Note that I use an arrow to represent voice leadings.) Since the overall order in 

which the voices are listed is not signifi cant, one could also represent this voice lead-

ing as (F4, D4, G2, B3, G3)®(E4, C4, C3, C4, 

G3); what matters is simply that we describe 

how the notes in one chord move to those in 

the next.19 Voice leadings are like the atomic 

constituents of musical scores, the basic build-

ing blocks of polyphonic music.

Clearly, the voice leading in Figure 2.5.2b 

is closely related to that in Figure 2.5.2a; 

all that has changed is the octave in which 

some voices appear. We can represent what is common to them by writing 
5, 0, 1, 2, 1

(G,  G,  B,  D,  F) (C,  G,  C,  C,  E)
- -¾¾¾¾¾® . This indicates that one of the voices 

containing G, whatever octave it may be in, moves up fi ve semitones to C; the other 

voice containing G is held over into the next chord; the B moves up by semitone to 

C; and so on. I will refer to such octave-free voice leadings as voice leadings between 

pitch-class sets or pitch-class voice leadings.20 The numbers above the arrow, here (5, 0, 

1, −2, −1), are paths in pitch-class space that describe how the voices move (§2.2). 

The two pitch-space voice leadings in Figure 2.5.2a–b are both instances of the pitch-

class voice leading 
5, 0, 1, 2, 1

(G,  G,  B,  D,  F) (C,  G,  C,  C,  E)
- -¾¾¾¾¾® . Figure 2.5.2c is 

Figure 2.5.2 
Three voice 

leadings between 

G7 and C.

18 More formally, voice leadings in pitch space are equivalence classes of pairs of basic musical objects 
(ordered pitch sets) generated by uniform applications of the permutation symmetry.

19 In other words, we do not change the voice leading when we apply permutation uniformly.
20 Mathematically, voice leadings in pitch-class space are equivalence classes of progressions generated 

by uniform applications of the octave and permutation symmetries. Previous theorists (Roeder 1984, 1987, 
1994, Lewin 1998, Morris 1998, Straus 2003) defi ne voice leadings using traditional pitch-class intervals 
rather than “paths in pitch-class space” (§2.2). Hence they do not, for instance, distinguish one-semitone 
ascending motion from eleven-semitone descending motion. For more, see Tymoczko 2005, 2006, 2008b, 
and Callender, Quinn, and Tymoczko 2008.
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not an instance of this voice leading, since G moves to C by seven descending semi-

tones rather than fi ve ascending semitones. (The specifi c path matters!) For simplic-

ity, I will omit the numbers over the arrow when the number of semitones moved 

by each voice lies in the range −6 < x £ 6. Thus I will write (G, G, B, D, F)®(C, G, 

C, C, E) for the pitch-class voice leading in Figures 2.5.2a–b. This indicates that each 

voice moves by the shortest possible path to its destination, with the arbitrary conven-

tion being that tritones ascend.

Pitch-class voice leadings are abstract schemas that are central to the enterprise 

of Western composition. Without them, a composer would need to conceptualize 

the voice leadings in Figure 2.5.3 as being entirely unrelated, and this would pose 

overwhelming burdens on his or her memory. It is far simpler, and more practical, to 

understand the two voice leadings as examples of a single principle: you can transform 

a C major triad into an F major triad by moving the E up by semitone and the G up by 

two semitones. The concept “pitch-class voice leading” is simply a tool for formalizing 

such principles, and thus for modeling one important aspect of the composer’s craft. 

Of course, in actual compositions voice leadings are always represented by specifi c 

pitches, and composers always think very carefully about register. Nevertheless, it is 

also true that composition requires a general sense of the various “routes” from chord 

to chord, and these routes are precisely what pitch-class voice 

leadings describe.

Geometrically, a pitch-space voice leading corresponds to 

a collection of paths in linear pitch space. Figure 2.5.4a repre-

sents the pitch-space voice leading in Figure 2.5.2a, with the 

dotted lines showing how each pitch moves to its destination. 

Similarly, a pitch-class voice leading can be represented as a 

Figure 2.5.3 
Two instances of 

the same voice-

leading schema.

Figure 2.5.4 
(a) Voice leadings in 

pitch space can be 

represented as paths on 

a line. (b) Pitch-class 

voice leadings can be 

represented as paths on 

a circle. These paths can 

move in either direction 

by any distance, and 

may complete one or 

more circumferences of 

the circle.
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collection of paths in circular pitch-class space. In principle these paths can be arbi-

trarily long, with notes taking one or more complete turns around the pitch-class 

circle. Indeed, any collection of paths on the pitch-class circle, between any points 

whatsoever, defi nes a voice leading in pitch-class space. In some cases, it can be use-

ful to represent voice leadings by a continuous process (which could be shown as a 

movie) in which each note glides along the appropriate path to its destination, begin-

ning and ending at the same time.21

By contrast, chord progressions (as I defi ne them) are simply successions of 

chords, with no implied mappings between their notes. Typically, the term “chord 

progression” is understood to refer to a sequence of unordered pitch-class sets. 

Thus {C, E, G, Bf}Þ{E, Gs, B}, or C7ÞE, is a chord progression whose fi rst chord 

is {C, E, G, Bf} and whose second chord is {E, Gs, B}, but which does not associ-

ate the note C with any particular note in the second chord.22 (Note that I use the 

double arrow for chord progressions, reserving the single arrow for voice leadings.) 

However, we could also defi ne a pitch-space chord progression as a pair of unordered 

pitch sets, as in {C4, E4, G4}Þ{C4, F4, A4}. Again, there is no implication that 

the note E4 moves to F4 or to any other pitch in the chord. (When we are talking 

about chord progressions in pitch or pitch-class space, we are focusing on the 

harmo nies and ignoring how individual voices might happen to move.) Figure 

2.5.5 shows that chord progressions can be modeled as successions of unordered 

points in either linear pitch space or circular pitch-class space. Geometrically, we 

can imagine each chord occupying its own individual frame of a movie, with the 

motion between them being instantaneous and giving us no reason to associate any 

pair of notes.

Figure 2.5.6 summarizes this discussion, showing that each of these different the-

oretical concepts applies the fi ve OPTIC symmetries in different ways.

21 On the companion website I have provided a series of movies of this sort.
22 Mathematically, chord progressions result from the individual application of the octave, permuta-

tion, and cardinality-change symmetries.

Figure 2.5.5 The chord progression {C, E, G, Bf}Þ{E, Gs, B}.
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2.6 comparing voice leadings

We’ll now start to think about how voice leadings relate to one another. The 

 interesting wrinkle is that we’ll consider not just uniform relationships, in which the 

same operation applies to both objects in a voice leading, but also their individual 

counterparts.

2.6.1 Individual and Uniform Transposition

The voice leadings (C, E, G)®(C, F, A) and (G, B, D)®(G, C, E) are very similar, 

exhibiting the same musical pattern at different transpositional levels: each holds the 

root of a major triad fi xed, moves the third up by semitone, and the fi fth up by two 

semitones (Figure 2.6.1). Since we transpose both chords in the same way, the two 

voice leadings are uniformly transpositionally related, or uniformly T-related. The voice 

leadings (C, E, G)®(C, F, A) and (G, B, D)®(Fs, B, Ds) are also similar, albeit slightly 

less so; each maps the root of the fi rst chord to the fi fth of the second, the third of 

the fi rst chord to the root of the second, and the fi fth of the fi rst chord to the third of 

the second. Figure 2.6.1b 

shows that one voice lead-

ing can be transformed 

into the other by apply-

ing a different transposi-

tion to each chord: (C, 

E, G) is seven semitones 

away from (G, B, D), but 

(C, F, A) is six semitones 

away from (Fs, B, Ds). 

These voice leadings can thus be said to be individually transpositionally related, or 

individually T-related.

2.6.2 Individual and Uniform Inversion

The distinction between individual and uniform relatedness extends naturally to inver-

sion. Figure 2.6.2a shows that (C, E, G)®(C, F, A) can be inverted to produce (G, Ef, 

C)®(G, D, Bf). These are uniformly inversionally related (or  uniformly I-related) voice 

Term Symmetry

voice leading in pitch space uniform P

voice leading in pitch-class space uniform OP

pitch-space chord progression individual PC

chord progression individual OPC

path in pitch-class space uniform O
(one-note progressions only)

Figure 2.5.6 
Music-

theoretical terms 

for progressions, 

along with the 

symmetries that 

generate them.

Figure 2.6.1 
Uniformly and 

individually 

T-related voice 

leadings.
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leadings. By contrast, (C, E, G)®(C, F, A) and (G, Ef, C)®(Gs, Ds, B) are individually 

inversionally related, or individually I-related, since it takes two different inversions to 

transform the fi rst into the second. (Figure 2.6.2b inverts the fi rst chord around Eı4, 

or E quarter-tone fl at, while inverting the second around E4.) Note that as I am using 

the term, “individual I-relatedness” requires that each chord in the fi rst voice leading 

be related by some inversion to the corresponding chord in the second voice leading; 

it is not permissible to invert only one of the two chords.

The signifi cance of uniform transposition is clear, as it moves the same musical 

pattern to a different transpositional level. Uniform I-relatedness is somewhat more 

abstract: (C, E, G)®(C, F, A) sounds rather different from (C, Ef, G)®(Bf, D, G), 

which is uniformly I-related to it. Note however that the two voice leadings are mir-

ror images of each other: the fi rst moves one voice by zero semitones, one voice up by 

one semitone, and one voice up by two semitones; the second moves one voice by zero 

semitones, one voice down by one semitone, and one voice down by two semitones. 

The distances are the same but the directions have been reversed. Some theorists have 

asserted that individually I-related voice leadings are perceptually or metaphysically 

similar.23 From our perspective, what is more important is that the answers to theoreti-

cal questions often come in I-related pairs. For example, suppose we want to catalogue 

voice leadings between major and minor triads in which no voice moves by more than 

a semitone; since the inversion of any such “semitonal” voice leading is also semitonal, 

each of these voice leadings has an inversionally related partner (Figure 2.6.3). This 

makes it much easier to conceptualize and remember them.

The musical signifi cance of individual T and I relationships is perhaps even less 

clear, since the voice leading 
0, 1, 2

(C,  E,  G) (C,  F,  A)¾¾¾®  sounds like a standard I–IV 

chord progression, while 
1, 0, 1

(C,  E,  G) (B,  E,  G )
-¾¾¾® s , individually T-related to it, 

evokes Schubertian chromaticism. Nevertheless, there is a sense in which the two are 

similar: each relates structurally analogous notes (moving the root of the fi rst chord 

23 These include Hauptmann, Riemann, and contemporary “neo-Riemannians.” For more discussion, 
see Tymoczko 2008b and forthcoming.

Figure 2.6.2 Uniformly and individually I-related voice 

leadings. Here, pitch-space inversion around Eı 4 (E quarter-

tone fl at, halfway between Ef4 and E) sends C4 to G4, E4 to 

Ef4, F4 to D4, G4 to C4 and A4 to Bf3.
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to the fi fth of the second, the third of the fi rst chord to the root of the second, and the 

fi fth of the fi rst to the third of the second); and the voices in the second voice leading 

end up exactly one semitone lower than in the fi rst (moving by −1, 0, and 1 semitones 

rather than 0, 1, and 2). Very similar points can be made about individually I-related 

voice leadings.24 We will see that it is often advantageous to focus on these sorts of 

relationships, as they allow us to make interesting analytical observations that would 

otherwise be very hard to express.

For example, Figure 2.6.4 compares the opening progressions in Wagner’s Tristan, 

Brahms’ Op. 76 No. 4, and Debussy’s Prelude to “The Afternoon of a Faun.”25 I think 

it is likely that both Brahms and Debussy, despite their ambiguous feelings about 

Wagner, had Tristan somewhere in the backs of their minds: the opening gesture, by 

which a half-diminished seventh chord slides chromatically to a dominant seventh, 

is unmistakably Tristanesque. (Note that Brahms’ opening chord even uses the same 

pitch classes as Wagner’s.) But rather than blatantly copying Tristan, both Brahms 

and Debussy do something similar to yet different from the earlier piece. The concept 

of individual T-relatedness provides a precise way to describe this sense of “similari-

ty-with-difference”: what Brahms and Debussy did, essentially, was transpose the sec-

ond chord in Tristan up by semitone. (In Debussy’s case, he also transposes the entire 

voice leading by tritone, rearranging the voices somewhat.) In all three cases, the 

result is a two-semitone voice leading between half-diminished and dominant sev-

enth chords, an unfamiliar chromatic motion linking familiar chords.  Furthermore, 

Figure 2.6.3 The semitonal voice leadings between major and minor triads. Since 

inversion preserves the distance moved by each voice, these voice leadings can be 

grouped into uniformly I-related pairs.

24 Individual transposition adds a constant to the numbers representing the paths in a voice leading; 
individual inversion subtracts these numbers from a constant (see Tymoczko 2008b).

25 I have removed Wagner’s “voice crossings,” as will be discussed in Chapter 8.
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all three voice leadings move root to root, third to third, fi fth to fi fth, and seventh to 

seventh. Yet at the same time, the connection to Tristan has been disguised: what has 

been borrowed is not the progression itself, but 

rather something more abstract—a general 

voice-leading schema rather than a particular 

way of resolving the half-diminished chord. 

(Thus we see how theoretically savvy compos-

ers can steal without getting caught!) Whether 

this is a matter of defusing, one-upping, or 

“correcting” Wagner is an interesting critical 

question.

In classical music, individually T-related 

voice leadings often appear in sequential con-

texts. Figure 2.6.5a presents a nice example 

from the opening of Mozart’s C minor Fantasy, 

K. 475. The music invokes a relatively standard chromatic sequence in which iv6–V7 

chord progressions move downward by major second: beginning with A7, we have 

f 6–G7 followed by what we expect to be ef6–F7. But Mozart transposes the last chord 

up by semitone so that the fi nal pair is individually T-related to the pair preceding it, 

with the sequence ending on Fs7 rather than the expected F7. This maneuver, which 

transforms a minor-key iv6–V7 progression into a major-key iii6–V7 progression, is 

reasonably common in tonal music. Figure 2.6.5b cites an analogous progression 

from the recapitulation of the fi rst movement of Beethoven’s Ef major Piano Sonata, 

Op. 31 No. 3.26 Here the sequence moves downward by diatonic thirds, with each 

chord preceded by its applied dominant. If the passage were strictly sequential, it 

would cycle through all seven diatonic triads before returning to the tonic Ef; how-

ever, Beethoven arranges an earlier return by inserting a descending diatonic second 

into the sequence of thirds. Once again, the structural similarity of the voice leadings 

Figure 2.6.4 The opening 

progressions in Wagner’s Tristan (a), 

Brahms’ Intermezzo Op. 76 No. 4 

(b), and Debussy’s Prelude to “The 

Afternoon of a Faun.”

Figure 2.6.5 Individually T-related voice leadings in sequential passages from 

Mozart (a) and Beethoven (b).

26 A very similar sequence appears at m. 45 of the fi rst movement of Beethoven’s F major piano sonata, 
Op. 54.
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masks the deviation from strict sequential procedure: we hear successive voice lead-

ings as being similar, even though they are not related by exact transposition. Again, 

the concept of “individual T-relatedness” provides a precise tool for describing this 

sort of similarity.

2.7 voice-leading size

Polyphonic music uses independent melodies to articulate effi cient voice leadings 

between meaningful harmonies (Figure 2.7.1). To be sure, it also involves follow-

ing many other rules that are particular to specifi c styles and time periods: in some 

genres, for example, parallel perfect fi fths are forbidden, while in others they are 

allowed. (Similarly, in some genres the bass is more likely to move by leap, while in 

others the bass is essentially similar to the other voices.) Later chapters will deal with 

these style-specifi c nuances. For now, I want to focus on the basic conditions under 

which polyphony itself is possible.

Clearly, to write this sort of music, composers need to be able to compare the 

overall effi ciency, or “size,” of different voice leadings. But how is this done? In 

some situations, comparisons seem unproblematic: for instance, a voice leading 

that moves just one note by just one semitone seems obviously smaller than a voice 

leading that moves three notes by six semitones each. But other cases are consider-

ably more diffi cult. Is (C, E, G)®(Df, F, Af) larger or smaller than (C, E, G)®(C, 

E, A)? The fi rst voice leading moves its voices by a greater total distance (three semi-

tones vs. two semitones), while in the second, the largest distance moved is greater 

(two semitones vs. one semitone). Which is more important? Is the smaller voice 

leading the one that minimizes the total amount of motion or the largest distance 

moved by any voice?

Although pedagogues have long enjoined their students to use small voice lead-

ings, they have never bothered to provide specifi c answers to these sorts of questions. 

(Students, it seems, are supposed to intuit which of the available voice leadings is the 

smallest.) More recently, theorists have proposed a variety of very precise methods 

of measuring voice-leading size. Unfortunately, musical practice does not allow us 

to adjudicate between these different proposals, leaving us with many plausible but 

incompatible solutions to the same problem. Rather than adopting one of these, my 

strategy here is to try to remain as neutral as possible about the issue. (Precision is a 

virtue only when it is not arbitrarily imposed!) Happily, it turns out that “reasonable” 

measures of voice-leading size agree about a number of important cases.

Figure 2.7.1 The opening phrase of the Bach chorale 

“O Herzensangst.” This music can be represented as the 

sequence of voice leadings (Ef, G, Ef, Bf)®(Ef, Bf, 

Ef, G) 7, 2,0,5- -¾¾¾¾®(Af, Af, Ef, C)®(Af, F, D, Bf). I have 

ignored the starred (“nonharmonic”) note at the end of 

the fi rst measure.
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I consider a measure of voice-leading 

size to be “reasonable” if it satisfi es two basic 

requirements: fi rst, it should depend only 

on how far the individual voices move, with 

larger motion leading to larger voice lead-

ings; and second, it should judge voice lead-

ings with voice crossings to be larger (or at 

the very least, no smaller) than their natural 

uncrossed alternatives. This is illustrated by 

Figure 2.7.2. The fi rst requirement is basic to the very notion of voice-leading size; 

the second mandates a kind of musical “division of labor,” according to which it is 

preferable to have more voices moving by small amounts, rather than fewer voices 

moving by larger amounts. (The connection between avoiding voice crossings and 

the division of musical labor is not obvious, although it can be proved mathemati-

cally.27) Thus Figure 2.7.3a, in which two voices move by three and four semitones, 

should be at least as small as Figure 2.7.3b, in which one voice moves by seven 

semitones. Both principles are consistent with Western musical practice, and to my 

knowledge no composer, theorist, or pedagogue has ever proposed a method of 

measuring voice leading that violates either principle.28

Appendix A summarizes the technical 

issues involved in measuring voice lead-

ing. For our purposes, the important point 

is that the two constraints are powerful 

enough to imply a number of theoretical 

results: for instance, they imply that the 

more evenly a chord divides the octave, 

the smaller the voice leadings to its vari-

ous transpositions; they also imply that E 

and Af major triads can be linked to the 

C major triad by smaller voice leadings 

than any other major triads. Indeed, the 

constraints are so powerful that, in many 

contexts, it is unnecessary to specify a par-

ticular method of measuring voice leading, 

because all reasonable metrics will agree. For most of this book, we will therefore be 

able to speak of “large” and “small” voice leadings without getting into the details of 

how to measure voice leading. Readers should feel comfortable trusting their musi-

cal intuitions, interpreting the term “effi cient voice leading” as a synonym for “voice 

leadings in which all voices move by short distances.”

Figure 2.7.2 The principle of avoiding 

crossings tells us that (a) should be no 

larger than (b) and (c) should be no 

larger than (d).

Figure 2.7.3 Generally speaking, Western 

composers prefer smaller amounts of 

motion in more voices (a) to larger 

amounts of motion in fewer voices (b). 

The pattern in (a) is common in the inner 

voices in classical music; (c) provides an 

example from the Bach chorale “Nun lob’ 

mein’ Seel’ den Herren.”

27 See Tymoczko 2006.
28 It bears repeating that this notion of voice-leading size is meant to model composers’ behavior 

rather than listeners’ experience. See Callender and Rogers 2006 for some work on listeners’ judgments of 
 voice-leading distance.
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2.8 near identity

So far we have grouped chords into categories based on transpositional and inver-

sional equivalence. But this insistence on exact equivalence is actually quite restric-

tive: in many contexts, it is useful to describe two chords as being similar even though 

they are not exactly the same.29 This is particularly important when investigating 

matters of intonation and tuning: for instance, music theorists might speak about 

the “acoustically pure perfect fi fth {C, G},” the “equal-tempered fi fth {C, G},” the 

 “quarter-comma meantone perfect fi fth {C, G}” and so on. The language suggests 

that these different tunings are variations on the same object, which may come in 

a variety of closely related forms. Yet from our perspective the different tunings of 

{C, G} belong to different chord types, since no transposition or inversion relates 

them. Thus there is a mismatch between ordinary musical thinking and the extremely 

precise terminology we have been developing.

The problem is not limited to matters of tuning and intonation. The dominant 

seventh chord {C, E, G, Bf} is in the grand scheme of things rather similar to the 

minor seventh {C, Ef, G, Bf}, which differs only in that it has an Ef rather than En. 

Although they do not belong to the same set class, the two chords are clearly more 

similar to each other than either is to the dissonant cluster {Fs, G, Af, A}. Conse-

quently, {C, E, G, Bf}Þ{C, Ef, G, Bf} feels like a progression between two more-or-

less similar chords, while {C, E, G, Bf}Þ{Fs, G, Af, A} is quite jarring, connecting 

very different harmonies. Our discussion, rather than trying to model to this fact, has 

instead treated harmonic identity as an all-or-nothing affair.

It therefore seems that exact identity stands at one end of a continuum of musical 

relatedness. The equal-tempered chord {C, E, G, Bf} is exactly identical to itself, and 

is very closely related to the just-intonation chord {C, E, G, Bf}. Both of these chords 

are somewhat related to the minor-seventh chord {C, Ef, G, Bf}, and are not very 

similar at all to the chromatic cluster {Fs, G, Af, A}. Notice that these “degrees of 

relatedness” seem to mirror facts about voice leading: there is a very small voice lead-

ing from the equal-tempered {C, E, G, Bf} to its just-intonation counterpart, and 

a reasonably small voice leading from {C, E, G, Bf} to {C, Ef, G, Bf}, but it takes a 

relatively large voice leading to get from {C, E, G, Bf} to {Fs, G, Af, A}. This suggests 

that we may be able to use voice leading to model at least some of our intuitions of 

musical similarity.30

Metaphors of distance are useful here. We can think of the acoustically pure per-

fect fi fth {0, 7.01} as being close to the equal-tempered fi fth {0, 7}, as if the two chords 

were nearby in some abstract “space of all chords.” Conversely, the chord {3, 4} is 

29 The notion of similarity is central to the work of Ian Quinn (1996, 2001, 2006).
30 In principle, voice leading provides just one of many possible notions of musical distance. We might 

sometimes want to conceive of musical distance harmonically (based on common tones or shared interval 
content), or in a way that privileges membership in the same diatonic scale—so that the F major triad is 
closer to C major than E major is. (See, for example, Quinn 2001, 2006, and 2007, and Tymoczko, forth-
coming.) However, we will see that conceptions based on voice leading are extremely versatile and can be 
useful in a wide range of contexts.
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much farther from {0, 7} than {0, 7.01} is, since it takes a larger voice leading to 

connect {3, 4} to {0, 7}. Chapter 3 will show that this talk of distance is not just a 

metaphor: it is possible to describe geometrical spaces containing all chords with a 

particular number of notes, and in which the distance between any two chords cor-

responds to the size of the minimal voice leading between them. Musical “similar-

ity” can therefore be represented by distance in these spaces. In anticipation of this 

discussion, I will say that chords are “near” or “close to” each other when they can be 

linked by effi cient voice leading.

We can extend these ideas to chord types as well. Two chord types can be said 

to be similar if there is a relatively small voice leading between their transpositions. 

Thus the diminished triad is closer to the minor triad than to the chromatic cluster, 

since there is a very small voice leading taking C diminished to C minor, but no simi-

larly small voice leading connecting any diminished triad to any chromatic cluster.31 

Another way to make the point is to say that any particular diminished triad is nearly 

transpositionally related to any minor triad: for example, C diminished is nearly trans-

positionally related to F minor, since {C, Ef, Gf} is near {C, Ef, G} which is in turn 

transpositionally related to {F, Af, C}. In the same spirit, we could say that {C, Df, G} 

is nearly inversionally related to {Ef, G, A}, meaning that {C, Df, G} is near {C, D, Fs}, 

which is inversionally related to {Ef, G, A}. What results is a more fl exible conception 

of harmonic similarity: rather than considering two chords to be similar only when 

they are exactly related by transposition or inversion, we can consider them similar 

when they are nearly (or approximately) related by these same transformations. This 

is useful insofar as actual composers are often more concerned with approximate 

than with exact musical relationships.

2.9  harmony and counterpoint revisited

In Chapter 1, we observed that Western music has a kind of two-dimensional coher-

ence: vertical or harmonic principles dictate that chords should be audibly similar, 

while horizontal or contrapuntal principles dictate that chords should be connected 

by effi cient voice leading. Figure 2.9.1 shows these constraints operating in a wide 

range of different Western styles, including classical music, contemporary jazz, late-

nineteenth-century chromaticism, and even modern atonality. To be sure, composers 

often deviate from these norms for expressive reasons—just as, when driving, one 

sometimes takes a scenic detour rather than following the most direct route. And to 

be sure, different styles always involve additional constraints over and above these 

very basic norms. But the norms themselves are relatively robust, shared by a wide 

range of styles spanning several centuries.

31 The single-semitone voice leading (C, Ef, Gf)®(C, Ef, G) links diminished to minor, but it takes at 
least four semitones to link a diminished triad to a chromatic cluster.
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So under what circumstances is it possible to fi nd an effi cient voice leading 

between nearly transpositionally or inversionally related chords? In other words, how 

is it possible to write music that is both harmonically and melodically coherent?

Chapter 1 noted that this is possible when a chord divides the octave very evenly 

or very unevenly. Here I want to replace the contrast “even/uneven” with the more 

powerful concept of near symmetry. It turns out that one can combine harmonic 

consistency and effi cient voice leading only by using nearly symmetrical chords, 

which are typically near chords that are completely symmetrical under transposition, 

inversion, or reordering. Nearly even chords (such as the major triad) are near the 

symmetrical chords that divide the octave perfectly evenly (such as the augmented 

triad). Clustered chords (such as {B, C, Cs}) are near the symmetrical chords that 

contain many copies of one specifi c pitch class (such as the “triple unison” {C, C, 

C}). But there are other symmetrical chords as well: transpositionally symmetrical 

chords such as {C, Cs, Fs, G}, which do not divide the octave particularly evenly, 

and inversionally symmetrical chords such as {C, D, E}, which are neither particu-

larly even nor particularly uneven. Thus an approach based on symmetry leads to a 

much deeper understanding of the fundamental connection between harmony and 

counterpoint—opening our eyes to new compositional possibilities and revealing 

regularities latent in the music of the past.

We will begin by considering effi cient voice leading between chords exactly related 

by transposition or inversion; then, at the end of the section, we will broaden the 

discussion to include near transposition or near inversion.

2.9.1 Transposition

A chord is transpositionally symmetrical if it is unchanged by some transposition. 

Thus, when we transpose an augmented triad by a major third, we produce the same 

pitch classes we started with. Figure 2.9.2 shows that there are two kinds of transposi-

tionally symmetrical chords, those that divide the pitch-class circle evenly and those 

Figure 2.9.1 Harmonic consistency and effi cient voice leading in a range of styles. (a) A 

common upper-voice pattern for the classical I–IV–I–V–I chord progression. (b) A common 

jazz-piano “left-hand voicing” for the descending-fi fths progression D7–G7–C7–F7. The voicings 

add ninths and thirteenths and omit roots, fi fths, and elevenths, as is common in jazz. (c) Two 

celebrated examples of Wagnerian chromaticism; the fi rst is a simplifi cation of the opening of 

Tristan and the second is the opening of The Ring’s “Tarnhelm” motif. (d) Chromatic clusters 

of the sort often found in late twentieth-century music, particularly in the music of Ligeti and 

Lutosławski.
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that can be decomposed into equal-size subsets that do so.32 For example, {B, C, F, Fs} 

does not divide the circle into four even parts, but it can be decomposed into a pair 

of tritones that each divide the circle in half.

If a chord is near one of these symmetrical chords, then it can be linked by effi -

cient voice leading to some of its transpositions. Consider {C, E, G}, which is near 

{C, E, Gs} since the voice leading (C, E, G)®(C, E, Gs) is small. It follows that the E 

major chord must also be near the C augmented triad. This is because we can trans-

pose the small voice leading (C, E, G)®(C, E, Gs) uniformly by ascending major 

third, obtaining (E, Gs, B)®(E, Gs, C). This is an effi cient voice leading from E major 

to C augmented. Figure 2.9.3 shows that we can retrograde this second voice leading 

and attach it to the earlier one, producing (C, E, G)®(C, E, Gs)®(B, E, Gs). Here 

we have the conjunction of two small voice leadings. Removing the middle chord will 

give a small voice leading from C major to E major: (C, E, G)®(B, E, Gs). In other 

words, if C major is close to an augmented triad, then its major third transposition 

must also be close to that same augmented triad, and since C and E major are both 

close to the same chord, they must also be close to each other.

Of course, there is nothing particularly special about major or augmented chords. 

Take any chord A close to a symmetrical chord S that is unchanged by transposi-

tion T
x
. Then T

x
(A) will also be close to T

x
(S), which is the same as S; and since A 

and T
x
(A) are both near S, they are also near each other. Speaking somewhat meta-

phorically, the symmetrical chord passes on its symmetry to nearby chords in the 

form of effi cient voice leading. These nearby chords are not themselves symmetrical, 

but they are nearly so, which is to say that they can be linked to their x-semitone 

transpositions by effi cient voice leading. It follows that transpositional symmetry is 

32 See Starr and Morris (1977).

Figure 2.9.2 Transpositionally symmetrical chords either divide the octave evenly (a), or can 

be decomposed into equal-size subsets that themselves do so (b). Here, the transpositionally 

symmetrical chord {C, F, Fs, B} can be decomposed into tritones {C, Fs} and {B, F}.



Harmony and Voice Leading 55

a limiting case of effi cient voice leading: as chord A moves closer and closer toward a 

transpositionally symmetrical chord, the size of the minimal voice leading between 

A and T
x
(A) decreases, reaching zero when the chord is exactly symmetrical.

Let’s consider a second example. The chord {B, C, E, Fs} appears commonly in 

jazz, but does not divide the octave particularly evenly. However, it is near the trans-

positionally symmetric {B, C, F, Fs}, which contains two separate tritones. Beginning 

with the small voice leading (B, C, E, Fs)®(B, C, F, Fs), we transpose by tritone to 

produce (F, Gf, Bf, C)®(F, Gf, B, C) (Figure 2.9.4). Retrograding this and gluing it 

to the original voice leading, we obtain (B, C, E, Fs)®(B, C, F, Fs)®(Bf, C, F, Gf). 

Removing the middle chord gives (B, C, E, Fs)®(Bf, C, F, Gf), which effi ciently links 

tritone-related chords. Chapter 10 will show that this sort of voice leading plays a role 

in jazz “tritone substitutions.” For now, however, the focus should be on the general 

form of the argument: since chord 

A is close to the tritone-symmetri-

cal chord S, then so is the tritone 

transposition of A; and since A and 

its tritone transposition are close to 

the same chord, they must also be 

close to each other.

There is one complication that 

should be mentioned here. Sup-

pose a three-note chord, such as 

{C, F, Fs}, is near a  transpositionally 

Figure 2.9.3 Any chord that is near an augmented triad can be connected to its major-third 

transposition by effi cient voice leading.

Figure 2.9.4 Since both {C, E, Fs, B} and its tritone 

transposition are close to {B, C, F, Fs} (a−b), they 

are close to each other. In (c), we retrograde the 

voice leading in (b) and attach it to (a). Removing 

the middle chord gives us the voice leading in (d).
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 symmetrical two-note chord, such as {C, Fs} (Figure 2.9.5). Proceeding as we did ear-

lier, we begin with the three-voice voice leading (C, F, Fs)®(C, Fs, Fs); retrograding 

and transposing by tritone we obtain (Fs, C, C)®(Fs, B, C). Note that we cannot 

simply glue these two voice leadings together, since (C, Fs, Fs) is not the same as (Fs, 

C, C). However, if we double a voice in each voice leading, we can attach them. What 

results is a four-voice voice leading between {C, F, Fs} and its tritone transposition, (C, 

C, F, Fs)®(C, C, Fs, Fs)®(B, C, Fs, Fs) or (C, C, F, Fs)®(B, Cs, Fs, Fs) upon remov-

ing the middle chord. The fourth voice is the price the three-note chord has to pay 

for exploiting the symmetry of a two-note chord. In general, extra voices will always 

be necessary whenever a larger chord exploits the symmetries of a smaller chord. In 

Chapter 7 we will see that there are common tonal routines, such as the voice leading 

(C, C, E, G)®(A, C, F, F), which exploit this very procedure (§7.2). It follows that the 

familiar major triad is special not just because it divides the octave into three nearly 

even parts, but also because it is reasonably close to the tritone.

2.9.2 Inversion

A chord will be unchanged by inversion if its notes are arranged symmetrically 

around an “axis of symmetry” crossing the pitch-class circle at two antipodal points, 

with tones placed freely on either of these points. For example, Figure 2.9.6 shows 

that the axis of the inversionally symmetrical {C, D, E} contains the notes D and Af; 

since C and E are arranged symmetrically around this axis, inversion around D leaves 

the chord unchanged.

The nonsymmetrical chord {C, Ds, E} is near {C, D, E}, since the voice leading 

(C, Ds, E)®(C, D, E) is small. Inverting this entire voice leading around the fi xed 

Figure 2.9.5 A larger chord can take advantage of the symmetries of a smaller chord, but it 

requires additional voices.



Harmony and Voice Leading 57

point D produces (C, Df, E)®(C, D, E). Reversing this voice leading and gluing it 

to the earlier one produces (C, Ds, E)®(C, D, E)®(C, Df, E). Removing the middle 

chord gives us a small voice leading between inversionally related chords: (C, Ds, 

E)®(C, Df, E) (Figure 2.9.7). As in the transpositional case, the inversionally sym-

metrical chord passes its symmetry on to nearby chords: if chord A is near a chord S 

that is invariant under some inversion x
yI , then x

yI (A) will also be near S, and hence A 

and x
yI (A) can be linked by effi cient voice leading.

Figure 2.9.8 provides a real-world example. We begin with the effi cient voice 

leading (F, Af, Cf, Ef)®(F, Af, Cf, D), which uses a single-semitone motion to 

transform the F half-diminished chord into a fully diminished seventh. The next 

voice leading inverts the fi rst uniformly around A4/Bf4, producing an effi cient voice 

Figure 2.9.6 To form an inversionally symmetrical 

chord, choose two antipodal points to act as an 

axis of symmetry—here, {D, Af}. One can place 

notes on either axis point (or both), as they will 

be unaffected by the inversion. For any points 

not lying on the axis, such as a, one must also 

add its inversional partner, symmetrically placed 

on the other side of the axis. Here, a is 60° 

counterclockwise from the upper axis point, while 

a' is 60° clockwise from that point. The antipodal 

points can also lie between equal-tempered pitch 

classes.

Figure 2.9.7 Any chord that is near an inversionally symmetrical chord can be connected 

to its inversion by effi cient voice leading.
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leading from the E dominant seventh to the same diminished seventh chord. In 

Figure 2.9.8c we reverse this and glue it to the fi rst voice leading. Removing the 

symmetrical chord gives us an effi cient voice leading from F half-diminished to E7, 

strongly reminiscent of the opening of Tristan. We conclude that this celebrated 

nineteenth-century progression exploits the near I-symmetry of the half-diminished 

and dominant seventh chords.

2.9.3 Permutation

The third symmetry is a little bit different from the others. Suppose we model chords 

as multisets that may contain multiple copies of a single note. From this point of view, 

the chord {C, C, C} is different from {C, C}, since they have a different number of cop-

ies of the note C. Let’s also imagine that (contrary to fact) we could somehow keep 

track of these different copies, which we can represent with subscripts like {C
a
, C

b
, C

c
}. 

Now consider (C
a
, C

b
, C

c
)®(C

c
, C

a
, C

b
), a voice leading that permutes the notes in the 

chord {C, C, C}. Since none of the voices in this voice leading actually moves, we can 

say that {C, C, C} is permutationally symmetrical. “Permutation symmetry” is just a 

fancy synonym for “has multiple copies of one or more of its notes.”

Permutationally symmetrical chords are themselves rather boring, but the nearby 

chords are quite interesting. The chromatic cluster {B, C, Df} is near {C, C, C} since 

(B, C, Df)®(C, C, C) is small. Retrograding and reordering voices, we obtain (C, C, 

C)®(C, Df, B). Gluing the two voice leadings together gives us (B, C, Df)®(C, C, 

C)®(C, Df, B); upon removing the middle chord, we obtain (B, C, Df)®(C, Df, 

B), a small voice leading from {B, C, Df} to itself. (Figure 2.9.9 attempts, somewhat 

lamely, to illustrate.) Once again, the symmetrical chord passes its symmetry on to 

nearby chords: given a small voice leading A®S, from chord A to the permutation-

ally symmetrical chord S, we can permute both chords uniformly to obtain the small 

voice leading P(A)®P(S), or P(A)®S, since S is permutationally symmetrical. Retro-

grading and gluing together gives us A®S®P(A); upon removing the middle chord, 

we have A®P(A), an effi cient voice leading between A and itself. The general proce-

dure here is precisely the same as in the cases of transposition and inversion; the only 

difference is the nature of the symmetry.

Figure 2.9.8 The F half-diminished chord is close to a diminished seventh chord (a). 

Inverting this voice leading uniformly around A4/Bf4, we get an effi cient voice leading from 

E7 to the same diminished chord. In (c), we retrograde the voice leading in (b) and attach it 

to (a). Removing the middle chord (d ) gives us an effi cient voice leading from the 

F half-diminished chord to E7, a voice leading that plays a central role in Wagner’s Tristan.
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It may seem surprising to place permutation alongside transposition and inver-

sion, since we are accustomed to thinking of chords as inherently unordered objects. 

But the discussion in §2.4 should ameliorate any feelings of unease: we form chords 

by abstracting away from the order of the notes in a musical object, just as we form 

set classes by abstracting away from the distinction between transpositionally and 

inversionally related objects. And just as transpositionally symmetrical chords are 

special (because there are fewer transpositions to abstract away from) so too are per-

mutationally symmetrical chords (because there are fewer orderings to abstract away 

from). Voice leading reveals this “specialness” by providing a musical mechanism for 

rearranging the notes in an unordered chord. As a result, it should not be too sur-

prising that there is a close analogy between permutational symmetry and the more 

familiar symmetries considered previously. Transpositional near-symmetry guaran-

tees effi cient voice leading between transpositionally related chords; inversional near-

symmetry guarantees effi cient voice leading between inversionally related chords; and 

permutational near-symmetry guarantees effi cient voice leading between a chord and 

itself. Here we see the advantages of a more fl exible approach to chord classifi cation, 

in which we embrace a wide variety of musical transformations. From our point of 

view, permutation is just another kind of symmetry, with its own distinctive collec-

tion of musical consequences.

The arguments in this section show that if a chord is near a symmetrical chord 

then it will inherit this symmetry in the form of effi cient voice leadings. One might 

also wonder whether the converse is true: is it the case that if there is an effi cient 

voice leading from a chord A to one of its transpositions or inversions, then chord 

A is nearly symmetrical under transposition, inversion, or permutation? That is, is it 

Figure 2.9.9 Any chord that is near a chord with pitch-class duplications can be connected 

to its untransposed form by effi cient voice leading.
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the case that our three symmetries are the only symmetries there are—the only sym-

metries we need to understand if we want to know how to combine effi cient voice 

leading with harmonic consistency? Basically, the answer is “yes,” at least insofar as 

we understand the term “harmonically consistent” to mean “using chords that are 

approximately related by transposition or inversion.”33 It follows that every instance 

of effi cient voice leading between structurally similar chords—in any scale or tuning 

system—can be understood in terms of the three basic symmetries we have just dis-

cussed. This is precisely what will allow us, in Part II, to interpret a large number of 

Western musical practices as variations on the same basic techniques.

It is very important to realize that the symmetrical chords relevant to voice lead-

ing will not necessarily lie on the ordinary piano keyboard. The familiar pentatonic 

scale, {C, D, F, G, Bf} or {0, 2, 5, 7, 10}, is quite close to the chord that divides the 

octave into fi ve equal pieces: {0, 2.4, 4.8, 7.2, 9.6}. Consequently, the pentatonic scale 

can be effi ciently linked to its transpositions, as in (C, D, F, G, Bf)®(C, D, F, G, A). 

While both of these chords belong to the equal-tempered universe, and can be played 

on an ordinary piano, the perfectly even fi ve-note chord does not. Yet this missing 

chord nevertheless exerts its infl uence on twelve-tone equal-tempered music; indeed, 

twelve-tone equal-tempered fi ve-note chords can be linked to their transpositions by 

effi cient voice leading only if they are close to this phantasmic and elusive chord. This 

is just one of many cases where a deep understanding of the discrete musical universe 

requires us to think in continuous terms. Even though we are ultimately concerned 

with equal-tempered music, we fi nd that we can understand this music best when we 

consider the continuous space in which equal temperaments are embedded.34

33 It is relatively easy to demonstrate the connection between effi cient voice leading and near sym-
metry; the harder point is to explain the circumstances under which nearly symmetrical chords are near 
chords that are perfectly symmetrical. (This becomes clear only when we examine the geometrical spaces 
described in Chapter 3.) With respect to the fi rst issue, here is a simple argument connecting effi cient voice 
leading and near symmetry. Suppose there is some function F over the pitch classes, which could be a 
transposition or an inversion or something else altogether. Now let us suppose that there is some effi cient 
voice leading between chords A and F(A). We can therefore represent A®F(A) as the product of two sepa-
rate voice leadings (a

i
, a

j
, a

k
, . . .)®(a

x
, a

y
, a

z
, . . .)®(F(a

x
), F(a

y
), F(a

z
), . . .). The fi rst of these rearranges the 

notes of A while the second simply applies F to each note. (The fi rst voice leading need not be a permuta-
tion, and it may involve doublings.) Now consider (a

x
, a

y
, a

z
, . . .)®(a

i
, a

j
, a

k
, . . .) and (a

x
, a

y
, a

z
, . . .)®(F(a

x
), 

F(a
y
), F(a

z
), . . .). These voice leadings must be approximately equal. (This follows from the fact that the 

original voice leading is effi cient, and hence moves none of its voices very far.) The fi rst rearranges the 
notes of A, the second applies F to each note; hence there is some rearrangement that is approximately 
equal to applying F. This is just what it means to be nearly symmetrical under F.

34 John Clough (in unpublished work) and Rick Cohn (1996, 1997) articulated a special case of the 
central claim of this section, observing that major and minor triads are a semitone away from augmented 
chords, and that this allows them to be connected by effi cient chromatic voice leading. (Cohn further 
generalizes to chromatic scales whose size is divisible by three, and speculates that analogous claims can 
be made about tetrachords and hexachords in the standard chromatic scale.) This section generalizes this 
important observation by articulating a somewhat broader principle: if a chord A is near a chord that is 
F-symmetrical, then A and F(A) can be connected by effi cient voice leading. I also observe that the con-
verse of this statement is true: if A and F(A) can be connected by effi cient voice leading, then A is nearly 
symmetrical under F (see the preceding note). Furthermore, my notion of “nearness” is somewhat more 
general, since I consider chords like {C, E, G} to be “near” {C, Fs}. I also show that the symmetrical chord 
need not appear in the relevant scale—for instance, the diatonic collection is near the equiheptatonic col-
lection, which does not appear in the twelve-tone chromatic scale.
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Finally, note that nothing really changes when we adopt the more fl exible notion 

of harmonic relatedness discussed in §2.8. For suppose we would like to fi nd an 

effi cient voice leading between two chords A and B that are nearly—rather than 

precisely— transpositionally or inversionally related. Since A is nearly transposition-

ally or inversionally related to B, there is a small voice leading F(A)®B, where F is 

some transposition or inversion. And if the voice leading A®B is small, then the voice 

leading A®F(A) must also be small, as both A and F(A) will be close to B. In the 

cases of musical interest, F will be some nonzero transposition or inversion, which 

means that A is itself nearly symmetrical.35 (The same argument shows that B must 

also be nearly symmetrical.) Thus, expanding our notion of “harmonic consistency” 

does not expand the realm of musical possibilities: a chord A can be linked by effi -

cient voice leading to one of its near-transpositions or near-inversions only if A is 

itself nearly symmetrical under transposition, inversion, or permutation.

2.10  acoustic consonance and near 
evenness

We now return to acoustic consonance, the second of our fi ve basic components of 

tonality. Recall that Western listeners tend to agree that certain chords sound stable 

and restful, or consonant, while others sound unstable and harsh, or dissonant. Many, 

though not all, Western styles exploit this difference: consonant sonorities tend to 

appear as musical destinations or at points of rest, while dissonant sonorities tend to 

be more active and unstable. To be sure, the distinction between consonance and dis-

sonance is extremely complex, and it maps only indirectly onto the concept of musi-

cal stability. (There are situations when an acoustically consonant sonority behaves as 

if it were musically unstable.) But to a fi rst approximation, it is reasonable to say that 

in many musical styles, dissonant sonorities tend to resolve to consonant sonorities.

Acoustic consonance is somewhat imperfectly understood, and there are a num-

ber of theories about what produces it.36 Nevertheless, there is broad agreement on 

some basic principles. The eighteenth-century mathematician Jean-Baptiste Fourier 

showed that any periodic mathematical function can be represented as the sum of 

sine and cosine waves whose frequencies are integer multiples of a single frequency 

f (Figure 2.10.1). In the case of a musical sound, these sine waves are called partials. 

35 There are some subtleties here that I am glossing over. More precisely, the cases of musical interest 
are those where F is either an inversion or nontrivial transposition, or where F is the identity operation 
and the voice leading F(A)®B involves some nontrivial permutation. When these conditions are not met, 
then our argument simply records the boring fact that any chord can be transformed into some other 
chords by moving its notes by small distances: for example, that a major triad can be transformed into a 
minor triad by lowering its third. The musically interesting cases are those in which small voice leadings 
lead to an interesting reshuffl ing of the resulting notes. For instance, if we think of a minor triad as a major 
triad with lowered third, then the voice leading (C, E, G)®(B, E, G) is interesting because it does not simply 
lower the third; instead, it is an effi cient voice leading in which the root of the major triad becomes the fi fth 
of the minor triad. Here, we are exploiting the near symmetries of the underlying chords.

36 Helmholtz (1863/1954), Terhardt 1974, Burns 1999, Sethares 1999, Cariani 2001, Tramo et al. 2005.
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The nineteenth-century German psychologist Hermann von Helmholtz proposed 

that two pitches are consonant if their partials are aligned, or else are suffi ciently far 

apart so as not to interfere. Dissonance is caused when partials are close together, but 

not perfectly aligned; this creates a sense of “roughness” or harshness. (Twentieth-

century auditory physiologists have shown that the ear’s basilar membrane decom-

poses incoming sound waves into sine waves, more or less as Fourier described.) 

Although there is much disagreement about just how complete this story is, most 

contemporary psychologists believe that it is at least partly right.37

Western instruments typically produce periodic sounds that, when analyzed as 

Fourier described, have relatively strong lower partials ( f, 2f, 3f, 4f, etc.). The partials 

of several such “harmonic” sounds will match when their fundamental frequencies 

are related by simple whole-number ratios.38 Consequently, as Pythagoras discovered 

roughly 2700 years ago, the most consonant intervals have fundamental frequencies 

in simple ratios: 2:1 (octave), 3:2 (perfect fi fth), 4:3 (perfect fourth), 5:4 (major third), 

and 6:5 (minor third). A larger chord will be consonant when it contains a prepon-

derance of consonant intervals, and this in turn requires that its notes be relatively 

evenly distributed in pitch-class space.

For small chords there is a particularly elegant connection between near evenness 

and acoustic consonance. The most consonant three-note chord, the major triad, 

contains the fi rst three distinct pitch classes in the harmonic series, with fundamental 

frequencies in a 3:4:5 ratio. Figure 2.10.2 shows that the triad divides the frequency-

space octave into three exactly equal pieces. When we take the logarithm of these 

frequencies, passing from frequency space into pitch space (§2.1), we move from 

an equal division of the (frequency-space) octave into a nearly even division of the 

Figure 2.10.1 The periodic sound on the left has frequency f. (Two repetitions of the 

waveform are shown.) This sound can be analyzed as the sum of the sine waves on the right, 

with periods f, 2f, and 6f.

37 In particular, writers such as Tramo et al. (2005) have suggested that the relevant neural circuitry 
may involve timing information rather than spatial information.

38 The consonance of an interval therefore depends on the timbre (or overtones) of the sound. Sethares 
(1999) provides compelling examples of this phenomenon.
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(log-frequency, pitch-space) octave. (A similar point holds for the perfect fi fth, which 

contains the fi rst two distinct pitch classes in the harmonic series and evenly divides 

the frequency-space octave.) Thus, for small chords, maximal consonance directly 

implies near evenness. And though the situation is somewhat more complicated in 

the case of larger chords, it remains true that highly consonant chords always divide 

the octave relatively evenly (Figure 2.10.3).39

In other words—and this being one of the most important ideas in the entire 

book, it is worth a little interjective buildup—the basic sonorities of Western tonal 

music are optimal for two distinct reasons: considered as individual sonic objects, 

Figure 2.10.2 The frequencies {330, 440, 550} divide a frequency-space octave (between 

330 and 660) perfectly evenly. In pitch space, the chord divides the octave nearly evenly, into 

pieces that are approximately 5, 4, and 3 semitones large. Note that the acoustically pure Cs 

(72.9) is not quite the same as the equal-tempered Cs (73).

Figure 2.10.3 Highly consonant chords divide the octave nearly evenly.

39 With four notes, the dominant seventh chord divides the frequency-space octave precisely evenly, 
but is not maximally consonant. However, it is fairly consonant, and the more consonant chords (such as 
the major triad with added sixth) are also quite even. Huron (1994) estimates the most common twelve-
tone equal-tempered chords of various sizes; his maximally consonant chords are always nearly even.
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they are acoustically consonant and hence sound pleasing in their own right; but 

since they divide the pitch-class circle nearly evenly, they can also be connected to 

their transpositions by effi cient voice leading. Any composer who cares about har-

monic consistency would therefore have reason to choose these chords, even if he or 

she did not care a whit about acoustic consonance. Or to put the point in the form 

of a parable: suppose God asked you, at the dawn of time, to choose the chords that 

humanity would use in its music. There are two different choices you might make. 

You might say, “Well, God, I’m a somewhat cerebral type and I’d like to combine effi -

cient voice leading and harmonic consistency, since this will allow me to praise You 

with glorious polyphony.” And God would hand you a suitcase containing nearly even 

chords, including the perfect fi fth, the major triad, and dominant seventh chord.40 On 

the other hand, you might say, “You know, God, I’m kind of a hedonist, and at the 

end of a hard day of hunting and gathering I’d really like to hear chords that sound 

good—chords whose intrinsic consonance will put a smile on my face.” And in this 

case, God would hand you a suitcase containing . . . the perfect fi fth, the major triad, 

the dominant seventh chord. In other words, he would hand you the very same chords, 

no matter which choice you made.

It follows that the development of Western counterpoint is something of an amaz-

ing accident. No doubt musicians originally chose consonant chords because they 

“sounded good” in some primary sense—they were acoustically consonant and hence 

felt restful and harmonious. But during the early history of Western music it gradually 

became apparent that these chords were special in another way as well: they could be 

used to write contrapuntal music that was also harmonically consistent. This realiza-

tion led to the marvelous effl orescence of Western contrapuntal technique, as compos-

ers over the centuries explored an ever-increasing range of voice-leading possibilities 

between an ever-increasing range of consonant chords. (This effl orescence, and its 

numerous variations and ramifi cations, is the subject of Part II.) Ultimately, this was 

possible because of the nonobvious connection between effi cient voice leading, har-

monic consistency, and acoustic consonance—a connection that we now understand 

as a simple consequence of the hidden symmetries of circular pitch-class space.41

40 This suitcase might contain some other chords as well: consonance implies near evenness, but not 
the reverse. However, in the twelve-tone equal-tempered system, the most nearly even chords are reason-
ably consonant.

41 It bears repeating that I am generalizing claims made by Eytan Agmon and Richard Cohn. Agmon 
(1991) notes that the diatonic triad is special because it can be connected to each of its diatonic transposi-
tions by particularly effi cient voice leadings; Cohn (1996, 1997) notes that the chromatic major triad is capa-
ble of participating in “parsimonious” voice leadings to three separate minor triads. (“Parsimonious” voice 
leadings, in Cohn’s parlance, are voice leadings in which just one voice moves and it moves by just one or 
two semitones.) Here I extend these points in several ways. First, rather than limiting myself to Cohn’s par-
simonious voice leadings, I consider effi cient voice leading more generally. Second, while Agmon and Cohn 
focus on the triad as an object in some particular scale, my point is true of chords in any scale whatsoever—
diatonic, chromatic, or even in continuous unquantized space. Third, I point out that analogous facts hold 
for acoustically consonant sonorities more generally: while Agmon and Cohn seem to privilege the triad 
even in comparison to the perfect fi fth, dominant seventh chord, and diatonic scale, I suggest that the con-
sonant sonorities are all essentially in the same boat. Finally, I show that acoustic consonance implies near 
evenness, which in turn implies the ability to move by effi cient voice leading to all of a chord’s transpositions 
or inversions; for Agmon and Cohn, these are separate properties that sometimes happen to coincide.



chapter 3

A Geometry of Chords

We now turn to geometrical models in which chords are represented as points in 

higher dimensional spaces. As we will see, these “chord spaces” are a good deal more 

interesting than the plain-vanilla space of ordinary Euclidean experience, containing 

twists, mirrors, Möbius strips, and their higher dimensional analogues. Besides being 

extraordinarily beautiful, these geometrical models clearly illustrate musical prin-

ciples that can otherwise be quite diffi cult to grasp.1 In particular, we can use them to 

construct “voice-leading graphs” that depict the basic contrapuntal relations between 

the familiar chords and scales of Western music, graphs that will serve as the principal 

analytical tools of the second half of this book.

3.1 ordered pitch space

Chapter 2 introduced the basic musical object, or ordered sequence of pitches. Fig-

ure 3.1.1 shows that there are two ways to represent these objects geometrically. In Fig-

ure 3.1.1a we represent ordered pairs of notes using a gray circle for the fi rst note and a 

black circle for the second. (We need different colors because the pairs are ordered, and 

we need to differentiate the fi rst note from the second.) In Figure 3.1.1b, the horizontal 

axis represents the fi rst pitch while the vertical axis indicates the second. Each model 

therefore has two degrees of freedom: in the fi rst, we can move either circle indepen-

dently of the other; in the second, we can move along one axis while holding fi xed our 

position on the other. It is more or less a matter of convenience whether we wish to 

represent two-note objects using two points in a one-dimensional space, as we did in 

Chapter 2, or one point in a two-dimensional space. However, the models are different 

in at least one important respect. It is easy to see how to ignore octave and order in 

the fi rst, linear model: we simply represent all notes using same color (thereby ignor-

ing order) and wrap the line into a circle (thereby ignoring octaves and reproducing 

pitch-class space). But it is not at all clear how we should modify the two-dimensional 

representation in those situations where we wish to ignore these musical parameters.

1 The ideas in this chapter are based on Tymoczko 2006 and 2008b, which are in turn inspired by 
earlier geometrical work on “chord-type spaces,” including Roeder 1984, 1987, 1994, Cohn 2003, and Cal-
lender 2004. For a comprehensive account of a wide range of geometrical spaces, see Callender, Quinn, 
and Tymoczko 2008.
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In the one-dimensional space, progres-

sions between objects are represented by 

collections of paths (cf. Figure 2.5.4). In 

the two-dimensional space, progressions 

can be represented by line segments such as 

that in Figure 3.1.2, which depicts a situa-

tion in which the voices trade notes. Figure 

3.1.3 uses line segments to model a two-

voice passage from Josquin’s Missa l’homme 

armé. With a little practice, it becomes easy 

to translate two-voice music into a series of 

line segments in the space. Any two-voice 

passage of music, in any style whatsoever, 

can be depicted in this way.

Horizontal and vertical line segments represent motion in a single voice (Figure 

3.1.4). Parallel motion, in which the two voices move in the same direction by the same 

amount, is represented by lines parallel to the 45° NE/SW diagonal, while perfect con-

trary motion—in which the voices move the same distance in opposite directions—is 

represented by lines parallel to the 45° NW/SE diagonal. It turns out to be somewhat 

more convenient to rotate the space clockwise by 45°, so that parallel motion is hori-

zontal and perfect contrary motion is vertical. Chords on the same horizontal line 

now relate by transposition; chords on the same vertical line sum to the same value 

when pitches are represented numerically. (This follows from the fact that perfect con-

trary motion subtracts from one voice what it adds to the other.) Oblique motion 

now moves along the 45° diagonals: motion in the fi rst voice occurs along the NW/SE 

diagonal, while motion in the second occurs along the NE/SW diagonal. This rotation 

does not change the space in any way; we are simply changing our perspective on it.

Figure 3.1.1 Two ways to represent the ordered pair (C4, E4). The fi rst uses two points in a 

one-dimensional space—here, the gray circle represents the fi rst note, and the black ball the 

second. The second uses a single point in a two-dimensional space.

Figure 3.1.2 
A voice 

leading can be 

represented as a 

line segment in 

the plane. Here, 

the voice leading 

(C4, E4)®(E4, 

C4), in which the 

fi rst and second 

voices trade 

notes.
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Figure 3.1.5 depicts an extended portion of two-dimensional ordered pitch space, 

with the axes rotated as just described. The most striking feature of this graph is its 

periodicity: like a piece of wallpaper, it consists of a single pattern (or “tile”) that is 

repeated to cover the larger plane. The fi gure contains four complete tiles. The points 

in the lower left quadrant are related by octave transposition to the corresponding 

points in the upper right: the fi rst element in each pair is the same, while the second 

element in the lower left pair is one octave below the second element in the upper 

right pair. Moving from the lower left quadrant to the corresponding point in the 

upper right will therefore transpose the second note up by an octave. Similarly, mov-

ing from the upper left to the corresponding point in the lower right shifts the fi rst 

element up by an octave. Since any quadrant can be connected by a series of diagonal 

motions to one of the quadrants in Figure 3.1.5, and since diagonal motion between 

quadrants always corresponds to octave transposition in one voice, the rest of the 

infi nite space can be generated from this fi gure.

Figure 3.1.4 Rotating two-note ordered pitch space.

Figure 3.1.3 
A passage from Josquin 

represented in two-

dimensional space.
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What about the lower left and upper left quadrants? Here, the relationship is 

somewhat harder to grasp. Imagine that there were a hinge connecting them, so 

that the bottom-left quadrant could be lifted out of the paper and fl ipped onto the 

upper left. This transformation maps each pair in the lower quadrant onto a pair 

with the same pitch content, but in the reverse order. Geometrically, the transfor-

mation is a refl ection: a pair in the lower left quadrant gets sent to the spot where 

its refl ection would appear if the common border were a mirror. When we move 

a dyad from the lower left quadrant to its refl ected image in the upper left, we 

therefore switch the order of its notes. The two rightmost quadrants are related in 

exactly the same way.

Figure 3.1.6 depicts symbolically the 

relationship between the four tiles, using a 

right-side-up human face to represent the 

lower left tile. The upper left quadrant is 

upside down relative to the lower left: if they 

were connected by a hinge along their com-

mon border, then either could be fl ipped 

over so as to coincide with the other. Simi-

larly, the lower right tile is upside-down rela-

tive to the upper right. The lower right tile 

is also upside-down relative to the lower left 

tile, but in this case they cannot be related by 

Figure 3.1.5 
A portion of 

infi nite, two-

dimensional 

ordered pitch 

space.

Figure 3.1.6 
Ordered pitch 

space is like 

a piece of 

wallpaper.
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refl ection along their common border—that process would exchange left and right, 

but not up and down.

3.2 the parable of the ant

Imagine now that an ant is walking along the wallpaper in Figure 3.1.6. Suppose that 

you and I are gambling types and decide to bet on whether the ant will touch a pipe 

in the next 30 seconds. For the purpose of settling the bet, it does not matter which 

tile the ant is on; what matters is whether it touches any pipe in any tile. We could 

therefore represent the ant’s trajectory on a single tile, as in Figure 3.2.1. (Perhaps 

we use a single tile because we want to record our game for posterity while being 

environmentally conscious and using the minimum amount of paper.) That is, we 

arbitrarily select one tile from Figure 3.1.6 and take the ant’s position to be the point 

on this tile corresponding to its position on the tile it actually occupies.

Figure 3.2.1 
An ant’s path can 

be represented 

on a single tile.

Although the underlying idea is simple, the structure of the resulting single-tile 

space is complex. For example, at the point marked a, the ant disappears off the lower 

left edge, only to reappear on the upper right. This is reminiscent of early video games 

such as Asteroids or Pac-Man, in which objects could move off one side of the screen 

to reappear on the other. Unlike those games, however, the ant leaves the lower half 

of the fi gure only to reappear on the upper half and vice versa, as if the left edge were 

attached to the right in a twisted fashion. The mathematical name for such a space is 

a Möbius strip.

Now consider point b in the ant’s trajectory. In the single-tile representation the 

ant appears to “bounce off” the fi gure’s upper edge, as if it were a mirror, or the 

bumper of a pool table. But we can see from Figure 3.2.1a that the ant’s actual trajec-

tory is straight. Nothing intrinsic to the ant’s motion produces the change in direc-

tion—rather, it is the structure of the wallpaper on which it walks. The ant, being 

unaware of the wallpaper pattern, would have no knowledge that  anything unusual 

was  occurring.

Note that the placement of the left and right boundaries is essentially arbitrary. 

For the purpose of settling the bet, one could equally depict the ant’s trajectory on 
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Figure 3.2.2a, which contains two half faces, one upside down and the other right 

side up. Though bizarre from an artistic point of view, it is perfectly adequate for 

gambling, since all parts of the fi gure are represented. If we were to stretch the fi g-

ure horizontally, forming a rectangle rather than a square, we could even represent 

the tile in three dimensions without any left or right boundaries whatsoever—as in 

Figure 3.2.2b.2 By contrast, the location of the upper and lower boundaries is not 

arbitrary. Figure 3.2.2c shows that we cannot settle our bet using the space consisting 

of two halves of two vertically adjacent tiles, since that space contains two copies of 

the top half of the fi gure but none of the lower half.

All this talk about ants, wallpaper, and gambling may seem like a distraction from 

the serious goal of understanding music. But in fact, the Parable of the Ant has intro-

duced the fundamental concepts needed in the rest of this chapter. The key idea is 

that we can form a similar structure by “folding up” the two-dimensional musical 

space in Figure 3.1.5. In this case, ignoring what tile we are on corresponds to ignor-

ing the order and octave of a pair of notes. In other words, the resulting space rep-

resents two-note chords as musicians are accustomed to thinking of them. Thus the 

Parable of the Ant, rather than being a frivolous digression, has actually marked the 

beginning of our investigation into a remarkable convergence between music theory 

and contemporary geometry.

3.3 two-note chord space

Our goal is to “fold” the infi nite space of Figure 3.1.5 so as to glue together all the 

different points representing the same chord: (C4, E4), (E4, C4), (E5, C2), and so on. 

The result will be a new geometrical space, analogous to our single tile of wallpaper, 

Figure 3.2.2 (a) The choice of left and right boundaries is arbitrary. (b) We could even 

represent the wallpaper without any left and right boundaries at all, if we stretched it 

horizontally and used the third dimension to attach the two edges. (c) The choice of upper 

and lower boundaries is not arbitrary, since this fi gure has no pipe.

2 By using the third dimension, we can attach the fi gure’s boundaries in the appropriate, twisted way. 
However, the fi gure remains intrinsically two-dimensional, since the ant can move in just two perpendicular 
directions at any point. The fact that we represent it using three dimensions simply refl ects the diffi culty 
of embedding the two-dimensional space in a Euclidean world. For a good nontechnical introduction to 
these issues, see Weeks 2002.
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in which points represent two-note chords—or unordered pairs of pitch classes—

rather than ordered pairs of pitches.

Happily, the detailed work has already been done. The “wallpaper space” described 

in the preceding section was modeled on Figure 3.1.5, and we can immediately adapt 

our earlier results.3 Since each of the quadrants in Figure 3.1.5 contains precisely one 

point for every unordered set of pitch classes, any of them can be used to represent 

two-voice music. The two-note chord space shown in Figure 3.3.1 consists in a single 

quadrant of Figure 3.1.5, with octave designations removed to refl ect the fact that we 

have discarded octave information. Although the points are labeled using ordered 

pairs, this ordering is not signifi cant: the point CDf represents the ordering (Df, C) 

just as much as it represents the ordering (C, Df). Accordingly, I will sometimes refer 

to this point as {C, Df} or {Df, C}.

In §3.1, we rotated the coordinate axes so that parallel musical motion is rep-

resented by horizontal geometrical motion. This is again true in our new, “folded” 

space: horizontal motion represents parallel motion in both voices, while vertical 

motion represents contrary motion in which the two voices move in opposite direc-

tions by the same distance. (Oblique motion, in which one voice stays fi xed, is again 

represented by the 45° diagonals.) It follows that chords on the same horizontal line 

of Figure 3.3.1 are related by transposition: the top edge of the fi gure, for example, 

contains unisons—two-note chords in which both voices sound the same pitch 

Figure 3.3.1 Two-note chord space. The left edge is “glued” to the right, with a twist.

3 People sometimes wonder why two-note chord space is a Möbius strip rather than the surface of a 
doughnut (or “torus”). The answer is that a torus models the space you get when you ignore octave but not 
order. On a torus, the point (C, E) is different from the point (E, C). While there are some musical purposes 
in which it is useful to distinguish these two orderings, there are many more in which it is not.
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class.4 Unisons can also be found on the bottom edge of the fi gure, with two of 

them—{C, C} and {Fs, Fs}—appearing on both edges. (Chords on the right side of 

the fi gure are enclosed in brackets, indicating that they also appear on the left side.) 

These duplications are different representations of the same chord, artifacts of the 

doomed attempt to depict a Möbius strip in two Euclidean dimensions. Intrinsically, 

the Möbius strip has only one edge: what appear as distinct line segments containing 

unisons are actually two halves of an abstract “circle,” since horizontal motion along 

the edge eventually returns to its starting point (§2.2). Figure 3.3.2 shows that this 

abstract circle is very similar to pitch-class space, with the only difference being that 

its points represent not single pitch classes but musical states in which two voices 

articulate the same pitch class.

The other intervals are also found on horizontal line segments, one in the top half 

of the fi gure and one in the bottom. The horizontal line segment just below the top 

edge, and just above the bottom edge, contains minor seconds. (Again, these appar-

ently different line segments are attached at their endpoints, forming two halves of an 

abstract circle.) Major seconds are just below the minor seconds on the top half and 

just above the minor seconds on the bottom. As the interval between the two notes 

gets larger, dividing the octave more evenly, the lines representing them move toward 

the center. Consequently, the horizontal line at the midpoint of the fi gure contains 

tritones, which divide the pitch-class circle into two halves.5

Chords on the same vertical line can be linked by exact contrary motion: for 

instance, the voice leading (C, Fs)®(Df, F) moves C up by semitone and Fs down 

by semitone, and joins two chords on the same vertical line. It follows that every 

dyad lies on the same vertical line as its tritone transposition.6 Since exact contrary 

Figure 3.3.2 The boundary of two-note 

chord space is an (abstract) circle, since you 

can move in one direction to return to your 

starting point. The circle is very similar to 

pitch-class space.

4 In these geometrical spaces, it is convenient to represent chords as multisets that can have multiple 
copies of particular pitch classes (§2.4). From this standpoint {C, E, E} is different from both {C, C, E} and 
{C, E}. We will return to this point shortly.

5 The (abstract) circle containing tritones is therefore half as long as the (abstract) circles containing 
the other intervals. This is the analogue, in continuous musical space, of the statement that there are half 
as many (twelve-tone equal-tempered) tritones as there are instances of the other (twelve-tone equal-
tempered) intervals.

6 One can always connect tritone-related dyads by contrary motion: given the dyad {C, E}, one can 
move C up by tritone to Fs, and E down by tritone to As.
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motion preserves the sum of a chord’s pitch classes, chords on the same vertical line 

always sum to the same value. Thus {C, Fs}, {G, B}, and {Af, Bf}, which lie on the 

vertical line at the center of Figure 3.3.1, all sum to six using pitch-class arithme-

tic.7 (Note: this fact will be important later on, so make sure you understand it.) The 

pitch classes on the left edge of Figure 3.3.1 sum to zero. The sum of the chords in 

the vertical cross section increases as one moves rightward until we reach the right 

edge, whose chords again sum to zero (equivalent to twelve in pitch-class arithmetic). 

Finally, motion along the 45° diagonals alters just one note, so that (Cs, E) lies 45° 

northeast of (C, E). (Note, however, that diagonal motion can no longer be thought of 

as moving the “fi rst note” rather than the “second note” because we are now neglect-

ing order.8) It is worth emphasizing that two-note chord space is continuous, contain-

ing every conceivable chord in every conceivable tuning system. A chord like (Cμ, E) 

(C quarter-tone sharp, E), though not labeled on the example, lies 45° northeast of 

(C, E), halfway to (Cs, E).

3.4  chord progressions and voice 
leadings in two-note chord space

Our Möbius strip can be used to represent any chord progression and any voice lead-

ing between two-note chords. To represent a progression like {C, E}Þ{F, A} sim-

ply identify the initial point, {C, E}, and the fi nal point, {F, A}. It is not necessary 

to choose any particular path between them, because a chord progression does not 

specify exactly how the individual notes move (§2.5). It is as if the music magically 

teleports, disappearing at {C, E} and instantaneously reappearing at {F, A}, without 

occupying any of the places in between.

A voice leading, by contrast, is represented by a particular path between chords, 

with the size of the voice leading corresponding to the length of the path. The simplest 

way to fi nd this path is to imagine each voice making a continuous glissando, begin-

ning and ending at the same time. For example, (C, E)®(Ef, G) moves each voice 

up by three semitones. If each voice made a continuous glissando, the music would 

pass through a series of major thirds: (Df, F), (D, Fs), and countless others not acces-

sible with an ordinary piano. These all lie on the horizontal line segment shown on 

Figure 3.4.1. Similarly, the voice leading (B, D)®(Af, F) moves each voice by three 

semitones in contrary motion. This voice leading passes through the chords {Bf, Ef}, 

{A, E}, and a variety of other non-equal-tempered chords. It is therefore represented 

by the vertical line segment on the fi gure.

A little experimentation will show that the boundaries of the fi gure behave 

exactly like the boundaries of our earlier wallpaper space. To see this, imagine mak-

ing a smooth glissando from (Ef4, G4) to (F4, A4). Figure 3.4.2 indicates that the 

7 The sum of the pitch classes {B, G}, or {11, 7}, is 6, because we add or subtract 12 from our result until 
we obtain a number in the range 0 £ x < 12; 11 + 7 = 18, and 18 − 12 = 6 (§2.3).

8 Instead, we should think of it as moving particular notes: when we move northeast from {C, E}, we 
raise C to Cs. In actual musical contexts the C might belong to either voice, and might appear above or 
below the E.
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glissando is initially represented by rightward motion on the top half of the strip, 

from {Ef, G} to {E, Gs}. However, the point {E, Gs} is represented both on the top 

half of the right edge and on the bottom half of the left edge. As we move from 

(E4, Gs4) to (F4, A4), the glissando now appears on the bottom half of the fi gure, 

moving from the lower-left {E, Gs} to {F, A}. Thus, as in the Parable of the Ant, the 

music disappears off the upper right edge only to reappear on the lower left. Alter-

natively, consider the smooth glissando from (C4, D4) to (E4, D4)—in which the 

Figure 3.4.2 
The horizontal 

boundaries act like 

mirrors, whereas the 

vertical boundaries are 

glued together with a 

“twist.” Voice leadings 

thus disappear off the 

left edge to reappear on 

the right, and vice versa. 

Here, the voice leadings 

(Ef, G) ® (F, A) and 

(C, D) ® (E, D) are 

shown.

Figure 3.4.1 
Voice leadings are 

represented by line 

segments. Parallel 

motion is horizontal, 

while perfect contrary 

motion is vertical. 

The voice leadings 

(C, E)®(Ef, G) and 

(B, D) ® (Af, F) are 

shown.
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fi rst voice moves from C4 to E4 while the second voice remains fi xed. The resulting 

path, illustrated in Figure 3.4.2, is represented by a line segment that begins at {C, D} 

and moves diagonally northeast to {D, D}. (Recall that motion in just a single voice 

always lies along a 45° diagonal.) However, the second half of the path is represented 

by a line segment moving diagonally southeast from {D, D} to {E, D}. As in the Par-

able of the Ant, what causes the apparent “change in direction” is the structure of the 

underlying space: musically, the fi rst voice moves smoothly upward from C4 to E4, 

and does not do anything strange at D4.

Voice leadings are therefore represented by what might be called “generalized line 

segments” that can bounce off a mirror boundary, or disappear off one side of the 

fi gure only to reappear on the other. There is, in fact, a one-to-one correspondence 

between these “generalized line segments” and voice leadings: for every generalized 

line segment there is a voice leading in pitch-class space, and for every voice leading 

in pitch-class space there is a generalized line segment. In principle, there can be infi -

nitely many generalized line segments linking any two chords, each represented by a 

different pattern of refl ections off the horizontal boundaries and “disappearances” 

off the left and right edges.

The total amount of horizontal motion in a voice leading can be calculated 

 algebraically by adding the pitch-class paths in the two voices. A voice leading like 

(C, E) 2, 1⎯⎯→(D, F) moves its two voices by a total of 2 + 1 = 3 semitones, and is there-

fore  represented by a generalized line segment whose horizontal component moves 

3 units to the right.9 (C, E) 7, 2− −⎯⎯⎯→(F, D) moves its voices by −7 + −2 = −9 semi-

tones, and therefore moves 9 units to the left (Figure 3.4.3). Similarly, if one writes 

the voice leading so that the fi rst two notes are in the same order as they are on Figure 

3.3.1, then the total amount of vertical motion can be determined by subtracting the 

second path from the fi rst. For example, (C, E) 2, 1⎯⎯→(D, F) moves by a total of 2 − 

1 = 1 unit upward, while (B, D) 3, 3−⎯⎯⎯→(Af, F) moves its voices by −3 − 3 = −6 units 

upward, or 6 units downward.10 (The fi rst of these voice leadings is shown in Figure 

3.4.3, the second in Figure 3.4.1.) However, contact with any of the four “edges” of the 

strip exchanges “downward” and “upward”: (C, E) 5, 2−⎯⎯⎯→(F, D) moves its voices by 

5 − (−2) = 7 upward units, but it reaches the upper mirror boundary after just four of 

these; the remaining three steps are therefore taken in a descending direction (Figure 

3.4.3). Similarly, the voice leading (C, E) 7, 2− −⎯⎯⎯→(F, D) moves its voices by −7 − (−2) 

= −5 units, but when the path disappears off the left edge to reappear on the right, the 

direction turns upward. These algebraic principles provide a more systematic alterna-

tive to the method of imagining each voice making a continuous glissando. For an 

even simpler method readers can download a free computer program that plots voice 

leadings on the Möbius strip automatically.11

9 A “unit” is the distance between adjacent vertical cross sections containing equal-tempered chords. 
Since there are twelve of these, the Möbius strip has a width of 12 units.

10 A “unit” is the distance between adjacent horizontal lines containing equal-tempered chords; again, 
the Möbius strip is twelve units high.

11 See the companion website for links to the “ChordGeometries” program.
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3.5 geometry in analysis

Figure 3.5.1 uses the Möbius strip to graph the eighth phrase of the Allelujia Justus 

et Palma, one of the earliest examples of Western counterpoint. The music begins by 

tracing out a pair of triangles, each of which represents a four-chord unit that returns 

to its starting point. (The triangles share a side because the last two chords of the 

fi rst unit are also the fi rst two chords of the second.) Having completed the second 

triangle, the music moves back to the initial {G, D} dyad, disappearing off the left 

edge and reappearing on the right. The fi nal voice leading retraces the (G, D)®(E, E) 

motion that begins the phrase.

All of this, I believe, is considerably easier to see in Figure 3.5.1b than in tradi-

tional musical notation. The geometrical patterns virtually jump off the page, without 

any effort or concentration on the analyst’s part, whereas the corresponding musi-

cal patterns are much harder to identify. This is largely because our visual system is 

optimized for perceiving geometrical shapes such as triangles, but not for perceiving 

musical structures as expressed in standard musical notation. Translating the music 

into geometry thus allows us to bring our formidable visual pattern-matching skills 

to bear on musical analysis.

Figure 3.4.3  
Four voice 

leadings between 

{C, E} and {D, F}, 

as represented on 

the Möbius strip. 

The amount 

of rightward 

motion can be 

calculated by 

adding the paths 

in the two voices; 

the amount of 

upward motion 

can be calculated 

by subtracting 

the second path 

from the fi rst.
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Figure 3.5.2 provides a more sophisticated example.12 We begin with four voice 

leadings from the opening of Brahms’ Intermezzo, Op. 116 No. 5. Figure 3.5.2b graphs 

the voice leadings in two-note chord space, representing each measure as a pair of line 

segments forming an open angle. We can imagine sliding the pair {X1, X2} so that X1 

nearly coincides with Y1, and X2 nearly coincides with Y2. This represents the most 

obvious analysis of the passage, according to which voice leading Y1 is a slight variation 

of X1, and Y2 is a slight variation of X2. (That is, X1 moves its two voices by semitonal 

contrary motion, whereas Y1 moves by slightly skewed contrary motion; X2 moves in 

a skewed fashion, while Y2 moves in pure contrary motion.) Geometrically, however, 

it is clear that (Y1, Y2) is also the mirror image of (X1, X2). Hence we can move the 

pair (X1, X2) off the left edge so that it exactly coincides with (Y1, Y2), as in Figure 

3.5.2c. (Remember that an upward-pointing arrow becomes a downward-pointing 

arrow when it moves off one side of the fi gure to reappear along the other.) On this 

interpretation, Y2 is exactly equivalent to X1, and Y1 is exactly equivalent to X2. Figure 

3.5.2d represents this musically, heightening the comparison by switching hands and 

reordering dyads. Now both pairs begin with perfect contrary motion and move to less 

perfectly balanced motion, with melodies in each staff being transpositionally related.

12 This example fi rst appeared in Callender, Quinn, and Tymoczko 2008.

Figure 3.5.1 
Plotting a phrase 

from the Allelujia 

Justus et Palma 

(a) on the 

Möbius strip (b) 

reveals interesting 

musical structure 

(c).
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Figure 3.5.2 
(a) Two passages 

from Brahms’ 

Op. 116 No. 5, 

as plotted on 

the Möbius strip 

(b). It is natural 

to view Y1 and 

Y2 as variants 

of X1 and X2, 

respectively. 

However, it is 

clear from the 

graph that Y2 

and Y1 are also 

mirror images 

of X1 and X2. 

This means we 

can move the 

pair {X1, X2} 

off the left edge 

of the fi gure so 

that it coincides 

with {Y1, Y2} (c). 

On this reading, 

Y2 is related to 

X1, and Y1 is 

related to X2 (d). 

Here, “P” and 

“N” stand for 

“perfect” and 

“near perfect” 

contrary motion.
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Playing through Brahms’ piece, I have always been 

dimly aware of these relationships—you feel in your 

fi ngers the difference between the precisely contrary 

motion and the less balanced motion, and you feel 

the purely semitonal motion in the right hand of 

measures 1–2 moving to the left hand of mm. 3–4. 

However, it is quite diffi cult to see the relationship in 

the musical notation, and rather hard to describe it using traditional terminology. By 

contrast, Figure 3.5.2b makes it obvious that the passages are mirror images—a fact 

that Brahms, with all his love for invertible counterpoint and other forms of compo-

sitional trickery, would no doubt have enjoyed.

In these sorts of cases, geometry can help to sensitize us to relationships that 

might not be immediately apparent in the musical score. Ultimately, this is because 

conventional musical notation evolved to satisfy the needs of the performer rather 

than the musical thinker: it is designed to facilitate the translation of musical symbols 

into physical action, rather than to foment conceptual clarity. This is precisely why 

one and the same chord can be notated in such a bewildering variety of different 

ways (Figure 3.5.3). Learning the art of musical analysis is largely a matter of learning 

to overlook the redundancies and ineffi ciencies of ordinary musical notation. Our 

geometrical space simplifi es this process, stripping away musical details and allowing 

us to gaze directly upon the harmonic and contrapuntal relationships that underlie 

much of Western contrapuntal practice.

3.6  harmonic consistency and 
efficient voice leading

Let’s pursue this further by returning to a more abstract question. Suppose you are 

a composer who wants to write two-part note-against-note counterpoint, in which 

transpositionally related dyads are linked by “stepwise” voice leading (or voice leading 

in which no voice moves by more than two semitones). Under what circumstances 

is this possible? In other words, how can we combine harmonic consistency and effi -

cient voice leading with just two voices?

The question can be answered simply by inspecting two-note chord space. 

Transpositionally related dyads can be found on two horizontal line segments, one 

in the lower half of the strip and one in the upper half, equidistant from the central 

line of tritones; we are therefore looking for short line segments connecting points 

on these line segments. One solution is immediately clear, since we can move any 

chord horizontally to its transpositions. Unfortunately, these voice leadings involve 

parallel motion in the two voices, and are therefore somewhat unsatisfactory. If the 

goal is to write contrapuntal music that suggests independent melodies, then it will 

not do to move the voices in the same direction all the time; this would sound like 

a single melody being doubled at two pitch levels, rather than two distinct melodic 

voices.

Figure 3.5.3 
There are many 

ways to notate a 

C major chord.
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A second solution involves nearly even chords, which occupy horizontal line 

 segments near the center of the space. Thus tritone-related perfect fi fths can be 

linked by semitonal voice leading, represented geometrically by a vertical arrow 

(Figure 3.6.1, second line of music). In addition, they can be linked to their fi fth 

transpositions by oblique voice leading in which one voice moves by two semitones. 

Major thirds, since they lie farther away from the center of the fi gure, can be linked 

only to their tritone transpositions by stepwise voice leading. Analogous voice lead-

ings are available for the non-twelve-tone-equal-tempered intervals larger than a 

major third: in each case, the voice leading between tritone-related chords is the 

shortest, and is represented by a vertical line, with the other acceptable transposi-

tions represented by slightly diagonal lines.

There is also a third and even less obvious possibility: chords that divide the 

octave very unevenly—such as minor and major seconds—can be linked to them-

selves by short line segments refl ecting off the nearby mirror boundary. For instance, 

the voice leading (D, Ef)®(Ef, D) connects a minor second to itself by stepwise con-

trary motion, and is represented by a vertical arrow. (Analogous voice leadings again 

exist for any of the non-twelve-tone-equal-tempered intervals smaller than the major 

second.) Given any such voice leading, we can always transpose the second chord 

by a small amount without much increasing the voice leading’s size. Consequently, 

small dyads can also be connected by stepwise voice leading to their one-semitone (or 

Figure 3.6.1 Even dyads 

and uneven dyads can 

both be connected to 

their transpositions by 

stepwise voice leading.



A Geometry of Chords 81

smaller) transpositions. For these chords the short vertical arrows connect a chord to 

itself, while for nearly even dyads the vertical arrows connect a chord to its tritone trans-

position (Figure 3.6.1). Geometrically, the clustered chords reach their nearby trans-

positions by bouncing off the mirror, while nearly even chords cross the center of the 

Möbius strip, thereby taking advantage of its “twist.”13 Thus we see that our earlier con-

clusions about symmetry are manifest in the structure of the two-dimesional space.

3.7  pure parallel and pure contrary 
motion

Are we completely certain that these three possibilities are the only ones? Some 

 readers might think this is obvious, while others may (justifi ably) wonder whether 

there might be additional features of Möbius-strip geometry that we have overlooked. 

How do we know we have accounted for all the relevant musical alternatives?

Let me address this worry by noting that any two-voice voice leading can be 

decomposed into two components, one involving pure contrary motion and the 

other involving pure parallel motion (Figure 3.7.1). The “pure contrary” component 

moves the notes by the same amount in opposite directions, while the “pure paral-

lel” component moves the notes by the same amount in the same direction. Geo-

metrically, the “contrary” component will be confi ned to a vertical slice of the Möbius 

strip, such as that in Figure 3.7.1b, while the transpositional component will move 

horizontally. This decomposition into parallel and contrary is nothing other than 

high school vector analysis, which dissects arbitrary vectors into their x and y com-

ponents.14 Musically, the goal of the decomposition is to focus on the relative motion 

among the voices, ignoring the parallel motion they all share.

Now consider any effi cient voice leading between transpositionally related dyads. 

The purely contrary component of this voice leading will connect transpositionally 

related dyads lying in the same vertical slice of the Möbius strip. It is visually obvious 

that the contrary component must either bounce off the mirror or cross the midpoint 

of the line. In the former case, it will be smaller when the chord is uneven; in the latter 

case, it will be smaller when the chord is even. Simple examination of the cross sec-

tion shows that there are no other possibilities: if a dyad is neither particularly even 

nor particularly uneven, then it simply cannot participate in purely contrary voice 

leadings of the sort we are interested in.

We will periodically fi nd it useful to abstract away from a voice leading’s paral-

lel component in this way. Geometrically, this involves restricting our attention to a 

cross section of chord space—the vertical line in Figure 3.7.1b rather than the entire 

13 Note that Western composers typically conceive of two-note chords as subsets of larger triadic col-
lections, and hence are not concerned with (two-voice) “harmonic consistency” as described in this sec-
tion. My goal is simply to illustrate general principles in the simplest geometrical setting; as we will shortly 
see, the same basic principles hold in higher dimensions as well.

14 Given the voice leading (x
1
, x

2
) 1 2,d d⎯⎯⎯→(y

1
, y

2
) we can transpose the fi rst chord by (d

1
 + d

2
)/2 semitones 

so that the two voices move by the same amount in opposite directions. This is the “pure contrary” component 
of the voice leading. The purely transpositional voice leading moves both voices by (d

1
 + d

2
)/2 semitones.
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Möbius strip. However, although every cross section of the space contains precisely 

the same chord types, not all of these appear in twelve-tone equal-tempered forms. 

Consider the chord {Cμ, Eμ} (C quarter-tone sharp, E quarter-tone sharp), which lies 

halfway between {Cs, E} and {C, F}.15 Although this chord cannot be played on an 

ordinary piano, it is a major third, transpositionally related to familiar chords like 

(C, E). (Geometrically, {Cμ, Eμ} lies on the same horizontal line as {C, E} and {Df, 

F}, halfway between them.) Clearly, no vertical cross section of the Möbius strip will 

contain twelve-tone equal-tempered major and minor thirds, even though every such 

cross section contains some representative of every chord type.

Figure 3.7.1 Any voice leading can be decomposed into parallel and contrary components. 

Here, the voice leading (E, B)®(Fs, B) (a) combines the parallel (E, B)®(F, C) (b), which 

moves both voices up by semitone, with the contrary (F, C)®(Fs, B) (g), which moves the 

voices semitonally in opposite directions. Pure parallel motion is represented geometrically 

by horizontal lines, while pure contrary motion is vertical. This means that the pure 

contrary component of any voice leading will remain within a cross section of the space (b), 

containing dyads whose pitch classes sum to the same value.

15 This is because Cμ is a quarter tone above C, halfway between C and Cs, while Eμ is a quarter tone 
below F, halfway between F and E. The voice leading (C, F)®(Cμ, Eμ) therefore involves pure contrary 
motion.
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When restricting our attention to a single cross section, it is therefore convenient to 

relabel its points so that all twelve-tone equal-tempered intervals are on equal footing. 

Figure 3.7.2a identifi es points according to the interval they represent: 01 for minor 

second, 02 for major second, and so on, with the symbols “T” and “E” referring to ten 

and eleven, respectively. These new labels can be understood as referring to chord types, 

rather than particular chords: the label 04, for instance, refers to any major third, rather 

than the particular pitches C and E.16 Note that the cross section is redundant: major 

thirds can be represented both by 04 or 08, just as perfect fi fths are represented both by 

05 and 07. (Remember that our chords are unordered.) This means that the contrary 

component of any voice leading can be represented in this abstract space in two differ-

ent ways (Figure 3.7.3). Removing this redundancy produces a true “set class” space in 

which each point corresponds to a chord type; however, this involves some unpleasant 

mathematical complexities, so we will need to learn to live with the redundancy.

It turns out that line segments in the cross section represent collections of voice 

leadings, all “individually T-related” to one another (§2.6). This is because the opera-

tion of “individual transposition” alters the horizontal component of a voice leading 

while leaving the vertical component unchanged. Figure 3.7.4 shows that the voice 

leading (E, B)®(F, Bf) is represented by a purely vertical line segment, with no hori-

zontal component whatsoever. The voice leading (G, D)®(Fs, B) is related to it by 

individual transposition: we transpose the fi rst chord up by minor third, which cor-

responds to sliding it rightward by three places, while we transpose the second chord 

up by one semitone, which amounts to sliding it rightward by one place. This intro-

duces a purely horizontal component into the voice leading while simply shifting the 

16 Geometrically, we are investigating the projection of chords onto the cross section, rather than some 
particular slice of the space. This is because we are using the cross section to represent the larger space.

Figure 3.7.2 (a) It is 

useful to label the cross 

sections such that every 

equal-tempered interval is 

represented. (b) To translate 

these abstract labels into 

labels for particular chords 

in a cross section, subtract a 

constant from each number 

in the label so that its 

elements sum to the same 

value. Here, for example 

we recover the sum-0 cross 

section from the more 

abstract labels.
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Figure 3.7.3 
There are always 

two equally good 

ways to move 

the contrary 

component of a 

voice leading into 

a particular cross 

section. Either 

of the arrows in 

(b) can represent 

the voice leadings 

in (c).

Figure 3.7.4 
Individually 

T-related voice 

leadings can 

be moved 

into the same 

cross section 

so that their 

purely contrary 

components 

coincide. 

Here, the voice 

leadings in (c) 

share the same 

pure contrary 

component (b).
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 contrary component rightward. Consequently both (G, D)®(Fs, B) and (E, B)®
(F, Bf) are represented in the cross section by the line segment (0, 7)®(0, 5). Thus we 

see that limiting our attention to the cross section of the Möbius strip is equivalent to 

focusing on the qualities shared by individually T-related voice leadings. This is just 

one of many cases where we fi nd unexpected connections between purely musical 

ideas and relatively straightforward geometrical operations.

3.8 three-dimensional chord space

Having considered two-note chords, the next task is to describe the analogous spaces 

containing three-note chords, four-note chords, and so on. These higher-dimensional 

spaces are fundamentally similar to our two-dimensional Möbius strip, and it is usu-

ally possible to reason about them by extrapolating from the simpler space we have 

just explored. Readers might therefore want to make sure they are comfortable with 

the Möbius strip before proceeding onward.

Suppose you wanted to model music consisting of three distinct voices—say 

 trumpet, saxophone, and trombone. Figure 3.8.1 shows that it takes three dimen-

sions to record the possible musical states of the trio, with the x-axis representing the 

 trumpet, the y-axis the saxophone, and the z-axis the trombone. If you were to examine 

a large volume of this three-note ordered pitch space, you would fi nd that it again has a 

repeating, periodic structure—being divisible into three-dimensional “tiles” contain-

ing one representative of every three-note chord, exactly like Figure 3.1.5. Once again, 

focusing on a tile of the space is the geometrical analogue to ignoring octave and order 

information. But since the “tile” has three dimen-

sions, our musical space is now a three- dimensional 

piece of wallpaper—perfect for covering the walls of 

your four-dimensional bedroom.17

Figure 3.8.2 depicts one of these tiles. The space 

is a triangular prism. Augmented triads, dividing 

the octave into three equal parts, lie on the vertical 

line at its center, and are represented as dark cubes. 

(For clarity, only twelve-tone equal-tempered triads 

are shown.) Chords that divide the octave nearly evenly are found near the center, 

with the equal-tempered major and minor triads depicted as dark and light spheres, 

respectively.18 More and more uneven chords are found farther and farther from the 

center. At the boundary are chords with multiple copies of some note: chords with 

17 In general, the boundary of a space has one less dimension than the space itself: thus two-
 dimensional walls enclose three-dimensional rooms, and three-dimensional walls enclose four-dimen-
sional rooms.

18 The cubic lattice at the center of the strip was fi rst discovered, in a somewhat more abstract rep-
resentation, by Douthett and Steinbach (1998). (See Appendix C.) The nineteenth-century theorist Carl 
Friedrich Weitzmann (1853) came very close to describing the fi gure, as Cohn (2000) discusses.

trumpet

tro
mbo

ne

sa
x

Figure 3.8.1 
It takes three 

dimensions to 

model three 

instruments.
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two copies of some pitch class are found on the sides of the prism, while triple uni-

sons are found on its edges. (Triple unisons are maximally uneven, containing three 

copies of a single pitch class.) And although the illustration depicts only a few familiar 

 equal-tempered chords, the space itself is again continuous: any possible unordered 

set of pitch classes corresponds to some point in the prism, including microtonal 

chords such as {0.17, 2.5, 8.999}.

As before, voice leadings are “generalized line segments” that stretch from one 

point to another. Ascending parallel motion in all three voices corresponds to ascend-

ing vertical motion on the prism.19 Here, however, line segments disappear off the top 

face and reappear on the bottom, rotated by one third of a turn. Thus as the three 

voices ascend in parallel from {C, C, C} to {E, E, E}, the associated line segment in Fig-

ure 3.8.2 ascends along the left edge of the fi gure. When the line segment reaches {E, 

E, E}, it reappears on the bottom face of the fi gure, on the right corner. It then climbs 

up the front right edge to {Gs, Gs, Gs}. When it reaches the top of this edge, it moves 

up the rear edge of the fi gure and begins to climb again until reaching {C, C, C}. This 

means that we should imagine the triangular faces to be “glued together” with a 120° 

twist. Since the line containing triple unisons returns eventually to its starting point, 

it can be considered an (abstract) circle. The same is true for the three line segments 

containing all the transpositions of any other chord.

Figure 3.8.2 A single “tile” of three-note chord space is a triangular prism. Minor triads 

are light spheres, major triads are dark spheres, and augmented triads are cubes. The dark 

spheres on the edges of the prism are triple unisons. The lines in the center of the space 

connect chords that can be linked by voice leading in which only a single voice moves, and it 

moves by only a single semitone.

19 On the Möbius strip, parallel motion is represented by horizontal rather than vertical motion, but 
this difference is merely orthographical.
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Once again, three-dimensional chord space can help clarify musical relation-

ships that would otherwise be very hard to describe. Figure 3.8.3a presents four 

chromatic sequences from the fi rst movement of Brahms’ C minor Piano Quartet, 

each of which uses descending semitonal voice leading to connect major and minor 

triads. In the fi rst two sequences, Brahms lowers the major triad’s root to form a 

minor triad (as indicated by “r−1”) while in the last two sequences, he lowers the 

major triad’s third (“t−1”). Note that the sequences repeat at three different trans-

positional levels, as can be seen by comparing successive major or minor triads: the 

fi rst and last sequences descend by semitone, the second ascends by minor third, 

and the third ascends by perfect fi fth. At fi rst glance, there does not seem to be 

any clear structure here; the impression is of a kind of intuitive play, as if Brahms 

had arbitrarily chosen four unrelated sequences from among countless essentially 

similar possibilities.

When we consider the music geometrically, however, we see that Brahms is 

actually moving quite systematically along the lattice at the center of three-note 

chord space (Figure 3.8.3b). Starting from any major triad, there are only two semi-

tonal descents that will produce a minor triad (labeled “a” and “b” on the lattice); 

the two available paths correspond to the possibility of lowering the major triad’s 

root or third. From here, one must move the root downward by semitone to form 

an augmented triad. (Brahms typically skips this triad, though it does appear in the 

second sequence.) There are then three geometrical paths to choose from (labeled 

“1,” “2,” and “3” on the lattice), corresponding to the three major triads that can be 

reached by lowering a note of the augmented triad, and producing three different 

root relationships to the starting chord. (The possible relationships are descending 

semitone, ascending minor third, and ascending perfect fi fth, precisely as in Brahms’ 

piece.) Clearly, there are six sequences that can be formed in this way, since there are 

two possibilities for the initial move and three possibilities for the second (Figure 

3.8.3c). What is interesting is that Brahms uses four of these six options, composing 

a group of sequences that are contrapuntally similar (by virtue of using descend-

ing stepwise voice leading) while harmonically distinct (by  virtue of using a variety 

of different root progressions). The result is a sort of developing or  continuous 

variation, in which the same basic procedure (descending semitonal voice leading 

among major and minor triads) produces subtly different results. And even though 

this process of developing variation might at some level be intuitive or improvi-

sational, it nevertheless exhibits very clear structure. By showing us the fi eld in 

which Brahms’ intuition necessarily operates, geometry helps us understand this 

structure, while also leading us to expect that we will fi nd these same sequences in 

other pieces as well. Chapter 8 will return to this thought, using the very same lat-

tice to interpret chromatic procedures in music as diverse as that of Schubert and 

Jimi Hendrix.

Once again, it is sometimes useful to consider just the horizontal cross section 

of our three-note chord space—which, being two-dimensional, is much easier to 

draw. As before, these horizontal cross sections contain chords whose pitch classes 
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Figure 3.8.3 (a) Descending sequences from the fi rst movement of Brahms’ C minor 

Piano Quartet, Op. 60. (b) These result from moving downward along the equal-tempered 

lattice at the center of chord space. (Major chords are dark spheres, minor chords light 

spheres.) (c) There are six basic sequences that can be formed in this way, depending 

on whether one lowers the root or the third of the initial major triad, and whether the 

sequence descends by semitone (D1), ascends by seven semitones (A7), or ascends by 

three semitones (A3).
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sum to the same value (Figure 3.8.4).20 If a chord appears on the triangular cross 

section, then so do its transpositions by ascending and descending major third. 

This is because transposing a three-note chord by four semitones does not change 

the sum of its pitch classes: 4 + 4 + 4 = 0 in pitch-class arithmetic. The three trans-

positions of each chord are arranged symmetrically around the triangle, so that 

120° rotation transposes each by major third. Chords in the same triangular cross 

section can be linked by “pure contrary” voice leadings in which the amount of 

ascending motion exactly balances the amount of descending motion. For example, 

Figure 3.8.5 shows that {E, A, B} and {F, Gf, Df} can be linked by the voice lead-

ing (E, A, B)®(F, Gf, Df), which is represented by a line segment lying entirely 

within the triangle. Here, one voice ascends by semitone, one voice ascends by two 

semitones, and one voice descends by three semitones, so that the total amount of 

ascending motion is 1 + 2 − 3 = 0.

20 Roeder 1984 and Callender 2004 explore these cross sections, using them to represent set classes. 
Cohn 1998b also notes that major-third-related triads sum to the same value and can be connected by 
pure contrary motion.

Figure 3.8.4 (a) A horizontal slice of three-note chord space is a triangle containing chords 

summing to the same value; here the chords sum to 0. (Only equal-tempered chords are 

shown.) (b) These triangular cross sections are analogous to the vertical “slices” of two-note 

chord space, which also contain chords summing to the same value.
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Since Figure 3.8.4 shows only equal-tempered chords summing to zero, certain 

chord types do not appear. (In particular, there are no major triads.) Again, though, 

every chord type appears in every cross section: if we were to transpose {C, E, G} up 

by one third of a semitone, we would obtain a major triad whose pitch classes sum to 

zero.21 (This chord would appear on Figure 3.8.4a precisely in the same place that the 

C major triad appears on its cross section.) As in §3.7, we can therefore construct an 

abstract representation of the cross section in which all equal-tempered chord types 

appear (Figure 3.8.6). The arrows to the left of the triangle show how to interpret 

motion in the space: horizontal motion raises or lowers the last note in the chord; 

motion along the up-and-left diagonal raises or lowers the middle note in the chord; 

and motion along the other diagonal raises and lowers the last two notes in the chord. 

(Of course, raising two notes is equivalent to lowering the other when we factor out 

pure parallel motion, which is what we are doing when we consider only the cross 

section.22) Figure 3.8.7 explains how to plot the pure contrary component of a voice 

leading in this space.

Figure 3.8.5 
(a) Two voice leadings in 

which the total amount 

of ascending motion 

perfectly balances the total 

amount of descending 

motion. (b) These voice 

leadings are contained in a 

cross section of three-note 

chord space. The second 

voice leading, which has 

voice crossings, bounces 

off the triangle’s mirror 

boundary; the fi rst 

does not.

21 The pitch classes in an equal-tempered major triad must sum to either eleven, two, fi ve, or eight; by 
transposing up by a third of a semitone, we add one to these sums. This is analogous to the fact that perfect 
fourths do not appear in Figure 3.8.4b, since equal-tempered fourths sum to an odd number, and Figure 
3.8.4b contains pitch classes that sum to four.

22 Mathematically, (0, 1, 1) + (−1, −1, −1) = (−1, 0, 0), which says that (0, 1, 1) and (−1, 0, 0) are related 
by pure parallel motion (−1, −1, −1).
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Figure 3.8.6 An abstract representation of the cross sections of three-dimensional chord 

space. In this abstract representation, the labels do not sum to the same value. (Compare 

Figure 3.7.2.)

Finally, observe that the structure of the space again demonstrates the relation 

between evenness and effi cient voice leading. Suppose you want to fi nd an effi cient 

(three-voice) voice leading between transpositionally related three-note chords. As 

in §3.7, we decompose our voice leading into pure parallel and pure contrary com-

ponents. Since the original voice leading is small, then both the pure parallel and 

pure contrary components will also be small. It is clear from Figure 3.8.8 that there 

are just two basic possibilities: either the chord is near the center and the pure con-

trary component links it to its four- or eight-semitone transposition, or it is near the 

edge and the line segment links it to itself.23 The situation is precisely analogous to 

the two- dimensional case, except that here the contrary component connects major-

third-related (rather than tritone-related) chords. This fact has important musical 

consequences, as we will shortly see.

23 Of course, it is trivially possible that the voice leading has no contrary component, and moves all 
voices in parallel by the same amount.
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011

000 003 004002 006005 00E007 009 00T 00[12]008001

014 015013 016012 017 01T 01E019 01[12]018

022 025 026024 027023 028 02E 02[12]02T029

035 036034 037033 038 03E 03[12]03T039

045 046044 047 048 04E 04[12]04T049

055 056 057 058 05E 05[12]05T059

066 067 068 06E 06[12]06T069

077 078 07E 07[12]07T079

088 08E 08[12]08T089
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0EE 0E[12]
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0TT

099
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This boundary swaps the first two voices.
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Figure 3.8.7 To plot the purely contrary component of a voice leading in the triangular 

cross section, reorder it (uniformly) so that the fi rst chord is in ascending order spanning 

less than an octave, then transpose the chords (individually) so that they both start on C, 

with the fi rst voice moving by zero semitones. One can then use the arrows to the left of 

the fi gure to determine the path representing the voice leading. For example, to represent 

(C, E, G)®(C, F, A) we need to raise the middle voice by one semitone, represented by 

one-step diagonal NW motion; we then raise the third voice by two semitones, which 

requires moving two units to the right. Combining these vectors gives us the path 

representing the voice leading’s pure contrary component (center of fi gure). Contact with 

a boundary exchanges the position of two voices: for example, (C, F, Fs)®(C, G, Fs) can 

be represented by two diagonal steps to the NW from 056 (left side of fi gure). However, the 

fi rst of these steps brings us to the boundary, which exchanges the position of the second 

and third voices. Thus, instead of moving the middle voice up by semitone, we now have to 

move the third voice up by semitone; this is represented by a one-step rightward motion. 

Geometrically, it looks as if our arrow has refl ected off the mirror boundary. Note that 

we cannot represent this voice leading with a direct line from 056 to 067, since the voice 

crossing requires that the line refl ect off the mirror boundary: thus where the two arrows 

047®057 and 057®059 can be combined into a single arrow, the two arrows 056®066 

and 066®067 cannot.



A Geometry of Chords 93

3.9 higher dimensional chord spaces

Attempting to visualize higher dimensional spaces is an exercise in diminishing 

returns: while one might barely manage four dimensions, it becomes increasingly 

diffi cult to picture fi ve, six, or more. Nevertheless, it will be useful in what follows to 

have a rough understanding of the geometry of the higher dimensional chord spaces. 

Accordingly, I will ask the reader’s indulgence as I try to describe the spaces represent-

ing four-note, fi ve-note, and even larger chords.

We have seen that it takes a separate dimension to model each individual musi-

cal voice. Thus, it takes four dimensions to represent the state of a four-instrument 

ensemble, fi ve dimensions to represent the state of a fi ve-instrument ensemble, and 

so on. When we abstract away from order and octave, we fi nd that each of these spaces 

is periodic, a higher dimensional piece of wallpaper consisting of many equivalent 

copies of the same pattern or tile.

Figure 3.9.1 displays the tiles in the two-, three-, and four-dimensional cases. 

The two-dimensional tile is our familiar Möbius strip, a rectangle whose left edge 

is glued to its right with a half twist. For the sake of generality, however, it is use-

ful to forget the term “rectangle,” and to imagine the space as a two-dimensional 

prism—the shape that results when we drag the (one-dimensional) left edge hori-

zontally rightward to form a two-dimensional fi gure. The resulting structure has 

two “faces” (here, the left and right edges), which are one-dimensional line seg-

ments. Chords on the same vertical line sum to the same value; hence every chord 

is on the same vertical line segment as its tritone transposition. As we drag the 

left face horizontally rightward, we transpose each chord upward. We can obtain 

new chords in this way until we have transposed by six semitones, at which point 

the left and right faces contain the same chords. These two faces need to be glued 

together with a “twist” that gives the space a circular structure: because of this 

twist, we can eventually return to our starting point by moving perpendicular to 

the face (§3.3).

T8(A)

T4(A)A

B C

Figure 3.8.8 Effi cient pure contrary voice 

leading between transpositionally related three-

note chords. Chord A divides the octave nearly 

evenly; it and its transpositions are near the 

center of the space. Chords B and C have notes 

that are clustered together, and are near the 

boundary.
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Figure 3.9.1 
Chord space in 

two, three, and 

four dimensions.

The three-dimensional tile is also a prism, the shape that results from dragging the 

bottom face, a triangle, vertically upward. The resulting structure again has two faces, 

which are now two-dimensional triangles rather than one-dimensional line segments. 

Each triangular face contains three-note chords summing to the same value, so that 

every chord is on the same face as its major-third transposition. Dragging the bottom 

triangle upward transposes each chord upward; we drag it until the chords have been 

transposed by four semitones, at which point the top face contains the same chords as 

the bottom. These two faces must then be glued together with a “twist” that matches 

the appropriate chords—here, a 120° rotation. This “gluing” produces a triangular 

doughnut and introduces a circular structure in to the space: once again, if we move 

perpendicular to the triangle, we eventually return to where we started.

Figure 3.9.1c illustrates the four-dimensional shape that tiles the space of four-

note chords. Readers will not be surprised to fi nd that it, too, is a prism. Here the 

faces are tetrahedra, the three-dimensional analogues of triangles. Each tetrahedral 

cross section contains pitch classes that sum to the same value. Consequently, if a 
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chord is on the cross section, then so is its minor third transposition.24 The four ver-

tices of the tetrahedron contain quadruple unisons related by minor third—here, {C, 

C, C, C}, {Ef, Ef, Ef, Ef}, {Fs, Fs, Fs, Fs} and {A, A, A, A}—while the chord at the 

center divides the octave perfectly evenly and contains the pitch classes {C, Ef, Fs, A}. 

To form the prism, drag the tetrahedron into the fourth dimension, represented by 

dotted lines on Figure 3.9.1c, thereby transposing every chord upward. We can drag 

it until its chords have been transposed by minor third, at which point the trans-

posed tetrahedron contains the same chords as the initial one. These again need to be 

attached by a “twist” that connects the appropriate chords and transforms the prism 

into a kind of four-dimensional doughnut.

The general pattern should now be clear. In each dimension, chord space is an 

n-dimensional prism, formed by dragging a “generalized triangle” through an addi-

tional dimension (Figure 3.9.2).25 The generalized triangle is the face of the prism, 

containing chords summing to the same value. Consequently, each n-element chord 

is on the same face as its transposition by 12/n semitones. (This is because transpos-

ing n notes by 12/n adds 12n/n = 12 to their sum, and in pitch-class arithmetic we 

discard multiples of 12.) Dragging the face into the additional dimension transposes 

each chord upward; it can be dragged until the chords have been transposed by 12/n 

semitones, at which point it contains the same chords as those on the initial face. The 

two duplicate faces are glued together with a “twist” that matches the appropriate 

chords, introducing a circular structure and creating the higher dimensional ana-

logue of a twisted doughnut.

Nonmathematical readers should not wrack their brains trying to picture these 

spaces in too much detail. Instead, focus on the important structural features they 

all share:

24 Transposing a four-note chord by three semitones adds 3 + 3 + 3 + 3 = 0 to their sum, in pitch-class 
arithmetic.

25 A generalized triangle, or “simplex,” is an n-dimensional fi gure enclosed by n + 1 points, all con-
nected by lines. Thus, in one dimension, it is a line segment (two points connected by a line segment); 
in two dimensions, it is a triangle (three points connected by line segments); in three dimensions, it is a 
tetrahedron (four points connected by line segments); and so on. One can form an (n + 1)-dimensional 
simplex by adding a single point to an n-dimensional simplex.

Figure 3.9.2 A simplex (or “generalized triangle”) is bounded 

by n points, all connected by line segments. One-, two-, and 

three-dimensional simplexes are line segments, triangles, and 

tetrahedra, respectively.
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1. In each space, points correspond to chords and line segments correspond 

to voice leadings, with the length of the line segment representing the size 

of the voice leading. Consequently, nearby chords can be linked by effi cient 

voice leading, while distant chords cannot.

2. A chord’s “evenness” determines its distance from the center. Chords that 

divide the octave precisely evenly are found at the very center of the space, 

while nearly even chords are nearby. Chords whose notes are clustered 

together are found near the boundary of the space, as far from the center as 

possible.

3. Chord space is made up of “layers,” or cross sections, each containing chords 

summing to the same value. There are n instances of every n-note chord 

type in each layer. These can be obtained by repeatedly transposing by 12/n 

semitones. The transpositions are arranged symmetrically around the center 

of the cross section, with their distance from the center determined by the 

chord’s evenness. The geometrical symmetries of the cross section relate the 

different forms of each chord type.

4. Each cross section of the space is a generalized triangle. The boundaries 

of the generalized triangle contain chords like {C, C, E, G}, which have 

multiple copies of some pitch class.26

5. Nearly even chords can be linked to their transpositions by very effi cient voice 

leading. An n-note chord is particularly close to its transposition by 12/n 

semitones, since they are near the center of the same horizontal cross section.

6. Voice leading that remains within the layers represents pure contrary 

motion in which the amount of ascending motion perfectly balances the 

amount of descending motion. Moving perpendicular to these layers 

corresponds to pure parallel motion, in which every note moves in the same 

direction by the same amount. Any voice leading can be decomposed into 

parallel and contrary components, as in high school vector analysis (§3.7).

7. The top and bottom “layers” of the prism are glued together in a twisted 

fashion, endowing the space with a circular, doughnut-like structure. For 

this reason, a voice leading in which every voice ascends by octave will be 

represented by a line segment that passes through each cross section n 

different times, moving through each of its transpositions before returning to 

its starting point. The trajectory it follows will be a circle in the abstract sense.

8. The remaining boundaries of the fi gure—the ones that are not glued 

together—act like mirrors. Voice leadings bounce off these mirrors, like 

balls off of the bumpers of a pool table. “Clustered” chords near the edges 

of the space can be linked to their untransposed forms by effi cient voice 

leading, bouncing off nearby mirrors to return to their starting point.

26 The number of pitch classes in the chord determines which part of the boundary it inhabits: vertices 
contain chords like {C, C, C}, with only one pitch class; edges contain chords like {C, C, G}, with two pitch 
classes; faces contain chords like {C, C, E, G}, with three pitch classes; and so on (see Figure 3.8.5 for the 
three-dimensional case).
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Appendix B provides a more detailed mathematical description of the spaces, for 

readers who are so inclined.

3.10  triads are from mars; seventh 
chords are from venus

Musically, the most important consequence of all this geometry is the following: 

since a nearly even n-note chord occupies the same cross section of the space as its 

transposition by 12/n semitones, such chords can be linked by particularly effi cient 

voice leading.27 Thus, nearly even two-note chords 

are very close to their six-semitone transpositions, 

nearly even three-note chords are very close their 

four- and eight- semitone transpositions, nearly 

even four-note chords are very close to their three-, 

six-, and nine-semitone transpositions, and so on. 

This is illustrated in Figures 3.10.1 and 3.10.2.

Suppose, then, that a composer is interested 

in exploiting effi cient voice leadings between two 

major triads or two dominant seventh chords. The-

oretically, we should expect an abundance of major-

third relations between the triads and minor-third 

relations between the dominant sevenths. And 

when we look at actual music, we see that this is indeed the case. Direct juxtapositions 

of minor-third-related dominant seventh chords already occur in baroque and classi-

cal music, while direct juxtapositions of major-third-related seventh chords are very 

rare; similarly, major-third-related triads sometimes occur across phrase boundaries, 

as when V/vi moves directly to I, while there is no analogous convention associating 

minor-third-related triads.28 Figure 3.10.3 indicates that this asymmetry also char-

acterizes the more chromatic music of the nineteenth century. In Schubert, major-

third-related triads occur about 1.5 times more often than minor-third-related triads, 

while minor-third-related dominant seventh chords occur about 14 times more often 

than major-third-related dominant seventh chords.29 (In Chopin, major-third-related 

27 Mathematically inclined readers will note that I am presupposing the Euclidean metric for simplic-
ity. However, at least some of the statements made in this section are metric independent; furthermore, 
reasonable voice-leading measures are all approximately consistent with each other. For more information, 
see Hall and Tymoczko 2007.

28 Bach’s chorales contain a number of cross-phrase triadic juxtapositions, with major-third root-
relationships outnumbering minor-third relationships by almost 2:1. In Mozart’s piano sonatas, there are 
several juxtapositions of minor-third-related dominant sevenths, but no major-third-related dominant 
sevenths. Major-third-related major triads also occur several times, whereas minor-third-related major 
triads are more rare and typically occur only in sequences with stepwise descending voice leading (§8.4).

29 The methodology here was crude but, hopefully, unbiased: I programmed a computer to look through 
MIDI fi les for simultaneously sounding chords that were either triads or seventh chords. I then tallied up the 
root progressions of each type. Note that since minor-third-related triads can be connected by reasonably 
effi cient voice leading, we would still expect these progressions to appear periodically.

Figure 3.10.1 Two-note chords 

are particularly close to their 

tritone transpositions; three-note 

chords are particularly close to 

their major-third transpositions; 

and four-note chords are 

particularly close to their minor-

third and tritone transpositions.



theory98

major triads occur about 1.6 times more often than minor-third-related triads, and 

minor-third-related dominant-seventh chords occur about 2.2 times more often than 

major-third-related dominant sevenths.) This suggests that composers’ harmonic 

choices are indeed guided by the voice-leading relationships we have been exploring. 

To be sure, composers are not guided exclusively by voice-leading considerations, and 

individual artistic preference no doubt plays a signifi cant role. Nevertheless, there is 

clear evidence that Western musicians are sensitive to the relationships that are mod-

eled by our geometrical spaces.

Figure 3.10.4 turns to a very different sort of music, analyzing the basic three-

chord progression of Nirvana’s “Heart-Shaped Box.” The fi rst two chords, A and F, 

Figure 3.10.2 A geometrical representation of the closeness between (a) tritone-related 

perfect fi fths and (b) major-third-related triads. These fi gures show just a portion of the 

relevant geometrical spaces, and connect chords by lines if they can be linked by single-

semitone voice leading.
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are pure triads related by major third.30 The fi nal D7 chord has four notes, retaining 

the fi fth of the F major triad as the seventh of D. (Note that every chord contains 

the note A, which appears as root, third, and fi fth in turn.) We can understand this 

last voice leading as an incomplete manifestation of the effi cient voice leading 

between F7 and D7 chords. This is not to say that Kurt Cobain necessarily conceived 

it as such; rather, it is to say that the voice leading between the last two chords 

is contained within a very familiar seventh-chord schema and exploits the same 

musical facts that make the more familiar schema possible. From our point of view, 

the interesting fact is that Cobain’s switch from triads to seventh chords goes hand 

in hand with the switch from major-third motion to minor-third motion. There 

are countless other examples of this phenomenon: for instance, the Beatles’ “Glass 

Onion” juxtaposes major-third-related triads in the verse and minor-third-related 

dominant sevenths in the chorus. Figure 3.10.5 presents a similar progression from 

Schumann, which alternates between the “major-third system” of closely related 

triads (represented geometrically by the cubic lattice of Figure 3.10.2b) and the 

“minor-third system” of closely related seventh chords (to be discussed shortly).31 

As we will see, a large amount of chromatic music can be understood in this way 

(Figure 3.10.6).

Figure 3.10.3 Nondiatonic chord progressions in a large number of pieces by Schubert 

and Chopin. The leftmost column indicates root motion: thus “+1” indicates a progression 

where the root moves upward by semitone, while “−3” refers to one where the root moves 

downward by three semitones. The next two pairs of columns distinguish progressions 

between two major triads and two dominant seventh chords. The boldface numbers show 

that major triads are more likely to be connected by major third than by minor third, while 

the reverse is true for dominant sevenths.

30 Though not articulated by independent instruments, the voice leading is relatively clear.
31 Note that this progression is slightly more complicated insofar as it connects an F minor chord to the 

following A7; nevertheless, this major-third root motion still permits effi cient voice leading.
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Of course, it is always possible to add a small 

purely parallel component without drastically 

increasing the size of a voice leading. So, for 

example, starting with the pure contrary voice 

leading (C, G)®(Cs, Fs), one can transpose the 

second chord up by semitone to produce (C, 

G)®(D, G), a relatively effi cient voice leading 

between fi fth-related perfect fi fths. Applying the 

same procedure to (E, Gs, B)®(Ef, Af, C) yields 

(E, Gs, B)®(E, A, Cs) (Figure 3.10.7). Figure 

3.10.8 identifi es, for chords with two to fi ve 

notes, the transpositions that can be obtained 

by combining pure contrary motion with a 

small parallel component. The perfect fourth 

(or equivalently, the fi fth) is the only interval 

appearing in every row of the table, which means that nearly even chords of any 

size can be linked to their perfect-fourth transpositions by relatively effi cient voice 

leading. (Here again we have an example of a familiar musical object being optimal 

for multiple reasons: the perfect fourth is both extremely  consonant while also being 

a uniquely useful interval of transposition, allowing for effi cient voice leading in a 

broad range of circumstances.32) This fact is of obvious relevance to tonal music, 

Figure 3.10.4 Nirvana’s “Heart-

Shaped Box” switches from major-

third root motion to minor-third 

root motion when it switches from 

triads to a seventh chord. The 

upper three voices in the last voice 

leading of (a) are contained within 

the common four-voice voice 

leading in (b).

Figure 3.10.5 (a) A voice leading from the “Chopin” movement in Schumann’s Carnaval. 

Here, an F minor triad moves by major third to an A dominant seventh. (The bass, tenor, 

and soprano give us a pair of major-third-related triads, with the alto moving semitonally 

from the doubled third to the seventh.) The next progression moves the A7 chord to 

an Ef7. Once again the shift from triads to seventh chords accompanies a shift in root 

motion. (b) A comparison of Schumann’s “Chopin” and Nirvana’s “Heart-Shaped Box.” In 

Schumann’s progression, the switch to seventh chords occurs at the second chord in the 

passage: doubling the third of the F minor triad, he uses the semitonal motion Af®G to 

create an A7 chord. In the Nirvana progression, the switch does not occur until the fi nal 

chord, where the C of F major is held over to become the seventh of D7.

32 More precisely, the perfect fourth is very close to some interval contained within the interval cycle 
that results when we divide the octave precisely evenly, no matter how many parts we divide it into.
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which exploits fourth-progressions between triads, seventh chords, ninth chords, 

and diatonic scales.

One feature of Figure 3.10.8 deserves further comment. A fi ve-note chord can be 

linked by pure contrary motion to its 2.4, 4.8, 7.2, and 9.6 semitone transpositions. 

Since none of these transpositions lie in twelve-tone equal temperament, any voice 

leading between familiar transpositionally related fi ve-note chords must have at least 

some parallel component. If the purely contrary voice leading involves transposition 

Figure 3.10.6 Triads and 

seventh chords in mm. 18–20 of 

the fi rst movement of Schubert’s 

Bf major Piano Sonata (a), mm. 

14–15 of the third-movement 

trio (b), the “Tarnhelm” motive 

from mm. 37–39 of Scene III 

of Wagner’s Das Rheingold 

(c), mm. 11–12 of Mozart’s C 

minor Fantasy, K. 475 (d), the 

eighteenth-century “omnibus” 

progression (e), and mm. 44–45 

of Chopin’s Nocturne, Op. 27 

No. 2 ( f ).

Figure 3.10.7 Adding a small parallel component (p) to a small purely contrary voice leading 

(c) still produces an effi cient voice leading.
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by 2.4 semitones, then the purely parallel component must be at least 0.4  semitones 

large. However, if the purely contrary voice leading involves transposition by 4.8 

semitones, then it is necessary to add only 0.2 semitones of pure parallel motion. 

It follows that from a twelve-tone equal-tempered perspective, very even fi ve-note 

chords will seem to be closest to their fi ve-semitone transpositions. (And indeed, the 

pentatonic scale can be linked to its fi ve-semitone transposition by single-semitone 

voice leading.) In continuous pitch-class space, we would see that the pentatonic scale 

is also quite close to its 2.4-semitone transposition, but this symmetry disappears 

when we view music through a twelve-tone equal-tempered grid. Here again we see 

that it is sometimes useful to adopt the continuous perspective, even when we are 

primarily interested in equal-tempered music.

In later chapters, we will fi nd that these sorts of voice-leading relationships under-

write three major compositional practices. First, as discussed above, composers often 

use maximally effi cient voice leading to move from one chord to another, creating an 

abundance of major-third relations among triads and an abundance of minor-third 

relationships among seventh chords. Second, composers often use maximally effi cient 

voice leading to replace one chord with another, as when a jazz musician replaces a 

dominant seventh chord with its tritone transposition (e.g. B7 replacing F7). Here, rather 

than connecting two actually existing chords, effi cient voice leading is used to substitute 

a surprising chord for one that we would otherwise expect; the jazz “tritone substitu-

tion” is the most familiar example of this practice, though Chapter 7 will uncover a 

similar procedure (“third substitution”) in classical harmony. Finally, composers often 

combine effi cient voice leading with small amounts of descending parallel motion, pro-

ducing harmonic sequences where all voices slowly sink downward. In the triadic case, 

this leads to sequences such as those in Figure 3.8.3, with roots moving by descending 

minor second, ascending minor third, or ascending fi fth.33 In Chapter 8 we will study 

their seventh-chord analogues in the music of Chopin and Wagner, and in Chapter 9 we 

will observe Shostakovich and Reich applying the same procedure to  seven-note scales. 

The value of geometry lies in the way it provides a unifi ed  perspective on all of these 

Cardinality
Pure Contrary

Motion 
Nearby Equal-Tempered

Transpositions

2-note chords 6 semitones perfect fourth

3-note chords ±4 semitones minor third, perfect fourth

4-note chords ±3, 6 semitones major second, major third, perfect
fourth 

5-note chords ±2.4, ±4.8 semitones perfect fourth

Figure 3.10.8 The transpositions that permit pure contrary motion for chords of various 

cardinalities. Nearby equal-tempered transpositions are also shown.

33 It is notable that the descending versions of these patterns are so much more common than their 
ascending analogues; the asymmetry likely refl ects a more general tendency for small intervals to descend 
(Vos and Troost 1989).
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seemingly disparate musical activities, helping us to see that they involve different ways 

of exploiting the fundamental geometry of musical space.

3.11 voice-leading lattices

Obviously, the problem with higher dimensional chord spaces is that we can’t visual-

ize them; since each individual musical voice requires its own dimension, we quickly 

lose the ability to present musical information in a clear and intuitive manner. One 

solution is to depict only the portion of the space directly relevant to our musical 

needs. In this book we will typically be interested in voice-leading relationships 

among nearly even chords belonging to familiar scales. Happily—and somewhat sur-

prisingly—it turns out that there are simple three-dimensional lattices representing 

all of the relevant musical relationships.34

There are two types of graph most directly relevant to our needs. The fi rst depicts 

chords whose size (number of notes) exactly divides the size of the scale contain-

ing them. These can be used to represent nearly even two-, three-, four-, or six-note 

chords in twelve-note chromatic space. (This is because two, three, four, and six all 

divide twelve.) These lattices are circular “necklaces” of cubes of various dimensions, 

each linked to its neighbors by shared vertices. The second kind of structure arises 

when the number of notes in the chord is relatively prime to the number of notes in 

the scale—which is to say that no positive integer other than one divides both num-

bers. Here the relevant voice-leading facts are represented by a necklace of cubes shar-

ing a common face with their neighbors. This type of lattice can be used to represent 

fi ve- or seven-note chords in twelve-tone chromatic space, and chords of any size in 

any seven-note scale.35

Figure 3.11.1 presents a pair of examples. The fi rst represents single-semitone 

voice leadings among perfect fi fths and tritones. (Consult Figure 3.3.1 to see how 

this fi gure sits in continuous space.) Each square contains two perfect fi fths and two 

tritones, with tritones being common to adjacent squares. (The square on the right 

edge shares a vertex with that on the left, forming a “circle of squares.”) As shown in 

the fi gure, there are two possible paths from one shared vertex to the next, represent-

ing the two ways of sequentially raising or lowering the tritone’s notes.36 Contrast 

this with Figure 3.11.1b, which depicts single-step voice leadings among thirds and 

34 For our purposes a “lattice” is a graph whose vertices lie on a regular cubic grid, with vertices con-
nected by edges only when they are adjacent on the grid. Strictly speaking, our graphs are only locally lat-
tice-like, since they contain topological twists, but the term “lattice” is evocative and I will use it. Douthett 
and Steinbach (1998) describe the fi rst class of lattices considered in this section, while Tymoczko (2004) 
describes the second.

35 In principle, there is also a third category of lattices that results when the number of notes in the 
chord shares a common divisor with the number of notes in the scale. Though these lattices are typically 
not needed, you may enjoy exploring their structure.

36 For example, the two single-semitone displacements A®Bf and Ef®E will transform the tritone 
{A, Ef} into {Bf, E}. If we fi rst raise A®Bf and then Ef®E, we move along the upper half of the leftmost 
square on Figure 3.11.1a; while if we fi rst raise Ef®E and then A®Bf, we move along the lower half.



theory104

fourths in the C diatonic scale. (In making this graph, I have represented diatonic 

scale steps, such as C-D or E-F, as having equal size; Chapter 4 explores this idea in 

detail.) Where the squares in the earlier fi gure are linked by a common vertex, those 

in Figure 3.11.1b share a common edge. Here, each square contains three diatonic 

fourths and one diatonic third: fourths zigzag through the center of the fi gure like 

the stripe on Charlie Brown’s sweater, while thirds lie on the external vertices. Once 

again, the voice leadings within each square represent different ways of ordering the 

same pair of single-step motions: for example, to move from {E, A} to {F, B}, we could 

either raise E to F and then A to B; or we could raise A to B and then E to F. The fi rst 

path goes by way of {F, A} while the second moves through {E, B}.

One fi nds closely analogous structures in higher dimensions. For example, sup-

pose we want to graph voice-leading relationships among nearly even three-note 

chords in the chromatic scale. Since three evenly divides twelve, the lattice contains 

three-dimensional cubes linked by a common vertex (Figure 3.11.2a). As we have 

learned, the shared vertex is an augmented triad, with the edges of the cubes repre-

senting different ways that the augmented triad’s notes can be raised or lowered by 

semitone: for instance, we can move from Cs augmented to C augmented by fi rst 

lowering F, then Cs, then A; alternatively, we could fi rst lower A, then Cs, then F. 

Each of these sequences traces out a different series of edges on the top cube of Figure 

3.11.2a. (Note that the chords on a single cube draw their notes from two semitonally 

adjacent augmented triads and hence belong to the same hexatonic scale.37) By contrast, 

Figure 3.11.1 The two fundamental kinds of discrete lattices. The fi rst is a circle of squares 

linked by shared vertices, representing single-semitone voice leading among equal-tempered 

tritones and perfect fi fths. The second is a circle of squares linked by common edges, 

representing single-step voice leading among diatonic fourths and thirds.

37 For example, the chords on the cube containing F, A, and Cs major all belong to the hexatonic scale 
C-Cs-E-F-Gs-A, to be discussed in the next chapter.
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nearly even three-note diatonic triads are represented by a lattice of the second kind, 

since three and seven have no common divisor. The resulting graph, shown in Figure 

3.11.2b, consists of a series of stacked cubes, each sharing a face with its neighbors. 

This graph is analogous to the linked squares of Figure 3.11.1b, though its structure 

is somewhat more complex. We will return to it momentarily.

The fi rst type of lattice is relatively easy to understand. If the number of notes in the 

chord exactly divides the number of notes in the scale, then the scale contains chords 

that are perfectly even.38 These sit at the very center of (continuous) chord space and 

form the vertices shared by the lattice’s adjacent cubes. The remaining edges on the lat-

tice identify the various ways in which one can successively raise or lower each note of 

this perfectly even chord.39 Thus the edges in Figure 3.11.1a show how one can succes-

Figure 3.11.2 (a) The cubic lattice at the center of three-note chromatic space. The shared 

vertex is the augmented triad; the edges represent different ways of raising or lowering the 

augmented triad’s notes by semitone. (b) The cubic lattice at the center of three-note diatonic 

space. Here, the cubes share a face with their neighbors.

38 Strictly speaking, this is true only when we measure distance using “scale steps” (discussed in 
 Chapter 4). However, in the familiar chromatic scale, scale-step distances are equivalent to log-frequency 
distances. At the moment, the chromatic scale is our primary concern.

39 Since the chord has n notes, there are at fi rst n possible notes to lower; having lowered one note, 
there are (n − 1) remaining possibilities, and so on. Geometrically, the various sequences of “lowerings” 
outline an n-dimensional cube. To see this, note that one can construct an n-dimensional cube whose 
vertices consist of all the points with individual coordinates that are either 0 or 1: in two dimensions, the
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sively raise or lower the notes of the tritone by semitone, while those in Figure 3.11.2a 

show how one can raise or lower the three notes of the augmented triad. Figure 3.11.3 

illustrates the four-dimensional case. Here we have a series of four-dimensional cubes—

also known as “tesseracts”—linked to their neighbors by shared vertices. (Figure 3.11.3 

projects this four-dimensional structure into what looks like three Euclidean dimen-

sions, much as we can draw the outlines of a three-dimensional cube using a two-

dimensional piece of paper.40) As expected, the shared vertices are diminished seventh 

chords, with the edges recording the various ways of sequentially raising or lowering 

Figure 3.11.3 (a) The lattice at the center of four-note chromatic space is a circle of four-

dimensional cubes linked by a shared vertex. The shared vertex is the diminished seventh 

chord. The labels “bFr” and “dFr” designate “French sixth” chords on D and B; these points 

appear to lie close to each other on the interior of the cube, but this is an artifact of the 

three-dimensional representation. (b) The edges of the four-dimensional cube represent the 

different ways of raising or lowering the notes of the diminished seventh chord.

points (0, 0), (0, 1), (1, 0), and (1, 1); in three dimensions, the points (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), 
(1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1); and so on. The edges of the cube can be traced out by starting at 
the point (1, 1, . . . , 1), and considering all the ways of successively “lowering” coordinates (changing them 
from 1 to 0), until (0, 0, . . . , 0) is reached.

40 Actually, the illustration is two-dimensional, but our brains automatically construct a three-
 dimensional scene. In a true four-dimensional representation any two intersecting lines in the tesseract 
would form 90° angles, but in the three-dimensional projection this is not possible. Similarly, in four 
dimensions the two “French Sixth” chords are far apart, whereas in three dimensions they seem close.
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their notes. Chords on a single “tesseract” draw their notes from two semitonally adja-

cent diminished seventh chords, and hence belong to the same octatonic scale. Thus  

chords on the hypercube containing F7, D7, B7, and Af7 all belong to the octatonic scale 

D-Ef-F-Gf-Af-A-B-C. Readers may be relieved to learn that this is the most compli-

cated lattice we will need to use in this book. Although an analogous (six-dimensional!) 

structure represents nearly even six-note chromatic chords, its chords can typically be 

interpreted as incomplete forms of familiar seven-note scales.

The second type of lattice appears when the size of the chord and the size of 

the scale have no common divisor. In this case, the scale will not contain any per-

fectly even chords; instead, it will contain nearly even chords that form a near interval 

cycle—that is, a circular sequence of notes all but one of which are linked by the same 

interval, with the unusual interval being either one scale step larger or smaller than 

the rest.41 Three examples are shown in Figure 3.11.4: two- and three-note chords in 

diatonic space, and seven-note chords chromatic space. In each case, it is  possible to 

41 These scales were studied by Clough and Myerson (1985), Clough and Douthett (1991), and Erv 
Wilson (in unpublished work).

C E G  [C]

3 3 4

3 4 3

C F A [C]

 4 3 3

C E A  [C]

C G [C]

 34

 43

B F  [B]

4 3

C  F [C]

diatonic steps: diatonic steps:

F C G D  A E B F

F C G D  A E Bf F

 7 7 7 7 7 7 6

 7 7 7 7 7 6 7

chromatic steps:

F C G D  A Ef Bf F

 7 7 7 7 6 7 7

Figure 3.11.4 When the size of the chord and the size of the scale are relatively prime, the 

maximally even chord is a “near interval cycle”—a circle of notes all but one of which are 

linked by the same interval, with the unusual interval being just one step different from the 

others. Because of this, the chords can be linked by a chain of single-step voice leadings. 

(a) Diatonic fi fths linked by single-step voice leading. (b) Third-related diatonic triads linked 

by single step voice leading. (c) Diatonic scales linked by single-semitone voice leading.
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42 Here I am considering the circle of fi fths to represent single-semitone voice leadings among diatonic 
scales: (C, D, E, F, G, A, B)®(C, D, E, Fs, G, A, B)®(Cs, D, E, Fs, G, A, B)®. . . . Theorists sometimes con-
sider the circle of fi fths to be a sequence of fi fth-related pitches, such as C®G®D® . . ., but this perspec-
tive is not germane to the current discussion.

Figure 3.11.5 Single-step voice 

leading links near interval cycles 

into a circle, structurally analogous 

to the familiar circle of fi fths. Here, 

the circle of two-note diatonic fi fths, 

each linked to its neighbors by 

single-step motion.

Figure 3.11.6 A “generalized circle of fi fths” is near, but not exactly at, the center of chord 

space. In (a), the circle of diatonic fi fths zigzags through the center of the Möbius strip. In 

(b), the circle of diatonic triads zigzags three-dimensionally through the center of three-note 

chord space.

shift the position of the unusual interval by moving a single note by just one scale 

step. Consequently, these chords can be linked by a sequence of single-step voice 

leadings somewhat analogous to the familiar circle of fi fths (Figure 3.11.5).42 This 
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 “generalized circle of fi fths” will lie as close as possible to the center of chord space (at 

least for chords belonging to that particular scale), but it will not be exactly at the 

center (Figure 3.11.6). 

Figure 3.11.7 arranges our circle of diatonic fi fths in a regular zigzag pattern.43 

These diatonic fi fths are the most nearly even two-note chords in diatonic space. To 

add the second-most even chords, we can rearrange the order of the voice leadings on the 

central zigzag. For example, we move from {A, E} to {B, F} along the zigzag by way of 

the sequence (A, E)®(B, E)®(B, F), fi rst raising A to B, and then E to F. But  suppose 

we were to reorder these two single-step shifts: raising the E in {A, E} produces the 

diatonic third {A, F}, while raising the A in {A, F} brings us to {B, F}. Geometrically, 

these reordered voice leadings complete the square on the left side of Figure 3.11.7b. 

By continuing this process we can generate all the single-step voice leadings among 

diatonic thirds and fourths, thus reconstructing the lattice in Figure 3.11.1b.

Remarkably, this same process of “rearranging” is suffi cient to construct all the 

voice-leading lattices of the second type. By way of illustration, let’s generate a voice-

leading graph representing nearly even seven-note chords in chromatic space. The 

diatonic circle of fi fths is shown in Figure 3.11.8a: here we move from C diatonic to 

G diatonic by the semitonal shift F®Fs, from G diatonic to D diatonic by the shift 

C®Cs, and so on. This circle lies as close as we can get to the center of seven-note 

Figure 3.11.7 (a) The two-note diatonic “circle of fi fths,” represented as a regular zigzag. 

(b) To include diatonic thirds, simply reverse the order of every pair of voice leadings, for 

instance by letting E®F operate on the fi fth {A, E}. This converts the zigzag into a series of 

squares each sharing a common edge.

43 By regularizing the zigzag, we are again making the decision to treat all “scale steps” as having the 
same size.
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chord space, given twelve-tone equal temperament. Figure 3.11.8b adds the second-

most even seven-note chord by rearranging adjacent voice leadings as described in the 

previous paragraph: C®Cs takes C diatonic to the G “acoustic scale” (or D melodic 

minor ascending) while F®Fs takes G acoustic to D diatonic. (Note that the resulting 

graph is two-dimensional, even though seven-note chords live in seven dimensions!) 

We can even create a three-dimensional version of the graph by scrambling the order 

of three successive voice leadings on the diatonic circle of fi fths. Here we begin with 

a three-dimensional zigzag that moves alternately up, right, and into the paper. We 

then apply all six reorderings of three adjacent voice leadings to a generate a cube: 

for instance, the scales on the lower left cube in Figure 3.11.9 result from applying 

to C diatonic the six different orderings of F®Fs, C®Cs, and G®Gs. (Note that 

F®Fs is always represented by a vertical line, while C®Cs is always horizontal, and 

G®Gs always moves into the paper.) The resulting three-dimensional lattice, which 

describes voice-leading relationships among the four most even twelve-tone equal-

tempered chords in seven-dimensional space, is structurally analogous to the graph 

of three-note diatonic triads shown in Figure 3.11.2b. Here the circle of fi fths zigzags 

three-dimensionally through the center of the space, much as the circle of thirds zig-

zagged through the two-dimensional Figure 3.11.8.44

Figure 3.11.8 (a) The familiar circle of fi fths connects fi fth-related diatonic scales by single-

semitone voice leading. (b) To include the second-most even fi ve-note chords scramble the 

order of adjacent voice leadings, for instance by letting C®Cs operate on C diatonic before 

F®Fs does.

44 In principle, we could continue this process by adding a fourth or even fi fth dimension to the graph, 
thus extending the lattice so that it covers more and more of seven-dimensional chord space.



A Geometry of Chords 111

Again, the key point is that the lattices in our second category—representing 

objects as diverse as diatonic seventh chords, octatonic triads, and familiar seven-

note scales—are all structurally similar. At their center is a generalized circle of fi fths 

that zigzags through two, three, or more dimensions. These chords are near interval 

cycles linked by a chain of single-semitone voice leadings. The rest of the lattice is 

generated by rearranging its voice leadings: for a two-dimensional graph, begin with 

a two-dimensional zigzag and switch the order of each pair of adjacent voice leadings, 

producing a sequence of squares sharing a common edge (as in Figures 3.11.7 and 

3.11.8b); for a three-dimensional graph, begin with a three-dimensional zigzag (up, 

right, in) and scramble the order of every three consecutive voice leadings, producing 

a series of stacked cubes sharing a common face (as in Figure 3.11.9). This process of 

“scrambling” adds successively less even chords to the lattice, extending it farther and 

farther from the center of chord space. (Thus, where the dimension of the fi rst kind 

of graph is controlled by the size of the chords we want to represent, the dimension 

of this second kind of graph is controlled by the number of distinct chord types we 

are interested in.) We will return to these structures throughout the book, using the 

“scale lattice” to represent voice leadings among familiar seven-note scales and using 

the three-note diatonic lattice to represent familiar classical voice-leading patterns.

Music theorists tend to take it for granted that we can use discrete lattices to rep-

resent voice-leading relationships, in large part because these discrete structures pre-

ceded the more comprehensive geometrical spaces we have discussed in this chapter. 

But on refl ection, it is actually quite remarkable that (say) the one-dimensional circle 

Figure 3.11.9 We can extend the scale lattice to three dimensions. The result depicts single-

semitone voice leading among the four most even seven-note chromatic chords. We will 

discuss these scales in the next chapter.
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of fi fths can faithfully represent voice-leading relationships among seven-note  diatonic 

scales. After all, diatonic scales are seven-note objects inhabiting a seven- dimensional 

space, and we have no reason to expect that six of these dimensions would turn out to 

be irrelevant. And yet it turns out that for most practical purposes we can make do by 

representing diatonic voice leadings on the familiar circle of fi fths. This suggests that 

the circle of fi fths is quite a special structure which lies within seven-note chord space 

in a very particular way. Other lattices are not special in this way and do not accurately 

model voice-leading distances, even though they might appear to do so. In general, 

it is extremely diffi cult to distinguish “faithful” lattices (such as the circle of fi fths) 

from unfaithful lattices (such as the familiar Tonnetz). To understand these structures 

in a deep and principled way, we must refl ect on how they are embedded within the 

continuous spaces described here. Those of you who want to explore this issue fur-

ther should consult Appendix C. Those who are more interested in music analysis can 

instead focus on internalizing the two types of lattice described in this section. The 

important point is that it is typically suffi cient to understand the discrete lattices, and 

to be able to construct the graph germane to a particular musical situation.

3.12 two musical geometries

We have now developed two geometrical representations of the same musical facts—

the circular pitch-class space of Chapter 2 and the higher dimensional spaces dis-

cussed in this chapter. These two representations are complementary, in the sense 

that relationships that are diffi cult to understand in one are often easier to under-

stand in the other. Let’s conclude by considering some of the strengths and weak-

nesses of the two models.

In some ways, the circular space of Chapter 2 is simpler and more convenient 

than its higher dimensional counterparts. In this chapter we’ve created individual 

spaces for chords of various sizes: the space of two-note chords is two-dimen-

sional, the space of three-note chords is three-dimensional, and so on. But there is 

no analogous description of the space of all chords.45 Furthermore, it can be very 

diffi cult to visualize relationships among larger chords, since a new dimension is 

required for each additional voice. By contrast, the circular representation uses a 

single circle to depict chords of any size, and there is no sense that two-note chords 

and three-note chords occupy fundamentally different worlds. Nor are there any 

special problems associated with large chords, as we can always add more points 

to the circle.

Moreover, the spaces discussed in this chapter do not provide a natural way to rep-

resent the similarity between chords with the same pitch-class content but  different 

“doublings.” For example, the collections {C, E, E, G} and {C, E, G, G} are repre-

45 We can actually construct these spaces, but they are infi nite-dimensional and almost impossible to 
visualize. Furthermore, distance in the resulting spaces does not accurately represent voice-leading size (see 
Callender, Quinn, and Tymoczko 2008).
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sented by widely separated points in four-note chord space, yet they are musically 

quite similar; ordinarily, both would be considered C major chords. This problem is 

again ameliorated in the circular representation, which does not require us to distin-

guish the number of times each note appears: the chords {C, G}, {C, C, G} can both 

be modeled using the same two points on the circle, C and G. Voice leadings with 

“doublings” can be represented as different collections of paths between the same sets 

of points. Thus Figure 3.12.1 models the voice leadings (C, E, G)®(D, F, A) and (C, C, 

E, G)®(F, A, D, F) as two different ways to link the same confi gurations of black and 

gray points on the circle. Once again, the circular model seems more fl exible than the 

higher dimensional alternative.

The problem with the circle, however, is that it is easy to use but hard to under-

stand. One could stare at circular pitch-class space for a long time without ever real-

izing that voice leadings can be decomposed into purely parallel and purely contrary 

components. And important voice-leading relationships can sometimes be hard to 

see. (Quick: which of its transpositions is the chord in Figure 3.12.2 closest to? Now 

look at Figure 3.11.8 and ask yourself the same question.) Nor does circular space 

make manifest structural relations such as those we uncovered in the Allelujia Justus 

et Palma or the Brahms C minor Piano Quartet. So at least in some cases, the circular 

model will obscure important features of musical structure.

By contrast, higher dimensional chord spaces provide a powerful set of visual 

tools for thinking about music. We can describe the process of musical abstraction—

the ignoring of octave and order information—as a matter of concentrating on a 

single “tile” of musical wallpaper. Abstract concepts like “individual T-relatedness” 

(or even “scalar transposition”) can be translated into concrete visuospatial terms. 

Figure 3.12.1 Two collections of paths linking the points {C, E, G} and {D, F, A}. On the 

left, the three-voice voice leading (C, E, G)®(D, F, A); on the right, the four-voice 

(C, C, E, G)®(F, A, D, F).
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Plotting music in the spaces can yield insight into its structure (§3.5). And though 

the higher dimensional spaces are unwieldy, lattices such as those in §3.11 can be used 

to convey a large amount of musical information very quickly, mapping a wealth of 

compositional possibilities in a clear and extremely effi cient manner. To use such lat-

tices is to exploit the higher dimensional chord spaces described in this chapter, even 

if we do not explicitly represent the whole space from which they are drawn.

In all of these ways, then, the higher dimensional spaces provide useful comple-

ments to the simpler, circular model of Chapter 2. Ultimately, a deep understanding 

of music likely requires fl uency with both models. (As the physicist Richard Feynman 

once put it, “every theoretical physicist who is any good knows six or seven different 

theoretical representations for exactly the same physics.”46) By learning multiple ways 

to represent the same music, we can develop fl exibility of mind and deepen our grasp 

of the underlying structures—even if, in the end, we prefer one representation to 

another. Readers who do not share my aesthetic appreciation for the higher dimen-

sional chord spaces may therefore still be able to appreciate them as part of a program 

of music-theoretical calisthenics. In stretching our minds to understand these exotic 

structures, we will surely strengthen our appreciation for the richness latent in ordi-

nary musical notation.

3.13 study guide

Readers who want to improve their understanding of musical geometry should prac-

tice three basic skills. First, representing voice leadings on the two-note Möbius strip 

of Figure 3.3.1. Second, representing single chords, as well as the pure contrary com-

ponent of three-note voice leadings, on Figure 3.8.6. (It may also be useful to try 

representing pure contrary two-note voice leadings on Figure 3.7.2a.) And third, con-

structing the lattices describing voice-leading relationships among musically inter-

esting objects—for instance, the most even two-note chords in the pentatonic and 

Figure 3.12.2 In circular pitch-class space, it is 

not immediately obvious which of this chord’s 

transpositions it is closest to.

46 Feynman 1994, p. 162.
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whole-tone scales, the most even three-note chords in the diatonic and whole-tone 

scales, the most even four-note chords in the diatonic and octatonic scales, and the 

most even fi ve-note chords in the chromatic scale. (In constructing these lattices, use 

the various graphs in this chapter as guides, and consider the scale step to be a unit of 

distance.) After practicing these particular tasks, the more general geometrical prin-

ciples should start to become clear. It may also be helpful to read the chapter once, 

spend some time with the questions in Appendix F (perhaps augmented by the more 

detailed discussion in Appendix B), and then return to the chapter a second time, 

repeating as necessary. In the end, passive reading is no substitute for a little bit of 

active, hands-on exploration. Just as nobody will ever learn to play the piano simply 

by reading about it, nobody will learn geometry unless they pick up a pencil and start 

working through some exercises.

Readers who are hungry to explore analytical applications can turn directly to 

Chapter 8, which is concerned with chromatic voice leading. Chapter 9 also uses the 

geometry of seven-dimensional scale space to investigate twentieth-century music, 

though it should be read after Chapter 4. The geometrical spaces described in this 

chapter also appear in Chapter 6, where they provide a framework for retelling 

the history of Western music. However, this chapter is probably best read after the 

remaining theoretical material in Part I.



chapter 4

Scales

Now we’re ready to incorporate scales into our developing theoretical apparatus. We’ll 

begin by modeling scales as “musical rulers” that allow us to measure distances in 

pitch and pitch-class space. We’ll then investigate a number of familiar scales, includ-

ing the pentatonic, diatonic, chromatic, and melodic minor. This leads to a discussion 

of the relation between modulation and voice leading. Finally, we investigate scalar 

and interscalar transpositions—concepts that are useful not just for understanding 

scalar music, but also for understanding voice leading more generally. The upshot is 

that there is an interesting duality, or complementarity, between chord and scale. Not 

only can chordal concepts (e.g. voice leading) help us understand scalar processes 

(e.g. modulation), but the reverse is also true; concepts like scalar transposition pro-

vide useful tools for understanding relationships between chords.1

4.1 a scale is a ruler

Intuitively, the opening of The Sound of Music’s “Do, Re, Mi” (Figure 4.1.1) involves 

three repetitions of the same musical pattern: when composing each phrase, Richard 

Rogers simply “did the same thing” at different pitch levels. (This, of course, is part 

of the song’s cheery didacticism—it’s supposed to teach kids music.) But we are hard 

pressed to describe this sense of sameness using the ideas developed so far. From the 

standpoint of Chapter 2, (C, D, E) and (D, E, F) are fundamentally different objects, 

since they are not related by transposition, inversion, or any other combination of 

OPTIC symmetries.

The diffi culty, of course, is that we are thinking chromatically rather than dia-

tonically. Instead of describing F as being one semitone above E, we should describe 

it as being one scale step above E. Once we start to think diatonically we realize that 

each phrase begins with two ascending scale steps, with the entire pattern moving up 

by step at each repetition. The moral is that a scale provides us with an alternative 

measure of musical distance, and that we must be careful to choose the right distance 

metric for the job. In principle, any collection of pitches can be a scale: a scale’s notes 

do not have to be very close to one another, nor are they required to repeat after every 

1 The ideas in this chapter are based on Tymoczko 2004 and 2008b.



Scales 117

2 Clough and Meyerson (1985) use the term “diatonic length” to refer to the scale-specifi c measure of 
musical distance.

3 Non-octave-repeating scales, though musically quite interesting, occur only sporadically in Western 
music; we will not discuss them here.

4 Only in equal temperaments do scale distances correspond to log-frequency distances.

octave, nor is it necessary that scales have “fi rst” or “tonic” notes (Figure 4.1.2). All the 

scale needs to do is to tell us how to move up and down by 1 unit, or scale step.2

Octave-repeating scales, which contain each of their pitches in every possible 

octave, can be represented as points in circular pitch-class space.3 When depicting 

them geometrically we can choose whether the visual layout should refl ect chromatic 

or scalar distance. (Note: throughout this chapter, the term “chromatic” refers to the 

continuous, log-frequency measure of §2.1, rather than to distances along some chro-

matic scale.4) For example, Figure 4.1.3a uses chromatic distance, representing C and 

D as farther apart than E and F, while Figure 4.1.3b uses scalar distances, placing 

the seven notes around the circle so that steps all appear to be the same size. We 

can do something similar even when working with the higher dimensional chord 

spaces of the previous chapter. For example, Figure 4.1.4a draws the two-note Möbius 

strip, labeling only the dyads in the C diatonic scale. Points are connected by lines 

when they can be linked by voice leading in which both voices move by diatonic step: 

Figure 4.1.1 The opening notes 

of the fi rst phrases of “Do, Re, 

Mi,” interpreted chromatically 

and diatonically. The numbers 

represent intervals as measured 

relative to the two scales.

Figure 4.1.2 The “Do, Re, Mi” 

pattern in other scales.
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the roughly horizontal lines represent parallel motion within the scale; the roughly 

vertical lines represent contrary motion within the scale. The irregularity of the 

resulting grid refl ects the fact that the scale’s steps are not all the same chromatic 

size. Figure 4.1.4b redraws the graph using scalar distance, so that the grid is perfectly 

regular and all scale steps appear to be equally large.5

Figure 4.1.3 An octave-repeating scale is a circular arrangement of pitch classes. It can be 

drawn either using chromatic distance (a) or scalar distance (b).

Figure 4.1.4 Two-dimensional chord space, drawn using chromatic distance (a) and scalar 

distance (b). Only the white notes are labeled.

5 You may fi nd it interesting to draw lines representing single-step voice leading among perfect fi fths 
and major thirds; this produces the discrete lattice in Figure 3.11.1b.
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To my eye, Figure 4.1.4a has a three-dimensional quality, resembling a crumpled 

piece of paper or an aerial view of a hilly city, such as San Francisco. This impres-

sion of three-dimensionality testifi es to the way our visual system has evolved to 

manipulate multiple kinds of distance. When we look down at San Francisco, we 

need to infer the intrinsic length of the city blocks from their apparent length on 

our retinas. Intrinsically the blocks are all (roughly) equal, since San Francisco is a 

grid city, but the blocks appear different, since some travel uphill. (When seen from 

above, these uphill blocks look shorter, as we lose the vertical dimension.) These two 

visual distances are closely analogous to the two musical distances we have been dis-

cussing. Just as the hot air balloonist needs to juggle multiple visual distances when 

looking down at San Francisco, so too does the musician need to realize that the line 

segments in Figure 4.1.4a have the same diatonic length, but different chromatic 

sizes. Remarkably, all of this is encapsulated in the crumpled appearance of Figure 

4.1.4a—demonstrating once again that geometry can help us understand abstract 

music-theoretical relationships.

4.2  scale degrees, scalar 
transposition, and scalar 
inversion

Since a scale provides a measure of musical distance, it also defi nes scale-specifi c 

notions of transposition, inversion, chord type, and set class. These allow us to adapt 

the ideas of the previous chapters to our new scalar perspective.

We begin by assigning numbers to the notes in the scale—arbitrarily selecting 

some note as scale degree 1, labeling the note immediately above it scale degree 2, 

the note two steps above it scale degree 3, and so on (Figure 4.2.1). (The choice of a 

fi rst scale degree is a mere notational convenience and does not imply that this note 

is more signifi cant than the others.) Scale degree numbers are analogous to numeri-

cal pitch-class labels, with one trivial difference: while music theorists label pitch 

classes starting from zero, they label scale degrees starting from one.6 Note that while 

scale degree numbers are dependent on the arbitrary choice of a fi rst scale degree, 

scalar distances are not—in C diatonic, for instance, the scalar distance between C 

and D is always one scale step, no matter what the fi rst scale degree happens to be. 

Musicians refer to these distances in a somewhat confusing way, using the terms “a 

second,” “a third,” and “a fourth” to refer to scalar distances of one, two, and three 

steps, respectively.

Transposition and inversion are the two distance-preserving operations in chro-

matic space. We can defi ne new operations of scalar transposition and scalar inversion 

that preserve scalar distances. To transpose relative to a scale, simply add a constant 

to each scale degree (Figure 4.2.2). (Here we use “scale degree arithmetic”—for an 

6 It would be possible to bring the two conventions in line, for instance, by labeling scale degrees start-
ing from zero. This would make scale degree labels formally identical to pitch-class labels.
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n-note scale, we add or subtract n until the result lies between 1 and n, inclusive.7) To 

invert relative to a scale, choose a fi xed point that will remain unaffected by the inver-

sion. Any note x scale steps above the fi xed point gets sent to the note x scale steps 

below the fi xed point, and vice versa. Scalar inversion can be represented algebraically 

by subtraction from a constant value: in C major, we invert (C, D, F) around the fi xed 

point E by subtracting each scale degree from 6, transforming 1, 2, 4 into 5, 4, 2, or (G, 

F, D).8 The mathematics is identical to that in §2.2, only using scale degree numbers 

rather than chromatic pitch-class labels.

Relative to a scale, two chords belong to the same chord type (transpositional set 

class) if they are related by scalar transposition. Thus, relative to C harmonic minor, 

the chords {B, D, F} and {C, Ef, G} are both “triads,” and hence transpositionally 

related, even though one is diminished and the other is minor (Figure 4.2.3). Relative 

to C harmonic minor, {Af, B, Ef} is not a triad, because Af and B are only one scale 

step apart. (Chromatically, of course, it is an Af-minor triad and is transpositionally 

related to C minor.) This shows that the same chords can be transpositionally related 

relative to one scale, but not another.9 Scalar “set classes” can be defi ned in the obvi-

ous way, as groups of chords related either by scalar transposition or scalar inversion. 

Thus {C, D, F} and {D, F, G} belong to the same set class relative to C harmonic minor, 

because they are related by scalar inversion around Ef.

1      2      3       4      5      6       7      

1                    2      

scale degree:

scalar
distance:

Figure 4.2.1 Scale degrees and 

scalar distances. A scalar distance 

of one step is called a “second,” a 

distance of two steps is “a third,” and 

so on.

7 To transpose (F, G, A) up by three steps in the C diatonic scale, add 3 to (4, 5, 6) obtaining (7, 8, 9). 
Then subtract 7 from any numbers larger than 7, producing (7, 1, 2).

8 To invert around fi xed point x, one subtracts each scale degree from 2x.
9 In a scalar context, letter names often indicate distance. Thus, {Af, B, Ef} has a step while {C, Ef, G} 

does not.

C D E F G A B

1 2 3 4 5 6 7

C D EF G A B

1 2 34 5 6 7
1
C

7
B

2
D

3
E

4
F

5
 G

6
A

Figure 4.2.2 (a) To transpose up by three scale steps, add 3 to each scale degree number. (b) 

To invert around E (scale degree 3), subtract each scale degree number from 6 (= 3 × 2). In 

both cases, use “scale degree arithmetic,” adding or subtracting 7 until the result lies between 

1 and 7.
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It is even possible to assign scale degree numbers to notes that are not in the scale. 

Relative to C diatonic, the note Cs can be considered scale degree 1.5, since it lies half-

way between scale degrees 1 and 2 (Figure 4.1.3). Similarly, Eμ (E quarter-tone sharp) 

can be considered scale degree 3.5, since it is halfway between scale degrees 3 and 4. It 

follows that scalar transposition and inversion can act on notes outside the scale! For 

example, we can shift (C, D, E) up by half a scale step to produce (Cs, Ds, Eμ), or we 

can invert (C, D, Ds) around Ds to produce (F, E, Ds).10 Proceeding in this way, we 

can apply scalar transposition and inversion completely promiscuously—shifting any 

collection of notes by any fraction of a scale step.

This suggests the perverse musical strategy of writing music that uses the C dia-

tonic scale to measure musical distance, while not privileging its notes in any way. 

For example, Figure 4.2.4 repeatedly transposes the C major triad by one and a half 

scale steps, producing {Ef, Gf, Bf}, {F, A, C} and {Gs, Bμ, Ds}.11 The resulting music 

is guided by the diatonic scale without emphasizing the white notes themselves. A 

brilliant music theorist, gifted with extremely sharp ears and a somewhat demented 

musical imagination, might even be able to discern the presence of the scale from the 

deformations it introduces as chords move through musical space. I stress that I am 

not recommending this as a practical possibility; my point is simply that a musical 

scale is very similar to what mathematicians call a metric, or a method of measuring 

distance. In principle, a scale can function in this way even in highly chromatic con-

texts such as Figure 4.2.4. This is just to repeat the point that a scale need not also be 

a macroharmony.

Figure 4.2.3 Relative to the C harmonic minor 

scale, these chords all belong to the same 

transpositional set class, and are therefore triads. 

{Af, B, Ef} is not a member of this set class, and is 

not a triad, even though it is related to {C, Ef, G} 

by chromatic transposition.

Figure 4.2.4 This music 

uses the C major scale 

to measure distance, 

while also containing 

notes foreign to the scale 

(compare Figure 4.1.1).

10 Inversion around a point halfway between two scale degrees sends scale tones to scale tones. Here, 
for example, C and D get sent to F and E.

11 Gf is 1.5 scale steps above E, since it is halfway between F and G. Similarly, Bμ is 1.5 scale steps above 
A, since it is halfway between B and C. Note that we are using the log-frequency metric to measure fractions 
of a scale step (§2.1).
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4.3 evenness and scalar transposition

Listeners are typically aware of both scalar and log-frequency distance at the same 

time. We know that (D, E, F) is in some sense “the same” as (C, D, E), but we also 

know that (E, F) is different from (D, E). Ordinary musical terminology adopts this 

twofold perspective, asserting that (E, F) and (D, E) are both “seconds” (one-step 

intervals), while adding the qualifi cation that the fi rst is “minor” and the second 

is “major.”12 Scalar music is interesting precisely because of this doubleness. When 

moving musical patterns along a scale, composers inevitably transform their material 

in subtle ways, creating a pleasing mixture of identity and difference.

For scalar music to be successful, these induced variations must be small—other-

wise, listeners would not be able to treat (D, E, F) as being essentially similar to (C, D, 

E). Figure 4.3.1a presents an example of a scale that fails spectacularly in this regard. 

Scalar transposition transforms (C, Cs, D) (analogous to “Do, a deer”) into (Cs, 

D, Bf) (“Re, a . . . drop?!!?!?”), creating an eight-semitone step that sounds nothing 

whatsoever like the one-semitone step between C and Cs. By contrast, Figure 4.3.1b 

presents a relatively even three-note scale, in which scalar transposition is completely 

successful and gestures retain their shape as they are transposed. Such passages are 

common in Western music, demonstrating that scalar terminology can be useful even 

when we are investigating objects that are not traditionally considered to be scales.

Clearly, scalar transposition will be precisely equal to chromatic transposition 

when the scale’s notes are distributed perfectly evenly in pitch-class space—as in 

the case of the familiar whole-tone scale. When the scale is nearly even, then the 

two forms of transposition will be nearly but not exactly the same. In some ways 

this latter situation is preferable: scalar transposition along a perfectly even scale 

does not introduce any variations into the music and can become boring rather 

quickly. A bit of unevenness therefore adds musical interest by introducing a degree 

of variation. Interestingly, we can also make an analogous point about chords. When 

a chord divides the octave perfectly evenly, effi cient voice leading typically involves 

parallel motion in all voices and does not create the effect of independent melodic 

Figure 4.3.1 (a) An uneven scale, in which the step between D and Bf is much larger than 

the others. (b) A small but nearly even scale, containing only the notes {C, E, G}.

12 “Major” and “minor” here mean “big” and “little,” as in Ursa major and Ursa minor; they do not refer 
to the major and minor tonalities.
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lines (Figure 4.3.2). A little bit of unevenness is preferable here as well, allowing us 

to escape parallelism by causing the voices to move unequally. We might therefore 

say that both scales and chords are subject to the Goldilocks Principle—not too much 

evenness, because that would be boring, and not too little, because that would lead 

to musical disorder.

Near evenness therefore plays at least three fundamentally different roles in musi-

cal life: the nearly even collections can be linked to their transpositions by effi cient 

voice leading, they include the acoustically consonant chords, and they also allow 

for scalar transpositions that introduce moderate but not overwhelming amounts of 

variation into musical textures. It is somewhat remarkable that these three separate 

considerations all point in the same musical direction. Intuitively, one would think 

that the requirements for constructing contrapuntal music had nothing in common 

with the requirements for constructing effective scales, and this in turn might lead 

to the expectation that composers had an enormous amount of freedom in creating 

alternative musical languages. The overdetermination of Western chords and scales 

leads to the very opposite conclusion. For insofar as composers are interested in har-

monic consistency, acoustic consonance, or scalar transposition, they will necessarily 

fi nd themselves gravitating toward the same familiar musical objects.

4.4 constructing common scales

Since scales typically function as macroharmonies, tonal composers have reason to 

be interested in scales containing many consonant intervals. And since the octave 

is the most consonant of the intervals, composers have reason to use scales that are 

maximally saturated with octaves—that is, scales in which each note has an octave 

both above it and below it. But this, of course, is just to say that the scale is octave 

repeating. Octave-repeating scales are therefore overdetermined in their own modest 

way: besides being easy to use and remember, they also contain as many octaves as 

they possibly can.

Figure 4.3.2 (a) Chords that divide the octave completely evenly can be connected to their 

transpositions by effi cient but parallel voice leading. (b) Slightly uneven chords can be 

connected to their transpositions by voice leading in which the voices move by different 

distances, creating the sense of counterpoint. (c) Along a completely even scale, scalar 

transposition introduces no variation into music. (d) A small amount of unevenness creates 

slight amounts of variation, which can often be desirable.
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The second-most consonant interval, the acoustically pure perfect fi fth, is just a 

hair’s breadth larger than its familiar equal-tempered cousin. Suppose you would like to 

construct an octave-repeating scale that is maximally saturated with acoustically pure 

fi fths—that is, you would like as many notes as possible to have fi fths both above them 

and below them. It has been known for thousands of years that a fi nite scale can never 

have pure fi fths above and below each of its notes; the best one can do is construct scales 

in which all but two notes have this property—in other words, “stacks of fi fths” such 

as those in Figure 4.4.1. If the scale divides the octave nearly evenly, then the fi nal note 

of the stack is nearly a perfect fi fth away from the initial note.13 Figure 4.4.1 identifi es 

three salient possibilities: a stack of fi ve perfect fi fths falls approximately 0.9 semitones 

short of three octaves, a stack of seven perfect fi fths exceeds four octaves by about 1.137 

semitones, and a stack of twelve perfect fi fths overshoots seven octaves by nearly 0.25 

semitones.14 We can therefore build nearly even scales containing four, six, and eleven 

perfect fi fths, otherwise known as the pentatonic, diatonic, and chromatic scales. The 

pentatonic has a “near fi fth” approximately equal to a minor sixth; the diatonic has a 

“near fi fth” approximately equal to a tritone; and the chromatic scale has a “near fi fth” 

a bit smaller than the perfect fi fth. Different tuning systems will assign slightly differ-

ent sizes to these intervals, depending on how exactly they compromise between the 

demands of evenness and acoustic purity. We will return to this issue momentarily.

Let us now play the same game with thirds. Suppose you would like to create a 

scale maximally saturated with acoustically pure major or minor thirds. Figure 4.4.2 

shows that three acoustically pure major thirds, or four acoustically pure minor 

thirds, are about half a semitone away from an octave. To extend these stacks further 

would create very small melodic intervals that would be awkward to sing and play, 

and this is rarely done in Western music. Instead, musicians consider the cycle C-E-

Gs-C to be closed, containing two pure thirds (C-E and E-Gs) and one “near major 

Figure 4.4.1 (a) A stack of fi ve perfect fi fths falls 0.9 semitones short of three octaves. (b) A 

stack of seven perfect fi fths overshoots four octaves by 1.14 semitones. (c) A stack of twelve 

fi fths overshoots seven octaves by 0.25 semitones. (Note that the Bs is not quite the same as 

Cn.) By eliminating the top note of each stack we can form a relatively even scale with one 

“imperfect fi fth.”

13 Carey and Clampitt (1989) unpack the term “almost” using the mathematics of continued fractions.
14 Beyond twelve notes, a stack of fi fths has microtonal intervals about a quarter of a semitone large, 

which are very diffi cult to sing. We will not consider these scales here.
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third” (Gs-C). (Modern equal temperament of course regularizes the thirds so that 

they are exactly the same size, with the resulting augmented triad dividing the octave 

into three precisely even parts.) Similarly, four minor thirds are considered to form 

a closed cycle A-C-Ef-Gf-A, consisting of three pure minor thirds and one “near 

minor third”—or in equal temperament, four completely equal intervals.

Unlike our stacks of perfect fi fths, these thirds-cycles are too small to serve as sat-

isfying macroharmonies. However, we can combine cycles to make larger collections. 

The hexatonic scale (Figure 4.4.3a) combines two augmented triads at a distance of a 

perfect fi fth. This scale is maximally saturated with major thirds while also containing 

a large number of perfect fi fths. However, it does not divide the octave particularly 

evenly, since its steps are (approximately) one and three semitones large. The octatonic 

scale (Figure 4.4.3b) is analogous to the hexatonic, but is built with minor-third cycles; 

it contains a large number of minor thirds and perfect fi fths. Because its steps are one 

and two semitones large, it is considerably more even than the hexatonic scale. Hexa-

tonic and octatonic are close cousins, being structurally similar and playing important 

roles in nineteenth- and twentieth-century music. A third possibility, the whole-tone 

scale (Figure 4.4.3c), combines two augmented triads at a distance of a major second; 

although it is not particularly saturated with consonances, it is perfectly even. In prin-

ciple, we could use diminished seventh chords to construct a perfectly even eight-note 

scale, although it is not available in twelve-tone equal temperament.

We can also form two-octave stacks of major and minor thirds, as in Figure 4.4.4. 

The thirds can be arranged to produce four familiar scales: diatonic, “acoustic” (or 

melodic minor ascending), harmonic minor, and “harmonic major.”15 The acoustic 

scale is so-called because it is approximately equal to the fi rst seven pitch classes of 

the harmonic series; it is usually labeled relative to the ordering (C, D, E, Fs, G, A, Bf), 

Figure 4.4.2 (a) A stack of four major thirds falls 0.41 

semitones short of an octave. (b) A stack of fi ve minor 

thirds overshoots an octave by 0.62 semitones.

Figure 4.4.3 (a) The hexatonic scale combines two augmented triads at a distance of a 

perfect fi fth. (b) The octatonic scale combines two diminished sevenths at a distance of a 

perfect fi fth. (c) The whole-tone scale combines augmented triads at a distance of a major 

second; it is perfectly even, but contains no perfect fi fths.

15 In principle, there is a fi fth possibility, C-E-Gs-C-Ef-Gf-A, which has two instances of a single note. 
In some tuning systems these two Cs are slightly different.
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known as the “C acoustic collection.”16 (This is equivalent to either the mixolydian 

mode with raised fourth degree or the lydian with lowered seventh.) The harmonic 

scales are the only ones we have considered that are not inversionally symmetrical: 

the harmonic minor is ubiquitous in classical music, while its inversion, the so-called 

harmonic major scale, was investigated by nineteenth-century musicians such as 

Weitzmann and Rimsky-Korsakov.17 It can be described as a major scale with lowered 

sixth degree or as a harmonic minor scale with raised third.

Figure 4.4.5 categorizes our eight scales based on their step sizes. The scales on 

the left—diatonic, acoustic, whole tone, and octatonic—have steps that are at most 

two semitones large, and thirds (two-step scalar intervals) that are either three or 

four semitones large.18 These scales are important because they permit composers to 

import traditional compositional techniques to new scalar environments: by select-

ing adjacent scale tones, a composer can create melodies that are recognizably step-

wise (i.e. whose notes are linked by one- or two-semitone intervals); and by selecting 

scalar “thirds” a composer can create chords that are recognizably “tertian” (i.e. whose 

Figure 4.4.4 Four scales can be represented as nearly even stacks of three major thirds and 

four minor thirds: diatonic (a), acoustic (b), harmonic minor (c), and harmonic major (d).

16 The fi rst thirteen harmonic partials of C are roughly equal to the pitch classes C-C-G-C-E-G-Bf-C-
D-E-Fs-G-A, with the eleventh and thirteenth partials (Fs and A) being rather fl at relative to their equal-
tempered counterparts. The acoustic scale is the best equal-tempered approximation to these notes.

17 See Riley 2004.
18 In their twelve-tone equal-tempered versions; other versions of the scales have steps that are approxi-

mately one or two semitones large, and thirds that are approximately three or four semitones large. Not sur-
prisingly, these scales have been thoroughly investigated, by writers such as Berger (1963), Lendvai (1971), 
Gervais (1971), Whittall (1975), Pressing (1978, 1982), van den Toorn (1983), Howat (1983), Antokoletz 
(1984, 1993), Perle (1984), Russom (1985), Forte (1987, 1990, 1991), Taruskin (1985, 1987, 1996), Parks 
(1989), Cohn (1991), Rahn (1991), Larson (1992), Callender (1998), Clough, Engebretsen, and Kochavi 
(1999), Quinn (2002), Zimmerman (2002), Caballero (2004), and Rappaport (2006). See Tymoczko 1997, 
2002, and 2004 for more.
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Figure 4.4.5 The scales in (a) have steps that are either one or two semitones large, and 

thirds that are three or four semitones large. Those in (b) have at least one step that is three 

semitones large. The top three scales in (b) have thirds that are three or four semitones large. 

The pentatonic scale is enclosed in a box because it is a subset of the diatonic.

adjacent notes are linked by three- or four-semitone intervals). The scales in the sec-

ond group—harmonic minor, harmonic major, hexatonic, and pentatonic—have at 

least one step that is three semitones large, and hence lead to more exotic melodies. 

However, the fi rst three scales have thirds that are three or four semitones large, and 

can again be used to construct “tertian” chords. By contrast, pentatonic thirds are 

four or fi ve semitones large, which means that stacks of pentatonic thirds tend to 

sound like “fourth chords” (that is, chords whose notes are fi ve chromatic steps apart). 

Figure 4.4.6 shows that twentieth-century tonal composers often used the pentatonic 

scale to create the impression of “fourthiness.”

In twelve-tone equal temperament, our scales have another useful property as 

well: they contain every chord that does not itself contain a “chromatic cluster” such 

as {C, Cs, D}.19 The scales thus provide a technique for managing a greatly extended 

harmonic vocabulary that nevertheless stops short of atonality’s extremes—that 

is, composers can construct harmonies by freely choosing notes from one of these 

scales, secure in the knowledge that they will never generate a dissonant chromatic 

cluster. Conversely, the scales provide a ready “reservoir” of melodic notes with which 

to accompany any cluster-free chord. Note in particular that “polychords,” formed 

by superimposing two triads, can always be embedded within one of these scales. 

In this sense, they fi t naturally with the extended tertian sonorities characteristic of 

twentieth-century tonal music.

A fi nal word about tuning and temperament. Temperament enters the pic-

ture because of the need to balance the demands of regularity and acoustic purity. 

A Pythagorean twelve-tone chromatic scale contains acoustically pure fi fths, but 

does not divide the octave precisely evenly. Conversely, the twelve-tone equal-tem-

pered chromatic scale sacrifi ces purity in the name of evenness—with all its steps 

19 Note that from this point of view the pentatonic scale is redundant, since it is a subset of the diatonic.
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being precisely the same size, but its fi fths being very slightly impure.20 Beyond these 

two alternatives are a variety of other options, such as just intonation and mean-

tone tuning, each enforcing a slightly different compromise between evenness and 

euphony. The important point is that the scales we have been considering will be 

interesting no matter which intonational compromise we favor, simply because they 

divide the octave fairly evenly, while also containing a large number of consonances.21 

Figure 4.4.6 Diatonic fourths and pentatonic thirds. In (a), from mm. 34–35 of Debussy’s 

“La fi lle aux cheveux de lin,” diatonic fourths give way to pentatonic thirds. In (b), from Ligeti’s 

Piano Concerto (second movement, mm. 60–61) diatonic fi fths are superimposed on pentatonic 

fourths (the inversions of pentatonic thirds). In (c), Herbie Hancock uses pentatonic thirds in 

the fi fth chorus of “Eye of the Hurricane,” from the album Maiden Voyage. (d) Pentatonic thirds 

at the end of the chorus of the Decemberists’ “Here I Dreamt I Was an Architect.”

20 Similarly, in the just major scale, six of the seven thirds are acoustically pure, but one of the six perfect 
fi fths is not; alternative tuning schemes redistribute the unevenness differently among the various intervals.

21 In some alternative tuning systems there may be possibilities not considered here. For example, Paul 
Erlich (personal communication) has pointed out that in 22-tone equal temperament, it is possible to 
construct scales with fi ve minor thirds and two major thirds.
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That so many of them can be played on the ordinary piano keyboard is testimony to 

the power and fl exibility of the twelve-tone equal-tempered system.

4.5 modulation and voice leading

Figure 4.5.1 presents the transition section from the fi rst movement of Mozart’s 

G major Piano Sonata, K. 283. The fi rst three bars are sequential, transposing the 

same music up one step at each repetition, while the last three bars contain a second 

sequence, now transposed up two steps at a time. As the music repeats, the accidentals 

change: Fn moves to Fs in measure 4 and Cn moves to Cs in m. 6.

Suppose we ask a naive question: why say that Mozart’s music changes scale? Why 

not say instead that Mozart uses a nine-note scale containing all the white notes plus 

Fs and Cs? The answer lies in the music’s sequential structure: we would like to say 

that the leaps (D, F), (E, G), and (Fs, A), are two-step scalar intervals, but there can be 

no scale in which (D, F), (E, G), and (Fs, A) are all two steps apart.22 Thus, if we wish 

to claim that the passage is a sequence—the same pattern repeated at different musi-

cal levels—we are required to postulate changes in the underlying scale.

In fact, we are forced to postulate specifi c voice leadings between scales. This is 

because the sequence of scalar intervals will be preserved only if we assert that the 

F moves up by semitone to the Fs, and the Cn moves up by semitone to Cs. To see 

why, look at the last six notes in the fourth bar of the example, D-F-E-G-Fs-A. Pre-

sumably, we would like to say that the music here consists in a repeating “up two, 

down one” pattern. But if this is right, then the Fn and Fs must occupy the same 

Figure 4.5.1 (a) The transition from the fi rst movement of Mozart’s G major Piano Sonata, 

K. 283. (b) The passage involves two voice leadings between scales.

22 Such a scale would have to contain E, F, Fs, and G, in which case the interval E-G would be at least 
three scale steps large.
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abstract  position: the note Fn is one step above E, the note Fs is one step below G, 

and the distance E-G is two scale steps. The only way these facts are consistent is if 

the scale degree that used to be located at F has somehow moved to Fs—or in other 

words, if there has been a voice leading between scales.

We conclude that a piece’s scalar structure can determine specifi c voice leadings 

between its macroharmonies. It is our desire to analyze the music using scale steps, 

and in particular to do justice to its sequential structure, that requires us to postu-

late specifi c scalar voice leadings. I fi nd it useful here to imagine a frog hopping in a 

regular way around a gently drifting circle of lily pads—say, forward by two lily pads, 

back by one lily pad, forward by two, back by one, and so on (Figure 4.5.2). As the 

frog hops, the fourth lily pad moves into a new position, with the others remaining 

fi xed. Clearly, to describe the frog’s motion perspicuously, we need to measure in 

units of lily pads. (It would be somewhat odd to describe it as hopping forward by 10 

centimeters, backward by 3 centimeters, and so on, oblivious to the fact that the size 

of its jumps is determined by the position of the pads!) But we also need to take into 

account the fact that the lily pads are themselves shifting: the phrase “lily pad #3” acts 

as a kind of variable that can refer to various locations in physical space.23 In much 

the same way, we often want to analyze music using scale steps even while the scales 

themselves are changing. In these contexts a scale degree is a kind of abstract address 

(“the musical location one step above E and one step below G”) that can point to a 

variety of different chromatic locations (such as Fn or Fs).24

We can now see that traditional modulation is typically a two-stage business. 

Modulation is often initiated by voice leading between scales—the fourth degree 

gets raised by semitone, the leading tone gets lowered, and so on (Figure 4.5.3). This 

change of scale permits the introduction of the new key’s V7 chord, setting the stage 

2 4

3

1

Figure 4.5.2 A frog, 

hopping along a circle 

of gently shifting lily 

pads.

23 The idea of a scale degree as pointer is captured by Agmon’s two-dimensional model of the diatonic 
system (Agmon 1989), which plays a role in forthcoming work by Steven Rings.

24 Some music uses variable scale degrees that can come in multiple forms. For example, the seventh 
scale degree in classical minor-key music can occur either as a raised leading tone or as a lowered subtonic. 
Here, it is as if the lily pads were moving much more rapidly, with the abstract address “seventh scale 
degree” shifting from leading tone to fl atted seventh on a measure-by-measure (or even beat-by-beat) 
basis. Unfortunately, it would take us too far afi eld to consider fl exible scale degrees in more detail.
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for a shift in the tonal center. Thus, in the typical modulation from tonic to domi-

nant, the raising of the fourth scale degree occurs prior to the conclusion of the V7–I 

cadence in the new key. (In fact, it sometimes takes a while for our ears to be con-

vinced that the scale shift represents a genuine change in tonic, rather than a passing 

melodic infl ection.) In classical music, shifts between parallel keys (such as C major 

and C minor) are unique insofar as they do not involve any change of tonic. But 

in twentieth-century tonality, we encounter a much wider range of tonic-preserving 

modulations, including all the shifts between parallel diatonic modes.

It is important to understand that the points I have been making do not depend in 

any way on notation. The question is about conceptualizing music in terms of scalar 

distances, and this does not require that the music be notated at all—in the case of our 

Mozart example, it merely requires that it be useful to conceptualize the distances F-A 

and Fs-A as thirds, and hence to infer that the note F has moved to Fs. Nevertheless, 

notation can often help us determine voice-leading relationships among scales. Sup-

pose we imagine that the seven letter names A–G represent distinct musical voices, 

so that there is an “A” voice, a “B” voice, and so on. Accidentals can then be taken to 

indicate how the letter-voices move: thus when Mozart replaces Fn with Fs, he signals 

that the “F voice” has moved up by semitone to Fs. In other words, standard musical 

notation faithfully refl ects the fact that the fi rst modulation in Figure 4.5.1 occurs by 

way of the voice leading (C, D, E, F, G, A, B)®(C, D, E, Fs, G, A, B), while the second 

occurs by way of (C, D, E, Fs, G, A, B)®(Cs, D, E, Fs, G, A, B).

Of course, scalar voice leading can occur in nonmodulatory contexts as well. Con-

sider, for example, the passages in Figure 4.5.4. In the fi rst, the notation suggests that 

the G in a Bf major scale moves down to Gf, creating Bf harmonic major, while 

in the second it suggests that F moves up to Fs, producing G harmonic minor. We 

can experience this difference without musical notation: for instance, an improvising 

musician might play the diminished chord in Figure 4.5.4a, anticipating a continu-

ation whereby the Gf moves downward to F, while on another occasion the same 

Figure 4.5.3 (a) Classical modulation as a two-stage process. Here a modulation from A 

major to E major, in which the scale shifts before the tonal center (represented by the boxed 

note). Thus we fi rst change D to Ds and then shift the tonic (boxed) note from A to E. (b) In 

twentieth-century tonality, one frequently fi nds a change of scale without a change of tonal 

center. For example, The Who’s “I Can’t Explain” moves from E mixolydian in the verse to E 

major in the chorus; here the tonal center stays fi xed while D moves to Ds.
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improviser might play the same chord anticipating a continuation where the Fs rises 

to G. Our musical expectations are powerful enough that the same chord can even 

sound different in these two contexts. (Certainly, when imagining the passages in my 

head I experience them quite differently.) Here again, notation can clarify matters, 

even though the actual phenomena do not depend on notation itself.

4.6  voice leading between common 
scales

In twelve-tone equal temperament, the four most even seven-note scales are the dia-

tonic, acoustic, harmonic minor, and harmonic major. Consequently, their voice-

leading relations are modeled by one of the lattices described in §3.11 and repeated 

here as Figure 4.6.1.25 As mentioned earlier, the diatonic circle of fi fths zigzags three-

dimensionally through the center of the fi gure, moving successively up, right, and into 

the paper. It turns out that the remaining scales are also linked by a chain of single-

semitone voice leadings. For instance, beginning with A harmonic major, we fi nd

A harmonic major®A harmonic minor®D acoustic®E harmonic major®
E harmonic minor ® A acoustic ®. . . . 

This is a second “circle of fi fths” whose unit of sequential repetition is three scales 

long. These scales wind their way around the diatonic circle, somewhat in the man-

ner of a double helix. However, the two strands are not quite the same shape: where 

the diatonic circle takes a right-angled turn after every step, the nondiatonic strand 

moves in a straight line through each acoustic collection.

Figure 4.5.4 Spelling often indicates a difference in musical function. Here, the chord {A, C, 

Ef, Gf} would typically lead back to a Bf major triad, while {A, C, Ef, Fs} would lead to G 

minor. Spelling can be interpreted as indicating specifi c voice leadings between scales.

25 In twelve-tone non-equal-tempered contexts, we would fi nd similar lattices whose vertices are 
minutely displaced.
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The harmonic and acoustic scales are closely related to the transpositionally sym-

metrical whole-tone, hexatonic, and octatonic scales. Figure 4.6.2 shows that we 

can change whole tone into acoustic by a voice leading in which a single pitch class 

“splits” into its chromatic neighbors; because of the whole-tone scale’s sixfold trans-

positional symmetry, there are six possible acoustic scales that can be reached in this 

way.26 Similarly, octatonic can be transformed into acoustic by the reverse process—a 

transformation in which a major second “merges” into its central note. (Again, since 

the octatonic scale is transpositionally symmetrical, there are four ways to “merge” 

into an acoustic collection.) Octatonic can move to harmonic major or minor by a 

more complicated process of “merging”: here, we fuse three notes spanning a minor 

third, producing the minor second in the center of the span—for instance, {Cs, Ds, 

E} becomes {D, Ef}, transforming C octatonic into G harmonic minor. (There are 

eight such possibilities for every octatonic scale, four leading to harmonic major and 

four leading to harmonic minor.) Finally, the hexatonic can be transformed into har-

monic major or minor by the reverse process: here, a minor second such as {Gs, A} 

splits to become a three-note scale fragment whose outer notes span it, such as {G, 

Af, Bf}. There are six such possibilities for every hexatonic scale, three leading to 

harmonic major and three leading to harmonic minor.

26 Callender (1998) uses the words “split” and “fuse” to refer to these “non-bijective” voice leadings 
(§4.9). Related discussions of scale-to-scale voice leading (though not always using those terms) can be 
found in Perle 1984, Taruskin 1996, Howat 1983, Antokoletz 1993, and Tymoczko 2004.

Figure 4.6.1 Voice leadings among seven-note scales. The diatonic circle of fi fths (dark solid 

line) starts at C diatonic (lower left front), while the nondiatonic circle (dashed line) starts at 

G acoustic (lower right front).
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Figure 4.6.3 describes these relationships using an inverted pyramid, with the 

three transpositionally symmetrical scales on the top line. The middle line contains 

the nondiatonic seven-note scales, while the diatonic scale is at the bottom. Scales are 

connected by line segments if they can be linked by particularly effi cient voice lead-

ing: either a “split” or “merge” described in the preceding paragraph, or one of the 

single-semitone voice leadings represented on Figure 4.6.1. The numbers above each 

line indicate the presence of multiple possibilities for that particular kind of voice 

leading. Thus the notation “¬6” on the line connecting whole tone to acoustic indi-

cates that there are six different ways to “split” a note of the whole-tone scale, creating 

six different acoustic collections. By contrast, “1®” points in the opposite direction, 

because for any particular acoustic scale there is only one way to “merge” its notes to 

create a whole-tone collection.

The table in Figure 4.6.4 shows how the nondiatonic seven-note collections can 

be used to connect transpositionally symmetrical scales. Every scale shares six of its 

seven notes with the octatonic scale to its left, and fi ve of six notes with the whole-

tone or hexatonic scale above it. (For example, G acoustic and Df acoustic share six 

notes with Cs-D octatonic and fi ve notes with Df whole tone.) In addition, each 

seven-note scale shares six of its notes with some diatonic collection. Figure 4.6.5 tries 

to convey the same information graphically: the central core features the full cycle 

of 36  seven-note nondiatonic scales, each linked to its neighbors by single-semitone 

voice leading. On the outside of this central circle runs the diatonic circle of fi fths; 

another can be found within the central circle. (Here, the double-headed arrows con-

nect scales sharing six of their seven notes: the A harmonic major  collection, for exam-

ple, shares six notes with A diatonic; while the next collection along the  non-diatonic 

Figure 4.6.2 (a) To transform a whole-tone scale into an acoustic, “split” one note into its 

two chromatic neighbors. (b) To transform an octatonic scale into an acoustic, “merge” a 

major second into the note at its center. (c) To transform an octatonic scale into a harmonic 

major or minor, “merge” three notes spanning a minor third into the semitone they enclose. 

(d) To transform a hexatonic collection into a harmonic major or minor, “split” a semitone 

into a three-note scale-fragment enclosing it.



Scales 135

circle, A harmonic minor, shares six notes with C diatonic.) The labels along the cen-

tral circle indicate the nearest octatonic, whole-tone, and hexatonic scales. This exotic 

and almost alchemistical graph provides a way to visualize all the voice leadings we 

have been discussing. I encourage you to verify that Figures 4.6.1, 4.6.3, and 4.6.5 

provide different perspectives on the same basic relationships.

Figure 4.6.3 Voice leadings among familiar scales. The transpositionally symmetrical scales 

are at the top. The harmonic and acoustic scales mediate between these and the diatonic. 

The numbers indicate how many scales of each type can be connected by the voice leadings 

described in Figures 4.6.1 and 4.6.2. Thus the whole-tone scale can be connected to six 

different acoustic scales by a “split,” while every acoustic scale can be connected to only one 

whole-tone scale by a “merge.”

Figure 4.6.4 Each scale in the table shares six of its seven notes with the octatonic scale to its 

left, and contains fi ve of the six notes in the whole-tone or hexatonic scale above it.
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4.7 two examples

The previous section placed the acoustic and harmonic scales between the diatonic 

and the transpositionally symmetrical scales, since each shares six notes with some 

diatonic collection, while also being very close to some octatonic, whole-tone, and 

hexatonic collections. (This is represented by the fact that the harmonic and acoustic 

scales occupy the central line of the inverted pyramid in Figure 4.6.3.) And in fact, 

twentieth-century composers often use acoustic and harmonic collections to mediate 

between these different harmonic worlds. For example, at the end of the central sec-

tion of “Mouvement,” Debussy moves from Fs mixolydian to C whole tone by way of 

the E acoustic scale (Figure 4.7.1). This acoustic collection is as close as possible to the 

other two, sharing fi ve of the whole-tone scale’s six notes, and six of the diatonic scale’s 

seven notes. In this way, Debussy creates a smooth transition from familiar diatonic 

modality to the much more exotic world of the whole-tone scale. This was one of 

Figure 4.6.5 A geometrical representation of the voice leading between diatonic, acoustic, 

harmonic major/minor, whole-tone, hexatonic, and octatonic scales. Here “wt 1” and “wt 2” 

refer to the Cs and D whole tone scales, respectively; “oct 1,” “oct 2,” and “oct 3” refer to the 

Cs-D, D-Ef, and Ds-E octatonic scales; and “hex 1,” “hex 2,” “hex 3,” and “hex 4” refer to the 

Cs-D, D-Ef, Ds-E, and E-F hexatonic scales.
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his favorite compositional techniques, with similar progressions appearing repeatedly 

throughout his works.27

For a more complicated example, consider “Sunlight Streaming in the Chamber,” 

the fi rst of Prokofi ev’s 1916 Five Poems of Anna Akhmatova (Figure 4.7.2). The music 

begins with a repeating fi gure that echoes the opening of Stravinsky’s Petrouchka, 

composed just a few years earlier. I interpret the underlying harmony here as an E 

major triad, which can be connected to the following C major by semitonal voice 

leading. C major then initiates a stepwise descent through B minor, A major, G major, 

and Fs major, each generating familiar scales. The music then shifts suddenly to C 

diatonic, moving toward a half cadence on an Fs half-diminished seventh. The sec-

ond half of the song begins by alternating between E minor (with added C) and A9 

chord (with G in the bass), vaguely suggesting ii–V in D major. The piece then shifts 

to D acoustic (A melodic minor) for six measures, ending with a turn to C-Df octa-

tonic. This is the fi rst appearance of the octatonic scale in the piece and it has a some-

what surprising effect, giving the impression of a question mark or raised eyebrow 

rather than an exclamation point.

Figure 4.7.3 graphs Prokofi ev’s scales using the two-dimensional scale lattice of 

Figure 3.11.8. The diatonic and acoustic collections form a compact region of the 

graph: the four diatonic collections (C, G, D, and A) are all adjacent on the zigzag of 

fi fths, with the two acoustic collections (D and E) connected to these scales by single-

semitone voice leading.28 Although the music does not always exploit these connec-

tions, there are a number of transitions that do so. (For instance, the move from B 

melodic minor to A diatonic, or the progression from C diatonic to G diatonic to D 

diatonic.) Overall, there are six shifts involving single-semitone voice leading, fi ve 

or six two-semitone shifts, one or two three-semitone shifts, and one four-semitone 

shift ( Figure 4.7.4). It is interesting that the more dramatic shifts occur at the begin-

ning and end of the song, with the smoother motions concentrated in the middle.

Figure 4.7.1 At the end of the B section of Mouvement, Debussy moves from Fs mixolydian 

to the C whole tone by way of the Fs mode of E acoustic.

27 See Chapter 9 and Tymoczko 2004.
28 Note that I am considering the opening to be in E mixolydian rather than E major; if one wishes to 

assert the presence of E major, then there are fi ve diatonic collections in the piece.
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Figure 4.7.3 The scales in 

Prokofi ev’s piece form a 

connected region.

Figure 4.7.2 
An outline of 

Prokofi ev’s 

Op. 27 No. 1.
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The fi nal modulation deserves some comment. Had Prokofi ev wanted to create a 

smooth transition from the antepenultimate D diatonic scale to the concluding CDf 

octatonic, he could have done so, since both scales share almost all their notes with A 

acoustic. (See Figure 4.7.3, where this is obvious.) However, the penultimate acoustic 

collection does not share a large number of notes with the fi nal octatonic scale. (It 

does however share fi ve notes with the preceding D diatonic.) Nevertheless, this D 

acoustic scale still has audible links to both the diatonic and octatonic scales, since 

it is “nearly transpositionally related” to both (§2.8). In other words, the mediation 

here is one of internal intervallic structure rather than particular common tones: 

Figure 4.7.5 shows that the acoustic scale shares the step-interval sequence 2-1-2-2-2 

with the diatonic and the sequence 2-1-2-1-2 with the octatonic. Consequently, the 

piece articulates a gradual transition at the level of interval content, with the acoustic 

scale containing more tritones than the diatonic, but fewer than the octatonic, fewer 

fi fths than the diatonic, but as many as the octatonic, and so on.29

Overall, Prokofi ev’s music suggests a somewhat loose and playful structure—

the sense is of a relatively intuitive use of closely related scales, rather than a more 

logical or systematic exploration. Nevertheless, it is signifi cant that he uses closely 

related scales that can be linked by effi cient voice leading, and that he often modu-

lates so as to highlight these connections. It is also relevant that his scalar vocab-

ulary consists entirely of scales we have discussed, suggesting that our abstract, 

scale-theoretic  considerations do indeed capture his actual concerns. Chapter 9 con-

tinues this line of argument, demonstrating that the techniques we have  identifi ed 

Figure 4.7.4 Prokofi ev typically modulates by relatively effi cient 

voice leading, with the most dramatic changes occurring at the 

beginning and end of the piece. Here, the numbers refer to the total 

number of semitonal shifts required to connect each scale to its 

successor: thus, the number “3” in the second line indicates that 

it takes 3 semitonal shifts (G®Gs, A®As, C®Cs) to change G 

diatonic into E acoustic.

29 This sort of transition occurs frequently in twentieth-century music, for instance at the opening of 
Debussy’s “Fêtes” (the second of the Nocturnes) and the third of Prokofi ev’s Ten Pieces, Op. 12.
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here are  symptomatic of a much more general practice stretching from late nineteenth-

 century tonality to contemporary jazz and postminimalism.

4.8  scalar and interscalar 
transposition

Figure 4.8.1 shows two appearances of the subject of Shostakovich’s Fugue in E 

minor, one in E aeolian, and the other in G mixolydian.30 The two forms of the sub-

ject are related by a double process of transposition: a scalar transposition downward 

by diatonic step, from aeolian to mixolydian, combined with chromatic transposi-

tion upward by fi ve semitones, from G diatonic to C diatonic (Figure 4.8.2). Though 

this combination of scalar and chromatic transposition can occasionally be found in 

earlier centuries, it plays a central role in twentieth-century tonal composition, par-

ticularly in the works of composers such as Debussy, Ravel, Stravinsky, Shostakovich, 

Steve Reich, and John Adams. By way of illustration, Figure 4.8.3 cites rehearsal 13 

of Debussy’s “Fêtes,” where scalar transposition upward by two steps combines with 

Figure 4.7.5 In Prokofi ev’s piece the acoustic scale mediates between diatonic and octatonic 

in a somewhat abstract way. On the left side of (a) we see that the A acoustic scale can 

mediate between D diatonic and the C-Df octatonic, sharing almost all of its notes with both 

collections. However, the right side of (a) shows that Prokofi ev presents the D acoustic scale 

instead. (b) When we consider intervallic structure, we see that the acoustic is similar to both 

diatonic and octatonic, sharing step patterns 2-1-2-1-2 with the octatonic and 2-1-2-2-2 

with the diatonic.

30 The theme itself does not contain the aeolian mode’s Fs. However, it is present both in the key sig-
nature and the countersubject.
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chromatic transposition downward by three steps. The resulting voice leading shifts 

Af dorian into Af lydian, raising Gf, Cf, and Df.

Note that these two kinds of transposition can sometimes combine to produce a 

simple change of accidentals, as in the opening of the Rondo from Clementi’s Piano 

Sonata, Op. 25 No. 2 (Figure 4.8.4). The theme, which originally begins on scale 

degree 5 in G major, returns on scale degree 1 of D major, with Cs replacing Cn. 

Though one could say that Clementi simply moved the note Cn up by semitone, it is 

also possible to describe the relationship as combining two separate transpositions: 

scalar transposition down by four scale degrees followed by chromatic transposi-

tion up seven semitones. These two transpositions nearly cancel each other out, 

 leaving behind the single-semitone shift C®Cs as a residue. As we will see, there 

Figure 4.8.1 The subject 

in Shostakovich’s Fugue in 

E minor, Op. 87 No. 4, as it 

appears at the opening of the 

piece and in m. 22.

Figure 4.8.2 The two forms of the subject relate by scalar and chromatic transposition.

Figure 4.8.3 Rehearsal 13 of Debussy’s “Fêtes” (Nocturnes II).
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are a number of musical circumstances in which it is profi table to think in precisely 

this way.

If scalar transposition moves a musical pattern along a single scale, then a 

slightly more general process of “interscalar transposition” moves a pattern from one 

scale to another.31 Figure 4.8.5 tracks the main motive of Bach’s D minor invention as 

it moves from D harmonic minor scale to F major and D melodic minor ascending 

(G acoustic). Although the scale changes, each form of the motive uses precisely the 

same set of scalar intervals. In fact, if we label the notes of D harmonic minor and F 

major in the standard way, we can use the very same scale degree numbers to describe 

the fi rst two passages in the fi gure. In this sense, we can say that they are related 

by zero-step interscalar transposition. Similarly, if we label the degrees of D melodic 

minor starting from D, then Figure 4.8.5a relates to (c) by two-step interscalar trans-

position—meaning that each note of Figure 4.8.5c is two scale degrees higher than 

the corresponding note of Figure 4.8.5a. Of course, the number of steps involved in 

an interscalar transposition depends on our arbitrary choice of the fi rst scale degree. 

What is important is the fact that two passages are related by interscalar transposi-

tion, not the particular label we apply to the relationship.

Figure 4.8.4 The D-major theme in 

the Rondo from Clementi’s Piano 

Sonata, Op. 25 No. 2, originally 

begins on scale degree 5 in G major, 

but returns in the transition with Cn 

replaced by Cs. The two forms of the 

theme can be related by a combination 

of scalar and chromatic transposition.

Figure 4.8.5 Three forms of the motive in 

Bach’s D minor two-part invention. Scale 

degrees are shown above each example.

31 See Santa 1999 and Hook 2007a. Hook (2007b and 2008) and Tymoczko (2005) explore the relation 
between key signatures and interscalar transpositions.
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Figure 4.8.6 identifi es interscalar transpositions in Debussy, Stravinsky, and Shos-

takovich. The fi rst two examples involve interscalar transposition from the diatonic 

scale to the acoustic. The third is interesting insofar as its “scales” are simple triads. 

(This is the gimmick of Shostakovich’s A major fugue; it is a “bugle fugue” that treats 

triads as if they were scales.) Thus in Figure 4.8.6c, the main theme originally appears 

in the A major triad (top line); when it returns in minor, at m. 21, it has moved to a 

new three-note scale, Fs minor. This is interscalar transposition by zero steps (middle 

line). Eventually, in the stretto, the theme is transposed diatonically along the A major 

scale (bottom line). Thus the bottom two lines of Figure 4.8.6c are connected by 

descending-step interscalar transposition.32

Figure 4.8.6 Interscalar transposition in the opening of Debussy’s “Fêtes” (a), Stravinsky’s 

Rite of Spring (b), and Shostakovich’s A major fugue (c).

32 Transposing (Cs, A, Fs) down by step produces (A, Fs, Cs). A zero step interscalar transposition 
takes (A, Fs, Cs)—or “third, root, fi fth” in the minor triad—to (Cs, A, E), or “third, root, fi fth” in the 
major triad.
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One terminological point: the previous examples describe what might be called 

“interscalar transpositions in pitch-class space,” since they link octave-repeating scales 

with the same number of notes. There is an even more general musical transforma-

tion that relates scales of different sizes, which we can call “interscalar transposition 

in pitch space.” Figure 4.8.7 presents examples from Debussy and Steve Reich. These 

transformations introduce octave-dependent changes into the music: for example, 

the D5 in the top line of Figure 4.8.7a gets mapped to C, whereas the D4 gets mapped 

to Bf. Consequently, we cannot speak of “what happens to the pitch class D”; instead, 

we need to speak about what happens to specifi c pitches in specifi c registers. By con-

trast, when the scales have the same number of notes, then all pitches in a pitch class 

are transformed in exactly the same way. (For example, the interscalar transposition 

in Figure 4.8.6a moves every D up by three semitones.) This in turn means that these 

interscalar transpositions can be modeled as voice leadings between pitch-class sets. 

This is precisely why they will be important in what follows.

Figure 4.8.7 (a) “Fêtes” presents the same pattern of scalar intervals in the seven-note 

dorian mode and the six-note whole-tone scale. (b) Steve Reich’s Variations for Winds, Strings, 

and Keyboards presents the same pattern of scalar intervals in the six-note diatonic hexachord 

and the fi ve-note pentatonic scale.

4.9  interscalar transposition and 
voice leading

In the fi nal sections of this chapter I want to switch gears somewhat, exploring the 

connections between scale theory and voice leading. To prepare for this discussion we 

need to make a subtle conceptual shift: instead of thinking of chords as being embed-

ded within larger scales, we will start to think of them as scales unto themselves. In other 

words, we will think of the C major chord as being a “scale” whose three scale degrees 

are C, E, and G, respectively. (This is just what we did in discussing Figure 4.8.6c, 
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Shostakovich’s A major fugue.) This will allow us to represent the voice leading (C, 

E, G)®(B, E, G) as an interscalar transposition that sends the fi rst scale degree of the 

C major triad to the third scale degree of the E minor triad (C®B), the second scale 

degree to the fi rst (E®E), and the third scale degree to the second (G®G). Once we 

start thinking in this way, we will see that there is a deep connection between the notion 

of an “interscalar transposition” and the general problem of identifying effi cient voice 

leadings between chords.

To understand why, notice that scalar and interscalar transpositions represent a 

very special kind of voice leading: not only are they free of voice crossings, but they 

remain so no matter how their voices are distributed in pitch space. (For this reason, I 

will say that they are “strongly crossing free.”) For example, the fi rst voice leading in 

Figure 4.9.1 has no crossings no matter how we change the register of its individual 

voices. By contrast, the second voice leading is only weakly crossing free, since trans-

posing its lowest voice up by an octave creates a crossing between the bottom two 

voices. Given a strongly crossing-free voice leading, we can always arrange its voices 

so that each chord spans less than an octave, with ascending steps in one chord being 

sent to ascending steps in the other (Figure 4.9.2).33 But this in turn implies that the 

voice leading is a scalar or interscalar transposition, since it sends any scalar interval 

in the fi rst chord to the same scalar interval in the second.

Figure 4.9.1 The voice leading in (a) is 

strongly crossing free: no matter what octave 

its voices are in, there will never be crossing. 

The voice leading in (b) is crossing free but not 

strongly so, since a crossing is created when the 

lowest voice moves up by octave (c).

Figure 4.9.2 In a strongly crossing-free voice 

leading, the voices can be transposed by 

octave so that each chord is in “close registral 

position,” spanning less than an octave. 

Ascending steps in one collection are sent to 

ascending steps in the other.

33 Conversely, any voice leading that can be arranged in this way is an interscalar transposition.

The connection to voice leading lies precisely here: in §2.7, we saw that, for any 

“reasonable” measure of voice-leading size, removing voice crossings never makes 

the voice leading larger. (See also Appendix A.) This means that we can take any 

voice leading and, by repeatedly removing voice crossings and changing the octave 

in which voices appear, eventually produce a scalar or interscalar transposition. Since 

octave shifts don’t affect the voice leading, and since removing crossings never makes 

it larger, the fi nal voice leading is guaranteed to be at least as small as the original (Fig-

ure 4.9.3). Consequently, there is always a maximally effi cient voice leading between 
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any two chords that is a scalar 

or interscalar transposition.34 

It follows that the concept of 

interscalar transposition will 

be relevant wherever effi cient 

voice leading is important.

Let me illustrate with a few 

concrete examples. Figure 4.9.4 

identifi es the minimal voice 

leading between C major and 

A minor triads. If we consider 

each triad to be a scale, with 

root, third, and fi fth being its 

fi rst, second, and third scale 

degrees, then the voice leading 

is an interscalar transposition 

by one ascending step.35 Simi-

larly, the most effi cient voice leading between the C major and C minor triads is an 

interscalar transposition by zero steps (root to root). The fi gure also shows that the 

most effi cient voice leading between Cø7 and Ef7 chords is an interscalar transposi-

tion by three steps (root to seventh), and the most effi cient voice leading between F 

diatonic and G acoustic scales is an interscalar transposition by one descending step 

(scale degree one to scale degree seven).36 Geometrically, interscalar transpositions can 

be represented as collections of crossing-free paths between two concentric circles, as 

in Figure 4.9.5. Appendix A shows that these voice leadings correspond to paths that 

do not “bounce off” the mirror boundaries of higher-dimensional chord space.

Figure 4.9.3 Repeatedly octave-transposing and 

removing crossings will eventually produce a strongly 

crossing-free voice leading. (a) Transposing the bass 

voice up by octave produces a crossing (b). Switching 

the bass and tenor in the fi rst chord removes the 

crossing (c). Transposing the tenor up by octave 

produces another crossing (d). Switching soprano and 

alto in the fi rst chord removes this crossing (e), yielding 

a strongly crossing-free voice leading. Since removing 

crossings never makes a voice leading larger, the voice 

leading in (e) is at least as small as that in (a).

34 Here and for the remainder of this section, I use “voice leading” to mean “voice leading without dou-
blings, in which every note in one chord is mapped to exactly one note in the other.” Mathematically, these 
are called bijective voice leadings. We will return to the issue of doublings at the end of the section.

35 Here and in what follows, I always consider the root of a traditional chord to be its fi rst scale degree.
36 Considering G to be the fi rst scale degree of the G acoustic collection. If we consider the scale to be 

D melodic minor and number its scale degrees from D, then the relevant interscalar transposition is two 
ascending steps.

Figure 4.9.4 The minimal voice leading 

between C major and A minor triads (a), 

between C major and C minor triads (b), 

between Cø7 and Ef7 chords (c), and between 

F diatonic and G acoustic scales (d). All are 

interscalar transpositions.
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Throughout this book I have emphasized that Western music involves the simulta-

neous satisfaction of two independent constraints—a vertical constraint that requires 

chords to be structurally similar, and a horizontal constraint that dictates that they 

be connected by effi cient voice leadings. Clearly, to satisfy these constraints, a com-

poser must be able to fi nd the effi cient voice leadings between arbitrary chords. This 

need is all the more pressing when we refl ect that composers regularly ask questions 

that require sorting through a large number of possibilities. Suppose, for example, 

you write the chord in Figure 4.9.6, and decide to move it to some nearby dominant 

seventh; to solve this problem, it is (in principle) necessary to search 288 different 

voice leadings to all twelve dominant sevenths. It is rather remarkable, therefore, that 

composers, theorists, and even beginning music students manage to fi nd effi cient 

voice leadings so quickly, and with so little apparent effort.

Our discussion helps explain how this can be possible. Rather than searching all the 

different voice leadings between chords, musicians need consider only the small number 

of interscalar transpositions. For example, if you want to fi nd a minimal voice lead-

ing between the C half-diminished and F dominant seventh chords, it is suffi cient to 

consider the four interscalar transpositions shown in Figure 4.9.7—mapping the root 

of the half-diminished to the root, third, fi fth, and seventh of the dominant seventh 

chord, respectively. This reduces the number of potential voice leadings by a factor of six, 

from twenty-four down to four. (For larger chords the reduction of effort is even more 

Figure 4.9.5 Strongly crossing-

free voice leadings can be 

represented geometrically 

by non-intersecting paths 

connecting two concentric 

circles. Here the music 

progresses radially outward, 

from the inner circle to the 

outer. The voice leading (F, Gs, 

B, Ds)®(E, Gs, B, D) holds Gs 

and B constant, moving F and 

Ds down by semitone.

Figure 4.9.6 Suppose a composer decides to connect this F half-

diminished seventh chord to some dominant seventh chord by 

maximally effi cient voice leading. There are almost three hundred 

possible voice leadings to consider. Yet musicians manage to solve 

problems like this very quickly.
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dramatic.) Thus when harmony teachers enjoin their students to avoid voice crossings, 

they are actually achieving two distinct aims: they are encouraging a kind of composi-

tion in which the voices remain registrally separate, and hence easy to distinguish aurally, 

while also drastically reducing the “search space” that students must consider when look-

ing for effi cient voice leadings. This last point, though rarely discussed, is arguably cen-

tral to the whole enterprise of Western composition: for if “crossed” voice leadings could 

be smaller than their uncrossed counterparts, it would be enormously more diffi cult to 

combine harmonic consistency with effi cient voice leading—simply because it would be 

very hard to sort through all the voice-leading possibilities.

It follows that there are both perceptual and conceptual reasons to expect that 

voice crossings should be infrequent, since crossings make life diffi cult for both lis-

tener and composer. And when we look at actual music we fi nd that voice cross-

ings are indeed rare, occurring only 5% of the time even in the most polyphonic of 

styles.37 Furthermore, when they do occur it is often profi table to interpret them as 

embellishments of more basic, crossing-free paradigms. For example, the opening 

of Palestrina’s motet “Adoramus Te,” shown in Figure 4.9.8, can plausibly be said to 

be based on crossing-free voice leadings in the bottom staff—with the crossing not 

only serving to add melodic interest, but also allowing Palestrina to evade the paral-

lel fi fths and octaves that would otherwise occur.38 (Notice that in this passage the 

top three voices typically articulate voice leadings between complete triads, with the 

bass adding doublings—a technique that we will explore later.) Chapters 6 and 7 will 

generalize this observation by showing that a large majority of voice leadings, in a 

large range of music, can be understood as embellishments of a few basic templates, 

all of which are strongly crossing free. This in turn suggests that composers really 

do privilege the crossing-free voice leadings, perhaps thinking of voice crossings as 

surface-level embellishments to be used only on special occasions.

37 The fi gure “5%,” which refers to the percentage of voice leadings containing crossings, is based on a 
statistical survey of a large number of MIDI fi les of vocal compositions by fi fteenth and sixteenth-century 
composers. There is some evidence that the rate of voice crossings gradually decreases over this period. Note 
that some of these voice leadings are only weakly crossing-free.

38 These sorts of voice crossings are quite common in Renaissance music, for example in the opening 
phrase of Lassus’ Prophetiae Sibyllarum.

Figure 4.9.7 In order to fi nd the minimal voice leading between two chords, it is necessary 

to check only the interscalar transpositions between them. Here, the fi rst interscalar 

transposition maps the root of Cø7 to the root of F7, the second maps root to third, the third 

maps root to fi fth, and the fourth maps root to seventh. Having chosen a destination for the 

root, the rest of the voice leading is completely determined by the fact that it is an interscalar 

transposition.
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One word of cau-

tion: for simplicity, I 

have been considering 

voice leadings without 

doublings, in which 

the number of voices 

is equal to the number 

of notes in each of the 

two chords. However, 

it sometimes happens 

that a minimal voice 

leading maps multiple 

notes in the one chord to a single note in the other. For example, the fi rst voice lead-

ing in Figure 4.9.9 is smaller than any of the four-voice voice leadings between the C 

and E major seventh chords. This, clearly, is not an interscalar transposition.39 For-

tunately, in many practical applications, we can ignore this complication, restricting 

our attention to voice leadings without doublings. (Figure 4.9.10 demonstrates that, 

for nearly even three- and four-note chords, maximally effi cient voice leadings are 

almost always doubling free.) In the grand scheme of things, this is quite fortunate, 

for otherwise the composer’s task of fi nding effi cient voice leadings would be consid-

erably more diffi cult than it already is.

Figure 4.9.8 The opening phrase of Palestrina’s “Adoramus Te” 

can be interpreted as embellishing a fundamentally crossing-free 

template.

Figure 4.9.9 The fi ve-voice voice leading on the left 

is smaller than any of the four-voice alternatives. 

Here, three voices move by one semitone, whereas the 

smallest four-voice alternative moves one voice by 

three semitones and one voice by one semitone. Voice 

leadings containing doublings cannot be identifi ed 

using the techniques discussed in this chapter.

All Chords Nearly Even

2 notes 0% 0%

3 notes 10% 1%

4 notes 29% 2%

5 notes 48% 8%

6 notes 61% 19%

7 notes 69% 14%

8 notes 73% 11%

Figure 4.9.10 The probability that the minimal 

voice leading between two randomly chosen 

n-note chords will involve “doublings,” as in 

Figure 4.9.9. The fi rst column represents the 

likelihood of doublings when the chords are 

selected randomly from all pairs of n-note 

chords, while the second represents the 

likelihood when chords are restricted to the four 

most even n-note chords. Nearly even chords 

with four or fewer notes thus require doublings 

only rarely.

39 More precisely, it is not an interscalar transposition between four-note chords; it is an interscalar 
transposition between the fi ve note chords {C, E, E, G, B} and {E, Gs, B, B, Ds}, but it is not obvious how to 
fi gure out which notes to double. There exist effi cient algorithms for solving this problem, but the details 
are too technical to discuss here (see Tymoczko 2006 and 2008b).



theory150

4.10  combining interscalar and 
chromatic transpositions

Let me end by showing how scale theory can be used to model the intuitive knowl-

edge possessed by sophisticated tonal composers. To begin, note that the interscalar 

transpositions linking any transpositions of the same two chord types will always 

be related by individual transposition. For instance, the scalar transpositions linking 

the C major triad to itself are individually transpositionally related to the interscalar 

transpositions linking the C major to the E major triad, and indeed to those connect-

ing any other major triads (Figure 4.10.1). This is because transposition can never 

introduce voice crossings into a voice leading, even when applied individually.

From this it follows that we can decompose any strongly crossing-free voice lead-

ing from C to E major into two parts: a scalar transposition that moves each note 

down by some number of scale steps (relative to the C major triad) and a chro-

matic transposition that moves each note up by some number of semitones. This 

voice leading will be effi cient when these two components nearly cancel out—as, 

for instance, when a one-step descending scalar transposition nearly neutralizes the 

Figure 4.10.1 (a) The scalar and/or interscalar transpositions between any transpositions of 

the same two chord types are always individually T-related. (b) The minimal voice leading 

between C and E major triads can therefore be analyzed as the combination of a one-step 

descending scalar transposition with a four-semitone ascending chromatic transposition. 

(c) More generally, the minimal (three-voice) voice leading between any major triads can be 

depicted as combining chromatic and scalar transposition. As the chromatic transposition 

increases, the descending scalar transposition increases as well, so that the two forms of 

transposition cancel out.



Scales 151

four-semitone ascending chromatic transposition (Figure 4.10.1). In fact, we can 

produce a similar decomposition of any strongly crossing-free voice leading between 

any two major triads. Again, the voice leadings will be effi cient when the two trans-

positions combine to leave each voice roughly where it was: thus in Figure 4.10.1c 

the descending scalar transposition increases as the ascending chromatic transposi-

tion does.

Figure 4.10.2 uses this idea to organize the effi cient voice-leading possibilities 

between half-diminished and dominant seventh chords. Here, we represent voice 

leadings between half-diminished and dominant sevenths as combining an intersca-

lar transposition (from C half-diminished to C dominant seventh) with a chromatic 

transposition to some other dominant seventh. Again, there is an inverse relation-

ship between the two transpositions, so that one counteracts the other. Thus we see 

that effi cient voice leadings occur when scalar or interscalar transpositions neutralize the 

effects of chromatic transpositions.

The upshot is that we can provide a surprising and nontrivial answer to what 

might otherwise seem like a hopeless question: what is it that a composer knows, 

when she knows all the most effi cient voice leadings from one type of chord to 

another? For example, what does a composer know when she can easily identify the 

most effi cient path between any particular half-diminished and dominant seventh 

chords? Our answer is: she knows how to combine interscalar and chromatic transposi-

tions. That is, in the particular case of half-diminished and dominant sevenths, she 

knows how to combine the four templates in Figure 4.10.2a with the various chro-

matic transpositions. Thus a seemingly complicated musical skill—knowing all the 

most effi cient voice leadings between two chord types—reduces to a much simpler 

kind of knowledge, knowing how to combine two familiar kinds of transposition.

In the second half of the book, I show how this idea allows us to understand 

chromatic music “from the inside,” revealing some of the remarkable ways in which 

nineteenth-century composers explored the contrapuntal possibilities available to 

them. For now, let me simply offer a few hints about what is to come. Figure 4.10.3 

analyzes the fi rst four resolutions of the half-diminished seventh chord in the prelude 

to Wagner’s Tristan, showing that the fi rst two involve interscalar transposition by 

zero steps, whereas the last two involve interscalar transposition by ascending step. 

Besides helping us understand these relationships, scale theory can prompt us to ask 

new questions: for example, we might fi nd ourselves wondering whether Wagner uses 

the other two interscalar transpositions in his opera, or whether he ever substitutes 

one scalar transposition for another. Similarly, Figure 4.10.4 contains a series of pro-

gressions that resolve a seventh chord into a triad. Scale theory can show us that the 

fi rst two voice leadings are closely related, since they map the root of the seventh 

chord to the root of the triad, whereas the third maps the root to the fi fth.40 Finally, 

consider the situation of a composer who wants to identify effi cient (three-voice) 

voice leadings from major to minor triads. Having absorbed the ideas in this chapter, 

40 Here we can conceive of the triad as a four-note scale with one doubled note.
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Figure 4.10.2 (a) The four interscalar transpositions from the C half-diminished 

seventh chord to the C dominant seventh. (b) The minimal voice leading between the 

C half-diminished and F dominant seventh chords combines the third of these interscalar 

transpositions with chromatic transposition upward by fi ve semitones. (c) The minimal 

(four-voice) voice leading between any half-diminished and dominant seventh chords 

combines one of these interscalar transpositions with a chromatic transposition. Again, as the 

chromatic transposition increases, the descending interscalar transposition increases as well, 

so that the two forms of transposition cancel out.
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the composer will see that there are really just three basic possibilities: once the des-

tination of the root is chosen, the rest of the interscalar transposition is determined. 

Each possibility gives rise to a family of voice leadings, all related by individual trans-

position and hence sharing the same basic voice-leading structure.

The broader moral is that there is indeed a close connection between chord con-

cepts and scale concepts. Fundamentally, a scale is a large chord, and a chord is just a 

small scale: both participate in effi cient voice leadings, and both can be represented 

using the same basic geometries; composers develop musical motifs by transposing 

them along familiar chords, as if chords were just very small scales (Figs. 4.3.1b and 

4.8.6c); and effi cient voice leading frequently involves interscalar transposition or 

strongly crossing-free voice leadings. In fact, it even turns out that there is a close 

analogy between the idea of decomposing voice leadings into scalar and chromatic 

transpositions, and the idea of analyzing them into pure parallel and pure contrary 

components. Thus there are signifi cant theoretical advantages to adopting a unifi ed 

perspective that treats chords and scales similarly.

Those of you who are interested in pursuing this idea in greater technical detail 

should consult Appendix C, while those who are impatient for analysis can instead 

turn to Chapters 8 and 9. Everyone else is encouraged to proceed to Chapter 5 in an 

orderly fashion.

Figure 4.10.3 The fi rst four resolutions of the 

half-diminished seventh chord in Wagner’s 

Tristan. The fi rst two map root to root, while 

the second two map root to third.

Figure 4.10.4 Three chromatic voice 

leadings. The fi rst two map the root of the 

fi rst chord to the root of the second, and 

can be considered interscalar transpositions 

from a seventh chord to a triad with 

doubled root. The last maps the root of the 

fi rst chord to the fi fth of the second.



chapter 5

Macroharmony and Centricity

Having discussed harmony, counterpoint, and acoustic consonance, we’ll now turn 

to macroharmony and centricity, the last of the fi ve features. First, we’ll explore the 

ways in which composers might combine harmonic and macroharmonic consistency. 

Then we’ll develop two analytical tools for quantifying macroharmony: pitch-class 

circulation graphs, which record how fast a piece cycles through the pitch classes, and 

global macroharmonic profi les, which represent the relative proportion of large col-

lections in a piece. We’ll then introduce pitch-class profi les to describe both “local” 

centricity (or rootedness) and “global” centricity (or tonicity). Together, these tools 

amount to a “generalized theory of keys” allowing us to conceptualize the possibilities 

between complete atonality and traditional scale-based tonality.

5.1 macroharmony

When we think about harmony, we automatically think about chords. In fact, we 

are so fi xated on chords that we sometimes forget they tell only part of the story. To 

counteract this tendency, Figure 5.1.1 uses the same chords to construct two very dif-

ferent sequences: the fi rst, containing twelve triads from the C diatonic scale followed 

by twelve triads from the Fs diatonic scale, is placid and restful; the second, alternat-

ing between C and Fs diatonic scales, is considerably more angular and energetic. 

The difference suggests that musical experience is strongly colored by what we have 

heard recently: after a number of white notes, a C diatonic triad will sound relatively 

consonant, while after a sequence of black notes, it will sound more jarring and out 

of place. It is as if previously heard notes linger in our memory, mixing with what we 

are currently hearing to create a harmonic penumbra—a “macroharmony” extending 

beyond the boundaries of the temporal instant.

In thinking about macroharmony we need to ask at least four questions:

1. Does the music articulate identifi able macroharmonies other than the total 

chromatic?

2. How fast do these macroharmonies change?

3. Are the various macroharmonies in the piece structurally similar—that is, 

related by transposition or nearly so?

4. Are the macroharmonies consonant or dissonant?
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From this point of view, our two sequences are very different. The fi rst is both 

macroharmonically consistent (which is to say that it articulates a pair of diatonic 

collections, related by transposition) and macroharmonically consonant (since those 

collections are themselves relatively consonant). The second is macroharmonically 

consistent only in a trivial sense, since it cycles through the complete chromatic 

collection every two measures or so. More important, it is macroharmonically dis-

sonant, because the chromatic scale is itself fairly dissonant. As a result, the sec-

ond sequence sounds considerably less “tonal” than the fi rst, even though they use 

exactly the same triads.

Note that our questions echo those we might ask about ordinary harmonies: 

macroharmonies, like harmonies, can be consonant or dissonant, and sequences of 

macroharmonies can be harmonically consistent just as chord progressions can. Thus 

Figure 5.1.2 exhibits a macroharmonic transition from mild dissonance to greater 

consonance and back, somewhat akin to a classical V7–I–V7 progression. (To say 

this is just to repeat the basic point that traditional Western music uses similar tech-

niques on different time scales.) In fact, in some twentieth-century music macrohar-

mony becomes the primary bearer of harmonic signifi cance.  Mechanical, repetitive, 

or random chord changes can create a sonic “wash” in which changes in macro-

harmony become more salient than the individual chords. Listening to Debussy’s 

“Voiles,” Stravinsky’s “Dance of the Adolescents,” or Reich’s Different Trains, it is 

motion between macroharmonies that really strikes the ear. Harmonic states are 

Figure 5.1.1 Two sequences containing the same chords, but in different order. The fi rst 

sounds considerably less chromatic than the second.

Figure 5.1.2 Each section of Debussy’s “Voiles” uses a different scale. The switch from whole 

tone to pentatonic to whole tone moves from greater dissonance to greater consonance and 

back again.
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here intermediate between chord and key, lasting longer and containing more notes 

than classical chords, but also moving faster than classical keys.

5.2 small-gap macroharmony

Suppose we would like to write music that is harmonically consistent while also con-

fi ning itself to a macroharmony with fi ve to eight pitch classes. How should we go 

about doing this?

One strategy is just to choose a collection of similar chords that together contain 

no more than fi ve to eight notes. For instance, we could chose A minor, F major, and 

Df major, which together form a six-note hexatonic scale (Figure 5.2.1). This works 

well until we get bored of our chords, at which point we notice—somewhat ruefully— 

that the macroharmony is quite limited. First, the only major or minor triads it con-

tains are those with roots on F, A, and Df. Second, it contains only a small number of 

chord types: if, for example, we later decide to use stacks of fourths (such as F-Bf-Ef 

or F-B-E), we must choose another macroharmony, since the hexatonic scale contains 

no fourth chords whatsoever. The problem, it turns out, is that the hexatonic scale 

has a number of three-semitone “gaps” between successive notes—or to coin a term, 

it is a “3-gap macroharmony.” Because of this, there are no fourth chords in the col-

lection, and no triads with roots 

other than F, A, or Df.1

By contrast, a macroharmony 

whose steps are at most two semi-

tones large (i.e. a “2-gap macrohar-

mony”) will always contain both 

a triad and a fourth chord above 

each of its notes. This is because 

harmonic terms like “triad” and 

“fourth chord” typically allow for some variation in interval size. For example, 

the term “triad” refers to a stack of three- or four-semitone  intervals.  Consequently, 

for each chord tone there are two semitonally adjacent options to choose from: given 

the root C, we can put the third at either Ef or En, and given the third En, we can 

put the fi fth at either Gn or Gs. In a 2-gap macroharmony, one of these options will 

always be contained within the scale.

The principle here is related to what I call the “Fundamental Theorem of Jazz,” 

which states that you can never be more than a semitone wrong.2 The basic idea is that 

when trying to fi t a particular chord into a 2-gap macroharmony, one only needs to 

shift its notes by semitone at most. This is illustrated in Figure 5.2.2. The connection 

1 For instance, neither of the fourths above Df is in the collection, since both Gf and G fall in the gap 
between F and Af.

2 While the name “Fundamental Theorem of Jazz” is a joke, the principle does play an important role 
in jazz theory.

Figure 5.2.1 One way to combine harmonic and 

macroharmonic consistency is to choose a set of 

chords that together contain a relatively small 

number of notes. Here, the A minor, F major, and Df 

major triads contain the pitches of a hexatonic scale.
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to jazz lies in the fact that improvisers often make 

use of 2-gap macroharmonies; consequently, any 

note they play will either belong to the macrohar-

mony or can be a chromatic neighbor to one of its 

notes. Practically speaking, this means that if one 

fi nds oneself accidentally playing a note outside 

the macroharmony, it can always be reinterpreted 

as a chromatic neighbor to an adjacent macrohar-

monic tone. In fact, with a 2-gap macroharmony, 

the improviser is free to shift either upward or downward by semitone. (If a particular 

note is not in a 2-gap macroharmony, then both of its chromatic neighbors are.3) This 

is quite useful, since out-of-macroharmony notes can be instantly corrected, without 

the improviser having to think about exactly how he or she has gone wrong.

Observe that there is a difference between “having small gaps” and the “near even-

ness” of Chapter 4. In a nearly even scale, scalar transposition resembles chromatic trans-

position, which means that we can take a harmony that is inside the scale and transpose it 

along the scale without distorting it much. In a 2-gap macroharmony, any note is at most 

one semitone away from some note in the macroharmony, which means that we can take 

any sonority whatsoever and “squeeze” it into the macroharmony without distorting it 

much. This difference is illustrated by Figure 5.2.3. Note, in particular, that a collection 

can be nearly even while still having large gaps (e.g. the major triad). Conversely, a collec-

tion can have reasonably small gaps while still being somewhat uneven.4

Figure 5.2.2 In a 2-gap 

macroharmony, out-of-scale notes 

can be moved into the scale by 

semitone, in either direction.

Figure 5.2.3 Near evenness and gaplessness. Chords can be transposed along a nearly even 

scale with minimal distortion (a). In a gapless scale (b), chords outside the scale can be 

“squeezed” into the scale with minimal distortion. Here, the E minor triad is squeezed into 

the C acoustic scale by shifting B down by semitone.

3 In a 3-gap macroharmony, one can never be more than a semitone wrong, but there may be no choice 
about whether to slide upward or downward by semitone.

4 For example, the eight-note collection {C, Cs, D, Ds, E, Fs, Gs, Bf} has its semitones distributed 
unevenly.
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Nevertheless, it is true that the most even collections generally have the smallest 

gaps, relative to other collections of that size. Figure 5.2.4 shows that the twelve-

tone equal-tempered system has four fi ve-note 3-gap macroharmonies, including 

the pentatonic scale, the “dominant ninth” chord, and the “diminished seventh 

plus one” chord. There is only one six-note 2-gap macroharmony (the whole-tone 

scale), while there are 17 six-note 3-gap macroharmonies. The three seven-note 

2-gap macroharmonies are the diatonic, acoustic, and “whole tone plus one” scales. 

Finally, there are eight eight-note 2-gap collections, including the octatonic scale. 

Once again, we fi nd familiar musical objects—such as the diatonic and acoustic 

scales—turning up in a variety of different theoretical contexts. And once again, 

we see that the goal of combining elementary tonal features (in this case harmonic 

and macroharmonic consistency) places nontrivial constraints on the composer. It 

is relatively easy to write music that exhibits harmonic or macroharmonic consis-

tency, but more diffi cult to write music that exhibits both at once: we cannot simply 

choose harmonies and macroharmonies willy-nilly, mixing and matching them to 

our hearts’ content.

5.3 pitch-class circulation

We’ll now develop some tools for quantifying macroharmony, starting with graphs 

that represent how many pitch classes are used over various spans of musical time. 

The concept is easiest to explain by way of an example. Figure 5.3.1 shows that if 

we look at every three consecutive notes of the opening of Bach’s F major two-part 

invention, we fi nd on average 2.4 distinct pitch classes. Similarly, if we look at every 

four-note window of the music, we fi nd on average 2.9 pitch classes. Figure 5.3.1c 

compiles this data into a pitch-class circulation graph, which shows how many pitch 

classes are found in windows of various sizes. Such graphs are very crude tools that 

do not tell us anything about the character of the macroharmonies; furthermore, 

they can be infl uenced by textural features independent of the music’s underlying 

Figure 5.2.4 Set classes 

representing 2- and 3-gap 

macroharmonies.
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 harmonic structure.5 But by providing a rough picture of how fast a piece of music 

moves through the available notes, they can help us get a quantitative grip on how 

“chromatic” it is.

Figure 5.3.2 graphs the pitch-class circulation in a number of familiar pieces. 

 Palestrina’s Pope Marcellus Mass is at the bottom, while Webern’s Piano Variations, 

Op. 27 is at the top. These two curves have a similar shape, rising quickly and fl atten-

ing out rather sharply. The quick rise refl ects the fact that, over short time scales, the 

two composers both tend to exhaust a particular collection of notes—the seven dia-

tonic notes in Palestrina’s case and the twelve chromatic notes in Webern’s. The point 

at which the graphs level off tells us how large the macroharmony is, with Palestrina’s 

leveling off below Webern’s since the diatonic scale is smaller than the chromatic. The 

fl attening itself indicates the relative absence of macroharmonic change: Webern’s 

twelve-tone piece systematically cycles through the only twelve notes available to him, 

5 Since pitch-class circulation graphs measure the number of pitch classes per note attack, they are sus-
ceptible to differences in tempo, with slower pieces often appearing to be more chromatic than faster pieces. 
The presence of tremolo or other repetitions also tends to artifi cially decrease the “chromaticism” of the 
music. Furthermore, in constructing these graphs it is necessary to “linearize” simultaneous attacks, so that 
one comes before the other. (This can be done in a random fashion, hoping that the size of the data set will 
wash away any inaccuracies introduced by the process.) For these reasons, these graphs should be taken with 
a grain of salt, as providing a very general picture that may not always be accurate in its precise details.
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Figure 5.3.1 (a) The theme of Bach’s F major two-part invention, along with the number of 

pitch classes in the fi rst several three- and four-note windows. (b) A table listing the average 

number of pitch classes per window in the excerpt, for window sizes between 1 and 10 notes. 

(c) The same information expressed as a graph.
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and as a result his graph reaches a completely horizontal plateau; Palestrina’s occa-

sional use of nondiatonic notes creates a very gradual slope over larger spans of time. 

Each piece is macroharmonically static, since any two of its mid-length segments will 

contain roughly the same pitch classes.

Between these extremes lies most of the music of the classical tradition. Figure 

5.3.2 shows that pieces by Mozart, Beethoven, Brahms, and Wagner exhibit a dis-

tinctive harmonic profi le, with their graphs rising very quickly and then leveling off 

much more gradually. (In fact, a typical 10-note excerpt of classical music contains 

roughly half the pitch classes in a typical 100-note excerpt.6) The quick rise refl ects 

the fact that the music again cycles through a collection of available notes, as in 

Palestrina and Webern. The more gradual fl attening indicates that the macroharmo-

nies are themselves changing, albeit at a much slower rate. Modulation here ensures 

a slow but steady supply of fresh pitch classes, causing the graph to level off much 

more gradually.

Figure 5.3.2 is consistent with a truism of music history: that chromaticism gradu-

ally increased over time, beginning with modest explorations during the baroque and 

classical eras, thriving during the nineteenth century, and culminating in complete 

atonality. Our graph shows that from Palestrina through Wagner, later composers 

do indeed tend to utilize faster rates of pitch-class circulation, refl ecting increasingly 

rapid modulations to increasingly distant tonal areas, increasing use of altered chords, 

and so on. (Of course, some of this is selection bias: including composers such as 

Gesualdo and Satie would complicate the matter considerably.) Furthermore, as we 

will see below, there is relatively little difference between the rate of pitch-class circu-

lation in the highly chromatic tonal music of Max Reger and the fully atonal music 

of Schoenberg. In this sense, atonality does represent a relatively natural response to 

the saturated chromaticism of late nineteenth-century tonality. We will return to this 

thought below.
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Pitch-class 

circulation in 

several well-

known pieces.

6 Statisticians would say that these graphs are log-linear to within window sizes of about 256 notes.
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5.4  modulating the rate of pitch-class 
circulation

In most Western music, the rate of pitch-class circulation is itself a harmonic variable 

to be manipulated. For example, Figure 5.4.1 graphs the rate of pitch-class circula-

tion found in selected Chopin Etudes, the fi rst book of Debussy’s Preludes, the indi-

vidual numbers of Stravinsky’s The Rite of Spring, and a selection of Shostakovich’s 

Op. 87 Preludes and Fugues. All four works display enormous variation, ranging from 

Palestrina-like sections that use just a few pitch classes, to highly chromatic sections 
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Figure 5.4.1 Pitch-class circulation in Chopin’s Etudes (a) and Debussy’s Preludes (b). Both 

collections cover an enormous range, comparable to that of the entire classical tradition 

(compare Figure 5.3.2). 
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in which all twelve notes are in play. This of course refl ects a common technique for 

creating large-scale form: composers can generate long-term harmonic change by 

juxtaposing moments of relative calm—in which the music remains fi xed in a small 

macroharmony—with passages of more rapid and aggressive chromaticism.

This diversity in the rate of pitch-class circulation stands in stark contrast to 

the homogeneity of much atonal music. Figure 5.4.2 graphs the pitch-class circula-

tion in Schoenberg’s Op. 11 piano pieces and Webern’s Op. 27 variations. The outer 

movements of both pieces are almost indistinguishable from one another, while 

their middle movements are ever so slightly less chromatic. The difference between 

 Figures 5.4.1 and 5.4.2 is truly remarkable: where Chopin, Debussy, Stravinsky, and 

Sho stakovich embraced a vast array of macroharmonic states, a diversity compara-

ble to that of the entire history of Western music, Schoenberg and Webern restricted 
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Figure 5.4.1 (Continued) Pitch-class circulation in Stravinsky’s Rite of Spring (c) and 

Shostakovich’s Preludes and Fugues (d). Again, the pieces cover a large range.
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 themselves to a much narrower region of musical space. This no doubt helps explain 

why some listeners fi nd atonal music to be somewhat static. In writing music with a 

consistently fast rate of pitch-class circulation, atonal composers deprived themselves 

of one important tool for creating large-scale harmonic change.

It is notable that historians have sometimes used stylistic categories to describe 

the macroharmonic diversity in the music of Debussy, Stravinsky, and Shostakovich. 

The low-circulation passages are said to evoke particular genres—the diatonicism of 

ancient music, the pentatonicism or exoticism of non-Western music, and so on—while 

the high-circulation passages are associated with modernism. In this way, composers 

favoring macroharmonic diversity are sometimes made out to be polyglots, stylistic 

magpies who borrow from many different sources. In some cases, this  characterization 

is accompanied by an evaluative narrative, as if diatonicism represents a regressive, 
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Figure 5.4.2 Pitch-class circulation in Schoenberg’s Op. 11 and Webern’s Op. 27 piano pieces. 

The individual movements of each piece are much more similar than in Figure 5.4.1.
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backward-looking tendency, while thoroughgoing chromaticism represents a progres-

sive or forward-looking attitude. Macroharmonic diversity is thus associated with 

 stylistic mawkishness, testifying to an incomplete embrace of modernity.

Of course, it is true that many twentieth-century composers were interested in 

evoking a range of styles. Nevertheless, I think we should be careful to separate the 

issue of style from the purely harmonic effects that stylistic juxtaposition can cre-

ate. Rather than seeing Debussy, Stravinsky, and Shostakovich as stopping short of a 

complete and consistent chromaticism, I would therefore prefer to describe them as 

embracing modulation—writing music that presents a wealth of different macrohar-

monic states and that changes the rate of pitch-class circulation to reinforce larger 

formal boundaries. (In fact, I suspect that critics have sometimes resorted to stylistic 

categories in part because we lack precise theoretical terms for talking about phe-

nomena such as pitch-class circulation.) From this point of view, it is thoroughgoing 

chromaticism that is conservative, as it abandons macroharmonic change in favor of 

musical textures that are harmonically uniform in the large. In this respect it recalls 

the macroharmonic stasis of the earliest Western music.

5.5 macroharmonic consistency

Pitch-class circulation graphs show us how fast pitch classes are passing by, but do not 

provide any sense of what the macroharmonies actually are; as a result, they cannot 

distinguish between quickly modulating diatonic music and nondiatonic music in 

which all twelve pitch classes are constantly in play. This can be seen by comparing 

Schoenberg’s Op. 11 No. 1 with John Coltrane’s solo on “Giant Steps” (Figure 5.5.1). 

Both pieces have almost identical rates of pitch-class circulation, even though Schoe-

nberg’s music is intuitively “more chromatic” than Coltrane’s.

What we need are global macroharmonic profi les that identify the fi ve- to eight-

note macroharmonies used in a particular piece. Given an excerpt of music, we can 

exhaustively tabulate all the three-note chord types, four-note chord types, fi ve-note 

chord types, and so on.7 Figure 5.5.2 presents the six- and seven-note collections in 

Schoenberg and Coltrane’s pieces. As we would expect, the graph of Coltrane’s solo 

is highly peaked, refl ecting the fact that it is saturated with diatonic scales and scale 

fragments. By contrast, Schoenberg’s piece features a much more even distribution 

of chord types, not strongly emphasizing any particular six- or seven-note collection. 

(On these graphs, the x-axis is labeled using Allen Forte’s hard-to-decipher numerical 

labels for set classes; what is important here is just the overall difference in shape—

Coltrane’s graph is much more peaked than Schoenberg’s.8) We can therefore say 

7 As before, the analysis here is simplistic but hopefully unbiased: I simply “linearize” simultaneous 
attacks by arpeggiating them in an essentially random way, and then count up the successive macrohar-
monies in the piece. That is, for each note i and each size n, I identify the n-note chord type that begins 
with note i.

8 For Forte’s labeling system, see Straus 2005 or Forte 1973. In general, the more chromatic set classes 
(such as 0123) have smaller numbers, while more even chord types have larger ones.
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that Coltrane’s solo is macroharmonically consistent in a way that Schoenberg’s piece 

is not: Coltrane emphasizes one particular seven-note collection, while Schoenberg 

makes relatively indiscriminate use of almost all the available seven- and eight-note 

macroharmonies.9 To be sure, Coltrane’s music modulates very quickly, thus ensuring 

a high overall rate of pitch-class circulation; but unlike Schoenberg, the local struc-

ture of his music clearly articulates familiar scales.

One can make a similar distinction among musical styles in which pitch classes 

circulate more slowly. Figure 5.5.3 contrasts Debussy’s “La fi lle aux cheveux de lin” 

with Satie’s “Theme of the Order,” from Sonneries de la Rose + Croix. The opening of 

Debussy’s piece very clearly articulates Ef natural minor and Gf acoustic scales, sepa-

rated by a brief cadence on Ef major. Satie’s piece, although it uses relatively few acciden-

tals, does so sporadically and without a clear system; as a result it is diffi cult to separate 

the music into regions exemplifying recurring macroharmonies. Yet both pieces have 

relatively low rates of pitch-class circulation, and are in this sense “not very chromatic.”

9 Of course, Schoenberg’s music is macroharmonically consistent by virtue of using the chromatic 
scale, but this is trivial.

Figure 5.5.1 Schoenberg’s Op. 11 and John Coltrane’s Giant Steps solo have identical rates of 

pitch-class circulation (a), even though Coltrane’s solo is tonal (b).
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Taken together, these four pieces demonstrate that the informal music-theoretical 

term “chromatic” involves the interaction of at least two independent variables: rate 

of pitch-class circulation and the degree of emphasis on particular macroharmonies. 

Figure 5.5.4 tries to represent the situation visually. Music such as Schoenberg’s, which 

combines a high rate of pitch-class circulation with a low degree of macroharmonic 

consistency, will be heard as very chromatic; conversely, music such as Debussy’s, 

with a low rate of pitch-class circulation and a high degree of macroharmonic consis-

tency, will be heard as non-chromatic. Pieces such as “Giant Steps” or Satie’s “Theme” 
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Figure 5.5.2 The relative preponderance of different chord types in pieces by Schoenberg and 

Coltrane. Coltrane’s graph is highly peaked at points representing familiar tonal collections. 
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are somewhat more diffi cult to classify, 

because the simple opposition between 

“chromatic” and “non-chromatic” breaks 

down: Coltrane’s piece has faster pitch-

class circulation than Satie’s, but more 

clearly articulates specifi c macroharmo-

nies; while Satie’s circulates through the 

pitch classes more slowly, but without 

articulating identifi able macroharmo-

nies. Each is somewhat chromatic in its 

own distinctive way.

Global macroharmonic profi les can 

also be useful analytically. For example, 

Figure 5.5.5 identifi es the most promi-

nent seven- and eight-note collections in 

the opening four sections of The Rite of 

Spring. The introduction is relatively chromatic, superimposing multiple tonalities 

without emphasizing any familiar macroharmony. (The melodic minor scale is the 

most prominent seven-note collection, but it appears only 9% of the time.) The “Dance 

of the Adolescents” features a larger preponderance of harmonic and melodic minor 

scales—chiefl y because its famous opening chord is a harmonic minor  collection, 

Figure 5.5.3 Debussy’s “La fi lle aux cheveux de lin” (a) and Satie’s “Theme of the Order,” 

from Sonneries de la Rose + Croix (b).
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while the fi nal section emphasizes the A mode of F acoustic.10 While neither of the 

opening sections involves much explicitly octatonic material, the “Ritual of Abduc-

tion” is highly (18%) octatonic. Finally, “Spring Rounds” is extremely diatonic (55%). 

Overall, these fi gures indicate that Stravinsky’s piece exhibits a large-scale transition 

from the highly chromatic opening to the very diatonic “Spring Rounds,” a transition 

mediated by familiar nondiatonic scales. This transition might be compared to those 

we encountered in Debussy and Prokofi ev (§4.7), though spread out over a much 

longer span of time.

The Rite of Spring can be usefully contrasted with Shostakovich’s Op. 87 Preludes 

and Fugues. Both pieces belong to the twentieth-century extended-tonal tradition, 

drawing on tonal techniques while also featuring moments of extreme chromaticism, 

superimposition of multiple scales, and other modernistic devices. However, where 

Stravinsky makes relatively frequent use of nondiatonic scales, the Preludes and 

Fugues are profoundly and almost stubbornly diatonic. Figure 5.5.6 shows that the 

diatonic scale is the most prominent macroharmony in almost every one of Shosta-

kovich’s 48 preludes and fugues, sometimes by an enormous degree.11 (Indeed, in the 

fi rst fugue it is the only macroharmony.) In fact, Shostakovich’s minor-mode pieces 

are even more diatonic than Bach’s—largely because Shostakovich eschews V–i pro-

gressions in favor of diatonic cadences that hearken back to a pre-tonal modality. 

In this respect, Shostakovich’s pieces are more neo-classical than post-impressionist; 

like Copland, Piston, and many other mid-twentieth-century composers, the Pre-

ludes and Fugues tend to move between diatonicism, chromaticism, and polytonality 

without exploring nondiatonic scales. This is part of what endows the music with its 

distinctive austerity.
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Figure 5.5.5 The most common large collections in the fi rst four sections of the Rite of 

Spring. Each section has a distinct macroharmonic profi le.

10 See Tymoczko 2002 for related observations.
11 One of the few exceptions, the Fs minor fugue, is built on the seventh mode of G harmonic major; 

we discuss it in Chapter 9.
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5.6 centricity

In many musical passages, a particular note is felt to be more prominent, important, or 

stable than the others—in other words, to be a tonal “center.” The concept of centricity is 

complicated, in part because it encompasses two closely related phenomena: rootedness, 

which applies to individual chords, and tonicity, which refers to prominence over longer 

stretches of musical time. Rootedness and tonicity are music-theoretical cousins, shar-

ing a number of physiognomic characteristics while being of distinct parentage. And 

just as the line between chord and macroharmony is sometimes blurry, so too is the dis-

tinction between rootedness and tonicity: in impressionist or minimalist music, it can 

be diffi cult to say whether the most important tone is a root, a tonic, or something in 

between. For this reason, it is useful to try to develop a unifi ed approach to the two phe-

nomena, without presupposing that there will always be a sharp line dividing them.

Elementary music theory teaches that the “root” of a tertian chord is the lowest 

note when the chord is arranged as an ascending chain of thirds: thus, E is the root of 
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collection in all but four of Shostakovich’s Preludes and Fugues, and in some pieces it is the only 

macroharmony. The most common non-diatonic collection is represented by a thin gray line; 

in only four movements does it rise above the black line. (b) Shostakovich’s minor-key pieces 

are considerably more diatonic than Bach’s minor-key Preludes and Fugues. In particular, 

Shostakovich rarely uses the harmonic and melodic minor scales, preferring the natural minor.
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the collection {E, G, B}, regardless of 

musical context. (I tell students that 

to fi nd the root, they must fi rst write 

the chord in snowman form.12) But 

this is an oversimplifi cation: though 

the two progressions in Figure 5.6.1 

use the same pitch classes, the fi rst 

sounds like i–iv in E minor, while 

the second sounds more like V–I 

in C major. A more fl exible theorist might therefore describe the chords in Figure 

5.6.1b as G and C chords with “added sixths.” This shows that a sophisticated notion 

of “root” cannot rely on mechanical rules like “the lowest note in a chain of thirds 

is always the root”; instead, we must sometimes make more delicate psychological 

judgments about the relative importance of notes. This issue arises all the time in 

twentieth-century music: it would be odd to describe Figure 5.6.2 as a series of 16 

repetitions of the same chord, rather than a transition from a dissonant sonority (in 

which the notes D, Ef, and Fs predominate) to a more consonant sonority featuring 

C, E, and G.

Contemporary theorists often use pitch-class profi les to represent differences of 

importance among the notes in a chord. These useful devices are bar graphs in which 

the x-axis represents pitch class and the y-axis represents a subjective assessment of 

prominence, stability, or importance.13 The simplest conception of a chord is binary; 

notes can be either inside the chord or outside of it, but no further differentiations 

are made. This approach can be modeled using two-tiered pitch-class profi les, with 

notes in the chord being assigned the value 1 and the rest being assigned 0 (Figure 

5.6.3). The musical cases we have been considering require fi ner gradations of promi-

nence. For example, Figure 5.6.4 shows how we might describe the progressions in 

Figure 5.6.1: the fi rst profi le assigns higher prominence to the pitch classes E and A, 

Figure 5.6.1 
Two progressions 

that use the same 

pitch classes, 

but sound very 

different.

12 That is, as a stack of thirds, which looks like a self-supporting snowman. (Other inversions seem 
to have a snowball fl oating unsupported in the air.) For seventh chords, you need “extended snowman 
form.”

13 These sorts of graphs originate with Krumhansl and Shepard 1979. Related graphs have been used 
by Deutsch and Feroe (1981) and are central to the work of Fred Lerdahl (2001). I discuss Lerdahl in 
Appendix E.

Figure 5.6.2 The same notes are attacked on every sixteenth note, but there is a palpable 

transformation over the course of the measure.
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while the second assigns higher prominence to 

G and C. Figure 5.6.5 represents the music in 

Figure 5.6.2, where there is a gradual shift from 

D, Ef, and Fs to C, E, and G. In these cases, the 

notion of chord membership becomes fuzzy, 

admitting a range of values between 0 and 1.

We can also use pitch-class profi les to rep-

resent global centricity, or tonicity.14 Three-

tiered profi les provide a simple but effective 

way to visualize musical modes: notes outside 

the macroharmony are assigned the value 

0, non-centric notes inside the macrohar-

mony are assigned the value 1, and centric notes are assigned the value 2.15 Thus, 

 Figure 5.6.6 represents C lydian, G ionian, C phrygian, and G locrian modes. In 
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Figure 5.6.3 The simplest model of a 

chord is a binary one: notes are either 

in the chord or outside of it.
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Figure 5.6.4 Pitch-class profi les can be used to refl ect the fact that chord tones differ in terms 

of their importance. Here, (a) and (b) represent the two progressions in Figure 5.6.1.

14 Note that local and global centricity can confl ict in fascinating ways. For example, in C major, the 
tonic note can sometimes be unstable, such as when it acts as a neighboring tone to the third of a V7 chord. 
Relative to the local harmony, C is less stable than B; relative to the global key, however, the leading tone 
is less stable than the tonic. Remarkably, our minds can encompass both perceptions at once, with global 
pitch-class profi les playing a role even in the presence of confl icting local harmonic states.

15 The numerical values here are arbitrary; what is more important is the relative prominence of the 
various notes. However, in some circumstances, we could use different numerical strengths to record dif-
ferent degrees of musical prominence. For example, Harold Powers (1958, p. 456) contrasts South Indian
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some  theoretical contexts we may want to draw more fi ne-grained distinctions: for 

example, there is a palpable difference between an E phrygian mode in which the 

fi fth scale degree is emphasized, and an E phrygian mode in which the fourth scale 

degree is important (Figure 5.6.7).16 We could capture this with a four-tiered model 

that distinguishes tonal center, second-most important tone, within-macroharmony 

notes, and outside-macroharmony notes. Figure 5.6.8a goes even further by propos-

ing a fi ve-tiered pitch-class profi le for the key of C major: here, C is most important, 

G the second-most important, E the third-most important, the remaining diatonic 

notes fourth-most important, and the black notes last. (This graph is strongly 

reminiscent of what Fred Lerdahl calls the “basic space” for C major, discussed in 

Appendix D.) In extreme cases, we may even want to use graphs such as that in 

Figure 5.6.8b, where we have continuous gradations of pitch-class stability. Here it 

is impossible to draw sharp distinctions between notes “inside” the macroharmony 

and those outside it.

An interesting piece, in this regard, is the “Petit airs au bord du ruisseau” from 

Stravinsky’s Histoire du soldat. This playful bagatelle has an almost fl irtatious rela-

tion to traditional scale-based tonality: the piece uses fi ve fi xed scale degrees (G-A-

B-D-E) and two mobile degrees that appear in distinct fl avors (F vs. Fs and C vs. 

Cs). While some parts of the music clearly articulate distinct scales, others juxtapose 

different forms of the “mobile” scale degrees to create a mild form of  polytonality 

ragas with Gregorian modality, writing “the drone-tonic is much more prominent with respect to the other 
notes of any given raga than is any tone of a Gregorian piece, even the tenor of a psalm-tone.” We could 
express this by adjusting the height of the tonic note in our graph.

16 Gregory Barnett (1998, pp. 266ff) uses secondary pitches (among other considerations) to argue 
that seventeenth-century ideas about “key” derive from “church keys” rather than traditional modal theory. 
Powers (1981, p. 453) offers some related observations about tonal differences between Renaissance motets 
sharing the same fi nal. Historians such as Powers (1958, 1981, 1992) have rebelled against overly simple 
conceptions of modality, pointing out that earlier musicians understood the phenomenon to include char-
acteristic melodic gestures, complex pitch hierarchies, and so on. The point is well taken, but I think con-
temporary theorists sometimes have reason to use a basic defi nition according to which, for instance, “D 
dorian” simply means “the white notes with D as tonal center.” (Barnett 1998 uses the term “tonality” as a 
synonym for this minimalist defi nition of “mode.”) There is nothing wrong with using modern concepts 
to analyze earlier music.
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Figure 5.6.5 The music of Figure 5.6.2 can be represented as a continuous interpolation 

between these two graphs, with the more prominent notes becoming less so, and the less 

prominent notes becoming more so.
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Figure 5.6.6 
Pitch-class 

profi les for C 

lydian, G ionian, 

G locrian, and 

C phrygian 

(clockwise from 

upper left).

Figure 5.6.7 The melody in (a) emphasizes the notes E and A, while that in (b) emphasizes 

E and B. Though both might be said to be “in E phrygian,” there is an important 

difference between them. We might represent this difference by using pitch-class profi les 

that identify the second-most important note in a mode.

(Figure 5.6.9). Interestingly, there is only one point in the piece where a single line 

sounds distinct forms of the mobile notes in direct succession; for the most part, 

it is as if the music were “locally scale-based” within each instrument. (This is pre-

cisely what leads me to consider F and Fs to be two different forms of the same 

scale degree, rather than analyzing the music using a nine-note scale.) Figure 5.6.9b 
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uses a pitch-class profi le to represent the 

somewhat blurred tonality of this movement: 

here, the profi le indicates that I consider A 

the central pitch; the “fi xed” scale degrees are 

assigned the value 1, indicating their relative 

stability, while the mobile scale degrees are 

assigned lower values, indicating their status 

as fl uctuating, “secondary” pitches. But as the 

graph shows, these notes are more signifi cant 

than those that do not appear at all.

Global pitch-class profi les represent a psychological or conceptual phenome-

non—the felt or imagined importance of the different pitch classes. However, the 
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Figure 5.6.8 
A fi ve-tiered 

pitch-class 

profi le 

representing the 

key of C major 

(a) and a profi le 

that does not 

represent any 

common key (b).
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Figure 5.6.9 Stravinsky’s “Petit airs,” from Histoire du soldat uses fi ve “fi xed” pitches (G, A, 

B, D, E) and two “mobile” pitch classes (C/Cs, and F/Fs) (a). We can represent the music 

using a four-tiered pitch profi le (b), in which the “mobile” pitch classes are assigned a lower 

weighting than the fi xed pitch classes. Here, A is assigned the highest value, indicating that it 

functions as a tonic.
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statistical distribution of notes in a piece often correlates reasonably well with the 

three-tiered pitch profi les we would intuitively describe them with.17 (Terminologi-

cal note: I distinguish pitch-class distributions, which measure the statistical frequen-

cies of notes in a piece, from pitch-class profi les, which represent subjective assertions 

about psychological importance.) For example, Figure 5.6.10 shows the frequencies 

of the pitch classes in the fi rst 23 measures of the fi rst movement of Mozart’s Jupiter 

Symphony. This statistical distribution resembles a three-tiered pitch-class profi le in 

which both C and G are assigned the value 2, while the remaining diatonic notes are 

assigned the value 1—an arrangement that captures the intuitive sense that C and G 

are most stable in the key of C major, and that the diatonic tones are more stable than 

the nondiatonic tones. Note that we cannot recover all the information about pitch 

prominence simply by counting pitch classes, since G appears more frequently than 

C. But this should not be surprising, as there are many ways of generating centric-

ity besides note repetition. What is interesting is that a very crude count of the pitch 

classes provides a reasonable guide to the relative importance of the notes.

Indeed, pitch-class distributions can sometimes reveal interesting facts about 

the tonality of specifi c passages. For example, Figure 5.6.11 records the note fre-

quencies of the three solos in “Freedom Jazz Dance,” from the Miles Davis Group’s 

Miles Smiles. The piece is an example of “modal jazz,” in which the rhythm section 

plays a relatively static riff emphasizing Bf. Though the music is ostensibly in a 

single key, the pitch-class distributions are all very different, suggesting that the 

three soloists have different interpretations of the piece’s “Bf-ness.” Davis’s dis-

tribution suggests Bf dorian, with Bf, C, Df, F, and G occurring most frequently, 

while Shorter’s is more suggestive of Bf mixolydian, emphasizing Af, Bf, C, D, and 

F. Hancock’s is considerably more chromatic than either of these, and the relative 

lack of A, C, and Gf may suggest Bf octatonic. In Chapter 9, we will see that some 

of these differences result from the fact that the soloists do, in fact, play different 

17 This observation derives from Krumhansl and Schmuckler 1986. See also Krumhansl 1990 and 2004. 
Chapter 9 of Huron 2007 contains a particularly informative discussion.

Figure 5.6.10 (a) The distribution of pitch classes in the opening phrase of Mozart’s Jupiter 

Symphony. (b) A three-tiered pitch-class that matches Mozart’s distribution reasonably well.
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scales over the fi xed Bf ostinato. But scales are not the whole story. Even within a 

single scale, the musicians choose to emphasize different notes, creating very dif-

ferent shadings of the underlying Bf tonality.

Compositionally, I fi nd pitch-class profi les to be extremely useful devices. I like to 

ask: could I construct (or improvise) music that refl ects Figure 5.6.8b? Could I write 

music that realizes Figure 5.6.12, in which both C and Df are perceived as equally 

important? The basic technique here is simply to make sure that the more prominent 

notes in the pitch-class profi le are accented in various ways. Figure 5.6.13 provides 

an excerpt from a short computer-composed etude, in which pitch-class profi les 

were used as probability tables that determine the likelihood of each note’s appear-

ing. Another example, from a more conventional piece, is given in Figure 5.6.14. In 

composing this music, I began with the idea of “coloring” a single tonic note with a 

variety of secondary pitches. The pitch profi les 

in (b) provided an intuitive guide, allowing me 

to construct a sequence of improvisatory lines 

that gradually broadened the music’s mac-

roharmonic content. The result is a kind of 

blurred, burbling texture, in which the note A 

is a vey clear tonal center. (Note that the rhyth-

mic language gradually congeals in  concert 

with the harmonies, moving from indeterminate 
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Figure 5.6.11 Pitch-class distributions of the three solos in “Freedom Jazz Dance,” from the 

album Miles Smiles. Each soloist emphasizes different pitches, suggesting different ways of 

conceiving of the key.
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A hypothetical 

profi le in 

which C and 

Df are equally 

important.
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to determinate notation.) It seems to me that there is an enormous amount of unex-

plored musical territory here, representing the no-man’s-land between traditional 

tonality and full-on atonality. Pitch-class profi les, by helping us visualize this terri-

tory, can help us imagine ways to explore it.

5.7 where does centricity come from?

Broadly speaking, theorists have explained centricity in two ways. Internal explana-

tions assert that the structure of a group of notes is suffi cient to pick one out as a 

tonal center, without any effort on the composer’s part. External explanations focus 

on what composers do, asserting that composers make notes more prominent (or 

stable) by playing them more frequently, accenting them rhythmically or dynami-

cally, placing them in registrally salient positions, and so on. Rather than being a 

property of collections considered abstractly, centricity is a property of collections as 

they are used in actual music.
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Figure 5.6.13 Three pitch-class profi les, along with a passage of computer-generated music 

embodying the third. Readers with access to the internet can hear a short computer-generated 

etude on the companion website that moves between the three profi les.
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Figure 5.6.14 The opening three phrases of my piece Cathedral (one phrase per line), along with the three pitch-class profi les that inspired them.
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Internalists typically cite principles such as the following:

I1. A note is more prominent if it is the lower note of one or more consonant 

intervals (perfect fi fth, major third, or minor third) in the macroharmony.

I2. A note is more prominent if it does not form sharp dissonances (tritone, or 

minor second) with any note in the macroharmony.

Principle I1 suggests, for example, that C is the most prominent tone in the collection 

{C, E, G} and that the note B is poorly suited to be the tonic of the C diatonic scale, 

since there is no scale tone a perfect fi fth above it. There is actually some psycho-

logical evidence in favor of this view: in an interesting series of experiments, Erkki 

Huovinen has shown that listeners, when asked to identify the tonic of a series of 

notes, generally prefer a note that has a perfect fi fth above it.18 Other theorists, such as 

Schoenberg and Ramon Fuller, have used these ideas to argue that ionian and aeolian 

are the most natural or appropriate modes of the diatonic scale.19

By contrast, external explanations assert that pitch classes become stable or prom-

inent by

E1. Appearing more frequently;

E2. Being held for longer durations;

E3. Being accented dynamically;

E4. Being accented rhythmically;

E5. Being accented registrally (in other words, occurring as melodic high 

points and low points);

E6. Being the target of stepwise melodic motion, particularly stepwise contrary 

motion converging on a particular pitch class; and

E7. Being doubled at the octave, or paired with the note a fi fth above.

These external explanations all focus on notes as they are deployed compositionally.20

Note that the two approaches suggest two drastically different views about what is 

and is not musically possible. For suppose internal factors are relatively weak: in this 

case, composers can easily override “internal” centric tendencies, choosing to empha-

size notes by a variety of external means. However, if internal factors are strong then 

composers are ill-advised to disregard them—for by attempting to emphasize some-

thing other than a collection’s “natural” tonal center, they may create music that is 

unconvincing, inconsistent, or otherwise aesthetically deviant. It is interesting that 

18 See Huovinen 2002.
19 Schoenberg 1911/1983, Fuller 1975.
20 Cultural factors sometimes play an essential role in determining centricity. For example, many nine-

teenth-century pieces are structured around tonic chords that rarely appear. To understand these pieces, 
one must hear them as yearning for a consummation that is continually deferred. In these and other cases, 
appropriate determination of the tonal center requires initiation into a cultural practice, rather than sim-
ple examination of the formal properties of the music. (See Huron 2007, for more.) Some writers, such as 
Reti (1958) and Huovinen (2002) go so far as to consider centricity to be something that the listener does, 
rather than a property of musical stimuli as such; on this account, centricity is a result of “tonal focusing” 
by which listeners organize pitch material around a primary tone.
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these two views played a crucial role in early twentieth-century music history, with 

a number of prominent Germanic musicians (including Schoenberg and Schenker) 

inclined toward internalism, and a number of non-Germanic musicians (including 

Debussy) taking the opposite view.21 The divergence between nonscalar atonality and 

scalar “extended tonality” can thus be traced, at least in part, to this difference of 

music-theoretical opinion: for Schoenberg and others, centricity was a matter of a 

natural law, and hence it was necessary to choose between traditional tonality and 

the wholesale abandonment of centricity. For composers in the French and Russian 

traditions, centricity was a compositional choice, and thus it was possible to contem-

plate musical styles that made use of new modes and scales.

My own sympathies lie very much with the external view: in most practical cases, 

I believe the internal contributions to centricity are relatively weak and can easily be 

overridden. Consequently it is entirely possible to write diatonic music that is acen-

tric, or chromatic music that emphasizes a particular note (Figure 5.7.1). I do not 

Figure 5.7.1 
(a) Diatonic 

music with no 

clear center. 

(b) Chromatic 

music with a 

clear center.

21 Schoenberg’s view was that the diatonic scale has an inherent tonal center, but that the chro-
matic scale does not; see, for example, Chapter 20 of his Theory of Harmony (1911/1983). Perle 
(1996) echoes Schoenberg’s conclusions almost a century later. For the opposite view, see Helmholtz 
(1863/1954, pp.  365–366). Helmholtz’s externalism was shared by composers such as Grieg, Debussy, 
and Stravinsky.
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consider either kind of music to be “unnatural.”22 Nor do I have any problem with 

any of the diatonic modes (or any other mode of any other scale): I am entirely con-

vinced by the music of the Renaissance, of Debussy, Ravel, and Shostakovich, and of 

contemporary jazz and rock; I enjoy those numerous passages of twentieth-century 

music that make use of symmetrical scales while still asserting a tonal center; and as a 

composer I believe I can make virtually any note of virtually any collection sound like 

a tonic. (This last conviction has been reinforced by my experience with computers: 

by emphasizing particular notes through repetition, duration, loudness, and step-

wise melodic motion, it is easy to create the effect of centricity in otherwise random 

sequences.) Any theorist who wants to argue against these convictions would have to 

fi ght an uphill battle: indeed, the very claim that the phrygian mode is defi cient, or 

that centric music cannot use symmetrical scales, strikes me as evidence of a limited 

musical imagination.

5.8 beyond “tonal” and “atonal”

I want to close this chapter—and by extension, the theoretical half of the book—by 

showing how we can use these ideas to orient ourselves relative to the broad spec-

trum of contemporary musical styles. I’ll begin by contrasting two twentieth-century 

movements: the chromatic tradition, which rejects fi ve- to eight-note macroharmo-

nies in favor of the chromatic scale; and the scalar tradition, in which limited macro-

harmonies continue to play a signifi cant role. I’ll then suggest that our inquiry into 

the fi ve basic components of tonality might help us envision new possibilities lying 

between these two extremes.

5.8.1 The Chromatic Tradition

A standard trope of music history asserts that the chromatic tradition originates in the 

extended tonality of post-Wagnerian chromaticism. According to this narrative, com-

posers such as Strauss and Reger began to make heavy use of chromatic voice leading, 

to the point where familiar analytical concepts began to lose their purchase: pitch-class 

circulation increased, traditional scales became less important, and centricity became 

less obvious, with key-defi ning progressions (such as I–ii–V7–I) gradually disappear-

ing. Later composers, feeling that it was unreasonable to retain acoustic consonance 

while abandoning the other components of tonality, created atonality as we know it.

In my view, this narrative is essentially right: macroharmony was indeed the fi rst 

casualty in the war on tonality, and highly chromatic “wandering tonality” does begin 

to approach atonality both in its rate of pitch-class circulation and in the absence 

22 Interestingly, the internal view has been defended both by radical atonal composers and by conser-
vative opponents of atonality, including Schoenberg (1911/1983, p. 394) and William Thomson (1991, 
pp. 87–88). Thus, although these two writers have diametrically opposed aesthetic orientations, they have 
a similarly limited conception of tonal possibilities.
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of traditional macro-

harmonies.23 Figure 

5.8.1 shows that Reger’s 

music sometimes cir-

culates quickly through 

the twelve pitch classes 

while also abandoning 

clearly articulated mac-

roharmonies. (The road 

to atonality, one might 

say, was paved with 

chromatic voice lead-

ing.) That said, there 

is still an important step from Reger to Schoenberg. For not only did Schoenberg 

“emancipate the dissonance,” treating any possible combination of notes as a  potential 
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Figure 5.8.1 
(a) Reger’s tonal music 

sometimes circulates 

through the pitch 

classes almost as fast 

as Schoenberg’s atonal 

music. (b) Some of 

Reger’s pieces exhibit a 

very broad distribution 

of macroharmonies, 

comparable to that 

found in atonal music. 

Again, set-classes on the 

x-axis are labeled using 

Allen Forte’s system, so 

that “15” corresponds to 

his set “7–15.”
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Figure 5.8.2 
Reger’s highly 

chromatic 

tonal music 

often exhibits 

more harmonic 

consistency than 

Schoenberg’s 

atonal music. 

Here, the “spike” 

indicates that the 

music is saturated 

with major and 

minor triads.

23 See Proctor 1978.
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harmony, but he also took the much more radical step of rejecting harmonic consis-

tency—in other words, the very idea that  harmonies should be structurally similar to 

one another. By way of illustration, Figure 5.8.2 contrasts the distribution of three-

note chords in Schoenberg’s Op. 11 No. 3 and Reger’s Op. 58 No. 5: where Reger’s 

graph is strongly peaked at the familiar major and minor triads—which together 

account for more than a third of the three-note chords in the piece—Schoenberg’s 

graph is much fl atter, suggesting a much more even distribution of chord types. In 

this respect, Schoenberg’s music goes far beyond the simple rejection of tonality: by 

abandoning harmonic consistency, he took the radical step from “everything is per-

mitted” to “everything is permitted at all times.” Not only was he willing to use any 

collection of notes as a harmony, but he was also willing to use an enormous range of 

chord types within very short temporal spans.24

It is worth asking whether this feature of Schoenberg’s music might have been an 

unintended byproduct of the decision to abandon consonant chords. We have seen that 

harmonic consistency and conjunct melodic motion can be combined only under very 

special circumstances, typically involving acoustically consonant chords. It follows that 

composers who abandon consonance may put themselves in a diffi cult situation, sac-

rifi cing their ability to achieve the traditional two-dimensional coherence of Western 

music. Certainly, it is suggestive that the music of the second Viennese school often 

occupies two opposite poles: pointillistic textures that are harmonically consistent 

(as in the opening of Webern’s Concerto for Nine Instruments), and conjunct passages 

that use a very wide range of harmonies (as in the opening of Pierrot Lunaire’s “Die 

Kreuze”).25 It seems possible that atonal composers did not explicitly choose to abandon 

harmonic consistency or conjunct melodic motion; instead, this choice may have been 

forced upon them by their prior rejection of acoustically consonant chords.

It is also clear that there are some specifi c ways in which atonal music resembles 

random music. Figure 5.8.3a shows that the pitch-class circulation graph of the fi rst 

movement of Schoenberg’s Op. 11 is nearly indistinguishable from that of an equally 

long series of random pitches. Figures 5.8.3b–c compare the distributions of harmo-

nies in Schoenberg’s piece with those in random sequences. Again, both atonality 

and random music contain a broad and relatively even distribution of chord types. 

Finally, Figure 5.8.3d contrasts the frequency of pitch classes in a Schoenberg move-

ment with those in random sequences: the graphs are both relatively fl at, refl ecting 

the absence of clear points of tonal emphasis. (It is worth recalling that Schoenberg’s 

later twelve-tone method was explicitly designed to promote fl at pitch-class profi les 

of this sort: as Schoen berg emphasized, doubling or repeating notes could poten-

tially give rise to feelings of centricity, which would be refl ected by unevenness in the 

pitch-class profi le.26) Taken together, the fi gures suggest that there is some truth to a 

24 Curiously, this has been relatively little discussed in the literature, even though the abandonment of 
harmonic consistency is (to my ear, at least) a fairly salient feature of Schoenberg’s music.

25 Of course, there are many passages that exhibit neither effi cient voice leading nor harmonic 
 consistency.

26 Schoenberg 1975, p. 219; Huron 2007 makes a similar point.
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Figure 5.8.3 (a) Pitch-class circulation in Schoenberg and in random notes. (b) Distribution 

of six-note macroharmonies in Schoenberg and in random notes. (c) Distribution of three-

note harmonies in Schoenberg’s Op. 11 No. 3 and in random notes. 
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common (“naive”) response to atonality—namely, “it sounds random.” Statistically 

speaking, atonal music is often remarkably similar to random notes, and listeners 

perceive this fairly accurately.

Of course, in abandoning tonality, Schoenberg and other atonal composers 

attempted to substitute alternative methods of musical organization for those we have 

been considering—some of which, such as the twelve-tone method, involve the order 

of pitch sequences rather than their unordered pitch content. Discussions of atonal 

music often focus on the diffi culties involved in perceiving this alternative organiza-

tion: sympathetic observers sometimes explain atonality’s unpopularity by  comparing 

it to a language that is very diffi cult to learn, while more critical commentators, such 

as Fred Lerdahl and Diana Raffman, suggest that atonal music may be organized 

according to principles that are beyond any human perceptual understanding.27 The 

preceding discussion suggests that we might want to reconsider this line of argument. 

For appreciating atonal music requires more than simply learning to appreciate alter-

native methods of musical organization; it also requires learning not to respond to 

those statistical features that the music shares with random sequences of notes. And 

insofar as a listener fundamentally dislikes the sound of random pitches, then it may 

not matter how atonal pieces are organized: after all, mere ordering does not typically 

convert unpleasant stimuli into pleasant ones. (Imagine someone causing you pain, or 

feeding you disgusting food, according to a perceptible and highly structured pattern!) 

If this is right, then atonal music is not so much analogous to a language that is hard 

to understand; instead, it is more like a taste that many people do not see the point of 

acquiring. To put it crudely: people dislike atonal music, not because they have a hard 

time understanding it, but because they think it sounds bad.28

27 See Babbitt 1958, Lerdahl 1988, and Raffmann 2003. Babbitt compares atonal music to advanced 
mathematics, rather than a complex language, but the point is similar.

28 I should clarify that I am not denying that many listeners have a cognitive, language-like relation to 
music; instead, I am suggesting that direct sensory pleasure also plays a signifi cant role. My claim is that, 
in some cases, the unpleasantness of the musical stimuli may be more important than the perceptibility of 
underlying structure: pleasant-but-random is perhaps preferred to unpleasant-but-structured.

Figure 5.8.3 (d) Pitch-class distributions in Schoenberg’s Op. 11 No. 1 (left) and in random 

notes (right).
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None of this implies that highly chromatic music actually is bad or otherwise aes-

thetically fl awed: on the contrary, I think moments of extreme chromaticism (and 

even randomness) can often be artistically compelling. However, I do think that we 

might have reason to resist the claim that fans of atonality constitute a cognitive elite, 

or that the enjoyment of atonal music is a straightforward function of unusual powers 

of musical understanding. For these claims tend to rely on the rather dubious sugges-

tion that if people understood atonal music then they would like it—a claim that is no 

more likely to be true of Schoenberg and Babbitt than it is of heavy metal or polka. 

Instead, I think it is better to describe the afi cionados of atonality as having managed 

to acquire a taste for highly chromatic musical textures: like the taste for clam chowder 

ice cream, this is one that people often do not care to cultivate. But that neither makes 

it worthy of approval nor condemnation—instead, it is just one of the myriad different 

specialized pleasures whose pursuit makes contemporary society so colorful.

5.8.2 The Scalar Tradition

Diametrically opposed to atonality is the “scalar tradition” that makes extensive use 

of familiar scales and modes. This tradition encompasses at least six major twentieth-

century movements—impressionism, neoclassicism, jazz, rock, minimalism/postmin-

imalism, and neo-Romanticism—and a good deal of other music as well (including, to 

various extents, music of Scriabin, Stravinsky, Bartók, and Shostakovich). Of course, 

the scalar tradition is itself diverse: some styles (including mid-century neoclassicism 

and contemporary rock) are predominantly diatonic, while others (including impres-

sionism and jazz) make much greater use of nondiatonic scales; some composers 

write largely scalar music, while others juxtapose familiar scales with chromatic or 

even atonal passages. Nevertheless, we will see in Chapter 9 that there are enough 

Figure 5.8.4 Nondiatonic scales in nineteenth-century music. In (a), a fragment of the 

“Gypsy” scale (G-A-Bf-Cs-D-Ef-Fs) in Grieg’s Lyric Piece “Gjetergutt” (“Shepherd’s Boy”), 

Op. 54 No. 1. In (b), the acoustic scale in Liszt’s “Angélus! Prière aux anges gardiens”), Années 

de pèlerinage, Year 3.
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commonalities among twentieth-

century composers to justify talk 

of a scalar “common practice.”

Like the chromatic tradition, 

the scalar tradition has its origins 

in the late nineteenth century. 

Composers such as Chopin, Liszt, 

Mussorgsky, Rimsky-Korsakov, 

Grieg, and Fauré began experi-

menting with the various modes 

of the diatonic scale, as well as 

with whole-tone, octatonic, and melodic and harmonic minor scales (Figure 5.8.4).29 

Historians have often conceptualized this tradition extrinsically— as refl ecting “folk” 

infl uences external to the functionally harmonic tradition. But we can also under-

stand the scalar tradition intrinsically, as representing an expansion and generaliza-

tion of traditional compositional practices. In particular, twentieth-century scalar 

composers were the fi rst to systematically combine three  fundamental musical opera-

tions: change of tonal center, change of scale, and chromatic transposition. These 

operations are represented geometrically in Figure 5.8.5. Here, each plane represents 

the combination of chromatic and scalar transposition, while motion between scales 

is represented by vertical motion between the planes.30 The resulting modal system 

29 Samson 1977 emphasizes the late nineteenth-century divergence between scalar and chromatic 
 traditions.

30 This diagram should be understood as an abstract representation of musical possibilities; it is not a 
portion of the geometrical spaces described in Chapter 3.

Figure 5.8.5 (a) The two-dimensional modulatory space of twentieth-century diatonic 

music. Horizontal motion corresponds to scalar transposition; vertical motion chromatic 

transposition. The fi gure’s left and right edges are glued together, as are its top and bottom 

edges. (b) The three-dimensional space of twentieth-century scalar music. Each plane of the 

fi gure is analogous to (a); vertical motion changes the underlying scale.
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 provides a truly vast range of different key areas (Figure 5.8.6): instead of seven modes 

or 24 major and minor keys, composers now have more than 450  different tonal areas 

to chose from!

Within the scalar tradition, we can distinguish chordal from “pandiatonic” (or per-

haps “panscalar”) approaches: chordal music preserves the two-tiered “chord within 

scale” organization of earlier Western music; while pandiatonic music effaces the role 

of chords as scales themselves begin to assert a more central harmonic role.31 (As men-

tioned earlier, Debussy’s “Voiles” is an early example of this second practice.) The distinc-

tion between these two approaches thus mirrors the distinction between the chromaticism 

of composers like Reger and that of true atonality: Reger’s music, like traditional tonality, 

preserves harmonic consistency, limiting itself to a small  number of recognizable chord 

types, while pandiatonic music (like more radical atonality) abandons harmonic consis-

tency altogether. This is illustrated graphically in  Figure 5.8.7. Once again, we see that the 

binary opposition between “chromatic” and  “nonchromatic” (or “tonal” and “atonal”) 

blurs a number of more specifi c music-theoretical distinctions.

Returning now to a question broached earlier in this chapter: is it really true that 

Western music became more chromatic over the course of its history? Clearly, there 

is a sense in which it has: the progression from Palestrina to Mozart to Schubert to 

Wagner to Reger to Schoenberg exhibits a steady and quantifi able increase in chro-

maticism (Figure 5.3.2). What is left out of this story is that late nineteenth-century 

composers had already begun to rebel against this trend. This scalar tendency gath-

ered steam throughout subsequent decades, culminating in an unprecedented explo-

sion of diatonicism in the works of composers such as Shostakovich, Riley, Reich, 

Glass, Pärt, Górecki, Adams, Bryars, and ter Veldhuis, not to mention jazz, rock, 

and other popular forms of music. (The trend is also evident in the renewed appre-

Scale Type
Number 
of Scales

Number 
of Notes

Mode
Types

Total Number  
of Modes 

Pentatonic 
Whole tone 
Hexatonic 
Diatonic 
Acoustic 
Harmonic Min. 
Harmonic Maj. 
Octatonic 
Chromatic 
TOTAL 

12 5 5 60 

2 6 1 12 

4 6 2 24 

12 7 7 84 

12 7 7 84 

12 7 7 84 

12 7 7 84 

3 8 2 24 

1 12 1 12 

70 39 468 

Figure 5.8.6 Twentieth-century scalar composers potentially have a very wide range of scales 

and modes to work with.

31 The term “pandiatonic” was invented by Nicolas Slonimsky in the fi rst edition of Music Since 1900 
(Slonimsky 1994). It has been applied both to diatonic music lacking harmonic consistency and to diatonic 
music lacking centricity. Here, I use it in the former sense.
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ciation for early music.) Thus, where early twentieth-century historians might have 

seen a relentless, ever-increasing drive toward chromaticism, twenty-fi rst century 

musicians confront a very different environment, in which early twentieth-century 

scalar music seems as much a harbinger of things to come as a relic of the past.

5.8.3 Tonality Space

Of course, the chromatic and scalar traditions represent just a portion of the huge 

tapestry that is twentieth-century music. Figure 5.5.4 depicted twentieth-century 

music as lying on a two-dimensional continuum, whose axes represented the rate of 

pitch-class circulation and the explicitness of macroharmony. While the scalar tra-

dition lies on the far right of the graph, and while complete atonality is in the lower 

left corner, there is a considerable amount of music that does not fi t into either cat-

egory. Many of Prokofi ev’s pieces, for example, make free use of accidentals without 

attempting to stay within a single scale for very long. Similarly, composers such 

as Stravinsky, Milhaud, Bartók, and Shostakovich explored polytonal textures in 

which familiar musical materials are superimposed, creating the effect of clashing 

keys.32 Still others—such as the Messiaen of the Quartet for the End of Time or Vingt 

regards sur l’enfant-Jésus—wrote music that embraces many different techniques, 

being at different points traditionally tonal, polytonal, completely atonal, or several 

of these at once (Figure 5.8.8).

Among these myriad approaches, György Ligeti’s “non-atonality” stands out as 

being particularly relevant to the present discussion. Though dissonant, his music 

Limited Macroharmony

YES NO 

traditional
scale-based tonality

 (Debussy, Jazz) 

“triadic atonality”
(Gesualdo, Reger) 
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complete atonality

(Schoenberg, Babbitt) 
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Figure 5.8.7 In both the scalar and chromatic traditions, there are genres exhibiting 

harmonic consistency (top row) as well as genres in which harmonic consistency does not 

play as an important a role (bottom).

32 Although several eminent composers and theorists have critiqued the notion of polytonality (Bartók 
1976, pp. 365–366, Hindemith 1937/1984, Vol. 1, p. 156, Forte 1955, and Samson 1977, p. 256), the term 
seems unobjectionable to me. Some music can be segregated into relatively independent musical streams, 
each with its own sonic character—for instance, when two timbrally distinct instruments are widely sepa-
rated spatially or in register. Here the auditory streams do not completely fuse, allowing us to distinguish 
independent scales, macroharmonies, and even tonal centers in each stream.
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often exhibits a harmonic consistency that contrasts with the more classical atonality 

of Schoenberg, Stockhausen, or Babbitt. This is in large part due to Ligeti’s innova-

tive use of chromatic clusters—and more specifi cally, to his “micropolyphonic” tech-

nique of moving multiple voices within a fi xed chromatic collection. As I mentioned 

in Chapter 1, this “micropolyphony” constitutes a uniquely modern solution to the 

problem of combining conjunct melodic motion with harmonic consistency, one that 

exploits the near-permutation symmetry of very uneven chords (§1.3.1, §2.9). (Alter-

natively, we can say that Ligeti’s music exploits the mirror boundaries of the higher-

dimensional chord spaces, rather than taking advantage of their twists [§3.6]). I fi nd 

it remarkable that there are just two general techniques for combining conjunct melo-

dies with consistent harmonies, the fi rst involving nearly even chords and underwrit-

ing the tonal procedures of the last fi ve hundred years, the second involving clustered 

chords and featuring in the atonality of the 1960s. It is particularly interesting that this 

second solution arose almost fi fty years after the fi rst experiments with atonality—as if 

it took that long for composers to abandon the doomed project of writing traditional 

music with nontraditional sonorities, and to instead embrace a more radical approach 

that exploits the distinctive virtues of nontraditional, clustered chords. In a real sense, 

this music is unclassifi able: atonal by virtue of its dissonance, but tonal in its aspiration 

to combine harmonic consistency with conjunct melodic motion.

One of my goals here has been to identify concepts that allow us to think about 

the full spectrum of musical possibilities, ranging from traditional tonality to out-

right atonality. From this point of view, the fi ve basic components of tonality are 

useful insofar as they demarcate a collection of conceptual possibilities—as if each 

were a musical “vector” pointing into its own abstract dimension. Together, these 

(metaphorical) vectors span a region that could be called “tonality space.” We can 

situate unfamiliar pieces or genres within this metaphorical space by asking questions 

such as those in Figure 5.8.9. The fi rst set of questions concerns chords and melodies, 

and generalizes the traditional concerns of harmony and counterpoint; the second 

extends notions such as “mode,” “key,” and “tonic” to a broader range of macrohar-

monic possibilities. Collectively, they replace the opposition “tonal”/“atonal” with a 

much more fi ne-grained set of categories, more appropriate to the richness of con-

temporary musical practice.

Composers can use these questions to situate themselves within the world of 

musical possibilities. For some, this may be a matter of settling in a relatively small 

Figure 5.8.8 Messiaen’s “Première communion de la Vierge” (Vingt regards sur l’enfant-Jésus 

No. 11) combines an octatonic-infused tonality with atonal upper-register gestures.
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region of tonality space for the majority of their careers. (A strategy that is perfectly 

reasonable insofar as one has a strong preference for a very particular kind of music, 

or if one wants to appeal to audiences who do.) Others—following in the footsteps 

of Stravinsky, Bartók, Shostakovich, Messiaen, Ligeti, and John Adams—may prefer 

to compose music that traverses a broader range of tonality space, sometimes within 

the span of a single piece. Unimaginative critics may decry this as a matter of poly-

stylistic or postmodern inconstancy, but it is perhaps better described as a desire to 

embrace the full range of musical opportunities, an attitude encapsulated in Mahler’s 

famous remark that composers create musical worlds “with all the technical means 

available.”33 For composers of a maximalist bent, tonality space is the fi eld in which 

contemporary music operates, just as the 24 major and minor keys set the boundaries 

of eighteenth-century musical exploration.

To my mind there is a lot of fertile ground here. Having completed the theoretical 

portion of the book, my hope is that some of you will feel inspired to think about how 

to combine the fi ve features—whether by making creative use of nearly symmetri-

cal chords, exploring the voice-leading spaces of Chapter 3, manipulating interesting 

scales in novel ways, exploiting unusual pitch-class profi les, devising new combina-

tions of scale, macroharmony, and centricity, or by doing something else entirely. 

Those who are uncertain about how to proceed may benefi t from the analyses in Part 

II, which consider the ways in which previous composers have solved this problem. 

Besides deepening our appreciation for the music of the past, these analyses may sug-

gest new directions to composers of the present.

LOCAL
1. Does the music use a small set of similar-sounding chords?
 1a. How consonant are these chords?
 1b. Do these chords progress freely or are certain progressions favored?
2. Does the music use efficient voice leading?
 2a. Does this voice leading take place in chromatic space or in another
       scale?
 2b. Does it exploit near symmetries, as discussed in Chapter 2?
 2c. Can it be usefully modeled with the geometrical spaces of Chapter 3? 

GLOBAL
3. How fast do pitch classes circulate?
4. Does the music articulate clear macroharmonies?
             4a. Are these macroharmonies structurally similar to each other?
             4b. How consonant are the macroharmonies?
             4c. How fast do macroharmonies change?
             4d. Does the music exploit efficient voice leading between these
                    macroharmonies?
             4e. Does the music exploit “polytonal” effects by juxtaposing multiple
       scales or macroharmonies, each retaining their own identity?
5. Is there a sense of tonal center? 
  5a. Are there important secondary pitches?    

Figure 5.8.9 
Questions that 

help us situate 

music in tonality 

space.

33 See De La Grange 1973, p. 330.
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chapter 6

The Extended Common Practice

In the second half of the book, we’ll employ our theoretical apparatus to ask specifi c 

analytical and historical questions. Chapter 6 uses the fi ve components of tonality as 

a framework for reinterpreting the history of Western music, suggesting that a num-

ber of broadly tonal styles use very similar compositional techniques. The remaining 

chapters take up specifi c issues raised by this overarching narrative.  Chapter 7 dis-

cusses the harmonic syntax of eighteenth-century tonality, using geometrical models 

to investigate general questions about chord progressions, sequences, and key dis-

tances. Chapters 8, 9, and 10 are mostly analytical, focusing on chromatic harmony, 

twentieth-century scalar music, and jazz. Here the point is to demonstrate that the 

theoretical apparatus is useful for explicating specifi c pieces as well as more general 

historical trends.

Ultimately, the goal of Part II is to argue that Western tonal music constitutes an 

extended common practice stretching from the eleventh century to the present day. By 

now, this thesis should not be too surprising: since the fi ve components of tonality 

constrain each other in interesting and nonobvious ways, composers who wish to 

combine them have only a few alternatives at their disposal. The simple fact is that 

many composers from before Josquin to after John Coltrane have wanted to combine 

these features, and hence have struggled with a problem that has a relatively small 

number of solutions. We should therefore expect that when we dig deep enough, we 

will start to fi nd interesting similarities among their approaches.

Chapter 6 illustrates this point by considering brief passages from fi ve very differ-

ent musical styles. The fi rst is eleventh-century, two-voice note-against-note counter-

point—the earliest and most basic form of Western polyphony. The second illustrates 

the vocal counterpoint of the Renaissance. The third exemplifi es the functional har-

mony of the baroque and classical eras, and embodies two related innovations: the 

establishment of purely harmonic conventions and the increasingly systematic use 

of modulation. The fourth style highlights nineteenth-century composers’ growing 

awareness of chords as objects in chromatic space, while the fi fth illustrates twentieth-

century approaches to nondiatonic scales. Since my goal is to argue that there are 

similarities between these fi ve very different kinds of music, my discussion will neces-

sarily abstract away from numerous historical particulars. This is precisely why I con-

sider brief passages, rather than entire pieces. I trust you will agree that my examples 

capture the spirit of the genres they represent.
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6.1 disclaimers

There are several ways in which my approach might strike some readers as being 

anachronistic. First, I will generally model chords as unordered collections of pitch 

classes, and counterpoint as voice leadings in pitch-class space. These ideas, though 

originating in the theories of Lippius and Rameau, are more commonly associ-

ated with the twentieth century. It is therefore worth repeating that my goal is to 

describe music in a way that is useful to contemporary musicians, rather than to 

explain how earlier composers actually thought. I should also reiterate that the very 

notion of “pitch class” involves a signifi cant degree of abstraction: every composer 

in every era thinks carefully about octave, instrument, and register, distinguishing 

perfect fourths from perfect fi fths and root position from second-inversion triads. 

Were this a hands-on guide to composition, I would need to spend a great deal of 

time considering the various ways pitch-class voice leadings can be embodied in 

real music. However, my purpose here is to provide more general theoretical tools 

for understanding tonality—and in this context, an abstract approach is perfectly 

appropriate.

The other major point of anachronism is that I am not going to worry much 

about tuning and intonation. These are, of course, major preoccupations of music 

theory, and tuning systems have coevolved with harmony in fascinating ways: 

just intonation, which permits acoustically pure thirds, burgeoned alongside the 

development of triadic harmony; while more equal temperaments accompanied 

the increasing use of distant modulations.1 That said, standard tuning systems are 

in the grand scheme of things reasonably similar, and can all be represented by 

very similar geometrical structures. To be sure, tuning colors music in important 

ways and can make a real difference to our listening experience. But it does not 

fundamentally affect the very general theoretical relationships that are our main 

subject.

Finally, since this chapter surveys musical pieces spanning a millennium, it will 

necessarily omit many details. Professional music historians, who devote their lives to 

understanding history in all its marvelous specifi city, will look in vain for the nuanced 

discussions that are their stock-in-trade. They may even feel, at some points, that my 

descriptions are uncomfortably close to the potted histories of introductory music 

appreciation classes. I make no apologies for this. It seems to me that there are some 

fairly systematic connections between Western styles, and that these connections have 

often been ignored. Insofar as conventional scholarship de-emphasizes or disregards 

these general facts—perhaps in something like the way that a fi sh ignores the water in 

which it swims—then I think it is worthwhile to try to discuss them, even at the risk 

of seeming somewhat naive.2

1 For nontechnical (and wildly different) introductions to this subject, see Isacoff 2001 and Duffi n 
2006.

2 Here I am inspired by Jared Diamond (1997), who attempts to uncover broad geographical factors 
that constrain and infl uence the progress of human history. My geography is abstract and mathematical.
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6.2 two-voice medieval counterpoint

Figure 6.2.1 returns to the Allelujia Justus et Palma, fi rst published in the eleventh-

century treatise Ad Organum Faciendum (How to Write Counterpoint), and discussed 

previously in §3.5. Although it stands at the very beginning of the Western poly-

phonic tradition, the piece clearly exemplifi es a number of our fi ve features.

1. Conjunct melodic motion. In general the voices move by step, with contrary 

motion preferred to parallel motion. There are no prohibitions against 

parallel fi fths or octaves.

2. Acoustic consonance. The Montpelier organum treatise, roughly 

contemporaneous with Ad Organum Faciendum, considers steps, sevenths, 

and tritones to be forbidden dissonances. Thirds and sixths are imperfect 

consonances which can be used only in the middle of phrases; unisons, 

fourths, and fi fths are perfect consonances which can be used anywhere. 

This accurately describes the musical examples in Ad Organum Faciendum, 

though that text does not discuss imperfect consonances.3

3. Harmonic consistency. There is no robust notion of harmonic consistency, 

or “chord” in the modern sense. Instead, intervals are categorized by 

consonance and dissonance.

4. Macroharmony. The lines move within an enriched diatonic system 

containing seven and a half notes: C, D, E, F, G, A, and Bf/Bn. The last of 

these is a fl exible note that exists in both a “soft” (Bf) and a “hard” (Bn) 

form. These two forms do not intermix; one does not progress directly to 

the other, and care is taken to avoid clashes between different note forms in 

Figure 6.2.1 The Allelujia Justus et Palma from Ad Organum Faciendum. Open and closed 

noteheads represent the two different musical voices.

3 See Blum 1959. Note that I mean to be including compound intervals in this list: thus, an octave and 
a third (15 or 16 semitones) is an imperfect consonance, while an octave and a fi fth (19 semitones) is a 
perfect consonance.
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different voices. The two fl avors of B allow composers to avoid the tritones 

E-Bf and F-B.

5. Centricity. Cadences are articulated by contrary motion onto a unison or 

octave, with one voice moving by step and the other moving by step or 

third. By modern standards there is only a weak sense of centricity, and the 

music often seems to fl oat freely in diatonic space.

No less than the music of the high Baroque, then, our simple medieval style requires 

the simultaneous satisfaction of harmonic and contrapuntal constraints: the principal 

harmonic constraint is that intervals must be consonant, with perfect consonances 

predominating and imperfect consonances appearing more rarely; contrapuntally, the 

main requirement is that the music should feature a pair of conjunct melodies, often 

moving in contrary motion. Early medieval music-theory treatises attempt to help 

composers satisfy both constraints, typically by listing useful progressions in mind-

numbing detail—“when one part ascends a step, the other, beginning at the octave 

above may descend two steps and be at the fi fth”; “when one part repeats a note, the 

other, beginning at the fourth above, may ascend by step to the fi fth”; and so on.

Let us see if we can use two-note chord space to describe these principles more 

effi ciently. Figure 6.2.2 labels the consonances in our simplifi ed medieval system, 

using dark type for the perfect consonances and lighter type for imperfect conso-

nances. Perfect consonances are linked by line segments when it is possible to con-

nect them by stepwise voice leading, and by dotted line segments when they can 

be connected by “near-stepwise” voice leading—that is, voice leading in which one 

voice moves by step and the other by third. To a good fi rst approximation, learning 

to compose in this style involves internalizing the structure of this graph: perfect 

Figure 6.2.2 Perfect and imperfect consonances in our simplifi ed medieval system, displayed 

on the Möbius strip. Solid lines in the interior of the fi gure correspond to stepwise voice 

leadings, while dashed lines show nearly stepwise voice leadings.
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 consonances account for about 90% of the intervals in the Allelujia, with the two 

voices moving stepwise or near stepwise 70% of the time.4 These numbers suggest 

that our Möbius strip does indeed encapsulate the basic compositional knowledge 

possessed by early medieval composers, acting as a kind of musical “game board” on 

which they plied their trade.

Figure 6.2.3 traces out the seventh phrase of the Allelujia on the game board. For 

clarity, I have shifted the location of the left and right boundaries, and have omitted 

the imperfect consonances.5 Five of the eight voice leadings use near-stepwise voice 

leading to connect perfect fourths and unisons (or fi fths and octaves). This is much 

clearer on the Möbius strip than in the musical notation; we can see at a glance that 

the phrase largely consists of line segments connecting boundary points (octaves or 

unisons) to the nearest perfect fourth/fi fth on the inside of the strip. The geometrical 

representation also shows that the latter part of the phrase contains a hidden repetition 

of the opening: the initial dyads (G, G)®(E, A)®(F, F) form a wedge on the lower left 

Figure 6.2.3 (a) The seventh 

phrase of the Allelujia Justus 

et Palma, traced out on the 

Möbius strip. (b) The phase 

contains four “nearly stepwise” 

voice leadings connecting a 

perfect fi fth to an octave (or 

perfect fourth to a unison).

4 Stepwise motion in both voices counts for about 30% of the progressions, while near-stepwise motion 
adds another 40%; individually, each voice moves stepwise about 50% of the time.

5 As explained in §3.2 the placement of the left and right boundaries is arbitrary.
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of the Möbius strip, which is echoed by wedge (C, C)®(E, B)® . . . ®(D, D) above it. 

(See also the brackets above the musical notation.) However, the repetition is inter-

rupted by a pair of parallel fi fths that bring the music to {D, A} and {F, C}.

One might think the consonant quality of this music derives primarily from the 

fact that it uses consonant intervals. But as we saw in Chapter 5, its placid sonic char-

acter is also a function of its macroharmony. Figure 6.2.4 illustrates this point with a 

piece of “octatonic organum” that parodies the Allelujia’s opening phrase: though the 

parody uses only consonant intervals, it is more suggestive of a black mass or satanic 

ritual than medieval Christian piety. This demonstrates quite clearly that the appeal 

of early music is as much a function of the macroharmony as of the vertical intervals 

themselves—a lesson that suggests contemporary composers need to pay as much 

attention to macroharmony as to harmony proper.

6.3 triads and the renaissance

Figure 6.3.1 presents the opening of “Tu pauperum refugium,” the second part of Jos-

quin’s motet “Magnus es tu, Domine.”6 As in the Allelujia Justus et Palma, the music is 

Figure 6.2.4 
Octatonic organum.

Figure 6.3.1 
The opening 

of Josquin’s 

“Tu pauperum 

refugium.” 

Beneath the staff, 

I have shown 

how the music 

contains a series 

of effi cient 

three-voice voice 

leadings between 

three-note 

chords.

6 This piece was published anonymously in 1504, and has been attributed to both Finck and Josquin 
(see Judd 2006). It has been analyzed by writers such as Salzer and Schachter (1989), Berry (1976), Joseph 
(1978), and Judd (2006).
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largely diatonic, using stepwise melodic motion to articulate consonant harmonies. 

But there are also some fundamental differences between the styles.

Consonance and counterpoint. Parallel fi fths and octaves are no longer 

used. Fourths over the bass typically resolve to thirds, as if they had been 

reclassifi ed as dissonances (Figure 6.3.2). However, fourths are tolerated 

between upper voices, giving them an ambiguous status between consonance 

and dissonance.7 Diminished triads sometimes appear in fi rst inversion, 

even though they contain a dissonant tritone. As a result, Josquin’s music is 

signifi cantly less austere than the earlier medieval style.

Harmonic consistency. The music creates a much stronger effect of harmonic 

consistency, with fully 85% of the four-voice sonorities being triadic. The 

occasional use of diminished chords reinforces the sense that triads are syntactical 

objects: it is as if the diminished chord’s triadic status (i.e. its transpositional 

relatedness to major and minor triads in diatonic space) trumps the fact that it 

contains a dissonance. Although it might be anachronistic to treat every sonority 

in the piece as representing an underlying triad, there seems to have been a move 

toward this way of thinking. Certainly, one gets the impression that the transition 

toward conceiving of triads as harmonic things-in-themselves is well underway.

Macroharmony and centricity. The music makes use of a wider range of accidentals, 

occasionally producing mild macroharmonic change. Cadences are often 

articulated by specifi c melodic and harmonic formulas, some of which anticipate 

the V–I progressions of later music (Figure 6.3.2). To a modern ear, there is more 

sense of a “tonal center” than in the medieval style. However, the music continues 

to have a somewhat “fl oating” quality, and many passages are only weakly centered.

7 The ambiguous status of the fourth is addressed by early fi fteenth-century theorists such as 
 Prosdocimus de Beldemandis (see Kaye 1989 and Gut 1976).

Figure 6.3.2 In Josquin’s music, fourths typically resolve to thirds (a), diminished triads 

sometimes appear in fi rst inversion (b), and cadences sometimes anticipate the functional 

harmony of later centuries (c).
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In the rest of this section I want to look more carefully at these differences, with the 

goal of understanding how they might relate to the music-theoretical constraints dis-

cussed earlier.

6.3.1  Harmonic Consistency and the Rise 
of Triads

The triadic quality of Josquin’s music can be traced, in part, to simple combinato-

rial facts about the diatonic scale. To see this, notice that it is almost impossible to 

write three-voice counterpoint using only perfect consonances. This is illustrated in 

Figure 6.3.3, which locates the perfect consonances in three-note chord space; chords 

here are quite far apart, and only a few are connected by lines representing stepwise 

voice leading. (In fact, there are only three ways to connect three-note perfect conso-

nances by stepwise voice leading, and two of these produce parallel octaves.8) Readers 

who try to compose under these conditions will quickly develop a renewed appre-

ciation for imperfect consonances, which are virtually necessary for creating elegant 

three-voice counterpoint.9

Now suppose that you would like to use three-note chords containing only per-

fect and imperfect consonances—that is, thirds, fourths, fi fths, sixths, and their 

Figure 6.3.3 There are only a few three-note chords containing only perfect consonances, 

and they are spread throughout three-note chord space (a). (Note that we are viewing chord 

space from above, looking down through the triangular faces; compare the side view in 

Figure 3.8.2, where the triangular faces are on the top and bottom.) As a result, there are only 

a few ways to connect them with stepwise voice leadings (b), particularly if one wants to avoid 

parallel octaves.

8 If we relax the requirement of stepwise motion, we obtain a few more options, but not enough for 
compositional comfort.

9 There is some medieval music in which only the perfect consonances are stable. However, this music 
typically utilizes a large number of unstable sonorities in metrically weak positions.
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compounds. It turns out there are only two 

possibilities: doubled consonances, contain-

ing multiple copies of some note, and tri-

ads, containing no doublings at all (Figure 

6.3.4). The chords in the second category 

are sonically richer than those in the fi rst, 

simply by virtue of containing three distinct 

pitch classes. But they are also related in 

another way as well: considered as unordered sets of pitch classes, they are all related 

by diatonic transposition. It follows that a relatively weak notion of harmonic con-

sistency—the mere preference for triads over doubled consonances—automatically 

generates a much stronger kind of consistency. To my mind this is a profound fact, 

suggesting that harmonic consistency might arise as the unbidden byproduct of more 

basic musical preferences: composers who favor three-pitch-class consonances, 

purely on the basis of their richer note content, will inevitably use chords related by 

scalar transposition.

In fact, a fondness for triadic harmonies is already evident in the three-voice com-

positions of the late fourteenth century.10 Figure 6.3.5 traces the development of this 

norm throughout the following decades.11 In Dufay’s music, complete triads account 

for about 46% of the three-voice chords and 78% of the four-voice chords—numbers 

Figure 6.3.4 Doubled consonances (a) 

and triads (b).

10 See Crocker 1962, Rivera 1979, Kaye 1989.
11 The data in this section come from more than 150 MIDI fi les of four-voice Renaissance vocal music.
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Figure 6.3.5 The percentage of consonant sonorities that are complete triads rather than 

“doubled” intervals, by composer date of birth. The percentage is reasonably high throughout 

the Renaissance, and increases over time.
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that increase to 72% and 97% in the music of Lassus.12 The ratio of four-voice to 

three-voice chords increases as well, with three-voice sonorities being more prevalent 

in Dufay and Ockeghem, and four-voice sonorities predominating later. Indeed, it 

is likely that the desire for triadic harmonies explains this gradual standardization 

of four-voice textures, since it is very diffi cult to write three-voice music that con-

sistently articulates complete triads, particularly if one wants to avoid second-inver-

sion chords. A fourth voice allows for signifi cantly greater compositional freedom, 

permitting composers to use complete triads while still leaving enough fl exibility to 

write interesting melodic lines.

6.3.2 “3 + 1” Voice Leading

Four-voice textures would seem to pose a challenge for our geometrical approach, 

since they require a four-dimensional space in which doublings are not perspicu-

ously represented.13 Happily, a sizable proportion of Josquin’s voice leadings involve 

what I call the 3 + 1 schema: here, three voices articulate a strongly crossing-free 

voice leading between complete triads (§4.9), while a fourth voice adds doublings. 

This fourth voice is typically the bass, which often leaps from root to root; the other 

three voices are typically in close position and often move as effi ciently as possible. 

(See Figure 6.3.1, bottom staff.) Figure 6.3.6 shows that these “3 + 1” voice leadings 

account for a signifi cant portion of the four-voice triadic voice leadings in a broad 

sample of Renaissance music. These fi gures suggest that the eighteenth-century ten-
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Figure 6.3.6 The percentage of four-voice triadic voice leadings that are factorizable in a 

“3 + 1” manner, with three voices articulating strongly crossing-free voice leadings between 

complete triads, arranged by composer birth year.

12 Because there are many more doubled consonances than complete triads, even the 50:50 ratio for 
three-note chords suggests a preference for complete sonorities.

13 For example, in four-note space the chord {C, C, E, G} is somewhat distant from {C, E, G, G} (§3.12).
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dency to conceive of harmony as “a bass line plus some relatively homogenous upper 

voices”—exemplifi ed most clearly by fi gured-bass notation—might actually origi-

nate in the Renaissance.

It follows that we can often use three-note chord space to analyze four-part 

Renaissance music: we simply focus on three of the voices, treating the fourth as 

an “odd man out” subject to its own rules. Figure 6.3.7 locates the diatonic triads 

in three-note chord space, with the lines indicating single-step voice leading. The 

seven diatonic triads form a crooked chain running through the center of the space, 

with the top chord connected to the bottom as explained in Chapter 3. In §3.11, 

we described this circle of triads as being analogous to the diatonic circle of fi fths, 

since it links a series of structurally similar chords by single-step voice leadings. 

We now see that we can use it to model many of the voice leadings in Renaissance 

counterpoint.

Suppose, for example, you would like to move three voices from C major to F 

major. The most effi cient way to do this is to take two clockwise steps along the circle, 

producing the voice leading (C, E, G)®(C, E, A)®(C, F, A) or (C, E, G)®(C, F, A). 

Each clockwise move raises a single voice by step: the fi rst moves G to A, while the 

 second moves E to F (Figure 6.3.8). Alternatively, however, we can move from C to F 

by taking fi ve counterclockwise steps, producing (C, E, G)®(B, E, G)®(B, D, G)®(B, 

D, F)®(A, D, F)®(A, C, F), or (C, E, G)®(A, C, F). Each counterclockwise move low-

ers one voice by step, yielding a voice leading whose voices descend by a total of fi ve 

steps. By taking one or more complete turns around the circle, we can generate other 

voice leadings between C major and F major, all of which are strongly  crossing free. In 

Figure 6.3.7 The diatonic triads form a chain that runs through the center of three-note 

chord space, with adjacent triads linked by single-step voice leading. (b) This “circle of thirds” 

is analogous to the familiar circle of fi fth-related diatonic scales, and can be used to represent 

any three-voice, strongly crossing-free voice leading between triads.
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fact, the circle models all possible 

strongly crossing-free voice lead-

ings between any two triads in the 

C diatonic scale.

Figure 6.3.9a plots the opening 

phrase of “Tu pauperum refugium” 

as a series of paths in three-note 

chord space. Figure 6.3.9b shows 

how these voice leadings would 

be represented on the circle; in 

both views, the music takes the 

most direct path between succes-

sive triads. This is characteristic of 

the excerpt: indeed, of the twelve 

numbered voice leadings on Figure 

6.3.1, all but one takes the short-

est path along the triadic circle.14 

To give a sense of the utility of the 

circle—and of the ubiquity of the voice leadings it represents—Figure 6.3.10 turns 

to a style worlds apart from Josquin. Here we see that many common guitar fi nger-

ings also articulate strongly crossing-free voice leadings in their upper voices. (Of 

course, in pop music, effi cient voice leading results more from guitarists’ attempts to 

Figure 6.3.8 
Two strongly 

crossing-free 

voice leadings 

between C and F, 

represented on 

the circle.

14 The exception is (D, F, A)®(B, E, Gs), which is less effi cient than (D, F, A)®(E, Gs, B). However, 
the latter voice leading is unusable because it creates both parallel fi fths and a melodic augmented second. 
Furthermore, it is actually less effi cient when considered as a voice leading in chromatic space—involving 
seven semitones of motion as opposed to fi ve.

Figure 6.3.9 
Four voice 

leadings from 

the opening 

of Josquin’s 

“Tu pauperum 

refugium” 

plotted in three-

note chord space 

(a) and on the 

diatonic circle of 

thirds (b).
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 minimize their physical motions than from an explicit concern for polyphony.) The 

distance between these two examples—one representing the high art of the Renais-

sance, the other representing the vernacular of our own time—suggests that our 

 triadic voice leadings feature in a very broad range of music.

6.3.3 Fourth Progressions and Cadences

We now turn to a feature of Renaissance practice that is not altogether obvious in the 

brief Josquin excerpt. Figure 6.3.11 shows that root progressions by perfect fourth 

and fi fth become increasingly prevalent from Josquin on: where the root progres-

sions in Dufay and Ockeghem are about evenly divided between steps, thirds, and 

fourths, fourths account for more than 50% of the progressions in Josquin and 

almost 60% in Palestrina.15 This trend continues into the eighteenth century, reach-

ing more than 70% in the Bach chorales. One possible explanation lies in the fact 

Figure 6.3.10 (a−b) 

Two common chord 

progressions, as they 

are often played on a 

guitar. (c−d) The notes 

produced by these 

fi ngering patterns. The 

top three voices articulate 

strongly crossing-free 

voice leadings that can 

be represented on the 

triadic circle.

15 Note that I am using use “fourth” to mean “fourth or fi fth or any of their compounds.” In construct-
ing the graph I also eliminated progressions such as (C4, C4, E4, G4)®(C4, C4, E4, A4), which could be 
interpreted as resulting from linear motion in the top voice; third progressions were counted only when 
at least two voices change.
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that these progressions make it particularly easy to harmonize stepwise melodies. 

Figure 6.3.12 shows that if we start with a C major chord, with any of its notes in the 

soprano, we can harmonize any melodic step with either the progression C major®F 

major or C major®G major. By contrast, steps and thirds are not nearly so useful: 

third progressions from a fi xed triad can harmonize only two stepwise motions; while 

step progressions can easily lead to parallel fi fths and octaves.16 (To avoid these paral-

lels, composers typically use chord inversions, or move the upper voices ineffi ciently.) 
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Figure 6.3.11 Root progressions by composer, with S = second, T = third, and F = fourth. 

Over the course of the Renaissance, there is an increasing preference for fourth progressions, 

a trend that continues into the classical tradition.

16 Common tones may also be a factor: step-related triads have no common tones, fourth-related triads 
have one, and third-related triads have two. The Goldilocks Principle perhaps favors the middle option.

Figure 6.3.12 Fourth progressions allow a composer to harmonize a wide range of stepwise 

melodies in a “3 + 1” fashion, with the upper voices moving by strongly crossing-free voice 

leadings and the bass moving from root to root. Root motions by second and third are 

comparatively less fl exible, either because they do not harmonize many stepwise melodies or 

because they can create forbidden parallels.
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From this point of view, fourth progressions are particularly handy tools, being easy 

to use while also providing a wealth of melodic options.

Of course, fourth progressions play a critical role at cadences, too. Recall from 

§6.2 that medieval cadences often feature two voices converging by stepwise contrary 

motion onto a unison or octave (Figure 6.3.13). Suppose we want to add a third 

voice to this cadence, ending on either a triple unison C, or the open fi fth C-G-C. 

(In particular, suppose we want the bass to sound the pitch class on which the voices 

converge, so that the acoustic root of the chord reinforces the converging melodies.17) 

One possible harmonization is shown in Figure 6.3.13b: with the Fs, this is a standard 

medieval double leading-tone cadence; with the Fn, it suggests a tonal vii°6–I progres-

sion. (Another variant, with Bf and Df, produces a “phrygian cadence,” common in 

both Renaissance and classical music.) A second option, shown in Figure 6.3.13d, 

very closely resembles the V–I progression. When we examine four-voice harmoniza-

tions, the situation is even more dramatic, as virtually all the available options evoke 

familiar cadences.18 Rather than being arbitrary conventions, then, these cadential 

formulas may arise as relatively obvious solutions to the basic problem of harmoniz-

ing two converging stepwise voices.

We see, then, that Renaissance music involves two different kinds of fourth pro-

gressions. Within-phrase progressions have little or no cadential function and do 

not necessarily create the sense of tension and release. In particular, these progres-

sions typically feature 3 + 1 voice leading rather than the converging stepwise voices 

of the cadential formulas (cf. the fi rst voice leading in Figure 6.3.1). By contrast, 

17 Not all medieval cadences are like this, of course: one sometimes fi nds progressions such as (G3, B3, 
D4)®(F3, C4, C4), but it is reasonable to suppose that musicians would incline toward cadences in which 
the pitch class in the bass is also the object of melodic convergence, as these would presumably create a 
stronger sense of emphasis on a single pitch class.

18 These ideas derive from Randel (1971), who suggests that the increasing popularity of the V–I cadential 
form is the result of two factors: fi rst, a preference for concluding on open fi fths rather than complete 
 triads, and second, an increasing preference for four-voice textures. See also Lowinsky 1961.

Figure 6.3.13 (a) A basic medieval two-voice cadential pattern, in which two voices converge 

onto an octave by stepwise motion. (b−c) Three-voice harmonizations producing a common 

medieval cadence (with the Fs), a vii°6–I cadence (with the Fn), or a phrygian cadence 

(with Fn and Df). (d) A three-voice harmonization resembling a V–I cadence. (e) A failed 

harmonization producing parallel fi fths. (f−h) Four-voice extensions of the preceding schemas. 

The V–I form (g) cadences on a sonority containing only perfect consonances.
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cadential fourth progressions do exhibit a clear pattern of tension and release, and 

almost always employ converging melodic voices. One interesting possibility is that 

functional tonality arose out of the gradual fusion between these two types of pro-

gression—in other words, the within-phrase fourth progressions gradually acquired 

the tension-release quality of the cadential formulas, articulating the music into a 

sequence of short “harmonic cycles,” each concluding with its own tension-resolving 

V–I progression. We will return to this idea in the next chapter.

6.3.4 Parallel Perfect Intervals

Finally, a word about the prohibition on parallel perfect fi fths and octaves. Many 

theorists have proposed that the prohibition is connected to the phenomenon of 

auditory streaming: on this account, parallel motion by perfect fi fth or octave tends 

to destroy the sense that the music is composed of independent musical voices, 

since it leads us to “fuse” the voices into a single melody.19 While I am sympathetic 

to this explanation, it seems to me that the prohibition might also refl ect struc-

tural features of diatonic scale itself. Figure 6.3.14 shows that parallel diatonic fi fths 

almost always produce parallel chromatic fi fths; by contrast, parallel diatonic thirds 

do not produce the same degree of chromatic parallelism, since the diatonic scale 

contains a more even distribution of major and minor thirds. To me, this difference 

is at least as striking as the difference in the acoustic quality of the intervals.  Figure 

6.3.14 illustrates this point by comparing two sorts of parallel motion in Messi-

aen’s nine-note “mode 3.” Here three-step scalar intervals are always four semitones 

large, while four-step scalar intervals alternate between six and seven semitones. 

I fi nd that the passages exhibit a roughly similar degree of “voice  independence,” 

(d)

Figure 6.3.14 Parallel motion within the diatonic scale (a−c) and in Messiaen’s “Mode 3” 

(d−e). Underneath each interval I have written its chromatic size in semitones. The brackets 

identify chromatic motion that is not parallel.

19 See Huron 2001 and the references therein.
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even though one of them contains parallel perfect fi fths and the other doesn’t. This 

suggests scale structure plays at least some role in explaining the prohibition on 

forbidden parallels.20

* * *

Let me conclude this discussion by reinforcing two general points. First, there are a 

number of features of Renaissance practice that prefi gure later styles, including tri-

adic harmonies, the 3 + 1 arrangement of the voices, the avoidance of parallel per-

fect intervals, and the increasing use of root progressions by perfect fi fth. These facts 

should perhaps make us hesitate before drawing too sharp a distinction between the 

musical languages of Palestrina and Bach.21 Second, and perhaps more important, 

several features of Renaissance syntax can be seen as relatively obvious solutions to 

very basic compositional goals—ensuring voice independence, writing consonant 

music using three-note sonorities, and harmonizing stepwise convergence onto a 

unison. In hindsight, we can see these developments as exploiting relatively obvious 

possibilities lying dormant in the diatonic system.

In saying this, I do not mean to propose a deterministic or Hegelian view of music 

history according to which music was fated to develop as it actually did: one can cer-

tainly imagine alternate histories in which, say, Western composers never developed 

an aversion to parallel perfect fi fths. But I do think that composers, like all artists, 

are opportunists, quick to take advantage of whatever possibilities present themselves. 

And the fundamental moral of Part I is that the fi ve components of tonality impose 

nontrivial constraints on composers’ choices, boxing them in on some sides while 

allowing them to move freely in other directions. One might make an analogy here to 

a mountaineer ascending a cliff: though the climber is in principle free to move in any 

direction, the structure of the rock will naturally suggest certain routes, offering hand-

holds and footholds that will guide any sensible person’s decisions. In much the same 

way, we can sometimes tell reasonably compelling stories about why music might have 

developed as it did. The trick for the historian is to make room for contingency while 

also capturing the way in which music history sometimes follows the path of least 

resistance, like a climber ascending a cliff by way of a particularly inviting chute.

20 One point in favor of the acoustic explanation is that parallel perfect fourths are permitted in clas-
sical three-voice counterpoint, whereas parallel perfect fi fths are not. (This marks an interesting difference 
between fi fths and octaves: parallel octaves remain objectionable no matter how the octaves are arranged 
in register, whereas fi fths can always be converted to unobjectionable fourths by a suitable transposition 
of voices.) However, it is not clear whether we should try to fi nd principled explanations for every feature 
of traditional practice. In fact, very occasional parallel perfect fi fths, embedded in complex contrapuntal 
textures, may not signifi cantly weaken voice independence.

21 Well-meaning scholars have sometimes been overzealous in their attempts to complicate this pic-
ture. For example, Harold Powers (1992, pp. 11–12) denies each of the following claims: “the modal system 
was displaced by the tonal system,” “modality evolved into tonality,” and “the ancestors of our major and 
minor scales were the Ionian and Aeolian modes.” It seems to me that these three truisms are unobjection-
able when properly understood; by rejecting them completely, Powers commits an error as egregious as the 
oversimplifi cations he warns against.
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6.4 functional harmony

Where our early medieval excerpt exhibited the basic two-dimensional coherence 

of Western music, combining recognizable melodies with consonant harmonies, the 

Renaissance passage added a much more robust notion of harmonic consistency. Our 

next example features two further innovations. First, chords are now constrained to 

move according to a small number of (“functional”) harmonic conventions. These 

conventions go hand-in-hand with a much stronger emphasis on the tonic, so that 

centricity is often signifi cantly clearer than in earlier music. Second, keys now partici-

pate in their own meaningful progressions, as modulation becomes more systematic 

and encompasses a wider range of macroharmonic states. The result, as I have said, 

is a musical style that is hierarchically self-similar, with the same fundamental proce-

dures appearing on both the level of the scale and that of the chord.

Figure 6.4.1a presents the opening of one of J. S. Bach’s harmonizations of the 

chorale melody “Herr Christ, der ein’ge Gott’s sohn.” Where the progressions in Jos-

quin’s “Tu pauperum refugium” are extremely free, those in Bach’s chorale can be 

summarized by the simple map in Figure 6.4.1b. Such maps embody the new conven-

tions central to eighteenth-century harmony—for instance, that ii chords often move 

to V chords, but not vice versa. The bottom staff of the fi gure shows that the music 

again uses the 3 + 1 schema, with the upper three voices in close position and moving 

in a strongly crossing-free manner, and with the bass obeying its own principles. The 
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Figure 6.4.1 (a) The fi rst phrase of Bach’s chorale “Herr Christ, der ein’ge Gott’ssohn” 

(No. 303 in the Riemenschneider edition) and a reduction of the upper voice counterpoint. 

(b) A simple model of the chord progressions it contains. Chords can move freely rightward, 

but can move leftward only by following the arrows.
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similarity to Figure 6.3.1 suggests that functionally tonal music augments Renaissance 

voice-leading practices with new and distinctive harmonic rules.22

This last observation is surprisingly controversial. A number of theorists, infl uenced 

by Heinrich Schenker, seem to deny that functional tonality involves purely harmonic 

conventions.23 Instead, they claim that what appear to be independent harmonic laws 

can actually be derived from new voice-leading principles indigenous to the classical 

era. We will consider this view more carefully in the next chapter. For now, though, let 

us note that we have good historical reasons for claiming that functionally tonal music 

obeys purely harmonic laws. To put it crudely: Renaissance music uses effi cient voice 

leading, avoids parallel fi fths and octaves, and allows triads to progress in a very free 

fashion; classical music observes many of the same voice-leading conventions, but also 

requires chords to move in particular ways. Moreover, twentieth-century tonal music 

often permits parallel fi fths and octaves while still conforming to the harmonic schemas 

of the classical era. It seems exceedingly natural to represent this situation as shown in 

Figure 6.4.2. Here, the so-called “common practice period” is depicted as lying at the 

intersection of two separate common practices: a contrapuntal common practice that 

includes the music of the Renaissance, and a harmonic common practice that includes 

a good deal of twentieth-century music. Theorists who renounce harmonic laws risk 

effacing these two common practices, and hence obscuring the connections between 

Renaissance music, classical tonality, and more recent rock and jazz.

Functional harmony is also notable insofar as it charts coherent paths through 

the space of possible keys. This can be seen in the opening phrases of one of Bach’s 

settings of the hymn “Ein’ feste Burg,” shown in Figure 6.4.3. The music begins in 

D major but modulates to A major at the end of the fi rst phrase; it then turns to B 

minor to start the second phrase, returning to the tonic D major at the end. As dis-

cussed earlier, these modulations involve particular voice leadings between scales: the 

fi rst raises G to Gs, the second raises A to As, and the last cancels these two changes 

by returning to the opening collection. Figure 6.4.4 shows how these modulations 

appear on the scale lattice of §4.6: the music begins by taking minimal steps between 

adjacent collections, and ends by moving diagonally back to its starting point. Such 

voice leadings represent a higher dimensional analogue to the contrapuntal processes 

linking individual chords.

22 To be fair, functionally tonal music may involve a few new rules, such as the requirement that the 
leading tone resolve upward. Nevertheless, the vast majority of its contrapuntal rules are inherited from 
earlier styles.

23 See, for example, Salzer 1982, Schenker 2001, and Beach 1974.
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When I fi rst began to study 

tonal harmony, the chord-by-chord 

constraints seemed to be the most 

important and distinctive feature 

of the style. I thought the regular 

fl ow from tonic to subdominant to 

dominant provided music with a 

powerful and historically unprece-

dented level of structure—one that 

differentiated it from the less prin-

cipled harmonic languages of other 

eras. Twenty-fi ve years later, it now 

seems to me that systematic modu-

lation is at least as important, providing a powerful tool for producing large-scale 

harmonic change while also creating a remarkable sort of self-similar musical tex-

ture. It is interesting, therefore, that modulation continues to feature prominently 

in twentieth-century music, even in styles that have abandoned the chord-to-chord 

constraints of the classical era. Indeed, one could even argue that systematic rela-

tions among macroharmonies are the most signifi cant and enduring legacy of the 

functional tradition.

6.5 schumann’s chopin

We’ll approach our next style with a bit of musical analysis. Figure 6.5.1 summa-

rizes the chords used in Schumann’s “Chopin,” a wonderful little piece of musical 

portraiture. The harmony here is not radical: it opens in Af major, turns briefl y to 

Bf minor, and immediately returns to Af major at the start of the example’s third 

bar. Bar four moves to F minor, featuring a chromatic passage in which the tenor 

and bass exchange the notes En and G. The major point of interest lies in the last 

bar: beginning at F minor we move to a shocking A7 chord which then progresses 

to Ef7, the dominant of Af. It is precisely the sort of daring harmonic gesture that 

Figure 6.4.3 The fi rst two phrases of one of Bach’s harmonizations of “A Mighty Fortress is 

Our God” (Riemenschneider No. 20).

Figure 6.4.4 
The modulations 

in Figure 6.4.3, 

graphed on a 

portion of the 

scale lattice.
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 characterizes Chopin’s music—at once willful and completely convincing to the ear. 

One can well imagine the young Schumann playing the passage with a wink.

Now, what can we say about this A7 chord? Where does it come from and what 

does it mean? It is, to begin with, a chord without a name. Without the Gn, one 

might call it a “Neapolitan,” but according to harmony textbooks such chords typi-

cally behave rather differently. Were this a piece of contemporary jazz, we might call 

the A7 a “tritone substitution” for the dominant Ef7, though the name seems more 

than a little anachronistic here. We could perhaps invent a new term for the chord, 

calling it a “Schumann seventh” or some such. Or we could name it with reference to 

other keys, asserting that it has been “borrowed” from either D major or D minor. But 

these descriptions merely serve as labels for our puzzle, 

rather than solutions. What we want to know is why 

Schumann might have written such a chord, and why 

it sounds so shocking and so beautiful at one and the 

same time.

The obvious answer is that the chord is connected by 

effi cient chromatic voice leading to both the preceding 

F minor and the following Ef7. Figure 6.5.2 shows that 

we can model the music as having four distinct musical 

voices, each moving by semitone. Our exotic A7 chord 

is a chromatic passing chord—a moment of musical 

liquidity that “fi lls the gaps” between the perfectly respectable diatonic sonorities sur-

rounding it. But it would be wrong to dismiss it as a mere agglomeration of linear 

passing tones with no vertical signifi cance, since the purported passing tones form a 

familiar dominant seventh chord that has already occurred in the piece. (In m. 3 of the 

fi gure, neighboring motion briefl y converts an E diminished seventh into an A domi-

nant seventh.) To downplay the vertical signifi cance of the A7 chord is to miss the fact 

that Schumann could have chosen any number of different passing or neighboring 

chords, and that this particular sonority appears twice in a very short span of time.

Figure 6.5.1 
A harmonic 

summary of 

Schumann’s 

“Chopin.” Each 

whole note in 

the summary 

corresponds to 

a measure in the 

actual work.

Figure 6.5.2 The last 

measure of “Chopin” can be 

interpreted as a four-voice 

passage in which each voice 

moves by semitone.
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What makes the chord interesting, therefore, is its twofold status. Contrapuntally, 

we can think of it as a mere collection of passing tones. Harmonically, however, it has 

its own individuality and signifi cance. Furthermore, the A7 chord suggests keys—D 

major and D minor—that are intuitively quite “distant” from the tonic Af. Thus the 

A7 is simultaneously close and not close to the chords surrounding it: it is melodically 

close, since A7 can be connected by effi cient voice leading to both F minor and Ef7; 

but it is tonally distant, since the keys of D major and D minor are in some sense “far” 

from the tonic Af major. It is precisely this confl ict that produces the feeling that the 

A7 chord is both out of place and yet profoundly right.

Geometrically, both of these distances can be modeled with the voice-leading 

spaces of Chapter 3. Key distances can be represented using the seven-dimensional 

space depicting voice-leading relationships among familiar scales, as we will see 

in the next chapter. Chord distances can be represented using the lower dimen-

sional spaces containing triads and seventh chords. In four-note chromatic space, 

for example, A7 is quite close both to Ef7 and the doubled triad F-Af-Af-C. In 

more traditional tonal contexts, the proximity of A7 and Ef7 is not apparent, since 

chords are restricted to a particular major or minor scale; thus, to move from A7 to 

Ef7 one must not only change chords, but also change scales via modulation. The 

essence of nineteenth-century harmony lies in the elimination of this modulatory 

step: in “Chopin,” Schumann temporarily abandons the diatonic world in favor of a 

direct manipulation of chromatic relationships. This involves replacing a relatively 

simple diatonic geometry with the much more complex geometry of chromatic 

possibilities—a shift that is illustrated, in the three-note case, by Figure 6.5.3. The 

contrast between these fi gures shows at a glance why chromatic music can be so 

hard to understand.

Figure 6.5.3 Voice leading relations among diatonic triads (a) are much less complex than 

those among chromatic triads (b).
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6.6 chromaticism

Schumann’s musical portrait could serve as the frontispiece to the entire tradi-

tion of nineteenth-century chromaticism, a genre that is characterized by the 

 increasing tendency to conceive of chords as objects in chromatic space. This 

 tendency manifests itself in two musical techniques, one pedestrian and the other 

more radical. The pedestrian technique uses chromatic chords to embellish or deco-

rate familiar tonal progressions without fundamentally unseating the conventions 

of functional harmony. The more radical technique abandons functional norms in 

favor of direct chromatic voice leading between triads and seventh chords. These 

direct chromatic moves serve a variety of musical functions, acting as neighboring 

chords, passing chords, bridges to distantly related keys, and motivic progressions 

in their own right. It is this second technique that has led theorists to propose that 

nineteenth-century musical syntax is fundamentally dual, combining a diatonic 

“fi rst practice” inherited from the classical era, with a newer “second practice” 

based on chromatic relationships.24

Figure 6.6.1 illustrates this fundamental change from diatonic to chromatic 

frames of reference. Relative to the diatonic scale, each voice in Figure 6.6.1a moves 

by a single step, so that there is no gap between successive notes. Relative to the chro-

matic scale, however, G moves to A by two chromatic steps. As nineteenth-century 

composers began to think more chromatically, it became increasingly tempting to 

try to fi ll this gap. In Figure 6.6.1b, for example, the added note between G and A 

produces two different sonorities, a C augmented triad on the way up and an F minor 

triad on the way down.25 From this per-

spective, the two chords result from the 

same fundamental musical process of 

fi lling in gaps.

Contemporary terminology some-

times seems designed to obscure this fact, 

describing the F minor chord as being 

borrowed from the key of C minor. I am 

somewhat suspicious of this metaphor of 

“borrowing.” Musical keys are not lend-

ing libraries, and there are no borrower’s 

cards that can be used to verify whether 

the F minor chord is indeed on loan 

24 This view has been defended by Mitchell (1962), Proctor (1978), and Cohn (1996, 1997, 1998a). See 
also the essays in Kinderman and Krebs 1996. Antecedents can be found in Kurth 1920 and Weitzmann 
1860.

25 In principle, of course, one could use the F minor chord on the way up, and the C augmented on the 
way down, but this would be less effective. In C–f–F, the single-semitone shift Af®A occurs after the root 
motion has already happened, and sounds like a “correction” of the fi nal chord. In C–C+ −F, the chromatic 
alteration intensifi es the C chord, and makes the root change more dramatic when it happens.

Figure 6.6.1 (a) Relative to the diatonic scale 

each voice moves by the smallest possible 

distance. (b) Relative to the chromatic 

scale, there are gaps that can be fi lled in. 

The resulting progression appears in the 

nineteenth-century song “You tell me your 

dream, I’ll tell you mine.”
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from C minor. Moreover, the idea of “borrowing” potentially reinforces a compart-

mentalized approach to chromatic harmony, one that presents the style as a series of 

disconnected idioms with no common structure. (For example, in one popular text-

book “borrowed” chords appear eight chapters before augmented triads, thus making 

it seem as if the chords in Figure 6.6.1 have no relationship.26) Rather than focusing on 

assigning labels to chords (such as “borrowed chord” or “augmented sixth”), I would 

prefer to focus on the underlying musical procedures relating them, which in many 

cases is chromatic voice leading. Otherwise, it can be very diffi cult to understand the 

fundamental logic animating chromatic music.27

In the previous example, chromaticism decorates a familiar progression. Figure 

6.6.2 exhibits the more radical kind of chromaticism as it operates in the middle 

phrase of Chopin’s E major prelude. Almost all the unusual moves in this passage can 

be interpreted in light of two different voice-leading “systems”: one connecting triads 

whose roots relate by major third, and the other connecting seventh chords whose 

roots relate by minor third or tritone. We begin with the major-third system, moving 

from E major to C major by way of the voice leading (B, Ds, Fs)®(B, D, G); this con-

nects V in E to V in C. The music then hints at dominants of F major, D minor, and 

Af major, each expressed in a slightly different way: the dominant of F is a dominant 

seventh chord, the dominant of D is both a triad and a diminished seventh, and the 

dominant of Af is both a diminished and dominant seventh. Finally, we return to E 

26 Aldwell and Schachter 2002. “Mode mixture” is not even included in the section on chromaticism, 
but is considered a completely different procedure. Kostka and Payne (2003) treat modal mixture and 
augmented triads in Chapters 21 and 26, respectively, but give little sense of the relation between them. 
Perhaps the best pedagogical treatment is in Gauldin (1997), who treats mode mixture and augmented tri-
ads in different chapters, but who includes an introductory discussion that clarifi es the similarities between 
them.

27 I don’t wish to suggest that there is never any role for the notion of “borrowing” or modal mixture, 
only that we should be careful not to invoke these ideas refl exively and without justifi cation.

Figure 6.6.2 The second phrase of Chopin’s E major prelude. Beneath the excerpt I provide 

simplifi ed voice leadings that illustrate the major- and minor-third systems.
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by way of a single-semitone voice leading connecting Gs minor to an (incomplete) 

B7 chord. Below the example I have provided a hypothetical “background” in which 

the contrapuntal logic is easier to see. We can think of these voice leadings as basic 

templates which Chopin has embellished in a relatively straightforward way.

A more involved example is given by the scherzo to Schubert’s C major String 

Quintet (Figure 6.6.3).28 The piece is exuberantly simple and folksy, presenting the 

same melodic material in a variety of distant keys. Five of Schubert’s eleven modula-

tions involve the major-third system: three directly juxtapose major-third-related tonic 

triads, while two more connect a tonic triad with what turns out to be the dominant 

of the following key. Three of the remaining modulations involve minor-third-related 

dominants: the initial feint to D minor connects V7/IV to the minor-third-related V/ii 

(which here appears without its seventh), while the modulation from Af to G connects 

C7 (itself obtained via a semitonally ascending sequence of seventh chords) directly 

to Ef7, which is in turn reinterpreted as an augmented sixth of G. (This passage is 

cleverly varied in the recap, where the ascending semitonal motion continues upward 

to an Af7 which is then reinterpreted as the German sixth of C major; as a result, the 

entire passage modulates down by minor third rather than down by semitone.29) Once 

again, the majority of the modulations use effi cient chromatic voice leading among 

triads and seventh chords. To the extent that we can familiarize ourselves with the 

major- and minor-third systems, we can begin to see that Schubert’s kaleidoscopic key 

changes reuse a small number of familiar contrapuntal moves.

Let me clarify that I am not claiming that Schubert and Chopin explicitly concep-

tualized these different chromatic systems; it is entirely possible that they simply sat at 

the piano and exploited the most effi cient voice leadings that came to hand. My point 

Figure 6.6.3 An outline of the modulations in the scherzo to Schubert’s C major String 

Quintet. Local tonics are shown with open noteheads. Of the eleven modulations, nine involve 

the major- and minor-third systems; only two employ traditional pivot chords.

28 Thanks to Andrew Jones, who made a number of the observations in this paragraph.
29 This compensates for the fact that the recap’s D minor moves up to Ef major rather than back to C 

major, leaving Schubert in an inconvenient key.
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is that the geometry of chord space ensures that this sort of intuitive  exploration 

will necessarily result in music that can be described using the major- and minor-

third systems. It is useful here to revisit the analogy of the mountain climber, though 

now representing an individual composer rather the development of Western music 

as a whole. Chromatic composers, like mountaineers, will be constrained by the 

 environment in which they operate, and the geometrical spaces of Part I are literally 

the terrain through which chromatic music moves. Insofar as we understand this 

geometry, we will also understand why intuitive musical exploration produces the 

results it does—in this case a plethora of major-third-related triads and minor-third- 

or tritone-related seventh chords.

It seems to me that a deep appreciation of nineteenth-century music requires a sys-

tematic grasp of all the voice-leading possibilities between familiar sonorities. This, of 

course, was a central theme of Part I. The notion of “near symmetry” (§2.9) allows us 

to understand how a chord’s internal structure determines its contrapuntal capabilities: 

thus, given a particular sonority such as the C dominant seventh, we can identify other 

structurally similar chords that are nearby. This, in turn, leads us to notice that triads 

can typically be connected smoothly to their major third transpositions while seventh 

chords can be effi ciently linked to their minor-third and tritone transpositions. The 

geometrical spaces of Chapter 3 offer a convenient way to visualize these facts, allowing 

us to draw “maps” in which the major-third and minor-third systems are clearly repre-

sented. Furthermore, by focusing on crossing-free voice leadings—treating voice cross-

ings as embellishments of these more basic templates—we saw that we can reduce the 

vast number of voice-leading possibilities to a much more manageable set of categories 

(§4.9–10). Taken together, these tools allow us to evaluate composers’ choices in light of 

a robust understanding of the options available to them. Or, to revert to the metaphor, 

they allow us to understand the mountaineer’s decisions in light of a systematic knowl-

edge of the rock face. If we can internalize these principles, understanding the logic of 

chromatic voice leading, then chromatic music will start to seem much more coherent: 

instead of describing Chopin or Schubert’s music as resulting from capricious acts of 

musical fancy, Romantic lawbreaking that obeys no fi xed principles, we will instead see 

a small collection of familiar paths through chromatic space.

6.7 twentieth-century scalar music

The fi rst half of the nineteenth century witnessed a tremendous expansion of har-

monic options; new chords were permitted and new chromatic voice leadings were 

used to connect formerly distant chords. But it saw relatively few extensions to music’s 

scalar or modal vocabulary. This imbalance eventually led to a palpable composi-

tional dilemma: what melodic notes should be used to accompany the chords of the 

chromatic tradition?

This problem became particularly acute when composers required a large num-

ber of melodic notes to accompany a single chromatic sonority. To see why, consider 

Figure 6.7.1. Suppose you would like to associate each chord with a complete scale—
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say, a run that spans at least an octave. One option is simply to use the C major 

scale, creating a clash with the chromatic notes of the altered harmonies. Another is 

to incorporate the chordal alterations by inserting additional chromatic notes into 

the passage. A third is to replace diatonic notes with their “altered” forms, fusing 

the basic scale of the key (here, C diatonic) with alterations belonging to the chords 

themselves. These three alternatives represent the main nineteenth-century solu-

tions to the problem of associating chord and scale, as illustrated by Figure 6.7.2.

Twentieth-century tonality instead exploits the fact that the sonorities of chro-

matic harmony can all be embedded in a small number of familiar scales. (Recall 

from §4.4 that just seven kinds of scale contain every “cluster-free” chord.) Twentieth-

 century composers treat these scales as ready-to-hand accompaniments for particular 

chromatic chords. Thus, for example, a composer might use the D and Bf acoustic 

scales to harmonize the augmented and minor triads in Figure 6.7.3. This solution is 

noteworthy for several reasons. First, the acoustic scales would traditionally be asso-

ciated with the keys of A minor and F minor, keys that are quite distant from one 

another. Second, though the acoustic scale is familiar from the classical tradition, 

it is used here in unfamiliar modes (treating C as the tonic). And third, since the 

acoustic scale has just seven notes, it creates a smallish macroharmony that is not 

overwhelmingly chromatic. As a result, the passage has a kind of rigorous logic, even 

while departing from the procedures of traditional tonality.

Figure 6.7.4 illustrates this technique in the context of Ravel’s String Quartet, 

where a G9–Cf9–Fadd6 progression gives rise to three separate scales: the G9 chord 

has a pronounced whole-tone fl avor; the Cf9 is accompanied by the octatonic scale, 

Figure 6.7.1 Accompanying chromatic chords with scales. In (a), the scale does not contain 

the chromatic chords; in (b−c) it does. The music in (b) augments the diatonic scale with the 

altered notes, while the music in (c) replaces diatonic with altered notes.
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and the F major chord is accompanied by F diatonic. The bottom staves of Figure 

6.7.4 interpret the harmonies. Level (c) is purely diatonic, and depicts a relatively 

standard ii9–V9–I6 progression. Level (b) includes chromatic embellishments of this 

pattern: in the fi rst two chords, diatonic Bf becomes the applied leading tone Bn and 

diatonic D becomes Cs, producing a Gs11 chord and a Cf9.30 Finally, level (a) embel-

lishes this progression with whole-tone and octatonic scales. What is remarkable is 

that each level suggests a different stage in our overarching historical narrative. Level 

(c) is purely diatonic, and uses a functional chord progression inherited from classi-

cal tonality. Level (b) uses chromatic embellishments that evoke nineteenth-century 

chromatic practice. Level (a) adds a distinctively twentieth- century contribution, as 

Figure 6.7.2 (a) In Strauss’ Till Eulenspiegel (R7), the harmony Bf-Df-E-Gs serves as an 

altered dominant chord resolving semitonally to the tonic F. The scale in the bass, however, 

is a simple Af major that does not contain the En of the harmony, resulting in a fl eeting 

dissonance. (b) In Wagner’s Parsifal (mm. 668–9, Schirmer vocal score p. 40), a diminished 

seventh chord is harmonized with a melody touching on all the chromatic notes except Fs 

and G. The effect is of a wash that creates a sense of motion, but does not clearly suggest any 

familiar scale. (c) In m. 86 of the fi rst movement of Mozart’s Piano Sonata K. 533, a familiar 

augmented sixth chord gives rise to an unusual (“gypsy”) scale. This scale is derived by 

combining the notes of C diatonic with the alterations belonging to the German augmented 

sixth.

Figure 6.7.3 Twentieth-century scalar composers might use acoustic scales to harmonize 

altered chords. The result is a melodic texture without augmented seconds or consecutive 

semitones.

30 Note that the Cs resolves upward by semitone to the D, so that the Cf9–Fadd6 progression combines 
elements of a V–I progression in F major with a vii°7–i progression in D minor.
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the altered chords give rise to additional scales that are neither diatonic nor chro-

matic. Chapters 9 and 10 will show that jazz musicians inherit and systematize these 

techniques. Thus in Figure 6.7.5, Bill Evans uses the octatonic scale to accompany the 

V chord, very much in the manner of Ravel’s String Quartet. Jazz theorists are both 

systematic and explicit when describing these relations between chord and scale, 

providing recipes that show students which scales to play over the altered chords of 

jazz harmony. In this sense, jazz manages to standardize the intuitive scalar explora-

tion of earlier decades.

The two examples we have considered represent a relatively traditional strain of 

twentieth-century scalar thinking, in which nondiatonic scales are used to accom-

pany functionally harmonic progressions. Chapter 9 will also present examples that 

reject the ii–V–I paradigm, drawn from impressionist pieces by Debussy, Ravel, and 

Janáček; minimalist and postminimalist works by Reich, Adams, and Nyman; and 

nonfunctional jazz by the Miles Davis quintet. These examples, though stylistically 

quite diverse, reuse the same basic scales and the same basic compositional techniques. 

To my mind, this package of scalar procedures represents one of the most interest-

ing recent developments in the thousand-year tradition that is Western  tonality—a 

thread of common practice linking a wide variety of recent tonal styles, equal in its 

signifi cance to the other developments surveyed in this chapter.

Figure 6.7.4 (a) Whole-tone and octatonic scales in Ravel’s String Quartet. (b) The 

underlying progression, and its diatonic logic (c).

Figure 6.7.5 Bill Evans using the octatonic scale in his Town Hall recording of “Turn Out the 

Stars.”
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6.8 the extended common practice

The eighteenth and nineteenth centuries are often called the “common practice 

period” in Western music.31 The term suggests a compositional consensus transcend-

ing national and temporal boundaries: Italian music of 1720, it is claimed, is quite sim-

ilar to the German music of the 1880s, and both styles are quite different from any of 

the music composed prior to 1700 and subsequent to 1900. Other Western styles, such 

as Renaissance polyphony or contemporary jazz, may involve shared musical practices 

that are distantly related to those of the eighteenth and nineteenth centuries. But any 

similarities are overwhelmed by the differences. Consequently, there is no substantive 

sense in which Palestrina or Duke Ellington can be said to participate in the same 

musical tradition as the musicians of the eighteenth and nineteenth centuries.

The view sketched here is a different one. I have claimed that when we step back 

far enough, we can see a much broader common practice that includes not just classi-

cal composers, but also jazz musicians like Ellington and Renaissance musicians like 

Palestrina. Central to this extended common practice is the technique of connecting 

harmonically signifi cant chords by effi cient voice leading. We have seen this in each 

of our musical excerpts. In our simple medieval style, effi cient voice leading connects 

consonant intervals; in later music, it connects structurally similar triads and seventh 

chords. Classical music introduces modulation, applying effi cient voice leading to 

scales as well as chords. Chromaticism shifts freely between the diatonic and chro-

matic realms. Finally, twentieth-century tonality develops a consistent technique of 

associating chromatically altered chords with a small number of familiar scales. At 

this level of abstraction, it looks like the tonal composers of the Western tradition are 

all playing fundamentally the same game, creating music that is both melodically and 

vertically coherent, and incorporating the various innovations of their predecessors.

I think there is something sublime about this. It is amazing that contemporary 

rock guitar fi ngerings are directly related to voice-leading practices more than half a 

millennium old (Figures 6.3.9 and 6.3.10), or that Bill Evans’ improvisations develop 

ideas found in Ravel’s carefully notated String Quartet (Figures 6.7.4 and 6.7.5). And 

though I am mindful of the need to remain ever vigilant against the temptations of 

Hegelian or Whiggish history, I am fascinated by the way certain stylistic develop-

ments in Western music seem to respond to, or arise out of, technical problems faced 

by earlier composers—for example, the way nondiatonic scales provide a solution to 

melodic challenges inherent in chromatic harmony (§6.7), or the way triads provide 

a solution to the problem of writing consonant three-voice counterpoint (§6.3). By 

focusing on the very general mechanisms of tonal coherence, by developing a bird’s-

eye view of Western tonal practice, we can start to see these connections more clearly.

Geometry has helped us here, providing a different space for each of our fi ve 

styles. We used the two-dimensional Möbius strip to represent early medieval 

31 The term seems to have originated with Walter Piston, who used it in his 1941 harmony textbook. 
See Harrison (forthcoming) for perceptive comments on the notion of a “common practice period.”
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 two-note counterpoint. Later, the circle of diatonic thirds proved helpful in mod-

eling Renaissance triadic voice leading. The turn to baroque music required us to 

introduce the scale lattice, a three-dimensional region in seven-dimensional scale 

space. The chromaticism of Schumann, Schubert, and Chopin led us to supplement 

our earlier diatonic models with more complex chromatic spaces, in which we fi nd a 

wealth of “shortcuts” between once-distant chords. Finally, Chapter 9 will show that 

twentieth-century scalar music involves a much more complex sort of scalar voice 

leading, involving a correspondingly sophisticated use of the scale lattice. Thus the 

development of musical style can be represented, at least in part, as a process of 

exploring an increasingly sophisticated array of musical spaces. Our earlier theoreti-

cal work allows us literally to visualize this process, giving us a unifi ed set of geomet-

rical models that help us comprehend the development of Western music.

Pedagogically, I fi nd this perspective to be extremely fruitful. My own musical 

education was a traditional one, centered almost exclusively on a bifurcated diet of 

musty Germanic classics and bracing twentieth-century atonality. The introduc-

tory music-theory class at my undergraduate institution devoted an entire year to 

Bach chorales. Second-year theory was devoted exclusively to classical and very early 

Romantic music, while subsequent classes discussed twelve-tone music, Schenkerian 

analysis, and baroque counterpoint. Not once in my entire four years of undergradu-

ate education did I hear a pedagogical word about jazz, rock, or minimalism—except 

in an unguarded moment, when one of my professors, an atonal composer and theo-

rist, let slip that he preferred Sgt. Pepper’s to any piece of atonality.

I believe we can do better. Part of what interests me about the narrative in this 

chapter is the way it suggests a more inclusive pedagogy, more suited to the plural-

ism of contemporary culture. I teach a year-long, introductory music-theory class 

based on the fi ve musical styles we have just considered. Students begin by writing 

faux-medieval two-voice counterpoint in which parallel fi fths are permitted. After a 

brief detour into contemporary rock harmony, they progress to simplifi ed four-voice 

Renaissance music along the lines of Josquin’s “Tu pauperum refugium.” By the time 

the common practice is introduced, they are already somewhat adept at the business 

of connecting triads by effi cient voice leading while also avoiding forbidden parallels. 

This makes the introduction of classical harmonic norms (including modulation) 

considerably less painful than it usually is. The fi nal sections of the course provide 

a systematic introduction to chromatic voice leading and twentieth-century scalar 

techniques. At the end of the year, students have learned that musical styles change, 

that tonality is a living tradition, and that when you dig deep enough, you can fi nd 

nonobvious connections between very different musical styles. My hope is that these 

lessons prepare them to confront today’s wide open, polystylistic, multicultural, syn-

cretistic, and postmodern musical culture.



chapter 7

Functional Harmony

This chapter reconsiders four basic topics in tonal theory: chord progressions, 

sequences, key distances, and the Schenkerian critique of Roman numeral analysis. 

My aim here is not to provide a detailed restatement of tonal theory, a project that 

would require a book in itself, but rather to indicate some points of intersection with 

our theoretical work. In particular, I’ll show how we can use the ideas of Part I to 

model the elementary harmonic and modulatory procedures of classical music.

7.1  the thirds-based grammar of 
elementary tonal harmony

In many broadly tonal styles, chord progressions are relatively unconstrained: in 

Renaissance music, contemporary popular music, and many folk styles, virtually 

any diatonic triad can progress to any other. From this point of view, Western clas-

sical music is exceptional—here, a root position V chord is overwhelmingly likely to 

progress to a root position I chord, whereas it moves to root position IV only rarely. 

Chords thus seem to obey specifi cally harmonic laws, with some progressions being 

common while others are rare. This is one of the features of Western music that is 

most suggestively language-like. For just as in English, the subject normally precedes 

the verb, which in turn precedes the object, so too does Western music seem to have 

a harmonic “grammar” according to which subdominant chords precede dominants 

that in turn precede tonics.1

Figure 7.1.1 models the major-mode version of this harmonic grammar.2 Here, 

the diatonic chords other than iii are arranged as a chain of descending thirds, with 

the mediant being omitted because it is rare. Chords can move rightward by any 

number of steps along this chain from tonic to dominant; however, they can move 

leftward only along one of the labeled arrows. (I will say that a sequence of rightward 

1 Note that I am not claiming that music is a language, only that it involves recurring patterns somewhat 
analogous to linguistic syntax. See Patel 2008 for more discussion. Gjerdingen 2007 offers a nice counter-
weight to the syntactical point of view, emphasizing idioms and schemas rather than abstract rules.

2 Here I am ignoring inversion; in actual music, vii° is almost always in fi rst inversion, and vi is almost 
always in root position. The resulting model resembles that in Kostka and Payne 2003. The thirds-based 
arrangement of diatonic triads also plays a role in Agmon 1995, Meeus 2000, Tymoczko 2003b, and Quinn 
2005.
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motions from the tonic, followed by a leftward return, constitutes a harmonic cycle.) 

Each Roman numeral can represent either a pure triad or a seventh chord, with the 

sevenths on ii and V being particularly common. The V chord can be preceded by I@, 
and any chord other than vii° can be preceded by its own “applied dominant.”3

This model privileges certain chords by assigning them distinctive roles, with ton-

ics typically beginning harmonic cycles, dominants (vii° and V) ending them by pro-

gressing back to I, and subdominants (ii and IV) preceding dominants.4 In addition, 

the model privileges certain kinds of motion: descending thirds and fi fths are more 

often permissible than ascending thirds and fi fths, while ascending steps are more 

often permissible than descending steps. This asymmetry arises as a consequence of 

the graph’s spatial layout. Since rightward motion is always permitted, every chord 

except V can progress by descending third, every chord except vii° can progress by 

descending fi fth, and every chord except ii can progress by ascending step. By con-

trast, only two chords (I and IV) can progress by ascending fi fth, only two (I and 

vi) can progress by descending step, and only one can progress by ascending third. 

Descending thirds, descending fi fths, and ascending steps are often called “strong” 

progressions, with the remaining progressions said to be “weak.”5 Our model predicts 

that chords closer to the dominant side of the spectrum should be more likely to 

move “strongly”—a claim that is borne out by actual music (Figure 7.1.2).

For the most part, functionally tonal music cycles through the graph in a few ste-

reotypical ways: classical pieces consist largely of progressions such as I–V–I, I–ii–V–I, 

I–vii°–I, and I–IV–I. Occasionally, however, composers will employ more extended 

3 Some theorists consider vii° to be a V7 with a missing root. However, this view cannot account for 
the regular root motions in sequences such as C–G–a–e°–F- . . ., where diminished triads are on par with 
major and minor triads (cf. Haydn’s Piano Sonata No. 49 in Ef major, I, 50, and Beethoven Piano Sonata 
in D major, Op. 28, IV, 130ff). Other pedagogues disallow the progression vii°–V. However, in Mozart’s 
piano sonatas, vii° is about nine times more likely to move to V than V is to move to vii°. Readers who 
would prefer to disallow vii°–V can imagine placing the two chords on top of each other, so that neither 
can progress rightward to the other.

4 Note that these functional labels (“subdominant,” “dominant”) provide only an approximate descrip-
tion of harmonic behavior, and do not explain why the progressions IV–ii and IV–I are more common 
than ii–IV and ii–I. For more, see Tymoczko 2003b.

5 See Rameau 1722/1971, Schoenberg 1969, Sadai 1980, and Meeus 2000.

Figure 7.1.1 A simple model of the 

allowable chord progressions in major-mode 

functional harmony. Chords can move 

rightward by any amount, but can move left 

only along the arrows. “S” and “D” stand for 

“subdominant” and “dominant,” respectively.
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segments of the descending thirds cycle, as in Figure 7.1.3. The idea behind our model 

is to portray these falling thirds progressions as the fundamental path from tonic to 

dominant. Falling fi fths are “composite” progressions insofar as they can typically be 

“factored” into a pair of falling thirds: I–IV can become I–vi–IV, vi–ii can become 

vi–IV–ii, and so on. By contrast, thirds cannot generally be factored into fi fths. We 

can conclude that falling thirds are more fundamental than falling fi fths, even though 

falling fi fths may be more common.6 It is interesting here that tonal composers some-

times utilize the full circle of diatonic thirds, interposing a mediant triad between 

dominant and tonic (Figure 7.1.4). In these passages, the engine of falling thirds har-

mony temporarily overcomes the V–I paradigm, blurring the expected resolution of 

the dominant chord.

Minor-mode harmony is slightly more complicated, as it involves frequent 

digressions to the relative major. However, if we treat these as brief changes of key, we 

can use virtually the same graph for minor (Figure 7.1.5). This symmetry between 

I (53%) → vi (53%) → IV (76%) → ii (100%) → vii° (96%) → V (95%)  (Bach) 
I (32%) → vi (67%) → IV (66%) → ii (97%) → vii° (99%) → V (97%) (Mozart) 

Figure 7.1.2 The relative tendency of major-mode triads to progress “strongly” (by 

descending third or fi fth, or ascending step) in a sample of 70 Bach chorales (top line) and in 

Mozart’s piano sonatas (bottom line). The asymmetry increases as one moves from tonic to 

dominant by descending third.

Figure 7.1.3 The chorale “Bach’s 

chorale “Auf, auf, mein Herz, 

und du mein ganzer Sinn” 

(Riemenschneider No. 124).

Figure 7.1.4 Bach’s duet (BWV 803, mm. 22–26) interposes iii between V and I.

6 It is important here to distinguish the permissible from the probable. Root progressions by descending 
fi fth are more common than root progressions by third; however, when describing the permissible progres-
sions, it is useful to treat falling-thirds progressions as basic.
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major and minor is quite remarkable, par-

ticularly when one refl ects that in other tonal 

styles modes often have their own distinc-

tive harmonic repertoires. (For instance, the 

natural minor progression i–VII–VI–VII–i 

is quite common in contemporary popu-

lar music, while its major-mode analogue, 

I–vii°–vi–vii°–I, is virtually unknown.7) This 

sort of modal asymmetry would seem to be 

the default situation: after all, there is no rea-

son to expect that progressions as dissimilar 

as VII–VI and vii°–vi should function in the 

same way. Classical harmony is from this 

point of view atypical, imposing a rigorous 

consistency on all its modes and keys. The 

payoff, of course, is that composers can pres-

ent “the same” musical material in two dra-

matically different emotional contexts.

To evaluate the thirds-based model, we need a substantial collection of harmonic 

analyses of traditional tonal works. There are, to my knowledge, only two: a collec-

tion of 70 Bach chorales, and a much larger collection of the complete Mozart piano 

sonatas, both produced in conjunction with the writing of this book.8 Figure 7.1.6 

identifi es the probability of each two-chord diatonic progression in the two reper-

toires, while Figure 7.1.7 identifi es the most common harmonic cycles. The results 

are quite consistent with the descending thirds model: in Bach, 95% of roughly 3000 

two-chord diatonic progressions conform to our predictions, as do 97–99% of all 

Mozart’s roughly 10,000 diatonic progressions; furthermore, every one of our allow-

able progressions appears reasonably frequently.9 Almost all the exceptions belong 

to familiar categories: sequences (discussed shortly), chromatic chords, and other 

common tonal devices. Given the simplicity of the model, the accuracy of fi t is quite 

remarkable. One geometrical picture, which can be explained to students in a single 

hour, accounts for the vast majority of the chord progressions they will ordinarily 

encounter.10

7 See also van der Merwe (1989, ch. 11).
8 Earlier databases, such as those of Craig Sapp and Philip Norman, do not attempt to indicate key 

changes, and hence are of limited utility: a G major ii–V–I is labeled vi–V/V–V if the overall key of the 
piece is C major. My analyses, which were produced with the help of more than thirty theorists, do show 
modulations, and will hopefully be published soon.

9 The slightly lower number (95% in Bach, rather than 97–99% in Mozart) refl ects Bach’s somewhat 
broader diatonic vocabulary.

10 To be sure, the model is just a fi rst approximation to actual tonal procedures: it does not incorporate 
chromatic chords like augmented sixths; it makes no attempt to model variation across musical styles; and 
it ignores a number of important tonal “idioms,” including sequences, motion by parallel stepwise fi rst-
inversion triads, and three-chord idioms such as the progression vi–I6–(IV/ii6).

Figure 7.1.5 The allowable progressions 

in minor are largely the same as the 

allowable progressions in major. Again, 

chords can move rightward by any 

amount, but can move left only along 

the arrows.
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Figure 7.1.7 
(a) The most 

popular major-

mode harmonic 

cycles in a 

selection of 70 

Bach chorales. 

All of them 

conform to the 

thirds-based 

model. (b) The 

most popular 

major-mode 

harmonic cycles 

in the Mozart 

piano sonatas. 

Once again, all 

conform to the 

thirds-based 

model.

Figure 7.1.6 Two-chord progressions in Mozart’s major-key passages (a), Mozart’s minor-

key passages (b), Bach’s major-key passages (c), and Bach’s minor-key passages (d). Values 

represent the probability that, given the row-label chord, it will move to the column-label 

chord (expressed as a percentage). Sequences, passages in parallel triads, and I@ chords 

have been omitted. Of the vi–I progressions, the large majority terminate in I6; of the V–IV 

progressions, the large majority terminate in IV6.

I vi IV ii viio V iii 
I * 5 15 13 5 62 0

vi 9 * 14 52 4 21 0
IV 50 0 * 19 10 21 0
ii 1 1 1 * 18 77 0

viio 82 0 1 0 * 16 1
V 94 4 1 0 1 * 0
iii 67 33 0 0 0 0 *

i VI iv iio viio V III
i * 5 8 9 11 67 0

VI 3 * 19 58 13 6 0
iv 43 0 * 10 9 39 0
iio 2 0 0 * 27 71 0

viio 74 0 1 1 * 25 0
V 81 8 5 0 5 * 0
III 0 0 100 0 0 0 *

I vi IV ii viio V iii
I * 9 28 15 6 41 1

vi 12 * 11 30 9 33 5
IV 22 2 * 13 23 39 0
ii 1 1 0 * 25 71 0

viio 91 3 2 0 * 4 1
V 82 9 7 1 0 * 0
iii 3 32 52 3 3 6 *

i VI iv iio viio V III
i * 9 20 18 12 41 1

VI 3 * 14 54 8 19 3
iv 22 0 * 14 15 48 0
iio 1 0 0 * 7 89 3

viio 81 0 3 0 * 15 1
V 80 10 6 0 2 * 2
III 6 31 25 6 13 19 *
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7.2  voice leading in functional tonality

In Part I, we saw that triads and seventh chords divide the octave nearly evenly, and 

hence can be linked to all their transpositions by reasonably effi cient voice leading. 

It follows that virtually any collection of purely harmonic rules (such as “IV can go 

to ii but not iii”) can be realized by progressions exhibiting effi cient voice leading. By 

contrast, “clustered” chords such as {B, C, Df} are not so close to all of their transpo-

sitions, and would require harmonic laws specifi cally tailored to their voice-leading 

capabilities. In this sense, the internal structure of the triad underwrites the indepen-

dence of traditional harmonic laws.

However, attentive readers will have noticed that there is an interesting connec-

tion between the two domains. In §6.3 we saw that the circle of thirds can be used to 

represent single-step voice leadings among diatonic triads. Here the circle is purely 

contrapuntal, describing minimal voice-leading relationships among chords. But we 

have just seen that the chain of third-related chords can also be used to model har-

monic successions in functionally tonal music. Thus the passage shown in Figure 7.2.1 

has a double signifi cance: its upper voices are at once a sequence of triads linked by 

maximally effi cient voice leading, as well as a complete statement of all the potential 

intermediaries between tonic and dominant. Harmony and counterpoint here work 

hand in hand, creating a unifi ed structure in which horizontal and vertical forces are 

in delicate balance.

One reason for this is that common tones and effi cient voice leading together 

produce a kind of harmonic similarity.11 As shown in Figure 7.2.2, a root position F 

major triad is very similar to a fi rst-inversion D minor triad, since the chords can be 

linked by single-step voice leading.12 It follows that a fi rst-inversion D minor triad can 

replace a root position F major triad without much disrupting the music’s harmonic 

or contrapuntal fabric: the “substitute” chord will share the bass note and upper third 

(F and A), substituting a consonant sixth for a perfect fi fth (D for C; Figure 7.2.2b). 

This may help explain how the circle of thirds comes to play its two different roles: by 

linking chords according to effi cient voice leading, the circle defi nes a psychologically 

Figure 7.2.1 Here, the upper voices are connected by single-step voice leading, while the 

harmonies move along the descending circle of thirds from tonic to dominant.

11 This notion of similarity is explored in Callender, Quinn, and Tymoczko 2008.
12 The F major triad is also very similar to a second-inversion A minor triad, but second-inversion 

triads play only a very small role in functional tonality.



history and analysis232

robust notion of similarity, one that in turn infl uenced the developing conventions 

of functional harmony.

We can therefore say that functional tonality permits two different kinds of sub-

stitution. In bass-line substitution, the same chord progression appears over differ-

ent bass notes, as in Figure 7.2.3a. (Traditional Roman numeral analysis was in fact 

developed to capture the similarity between such progressions.) In third substitution, 

a root position chord is replaced with a fi rst-inversion chord on the same bass, or 

vice versa (Figure 7.2.3b). Here the bass stays the same while the content of the har-

mony is subtly altered. (The potential for this sort of substitution might be thought 

to be implicit in fi gured-bass notation, in which the bass is fundamental to a chord’s 

identity.) Third substitution explains why there are so many third-related chords 

that can play similar musical roles: I/vi6, vi/IV6, IV/ii6, vii°/V6, and even V/III+6.13 The 

challenge in describing functional harmony is to make room for both perspectives, 

combining the advantages of the root-functional and fi gured-bass approaches. Our 

model does so by way of geometry: by placing third-related triads adjacent to one 

another, it asserts that these chords can typically substitute for one another in the 

rightward progression from tonic to dominant.

Figure 7.2.2 (a) Third-related triads sound similar, since they share two of their three notes 

and can be connected by single-step voice leading. (b) One can often replace a diatonic chord 

with a third-related chord, without much disrupting the harmonic or contrapuntal fabric of 

a passage.

13 Riemannian “function theory” (Riemann 1893) allows all third-related triads other than ii and vii° to 
represent the same “harmonic function.” Contemporary anglophone pedagogues do not typically endorse 
full-blown function theory, though many incorporate some of its features. Aldwell and Schachter (2002, 
ch. 11), for example, emphasize the similarity of vi and IV6.
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Figure 7.2.4 rewrites the circle of thirds so as to identify the pitch classes in each 

chord. It is clear that short rightward motions (i.e. “strong” progressions) will pro-

duce pitch classes that descend by third. For example, the triadic progression I–ii–V–I 

can be articulated by the pitch-class sequence (G, E, C)-(A, F, D)-(D, B, G)-(G, E, C), 

in which each new note is a third below its predecessor; other familiar progressions, 

such as I–IV–V–I, can be analyzed similarly. Tonal composers often exploit this fact 

by writing descending melodic thirds over familiar progressions—a device that was 

a particular favorite of Bach’s (Figure 7.2.5). Sometimes, as in Figure 7.2.6, we even 

fi nd bare sequences of falling thirds that do not articulate individual chords. Such 

passages present the raw material of functional harmony in an unusually pure man-

ner, revealing a falling thirds essence that is typically encountered in only a refi ned or 

processed form.

Note that strong triadic progressions are most effi ciently realized by ascending voice 

leading: in voice leadings like (C, E, G)®(C, E, A) or (C, E, G)®(C, F, A) notes move up by 

step. Since descending melodic steps 

are somewhat more common than 

ascending steps, harmonic cycles will 

often contain at least one voice lead-

ing in which effi ciency is sacrifi ced 

for the sake of descending motion. 

This is  illustrated by Figure 7.2.7. 

Figure 7.2.3 Bass-line and third substitution. In (a) a same I–IV–V–I chord progression 

appears over two different bass lines. In (b), root position and fi rst-inversion chords (over the 

same bass note) play similar harmonic roles.

Figure 7.2.4 Short motions along the 

descending-thirds sequence of triads can produce 

descending-thirds sequences of pitch classes.

I     –     vi     –     IV     –     ii     –     vii°6     –     V

GEC    ECA      CAF     AFD     FDB     DBG
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Figure 7.2.6 Two passages in which melodic descending thirds do not clearly determine 

harmonies. (a) Bach’s fourteenth Goldberg Variation, mm. 9–10. (b) The opening of Brahms’ 

Op. 119 No. 1.

Figure 7.2.5 Bach’s music often features descending-thirds sequences of pitch classes. 

(a) The third movement of the third Brandenburg Concerto, mm. 11–12. (b) The F major 

two-part invention, mm. 21–23.
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Seventh chords are very different in this regard. Figure 7.2.8 shows that diatonic 

 sevenths can be arranged in a circle of thirds very similar to the triadic circle, but 

with descending-thirds progressions producing descending voice leading: to move the 

seventh chord Cmaj7 down by third to Amin7 we lower the note B to A; by contrast, to 

move the C major triad down by third to A minor, we need to raise G to A. It follows 

that any “strong” seventh-chord progression can be realized by stepwise descending 

voice leading (Figure 7.2.9). (In this sense, seventh-chord harmony is somewhat more 

straightforward than the triadic version taught in harmony textbooks.14) The associa-

tion between seventh chords, strong progressions, and descending stepwise voice lead-

ing plays an increasingly important role in late nineteenth-century harmony, and is 

fundamental to pieces like Chopin’s E minor prelude and Wagner’s Tristan. As we will 

see, it also provides the nucleus of jazz voice leading.

14 Mathieu 1997 (cited in Ricci 2004) makes similar points.

Figure 7.2.8 Voice-leading 

relations among diatonic seventh 

chords can be modeled with a 

circle of thirds. Here descending-

third progressions are articulated 

by descending stepwise voice 

leading.

Figure 7.2.7 Ascending motion provides the most effi cient voice leading between strongly 

related triads (top three voices of a). Since tonal phrases often feature descending melodic 

lines, composers typically have to use at least one non-minimal voice leading per harmonic 

cycle (b−c).



history and analysis236

Finally, a word about four-voice voice leading among triads. In Chapter 6, we 

encountered the 3 + 1 schema, in which three voices move between complete triads in 

a strongly crossing-free way. But Figure 7.2.10 shows that we can also connect triads by 

nonfactorizable voice leadings, in which no voice 

can be eliminated without creating an incomplete 

chord. Clearly, a four-voice triadic voice leading 

will be nonfactorizable only when it has the gen-

eral form of Figure 7.2.11: a note in the fi rst chord 

“splits” into two adjacent notes in the second, while 

two notes in the fi rst “merge” onto the remaining 

note in the second.15 There are 3 × 3 = 9 basic pos-

sibilities, depending on whether the splitting and 

merged-upon notes are the root, third, or fi fth of 

their respective triads. For example, the fi rst voice leading in Figure 7.2.10 maps a 

chord with doubled root to a chord with doubled root, while the second maps a chord 

with doubled root to a chord with doubled third. Remarkably, the various forms of 

the nonfactorizable schema exploit a variety of triadic near symmetries, including the 

triad’s proximity to the tritone and diminished seventh chord; readers who are inter-

ested in exploring this issue should attempt the exercises in Appendix F.16

Figure 7.2.9 Effi cient voice 

leading between strongly related 

seventh chords descends (top 

four voices of a). Harmonic cycles 

and descending-fi fths sequences 

can therefore be realized with 

maximally effi cient, descending 

voice leading (b−c).

Figure 7.2.10 These voice leadings 

are nonfactorizable, because 

eliminating any voice creates an 

incomplete triad.

Figure 7.2.11 A nonfactorizable, strongly 

crossing-free, four-voice triadic voice leading 

embodies this basic schema: two notes in the 

fi rst chord “merge” onto a note in the second, 

while the third note of the fi rst chord “splits” 

into the remaining two notes of the second 

chord. Here, time progresses radially from the 

inner circle toward the outer.

first chord

second chord

time

15 Proof: if the merged-onto note were a destination of the splitting note, the voice leading would be 
factorizable.

16 In particular, nonfactorizable voice leadings of the form (r, r, t, f)®(t, f, r, r), which map a chord with 
doubled root to a chord with doubled root, exploit the chord’s closeness to the tritone; voice leadings of 
the form (r, r, t, f)®(r, t, f, f) exploit its closeness to the quadruple unison; while voice leadings of the form
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Figure 7.2.12 shows that these nonfactorizable voice leadings, combined with the 

3 + 1 schema discussed earlier, account for a substantial proportion of the four-voice 

triadic voice leadings in the music of composers from Dufay to Bach.17 At fi rst blush, 

this might seem shocking, as if all the glories of the Renaissance could be reduced to 

just two basic contrapuntal tricks. But on refl ection it is not terribly surprising: after 

all, there are only so many ways to connect triads, and our two schemas together 

produce all the strongly crossing-free four-voice triadic voice leadings—including all 

of those in which each note in the fi rst chord moves to its nearest (upper or lower) 

neighbor in the second. Insofar as composers are interested in effi cient voice leading, 

then we should expect them to make heavy use of these two basic techniques. This 

reinforces the claim that there are important continuities between contrapuntal prac-

tices in Renaissance modality and functional tonality: on the basic chord-to-chord 

level, we fi nd virtually the same voice-leading schemas dominating the two reper-

toires. Rather than a broad difference between styles, we instead see an interesting 

sort of composer-by-composer variation: for example, nonfactorizable voice leadings 

account for more than 20% of the voice leadings in Palestrina, but only about 5% of 

those in Lassus. This seems less like a matter of large-scale historical change than of 

individual composerly preference.

Figure 7.2.13 shows how the nonfactorizable pattern might appear in keyboard-

style passages: in each case, a close position triad in the right hand moves to an 

(r, r, t, f)®(f, r, t, t) exploit its closeness to the diminished seventh. These three categories exhaust all the 
possibilities up to permutation of the labels “r,” “t,” and “f.”

17 The Goudimel pieces, from 1564, are four-voice harmonizations of the complete Geneva Psalter. 
These chorales are highly stereotypical and very homophonic.
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Figure 7.2.12 The 3 + 1 and nonfactorizable schemas together account for a very large 

proportion of the four-voice triadic voice leadings in a wide range of music. There are, 

however, some individual differences between composers.
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incomplete chord—either an octave enclosing another note or an interval with one 

doubling—while the bass voice completes the second triad.18 This means that our 

voice-leading formulas are associated with simple physical gestures that can easily 

be taught to young musicians: when using the 3 + 1 schema, a keyboardist moves 

the right hand between complete triads, while allowing the bass to move indepen-

dently; to use the nonfactorizable schema, the keyboardist switches from complete to 

incomplete triads with the right hand, while completing the second chord with the 

left. In fact, these two gestures are embedded, with varying degrees of explicitness, in 

traditional fi gured-bass pedagogy: early theorists such as Heinichen discuss the 3 + 1 

schema, while later writers (including C. P. E. Bach) provide numerous examples of 

the nonfactorizable alternative.19 (Two centuries later, the techniques are still taught 

in universities, and I learned both as a college freshman.) This, I think, is a wonder-

ful example of the practical pedagogical 

tradition solving a relatively complex 

mathematical problem. More than three 

centuries ago, fi gured-bass theorists had 

devised a simple set of physical gestures 

that produce all the strongly crossing-

free voice leadings between triads—

gestures that are straightforward enough 

to use improvisationally, yet powerful 

enough to generate an extraordinary 

degree of contrapuntal variety.

7.3 sequences

So far we have no reason to believe that functional tonality involves short motions 

along the descending circle of thirds: our thirds-based model permits arbitrary right-

ward motions on Figure 7.1.1 and does not privilege short steps over longer leaps.20 

However, tonal music also involves sequences, in which the same musical material is 

repeated at multiple pitch levels.21 Here there is a notable bias toward small motions 

along the descending circle of thirds. The most compact sequence, when represented 

on the circle of thirds, is (of course) a repeating series of descending thirds itself—a 

18 This simple physical schema (along with its retrograde) can be used to produce any nonfactorizable 
voice leading that exemplifi es the basic pattern in Figure 7.2.11. However, not every voice leading that 
moves from a close triad to an incomplete triad in the right hand will be nonfactorizable: for example, 
(C3, E4, G4, C5)®(F3, C4, A4, C5) is factorizable.

19 Heinichen’s 1728 fi gured-bass treatise always recommends a complete triad in the right hand (see 
Buelow 1992, p. 28). C. P. E. Bach’s Essay on the True Art of Playing Keyboard Instruments (Bach 1949, pp. 
202ff, originally published in 1753 and 1762) discusses a wider range of right-hand possibilities, including 
the nonfactorizable schema.

20 For example, the progression vi–V involves a four-step rightward motion, with the triads vi and V 
being maximally distant from the standpoint of voice leading.

21 See Caplin 1998, ch. 2, Harrison 2003, and Ricci 2004.

Figure 7.2.13 Nonfactorizable voice 

leadings in keyboard style. In each case, a 

complete triad in the right hand moves to an 

incomplete chord.
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progression that appears periodically in the literature, though it is not extremely com-

mon (Figure 7.3.1a). (Note that sequences frequently use the iii chord, which is rare 

in nonsequential harmony.) The second-most compact sequence alternates descend-

ing thirds with ascending fourths, and is widespread (Figure 7.3.1b). The ubiquitous 

descending fi fth sequence is the third-most compact sequence (Figure 7.3.1c), con-

sisting of a series of two-step motions along the circle. The pattern in Figure 7.3.1d is a 

close variant, in which a single descending third alternates with an ascending second, 

moving successively by one and three steps along the circle of thirds. (We will discuss 

this sequence in a moment.) Another variant is shown in Figure 7.3.1e, consisting 

of two descending thirds followed by a descending fi fth. The resemblances between 

Figures 7.3.1c–e are particularly striking: in each case, a series of short motions along 

the circle of thirds produces a sequential pattern that repeats at the interval of a 

descending second, yielding slight variations on the same fundamental paradigm. 

Figure 7.3.2 provides some examples of these sequences in actual music.

Figure 7.3.3 lists all 18 diatonic sequences whose repeating unit contains at most 

two chords; the list is ordered by compactness on the descending circle of thirds, with 

inversionally related sequences sharing the same line. (Thus if a sequence on the left 

features short descending motions along the circle of thirds, its partner on the right 

features short ascending motions along the circle.) In each of the fi rst fi ve rows, the 

sequence on the left is considerably more common than that on the right, suggest-

ing that descending thirds are indeed preferred.22 The sixth and seventh rows feature 

Figure 7.3.1 Five 

tonal sequences 

represented on 

the circle of 

thirds.

22 One possible explanation for this is that tonal harmony involves a fundamental preference for 
descending fi fths progressions; third substitution could then transform descending fi fths into either 
descending thirds or ascending steps.
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sequences that combine ascending and descending motion: though all four of these 

appear, there is a notable preference for those on the left, which repeat at the interval 

of a descending third. (Here the descending thirds motion appears between successive 

units of the sequence, rather than between adjacent chords.) The sequences in the 

eighth row are virtually unknown. (The stepwise progressions in the last row are com-

mon, but play a unique rhetorical role in tonal harmony; they typically appear in the 

context of brief “fauxbourdon”-style gestures, rather than sequences proper.) Figure 

7.3.4 shows the distribution of sequences in the Mozart piano sonatas; the asymmetry 

between columns is quite striking.

Thus there is a subtle connection between what François-Joseph Fétis identifi ed as 

the two basic components of tonal practice: in “harmonic tonality” the music moves 

Figure 7.3.2 (a) Haydn’s E minor Piano Sonata, Hob. XVI/34, mm. 72–75. (b−c) The “down 

a third, up a step” sequence in Fauré’s Pavane, mm. 2–5 and Bach’s Bf two-part invention, 

mm. 15–16 (bottom). (d) The “down a third, down a third, down a fi fth” sequence in the D 

major fugue from Book I of Bach’s Well-Tempered Clavier, mm. 9–10.
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from tonic to dominant along the circle of descending thirds, often forming “strong” 

progressions along the way. However, the gravitational attraction of tonic, subdomi-

nant, and dominant is strong enough to obscure this descending thirds structure: 

progressions such as I–V–I and I–IV–I move symmetrically along the circle and 

betray no preference for strong progressions. In “sequential tonality” the tonic and 

dominant lose their attractive power as a single musical pattern is whirled through 

diatonic space. Here the preference for strong progressions shines forth more clearly. 

What is interesting is that the descending circle of thirds plays a distinctive role in each 

of these two kinds of tonality: harmonic tonality uses the circle to organize motion 

from tonic to dominant, while sequential tonality emphasizes short steps along it.

To see how we might use these ideas in analysis, consider the fetching sequence 

from the last movement of Mozart’s fi rst piano sonata (Figure 7.3.5). I interpret this 

passage as a version of the “down a third, up a step” sequence in Figure 7.3.1; how-

ever, since the melodic pattern repeats after four chords, the sequence sounds to the 

Sequence Inverted Form

a b a b 
↓third 
↓third 

exists 
(C-a-F-d-) 

↑third 
↑third 

very rare 
(C-e-G-b°-) 

↓third 
↓fifth 

very common
(C-a-d-b°-) 

↑third 
↑fifth 

very rare 
(C-e-b°-d-)

↓fifth 
↓fifth 

very common
(C-F-b°-e-) 

↑fifth 
↑fifth 

exists 
(C-G-d-a-)

↓third 
↑step 

exists 
(C-a-b°-G-) 

↑third 
↓step 

very rare 
(C-e-d-F-)

↑step 

↓fifth 

common 
(C-D7-G-A7-) 

↓step 
↑fifth 

very rare 
(C-b°-F-e-)

↑third, 
↓fifth 

common 

(C-E7-a-C7-) 
↓third,
↑fifth 

exists 
(C-G-e-b°-)

↑fifth, 
↑step 

common 
(C-G-a-e-) 

↓step, 

↓fifth 

exists 

(a-G7-C-B7-e-)

↑step, 
↑third 

very rare 
(C-d-F-G-) 

↓step, 
↓third 

very rare 
(C-b°-G-F-) 

↓step 
↓step 

exists* 
(C-d-e-F-) 

↑step 
↑step 

exists* 
(C-b°-a-G-) 

Figure 7.3.3 The eighteen diatonic sequences whose unit of repetition contains at most 

two chords. The (a) columns describe the sequence, the (b) columns estimate its frequency 

in the baroque and classical literature. Sequences featuring only “strong” progressions are 

considerably more common than their counterparts. Among those that mix strong and weak 

motions, sequences that repeat at the interval of a descending third are more common than 

those that repeat at the interval of the ascending third. The starred sequences in the last row, 

moving by parallel step, are common in both ascending and descending forms; however, they 

tend to play a slightly different role in the literature.
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casual listener like it descends by third. When the 

sequence returns to start the development sec-

tion, Mozart makes an intriguing substitution: 

the music now begins D–G–csø7 rather D–e–cs°, 

moving down by fi fths rather than down by 

third and up by step. (This alteration is retained 

throughout the sequence.) Figure 7.3.5c repre-

sents Mozart’s variation on the descending circle 

of thirds, showing that he has simply moved the 

second chord leftward by one unit. The two ver-

sions, in other words, are related by third substi-

tution, represented geometrically by replacing a 

diatonic triad with its nearest neighbor.

Something rather similar occurs in the Af 

major fugue from the second book of Bach’s 

Well-Tempered Clavier. The fugue theme, an 

embellished sequence of fi fths, is typically 

Sequence  Inverted Form

↓third 
↓third 

2 ↑third 
↑third 

0 

↓third 
↓fifth 

6 ↑third 
↑fifth 

0 

↓fifth 
↓fifth 

33 ↑fifth 
↑fifth 

0 

↓third 
↑step 

8 ↑third 
↓step 

0 

↑step 
↓fifth 

22 ↓step 
↑fifth 

0 

↑third,
↓fifth 

1 ↓third, 
↑fifth 

0 

↑fifth, 
↑step 

9 ↓step, 
↓fifth 

0 

↑step, 
↑third 

0 ↓step, 
↓third 

0 

Figure 7.3.4 
Two-unit 

sequences, of at 

least six chords 

in length, in the 

Mozart piano 

sonatas.

Figure 7.3.5 (a) The “down a third, up a step” sequence in the third movement of Mozart’s 

fi rst Piano Sonata, K. 279. (b) When the sequence returns at the start of the development, 

Mozart alters it so that it begins with a pair of descending fi fths. (c) This change is a minimal 

perturbation when represented along the circle of thirds.
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 accompanied by a chromatically descending countersubject. The fi rst two harmoniza-

tions feature the “down a third, up a step” sequence and are illustrated in Figure 7.3.6a; 

the remaining harmonizations use descending fi fths, as in Figure 7.3.6b. The fi gure 

shows that the two versions are related by third substitution: the countersubject’s 

initial Af is simply repeated, transforming all the fi rst-inversion triads into seventh 

chords. However, this transformation is rather cleverly disguised by the sixteenth-note 

fi guration (not shown in the example), which moves from the middle voice to the 

soprano. As a result, the middle voice takes over the role of chromatically descending 

countersubject, appearing an octave rather than an eleventh above the subject’s initial 

note. (This is double counterpoint on the cheap: since the upper voices both feature 

descending stepwise voice leading, the difference between the two countersubjects is 

largely a matter of  fi guration.) The interesting point, from our perspective, is the fl u-

idity with which Bach moves between the “descending fi fths” and “down a third, up a 

step” sequences. Like Mozart, he seems to view them as fundamentally similar.

For a fi nal example, consider the “sequence” in mm. 16–18 of the F minor fugue in 

the fi rst book of the Well-Tempered Clavier (Figure 7.3.7). The scare quotes acknowl-

edge that the passage is not truly sequential: although the stuttering, descending 

melodic lines are always related by transposition, the interval is not uniform. (The 

descending passage begins fi rst on, then a third above, then a third below the root 

of the preceding harmony; as a result, the chords within each measure are related 

by descending fi fth, descending third, and ascending step.) Across bar lines the pas-

sage always articulates a V7–I progression, so that the resulting harmonic sequence is 

entirely composed of strong progressions: descending twice by fi fth (f–Bf7–Ef), by 

third (Ef–C7), by fi fth (C7–f), ascending by step (f–G7), and descending once again 

Figure 7.3.6 An interpretation of two passages from Bach’s Af major fugue from WTC II. 

(a) Measures 6–7 involve the “down a third, up a step” sequence, while mm. 13–15 involve 

the descending fi fths sequence (b). In the original music, the middle voice of (a) and the 

top voice of (b) involve sixteenth-note fi guration; thus the chromatic descent moves from 

soprano (a) to middle voice (b).
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by fi fth (G7–C). This succession of strong progressions, articulated by descending-

thirds melodies, creates a strong sense that the passage is both functionally tonal and 

sequence-like. (Indeed, I played it for years before noticing that it was not an exact 

sequence.) One hears the omnipresent engine of descending thirds—typical of tonal 

sequences in general and of Bach’s sequences in particular—and fails to notice the 

subtle deviations from exact transposition.

Figure 7.3.7 A sequence-like passage from the F minor fugue in book I of Bach’s Well-

Tempered Clavier, mm. 16–18. Harmonically, the passage involves an unsystematic collection 

of “strong” progressions.

Figure 7.3.8 (a) The “down a third, up a step” sequence can be derived from more familiar 

sequences by exchanging root position and fi rst-inversion chords. Here, the four forms on 

the bottom staff are derived from the descending-fi fth and descending-step sequences in the 

upper staff. (b) Measures 62–66 from Contrapunctus X in Bach’s Art of the Fugue. Here, root 

substitution over a sequential bass line changes the “down a third, up a step” progression into 

the descending fi fths progression.
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These examples suggest that it might be worth reconsidering the role of the “down 

a third, up a step” sequence in functional tonality. Although rare, the sequence does 

appear sporadically throughout the literature. Yet in my experience, theorists are 

reluctant to acknowledge its existence—as if it were an anomaly so inexplicable that 

its very presence threatened to undermine the solid foundations of classical theory. 

From my point of view the sequence is anything but inexplicable: it results from a 

simple thirds substitution for the more common descending-fi fths sequence (Figure 

7.3.8). Figure 7.3.9 shows that it can appear in four basic forms, depending on which 

of its chords are in inversion. Our theoretical approach, by providing a home for this 

sequence, may help us learn to hear it, and thus to resist the almost overwhelming 

temptation to deny its existence.

Figure 7.3.9 (a−d) There are four basic forms of the “down a third, up a step” sequence, 

depending on which inversions are used. An example of each is provided. (e) Haydn’s D 

major Piano Sonata Hob. XVI/42, II, mm. 11–12. (f  ) The opening of the “Crucifi xus,” from 

Bach’s B minor Mass (BWV 232). (g) Brahms’ F minor Piano Quintet, Op. 34, I, mm. 8–9. 

(Note that the dynamics and musical context all suggest that the sevenths should not be 

understood as suspensions.) (h) Bach’s G major fugue, Book II of the Well-Tempered Clavier, 

mm. 66–69.
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7.4 modulation and key distance

Functional tonality employs conventionalized motions on both the level of the chord 

and the key: just as a V chord is overwhelmingly likely to progress to I, so too is a clas-

sical-style major-key piece overwhelmingly likely to modulate to its dominant. How-

ever, it is much harder to describe the syntax of key changes than of chord-to-chord 

progressions. The fi rst problem is cross-stylistic variability: where harmonic grammar 

remains relatively constant over time, there is considerably more variation in modula-

tions.23 For example, much jazz obeys classical ii–V–I harmonic norms, though its key 

changes are anything but classical. (To take an extreme case, John Coltrane’s “Giant 

Steps” involves a series of ii–V–I progressions that modulate by major third.) The sec-

ond problem is that we continue to fi nd signifi cant variation even if we narrow our 

focus to the tonality of the eighteenth and early nineteenth centuries. Indeed, sonatas, 

fugues, and rondos all involve slightly different modulatory norms.

That said, it is still possible to identify some basic modulatory principles that 

are common to multiple genres: most obviously, pieces typically start and end in 

the same key; the fi rst modulatory destination in major is the dominant key, while 

in minor it is either the dominant or relative major; and the subdominant key area 

often appears toward the end of the piece (Figure 7.4.1). Furthermore, theorists 

generally agree that tonal pieces often modulate between “closely related” keys. The 

most widely accepted model of key distance is the “chart of the regions” usually 

attributed to Gottfried Weber, though actually originating with F. G. Vial.24 Figure 

7.4.2 shows an equal-tempered version of the chart: motion along the SW/NE diag-

onal links modally matched fi fth-related keys; motion along the SE/NW diagonal 

changes mode, alternating between the “parallel” (or tonic-preserving) and “rela-

tive” (or diatonic-scale-preserving) relationships. Though more than 200 years old, 

the Vial/Weber model continues to play a role in contemporary theory, particularly 

in the work of Carol Krumhansl and Fred Lerdahl. In fact, both of these theorists 

have attempted to derive the model from more basic principles: Krumhansl from the 

results of psychological experiments, and Lerdahl from the deeper postulates of his 

theoretical system.25

23 Stein 2002 argues that the chordal syntax of classical harmony antedates the modulatory syntax.
24 See Lester 1992, p. 230.
25 See Krumhansl 1990, ch. 7 and Lerdahl 2001, ch. 2. Both theorists derive the Weber model from a 

combination of experimental data and theoretical assumptions. In this sense, the model is (partially) a 
theoretical construct, rather than the simple output of psychological experiments. As far as I know, there 
are no experiments that directly test key distances, or even establish their perceptual reality.

Figure 7.4.1 
Common 

sequences of keys 

in functionally 

tonal music.

First Key Second Key Third Key Other Keys
Often Found
Near the End Last Key

Major I V often ii, v, or vi various IV I
Minor i III or v often VII, iv, VI various iv i
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Weber’s chart suggests that fi fth-related major keys are particularly close, but it 

does not explain why this is so. One possibility is that fi fth-related tonic notes or tonic 

chords are themselves close—in other words, C major pieces modulate to G major 

because the G major chord (or the note G) has a particular affi nity for the C major 

chord (or note C). (This in turn may be due to the acoustic relationship between 

perfect fi fths.) Another possibility, however, is that fi fth-related major keys are close 

because their associated scales are close. From this point of view, what links the keys 

of C and G major is the fact that the single-semitone shift F®Fs transforms the C 

diatonic scale into G diatonic. Similarly, C major and A minor are close because the C 

major scale shares the same notes as A natural minor, and because a single-semitone 

shift (G®Gs) transforms C major into A harmonic minor. Thus we have two plau-

sible but distinct theories of key distance, one based on chords (or notes), the other 

on scales.

Let’s see if we can use our geometrical models to investigate this issue. Recall from 

§4.6 that the familiar seven-note scales of the Western tradition are contained on a 

three-dimensional cubic lattice, reproduced here as Figure 7.4.3. According to the 

scalar model of key distance, keys are close if their associated scales are near each 

other on this lattice. If we limit our attention to major keys, then the lattice simply 

reduces to the familiar circle of fi fths. Minor tonalities present a challenge, however, 

as they can use any of three distinct scale forms. How should we measure the distance 

from C major to E minor? Should we, for example, choose the E minor scale that 

is closest to C major? Or should we choose the farthest scale instead? One sensible 

solution is to take the average of the distances between the scales belonging to each 

key. This means that the distance from C major to E minor would be (1 + 2 + 3)/3 = 2 

Figure 7.4.2 The “chart of the regions” in its equal-tempered form. Major keys are 

capitalized, minor keys are shown in small letters. Fifth-related keys are on the SW/NE 

diagonal lines, while “parallel” and “relative” keys are on the SE/NW diagonals. The fi gure is a 

torus whose top edge should be glued to the bottom, and whose left edge should be glued to 

the right.
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Figure 7.4.3 The three-dimensional lattice showing voice-leading relations between familiar 

scales. The three A minor scales lie along the solid dark line, while the three E minor scales lie 

along the dotted dark line.

 (Figure 7.4.4).26 When measuring the distance between minor keys, we can average the 

distances in the most effi cient pairing between their scales, as illustrated by the fi gure.27

Figure 7.4.5 lists the resulting distances. According to this model, major keys are 

particularly close to their dominant major (V), subdominant major (IV), and rela-

tive minor keys (vi), with the supertonic minor (ii) being just a little farther away. 

A minor key is maximally close to its relative major. In second place is the subtonic 

major (VII), with the subdominant minor (iv), dominant minor (v), submediant 

major (VI), and parallel major (I) being slightly farther. While these key distances 

are broadly similar to Weber’s, there are some intriguing differences: notably, the sca-

lar model helps explain why minor keys would be more likely to modulate to the 

relative major than to the dominant. Note also that from the scalar perspective, the 

keys of C major and D minor are particularly close, since two of the D minor scales 

can be linked to C major by single-semitone voice leading (Figure 7.4.6). Compared 

to the Weberian model, then, the scalar perspective would lead us to expect more 

26 For simplicity, I am adopting the “smoothness” metric, which counts the total number of semitones 
moved by all voices (Appendix A).

27 Alternatives tend to produce counterintuitive results. For instance, one might try to measure key 
distances using the smallest distance between two sets of minor scales, but this means that C minor and Ef 
minor are maximally close, since C natural minor is one semitone away from Ef melodic minor ascending. 
Similarly, one might try to take the average of all nine distances between two sets of minor scales, but this 
means that a minor key is not distance zero from itself.
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 modulations between a major key and its supertonic minor (or conversely, a minor 

key and its subtonic major), and less fi fth motion among minor keys.

To evaluate these competing models of key distances, we can compare them to 

actual modulation frequencies in baroque and classical music. (The assumption here 

is that composers modulate more frequently to nearby keys.) To this end,  Figure 7.4.7 

shows the results of a crude statistical survey of a large number of pieces by Bach, 

Haydn, Mozart, and Beethoven.28 The results are quite interesting. First, there 

Figure 7.4.4 Using voice leading to calculate distances between keys. (a) For major keys, the 

distances are simply the voice-leading distances between the relevant diatonic collections. 

(b) For distances between major and minor, we calculate the size of the voice leadings from 

the major scale to each minor scale, and take the average. Here, the average distance between C 

major and the three A minor scales is 1. (c) For minor scales, we take the average of the three 

voice leadings in the most effi cient pairing of the scales in one key with those in the other. 

Here, the average distance for the best pairing between A minor and E minor scales is 2.3.3.

28 The analysis was simplistic but hopefully unbiased: I simply programmed a computer to look 
through MIDI fi les to fi nd moderately long sections (15 notes or more) belonging to a single diatonic, har-
monic minor, or melodic minor ascending scale. (I assumed that minor keys do not normally reside in the 
diatonic collection.) Each successive modulation was then categorized according to root relationship and 
mode: thus a modulation from G major to A minor was treated as “root moves up by two semitones, mode 
changes from major to minor,” regardless of the global tonic of the piece. To test the data, I correlated the 
resulting modulation frequencies with those in human analyses of Mozart’s piano sonatas. The correlation 
was very high (.96) for modulations beginning in major keys, and somewhat lower (.86) for those begin-
ning with minor keys, in part because the computer stayed in minor keys longer than the humans did.
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Figure 7.4.5 Key distances, calculated using 

voice-leading distance between scales. The 

smallest distances are shown in boldface.

œ# œ#
distance = 1 distance = 1 distance = 2

Figure 7.4.6 A major key is particularly close to its supertonic minor, just as a minor key is 

very close to its subtonic major.

is a marked asymmetry between major and minor: for all four composers, the four 

most common major-key destinations are V, IV, vi, and ii. (Note that these numbers 

are calculated relative to the immediately preceding key: a modulation from C major 

to G major is treated as I®V, no matter what the global key of the piece.) For minor 

keys, however, the two most common modulatory destinations are III and VII, often 

by a wide margin. This represents a striking deviation from the Weber model, which 
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predicts that the two modes should modulate in essentially similar ways. Further-

more, our data confi rm that there is a particularly close relation between a major key 

and the minor key two semitones above it: major keys modulate to their supertonic 

minor more often than to the parallel minor, with minor keys modulating to their 

subtonic major more frequently than to any key except the relative major. All of 

(a) from major keys

Bach Haydn Mozart BeethovenRoot 
Motion maj. min. maj. min. maj. min. maj. min.

0 - 2.3 - 4.5 - 4.7 - 4.1
1 0 0 0.2 0.1 0.3 0 0.3 0.1
2 3.3 8.8 1.8 7 5.3 7.1 1.9 12.7
3 0.8 0 1.3 0 1.8 0.3 1.7 0.2
4 0 4.9 0.5 3.2 1.2 2.1 0.6 6.7
5 26 0.1 29.8 1.4 24.6 1.5 23.3 1.8
6 0 0.1 0 0 0 0 0.2 0.2
7 26.8 2.9 28.4 2.1 28.2 2.1 20.8 2.5
8 0.5 0 0.6 0 0.9 0 1.1 0.5
9 0.4 20.2 0.8 15.7 2.1 13.1 1.2 14.6

10 2 0 1.9 0.1 3.6 0.3 2.8 0.3
11 0.3 0.4 0 0.5 0 0.9 0.5 1.7

(b) from minor keys

Bach Haydn Mozart BeethovenRoot 
Motion min. maj. min. maj. min. maj. min. maj.

0 - 1.9 - 11.2 - 6.9 - 9.2
1 0 1.4 0 1 0 2.8 0.6 2
2 0.8 0 2.4 1.2 0.7 0 2.2 1
3 0.8 31.1 2.1 28.3 0.7 21.5 1.3 20.3
4 0.3 0 0.3 0 1.4 0 0.7 0.3
5 12.3 3.8 8.6 4 7.6 4.9 9 2.2
6 0 0 0 0.2 0 0.7 0.2 0.6
7 9.8 1.9 6.6 2.9 9.7 4.2 10.1 2.5
8 0.3 10.7 0 6.4 2.1 8.3 0.9 10
9 0 0 1.2 0 2.1 0 0.6 0.3

10 1.9 23 1.8 21.4 2.1 24.3 3.8 21.5
11 0 0 0.3 0.2 0 0 0.6 0.2

Figure 7.4.7 Estimated modulation frequencies in Bach’s Well-Tempered Clavier and the 

piano sonatas of Haydn, Mozart, and Beethoven. The left column indicates the directed 

chromatic interval of root motion from source key to target key. (For example, a modulation 

from F major to G major or B minor to Cs major is represented by the number 2.) Under 

each composer’s name, the “min” and “maj” columns refer to the modality of the target key. 

The two or three largest values in each column are in boldface.



history and analysis252

these results are more consistent with the scalar model than the Weberian chart of 

the regions.29

Let me be clear that I do not take this to show that the scalar approach explains 

everything about tonal modulation. First, the statistical tests I have conducted are 

relatively simplistic and need to be confi rmed by more careful investigation. Second, 

other musical factors no doubt play a role: the close relation between parallel keys, 

such as C major and C minor, surely has something to do with the fact that they share 

the same tonic note. And third, we need to recognize the role of individual prefer-

ences, since distance alone will not explain the fact that Mozart modulates to the 

parallel minor more frequently than Bach. That said, however, I think it is interesting 

that simple scale-based voice-leading models work as well as they do. Their success 

does seem to show that eighteenth- and nineteenth-century composers were sensitive 

to the twisted three-dimensional geometry shown in Figure 7.4.3.

It’s worth saying a word or two about why this is important. We have seen that 

there are two fundamentally different ways to understand the “closeness” of fi fth-

related keys: one based on the acoustic relation between their tonic notes, the other 

based on the voice-leading relationships between their associated scales. These theo-

ries suggest very different generalizations to unfamiliar musical contexts. For exam-

ple, in Chapter 9, we will fi nd composers such as Debussy, Ravel, Shostakovich, and 

Reich exploiting effi cient voice leading between a wide range of scales and modes. 

If we neglect the role of scale-to-scale voice leadings in classical music, then we will 

miss the way in which these twentieth-century composers are generalizing traditional 

modulatory practices. And this in turn could lead us to think that they had somehow 

gone wrong, for instance, by abandoning the use of fi fth-related keys. This shows that 

both historians and composers have an interest in understanding the mechanisms 

underlying traditional modulation: the former, because they need to understand the 

connections between twentieth-century tonality and earlier styles; the latter, because 

they may want to develop analogues to modulation in as-yet- unexplored musical 

situations.

7.5 the two lattices

We’ve now used two different circles to model functional tonality: the circle of thirds, 

which identifi es single-step voice leading among triads, and the circle of fi fths, which 

represents single-semitone voice leading among diatonic scales. There is of course a 

very close structural analogy between them, arising from the fact that both depict 

29 More sophisticated quantitative tests confi rm the intuition that modulation frequencies are closely 
related to voice-leading distance between scales. For example, I constructed quantitative models based 
on the assumption that keys are most likely to modulate to their n nearest neighbors on either the Weber 
model or the scale lattice. Scalar models consistently outperformed the Weberian models, achieving corre-
lations in the range of .91–.96, for the repertoire in Figure 7.4.7, compared to .77–.84 for the best Weberian 
models.
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voice leading among “near interval cycles”: the triad trisects the diatonic octave into 

two, two, and three scale steps, while the major scale divides four chromatic octaves 

into six perfect fi fths and one “near fi fth” (Figure 7.5.1). As explained in §3.11, the cir-

cle of thirds and the circle of fi fths are formed by shifting the position of the unusual 

interval—a process that links transpositionally related collections by single-step voice 

leading. Geometrically, the resulting circles lie near the center of their respective 

chord spaces, as described back in Figure 3.11.6.

From this, there follows a remarkable consequence: voice-leading relations among 

nearly even three-note diatonic chords are fundamentally analogous to those among 

nearly even seven-note scales. Recall from §3.11 that we can scramble the voice lead-

ings on a generalized circle of fi fths to produce higher dimensional voice-leading 

lattices. If we scramble adjacent voice leadings on the circle of thirds, we obtain the 

two-dimensional structure shown in Figure 7.5.2—a lattice of squares each sharing 

an edge with its neighbors. This two-dimensional lattice contains triads and fourth 

chords, and is analogous to the “scale lattice” containing diatonic and acoustic scales 

(Figure 3.11.8b). Here the fourth chord plays the role of the acoustic scale, since it 

is generated by reversing a pair of adjacent voice leadings on the triadic circle. This 

means that the progression from C to G by way of the suspension {C, D, G} is struc-

turally similar to the shift from D major to C major by way of the D melodic minor 

scale (Figure 7.5.3).

Pressing on, we note that it takes three single-step motions to move from C 

major to D minor on the circle of thirds. By scrambling these we obtain “incom-

plete seventh chords” such as {D, F, G} and {D, E, G}—the structural analogues 

of the harmonic major and minor collections (Figure 7.5.4).30 Proceeding in this 

way, we arrive at the three-dimensional structure in Figure 7.5.5, which has the 

Figure 7.5.1 The diatonic triad and the major scale both divide the octave nearly (but 

not precisely) evenly. The circle of thirds arises from changing the position of the three-step 

interval; the circle of fi fths arises from shifting the position of the six-semitone interval.

30 Observe that the incomplete seventh chords are related by diatonic inversion, just as the harmonic 
major and minor scales are related by chromatic inversion; the diatonic triad and diatonic fourth chord 
are symmetrical under diatonic inversion, just as the diatonic and acoustic scales are symmetrical under 
chromatic inversion.
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same basic form as our scale lat-

tice: the circle of diatonic thirds 

is analogous to the diatonic circle 

of fi fths and runs through the 

center of the fi gure in a zigzag 

fashion; nontriadic chords form a 

second circle, which winds its way 

around the triads as described in 

Figure 4.6.1. This lattice contains 

all the three-note diatonic sonori-

ties that can resolve to a triad by one or two descending steps—in other words, the 

chords that can be formed by either a single or double suspension (Figure 7.5.6).31 

Figure 7.5.7 shows how these chords can act as waystations between the genu-

inely harmonic triads on the lattice’s central spine, allowing composers to break 

large melodic motions into smaller steps. By enabling us to visualize these possi-

bilities, the chord lattice can help us conceptualize them. For example, Figure 7.5.8 

identifi es four ways in which suspensions can be used to embellish a sequence of 

descending fi rst-inversion triads: in each case, a single voice alternates with a pair of 

simultaneous descents. Figure 7.5.9 shows two passages in which composers exploit 

these pathways: in the fi rst, the eighteenth-century composer (and chess master) 

François-André Danican Philidor alternates standard 7–6 suspensions with more 

Figure 7.5.2 (a) On the circle of thirds, we move from C to G by way of E minor. (b) If we 

reverse the order of the voice leadings C®B and E®D, we can move from C to G by way of 

the “suspension chord” C-D-G. By scrambling every adjacent pair of voice leadings on the 

circle of thirds, we produce a lattice of squares each sharing an edge with their neighbors.

Figure 7.5.3 The move from C major to G major 

by way of the suspension chord C-D-G is precisely 

analogous to the shift from D major to C major by 

way of D melodic minor.

31 The chord lattice does not include diatonic clusters (such as {C, D, E}) or multisets (such as {C, C, 
D}). It is of course possible to create a larger three-dimensional lattice that contains these chords.
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Figure 7.5.4 (a) On the circle of thirds, we move from C major to D minor by way of A 

minor and F major. (b) If we scramble the order of the voice leadings G®A, E®F, and C®D, 

we obtain a cube containing four triads (on C, A, F, and D), two fourth chords (CFG and 

DEA) and two incomplete seventh chords (DFG and DEG).

Figure 7.5.5 We can stack the cubes in Figure 7.5.4 to create a diatonic “chord lattice” 

precisely analogous to the scale lattice we investigated earlier (e.g. Figure 7.4.3). The triadic 

circle of thirds runs through the center of the space, taking a right-angled turn at each step. 

(From the lower left, we have CEG®CEA®CFA®etc.) The nontriadic chords are contained 

on a second circle, which winds around the fi rst: from the lower right front we have 

CFG®DFG®DEG®DEA® . . . , a sequence that repeats every three chords at the interval of 

a descending third.
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Figure 7.5.6 
The diatonic chord cube 

contains all the sonorities that 

can resolve to CEG by either a 

single or double suspension.

Figure 7.5.7 The sonorities on the chord lattice provide waystations allowing composers to 

break large movements into smaller steps. Instead of moving directly from DGB to CEG, as 

in (b), a composer can use nonharmonic tones to smooth out the journey (c). The path in (a) 

depicts the music in (c). Historically, the F in the bass voice of (c) originated as a nonharmonic 

passing tone, but was eventually granted harmonic status as part of the seventh chord on G.
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Figure 7.5.8 Four ways to use suspensions to decorate a series of descending fi rst-inversion 

triads, represented on the chord cube. The fi rst produces the ubiquitous 7–6 suspension, 

while those in (b) and (c) interpose an additional (root position or second-inversion) triad 

between consecutive fi rst-inversion triads; the path in (d) creates a double suspension that 

sounds like an incomplete seventh chord.

Figure 7.5.9 (a) Philidor’s “Art of Modulation” (Sinfonia V, Fuga, mm. 36–38) alternates 

between 7–6 and 4–3 suspensions, utilizing paths a and b in Figure 7.5.8. (b) The Prelude 

to Grieg’s suite “From Holberg’s Time” uses the unusual double suspension represented by 

path (d).
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unusual ¢ – £fl   suspensions, exploiting paths (a) and (b) on the cube in Figure 7.5.8; in 

the second, Grieg uses the path in (d).32

Earlier, I observed that tonal music is hierarchically self-similar, combining har-

monic consistency and effi cient voice leading at both the level of the chord and the 

level of the scale. We can now sharpen this observation considerably. Not only is there 

a loose analogy between the techniques composers use to relate chords and scales, 

but there is in fact a very precise structural similarity between the underlying voice-

leading graphs. Indeed, chords and scales can be represented by essentially the same 

geometry. This extraordinary degree of self-similarity evokes fractals, mathematical 

shapes that exhibit the same structure no matter how they are magnifi ed.33 In much 

the same way, functional harmony exemplifi es the same contrapuntal relationships 

whether we zoom out to the level of key relations, or zoom in to the level of chords.

7.6 a challenge from schenker

The ideas in this chapter have been inspired by traditional tonal theorists such as 

Rameau, Weber, and Riemann. On my view, tonal music obeys purely harmonic 

 principles that specify how chords can move, while modulations involve voice lead-

ings between scales. Insofar as we can specify something like a “grammar” or “syn-

tax” of functional tonality, it is largely concerned with local rules that tell us how 

to connect adjacent scales and chords. There are, however, a number of contempo-

rary theorists who would object to these ideas: many followers of Heinrich Schenker 

seem to deny that functional tonality involves harmonic rules, asserting instead that 

its putative “harmonic grammar” can be explained contrapuntally.34 (As Schenker 

wrote, the horizontal domain takes “precedence” over the vertical, and is the “only 

generator of musical content.”35) Since Schenker’s theories are highly infl uential, it 

will be worth considering them more closely, with the goal of understanding whether 

they do indeed confl ict with the ideas we have been investigating.

Schenker is a highly complex fi gure who by every account made enormous contri-

butions to music theory: in particular, he made a compelling case that there is more 

to musical coherence than the simple chord-to-chord constraints discussed in §7.1. 

Much of his work was devoted to elucidating these additional mechanisms of tonal 

32 Thanks to Hank Knox and David Feurzeig for these examples.
33 True fractals are infi nitely self-similar, no matter how far we zoom in or out, whereas tonal music is 

self-similar only on two levels. Nevertheless, there is something compelling, and even beautiful, about the 
symmetry between scale and chord.

34 The locus classicus of Schenker’s antagonism to traditional harmonic theory is his essay “Rameau 
oder Beethoven?” (Schenker 1930 and 1997). More moderate critiques of traditional harmonic theory 
can be found throughout the Schenkerian literature, including Salzer 1982 and Schenker 2001. See also 
Rothstein 1992: “[early] Schenker conceived of tonal music as a kind of battleground on which the forces 
of harmony, voice leading, rhythm, and motivic repetition contest with each other. . . . The notion of semi-
independent musical forces, in perpetual confl ict with each other, seems to have been largely abandoned 
by Schenker as he developed his theory. I believe this was a serious mistake.”

35 Schenker 1930, p. 20 (“Vorrecht”) and p. 12 (“allein den musicalischen Inhalt hervorbringt”). For an 
English translation, see Schenker 1997, p. 7 (“prerogative”) and p. 2.
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organization, ranging from simple idioms (including progressions such as I–vii° 6–I6), 

to recurring melodic patterns (such as voice exchanges and linear progressions), to 

larger phenomena (such as the centrality of the return to V in the development sec-

tion of a classical sonata). All of this is important and welcome. But in the course of 

making these arguments, he ended up advocating a radical model of musical organi-

zation according to which entire pieces were massively recursive structures, analogous 

to unimaginably complex sentences. The complexity of these hierarchical structures 

far outstrips those found in natural language, and seems incompatible with what we 

know about human cognitive limitations.36 Further, and more directly relevant to our 

present concerns, the recursive model has an uncertain relationship to the chord-to-

chord constraints that play an indisputable role in classical harmony.

Let’s consider this point in the context of an elementary example of Schenkerian 

practice. Figure 7.6.1 analyzes the opening phrase of Mozart’s variations on “Ah, 

vous dirai-je, Maman” better known in English as “Twinkle, Twinkle Little Star.” The 

analysis is taken from Cadwallader and Gagné’s undergraduate textbook Analysis 

of Tonal Music: A Schenkerian Approach. Beneath their example, I have provided 

a standard Roman numeral description. My chord-by-chord analysis includes two 

chords that Cadwallader and Gagné omit: where I interpret the opening measures as 

36 By drawing an analogy to sentences, I mean to be registering the fact that Schenker conceives of 
musical passages as being nested within one another, much like linguistic clauses (§7.6.3). Picking up on 
this analogy, Lerdahl (2001) uses linguistic tree structures to express essentially Schenkerian ideas. Schen-
ker himself periodically made comparisons to language, as at the opening of “Further Considerations of 
the Urlinie: II,” where he decries the simplifi cation of German syntax, associating it with a degradation of 
musical comprehension (Schenker 1996, p. 1). (See also Schenker’s analogy to linguistic grammar, quoted 
below.) Ultimately, however, the analogy is a suspicious one: spoken English contains sentential units that 
are about 13 words long, as compared to written English, in which the units are 22 words long (O’donnell 
1974). (Cf. Miller 1956, which emphasizes the “7 ± 2” limits on human short-term memory.) This con-
trasts dramatically with the length of classical pieces, which can be 20 minutes long, and can contain 
hundreds of measures and tens of thousands of notes. Given the centrality of language to human survival, 
it is evolutionarily reasonable to take the limits on hierarchical linguistic cognition as a rough guide to the 
limits on hierarchical musical cognition.

Figure 7.6.1 
Mozart’s 

variations 

on “Ah, vous 

dirai-je, Maman,” 

(K. 265), along 

with Cadwallader 

and Gagné’s 

Schenkerian 

analysis.
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a I–IV@–I–V#–I progression, Cadwallader and Gagné label the fi rst fi ve measures “I.” 

Thus, they describe my “IV@ chord” as a “neighboring chord” (indicated by the label 

“N”) and my “V# chord” as “passing.” The implication seems to be that these chords 

are produced by contrapuntal rather than harmonic forces. In Schenkerian analysis, 

this process of identifying (and removing) “merely contrapuntal” harmonies pro-

duces ever-more abstract summaries of a piece, until entire movements, no matter 

how large, resemble simple I–V–I progressions.

There is room to debate whether traditional harmonic theorists need to recognize 

the notion of a “passing chord,” as opposed to simply acknowledging the existence of 

a few harmonic idioms. But insofar as they do, the term “passing chord” will presum-

ably describe those rare sonorities that violate the harmonic syntax of §7.1. (Figure 7.6.2 

provides a potential example.) By contrast, Cadwallader and Gagné’s “neighboring” 

and “passing” chords participate in perfectly well-formed harmonic cycles. That is, if we 

simply place Roman numerals under each and every chord, as shown at the bottom 

of Figure 7.6.1, we fi nd a series of harmonies conforming to conventions described 

in §7.1. We therefore need to understand what it means to assert that some of these 

apparently syntactical harmonies are the “byproducts” of contrapuntal motion. In 

particular, we need to understand how this description relates to that provided by 

traditional harmonic theory.

Figure 7.6.2 The fi rst movement of Mozart’s Piano Sonata K. 279, mm. 25–30. A traditional 

theorist might consider the I@ to be a “passing chord,” since it violates the expectation that 

I@ goes to V. By treating it as the product of linear motion (as shown in b), we obtain a 

syntactical progression from an apparently nonsyntactical surface.
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It seems to me that there are essentially four options here:

1. Nihilism. Harmonic nihilists simply deny that harmonies in functionally tonal 

music exhibit regularities of the sort described in §7.1.

2. Monism. Monists acknowledge that tonal harmonies appear to obey 

harmonic rules, but assert that these regularities can be explained 

contrapuntally. The traditional theorist is therefore wrong to fi nd a 

harmonic grammar in Mozart’s music; the deeper and more correct 

explanation invokes the melodic processes described by Schenker.

3. Holism. The holist asserts that it is impossible to separate harmony and 

counterpoint, because the very distinction is ill-defi ned. Traditional harmonic 

theory, by postulating purely harmonic principles, illicitly tries to treat the 

harmonic realm on its own, without adequately considering counterpoint.

4. Pluralism. The pluralist believes that independent harmonic laws govern 

functionally tonal music. On this view, Schenkerian theory adds additional 

information to, but does not replace, traditional harmonic analysis. The 

traditional harmonic theorist correctly observes that Mozart’s music obeys 

independent harmonic laws; the Schenkerian augments this observation by 

pointing out that the notes also have additional contrapuntal functions.

We can discount the fi rst of these, as it is inconsistent with the evidence presented in 

§7.1. Each of the remaining views is worth considering in more detail.

7.6.1 Monism

According to the monist, the fi rst fi ve measures of Mozart’s “Twinkle, Twinkle” 

should be explained contrapuntally rather than harmonically. Figure 7.6.3 attempts 

to test this theory by replacing Mozart’s initial I–IV–I progression with a I–vi–I, and 

by eliminating the leading tone from the fi fth measure. The resulting chord progres-

sions are very rarely found in tonal music, even though they are perfectly legitimate 

contrapuntally: the I–vi6–I progression is produced by neighboring motion in the 

upper voice, while the I–ii–I6 motion can be understood as a passing chord. The awk-

wardness of the resulting progressions strongly suggests that Mozart’s compositional 

choices are indeed motivated by harmonic considerations. Absent harmonic laws, we 

simply have no way of explaining why I–vi–I and I–ii–I6 should be so much less com-

mon than I–IV–I and I–V–I.37

Figure 7.6.4 presents a number of contrapuntally unobjectionable progressions 

that are quite rare in functionally tonal music. All feature effi cient melodic motion, 

avoid forbidden parallel fi fths and octaves, and resolve the leading tone upward by 

step; all would be perfectly acceptable in sixteenth- or twentieth-century music. Yet 

Figure 7.6.5 shows that they are virtually absent in Mozart’s piano sonatas. The chal-

lenge for the monist is to explain this using recognizably contrapuntal principles. 

37 This point has been made by numerous commentators, including Smith (1986), Rothstein (1992), 
and Agmon (1996).
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To my knowledge, no theorist has ever even attempted to do so—at least not in clear, 

principled language that would be comprehensible to students or scientists. It seems 

reasonable to conclude that we cannot replace harmonic principles with purely con-

trapuntal laws. In the words of the noted Schenkerian (and pluralist)  William Roth-

stein,

[H]ow is it that all those passing and neighboring tones time and again just happen to 

dispose themselves in ways that produce what appear to be tonics, dominants, and other 

familiar chords, often moving in exactly the ways predicted by the harmony books? . . . It 

takes a very large leap of faith to believe that so many chordal structures and successions, 

exhibiting so many regular patterns are to be ascribed to contrapuntal happenstance.38

Figure 7.6.3 These “neighboring” and “passing” chords are contrapuntally unobjectionable, 

though the resulting chord progressions are harmonically unusual.

Figure 7.6.4 Three progressions that are contrapuntally unobjectionable, but which rarely 

appear in baroque or classical music: a root position V–IV (a), a major-key I–iii–V–I 

(b), and the analogous progression in minor (c).

I-I6-V

V-IV6

i-i6-V

V-vi 103

56 

48 

10 

V-IV-I 2* 

I-iii-V 0 

i-III-V 0 

Figure 7.6.5 Chord progressions in Mozart’s sonatas. Starred 

progressions occur across phrase boundaries (e.g. K. 311, 

third movement, mm. 71–72). Schenkerians have asserted that 

the last two progressions are basic to tonal music, whereas 

traditional tonal theory claims that they are rare.

38 Rothstein (1992) is paraphrasing Smith (1986).



Functional Harmony 263

7.6.2 Holism

Let’s now turn to the claim that traditional harmonic theory imposes an illegiti-

mate separation between harmony and counterpoint. The idea is that, in actual 

music, harmony and counterpoint are so intimately intertwined that we must 

always consider both together. One obvious response is that there currently exists 

an accurate theory of functional harmony, one that is largely independent of con-

trapuntal considerations. Taken literally, holism would seem to imply that we 

cannot produce a purely harmonic theory such as that in §7.1. The holist there-

fore needs some explanation of how traditional theory manages to achieve the 

impossible. Furthermore, this explanation will need to explain how it is that very 

similar harmonic laws govern tonal styles with very different contrapuntal norms, 

including baroque music, classical music, and many varieties of jazz, rock, and 

pop. (This fact alone would seem to imply that harmonic principles can indeed 

be separated from counterpoint.) To my knowledge, no such explanation has ever 

been offered.

More generally, it seems likely that the holist fails to distinguish three separate 

questions:

1. Is it the case that composers’ choices are guided at every point both by 

harmonic and contrapuntal considerations?

2. When analyzing a piece of music, does the dutiful analyst typically consider 

both harmony and counterpoint?

3. Can we provide an informative theory of the harmonic progressions found 

in tonal music that is largely independent of counterpoint?

The key point is that a traditional harmonic theorist is perfectly free to answer 

“yes” to all three. Yes, actual composers, in the heat of the creative process, invari-

ably think about both harmony and counterpoint; and yes, a responsible analyst 

typically considers both factors together. But despite this in-practice entanglement 

of harmony and counterpoint, we can still provide an enlightening and largely 

harmonic theory of tonal chord progressions. This is because the theoretical proj-

ect of characterizing the grammar of elementary tonal harmony is completely dis-

tinct from the analytical project of saying interesting things about particular pieces. 

Just as the grammarian of the English language can remain resolutely neutral on 

the proper method of interpreting Romantic poetry, so too can the supporter of 

traditional harmonic theory remain completely agnostic about how to analyze 

specifi c works. In particular, harmonic theorists need not assert that composers 

think fi rst about harmony before thinking about counterpoint, nor that one has 

said all there is to say about a piece simply by placing Roman numerals under 

its chords. (Indeed, Schenkerian theory has provided an important corrective to 

these very tendencies.) To my mind, the point cannot be emphasized strongly 

enough: the project of constructing a harmonic grammar is totally independent 
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of the enterprise of musical analysis—as independent as linguistics is from literary 

criticism.39

7.6.3 Pluralism

Pluralist Schenkerians believe that traditional harmonic theory is correct as far as 

it goes. Thus when the pluralist declares that the IV@ and V# chords in Figure 7.6.1 

are “passing” or “neighboring,” she does not thereby deny that these chords are also 

genuinely harmonic objects that participate in syntactic harmonic cycles; instead, she 

means to assert that there is another level of description in which these chords can be 

discounted. It follows that, for pluralists, harmony and counterpoint will often sug-

gest very different ways of organizing a single passage of music. Harmonically, music 

is organized into a series of concatenated cycles like beads on a string. Contrapuntally, 

however, it is organized hierarchically, nested like a series of Russian “matryoshka” 

dolls (Figure 7.6.6).40 The result is a fundamentally disunifi ed conception of musical 

structure, in which harmony and counterpoint work against each other, providing 

very different ways of organizing one and the same piece.41

I will not consider this view in much detail, as it is largely irrelevant to our present 

concerns. The important point is that traditional theorists and pluralist Schenkerians 

can agree about many things: that functionally tonal music involves distinctively har-

monic laws; that the local voice-leading moves in Renaissance and classical music are 

quite similar; that modulations involve, among other things, voice leadings between 

scales; that nineteenth-century harmony often exploits effi cient voice leading in chro-

matic space; that harmonic consistency, effi cient voice leading, acoustic consonance, 

macroharmony, and centricity all contribute to our sense of tonality; and so on. Ulti-

mately, the question is whether a theory emphasizing these facts will be embedded 

into a larger theory incorporating insights from Schenker. For the purposes of this 

book I am happy to remain agnostic about this larger issue. There is plenty of work 

to do, even if we restrict ourselves to matters about which traditional theorists and 

(pluralist) Schenkerians agree.

However, I would like to close with two general observations. First, it is unclear 

whether pluralist Schenkerianism is supposed to provide a grammar-like theory 

describing music’s objective structure or a psychological theory about listeners’ sub-

39 Imagine someone who objected to linguistics as follows: “your claim that English has a normal sub-
ject–verb–object ordering suggests that we have said everything there is to say about a sentence by labeling 
its constituents, but this leaves us unable to distinguish beautiful sentences from horrifi c ones.” As far as 
I can see, this obviously silly argument is exactly analogous to the suggestion that traditional harmonic 
theory implies an impoverished analytical method.

40 The analysis in Figure 7.6.6 is taken from an article by David Beach (1983). In traditional Schenke-
rian theory, it is linear patterns—rather than chords—that are the focus of attention, and are understood 
to be recursively nested. Nevertheless, this has the effect of creating nested patterns of Roman numerals.

41 One important task for the pluralist is to re-examine Schenker’s emphasis on musical unity in light 
of this manifest disunity. Is it the case that different musical parameters—not just harmony and counter-
point, but also form, theme, and motive—might in general suggest different ways of parsing a piece? And 
if so, does this reduce the importance of the “unity” that Schenker identifi ed? See Cohn 1992a for related 
discussion.
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jective (and possibly variable) responses.42 I have stressed that traditional harmonic 

theory is more like a grammar than a theory of phenomenological introspection. 

In analyzing Figure 7.6.7, for example, you do not need to ask yourself whether the 

D5 in the second beat sounds like a passing tone: if you know that tonal harmony is 

fundamentally triadic then you know enough to say that the D5 is indeed passing; 

and if experience tells you otherwise, then so much the worse for experience.43 (In 

much the same way, a traditional theorist can describe the I@ chord in Figure 7.6.2 as 

a “passing chord” without implying anything about how it sounds.) If Schenkerians 

mean to be making similarly objective claims about musical organization, then they 

need to spell out explicit procedures for making their recursive analyses—procedures 

that will allow us to test the theory in something like the way we tested the simple 

Figure 7.6.6 The opening of the slow movement of Beethoven’s Sonata in C minor, Op. 10 

No. 1, along with two ways of parsing its structure. In the traditional tonal analysis (top) fi ve 

harmonic cycles are concatenated like beads on a string. In the Schenkerian reading (bottom) 

harmonies are nested recursively. (For example, the progression IV–IV6–V#–I, which belongs 

to the fourth harmonic cycle, is taken to represent a single IV chord on level 2.) Schenkerians 

believe that these sorts of recursive structures, which cut across the articulation into harmonic 

cycles, can be reliably inferred from a piece’s contrapuntal structure. Ultimately, the recursive 

embedding proceeds until entire pieces are reduced to one of just a few basic templates, each 

resembling a I–V–I progression.

42 Among contemporary theorists inspired by Schenker, Lerdahl (2001) models listeners’ subjective 
responses, while Brown (2005) models objective musical organization. Schenker himself wrote “my teaching 
describes for the fi rst time a genuine grammar of tones, similar to the linguistic grammar that is presented in 
schools” (Schenker 1956, p. 37; the sentence is translated only very loosely in Oster’s English edition).

43 This is not to say that we never need to appeal to our psychology in resolving very diffi cult, ambiguous 
passages. In general, however, I think the goal of constructing Roman numeral analyses is to show how a 
particular passage relates to existing harmonic conventions; if so, then statements about how we hear it may 
be beside the point. This is one reason why it is possible to train a deaf person, or a computer, to become 
reasonably profi cient at traditional harmonic analysis (Taube 1999 and Raphael and Stoddard 2004).
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harmonic grammar of §7.1.44 If, on the other hand, pluralist Schenkerians mean to be 

making purely phenomenological claims, then their appropriation of the traditional 

terms like “passing” and “neighboring” is misleading at best. For the (psychological, 

subjective) Schenkerian “passing chord” is a different animal from the (grammatical, 

and more objective) passing tones of traditional theory. Furthermore, there are some 

delicate and as-yet-unexplored questions about the reliability and normative status 

of this sort of phenomenological introspection.45

Second, I want to remind you that there is an alternative way to formulate broadly 

Schenkerian claims about tonal unity. One of the primary attractions of Schenke-

rian theory, at least to my mind, is that it promises to show that classical music has 

a kind of hierarchical self-similarity, with its large-scale procedures mirroring the 

local details of chord-to-chord voice leading. This chapter has identifi ed another 

route to a rather similar conclusion: for as we have seen, modulation involves scale-

to-scale voice leadings that do indeed echo the contrapuntal techniques on the 

chordal level. To establish this analogy, we do not need to resort to musical reduc-

tion, nor to the analogy between musical pieces and enormous sentences, nor again 

to the claim that composers have cognitive capacities far exceeding those of ordinary 

listeners. Scale-to-scale voice leadings are right there in the score, transparent even 

Figure 7.6.7 If we were to consider every note to be harmonic, we would confront an array 

of unusual sonorities, such as the A-D-E on beat 2. By eliminating nonharmonic tones, we 

reveal a “deeper level” of musical structure, in which triadic harmonies progress in familiar 

ways. The violation of our expectations (e.g. that harmonies should be triadic) is what 

motivates our reductive analysis.

44 Temperley (2007, p. 172) makes a similar point.
45 It is quite possible to be deceived about what one hears. In part, this is because it can be diffi cult, 

introspectively, to distinguish hearing as from hearing plus thinking. It is one thing to have certain thoughts 
while listening to music (such as “aha, we’re returning to the tonic key!”), but it is quite another for those 
thoughts to be embodied within the perceptual experience itself. See Wittgenstein 1953 (IIxi) for discus-
sion of the analogous distinction between “looking plus thinking” and “seeing as.”
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to casual observation. Furthermore, it is not at all implausible to suggest that tonal 

composers might have sensed that F moves to Fs, when modulating from C major to 

G major, or that this is somewhat analogous to the way C moves to B as the C major 

triad changes to E minor. Our inquiry into voice leading thus provides a minimalist 

alternative to the more robust hierarchies of Schenkerianism proper. No doubt true 

Schenkerians will feel that this approach pales in comparison to the richly imbri-

cated structure of an authentic Schenker graph. But there may be some readers who 

prefer the more modest—and perhaps empirically grounded—approach that I have 

outlined here.



chapter 8

Chromaticism

We’ll now consider some of the ways in which nineteenth-century composers 

exploited effi cient voice leading, both as a tool for embellishing traditional progres-

sions and as an alternative to these same routines. We’ll begin with chromatic pro-

gressions that decorate a functionally tonal substrate: augmented sixths, Neapolitans, 

and examples of “modal mixture.” We then turn to more exotic instances of chro-

maticism, comparing short pieces by Brahms and Schoenberg, and examining a few 

passages from Schubert. This sets the stage for a more in-depth discussion of two 

nineteenth-century warhorses: Chopin’s E minor Prelude, Op. 28 No. 4, and Wagner’s 

Tristan prelude.

My goal here is to present chromaticism as an orderly phenomenon rather than 

an unsystematic exercise in compositional rule breaking. Lacking a comprehensive 

understanding of voice leading, it is easy to become overwhelmed by the variety of 

nineteenth-century chromatic practices—a bewildering collection of techniques that 

do not display any obvious organization. From here it is just a small step to deciding 

that chromaticism is a matter of the Romantic Composer’s Unexplainable Whim. If, 

on the other hand, we have absorbed the theoretical lessons of Part I, then we can 

adopt a more systematic attitude: once we can determine for ourselves the various 

contrapuntal paths from chord to chord, once we feel at home with the geometrical 

perspective of Chapter 3, we can begin to see that chromatic music reuses, over and 

over again, a relatively small number of musical tricks. This allows us to recognize 

the complex voice-leading relationships that bind together individual pieces while 

 connecting them to one another.

8.1 decorative chromaticism

Figure 8.1.1a contains a trio of dominant−tonic progressions in the key of C major. 

To a composer with a diatonic frame of reference, the voice leading is as small as 

it can be: each voice is either held constant or moves to its destination by a single 

step. But to composers who think chromatically, the counterpoint is not maximally 

effi cient since notes sometimes move by two semitones. It is therefore tempting 

to use chromatic alterations to “fi ll in the gaps,” perhaps in the hope that this will 

create an increased yearning for the tonic chord. Figure 8.1.1 shows that chromatic 

alterations produce a variety of familiar tonal chords, including the diminished 
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seventh, the dominant seventh with an augmented fi fth, and the dominant seventh 

“fl at fi ve” chord.1

The chords (d)−( f ) require special comment. Here, the chromatically altered note 

creates an augmented sixth that resolves outward to an octave. Each of these chords 

has a fl attened second scale degree, and can be labeled only awkwardly with traditional 

Roman numerals.2 But as secondary dominants they are very familiar, having long 

ago acquired picturesque names: the Italian, French, and German augmented sixth 

chords. One curious feature of Western music history is that these altered sonorities 

fi rst appear as applied dominant (V-of-V) chords. It was only during the fi rst few 

decades of the nineteenth century that they begin to appear as dominant sonorities 

in their own right. (Figure 8.1.2 provides a pair of representative examples.) This ten-

dency reaches its apogee in twentieth-century jazz, where these altered dominants—

conceived as “tritone substitutions” for the V7—become virtually mandatory.3

Figure 8.1.1 
Intensifying 

diatonic 

dominant-

tonic chord 

progressions 

with chromatic 

notes.

1 This table is similar to Table 2 in Smith 1986. Smith’s approach to chromaticism is in general very 
congenial to my own.

2 The chord {Df4, F4, G4, B4} is often labeled “G$f5,” with the numbers “$” referring to intervals above 
the bass Df4 and the symbol “f5” referring to the interval above the root G.

3 Biamonte (2008) contrasts the voice-leading behavior of classical augmented sixths and jazz tritone 
substitutes. To my mind, however, these differences arise from the fact that classical music is largely triadic, 
whereas jazz makes heavier use of seventh chords. Modulo these differences, there is a clear connection 
between the two kinds of chords.
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This historical contingency creates something of a pedagogical conundrum: 

most harmony textbooks, mirroring the historical development of Western music, 

 introduce these sonorities fi rst as secondary dominant chords, alterations of iv or 

V-of-V, rather than as dominants in their own right. (In fact, theorists sometimes 

debate whether augmented sixth chords have “secondary dominant” or “predomi-

nant” function.4) As a result, many textbooks pay relatively short shrift to the under-

lying similarity between the chords in Figure 8.1.1. This is symptomatic of a more 

general tendency to depict chromatic harmony as a series of disconnected idioms, 

often presented in a “one chord per chapter” format. This “object-based” (or har-

monic) approach to chromaticism is diametrically opposed to the “process-based” 

(or contrapuntal) approach I am advocating. From my point of view, what is impor-

tant is that the progressions in Figure 8.1.1 can all be obtained by a fundamentally 

similar process of chromatic embellishment.

One advantage of my approach can be seen by considering the chords in  Figure 

8.1.1g−h. These altered dominant sonorities do not have standard theoretical names, 

and appear only rarely in nineteenth century music. Figure 8.1.1g is the central pro-

gression of Strauss’ Till Eulenspiegel, and is sometimes called the “Till Sixth.” Figure 

8.1.1h appears in the upper voices of the fi nal progression of Scriabin’s Poem of Ecstasy, 

Figure 8.1.2 Chromatically altered dominants at the fi nal 

cadence of Schubert’s C major String Quintet (a) and at the 

opening of Chopin’s Cs minor Nocturne, Op. 27 No. 1 (b).

4 I think of augmented sixths as being secondary dominants for two reasons: fi rst, in sequences they 
often alternate with ordinary dominants (see Mozart’s C minor fantasy, K. 475, mm. 1–3, as well as Figure 
8.3.4); second, in recapitulations they often replace the exposition’s secondary dominants (cf. Beethoven’s 
F minor piano sonata, Op. 2 No. 1, I, mm. 41 and 140; Mozart’s D major sonata, K. 311, II, mm. 14 and 50). 
They only rarely substitute for genuine predominants in these contexts.
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and has probably been given a silly name at some point (the “Ecstatic Sixth?”). Stu-

dents who have learned chromatic harmony as a series of idioms tend to panic when 

they fi rst confront such chords. (“What is that and why wasn’t it in my textbook?”) 

What they need, I think, is not an extensive list of chords to memorize, but rather a 

sense of how to think for themselves chromatically—a sense, in other words, for the 

cognitive processes that might lead composers to invent  sonorities of this kind. Stu-

dents who realize that there are countless chromatic alterations in  nineteenth-century 

music, only some of which have standard names, are more capable of confronting the 

harmonic unknown, both analytically and in their own music.

Of course, chromatic techniques can be applied to other progressions as well. 

 Figure 8.1.3 presents a few standard embellishments of ii and IV. As discussed in 

Chapter 6, the I–IV–I progression is often decorated by interposing an augmented 

triad between I and IV and a minor triad between IV and I. (A very similar alteration, 

when applied to a V–I@–V progression, intensifi es the dominant by way of the minor 

tonic triad.) Other changes transform ii# into a half-diminished chord and ii°6 into 

the Neapolitan sixth. As a teacher, I try to emphasize the general structural principle 

that links all these progressions: in nearly every case, diatonic tones are modifi ed 

to create effi cient chromatic voice leading, smoothing the transition from chord to 

chord. Although students must still be introduced to these chords individually, and 

coached in their various voice-leading particularities, I fi nd that it is much easier to 

teach this material when the deeper musical principles are explained.

In fact, it can even be interesting to ask whether there are chromatic alterations 

that do not commonly appear in nineteenth-century music. For example, the standard 

V$–i progression can be embellished by lowering the second and fourth scale degrees 

as shown in Figure 8.1.4. This chord is extremely rare, perhaps because Romantic 

composers regarded the minor mode as the dual or shadow of the major. (That is: 

since the lowered fourth scale degree is not available in major, composers may have 

shied away from it in minor.) However, it does occasionally appear in later music—

Figure 8.1.3 
Other chromatic 

embellishments.
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for instance, at the end of the slow move-

ment of Shostakovich’s G minor Piano 

 Quintet.5 This, then, is an example of the 

continued development of chromatic 

tonality in twentieth- century music: 

just as the dominant seventh “fl at-fi ve” 

chord was rare in the eighteenth century, 

becoming common only later, so too is 

lowered scale-degree four uncommon in 

Romantic music— coming into its own 

only in the extended tonality of the more 

recent past.

8.2 generalized augmented sixths

So far, we have examined chromaticism that decorates or embellishes traditional ton-

ally functional progressions. Let’s now turn to music in which chromaticism pro-

vides an alternative language, a kind of “second practice,” distinct from the routines 

of ordinary functional tonality. Figure 8.2.1 shows fi ve passages in which a seventh 

chord moves by stepwise motion to a triad. The fi rst, from the opening of Schu-

bert’s “Am Meer” uses what theory books would call a “German augmented sixth,” 

here acting as an incomplete neighbor to a root position tonic. Next is the opening 

of Schoenberg’s song “Erwartung,” Op. 2 No. 1 (not to be confused with the atonal 

monodrama of the same name), which presents a less familiar progression: a sound-

ing B minor seventh acting as a neighbor to the tonic Ef major, all over a pedal Ef.6 

The third is derived from the penultimate progression of Wagner’s Tristan, with a 

(sounding) F half- diminished seventh moving semitonally to E minor.7 The fourth, 

from Act III, Scene 4 of Debussy’s Pelléas et Mélisande, presents a very similar pro-

gression, in which G¤[s5] again resolves to E minor. The fi nal passage, from the open-

ing of the last movement of Brahms’ Second Piano Concerto, has D7 resolving to Ef, 

the subdominant of the underlying key; it can be understood tonally as a deceptive 

resolution of an applied dominant. From a traditional point of view, some of these 

are “normal” progressions with familiar names (“German sixth,” “deceptive resolu-

tion”), while others are nameless and unusual. However, from our perspective they 

are all quite closely related: in each case, the seventh chord is dissonant, unstable, and 

neighboring, resolving effi ciently to a more stable triad. Our goal is to think system-

atically about how these progressions relate.

Figure 8.1.4 In the nineteenth century, the 

lowered fourth scale degree is extremely rare. 

However, it does appear in later music.

5 The lowered fourth scale degree sometimes appears in heavy metal, as in the second part of the Black 
Sabbath song “Sabbath, Bloody Sabbath.” This alteration is probably derived from the blues, though here 
it takes on a more sinister character.

6 The adjective “sounding” indicates that I am ignoring spelling.
7 Here I remove Tristan’s characteristic voice crossing, as discussed in §8.6.
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To this end, it helps to begin with a more 

general theoretical problem. Suppose we 

would like to fi nd an effi cient (four-voice) 

voice leading from a seventh chord to a triad. 

The principle of avoiding crossings tells us 

that we should map ascending steps in the 

seventh chord to either unisons or ascending 

steps in the triad. This means that the voice 

leading can be represented schematically as 

shown in Figure 8.2.2: two adjacent notes in 

the seventh chord converge on a single note 

in the triad, while the other two voices con-

nect the remaining notes. It is therefore possible to categorize such voice leadings 

based on two pieces of information: the converging notes in the seventh chord and 

the converged-upon note in the triad. This is illustrated by Figure 8.2.3, which shows 

that there are twelve abstract possibilities to consider—four pairs of converging notes 

times three possible targets. Figure 8.2.4 provides concrete examples of these voice-

leading schemas, in the particular case where the fi rst chord is a dominant seventh 

and the second is a triad. (Of course, not all of these voice leadings are equally use-

ful; they are shown merely to illustrate the possibilities.) Voice leadings in the same 

square of the table are individually T-related (§2.6).

first chord

second chord

time

Figure 8.2.2 
A four-voice 

crossing-free 

voice leading 

from a four-

note chord to a 

three-note chord. 

Two notes in the 

four-note chord 

converge on a 

single note in the 

three-note chord.

Figure 8.2.1 Chromatic voice leading in Schubert’s “Am Meer” (a), Schoenberg’s 

“Erwartung,” Op. 2 No. 1 (b), Wagner’s Tristan (c), Debussy’s Pélleas et Mélisande (d), and the 

last movement of Brahms’ Second Piano Concerto, Op. 83 (e).
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Figure 8.2.3 In a crossing-free voice leading from a four-note to a three-note chord, there are 

twelve abstract possibilities to consider. The converging pair of voices is listed at the top of 

each column, while the note converged upon is listed to the left of each row.

Figure 8.2.4 Instances of the twelve schemas in Figure 8.2.3. In each case, a dominant 

seventh chord moves to a major triad. Voice leadings separated by a dotted line are 

individually T-related.
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Augmented sixth chords are a special subset of these voice leadings—those in 

which the converging notes are separated by two semitones, and they converge on the 

note that lies between them.8 These voice leadings are important because they permit 

all four voices to move semitonally to the subsequent triad, as in the fi rst four pro-

gressions of Figure 8.2.1. Augmented sixths, understood in this general sense, need 

not have dominant function: where the chords in Figure 8.2.5a–c contain a leading 

tone that resolves upward, and clearly sound “dominant-like,” those in ( f –g) do not. 

From this point of view, the familiar augmented sixths are simply a noteworthy spe-

cies within the genus of effi cient voice leadings from four-note to three-note chords. 

Such chords can be expected to occur frequently in chromatic music, and need not 

be conceptualized as modifi cations of the Italian, French, and German sixths of intro-

ductory tonal theory.

Now back to our musical examples (Figure 8.2.1). The fi rst four are all aug-

mented sixths in which the voices move semitonally to their destinations. Figure 

8.2.6 shows that Schubert and Schoenberg’s progressions exemplify the abstract 

schema (r, t, f, s)®(f, r, t, f)—that is, the seventh chord’s (sounding) root moves 

to the triad’s fi fth, its third moves to the triad’s root, the fi fth moves to the third, 

and the seventh moves to the fi fth. (Schoenberg simply lowers the third of the 

 German sixth, lending the chord a dominant quality.) Wagner’s progression exhib-

its the schema (r, t, f, s)®(r, t, f, r), resolving the root and seventh to the root of 

the following triad. The very similar passage from Pélleas, meanwhile, reimagines 

this augmented sixth as the raised fi fth and seventh of a G7 chord; this is a rare 

example in which a generalized augmented sixth occurs between notes other than 

the sounding root and seventh. (Note that Wagner and Debussy’s progressions are 

quite closely related, just as Schubert and Schoenberg’s are.) Finally, the opening 

of Brahms’ movement does not feature augmented-sixth voice leading; here the 

8 See Harrison 1995 for an alternative perspective that emphasizes tonal function.

Figure 8.2.5 In an “augmented sixth” resolution, two voices are separated by ten semitones, 

and converge semitonally to an octave, doubling one of the notes in a major or minor triad; 

typically, the augmented sixth lies between what sound like the fi rst chord’s root and seventh, 

though in (c) this is not the case. If the resolution contains a leading tone resolving upward to 

the tonic, then the chord can typically function as an altered dominant.
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s eventh chord’s third and fi fth are separated by nine semitones, and converge on the 

triad’s third. Our theoretical ideas thus provide a precise vocabulary for specifying 

how the fi rst four progressions relate, while differing from the last.

As I said earlier, to be initiated into the mysteries of chromatic tonality one needs 

to develop an understanding of all the voice-leading possibilities between familiar 

chords. This requires sorting through the analogues to the voice leadings in Figure 

8.2.3 for any pair of chords we might encounter—identifying in the process the most 

useful possibilities. Furthermore, we need to be able to deploy this knowledge rela-

tively quickly, so that we immediately recognize the relationships between various 

voice leadings. Nineteenth-century composers no doubt developed this sort of knowl-

edge intuitively, through hours and hours of hands-on experimentation at the piano 

keyboard. Twenty-fi rst-century musicians need to experiment as well, but we have 

the advantage of theoretical tools that allow us to conceptualize more abstract voice-

leading relationships—grouping musical possibilities into more manageable catego-

ries and revealing structural principles linking superfi cially different progressions.

8.3 brahms and schoenberg

For a more complex artifact of the nineteenth-century “second practice,” we turn 

to Brahms’ Intermezzo, Op. 76 No. 4, a teasing piece that begins on a dominant 

seventh chord that resolves only at the end. My reduction, shown in Figure 8.3.1, 

tries to separate the two “systems” of nineteenth-century tonality, using open note-

heads for chords that behave in functionally harmonic ways, and closed noteheads 

for instances of chromatic voice leading. The piece opens by oscillating between 

F7 and what I will call the “Tristan chord” {F, Gs, B, Ef}.9 The two chords are con-

Figure 8.2.6 The voice leadings at the start of Schubert’s “Am Meer” (a) and Schoenberg’s 

“Erwartung” (b) both exemplify the abstract schema (r, t, f, s)®(f, r, t, f). The voice 

leading in Tristan is (r, t, f, s)®(r, t, f, r) (c), while in Pélleas it is (s, r, t, f)®(r, t, f, r) 

(d). All four of these voice leadings are generalized “augmented sixth” resolutions. The 

voice leading in the last movement of Brahms’ Second Piano Concerto (e) employs 

the schema (f, s, r, t)®(t, f, r, t), in which the converging voices are separated by nine 

semitones. This is not a generalized augmented sixth.

9 Some of you may prefer to think of the Ef as a pedal tone, in which case the relevant sonority is {F, 
Gs, B, D}. Others may prefer to postulate a fi ve-note sonority containing both D and Ef. Brahms’ piece 
proceeds by exploiting alternate resolutions of this chord, however it may be understood.
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nected by the voice leading (F, Gs, B, Ef)®(F, A, C, Ef), which moves two notes by 

semitone. At a
2
, Brahms resolves the same Tristan chord in a different way: here, F 

and Ef collapse onto Ef, and Bn rises to C, producing an Af major triad.10 Imme-

diately thereafter, the V7 of Af major gets reinterpreted as an augmented sixth of 

G minor, resolving directly to a fi rst-inversion tonic. (Note that the “augmented-

sixth resolution,” though it has a familiar name, can be interpreted as just another 

Figure 8.3.1 A reduction of Brahms’ Intermezzo, Op. 76 No. 4. Resolutions of the Tristan 

chord {F, Af, Cf, Ef} and Ef minor triad are identifi ed with the letters “a” and “b” 

respectively.

10 Abstractly, this involves the schema (r, t, f, s)®(f, r, t, f).
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chromatic voice leading.) Brahms thus modulates from Bf major to G minor by 

way of the more distant key of Af major, deliberately taking a scenic detour in 

tonal space.

The opening of the middle section, shown in Figure 8.3.2, provides a nice illus-

tration of individually T-related voice leadings: here, Brahms takes a voice leading 

from the fi rst ending and transposes the second chord up by semitone, leading to 

a contrasting passage in Cf major.11 (Of course, the root position tonic triad never 

appears: the middle section is “in the dominant of Cf,” just as the opening is “in 

the dominant of Bf.”) The section starts with a long dominant pedal, discharged 

(in my reading) by the “down by third, up by step” sequence of §7.3. The third sec-

tion begins much as the fi rst did, alternating between the Tristan chord and the F7. 

Once again, the piece moves away from the tonic by resolving the Tristan chord to 

Af major; however, Brahms immediately follows this resolution with yet another 

resolution of the Tristan chord, this time to Ef major. (The voice leading here has 

the root and seventh converging on Ef, reinterpreting the Tristan chord as iiø7 of 

Ef.) This Ef major triad initiates a descending sequence of chromatically embel-

lished harmonies, culminating in a iiø7–fII7–I progression. (Jazz musicians would 

call the fII7 a “tritone substitution” for the dominant, while classical theorists would 

say it is an augmented sixth resolving directly to I.) Given Brahms’ prominent use of 

the Tristan chord, it is amusing to note that the 

iiø7–fII7 voice leading evokes the very opening 

of Wagner’s opera.

Brahms’ piece thus progresses by exploit-

ing multiple resolutions of a few basic sonori-

ties, including the Tristan chord and the Ef 

minor triad (marked on the reduction as “a” 

and “b”). The multivalence of these chords 

propels the music while also endowing it with 

a kind of harmonic unity, allowing the com-

poser to return again and again to the same basic chords. A very similar technique 

appears in Schoenberg’s “Erwartung,” whose opening progression was discussed 

in the previous section. In Figure 8.3.3, I have provided a reduction, once again 

using black stemless noteheads for nonfunctional chromatic chords. A glance at 

the reduction shows that Schoenberg’s song, like Brahms’ piece, is delicately bal-

anced between two musical worlds. Once again, it explores a variety of ways to 

resolve a few chromatic sonorities—in particular, the “augmented sixth” at the 

opening (enharmonically, {B, D, Fs, A} over an Ef pedal), which resolves semiton-

ally as a neighboring chord to Ef major while also acting as a passing chord to IV7. 

And once again, we fi nd a mix of familiar and unfamiliar progressions: Af7, the 

third chord of the piece, resolves as a German sixth to {Ef, G, C}, while {Cf, Ef, 

Figure 8.3.2 
Individual T 

relatedness in 

Op. 76 No. 4.

11 As in Mozart’s C minor fantasy, K. 475, the individual transposition changes iv6–V7 into iii6–V7 
(§2.6).
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Gf, A} in third system—a standard German sixth in Ef—“normalizes” the song’s 

unusual second sonority. (Both of these German sixths are denoted by asterisks on 

the example.) Curiously, the end of the piece once again contains a progression 

that evokes the opening measures of Wagner’s Tristan (Csø7–Bf7, bracketed on the 

reduction).

The middle section of Schoenberg’s song, shown on the second line of Figure 

8.3.3, is an embellished ascending-fi fths sequence of dominant seventh chords. 

Each sequential unit hints at a I@–Vf9 progression, with the Vf9 chord becoming 

the subsequent I@. (For instance, Gf9 leads to G@, which is then reinterpreted as I@ 
of the subsequent dominant.) This sequence exploits a technique fi rst discussed 

in §3.8, whereby stepwise descending voice leading produces ascending-fi fths root 

progressions. Figure 8.3.4 identifi es the basic voice-leading pattern, and compares 

Schoenberg’s sequence to a rather similar sequence in one of Haydn’s late piano 

sonatas. Although the two passages are separated by almost a century, they argu-

ably make use of the same basic underlying relationships—testifying to the way 

music theory can help us understand hidden roads connecting superfi cially dif-

ferent styles.

Figure 8.3.3 A reduction of Schoenberg’s song “Erwartung,” Op. 2 No. 1.
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8.4  schubert and the major-third system

In a moment, we’ll examine two pieces that make sophisticated use of seventh chords’ 

four-dimensional geometry, exploiting what I have called the “minor-third system.” 

Before doing so, however, it will be useful to warm up with some triadic music, where 

the relevant geometry is three-dimensional and hence easier to grasp. Having honed 

our skills on the simpler “major-third system,” we can then turn to the more complex 

relationships among seventh chords.

Figure 8.4.1 outlines the opening of Schubert’s D major Piano Sonata, D. 850, 

Op. 53. The fi rst phrase is intense but traditional, touching briefl y on the subdomi-

nant before cadencing in the tonic D major. The second phrase switches abruptly 

to the parallel minor, but otherwise begins as the fi rst. Having reached F major (the 

 relative major of the parallel minor of the tonic key), Schubert then leaves tradi-

tional tonality in favor of the major-third system: a pair of effi cient chromatic voice 

Figure 8.3.4 (a) An ascending fi fths sequence that uses descending stepwise voice leading. 

(b) A sequence from the development of the fi rst movement of Haydn’s Piano Sonata 

Hob. XVI/49 in Ef major, mm. 117–122, which decorates this basic voice-leading pattern. 

(c) Schoenberg’s sequence, transposed up by semitone for ease of comparison with the earlier 

examples. In Haydn’s sequence, explicit i@–v resolutions ascend by fi fth, linked by secondary 

dominants; Schoenberg’s progression only hints at the i@ harmonies, subsuming them within 

extended dominants. Here the dotted line signifi es that the G5 in the fi rst measure can be 

considered “the same” as the G4 in the second measure—or in Schenkerian terms, a “voice 

transfer.”
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 leadings  connecting F major to Cs major to A7, which in turn leads back to the tonic. 

We can think of this passage as exploiting the fundamental geometry of three-note 

chord space, in which the major triads F, Cs, and A are all adjacent (Figure 3.10.2b). 

From this point of view the seventh is inessential—an embellishment that merely 

decorates the more basic triadic relationship. (An alternative interpretation, shown in 

Figure 8.4.2, uses the pitch-class circle and retains the seventh.12) No matter how we 

conceptualize it, the progression represents a dazzling, gratuitous, and over-the-top 

transition from F major to A7—“gratuitous” since F major and A7 are harmonically 

quite close, and do not require the intermediation of a Cs chord.13

There is, in fact, an interesting precedent for these sorts of major-third juxtaposi-

tions: in both baroque and classical music, one occasionally fi nds major-third-related 

triads across phrase boundaries (Figure 8.4.3). Typically, the earlier phrase ends with 

a half cadence on the dominant of the relative minor, while the next phrase begins 

Figure 8.4.1 
A reduction of 

the opening of 

Schubert’s D 

major Piano 

Sonata, D. 850, 

Op. 53.

Figure 8.4.2 
A geometrical 

representation of 

the voice leadings 

(F, A, C)®(Es, 

Gs, Cs) and (Es, 

Gs, Gs, Cs)®(E, 

G, A, Cs), which 

exploit the near 

major-third 

symmetry of the 

triad.

12 Note that the progression from Cs to A7 uses the standard German-sixth resolution in retrograde.
13 A classical composer would have no problem moving directly from F major to A7, the dominant of 

the relative minor.
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directly with a tonic.14 We can understand these progressions as exhibiting an attenu-

ated dominant-tonic functionality: the fi fth of the dominant is the leading tone of 

the relative major, rising by semitone to the root of the subsequent tonic triad, while 

the third of the dominant acts enharmonically as f̂6, falling semitonally to the fi fth 

of the subsequent tonic. Schubert in effect liberates these major-third juxtapositions 

from their traditional role, allowing them to occur within phrases rather than across 

phrase boundaries, and weakening their status as pseudo-dominants. (In particular, 

the speed of the sonata’s juxtapositions make it hard to hear the chords as tonally 

functional.) Here, as elsewhere, the boundaries between musical styles are somewhat 

porous: it is not so much that Schubert uses absolutely new progressions, never used 

by his predecessors, but rather that he uses familiar progressions in unfamiliar ways.

Figure 8.4.4 contains two sequences from Schubert’s Quartett-Satz in C minor, 

D. 703, which make a more subtle use of the major-third system. In both cases, 

descending stepwise voice leading articulates unusual triadic progressions: the fi rst 

is a sequence of I–V progressions that descend by major second, while the second 

moves upward by fi fths from G major to G minor to D major to D minor, and so 

on.15 (This latter sequence is somewhat reminiscent of the central section of Schoe-

nberg’s “Erwartung” in Figure 8.3.3.) Geometrically, the two sequences present dif-

ferent ways of moving downward, level by level, along the cubic lattice in three-note 

chord space (Figure 8.4.5). Using only major chords, there are six possible sequences 

that can be formed in this way, each of which can be derived by applying major-third 

Figure 8.4.3 
Cross-phrase 

mediant 

progressions in 

Bach (Riemen- 

schneider chorale 

163) (a) and 

Mozart (K280, 

III, 104) (b).

14 This gesture is particularly common at the beginning of sonata-form recapitulations, though it can 
be found elsewhere as well. See, among many examples, the end of the development of Clementi’s G major 
sonata, Op. 25 No. 2, I, and the opening of Beethoven’s F major sonata, Op. 10 No. 2, I, mm. 17–18. The 
Decemberists’ song “The Legionnaire’s Lament” includes two cross-phrase mediants: the verse, d–F–g7–A, 
ends on a V that progresses directly to the relative major, while the chorus, F–C–g–Bf–bf, ends on a iv that 
progresses back to the relative minor.

15 A number of other passages in the piece involve stepwise descending voice leading, including the 
opening measures, the accompaniment to the second theme, and the ascending step sequence at m. 70ff.
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substitution to a sequence of semitonally descending triads.16 (Cf. the right side of 

Figure 8.4.4, where the semitonal sequences are in the top row, and the various third 

substitutes are contained on the lower lines.) If we allow minor chords, there are nine 

possible two-chord sequences, which can again be derived by applying major-third 

substitution to a more straightforward chromatic sequence.

The underlying principle here is related to an idea that we encountered in §7.2: 

since major-third-related triads can be connected by effi cient voice leading, they can 

substitute for one another without much disrupting the music’s contrapuntal or har-

monic fabric.17 In other words, we are concerned here with the chromatic analogue to 

the diatonic third substitutions found in functional harmony. When compared to the 

diatonic version, chromatic third substitution is of course signifi cantly more disrup-

tive: C major and E major are nowhere near as similar as IV6 and vi, and the resulting 

sequences are harmonically quite distinct. Nevertheless, the descending voice leading 

does create a clear sense of family resemblance—a palpable sinking feeling that con-

trasts with the buoyant harmony. This quality can be used to great effect, particularly in 

passages that try to convey a melancholic or gloomy mood. For example, in Goffin and 

King’s “Natural Woman” (made famous by Aretha Franklin) the “up a fifth, up a minor 

third” sequence represents the narrator’s psychic anomie, while in “Hey Joe” (asso-

Figure 8.4.4 Descending triadic sequences in Schubert’s Quartett-Satz, D. 703, m. 173ff 

(a) and m. 105ff (b). (The second has been transposed up by minor third to facilitate 

comparison.) The sequences can be derived by applying “major-third substitution” to a 

chromatic descending sequence.

16 Here I am considering only sequences whose repeating unit is one or two chords long.
17 Diatonic third substitution has a less dramatic effect on harmony than chromatic major-third 

 substitution. In replacing Fs major with Ds minor (or replacing IV with ii6), we preserve two of the origi-
nal chord’s notes; in replacing Fs major with D major (as in the sequence we are considering), we preserve 
fewer notes, creating a much more dramatic harmonic change.
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ciated with Jimi Hendrix, and  possibly 

written by Billy Roberts) the progres-

sion C maj–G maj–D maj–A maj–E maj 

implies descending voice leading that 

elegantly mirrors the narrator’s descent 

into murderous depravity.

8.5 chopin’s tesseract

Figure 8.5.1 shows the opening of 

Chopin’s F minor Mazurka, Op. 68 

No. 4 (1849?), perhaps the last piece 

he ever composed.18 The music is 

blurred and chromatic, moving 

through a series of dominant seventh 

chords without articulating a clear 

tonal center. Beneath the music, I have 

provided a reduction of its basic har-

monies. In constructing this analysis, I 

considered the left-hand notes on the 

third beat of each measure to sound 

through the following fi rst-beat rest—

thus, for example, I imagine that {G, 

Df, F} still sounds at the downbeat of 

measure 3.

My analysis portrays the piece as moving through a series of numbered “cycles” 

that transpose a dominant seventh chord by a staggered series of single-semitone 

descents. For example, the third cycle, shown on the third staff, moves F7 to E7 by 

lowering the fi fth (C®Cf), third (A®Af), seventh (Ef®D), and root (F®E) in turn. 

The music thus exhibits an interesting combination of freedom and constraint. If 

we look only at the fi rst chord in each cycle, we see a straightforward sequence of 

semitonally descending chords: G7, Gf7, F7, and E7. However, if we look at the voice-

leading motions within each cycle, we do not recognize a regular pattern: sometimes 

the third moves fi rst (as in Cycles 1 and 3), and sometimes the fi fth moves fi rst (Cycle 

4). In other cases, Chopin moves two voices at the same time—as in Cycle 2, where 

the fi fth and seventh descend simultaneously.

Furthermore, in the second phrase of the piece, shown on the bottom staff of the 

example, Chopin repeats the basic sequence of dominant sevenths, but embellishes 

Figure 8.4.5 
Schubert’s 

sequences as 

they move along 

the lattice at the 

center of three-

note chord space. 

The solid line is 

the sequence in 

Figure 8.4.4a, the 

dashed line is 

the sequence in 

Figure 8.4.4b.

18 Kallberg (1985) presents some interesting but circumstantial evidence that the piece was composed 
earlier.
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them slightly differently. The music thus seems to embody what twentieth-century 

composers would call an “open form”—a set of rules that only partially determine the 

musical result, of the sort that might be used as the basis for improvisation. This com-

bination of freedom and constraint challenges the formal categories that we typically 

use to describe nineteenth-century music: the harmonic progression here is neither 

an exact sequence, in which the same music is repeated verbatim, nor free composi-

tion. Instead, it resembles the kind of open-ended musical game more commonly 

associated with recent music.

To describe the game’s rules, we need to recognize that the piece exhibits a rather 

subtle kind of harmonic consistency: throughout, we hear only dominant sevenths, 

diminished sevenths, minor sevenths, half-diminished sevenths, and French sixth 

chords. In particular, there are no nontertian sonorities such as {Gf, A, C, F} and no 

chords with major sevenths. This harmonic consistency results in turn from a subtle 

contrapuntal regularity: within each cycle, the root is always the last note to descend. 

(Were Chopin to violate this rule he would generate strange harmonies, such as 

those in Figure 8.5.2.) We can thus imagine Chopin creating the piece by following 

the instructions in Figure 8.5.3. What is fi xed is the descending chromatic sequence 

of dominant sevenths, along with the injunction that the bass voice descends last; 

what is free is the precise order of the semitonal motions in the other voices. Since 

Chopin was in fact an improvising composer, it is quite possible that these rules 

capture something about how he was thinking: indeed, it is easy to imagine him sit-

ting at the piano, exploring the various ways of sliding between semitonally related 

dominant seventh chords.19

Figure 8.5.4 uses a cube to represent Chopin’s “open form.” The G dominant sev-

enth appears at the apex, while the next level contains minor sevenths on G and E 

Figure 8.5.1 An analysis of Chopin’s Mazurka, Op. 68 No. 4. The harmonies form a series 

of cycles which are labeled numerically: chords 1a, 1b, and 1c belong to the fi rst cycle, 

chords 2a, 2c, and 2d belong to the second, and so on.

19 A daring performer might choose to refl ect this by departing from the written notes in favor of an 
improvisatory tour through Chopin’s musical space—a performance that would be unfaithful to the writ-
ten notation while also capturing something about his musical concerns.
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and a French sixth on G/Cs (labeled “gFr” on the fi gure). Each of these chords can be 

reached by semitonally lowering a note of the initial G7. Level 1c contains half-dimin-

ished seventh chords on Cs, E, and G. (Again, these chords can be reached by lower-

ing a note in a chord on level 1b.) The G diminished seventh appears at the  bottom of 

the cube and is the only chord on level 1d. Finally, there is a line leading from the 

base of the cube to Gf7, signify-

ing that the process begins again, 

a semitone below the original G7 

chord. (Hence the label “2a.”) A 

musician improvising accord-

ing to Chopin’s directions must 

follow the edges of the cube in 

a descending manner, from level 

1a to 1b to 1c and 1d: at the 

apex of the cube there are three 

choices, since one can lower the 

third, fi fth, or seventh. Having 

made that choice, there are two 

remaining options, correspond-

ing to the two voices that have yet 

to descend. Finally, there is just a 

single possibility, which takes us 

to the diminished seventh chord 

at the bottom of the cube. Here 

Figure 8.5.2 In Chopin’s piece, the root of 

the chord always descends after the other 

voices. If this rule were violated, unusual 

harmonies would result. These chords 

cannot be conceived as stacks of thirds, and 

are very rare in nineteenth-century music.

F Minor Mazurka 
1. Begin with a dominant seventh chord. 
2. Successively lower the third, fifth, and seventh of 
the chord by semitone, in any order, eventually 
producing a diminished seventh chord. 
3. Lower the note of diminished seventh chord that 
was the root of the initial dominant seventh, 
producing a new dominant seventh chord a 
semitone lower than the original. 
4. Repeat. 
Bonus rule: it is possible to eliminate one or more 
chords in the resulting sequence, lowering multiple 
notes by semitone at the same time. 

Figure 8.5.3 The “directions 

for improvisation” that might 

produce Chopin’s F minor 

Mazurka.

Figure 8.5.4 
A geometrical 

representation 

of Chopin’s 

“directions for 

improvisation.”
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again, the improviser’s hand is forced, since there is only one semitonal descent that 

transforms the G diminished seventh into the Gf dominant seventh. This cubic 

geometry thus encapsulates in a single image rules that would otherwise require care-

ful verbal specifi cation—presenting a kind of musical “game board” whose internal 

structure mirrors Chopin’s presumed compositional process.

So far, we have been treating the F minor Mazurka as an object in itself, uncon-

nected to the rest of Chopin’s oeuvre. Things get more interesting when we observe 

that the mazurka is a virtual rewriting of one of Chopin’s most famous pieces—the 

E minor Prelude, Op. 28 No. 4. Remarkably, the two pieces use virtually the same 

voice-leading procedures to embellish very different harmonic sequences. To see how 

this works, consider Figure 8.5.5, which presents the chords in the prelude’s opening 

phrase. Here again, the music is organized in a sequence of cycles, each transforming 

one dominant seventh into another by way of a diminished seventh.20 Chopin again 

lowers third, fi fth, and seventh of the initial dominant seventh until he has created 

a diminished seventh on the same root; this time, however, he joins the successive 

cycles by lowering the voice that contained the fi fth of the original dominant seventh 

chord, so that the resulting dominant sevenths descend by fi fth rather than by semi-

tone. As in the F minor Mazurka, we fi nd a recognizable progression when we con-

sider only the fi rst chord in each cycle. But between these harmonic pillars the piece 

freely interpolates descending semitones, resulting in a liquid, Romantic texture that 

utterly disguises its sequential skeleton.21

Figure 8.5.5 
The opening 

of Chopin’s E 

minor Prelude, 

Op. 28 No. 4.

20 In making this reduction, I have eliminated the upper neighbor tones in the right hand on the fourth 
beat of each measure, as well as the En suspension in the alto voice of measure 2; otherwise, I have simply 
transcribed every vertical sonority that appears in the passage.

21 The interpretation I present here is similar to that in Marciej Golab’s Chopins Harmonik: Chroma-
tik in ihrer Beziehung zur Tonalität (Golab 1995). (See also Callender 2007 for some brief but suggestive 
remarks and Russ 2007 for an extensive discussion of semitonal voice leading between half-diminished and 
dominant sevenths, including references to several of the pieces discussed here.) Many published analy-
ses interpret the E minor Prelude as a chain of parallel, fi rst-inversion triads in the left hand, decorated 
with suspensions (Parks 1976, Schachter 1994). Sometimes it is implied that the harmonic content of the 
opening phrase is insignifi cant—a long chromatic series of passing tones from the “structural” opening 
tonic chord to the “structural” dominant that closes the phrase. By contrast I interpret the piece as a four-
voice texture exemplifying one of the most basic progressions in all of tonal music—the descending-fi fths 
sequence, albeit freely embellished by chromatic passing tones.
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Figure 8.5.6 contrasts the directions for improvisation that might produce the pre-

lude and the mazurka. The similarities are striking: in both cases, the third, fi fth, and 

seventh of the dominant seventh chord move down by semitone until they produce a 

diminished seventh chord. At this point, one of the notes of the diminished seventh 

moves down to produce another dominant seventh. The chief difference lies here: in 

the F minor Mazurka, Chopin always lowers the note in the voice that contained the 

root of the original dominant seventh chord, producing a semitonally descending 

sequence; in the E minor Prelude, Chopin lowers the note that is in the voice that 

contained the fi fth of the dominant seventh chord. This small change is enough to 

make the difference between descending semitones and descending fi fths.

Of course, the diminished seventh chord is completely symmetrical, so we can 

lower any of its four notes to produce a dominant seventh. Thus, there are two other 

possibilities beyond those we have already considered: we could lower the voice that 

contained the third of the original dominant seventh, producing a sequence that 

ascends by major second; or we could lower the voice that contained the seventh of 

the dominant seventh chord, producing a sequence that descends by major third. 

The four possibilities are illustrated musically and geometrically in Figures 8.5.7 and 

8.5.8. Once we have sensitized ourselves these possibilities, we start to fi nd them again 

and again throughout Chopin’s music; indeed, they are a familiar “lick” to which he 

repeatedly returned. Figure 8.5.9 shows a few of the many passages in which the lick 

appears: the fi rst, from the A minor Mazurka, Op. 7 No. 2, combines the ascending 

second and descending semitone versions of the sequence; the second, from the Fs 

minor Mazurka, Op. 6 No. 1, largely descends by fi fths but ends with a descending 

semitone; the third, from the Df major nocturne, Op. 27 No. 2, again mixes descend-

ing fi fths and descending semitones.

Although it is not completely obvious, the graph in Figure 8.5.8 is contained 

within a structure that we encountered in §3.11: the tesseract, or four-dimensional 

cube, lying at the center of four-note chromatic chord space (Figure 8.5.10). This 

hypercube has four horizontal layers, as indicated by the labels “1a,” “1b,” “1c,” and 

“1d,” and shares a vertex with the hypercube immediately below it, whose layers are 

 edulerP roniM E akruzaM roniM F
1. Begin with a dominant seventh chord. 1. Begin with a dominant seventh chord. 
2. Successively lower the third, fifth, and seventh of 
the chord by semitone, in any order, eventually 
producing a diminished seventh chord. 

2. Successively lower the third, fifth, and seventh of 
the chord by semitone, in any order, eventually 
producing a diminished seventh chord. 

3. Lower the note of the diminished seventh chord 
that was the root of the initial dominant seventh,  
producing a new dominant seventh chord a 
semitone lower than the original. 

3. Lower the note of the diminished seventh chord 
a semitone below the fifth of the initial dominant
seventh, producing a new dominant seventh chord
a perfect fifth lower than the original. 

  4. Repeat.4. Repeat. 
Bonus rule: it is possible to eliminate one or more 
chords in the resulting sequence, lowering multiple 
notes by semitone at the same time. 

Bonus rule: it is possible to eliminate one or more 
chords in the resulting sequence, lowering multiple 
notes by semitone at the same time. 

Figure 8.5.6 A comparison between the two “directions for improvisation.”
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labeled “2a,” “2b,” “2c,” and “2d.” 

Essentially, Chopin’s two pieces 

move down this hypercubic lat-

tice by taking one or two steps 

at a time. The resulting pro-

gressions are constrained by 

the basic geometry of the space, 

and in particular by the fact that 

minor-third- and tritone-related 

sevenths are near each another. 

Thus Chopin’s descending semi-

tonal motion will produce har-

monic progressions that can be 

obtained by applying minor-third 

substitution to a descending semi-

tonal sequence: this gives root 

motions by descending semitone, 

descending major third, descend-

ing fi fth, and ascending major 

second. (By contrast, stepwise descending motion between triads produces root pro-

gressions by descending semitone, ascending fi fth, or ascending minor third, as we 

saw in the previous section.22) The similarities between the Prelude and the Mazurka 

therefore testify to a more fundamental similarity between descending-semitone and 

descending-fi fth progressions—a relationship that lies at the root of the jazz “tritone 

substitution,” illustrated here by Figure 8.5.11 and discussed further in Chapter 10.

Figure 8.5.7 There are four 

fundamentally similar sequences 

that can be formed using these 

“directions for improvisation,” 

depending on which of the 

diminished seventh chord’s notes is 

lowered.

Figure 8.5.8 A 

geometrical 

representation 

of the four 

possibilities in 

Figure 8.5.7.

22 The root progressions (−1, −5, and −9 semitones for triads; −1, −4, −7, and −10 semitones for sev-
enth chords) are determined by the formula −1 (mod 12/n), where n is the size of the chord.
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Since there is nothing particularly radical about the idea of using descending 

voice leading to connect familiar seventh chords, we should not be too surprised 

to fi nd similar passages in other composers’ music as well. Figure 8.5.12a shows a 

sequence from the development of the fi rst movement of Mozart’s Symphony No. 

40, in which seventh chords descend by fi fths. The harmonies, though more con-

ventional than Chopin’s, can be generated by a series of one- and two-step motions 

Figure 8.5.9 The sequence as it appears in Chopin’s A minor Mazurka (a), Fs minor 

Mazurka (b), and Df major Nocturne. In each analysis, the letters “a,” “b,” “c,” refer to levels 

on the cubic structure shown in Figure 8.5.8; the numbers refer to adjacent cubes in the 

lattice.
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along the same tesseract.23 The passage in Figure 8.5.12b, from the second move-

ment of Beethoven’s Piano Sonata in F major, Op. 54, is nicely intermediate between 

Mozart and Chopin: here the dominant seventh chords descend once by semitone 

and fi ve times by perfect fi fth, returning to the initial Af7 after six complete cycles. 

(Note the alternation between mazurka-like semitones and prelude-like fi fths, char-

acteristic of jazz harmonic practice and tritone substitution more generally.) And 

while Beethoven typically precedes each dominant seventh with a iiø7 chord, he also 

interposes some additional chords, including a fully diminished seventh and a French 

augmented sixth. Figure 8.5.13 collects a few related passages from early twentieth-

century American music, hinting at some of the connections between nineteenth-

century chromaticism and twentieth-century jazz.24

Figure 8.5.10 The musical 

possibilities we have been 

exploring can be represented 

using the four-dimensional 

cubic lattice at the center of 

four-note chord space. This 

lattice is another (and more 

complete) way of looking 

at the possibilities in Figure 

8.5.8.

Figure 8.5.11 Chopin’s F minor Mazurka and E minor 

Prelude are related by way of a tritone substitution. 

The mazurka is based on a semitonally descending 

sequence of seventh chords (top line), while the 

prelude uses a descending-fi fths sequence. One can 

transform each sequence into the other by replacing 

every other chord with its tritone transposition.

23 The pianist Al Tinney, one of the pioneers of bebop, suggested that dominant seventh chords resolv-
ing to predominant sevenths was a hallmark of the bebop harmonic style (Patrick 1983). It is interesting 
to fi nd this bebop hallmark in Mozart!

24 For some other related passages, consider the “Crucifi xus” from Bach’s B minor Mass; Mozart’s Piano 
Sonata K. 576, I, mm. 84ff and 137ff, which use the descending-fi fth and ascending-major-second versions 
of the pattern; the opening of the second movement of Schubert’s “Rosamunde” Quartet (D. 804, Op. 29 
No. 1, mm. 13–14); Schubert’s Quartett-Satz (D. 703, mm. 72–75), which uses a slightly disguised version 
of the ascending-major-second pattern; and Wagner’s Tristan prelude, to be discussed below.
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Figure 8.5.12 Precursors to Chopin’s procedures in (a) Mozart’s Symphony No. 40, 

movement 1, start of the development section; and (b) Beethoven’s Piano Sonata Op. 54, 

movement 2, mm. 64ff.

Figure 8.5.13 (a−c) In his 1898 operetta “The Serenade,” Victor Herbert uses chromatic 

voice leading to connect dominant sevenths by way of various intermediaries. The examples 

are from nos. 3a (Schuberth vocal score, p. 35), 4 (p. 46), and 5b (p. 59). (d) In “Shreveport 

Stomp,” Jelly Roll Morton uses descending stepwise voice leading to connect dominant 

sevenths.
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So did Chopin understand four-dimensional geometry? In one sense, the answer is 

clearly “no”: certainly, he lacked the mathematical concepts we have used to dissect his 

pieces, and he might have struggled to describe what he was doing in precise music-

theoretical language. (Something similar could be said of Chopin’s mathematical con-

temporaries, as the study of higher dimensional geometry was in its infancy in the 

1830s.) But at the same time, he clearly had a sophisticated intuitive understanding of 

the musical possibilities in Figure 8.5.10, and hence had knowledge that can be usefully 

described geometrically. (He may not have conceived of these possibilities as constitut-

ing a geometry, but they in fact do so, and his knowledge of the possibilities is in some 

sense a geometrical knowledge.) I fi nd it marvelous to refl ect that there was a period 

in human history in which music provided the most powerful language for express-

ing this kind of higher dimensional understanding: though nobody in 1840 could 

have written a treatise on four-dimensional quotient spaces, Chopin could express his 

understanding of one particular quotient space by writing beautiful Romantic piano 

music. Here there is something particularly compelling about the fact that Chopin 

recomposed the E minor Prelude at the very end of his life, as if the earlier piece did 

not say everything he had wanted to say. And in a sense, it could not, for the E minor 

Prelude displays just one of many routes through the hypercubic lattice: ultimately, the 

F minor Mazurka and E minor Prelude together demonstrate a much more profound 

understanding of musical space than does either piece on its own.

8.6 the tristan prelude

Suppose you would like to fi nd effi cient (four-voice) voice leadings between half-

diminished and dominant seventh chords. The principle of avoiding voice cross-

ings says that you can organize the relevant possibilities according to whether they 

move the root of the half-diminished chord to the root, third, fi fth, or seventh of the 

dominant seventh (§4.10). Figure 8.6.1 identifi es the most effi cient (four-voice) voice 

leading from Fø7 to each of the twelve dominant sevenths: seven of the voice lead-

ings involve just two semitones of total motion, one involves four single-semitone 

motions, and the rest involve six total semitones. Putting these last voice leadings 

aside, we see that the remaining eight can be grouped into pairs: two move root to 

root, two move root to third, two move root to fi fth, and two move root to seventh. In 

each case, one voice leading in the pair involves predominantly descending motion, 

while the other involves predominantly ascending motion.

Figure 8.6.2 shows how these eight voice leadings are located in four-dimensional 

chord space. Chords on the same vertical line participate in similar voice leadings: for 

example, E7 and F7 lie directly above each other, and the minimal voice leading from 

Fø7 to both chords moves root to root. Similarly, Df7 and D7 lie directly above each 

other and in both cases the minimal voice leading from Fø7 maps root to third.25 Note 

25 Or to put the point the other way around: the four chords E7, G7, Bf7, and Df7, all of which lie on the 
same horizontal plane on Figure 8.6.2, are most directly reached by different kinds of voice leadings: to trans-
form Fø7 into E7, one moves root to root; to transform Fø7 into Df7, one moves root to third; and so on.
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that when moving from Fø7 to any of the lower four dominant seventh chords (E7, G7, 

Bf7, and Df7) we can pass through F diminished along the way, but when moving to 

the upper four dominant seventh chords (F7, Af7, B7, and D7) it is instead possible to 

pass through minor sevenths and French sixths. Figure 8.6.3 presents two excerpts 

from Wagner’s Tristan where these intervening sonorities appear.

Turning now to the opera’s prelude, we are dismayed to fi nd that its voice leadings 

are not maximally effi cient. For example in Figure 8.6.4, the melody climbs yearningly 

from Gs to B, while the tenor voice swoons from B down to Gs. Were each voice to 

remain stationary, as in Figure 8.6.4b, we would have a two-semitone voice leading 

between Fø7 and E7, one that is nicely modeled by our hypercube. But Wagner delib-

erately rejects this option in favor of an alternative in which the voices take the long 

way to their destinations—suggesting that all our work on effi cient voice leadings has 

been wasted!

Well, when confronting lemons, one should study the feasibility of lemonade. 

Suppose we hypothesize that Wagner’s voice crossings decorate a deeper structure 

in which effi cient voice leading is important. (This may seem like a stubborn refusal 

Figure 8.6.1 (a) Suppose you want to move from a Tristan chord to a dominant seventh by 

effi cient voice leading. Which voice leading would you choose? (b) The most effi cient (four-

voice) voice leadings from the Fø7 chord to each of the twelve dominant sevenths.
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to face facts, but let’s see where 

it takes us.) As we look through 

the Tristan prelude, and indeed 

through the rest of the opera, we 

see that this perspective sheds 

light on a number of passages: 

for example, each of the pro-

gressions in Figure 8.6.5 can be 

represented as an extremely effi -

cient voice leading that has been 

embellished with a voice crossing. 

(Note that the crossing always 

involves three- or four-semitone 

motion in two separate voices.26) 

In other words, these examples 

suggest that Wagner’s harmonic 

choices are infl uenced by voice-

leading relationships not directly 

manifested by the surface of his 

music. In particular, he seems to 

avoid the four most dis-

tant dominant sevenths, 

which require six-semi-

tone voice leadings, in 

favor of those that are 

closer to the initial half-

diminished seventh.

Thinking a little 

more about this, we 

realize that the opera’s 

omnipresent ascending 

third motive is most 

effectively realized as 

an embellishment of an 

effi cient “background” 

voice leading. For sup-

pose we would like 

to fi nd a voice lead-

ing from Fø7 to E7 in 

which at least one voice ascends chromatically by minor third. One possibility is to 

Figure 8.6.2 The 

eight most 

effi cient voice 

leadings in 

Figure 8.6.1 

connect Fø7 to 

the eight nearest 

dominant 

sevenths in 

four-note chord 

space. The two 

voice leadings 

represented by 

the dotted lines 

both map root to 

root.

Figure 8.6.3 In 

moving from 

a Tristan to 

half-diminished 

seventh, Wagner 

often passes 

through one of 

the intervening 

chords in four-

note chord space.

26 The idea that these voice crossings are surface events is a relatively old one. For example, both Wil-
liam Mitchell (1973) and Robert Gauldin (1997) analyze the prelude’s opening voice leading by removing 
crossings. See also Boretz 1972.
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use an interscalar transposition by 

ascending step, in which case each of 

the voices ascends (Figure 8.6.6). But 

this is somewhat unsatisfactory, both 

because it is ineffi cient and because 

the pervasive melodic motion distracts 

from the ascending melody we would 

like to highlight. It is more sensible to 

begin with a voice leading in which 

all the voices remain roughly fi xed in 

register, embellishing it with a crossing 

that yields the desired ascending third 

motion. (Since we are using tertian sonorities it will typically be possible to fi nd such 

a crossing.) Thus we arrive at the original “Tristan” voice leading, in which two voices 

Figure 8.6.4 
Unfortunately, 

the actual voice 

leadings in 

Tristan often 

have crossings.

Figure 8.6.5 Other passages in Tristan that seem to embellish a crossing-free substrate: mm. 

10–11 (a), mm. 22–23 (b), and m. 81 (c).

Figure 8.6.6 Suppose we would like to combine an Fø7–E7 progression with melody that 

ascends chromatically by minor third. One possibility is to use an interscalar transposition by 

ascending step (a), producing ascending motion in all four voices. Another possibility is to 

begin with an effi cient voice leading (b), which is then embellished by a voice crossing (c).
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move effi ciently, one falls discretely by third, and the fi nal voice presents the ascend-

ing chromatic leitmotif. In this sense, Wagner’s voice leadings, though not themselves 

maximally effi cient, can be derived from more basic voice leadings that are crossing 

free.

Figure 8.6.7 presents fi ve voice leadings from the opening 20 measures of the 

prelude, omitting the voice crossings as just discussed. The fi rst two are related by 

(uniform) transposition at the minor third, and map the root of the Tristan chord 

to the root of the succeeding dominant seventh. The third and fourth map the root 

of the half-diminished to the third of the dominant seventh: the third sends Dø7 to 

B7, moving each of the four voices by semitone; the fourth sends Fsø7 to D7, holding 

three common tones fi xed.27 (We can also perhaps hear a fi fth voice leading from Fsø7 

directly to G7, treating the D in the melody as an anticipation.) These examples sug-

gest that Tristan begins with a relatively systematic exploration of the voice leadings 

between half-diminished and dominant sevenths. In the opening measures of the 

prelude, Wagner systematically shows us what his chord can do—rather like a travel-

ing salesman eagerly demonstrating the capabilities of his new vacuum cleaner.

Figure 8.6.7 When we remove 

Wagner’s voice crossings, we 

typically end up with a highly 

effi cient voice leading.

These opening voice leadings reappear throughout the opera, often without their 

voice crossings. In Figure 8.6.8a, the root and seventh of the B half-diminished chord 

move down by semitone, forming a Bf dominant seventh; this is the opening voice 

leading, reregistered, shorn of its crossings, and transposed by tritone. In (b), which 

occurs just prior to the preceding example, we fi nd the root, third, and fi fth of a Dø7 

chord moving up by semitone, while the seventh moves down by way of a descend-

ing scalar run; this is the third voice leading in the prelude, using the very same pitch 

classes. Finally, in (c), which occurs between the two previous examples, we see the 

prelude’s fourth voice leading, where the seventh of the half-diminished chord moves 

down by two semitones. (Note that the pitches here are those of the opera’s open-

ing chord.) If we have sensitized ourselves to these voice-leading schemas, then the 

resemblance to the start of the prelude will be quite striking, particularly since all 

these later examples occur in short succession.

27 Some of you may consider the E to be a nonharmonic tone, but I would caution against an uncritical 
use of the term. Throughout the prelude, nonharmonic tones conspire to produce a sounding half-dimin-
ished seventh chord; this conspiracy is what needs to be explained. Furthermore, later passages—such 
as the beginning of Act I, Scene IV—emphasize this particular voice leading to the point where the half-
diminished seventh seems more clearly “harmonic.”
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Note that in the beginning of the prelude it is the half-diminished chords, rather 

than the dominant sevenths, that are harmonically anomalous: we expect E7, G7, 

and B7 in an A minor context, but not Fø7, Gsø7, or Dø7. This might lead us to won-

der whether these chords result from a process of “substitution,” whereby one half-

diminished seventh replaces another (cf. the major-third substitutions of §8.4). For 

example, we might propose that Wagner applies a tritone substitution to the standard 

Bø7–E7 progression, giving us the more remarkable Fø7–E7.28 The effect is to replace an 

effi cient but traditional voice leading with an unfamiliar but equally effi cient alter-

native. In much the same way, the progression Dø7–B7 perhaps results from a major-

third substitution whereby a Dø7 appears in place of Fsø7. (Note that the geometry of 

four-note space allows for both major-third and minor-third substitutions in this 

context: given Fsø7–B7, one can obtain an effi cient voice leading by replacing Fsø7 with 

either Dsø7 or Dø7.29) In fact, there are places in the opera where Wagner explicitly 

engages in this sort of substitution: for example, Figure 8.6.9 shows a pair of passages 

Figure 8.6.8 The voice-leading schemas in the Prelude return many times throughout the 

opera. These three passages are taken from Act I, scene iii: (a) p. 51/98, (b) p. 49/96, (c) p. 49/95. 

(Page numbers refer to the Schirmer vocal score and Dover full score, respectively.)

28 Hansen 1996 makes this observation.
29 This is because the dominant seventh chords in Figure 8.6.2 lie between two different “layers” of 

half-diminished sevenths. The voice leading (Ds, Fs, A, Cs)®(Ds, Fs, A, B) involves more common tones 
while (D, F, Af, C)®(Ds, Fs, A, B) involves smaller motions in the voices. Cook (2005) calls this latter voice 
leading “extravagant,” since it moves every voice by semitone.
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from the prelude, along with variants from the end of Act I, Scene III; in the variants, 

the half-diminished seventh chords have been replaced by their tritone transposi-

tions, exchanging a “Tristan progression” for a more prototypical iiø7–V7.

Formally, the prelude’s opening uses an AAB schema (“bar form”), with the A 

and B sections featuring different resolutions of the Tristan chord: the progression 

Fø7®E7 (A) is transposed up by minor third to produce Afø7®G7 (A), which is then 

followed by the contrasting Dø7®B7 (B). Figure 8.6.10 shows that the same formal 

schema returns midway through the prelude, where a trio of French sixths resolve 

to dominant sevenths: the initial French sixth on Df resolves conventionally to C7; 

this passage is then transposed exactly by major second; but in the third iteration, 

the French sixth resolves to B7, a perfect fi fth away from the expected E7. (Although 

it is not obvious, this alternate resolution is individually T-related to the preceding 

two, with one voice moving upward by semitone, rather than the other three moving 

down.) Here again we have the AAB schema, with the two A sections related by exact 

transposition and the B section featuring an alternate resolution of the initial sonor-

ity. It is also relevant that the French sixths are minimal perturbations of the half-

diminished sevenths—a point that Wagner makes explicit at the end of the prelude, 

when he repeats the music with the half-diminished {F, A, B, D} substituting for the 

French sixth {F, A, B, Ds}.

The climax of the prelude, shown in Figure 8.6.11, articulates a series of predom-

inant-dominant progressions, decorated with a variety of passing chords. The liquid, 

semitonal voice leading here is strongly reminiscent of Chopin’s E minor Prelude, and 

can in fact be modeled using the very same geometry. (Figure 8.6.12 shows a passage 

from Act III, in which the relation to Chopin is even more clear.) The music reaches 

a peak in mm. 81–83 (Figure 8.6.11a, last two measures), where two different reso-

lutions of the “Tristan” chord compete: a standard iiø7–V7 resolution suggesting Ef 

Figure 8.6.9 “Tritone substitution” applied to Tristan chords in Wagner’s opera.
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minor, and the alternative resolution from the opera’s opening.30 This explicit state-

ment of the Tristan chord’s multivalence, at the emotional highpoint of the prelude, 

is a not-so-subtle clue that the music is in some sense “about” the various ways of 

resolving the chord. It is diffi cult to avoid investing this moment with symbolic sig-

nifi cance: the competition between resolutions is a competition between functional 

orthodoxy and chromatic perversity, with the victorious Wagnerian resolution sub-

verting musical propriety—much as Tristan and Isolde reject their social obligations 

in favor of a doomed passion.

Figure 8.6.13 collects prominent Tristan-chord resolutions from the opera, 

removing voice crossings and transposing so that they begin on the F half-diminished 

chord. (All but two of these have appeared in previous examples; the sources for the 

newcomers are given in Figure 8.6.14.) Comparing these to Figures 8.6.1b and 8.6.2, 

we see that Wagner indeed makes use of the eight most effi cient Tristan resolutions—

exploiting all of the shortest pathways between half-diminished and dominant sev-
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Figure 8.6.10 Measures 36ff of the prelude mirror the form of the opening: an initial voice 

leading is transposed exactly, whereupon the opening chord type is resolved in a new way. 

Here the initial chord is a French augmented sixth and the third voice leading is individually 

T-related to the fi rst (b). Note that when this music repeats at the end of the prelude, Wagner 

uses Dn instead of Ds in the second-to-last measure of (a).

30 This procedure is reminiscent of traditional “pivot chord” modulations, in which a single chord 
(here, the “Tristan chord”) is given two different harmonic interpretations.
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enth chords. To my mind, this suggests that the fundamental logic of the opera is a 

contrapuntal logic, and that Figure 8.6.2 is indeed the space through which Wagner’s 

music moves. And though time does not permit us to delve deeply into the prelude, 

even this cursory sketch shows Wagner demonstrating a sophisticated understanding 

of four-dimensional chord space: utilizing all of the most effi cient voice-leading pos-

sibilities from half-diminished to dominant seventh (Figure 8.6.13), substituting one 

half-diminished chord for another (Figure 8.6.9), moving between chords by way of 

their chromatic intermediaries (Figure 8.6.3), reusing the same basic contrapuntal 

schema with different sonorities (Figure 8.6.10), and even reproducing the open-

ended quasi-sequences of Chopin’s E minor prelude. Chromaticism here starts to 

achieve an impressive degree of autonomy; loosening itself from tonal functionality, 

it becomes an independent force with its own distinctive logic.

Figure 8.6.11 A reduction of two passages from the Tristan prelude, both of which move 

along the lattice at the center of four-note chord space. Labels below each chord again show 

how the music moves through the connected hypercubes. Where Chopin moves steadily 

forward, Wagner moves backward and forward in a stuttering manner.

Figure 8.6.12 
A passage from 

Act III, Scene 

I, p. 233/494 

that can also 

be described 

using Chopin’s 

techniques.
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8.7 alternative approaches

I have argued that nineteenth-century composers exploit chromatic voice leading 

as an alternative to traditional tonal syntax, citing a variety of musical passages as 

evidence. But readers may legitimately wonder whether my examples establish the 

broader point. After all, couldn’t it be that composers chose these chord progressions 

for other reasons, applying the effi cient voice leading only as an afterthought? Why, 

in other words, should we believe that voice leading helps explain or motivate the 

examples I have chosen?

For specifi city, let’s consider the F–Cs–A7 progression in Schubert’s D major 

sonata (Figure 8.4.1). Over the years, theorists have advanced a variety of purely 

harmonic explanations for progressions of this sort: Gregory Proctor, for example, 

has argued that Romantic composers often exploited “equal divisions of the octave,” 

Figure 8.6.13 
Resolutions of 

the Tristan chord 

from throughout 

the opera. 

Compare Figure 

8.6.1b.

Figure 8.6.14 
Two additional 

resolutions 

of the Tristan 

chord from later 

in the opera: 

Act II, Scene 1, 

p. 121/239 (root 

to seventh) (a), 

and Act II, Scene 

2, p. 141/287 

(root to fi fth) (b).

(a)

(b)
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such as F-Cs-A; David Kopp has singled out “chromatic mediant relations,” in which 

chord roots move by major or minor thirds; and Richard Cohn and Fred Lerdahl 

have argued for the importance of hexatonic scales such as E-F-Gs-A-C-Cs.31 (Still 

others, such as Suzannah Clark, emphasize common-tone retention rather than voice 

leading proper: from this point of view, it is the shared F that motivates Schubert’s 

move from F major to Cs major, and the shared Cs that links Cs major and A7.32) 

These accounts suggest that the harmonic relations among Schubert’s chords may 

be as important as their contrapuntal relations. To be sure, the passage does exhibit 

effi cient voice leading—but then again, so does most other tonal music. Perhaps voice 

leading is a secondary matter, subservient to deeper harmonic forces.

I can offer three responses. First, nineteenth-century music uses an enormous 

variety of voice leadings between familiar tonal sonorities. Consider just the examples 

in this chapter: the decorated functional progressions of §8.1, Schubert and Schoe-

nberg’s nonstandard augmented sixths, Brahms’ and Wagner’s explorations of the 

various resolutions of the Tristan chord, Chopin’s exquisite use of the hypercube at 

the center of four-note chord space, and so on. As far as I know, nobody has ever 

attempted to provide a purely harmonic explanation for these different chromatic 

techniques. (Certainly, not all of them exhibit equal division of the octave, mediant 

relationships, or the hexatonic scale.) Yet they seem to be importantly similar. Insofar 

as we want to acknowledge this similarity, we need to accept that voice leading is a 

motivating force in nineteenth-century music.

Second, as I have stressed, there are asymmetries between chromatic routines 

involving triads and those involving seventh chords: in particular, triads very fre-

quently move by major third, while seventh chords often move by minor third or 

tritone. Where I explain this asymmetry using the intrinsic geometry of chord space, 

the harmonic approach does not explain it at all: the assumption that composers were 

concerned with equal divisions of the octave, mediant relations, or hexatonic scales 

gives us no reason to think that triads should be any different from seventh chords. 

From the harmonic perspective, the difference remains an unexplained mystery.

Third, voice leading can potentially explain the sorts of harmonic relationships 

identifi ed by theorists such as Proctor, Kopp, and Cohn. Suppose, for example, we 

postulate that composers were interested in particularly effi cient voice leadings 

between major triads or dominant seventh chords. A concern with voice-leading effi -

ciency would therefore be expected to give rise to mediant relations of the sort Kopp 

discusses: after all, geometry shows that triads are particularly close to their major-

third transpositions, while seventh chords are close to their minor-third and tritone 

transpositions. Furthermore, by repeatedly exploiting these relationships, composers 

will generate passages exhibiting Proctor’s “equal divisions.” (This is because major 

and minor thirds evenly divide the twelve-semitone octave.) Finally, as we saw in 

Chapter 4, the resulting progressions will necessarily produce subsets of hexatonic 

31 Proctor 1978, Kopp 2002, Cohn 1996 and Lerdahl 2001. Cohn’s views are subtle, and also emphasize 
voice leading

32 Clark 2002.
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and octatonic scales.33 Thus, voice leading can potentially subsume the harmonic 

explanations proposed by other theorists. From the standpoint of explanatory par-

simony, then, it makes sense to focus on chromatic voice leading rather than these 

derivative phenomena.

In saying this, I do not mean to suggest that a progression like Schubert’s 

F–Cs–A7 is entirely contrapuntal, or that Schubert was 100% unconcerned with 

harmonic relationships. As I stressed in Chapter 7, composers almost always think 

simultaneously about harmony and counterpoint, and it is quite likely that Schubert 

attached some genuinely harmonic signifi cance to major-third relations. (Indeed 

for a composer who thinks seriously about voice leading, the C and Af major triads 

will come to have an affi nity, even when they are juxtaposed in a way that hides 

their contrapuntal connections.34) No doubt there are some chromatic passages in 

nineteenth-century music that can be attributed to harmonic factors such as com-

mon-tone retention or mediant relations. Nevertheless, I think we have good general 

reasons to prioritize voice leading over harmony: absent indications to the contrary, 

it is reasonable to assume that a particular instance of effi cient voice leading is just 

that—an example of a near-ubiquitous procedure that provided the principal nine-

teenth-century alternative to conventional functional syntax. Voice leading may not 

be the last word in the analysis of nineteenth-century music, but it certainly is a very 

reasonable starting point.

8.8 conclusion

The preceding pages should make it clear that I am not proposing a simple method 

or rule for doing musical analysis: there is no royal road to musical understanding, 

geometrical or otherwise. Instead, my claim is that appreciating the grammar of 

nineteenth-century music requires a fl exible grasp of the various voice-leading pos-

sibilities among familiar triads and seventh chords. Chromatic composers were for 

the most part extraordinarily intelligent people who spent their lives exploring the 

resources of the piano keyboard. As a result, they developed a deep understanding of 

the various contrapuntal routes from chord to chord.

Generally speaking, early nineteenth-century chromaticism tends to embellish 

traditional tonal progressions. Over the following decades, chromatic procedures gain 

autonomy, to the point where they eventually compete with or even supersede tradi-

tional principles: although Chopin’s E minor Prelude may be based on a descending 

fi fths background, the descending semitonal chromaticism is much more salient. By 

33 Recall in this connection that each cube in the center of three-note chromatic space contains chords 
belonging to a single hexatonic scale, while each hypercube in the center of four-note chord space contains 
chords belonging to a single octatonic scale (§3.11). Thus we can expect these scales to arise as the mere 
byproduct of chromatic voice leading. Indeed I would suggest that in the nineteenth century this is often 
the case: deliberate compositional exploration of these scales is largely a twentieth-century phenomenon.

34 In twentieth-century music one often fi nds direct juxtapositions of major-third-related triads in 
which there is no effi cient voice leading; this is particularly common in Prokofi ev, for example.
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the time of Wagner’s Tristan, the chromatic and the diatonic are in extremely deli-

cate balance, with chromaticism at times threatening to eradicate tonal functionality 

altogether. This is precisely what leads theorists to talk of late-nineteenth century 

music as having a Janus-faced quality, combining a functional “fi rst practice” with a 

chromatic “second practice.” (Cohn aptly draws an analogy to bilingual communities 

in which speakers switch rapidly between languages, sometimes within the span of a 

single sentence.35) Figure 8.8.1, from Strauss’ Salome, provides a sense of where this 

development would eventually lead: here, familiar tonal concepts lose their purchase, 

Figure 8.8.1 In Strauss’ Salome, extensive chromatic voice leading is accompanied by equally 

chromatic melodic motion, leading to a saturated pitch-class space in which all twelve notes 

are constantly in play.

35 See Cohn 2007.
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as incessant chromatic voice leading produces a highly chromatic macroharmony 

without any strong sense of tonal center.

In older histories of twentieth-century music, this trend toward increasing chro-

maticism is sometimes presented as inevitable, a simple matter of musicians fol-

lowing the signpost of Historical Progress. And in truth, the claim of inevitability 

is not obviously wrong: for insofar as chromatic techniques are used incessantly, as 

in Salome, the result will be textures whose tonality can be quite diffi cult to discern. 

From here it is a relatively small step to the more robustly atonal works of the second 

Viennese school. (Indeed, Chapter 5 already broached this thought, pointing out that 

chromatic tonality and free atonality often share similar statistical profi les, including 

similar rates of pitch-class circulation and a similar absence of centricity.) Musicians 

who recoiled from these post-Wagnerian extremes, but who did not want to write 

traditional music, would therefore need to go back to the drawing board, devising 

new approaches that could coexist more peacefully with our fi ve basic  components 

of tonality.



chapter 9

Scales in Twentieth-Century Music

While nineteenth-century chordal procedures can be stunningly sophisticated, the 

exploration of modality and nondiatonic scales tends to be relatively cautious by 

comparison. As a result, the music often has an asymmetrical quality, combining 

intensive investigation in one domain with a seeming indifference toward another. 

Indeed, this asymmetry between chord and scale may help to explain why late-

nineteenth-century composers start to fl irt with atonality: for as we have just seen, 

omnipresent chromatic voice leading can start to weaken the sense of centricity and 

macroharmony, dissolving tonality in the universal solvent of semitonal motion. 

Insofar as one’s musical world is circumscribed by the opposition between chromatic 

counterpoint and functional harmony, and insofar as one resolves to avoid functional 

harmony altogether, then one will inevitably be driven out onto the seas of relentless 

chromaticism.

In this chapter I consider three techniques that twentieth-century composers 

used to counteract chromaticism’s pull. The fi rst, chord-fi rst composition, exploits 

effi cient chordal voice leading to generate a sequence of otherwise unrelated scales; 

it thus augments nineteenth-century chordal procedures with additional scales that 

piggyback on the chordal level. The second technique, scale-fi rst composition, uses 

effi cient voice leading to connect scales rather than chords; the technique thus gen-

eralizes traditional modulation by extending nineteenth-century chordal practices 

to a new scalar domain. Finally, there is the subset technique, which links scales by 

way of common chords or common chord types. As we will see, this last technique is 

intermediate between the fi rst two: when the shared subsets are small and chordlike, 

it can be understood as a species of chord-fi rst composition; when they are large, it is 

closer to scale-fi rst composition.

My ultimate goal here is to propose an alternative to historical narratives that 

center on atonality and the avant garde. Reading these accounts, one sometimes 

gets the sense that twentieth-century tonality is fundamentally static and back-

ward-looking, as if the language had remained unchanged since the time of Brahms 

and Wagner. My own view, by contrast, is that the nineteenth century bequeathed 

a genuine and pressing problem to subsequent composers, namely synthesizing its 

contrapuntal innovations with the fi ve components discussed in Chapter 1. As we 

will see, a large number of twentieth-century musicians solved this problem in an 

essentially similar way, using scales to ameliorate the destabilizing effects of chro-

matic motion. To my ear, the result is a tonality that is renewed, refreshed, and 
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clearly distinct from that of earlier centuries: listening to Debussy or Miles Davis or 

Steve Reich, one recognizes a genuinely novel approach in which scales play a new 

and fundamental role.

9.1 three scalar techniques

Central to all three techniques is what jazz theorists call the principle of chord-scale 

compatibility, illustrated in Figure 9.1.1. Here, chords are understood as subsets of 

familiar fi ve-to-eight-note scales. (Jazz theorists would say that the chord and scale 

are “compatible.”) Given this two-tiered structure, it is possible for one element to 

take the lead, determining the changes that occur on the other level. This relationship 

might be compared to that between harmony and counterpoint: although both ele-

ments are important, passages can 

be more harmonic or more contra-

puntal, depending on which prop-

erty seems to be controlling the 

music at a particular time. In much 

the same way, chord and scale can 

at different points seize control over 

the music’s fundamental logic.

A key component of this 

approach is that scales are understood to be more than mere byproducts—that is, 

they are recognizable objects in themselves, with their own syntactical role to play. 

The top staff of Figure 9.1.2 provides an example in which scales might be described 

as derivative: the second chord, with Af and Fs, is accompanied by the unusual 

scale C-D-E-Fs-G-Af-B; the third chord, with Ds, is accompanied by the equally 

unusual C-Ds-E-F-G-A-B. In this passage, the scales are parasitic on the chords, 

being determined by the chordal accidentals; no attempt is made to produce a scale 

that divides the octave evenly, or contains a large number of consonances, or pos-

sesses any of the other virtues discussed in Chapters 4 and 5. By contrast, the sec-

ond staff accompanies the same chords with collections that possess desirable scalar 

qualities. The presence of these “virtuous” scales suggests a compositional mind that 

is attuned to both the chordal and scalar levels—a musical “twofoldness” that is our 

current concern.

Turning now to the techniques themselves, in chord-fi rst composition, the chordal 

level predominates: thus, an effi cient voice leading like (E, Gs, B, D)®(F, Af, Bf, D) 

might give rise to an E acoustic scale (containing E7) followed by a Bf mixolydian 

scale (containing Bf7). The second of Scriabin’s Op. 48 Preludes, composed in 1905, 

provides a particularly clear example (Figure 9.1.3). The three upper voices contain a 

standard nineteenth-century progression in which semitonal voice leading connects 

D minor, Bf minor, and an incomplete C major seventh, C-E-B; however, Scriabin 

departs from post-Wagnerian practice by assigning a different scale to each chord. 

Chords seem to be leading the scales in the following sense: we can easily imagine 

scale

chord

scale

chord

scale first

chord first

Figure 9.1.1 
Scale-fi rst and 

chord-fi rst 

composition.
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composing the effi cient chordal voice leadings prior to the scales, but it is much more 

diffi cult to imagine starting with the F, Df, and G diatonic scales, composing the 

chords only later.1

By contrast, in scale-fi rst composition, music progresses by way of effi cient voice 

leading between scales themselves. The opening of Ravel’s Ondine, shown in Figure 

9.1.4, begins with a shimmering wash featuring the Cs mode of B acoustic, Cs-Ds-

Es-Fs-Gs-A-B (“Cs mixolydian f6”).2 A series of single-semitone changes creates, 

successively, Cs harmonic major, Cs diatonic, and Gs acoustic. (Note that many 

of these collections are incomplete.) Unlike Scriabin’s piece, one gets the sense of a 

 distinctively scalar logic, as if Ravel deliberately moved between closely related scales 

by changing one or two notes at a time. Figure 9.1.5 uses our familiar scale lattice to 

1 Note that I am considering the notes As, Cs, and Ef to be nonharmonic.
2 See also Tymoczko 1997.

Figure 9.1.2 The unfamiliar scales in the top staff simply apply the chords’ accidentals to the 

underlying C diatonic collection, and do not suggest particular attentiveness toward scales as 

such; by contrast, those on the second staff are quite familiar, and exhibit many of the virtues 

discussed in Chapter 4.

Figure 9.1.3 Scriabin’s 

prelude, Op. 48 No. 2, 

in which effi cient voice 

leading in the upper staff 

gives rise to a series of 

scales.
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Figure 9.1.4 The opening of Ravel’s “Ondine,” from Gaspard de la nuit, suggests a series of 

single-semitone voice leadings among familiar scales. 
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show that Ravel systematically explores a small region of the space, moving between 

nearby collections. This is just the effi cient chromatic voice leading of Chapter 8, 

applied now to scales rather than chords.

Finally, the subset technique juxtaposes scales sharing some contextually salient set 

of notes. For example, Debussy’s “Collines d’Anacapri” presents the opening penta-

tonic theme B-Fs-Cs-E-Gs-B in three distinct scalar contexts: B diatonic, E diatonic, 

and E acoustic (Figure 9.1.6).3 One could say that the music has fi ve “fi xed” scale 

degrees (B, Cs, E, Fs, Gs) and two “mobile” degrees (D/Ds and A/As). This technique 

can sometimes be hard to distinguish from the scale-fi rst technique: for example, 

since all three scales in Figure 9.1.6 can be linked by effi cient voice leading, one could 

in principle say that the music exemplifi es scale-fi rst composition. But it is important 

here that the “fi xed” collection comprises the main theme of the piece. In describing 

this music as an example of the subset technique, I am therefore making the claim 

that the subset relationship is more important than voice leading: common tones, 

more than counterpoint, determine the modulations in the prelude.

Clearly, the subset technique is intermediate between the other two approaches. 

When the subsets are small, we can think of the technique as a special case of chord-

fi rst composition: where chord-fi rst composition features effi cient voice leading, 

such as (C, E, G)®(B, E, Gs), the subset technique uses “trivial” voice leadings, such 

as (C, E, G)®(C, E, G), in which all the voices are left unchanged. However, when 

the subsets in question are large (as in “Collines d’Anacapri”) the subset technique 

more closely resembles scale-fi rst composition. (This is simply because two scales 

that share a large number of notes can typically be linked by effi cient voice leading.) 

Musical context is important here: when composers emphasize the fi xed subset—for 

Figure 9.1.5 Ravel’s 

scales plotted on the 

scale lattice.

3 See Tymoczko 2004 and Kopp 1997 for more thorough analyses.
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instance by using it in important themes or melodies—then we may want to highlight 

shared subsets rather than voice leading; in other situations, however, it may be that 

the voice-leading relationships are paramount. Thus the distinction between the sub-

set technique and the others is one of emphasis rather than fundamental technique.

Of course, the three techniques all have their antecedents in earlier music. In the 

nineteenth century, the chord-fi rst technique sometimes occurs across modulations: 

for example, Figure 9.1.7 presents the modulation from exposition to development 

in the fi rst movement of Schubert’s Bf-major sonata, D. 960; the semitonal voice 

leading between F major and Cs minor chords drags the rest of the music along for 

the ride, leading to a dramatic shift in scale and key. Chapter 7 argued that the scale-

fi rst technique is used in ordinary modulations between closely related keys. (That 

is, the distance between keys is largely a function of the size of the voice leadings 

between the relevant scales.) Figure 9.1.8 provides a rare nineteenth-century example 

that employs nonstandard modes: here, the Cs phrygian theme of Chopin’s Mazurka, 

Op. 41 No. 1, returns as the fi fth mode of Fs harmonic minor. Finally, Figure 9.1.9 

presents an example of the subset technique, from Chopin’s Gf major Etude, Op. 10 

No. 5. In this piece, the right hand plays only black keys, which act as a fi xed subset 

contained in both the tonic dominant scales. (Again, the two scales are also related 

by effi cient voice leading; the point is that Chopin emphasizes the fi xed subset com-

positionally.) These examples suggest that what is new in twentieth-century music is 

Figure 9.1.6 In Debussy’s “Les collines d’Anacapri,” the pentatonic theme B-Fs-Cs-E-Gs-B 

acts as a fi xed subset, and appears in the context of several different scales: B diatonic (a), E 

diatonic (b), and E acoustic (c).
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Figure 9.1.7 Chord-fi rst modulation in the transition from exposition to development of 

Schubert’s Bf major Sonata, D. 960, movement I.

Figure 9.1.8 The scale-

fi rst technique in Chopin’s 

Cs minor Mazurka, Op. 

41 No. 1. The theme, 

originally in Cs phrygian 

(a), returns in the Cs 

mode of Fs harmonic 

minor (b).

Figure 9.1.9 The 

subset technique 

in Chopin’s Gf 

major (“black 

key”) Etude, 

Op. 10 No. 5. 

Throughout the 

piece, the right 

hand plays only 

black keys, which 

serve as a fi xed 

subset common 

to the two 

primary scales in 

the piece.
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not the techniques themselves, but rather the willingness to apply them more consis-

tently, more frequently, and to a much wider range of scales and modes.

9.2 chord-first composition

We’ll begin with examples in which the musical logic resides in chords rather than 

scales: on their own, the scales need not have any particular signifi cance; instead, they 

are related by virtue of the chords they contain.

9.2.1  Grieg’s “Drömmesyn” (“Vision”), 
Op. 62 No. 5 (1895)

The opening of Grieg’s short piece, shown in Figure 9.2.1, is based on a progression 

that uses descending semitonal voice leading to connect familiar seventh chords, one 

that might easily appear in Chopin’s music. (In fact, it can be modeled on the four-

 dimensional lattice used in the previous chapter.) Unlike nineteenth-century com-

posers, however, Grieg treats the chords as a skeleton to be fl eshed out by diatonic 

scales. On their own, these scales would seem arbitrary, without discernable logic or 

pattern. But when we consider the chords, their signifi cance is clear: the chords are 

connected by semitonal voice leading, while the scales just happen to contain them.

A traditionalist might hear Grieg’s piece as moving successively through the keys 

of A, Df, Gf, and C major. But to my ear, the seventh chords are stable objects in 

themselves rather than unstable objects that need to resolve. This is, in part, because 

of the piece’s static harmony and avoidance of V7–I resolutions. But it is also a func-

tion of the subtle and shifting relationship between melody, chord, and scale: in the 

fi rst and third phrases, the melody starts on the added sixth of the underlying har-

mony, while in the second and fourth phrases, the melody starts on the chordal sev-

enth. Furthermore, the chords themselves move relative to the purported tonic: the 

bass of the fi rst chord is the fi rst scale degree of A major, the bass of the second chord 

is the fi fth degree of Df major, and the bass of the third chord is the second degree of 

Gf major. What results is an extremely subtle counterpoint between the scale, tonic, 

and melody, in which the three elements never once move in parallel (Figure 9.2.2). 

Given this complexity, my ear tends to gravitate toward the bass as the most stable 

Figure 9.2.1 Grieg’s Lyric Piece “Drömmesyn” 

(Vision), Op. 62 No. 5. The piece is built 

around a series of effi cient voice leadings 

between four-note chords (a), which give rise to 

diatonic scales (b).
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Figure 9.2.2 Grieg’s piece articulates an abstract counterpoint between the melody’s starting 

note, the diatonic collection, and the root or bass.

Figure 9.2.1 (Continued)
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note—which means that I conceive the melody as successively beginning on the sixth 

degree of A major, the seventh degree of Af mixolydian, the sixth degree of Af dorian, 

and the seventh degree of G mixolydian.

9.2.2 Debussy’s “Fêtes” (1899)

Figure 9.2.3 outlines the basic voice leading in the central section of “Fêtes,” the sec-

ond of Debussy’s orchestral Nocturnes. The music is largely sequential, with its 16-bar 

model divided into two eight-bar halves. The harmonies in the fi rst half of the second 

16-bar unit (chords 9–12 on the example) are transposed up by minor third, while 

the rest of the phrase is transposed by tritone: instead of Bø7–G7–Bø7–Gs°7, we hear 

Dø7–Bf7–Dø7–B°7. The last 16 bars of the section repeat the harmonies of the fi rst 16 

bars, but now accompanied by the movement’s opening theme—a running scalar 

passage featuring Gf, Ef, and A diatonic (Figure 9.2.4). As in Grieg’s piece, the theme 

remains fi xed in register, beginning twice on Bf despite the change from Df7 to Bf7.

Figure 9.2.3 
Voice leadings 

in the middle 

section of “Fêtes.” 

Each measure 

represents four 

bars of music.

Figure 9.2.4 
In the third 

phrase of the 

middle section 

of “Fêtes,” 

the opening 

chords return, 

though now 

accompanied 

by scales 

articulating the 

movement’s 

main theme.
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Thus it begins successively on the third degree of Gf diatonic, the fi fth degree of Ef 

diatonic, and the third and seventh degrees of A diatonic.

Figure 9.2.3 indicates the relevant interscalar transposition under each voice lead-

ing from half-diminished to dominant seventh. (Voice leadings from dominant sev-

enth to half-diminished use a backwards arrow, labeling relative to the root of the 

half-diminished chord.) We see that the music exploits all of the different types of 

(crossing-free) voice leadings between the two types of chord, mapping the root of 

the half-diminished to the third, fi fth, seventh, and root of the dominant seventh.4 

The technique here is essentially that of Wagner’s Tristan, albeit now accompanied 

by a variety of diatonic modes. It follows that we can use our four-dimensional geo-

metrical models to describe the passage: Figure 9.2.5 shows that Debussy’s chords lie 

on the adjacent vertices of two hypercubes, with the half-diminished sevenths appear-

ing just above the b°7 chord, and the dominant sevenths just below.5 The voice leading 

connecting Fø7 to Df7 (as well as Gsø7 to E7, and Dø7 to Bf7) moves one note by two 

semitones, and passes directly through the diminished seventh chord to the chord on 

the other side.6 The remaining voice leadings, such as Fø7®Bf7 and Df7®Dø7, move 

two notes by semitone, and do not pass through the diminished seventh chord.

The procedures in “Fêtes” can be found throughout Debussy’s compositions, and 

are particularly salient in the Prelude to “The Afternoon of a Faun” (Figure 9.2.6). This 

testifi es to a signifi cant degree of continuity between Wagnerian Romanticism and 

Debussian impressionism: we fi nd the same fascination with half-diminished and 

dominant seventh chords, and the same systematic use of the various voice leadings 

connecting them.7 The big difference, to my mind, lies in the two composers’ attitude 

toward scales. For Wagner, chromatic voice leading is just that—a chromatic tech-

nique that invariably brings the chromatic scale into play at the melodic level. For 

Debussy, these chromatic voice leadings occur at a much slower rate, and give rise to 

Figure 9.2.5 A geometrical depiction 

of Debussy’s chords.

4 In the actual music, some of these voice leadings are slightly disguised.
5 Compare with Figure 8.5.10 to see how this fi gure is contained in the more familiar structure.
6 The fact that Debussy restricts himself to these chords strongly suggests that his harmonic choices 

were motivated by voice-leading facts, even though the relevant voice leadings are sometimes disguised.
7 Cf. Holloway 1982 and Pople 2001.
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additional scales at the musical surface. By remaining in a single scale for a signifi cant 

length of time, Debussy endows his music with a simple, classicist quality that is in 

marked contrast to the relentless churning of Wagnerian chromaticism.

9.2.3  Michael Nyman’s “The Mood That 
Passes Through You” (1993)

For a more contemporary example, we turn to one of Michael Nyman’s cues for the 

movie The Piano. Nyman’s music is not so much a traditional “piece” as it is a vignette 

or musical moment, meant to fulfi ll a specifi c dramatic need. (Part of its interest, in 

fact, lies in its vernacular quality, demonstrating that chord-fi rst composition has 

become part of a broader common practice.) Figure 9.2.7 shows that the music has 

two basic sections, each based on a repeating chord progression. In the fi rst, we hear 

Figure 9.2.6 Effi cient voice leadings between half-diminished and dominant seventh chords 

in Debussy’s Prelude to “The Afternoon of a Faun”: mm. 6–9 (a), 17–19 (b), and 44–46 (c).
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Bf minor, D major, and E major triads, each in root position, and each lasting for two 

measures. (Note that the right hand contains a concealed ostinato fi gure, indicated by 

the beamed noteheads.) In the second, we hear a sequence of four descending triads, 

fi rst gs6–e6–B@–A@, and then B–e6–B@–A@, with a root position B major triad substi-

tuting for the fi rst-inversion Gs minor. (This is of course the “third substitution” of 

§7.2.) The voice leading is mostly parallel and owes more to popular music than to 

classical. Nevertheless, it is easy to hear echoes of the nineteenth-century concern 

for effi cient voice leading, particularly in the repeated juxtapositions of major-third-

related triads. Figure 9.2.8 shows that the ostensibly parallel voice leading articulates 

semitonal connections in pitch space.

As in the previous example, chords give rise to scales at the musical surface. In the 

fi rst part of the cue, the Bf minor triad is accompanied by Bf natural minor, while 

Figure 9.2.7 Michael Nyman’s “The Mood that Passes Through You,” from the soundtrack to 

the movie The Piano. The brackets indicate two instances of major-third juxtapositions: Bf 

minor–D major, and Gs minor–E minor.

Figure 9.2.8 Nyman’s left-hand arpeggios articulate a semitonal voice leading between 

major-third-related triads.
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the D and E major triads are accompanied by A diatonic. In the second part, the Gs 

minor and B major triads are accompanied by B diatonic, E minor is accompanied 

by G acoustic, and A major is accompanied by D diatonic.8 (Of particular interest 

here is the appearance of G acoustic, one of the most important nondiatonic col-

lections in twentieth-century tonal music and a favorite of Debussy’s.) Once again, 

the scalar logic seems secondary: it is chords rather than scales that are determining 

the music’s progress.9 Comparable passages can be found throughout postminimal-

ist music, in the works of composers such as Glass, Reich, Adams, Torke, and Lansky 

(Figure 9.2.9).

Note that the major-third system appears in twentieth-century styles as 

diverse as Russian modernism, American minimalism, and film music. (In par-

ticular, it plays a role in both Figures 9.2.7 and 9.2.9.) The progressions in our 

examples—and in recent music more generally—are distinctive insofar as they 

replace the major triads typical of Schubert’s music with minor triads that pro-

duce a more ominous and brooding sound, an effect that is often highlighted by 

driving or asymmetrical rhythms. Figure 9.2.10, from Prokofiev’s Overture on 

Hebrew Themes, exemplifies these qualities, juxtaposing Af minor, E major and 

C minor triads over pulsating eighth notes.10 Figure 9.2.11 shows some related 

Figure 9.2.9 
Chord-fi rst 

voice leading in 

Adams’ Nixon 

in China, Act 

I, Scene I, mm. 

141–148.

 8 Most of the scales are incomplete—unsurprisingly, given the length of the excerpt.
 9 However, it is true that G acoustic shares six notes with D diatonic, which in turn shares six notes 

with A diatonic.
10 Thanks to Daniel Zimmerman for pointing me to this piece.
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Figure 9.2.10 
Major-third-

related triads 

in Prokofi ev’s 

Overture on 

Hebrew Themes, 

R42.

Figure 9.2.11 
The major-third 

system in (a) 

the G minor 

prelude from 

Shostakovich’s 

Twenty-four 

Preludes and 

Fugues, (b) 

Philip Glass’ 

Einstein on the 

Beach, and (c) 

the opening 

credits of the 

2004 television 

series Battlestar 

Galactica.
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passages from Shostakovich, Philip Glass, and television music, which combine 

a Schubertian (or Wagnerian) harmonic sense with a rhythmic impulse whose 

roots lie in Stravinsky and popular music.11 Taken together, they suggest a gene-

alogy by which the major-third system passes from Schubert’s Vienna to con-

temporary America by way of Russian modernist composers like Prokofiev and 

Shostakovich, acquiring in the process a darker, more ominous quality.

9.3 scale-first composition

Next, we’ll consider passages that extend nineteenth-century chordal techniques to 

scales themselves, generalizing traditional modulation to a broader range of scales 

and modes.

9.3.1  Debussy’s “Des Pas Sur La Neige” 
(1910)

Figure 9.3.1 contains the score to Debussy’s “Des pas sur la neige” (“Footprints in the 

Snow”). As shown in Figure 9.3.2, Debussy’s piece explores a collection of fi ve closely 

related scales, all containing the ostinato D-E-F.12 These can be considered a kind of 

“tonic region,” since each provides a different coloring of a basically D minor tonality. 

In addition, the piece also contains three other scales forming a contrasting harmonic 

region—Af mixolydian, Af dorian, and C whole tone. The fi rst two are again related 

by single-semitone voice leading, and emphasize Af, the note a tritone away from the 

tonic D. None of these is particularly close to the fi rst network, and the two regions 

are audibly quite distinct.

The fi rst transition between these regions is worth examining more closely. 

In mm. 8–9, C7 alternates with Cs7, while in m. 11, G7 alternates with Gfmaj7 (Fig-

ure 9.3.3). This semitonal shifting leads us into the foreign scale area: the C7 of mm. 

8–9 belongs to the F diatonic of mm. 1–3, while the Cs7 and Gfmaj7 belong to the 

Gf diatonic of mm. 29–31. The next harmonic move, from Df diatonic to C whole 

tone, occurs by way of the shared subset Gf-Af-Bf-C, emphasized by the left hand in 

mm. 13–14. The subsequent whole-tone passage represents the piece’s greatest point 

of distance from the opening diatonicism. The transition back to D natural minor 

illustrates one of Debussy’s characteristic modulatory devices, the use of an acoustic 

scale as an intermediary between whole-tone and diatonic collections. As shown in 

Figure 9.3.3b, Bf acoustic shares fi ve of the whole-tone scale’s six notes, while also 

11 The overtly Romantic harmony in Figure 9.2.11c is unusual in Stravinsky’s own music.
12 For this reason, one could also consider Debussy’s piece as an example of the subset technique 

described in §9.4. (This is essentially the approach taken in Tymoczko 1997.) However, successive scales 
are typically linked by small voice leadings, suggesting that both techniques are in play.
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Figure 9.3.1 
(1 of 2) 

Debussy’s “Des 

pas sur la neige.”

 sharing six of the diatonic scale’s seven notes—a hybrid of whole tone and diatonic 

that smoothes the transition between them.13

Figure 9.3.4 summarizes the relations among the prelude’s scales. On the left is the 

tonic region, containing C and F diatonic, A and D harmonic minor, and Bf acoustic. 

On the right we have the contrasting key area of Df and Gf diatonic, with C whole 

13 See Whitall 1975.
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Figure 9.3.1 
(2 of 2) 

Debussy’s “Des 

pas sur la neige.”

tone connected to both regions. The music initially moves to the secondary region by 

way of upward semitonal transposition, returning to the tonic area via the C whole-

tone scale. A substantial number of Debussy pieces are constructed around similar 

networks of scales, including “Le vent dans la plaine,” “Les collines d’Anacapri,” “La 

fi lle aux cheveaux de lin,” L’isle joyeuse, “Les sons et les parfums tournent dans l’air 

du soir,” and “Voiles.” Indeed, Debussy’s use of these techniques is so pervasive and 

systematic that one could easily write an entire book about the subject.14

14 For more, see Tymoczko 2004.
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Figure 9.3.2 The tonic region in “Des pas sur la neige” contains fi ve scales that are near each 

other on the scale lattice.

Figure 9.3.3 (a) The transition between the tonic (D-centered) scalar region and the 

secondary (black-note) scalar region occurs by way of semitonal shift upward. (b) The 

transition back occurs by way of the C whole-tone and Bf acoustic scales.
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9.3.2  Janáček’s “On an Overgrown Path,” 
Series II, No. 1 (1908)

Janáček’s piece is similar in spirit to Debussy’s, though with a distinctive Eastern 

European fl avor. Figure 9.3.5 provides the score for the opening, while Figure 9.3.6 

summarizes its scalar content. The fi rst section uses a different scale for each phrase: 

beginning with Ef harmonic major, we hear Ef harmonic minor, the Af “Gypsy” 

scale (equivalent to Af harmonic minor with raised fourth scale degree), Ef major, 

and what is either a whole-tone scale on Ef or the “Gypsy major” scale Ef-F-G-A-

Bf-Cf-D. The next section changes the texture somewhat, introducing a pedal note 

marked by triplet octaves. We hear a pair of diatonic collections (Cs dorian and Cs 

natural minor) that are somewhat distant from the opening scales. Phrase 8 uses 

interscalar transposition to shift phrase 7 into Ef harmonic major, creating a har-

monic but not thematic recapitulation. Phrase 9 deepens the sense of recapitulation 

by repeating the melodic and harmonic content of phrase 2, though with the initial 

notes slightly altered (Ef-Gf-Ef rather than Ef-Af-F, reiterating the pattern estab-

lished by phrase 1). Phrase 10 oscillates between Es and En, as if undecided between 

B Gypsy and B harmonic minor.

Figure 9.3.6 arranges the piece’s eight scales into two networks, each connected by 

single-semitone displacements. The tonic network contains scales that are a semitone 

away from the initial Ef harmonic major, arranged in a hub-and-spoke design.15 The 

Figure 9.3.4 
The scales in 

“Des pas sur la 

neige.”

15 If we were to examine seven-dimensional chord space, we would see that these “spokes” were all at 
right angles to one another; since we cannot visualize seven dimensions, however, we need to fl atten the 
space so that it lies in two dimensions.
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Figure 9.3.5 The opening of Janáček’s “On an Overgrown Path,” Series II, No. 1.
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nontonic network contains Cs dorian, Cs natural minor, B harmonic minor, and B 

Gypsy, arranged like railroad cars rather than the spokes of a wheel. The two net-

works are closer together than those in Debussy’s prelude, since Cs dorian could be 

connected to Ef harmonic minor by way of an Ef natural minor that does not appear 

in the piece. Janáček’s scales are also somewhat more exotic, largely because he begins 

with a harmonic major rather than diatonic collection; semitonal alteration thus gen-

erates a series of colorful scales that include Gypsy and Gypsy major.

Although somewhat tangential to our current concerns, it is worth noting that the 

B section of Janáček’s piece recalls Chopin’s F minor Mazurka (Figure 9.3.7). Here we 

have a 10-measure phrase in which a series of fi rst-inversion triads descend in a “stag-

gered” fashion. (Note also the clever use of double counterpoint: the first half of the 

melody begins on the fi fth of the underlying B minor triad, but the second half starts 

on the root of the Gs minor triad.) Figure 9.3.8 represents its chords using the cubic lat-

Figure 9.3.6 
The scales in 

Janáček’s piece.

Figure 9.3.7 
The middle 

section of 

Janáček’s “On 

an Overgrown 

Path,” Series II, 

No. 1.
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Figure 9.3.8 The middle section of Janáček’s piece, plotted on the portion of the cubic 

lattice that is near (but not at) the center of three-note chord space. Here, capital and small 

letters refer to major and minor triads, “b°” and “Bf+” are diminished and augmented triads, 

“Df4” refers to the fourth chord Df-Gf-B, and “Df7” refers to the incomplete seventh chord 

Df-F-Cf.

tice that is near (but not exactly at) the center of three-note chord space.16 Like Chopin, 

Janáček traverses the lattice downward, by moving one, two, or three voices by step at 

each turn, producing a “liquefi ed” version of a familiar descending step sequence.

9.3.3  Shostakovich’s Fs Minor Prelude and 
Fugue, Op. 87 (1950)

Traditional composers raised the notes of the natural minor to bring it closer to 

major. Shostakovich, however, was more likely to lower its notes, creating unfa-

miliar “hyperminor” tonalities with a distinctive sinister character.17 Figure 9.3.9 

16 The cubic lattice at the center of the space, shown in Figure 3.11.2a, contains augmented triads at 
the shared vertex and major and minor triads elsewhere; the lattices adjacent to the center have major or 
minor triads at the shared vertices, and contain a greater variety of chord types.

17 For more on Shostakovich’s scales, see Carpenter 1995.
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shows that Fs natural minor offers four opportuni-

ties for semitonal lowering: the second scale degree 

can be lowered to produce the phrygian mode; 

the fourth can be lowered to produce a chromatic 

mode I will call “natural minor f4”; the fifth can 

be lowered to produce the Fs mode of D acoustic; 

and the seventh can be lowered to produce another 

chromatic mode with half-steps Cs-D-Ef (“natural 

minor f7”). The remaining notes are not good candidates for alteration, since 

lowering A or D would produce note duplications, while lowering Fs would 

change the tonic.

The four lowerings can be combined to produce 16 different seven-note scales, 

including Fs locrian (which lowers both Gs and Cs) and the Fs mode of G harmonic 

minor (which lowers all four notes). We can represent these 16 possible combinations 

with a familiar geometrical structure, the four-dimensional cube in Figure 9.3.10. 

Figure 9.3.9 Fs natural 

minor has four degrees that 

can be lowered by semitone, 

represented here by the 

closed noteheads.

Figure 9.3.10 The four lowerings can be combined to produce sixteen scales, eight of which 

appear in Shostakovich’s Fs minor Prelude and Fugue. I have labeled only the scales relevant 

to Shostakovich’s piece.
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(This graph depicts a portion of seven-dimensional chord space, near but not at its 

center.) Eight of its sixteen scales appear either in the prelude or in the opening of 

the subsequent fugue, and Shostakovich does not employ any scales not found on the 

fi gure.18 In this sense, the “scale tesseract” represents the modulatory space through 

which Shostakovich moves.

Figure 9.3.11 shows the tonic-key passages from the prelude and the opening of 

the fugue. The prelude begins with 18 measures of Fs aeolian, disrupted by brief 

18 One possible exception is the B major chord on the second page of the prelude, which might be 
thought to imply Fs dorian. However, the complete scale is not stated explicitly, and in any case it could 
easily be added to the graph as a point above Fs natural minor.

Figure 9.3.11 Tonic-key passages in Shostakovich’s Fs minor Prelude and Fugue. These involve 

a progressive sequence of lowerings, leading ultimately to the harmonized fugue theme.
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moments of chromaticism; the recapitulation lowers Gs to Gn, transforming Fs 

natural minor into Fs phrygian. The fugue subject suggests a “phrygian f7” scale 

Fs-G-A-B-Cs-D-Ef, which lowers the E of the preceding phrygian. (Note that while 

the subject itself does not contain a second scale degree, the note appears in both 

the countersubject and the subject’s continuation.) The harmonization of the fugue 

subject, meanwhile, moves from the Fs mode of G harmonic major to Fs phrygian. 

If we look only at these tonic-key passages, we see a sequence of semitonal descents, 

beginning at natural minor and concluding with a “hyperminor” that has lowered 

second, fi fth, and seventh degrees. We can represent this journey as a descending 

motion along the right edge of Figure 9.3.10, much as we represented Chopin’s E 

minor Prelude as a systematic series of descents along the four-dimensional chord 

lattice.19 (Needless to say, it is amazing that such similar geometries can represent 

both chords in Chopin and scales in Shostakovich!) Musically, this sequence of lower-

ings serves to prepare us for the unfamiliar tonality of the fugue: by moving gradu-

ally from a standard Fs natural minor to the hyperminor of the harmonized fugue 

subject, Shostakovich slowly acclimates us to his unusual scalar vocabulary, fulfi lling 

the traditional function of a prelude in an unfamiliar manner.

9.3.4 Reich’s New York Counterpoint (1985)

Figure 9.3.12 lists the scales in Steve Reich’s New York Counterpoint for eleven 

clarinets, one live and ten prerecorded.20 The fi rst movement opens with pulsat-

ing chords implying Af and Ef diatonic. These eventually give way to rhythmic 

canons in Af diatonic, with the six voices divided into three pairs playing mostly 

parallel tenths. As shown in Figure 9.3.13, the top voice in each pair plays the notes 

(G, C, F), with the pitches Af, Bf, and Ef being ordered differently in each line; 

the result of this permutation is that the dotted quarter note occurs on a different 

pitch in each part. The movement then combines these canons with the original 

pulsating chords, leading to modulations that produce subtle alterations in the 

canonic pitches.21

The second movement is exclusively in B diatonic and again combines canons 

with repeated chords (Figure 9.3.14). Two of the pairs now play exactly the same 

music, with the third presenting a very slight variant. The canonic structure is conse-

quently much clearer, sounding almost as if it had been produced by a digital delay. 

The third movement begins with a Df acoustic scale that is related by single-semitone 

19 Shostakovich’s prelude suggests a variety of other scales as well: mm. 17–23 vacillate between Bn and 
Bf, suggesting Fs-Gs-A-Bf-Cs-D-Ef; mm. 29–30 suggest an explicit but fl eeting octatonic scale, which 
can be associated with the collection Fs-Gs-A-B-C-D-Ef on Figure 9.3.10; and the end of the prelude 
suggests the doubly lowered Fs-G-A-Bf-Cs-D-Ef. These scales, however, are often incomplete or accom-
panied by extraneous notes—a mild sort of polytonality typical of Shostakovich’s music.

20 For simplicity, the following discussion will use the notated pitches, rather than the sounding pitches 
a major second below.

21 The live clarinet also plays noncanonic “resultant melodies” that draw their pitches from the canonic 
parts; for simplicity, my discussion omits these.
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voice leading to the opening Af diatonic.22 The six canonic voices are now divided 

into two groups, each playing mostly triads. At rehearsal 67, shown in Figure 9.3.15, 

the bass clarinets enter in canon with the notes Ef-A-Ef, producing the seven-note 

“whole tone plus one” scale Ef-F-G-Af-A-B-Df. (The rhythm of each bass clarinet 

part is the four-against-three cross-rhythm, for which the phrase “pass the goddamn 

butter” is a useful mnemonic.) The piece ends by oscillating between the “whole-tone 

plus one” and diatonic collections, closing with the pitches Gs, B, Cs, and Ds—the 

four notes common to the Df acoustic, E diatonic, and B diatonic scales.

Figure 9.3.16 graphs the scales using a two-dimensional scale lattice: the opening 

Af diatonic is connected by single-semitone voice leading to both Ef diatonic and to 

Df acoustic, and Df acoustic is in turn connected by single-semitone voice leading 

to the “whole-tone plus one” scale. Similarly, the B diatonic of movement 2—three 

steps fl atward from Af diatonic—is connected by single-semitone voice leading to 

the E diatonic of movement 3. Note that the “whole-tone plus one” collection appears 

naturally on the graph, as a third layer of scales surrounding the central zigzag of 

fi fths: in particular, the “Df whole-tone + Af” scale is connected by single-semitone 

voice leading to both B acoustic and Df acoustic.23 Such graphs are characteristic of 

Reich’s later pieces: like many of his works, New York Counterpoint makes very heavy 

use of the diatonic collection, occasional use of the acoustic scale (as well as other 

familiar scales such as the harmonic minor), and more sporadic use of exotic scales 

such as the “whole-tone plus one.” Scales are often linked by effi cient voice leading 

and frequently demarcate compact regions in scale space. However, Reich’s modula-

tions themselves give the sense of a relatively free journey through the space, rather 

than a systematic oscillation around a single tonic region.

Figure 9.3.12 
Scales in Steve 

Reich’s New York 

Counterpoint.

22 The acoustic scale’s Bf is never stated. My analysis is infl uenced by the fact that Reich frequently uses 
the scale in other pieces.

23 This graph of diatonic, acoustic, and “whole-tone plus one” scales has analogues in some (but not 
all) of the situations in which there is a generalized circle of fi fths: for instance, it exists in the case of dia-
tonic seventh chords, but not diatonic triads. Interested readers are invited to explore this.
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Figure 9.3.13 
Canons in the 

fi rst movement 

of New York 

Counterpoint 

(a). The canonic 

upper voices 

reorder the last 

three pitches, so 

that a different 

note is held in 

each part (b).

Figure 9.3.14 Canons in the second movement of New York Counterpoint. The paired voices 

play almost exactly the same music, the one exception being starred at the end of the second 

measure of the second staff.
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Before moving on, I should mention the fascinating relationship between the 

 harmonic and rhythmic structures in Reich’s music. Since New York Counterpoint is 

written in twelve-beat measures, its various rhythmic patterns are structurally analo-

gous to familiar equal-tempered chords. For example, the opening measure of the 

third movement contains attacks on beats 0 (the downbeat), 2, 4, 5, 7, 9, and 11 (Fig-

ure 9.3.15). As pitch classes, these are the C diatonic scale.24 Figure 9.3.15 shows that 

the fi rst canon enters at a delay of two eighth notes, which means that there are fi ve 

common attack points between the original rhythm and its canonic statement; this is 

the rhythmic analogue to the fi ve common tones between C and D major. Thus, just 

as Reich frequently juxtaposes scales that share nearly all of their notes, so too do his 

rhythmic canons often maximize (or nearly maximize) their common attack points. 

It would be an interesting project to trace this parallelism more carefully, with an 

Figure 9.3.15 
Canons in the 

third movement 

of New York 

Counterpoint.

24 For more on the pitch-class/rhythm isomorphism see Babbitt 1962, Pressing 1983, and Cohn 1992b. 
Note that, for simplicity, I am just talking about the rhythm in the fi rst measure of the two-measure pattern.

Figure 9.3.16 The scales in the 

third movement of New York 

Counterpoint, graphed on an 

extended version of the two-

dimensional scale lattice.



history and analysis336

eye toward understanding the relationship between these two musical domains. For 

instance, it is suggestive that the fi rst explicit appearance of the “diatonic rhythm” in 

New York Counterpoint occurs precisely at the introduction of the fi rst nondiatonic 

pitch collection.

9.3.5  Reich’s The Desert Music, Movement 1 
(1984)

The Desert Music, for orchestra and chorus, explores the ideas in New York Counter-

point on a much grander scale.25 As in New York Counterpoint, the fi rst movement 

opens with pulsating eighth-note chords, moves eventually to rhythmic canons, and 

concludes by synthesizing the two textures.26 The music begins with four repetitions 

of a fi ve-chord sequence, stated in pulsating eighth notes, with the chorus singing the 

syllable “de.” Figure 9.3.17 shows that the vocalists’ chords contain fi ve or six pitch 

classes and suggest a number of familiar scales: the fi rst belongs to Ef acoustic and F 

harmonic major; the second to Ef acoustic and Af diatonic; the third to Ef acoustic 

and Bf whole tone; the fourth to Cs harmonic major and B acoustic; and the fi fth to 

C and F diatonic. The instrumental parts add extra notes, creating a series of six- and 

seven-note sonorities (Figure 9.3.18). The fi rst, third, and fourth sound like altered 

dominants, by virtue of combining a major third and minor seventh; the second and 

fi nal chords sound like extended minor chords.

The logic of this opening progression can be clarifi ed by imagining that it 

begins “in medias res,” with the true (and hidden) starting point being the fi nal D 

dorian. We then have a sequence of fi ve scales that move effi ciently and in a fl atward 

direction: D dorian, F harmonic major, Af diatonic, Ef acoustic, and a “strange” scale 

25 I am indebted here to Quinn (2002), who discusses scale-to-scale voice leadings in Reich’s music. 
Callender 1998 and Morris 1987 are also relevant.

26 Interestingly, the middle movement of The Desert Music contains the same rhythmic pattern as the 
middle movement of New York Counterpoint, suggesting that the later piece consciously reuses ideas from 
The Desert Music.

Figure 9.3.17 Reich’s The Desert 

Music opens with a sequence of fi ve 

chords in the chorus, each suggesting a 

variety of scales.
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F-G-Af-Bff-C-Df-Ef.27 (Note the resemblance to Shostakovich’s prelude and fugue, 

which also moves fl atward through closely related scales.) Both the effi cient voice lead-

ing and the fl atward tendency are clear on Figure 9.3.19a, which represents the modu-

lations on our three-dimensional scale lattice. (Since the strange scale does not appear 

on the lattice proper, I have added it to the bottom of the graph using dotted lines.) It 

is also clear why Reich begins with F harmonic major rather than D dorian: by reserv-

ing the most dramatic harmonic shift for the end of the phrase, he creates a striking 

Figure 9.3.18 (1 of 2) A reduction of Reich’s The Desert Music, movement 1.

27 This strange scale can be understood as an Af diatonic collection with lowered second scale degree; 
it is somewhat reminiscent of the jazz “altered scale,” the fourth mode of the acoustic collection.
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cadential “brightening”—as if the clouds had suddenly parted to reveal a glittering 

blue sky, illuminated by a ray of D-dorian sunshine.28

The second half of the movement cycles through similar scales while introduc-

ing both freely composed choral parts and Reich’s trademark rhythmic canons. The 

canons start in F mixolydian, a scale not previously heard in the piece. The music 

then articulates a series of single-semitone voice leadings, from F mixolydian to Ef 

acoustic to Af diatonic and back to Ef acoustic. From there the modulations become 

more dramatic as we move to a mode of B acoustic by a four-semitone shift. (This 

mode, called “F altered” by jazz musicians, is connected to the “strange” scale by two-

semitone voice leading; it can be understood as a “normalization” of this earlier scale, 

since both harmonize the fi ve-note choral chord F-Af-A-Df-Ef.) In Figure 9.3.19b, I 

map this second part on the scale lattice. Once again it is clear that the music moves in 

a generally descending (fl atward) direction, frequently exploiting effi cient voice lead-

ing between nearby scales. Figure 9.3.19 clarifi es at a glance the similarity between 

the modulations in the two parts of the piece—a relationship that would be rather 

tedious to describe verbally.

Figure 9.3.18 
(2 of 2) A 

reduction of 

Reich’s The 

Desert Music, 

movement 1.

28 It is interesting that for both Reich and Shostakovich, the dorian mode represents a comparatively 
bright tonality—as if their scalar palette had been shifted toward the darker end of the harmonic spec-
trum.
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The fi fth and fi nal movement of The Desert Music returns to these ideas, cycling 

through the same basic scalar progression eight more times, and ending with the puls-

ing chords of the opening. The beginning of the movement is particularly interesting: in 

Figure 9.3.20, I show that it moves between four different modes, each suggesting an Ef 

dominant sonority—Ef acoustic, Ef mixolydian, Ef mixolydian f6, and Ef whole tone 

plus Af. It is signifi cant that the “whole-tone plus one” scale appears almost exactly as 

it did in New York Counterpoint: tritone motion in the bass transforms a mixolydian f6 

mode (missing its fourth scale degree) into a “whole-tone plus one” scale sharing six of 

its seven notes. In fact, Figure 9.3.21 traces the passage on the same graph we used to rep-

resent New York Counterpoint, showing that it explores very similar harmonic territory. 

Here we see clear evidence of a common practice linking one Reich piece to another, and 

more generally to a broader tradition of twentieth-century scalar thinking.

9.3.6  The Who’s “I Can’t Explain” (1965) and 
Bob Seger’s “Turn the Page” (1973)

Figure 9.3.22a shows the chords in the Who’s “I Can’t Explain.” The verse is con-

structed around a I–VII–IV progression in E mixolydian, while the chorus is a stan-

dard I–vi–IV–V progression in E major. The two parts of the song therefore involve 

Figure 9.3.19 Scales in The Desert Music, movement 1. (a) The progression of scales from 

R5–R9, and (b) the progression from R20–R44. The progression from R45–54 is the same as 

that in (b), but without Bf diatonic (F mixolydian).
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Figure 9.3.20 
A summary of 

the opening The 

Desert Music, 

movement 5.

Figure 9.3.21 Scales in the opening The Desert Music, movement 5.

a single-semitone change over a fi xed tonic, exactly analogous to the opening of 

Debussy’s “Des pas sur la neige.”29 Bob Seger’s “Turn the Page,” shown in Figure 

9.3.22b, is a kind of dorian-mode dual to The Who’s song. The verse contains virtu-

ally the same chord progression, i–VII–IV–i, though with a minor tonic rather than 

major. (Note that The Who’s mixolydian and Seger’s dorian modes are related by 

the single-semitone shift Gs®G.) At the end of the chorus, Seger switches briefl y to 

natural minor, employing a standard rock VI–VII–i progression.

29 In Debussy’s prelude, the semitonal voice leading Bf®B connects D natural minor to D dorian; here 
the voice leading D®Ds connects E mixolydian to E major.
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Of course, these two songs have been arbitrarily selected from among thousands 

that use closely related modes. I cite them chiefl y to make the point that the pro-

cedures we have been discussing have entered the musical vernacular: not only can 

they be found in works of self-conscious “art music,” but also in fi lm music, jazz, rock, 

and no doubt in other styles as well. At this point in musical history, it is totally unre-

markable to fi nd musicians of virtually any stripe exploiting effi cient voice leadings 

between the full range of diatonic modes. Scale-fi rst composition, in other words, is 

simply an accepted part of our contemporary tonal language.

9.4 the subset technique

We now turn to the subset technique, whereby a composer uses scales that all contain 

some prominent collection of notes. These notes are held fi xed and remain stable 

across scale changes, while the remaining notes are “mobile” and are altered to form 

a variety of different collections.30

9.4.1  Grieg’s “Klokkeklang” (“Bell Ringing”), 
Op. 54 No. 6 (1891)

Figure 9.4.1 presents the opening of the “Klokkeklang,” one of Grieg’s most unusual 

and inventive works.31 Discarding functional harmony in favor of open fi fths, the 

piece creates an austere soundworld that perfectly captures the effect of distant tin-

tinnabulation. The fi rst phrase is in C diatonic, featuring a C-G/F-C drone in the 

left hand and a series of (mostly) descending parallel fi fths in the right. The phrase 

is comprised of four two-measure groups, each immediately echoed. The fi rst two 

“echoes” fi ll in the bare fi fths of the right hand with an additional note, forming dia-

tonic triads; in the third “echo” the right hand is transposed down by step, while the 

ostinato shifts downward by minor third, leading to a cadence on G.

30 Clark (2002) discusses the subset technique in Schubert’s music, but applied to chords rather than 
scales.

31 For another perspective, see Sutcliffe 1996.

Figure 9.3.22 Scales 

in The Who’s “I Can’t 

Explain” (a) and Bob 

Seger’s “Turn the 

Page” (b).
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In the second phrase, outlined by Figure 9.4.2, the ostinato shifts to G-D-A, and 

the fi fths ascend by diatonic third.32 The echoing process is now extended, with each 

two-measure idea appearing four times: as in the fi rst phrase, the fi rst echo fi lls in 

the bare fi fth with an additional note, but the second and third echoes repeat the 

preceding four measures with added sharps. (This sort of systematicity evokes the 

algorithmic practice of “change ringing,” which in turn anticipates the music of later 

composers such as Nancarrow, Reich, and Ligeti.) As shown in Figure 9.4.2, the right 

hand combines with the ostinato bass to form two different diatonic collections: the 

white-note C diatonic and the two-sharp D diatonic. We can think of the music as 

containing fi ve “fi xed” pitches D-E-G-A-B and two “mobile” pitches F/Fs and C/Cs.

The end of the phrase brings a surprise: when the white-note collection ascends 

by thirds to B5, completing the diatonic circle of thirds, its echo adds a Gs that cre-

ates an A diatonic collection. This Gs clashes with the Gn and A in the ostinato, 

creating a mild polytonal dissonance.33 (It is possible that Grieg meant this G/Gs 

clash to evoke the bells’ inharmonicity.) The climactic gesture concludes with a long 

passage in which the fi fths descend by diatonic thirds, from E5-B5 to G3–D4. Once 

again, there is a clash between different forms of a note in different registers: the top 

note of the gesture (Bn) suggests C diatonic, while the bottom note (Bf) suggests F 

diatonic. The next two measures present a pair of mysterious sonorities, G minor and 

F augmented. As shown in Figure 9.4.2, these combine with the ostinato to imply D 

harmonic minor, here missing only its En. The fi nal chord “normalizes” Cs to Cn, 

preparing for the recapitulation.

Surveying the whole of Grieg’s piece, then, we can say that there are three “fi xed” 

notes (D, A, E) and four “mobile” notes that can appear either infl ected or unin-

Figure 9.4.1 The opening of Grieg’s Lyric Piece “Klokkeklang” (Bell Ringing), Op. 54 No. 6.

32 Note that the tonal center shifts to D before the scale itself changes, a possibility discussed in  §4.5.
33 As in much polytonal music, the different scales are clearly distinguished by register: all the 

notes below E5 belong to D diatonic, while those above A2 belong to A diatonic. Furthermore, the 
wide registral separation between the Gs5 in the right hand and the clashing G3 in the left amelio-
rates the sense of dissonance, creating a sense of independent auditory streams, each with its own 
macroharmony.
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fl ected (Bf/B, F/Fs, C/Cs, and G/Gs). The play of infl ections suggests a variety of 

different scalar collections, each stated fairly explicitly: C diatonic, D diatonic, A 

diatonic, F diatonic, and D melodic minor. (Figure 9.4.3 shows that these fi ve collec-

tions are all contained within two adjacent cubes of the scale lattice.) The piece pro-

gresses from a neutral “white-note” state in which all notes appear uninfl ected, to a 

climactic section in which all four infl ections are presented within the span of eleven 

measures (mm. 43–53). Interestingly, 

the B section begins by contrasting two 

scales that are close but not adjacent on 

the lattice (C and D diatonic), with the 

separation increasing as the music pro-

gresses: D diatonic moves sharpward 

to A diatonic, while C diatonic moves 

fl atward to F diatonic, and thence to the 

nondiatonic D harmonic minor (see 

the arrows in Figure 9.4.3). This pro-

gression brings to mind a pistol duel, 

in which the participants begin back to 

back and walk several paces away from 

each other.

9.4.2  “Petit Airs,” from 
Stravinsky’s Histoire 
du Soldat (1918)

Stravinsky’s “Petit airs au bord du ruisseau” exhibits an easygoing folksiness, depict-

ing a wandering soldier relaxing by a brook, enjoying his newfound (and hard-to-

tune) fi ddle. On the surface, the music would seem to have nothing to do with Grieg’s 

austere tone painting. But when we dig deeper, we fi nd that there are interesting 

resemblances between the pieces, beginning with their ostinati: the double bass in 

“Petit airs” plays a “walking” motif G-D-A-G that outlines the same three pitch classes 

as those in the B section of Grieg’s “Klokkeklang” (Figure 9.4.4). As in Grieg’s piece, 

Stravinsky seems to divide his pitch material into “fi xed” notes that always appear in 

the same form (G-D-A-E-B) and “mobile” notes that can either be infl ected or unin-

fl ected (F/Fs, C/Cs). Not surprisingly, Stravinsky juxtaposes these “mobile” notes 

Figure 9.4.2 
A reduction 

of the central 

section of 

“Klokkeklang.”

Figure 9.4.3 
Scales in 

“Klokkeklang.”
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more freely than Grieg, often assigning different accidentals to different instruments: 

for instance, in mm. 29–37, shown in Figure 5.6.9, the clarinet and bassoon play in 

D diatonic while the violin adds Fn and Cn, creating two tonally distinct “strata.” 

Polytonality, which occurs only fl eetingly in “Klokkeklang,” is much more pervasive 

in Stravinsky.

There are four familiar scales that contain the fi ve “fi xed” notes, and they can 

all be represented by a square face of our scale lattice (Figure 9.4.5). Like Grieg, 

Stravinsky systematically explores the scales that can be constructed in this way. 

Figure 9.4.4 shows that each of the collections appears prominently in “Petit airs.” 

Particularly noteworthy are mm. 53–60, which pres-

ent an explicit statement of the G acoustic collection. 

(See the bottom system of Figure 9.4.4.) This non-

diatonic scale acts somewhat like Grieg’s D harmonic 

minor, providing a striking point of contrast with the 

surrounding diatonic and polytonal music.

Figure 9.4.4 
Scales in 

Stravinsky’s 

“Petit airs,” 

from Histoire du 

soldat.

Figure 9.4.5 
“Petit Airs” uses 

the diatonic and 

acoustic scales 

combining F/Fs 

and C/Cs.
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9.4.3 Reich’s City Life (1995)

The third movement of Steve Reich’s City Life features a repeating ostinato built 

upon the fi fth D-A. The movement is divided into three sections, each beginning 

with the sampled words “It’s been a honeymoon.” (The unhappy tone of the sampled 

voice creates a striking contrast with the text’s meaning.) After about 20 seconds, the 

remaining instruments enter, fi lling out the D-A fi fth with scale fragments. Figure 

9.4.6 shows that these fragments suggest D lydian, the fourth mode of A harmonic 

minor, and D mixolydian. Reich’s music therefore exemplifi es, in a particularly obvi-

ous and systematic fashion, the same procedures at work in both Grieg and Stravin-

sky. Once again, we have a set of “fi xed” scale degrees stacked in fi fths, fi lled out by 

additional “mobile” degrees that appear in a variety of forms.34

The resemblances among Grieg’s “Klokkeklang,” Stravinsky’s “Petit airs,” and 

Reich’s City Life might initially seem to be completely fortuitous, purely superfi cial 

similarities with no deeper signifi cance. But in fact, there are important historical and 

musical connections among the three composers. At a purely musical level, all three 

were interested in exploring alternatives to functional harmony, while stopping short 

of complete atonality. In particular, all three embraced a wide variety of scales and 

modes, and devised creative ways to generalize traditional modulatory procedures.35 

And then there are specifi c historical connections as well: Grieg was an important 

infl uence on Ravel, whose music in turn was important to Stravinsky; and both Stra-

vinsky and impressionism infl uenced the language of jazz, which was in turn impor-

tant to Reich.36 So it should perhaps not be terribly surprising to fi nd these three 

composers mining similar musical territory.

Indeed, it would not be too surprising even if there were no historical connec-

tions among them. For as we have seen in Part I, the familiar scales of the Western 

tradition—such as the diatonic, acoustic, and harmonic scales—are in many ways 

natural objects of musical exploration. Furthermore, the idea of writing music that 

exploits scales containing a particular fi xed subset is reasonably intuitive, and we 

can well imagine each composer happening upon it independently. Thus, rather 

than considering the resemblances among our three pieces to be insignifi cant coin-

34 Reich’s movement again uses the “diatonic rhythm” {0, 2, 4, 5, 7, 9, 11}. The music opens by setting 
this rhythm in canon with itself at a distance of an eighth note. This is analogous to combining the C and D 
major scales, and leads to fi ve shared attacks. Later in the piece, the canonic distance increases to a quarter 
note, analogous to combining C and E diatonic collections, which decreases the number of shared attacks 
to three. The music thus exhibits a common Reichian technique of moving from relative rhythmic align-
ment toward increased disalignment. See Cohn 1992.

35 See Tymoczko 1997, 2002, 2003a, 2006.
36 See, among many other sources, Herresthal 2005 and Strickland 2000.

Figure 9.4.6 A summary of Steve 

Reich’s City Life, movement 3.
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cidences, I prefer to think of them as symptomatic of shared musical concerns cross-

ing stylistic boundaries.

9.4.4  The Beatles’ “Help” (1965) and 
Stravinsky’s “Dance of the Adolescents” 
(1913)

In “Help!,” John Lennon’s lead vocal largely confi nes itself to the fi rst fi ve pitches of 

the A major scale, with a sixth note (Fs) appearing only in the song’s introduction 

(Figure 9.4.7). This simple melody, almost obsessive in its repetitiveness, becomes a 

fi xed set of pitches that are contextualized within two different scales, A major and A 

mixolydian. Here timbre reinforces the distinction between the fi xed subset and the 

mobile pitches: the lead vocal confi nes itself to the fi xed notes, while both the guitar 

and backup vocals articulate the mobile pair G/Gs. (Note that the resulting scales, A 

major and A mixolydian are the only two diatonic collections containing the fi xed 

pitches.) Particularly interesting is the mixolydian cadence that accompanies the lead 

vocal D®Cs: in the key of A major, melodic D®Cs would likely be harmonized with 

V7–I; in “Help!,” however, this archetypal schema is replaced by a striking modal pro-

gression in pure major triads, D–G–A. (This technique, whereby common melodic 

schemas are modally reharmonized in pure triads, seems characteristic of the Beatles 

in particular and rock music more generally.) Note also that the opening progression 

b–G–E7, familiar from §3.10, links three chords that share the notes B and D; it again 

introduces the seventh chord precisely when the root motion changes from major 

third to minor third.

Stravinsky’s “Dance of the Adolescents” uses a somewhat more abstract version of 

the same technique, in which it is not particular notes that are held fi xed, but rather 

more abstract intervallic patterns. The scales in Figure 9.4.8a share the major penta-

chord {G, A, B, C, D}, and hence are related by the subset technique. Those in Figure 

9.4.8b do not share any fi ve-note subset; nevertheless, they are audibly similar by 

virtue of the fact that they all contain some major pentachord—that is, they contain 

a fi ve-note segment that is transpositionally equivalent to {G, A, B, C, D}. Just as two 

major scales sound very similar, by virtue of being transpositionally related, so too 

do these scales sound somewhat similar by virtue of the fact that they contain large, 

transpositionally related subsets. (Or to put it another way, the scales all contain the 

Figure 9.4.7 A sketch 

of the Beatles song 

“Help!” The upper 

staff contains the 

notes in the lead vocal 

line, while the lower 

staff outlines the 

harmonies.
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interval pattern 2-2-1-2.) This is particularly true when the composer chooses to 

emphasize these subsets in some salient way.

In the “Dance of the Adolescents,” the major pentachord forms the basis of the 

folksy theme shown in Figure 9.4.9. (Here A is the tonic, suggesting natural minor 

or dorian.37) The theme can be embedded within familiar scales in three ways: we 

can add E and F, producing A aeolian; we can add E and Fs, producing A dorian; or 

we can add Ef and F, producing the “locrian s2” mode of F acoustic.38 These scales 

can then be transposed to produce three general modal categories, aeolian, dorian, 

and locrian s2. Figure 9.4.10 shows that the folksy theme appears in each of these 

modal contexts in the second half of the “Dance of the Adolescents.”39 Since each of 

our three mode types appears at least once, we can say that Stravinsky exhaustively 

exploits the various ways of embedding his theme in familiar modal contexts.

Though it might again seem fanciful to compare Stravinsky to the Beatles, the 

resemblance is upon refl ection relatively clear. Both “Help!” and “The Dance of the 

Adolescents” exploit melodic material that is deliberately simple or even primitive. 

Indeed, in both pieces the fi xed material is remarkably similar, with the fi xed pitches 

being A-B-Cs-D-E-(Fs) in “Help!” and the fi xed intervallic pattern being 2-2-1-2 

Figure 9.4.8 The subset 

technique in its concrete (a) and 

abstract (b) forms.

37 This folksy melody seems to be original to Stravinsky. For an extended discussion of Stravinsky’s 
borrowings, see Chapter 12 of Taruskin 1996.

38 A fourth possibility combines Ef and Fs, producing a mode of G harmonic major; here, however, 
the augmented second is melodically awkward. The three possibilities in the main text represent the only 
way to embed the theme in a scale whose steps are at most two semitones large, and whose thirds are at 
least three semitones large (§4.4).

39 In each case, the music also adds some characteristically Stravinskian polytonal elements, such as 
bassoon trills foreign to the underlying scale; nevertheless, the underlying scales are fairly clear. Note also 
that consecutive scales, such as G locrian s2, Bf dorian, and Bf natural minor, are often linked by mini-
mal voice-leading. Interestingly, Stravinsky uses both of the single-semitonal voice leadings connecting 
acoustic and diatonic scales, one of which preserves the fi xed subset (R31–32) and one of which does not 
(R25–27).

Figure 9.4.9 The folk-like melody used in the “Dance of 

the Adolescents.”
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Figure 9.4.10 Stravinsky presents his folk-like melody in fi ve scalar contexts.

in “Dance of the Adolescents.” Both pieces contextualize this simple melodic mate-

rial within musical textures that are anything but primitive, adding sophisticated 

 harmonies, countermelodies, and orchestrational embellishments. (In fact, both 

pieces use Debussyian parallel triads, the fi rst in the chorus’s vocal harmonies, the 

second in the orchestral wash.) And both pieces use an expanded scalar vocabulary 

in which scalar and chromatic transposition are available, and in which ionian and 

mixolydian are more or less on equal footing. (Note that by ignoring transposition 
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and centricity, we can see that both pieces augment their “fi xed” pitches in essen-

tially similar ways, extending A-B-Cs-D-E with either G or Gs to form two  different 

 diatonic  collections.) All of which is just to say that both pieces make relatively 

straightforward use of the possibilities afforded by an expanded scalar vocabulary.

9.4.5  The Miles Davis Group’s “Freedom Jazz 
Dance” (1966)

We’ll close with what might seem like a trivial example of the subset technique, one in 

which the shared collection is a perfect fi fth—or maybe just a single note. The Miles Davis 

Group’s “Freedom Jazz Dance,” from the album Miles Smiles, consists in a series of impro-

visations over a static Bf harmony. Although one might casually say that the piece is “in 

Bf,” this description masks an important subtlety: it is actually in a variety of Bfs, since 

the soloists interpret the tonic drone differently. The piece thus provides an interesting 

improvisational counterpart to the precomposed music we have been considering.

Since it would take us too far afi eld to discuss the entire piece, a few brief remarks 

must suffi ce. The bass line, played by Ron Carter, is based on Bf and often features 

fourths-based riffs such as F-Ef-Bf. The harmonic accompaniment, played by Her-

bie Hancock, often uses chords such as E-Bf-Ef, drawn from the blues scale on Bf 

(Bf-Df-Ef-En-F-Af). Hancock’s relatively sparse accompaniment leaves the soloists 

plenty of freedom, and they respond by “coloring” the Bf drone in a variety of ways. 

Figure 9.4.11 provides a series of excerpts from the solos, showing that the improvis-

ers play a number of familiar scales—Bf natural minor, Bf melodic minor ascending, 

Bf mixolydian, Bf acoustic, Af harmonic minor, and the Bf-Cf octatonic scale. (Of 

course, there is also a lot of nonscalar playing in the piece as well.) From the standpoint 

of the current chapter, the interesting point is that the Miles Davis Group’s notion of 

“being in Bf,” like Debussy’s notion of being “in D,” is general enough to encompass 

natural minor, dorian, the acoustic scale, and even the octatonic. In other words, the 

relevant conception of tonality is not the major-minor system of the eighteenth and 

nineteenth centuries, but rather the extended scalar system of the twentieth.

9.5  conclusion: common scales, 
common techniques

In this chapter, we have seen numerous appearances of scales such as the acous-

tic and octatonic. When I fi rst started thinking seriously about twentieth-century 

tonality, I was amazed to fi nd so many different composers using such similar scales. 

Why do these collections reappear in so many different styles? Was there a kind of 

underground commerce in scales, with composers cluing each other in to their most 

important discoveries? Did Debussy and Stravinsky talk scales and modes during 

their conversations in Paris? Did George Gershwin teach impressionist techniques 

to the early beboppers? Did Steve Reich learn the “altered scale” from some jazz har-

mony book? The alternative, that so many different composers had independently 
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Figure 9.4.11 Excerpts from the solos in the Miles Davis Group’s version of “Freedom Jazz 

Dance.” Miles Davis favors traditional Bf minor scales, Wayne Shorter makes heavy use of Bf 

acoustic, and Herbie Hancock uses even more exotic octatonic and harmonic minor scales. 

(Asterisks indicate notes outside the scale.)

found their way to the same basic collections, seemed even more improbable: for how 

could so much haphazard investigation converge on such similar outcomes?

Now, of course, this strikes me as considerably less surprising. Although there 

may have been some composer-to-composer commerce in scales, we can explain the 

 convergence without it. After all, one of the main claims of Chapter 4 is that  traditional 

scales are overdetermined, with a variety of different considerations pointing toward 

the same basic scalar collections—viz. familiar scales divide the octave relatively 

evenly, contain large numbers of consonant intervals, avoid consecutive semitones 

while having relatively small gaps between their successive notes, and are generally 
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optimal from a variety of independent perspectives. Thus we should not be aston-

ished to fi nd composers of different stylistic proclivities using octatonic or acoustic 

scales. Of course composers would independently fi nd their way to these collections—

much in the way that different mountain climbers tend to follow the most obvious 

routes up a particular cliff.

This is not to say that these scales are the only important ones, or that all twen-

tieth-century tonal music makes use of them. Some tonal composers, including 

Messiaen and Shostakovich, constructed idiosyncratic scales that do not possess 

the virtues I have highlighted. (Messiaen used seven symmetrical “modes of limited 

transposition” whereas Shostakovich sometimes constructed ad hoc modes out of 

octatonic and other scale fragments.) Others—particularly “neoclassical” compos-

ers—eschewed nondiatonic scales in favor of a pervasive (and occasionally somewhat 

brittle) diatonicism. Still others created polytonal effects by superimposing multiple 

scales at the same time, leading to musical textures poised delicately between tonality 

and atonality. There is plenty of variety in twentieth-century tonal music, with scalar 

procedures playing only one part in an ensemble cast.

Nevertheless, it is striking that at least three major twentieth-century tonal styles—

impressionism, jazz, and postminimalism—make use of the same basic collection of 

nondiatonic scales and modes. These scales, along with the three techniques in this 

chapter, constitute a twentieth-century “common practice” that is larger than any 

particular tonal composer, and indeed than any particular tonal style. Although the 

outlines of this common practice may be less clear than the outlines of earlier com-

mon practices, its very existence indicates that the difference between the nineteenth 

and twentieth centuries is more a matter of degree than of kind. The naive contrast 

between nineteenth-century homogeneity and twentieth-century individualism is 

misleading: if there is an enormous harmonic gulf between Mussorgsky and Johann 

Strauss, then there are also interesting threads of continuity between Debussy, jazz, 

and Reich. Indeed, I would go so far as to say that the scales and techniques described 

in this chapter represent the single most interesting example of a twentieth-century 

tonal common practice—one that results not just from conscious imitation, but also 

from a simultaneous convergence on an intrinsically fertile territory.



chapter 10

Jazz

This last chapter reviews some central features of jazz harmony, emphasizing con-

nections with earlier styles. For reasons of space, I focus on a collection of ideas 

that evolved in the late 1950s and early 1960s, and that now form a kind of lingua 

franca for contemporary improvisers. My goal is to show that jazz synthesizes the 

contrapuntal preoccupations of late nineteenth-century chromaticism with the 

scale-based procedures of early twentieth-century modernism, creating a contem-

porary “common practice.” This common practice has infl uenced composers such 

as Steve Reich and John Adams, resulting in a network of relationships that cross 

the boundaries between notated and non-notated music (sometimes called “seri-

ous” and “popular”). Given these pervasive infl uences, it is reasonable to wonder 

whether we make too much of the boundaries between styles: if jazz is both inheri-

tor of early modernism and progenitor of late twentieth-century postminimalism, 

then at what cost do we segregate it from “legitimate” concert music? My answer 

is that the cost is large indeed. We can obtain a full picture of twentieth-century 

tonality only by considering notated and non-notated music as part of an integral 

tradition.1

In saying this, I do not mean to efface the obvious differences between impro-

vised and notated music, but rather to suggest that we sometimes take these dif-

ferences too seriously. Ask yourself whether a highly avant-garde composer like 

Xenakis is more or less like Debussy than is an improvising musician like Bill 

Evans. True, both Xenakis and Debussy use notation, but once we move past this 

fact there are few similarities in their specific approaches to melody, harmony, 

and rhythm. Meanwhile, Bill Evans is an improviser who self-consciously bor-

rowed ideas from impressionism, whose chords and scales relate to Debussy’s 

in very clear ways, and who helped transmit certain musical techniques from 

Debussy to late-twentieth-century tonal composers. From this point of view, it 

seems short-sighted to say that Schoenberg, Xenakis, and Lachenmann “belong 

with” Grieg and Debussy, simply because they all happen to use musical notation. 

To say so is to fetishize superficial resemblances at the expense of more profound 

and purely musical connections.

1 For an alternative approach, see Taruskin 2005, which attempts to treat the notated tradition in iso-
lation from other styles.
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10.1 basic jazz voicings

Basic jazz harmony derives from an elementary voice-leading schema fi rst described in 

Chapter 7, in which fi fth-related diatonic seventh chords are connected by descending 

stepwise voice leading. Figure 10.1.1 moves the schema up by diatonic third, so that 

it connects the four upper voices of a series of ninth chords. Here we have a fi ve-voice 

passage in which the bass leaps while the upper voices move by step. Figure 10.1.1c 

embellishes this pattern once more, suspending the ninth of the ii9 chord into the 

dominant and replacing the seventh of the tonic sonority with a sixth.2 The resulting 

chords are fundamental to modern jazz, and are sometimes called the A and B “left 

hand” voicings, as they leave the pianist’s right hand free to improvise (Figure 10.1.2).

Figure 10.1.1 (a) A basic nineteenth-century voice-leading schema, linking fi fth-related 

diatonic triads by stepwise voice leading. (b) The same schema, now interpreted as the upper 

four voices of a sequence of ninth chords. (c) A variant that suspends the ninth of the ii chord 

into V, forming a thirteenth; the note B in the Cmaj9 chord is also replaced with A, so that all 

four upper voices move down by step from V to I.

Figure 10.1.2 The “left hand voicings” in their 

A and B forms.

2 The form E-G-B-D does appear, though E-G-A-D seems to be preferred. (See McGowan 2005 on 
“dialects of consonance” in jazz.) This preference is sometimes attributed to the desire to avoid the minor 
ninth that can result when a melodic C is played above the chordal B. However, the change may also refl ect 
the fact that the voicing E-G-A-D is a diatonic “fourth chord”(§10.2). Relevant here is the fact that a dia-
tonic seventh chord like E-G-B-D is already somewhat “fourthy,” as it contains two component fourths 
(B-E and D-G) and can be written as a stack of fourths with one missing note (that is, as B-E-[A]-D-G). 
When substituting E-G-A-D for E-G-B-D, a jazz musician can use effi cient voice leading to change E-B 
into E-A, heightening the fourthiness without drastically changing the sound of the chord.
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Since each of these chords contains all but two of the notes in the diatonic scale, 

jazz pedagogues sometimes describe chord voicings negatively, by identifying the dia-

tonic notes that a particular chord should not contain: for example, they say that a ii 

voicing can contain any diatonic note except the leading tone; that a V voicing can 

contain any diatonic note except the tonic; and that the I voicing can contain any 

diatonic note except the fourth scale degree. These forbidden tones are sometimes 

called “avoid” notes, indicating that they should be avoided if a chord is to have a 

particular harmonic function.3 The underlying idea is that there are certain basic 

voice-leading motions that are essential to defi ning harmonic function: the intro-

duction of scale degree 4 as one moves from tonic to predominant, the resolution 

^1®^7 as one moves from predominant to dominant, and the resolution ̂4®^3 coupled 

with the return of scale degree 1, as one progresses from dominant to tonic (Figure 

10.1.3). “Avoid notes” obscure this skeleton by introducing certain notes prematurely. 

(For instance, including the leading tone in the ii chord tends to blur the difference 

between predominant and dominant, just as includ-

ing the tonic note in V tends to blur the difference 

between dominant and tonic.) The advantage is that 

this approach conveys the freedom inherent in jazz: 

as long as the fundamental voice-leading skeleton is 

reasonably clear, notes can be freely added without 

disturbing the effect of functional harmony.4 Indeed, 

even the basic voice-leading skeleton can sometimes 

be slightly obscured, as in Figure 10.1.4.

This sort of harmonic fl exibility would lead to inco-

herence, were it not for several important facts. First, 

jazz makes extremely heavy use of root position chords, 

providing unambiguous clues as to a chord’s identity.5 

3 The term “avoid note” is often associated with Mark Levine (1989), though he says he heard it at 
Berklee in the 1950s.

4 It is interesting that the ascending semitonal resolution of the leading tone, so central to classical 
harmonic practice, is not among the basic voice-leading motions in jazz.

5 Temperley (2007) makes the same point.

Figure 10.1.3 The basic 

voice-leading structure of 

the ii–V–I. As long as these 

contrapuntal motions are 

clear, the schema can be 

embellished with a large 

variety of additional notes.

Figure 10.1.4 The schema in Figure 10.1.3 need not always be presented in its entirety. In (a) 

the root of the V chord is transposed by tritone; while in (b) the leading tone is absent from 

the V chord. In both examples, the open noteheads show tones involved in the basic schema 

of Figure 10.1.3.
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Second, where classical composers use many highly similar chord progressions (such as 

I–IV–vii°–I and I–ii–V–I), jazz musicians tend to use the ii–V–I schema almost to the 

exclusion of the others. This prevents confusion between chords with closely related 

pitch content. Third, jazz tunes typically repeat the same chord progressions over and 

over, giving listeners many opportunities to identify a tune’s harmonic structure. Fur-

thermore, many jazz compositions reuse the same progressions: ostensibly distinct 

tunes like “Oleo,” “Anthropology,” and “Rhythm-a-ning,” all use the chord progression 

from George Gershwin’s “I Got Rhythm”; while others, including “Au Privave,” “Blue 

Monk,” and “Collard Greens and Black-Eyed Peas,” use variants on the standard blues 

progression. (In fact, the blues and “rhythm changes” together account for a substantial 

fraction of the jazz repertoire.) Taken together, these simplifi cations make it much eas-

ier to identify jazz harmonies. And because listeners have a pretty good idea what chord 

is coming, improvisers can be correspondingly free in their harmonic embellishments.

Not surprisingly, the preceding ideas can sometimes be useful for analyzing twen-

tieth-century notated music.6 Figure 10.1.5 shows several classical anticipations of the 

jazz A and B voicings, while Figure 10.1.6 shows a series of six- and seven-note chord 

voicings, all avoiding precisely the notes that jazz pedagogy recommends. Furthermore, 

twentieth-century composers have a noticeable tendency to place the root in the bass 

of “extended” chords: pieces like Debussy’s “Sirènes” and Reich’s The Desert Music, for 

Figure 10.1.5 A and B voicings in classical music. (a) Ravel, “Forlane” from Le tombeau de 

Couperin, m. 130, presenting the A voicings on V and IV (upper staff). (b) Grieg’s Lyric Piece 

“Salon,” Op. 65 No. 4, m. 1 outlines the dominant B voicing with its ascending sixteenth 

notes. (c) The same piece has a variant of the A dominant voicing, in which the root of the 

chord replaces the ninth. (d) Scriabin’s Etude, Op. 65 No. 3. The four highest notes of the G7 

chord outline an A voicing.

6 See Tymoczko 1997, 2002, and 2003.
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example, consist largely of extended root position dominant chords, embellished with 

sevenths, ninths, and other tones.7 We should not, of course, be too surprised by such 

correspondences, both because of the historical connections between notated music 

and jazz, and because many of these principles are tantamount to common sense: it is 

only natural, when using extended sonorities, to want to avoid harmonic confusion by 

placing the root in the bass; just as it is only natural to want to clarify harmonic function 

by avoiding the tonic note in dominant voicings.

Figure 10.1.6 Concert-music chords that omit the jazz “avoid notes.” The fi rst three examples 

present tonic voicings that omit the fourth above the root. (a) Debussy’s “Sirènes,” m. 8. 

(b) Ravel Jeux d’eau, m.1 (c) Reich, Different Trains, movement 1. (d) A ii11–Vsus–I in Ravel’s 

“Rigaudon,” from Le tombeau de Couperin, mm. 1–2. The dominant voicing is a suspended 

chord, analogous to Figure 10.1.4b; as in jazz practice, the leading tone becomes the “avoid 

note” in the suspended chord. (e) An extended predominant in Ravel’s Pavane pour une 

infante défunte, mm. 67–68. ( f ) Altered dominant chords in the opening of Reich’s The 

Desert Music, movement 1, all conspicuously omitting the fourth above the root. (g) Debussy, 

Prelude to “The Afternoon of a Faun,” R10, is similar.

7 Some of the ideas in this section have been explored by Dan Harrison (1994) in the context of late nine-
teenth-century music. Like jazz pedagogues, Harrison argues that a chord with a prominent leading tone 
and fi fth scale degree can often be interpreted as a dominant chord, no matter what other notes it contains. 
However, he diverges from jazz pedagogy by interpreting tonal harmony as fundamentally triadic, and by 
taking IV to be the characteristic predominant. McGowan 2005 adapts Harrison’s ideas to a jazz context.
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10.2 from thirds to fourths

Traditional tonal theory teaches that harmonies are generated by extending thirds 

upward from the root. But as chords grow larger, their identity as stacks of thirds 

becomes less and less determinate. Postwar jazz musicians exploit this fact to recon-

ceive traditional chords as quartal rather than tertian in origin: for example, Figure 

10.2.1 rearranges the dominant and tonic A voicings as stacks of diatonic fourths, 

producing a distinctively modern feel. (A pianist might play these voicings when 

accompanying a soloist; guitarists—whose instruments are tuned in fourths—play 

them as a matter of course.) As shown in the fi gure, each voicing can be extended 

upward by one or two fourths before encountering an avoid note.

These quartal voicings suggest that we might want to look for a fourth-based pre-

dominant voicing as well. The most common option here, shown in Figure 10.2.2, is 

called the “ ‘So What’ chord,” since it appears prominently in Bill Evans’ playing on the 

Miles Davis tune of the same name. The “ ‘So What’ chord” consists of three perfect 

fourths and one major third, and is often encountered in the form shown in Figure 

10.2.2b, with the lowest note doubled in the soprano. (Guitar players will recognize 

this as the open strings of the guitar, tuned down a major second.) We, of course, rec-

ognize the chord as a stack of two-step intervals in the pentatonic scale. If we begin on 

a different pentatonic note—as in Figure 10.2.2c—we obtain all the various chords 

that insert a major third into a sequence of fi ve perfect fourths. (In each case, the 

chord exhausts the notes of a pentatonic scale.) Figure 10.2.3 combines a “ ‘So What’ 

chord” with quartal V–I voicings to produce a fourth-based version of the ii–V–I 

schema. Such quartal voicings have been important to jazz since the 1950s, and many 

pianists play three-note quartal voicings as a matter of course. Often associated with 

McCoy Tyner, they create an “open” feel that evokes the sound world of Stravinsky, 

Bartók, and Hindemith.8

Not surprisingly, the trend toward quartal voicings goes hand in hand with an 

increasing use of melodic fourths in solos. Passages in melodic fourths can occasion-

ally be found in the recordings of the 1940s, particularly by musicians associated with 

Lennie Tristano, but they become much more common in the early 1960s, largely 

Figure 10.2.1 The dominant 

and tonic A voicings 

reinterpreted as stacks of 

fourths. In (c) the stacks are 

extended until they reach an 

“avoid note.”

8 Scriabin’s “mystic chord” is often voiced as a stack of acoustic scale fourths: C-Fs-Bf-E-A-D. Fourths 
appear prominently in Stravinsky (Firebird Suite [1919], “Infernal Dance,” R26), Bartók (Out of Doors, 
movement 2), and Hindemith (Ludus Tonalis).
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through the infl uence of the John Coltrane Quartet. One way to create quartal melo-

dies is to use small collections of notes that are themselves stacks of fourths: by ran-

domly selecting notes from among a small stack-of-fourths collection, one will obtain 

a high proportion of fourths, allowing the improviser a degree of melodic freedom 

while still ensuring that the resulting music will sound reasonably “fourthy.”9 Figure 

10.2.4a presents a passage from the fi fth chorus of Keith Jarrett’s solo on “You and 

the Night and the Music” (from At the Deer Head Inn) in which the four-note stack 

of fourths {F, G, Bf, C} expands to a fi ve-note pentatonic scale in the last measure of 

the example. Figure 10.2.5, the opening of the tune “Freedom Jazz Dance,” is quite 

similar: here, a pentatonic arpeggio (F, Bf, Ef, G, C, F) is augmented by the note D to 

form a six-note stack of fi fths.10

In Chapter 4, we noted that the pentatonic scale is a minimal perturbation of 

a pure stack of fourths, returning to its starting point without passing through all 

twelve pitch classes (§4.4). It is interesting to think that similar considerations might 

play a role in explaining the more spontaneous improvisational choices made in 

1960s jazz. For suppose you are an improviser who would like to play melodic fourths 

Figure 10.2.2 Quartal predominant voicings. (a) The 

“So What” voicing. (b) The same voicing with the 

bass note doubled in the soprano. This is a complete 

stack of pentatonic thirds: D-F-G-A-C-D-F-G-A-C-D. 

(c) Other inversions of the “‘So What’ chord” begin the 

stack of thirds on a different note of the F pentatonic 

scale. Each voicing has four perfect fi fths and one four-

semitone “near fi fth.”

Figure 10.2.3 Quartal ii–V–I voicings 

played with both hands (a) and with the 

left hand alone (b).

 9 Two thirds of the intervals randomly selected from the notes F-G-C will be perfect fourths or fi fths, 
50% of the intervals in F-G-Bf-C are perfect fourths or fi fths, and 40% of the intervals in Ef-F-G-Bf-C 
are perfect fourths or fi fths.

10 Pentatonic scales also appear in early jazz, though their effect is more folksy than quartal. My sense is 
that the pentatonic playing in the 1960s is only loosely connected to these earlier procedures.
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in a largely diatonic environment: like the designer of scales, you have an interest in 

ensuring that your melodic fourths do not lead you too far away from the underly-

ing harmony (Figure 10.2.6). One natural solution is to incorporate a four-semitone 

“near fourth,” so that the sequence of intervals returns to its starting point after just 

fi ve notes.  Virtually the same considerations apply to the abstract problem of design-

ing fi ve-note scales, and indeed to the problem of tuning an instrument in fourths: 

thus guitars, lutes, and viols often include an anomalous major third to ensure that 

the top string sounds the same note as the lowest, although the precise location of the 

third varies from instrument to instrument. It is somewhat remarkable that the same 

fundamental facts can help such disparate musical phenomena.

Fourth chords and pentatonic scales are now so central to jazz as to be virtually 

identifi ed with the style. In fact, the enormous popularity of 1960s jazz means that 

composers who build quartal harmonies are more likely to be heard as referencing 

jazz than (say) the earlier works of Stravinsky, Hindemith, or Bartók. Of course, jazz 

musicians were in turn infl uenced by these same composers, deliberately borrow-

ing quartal harmonies from the notated tradition in order to evoke a more modern 

sound.11 To my mind, this is a remarkable instance of the oft-neglected interaction 

between jazz and concert music: quartal harmony, originally the province of the 

Figure 10.2.4 
Two passages 

from Keith 

Jarrett’s solo on 

“You and The 

Night and The 

Music,” which 

exploits stacks of 

fourths.

Figure 10.2.5 The 

opening of “Freedom 

Jazz Dance” begins 

by arpeggiating the 

Ef pentatonic scale, 

adds a D to create a 

diatonic hexachord, and 

concludes with the Df 

pentatonic scale.

11 James Moody, in a personal conversation, recalled that a number of musicians in the 1940s and 
1950s were interested in Hindemith’s fourth chords.
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notated avant-garde, moved eventually into jazz, where it became incorporated into 

the canons of functional harmony; from there, it moves back into notated music 

as various contemporary composers borrowed jazz sounds in their own composi-

tions. It would hardly be possible to write a coherent history of quartal harmony, 

itself a crucial component of twentieth-century tonality, without considering jazz 

and  concert music together.

10.3 tritone substitution

Perhaps the most mysterious feature of jazz harmony, from a classical standpoint, is 

the practice of replacing a dominant seventh chord with its tritone transposition. For 

a musician with a classical education, these “tritone substitutions” can seem like har-

monic sorcery—chaotic acts of rule breaking that defy all musical logic, yet neverthe-

less produce compelling musical effects. But as we will see, the tritone substitution is 

anything but mysterious: indeed, it is a straightforward generalization of traditional 

chromatic procedures, one that can easily be explained using our familiar geometrical 

models.

Figure 10.3.1 applies a tritone substitution to the second chord in the ii7–V$–Imaj7 

progression discussed at the start of the chapter. The tritone in the upper staff is 

unaffected by the change, while the notes in the lower staff move semitonally in con-

trary motion. The substitution’s effectiveness can thus be attributed to two factors: 

it preserves the leading tone and seventh of the V7 chord, the “tendency tones” most 

directly responsible for pushing it forward toward the tonic; and it does not radically 

disrupt the contrapuntal fl ow in the remaining voices, transforming descending dia-

tonic steps into descending chromatic steps. Figure 10.3.2 provides an example that 

uses quartal voicings. (Here an additional voice plays the root of the chords; for the 

time being, we can imagine that the bass player has miraculously intuited that the 

pianist intended to make the substitution.) Once again, tritone substitution preserves 

the tendency tones B-F and moves the remaining voices by semitone: A and E, the 

Figure 10.2.6 (a) An extended sequence of melodic fourths will generate notes that clash with 

the underlying harmony or scale. (b−c) To correct this problem one can add a “near fourth,” 

producing a pentatonic or diatonic collection.
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ninth and thirteenth of a G7 chord, become Bf and 

Ef, the thirteenth and ninth of Df7. Again, the sub-

stituted notes fi t naturally within the contrapun-

tal framework of the original progression, leading 

to familiar voice-leading motions in each of the 

individual lines: in fact, the A-Bf-G motion in the 

soprano of Figure 10.3.3 recalls a gesture common 

in classical minor-key harmony.

If we think about this a bit more, we will even-

tually notice that both of these examples exploit the 

fact that tritones are unchanged by tritone trans-

position, while perfect fourths can be connected 

to their tritone transpositions by semitonal voice 

leading. It follows that as long as a chord can be 

decomposed into perfect fourths and tritones, it can 

be replaced by its tritone transposition without much disrupting the music’s har-

monic or contrapuntal fabric. In effect, the substitution takes advantage of the sym-

metry, or near symmetry, of the chord’s two-note constituents. Figure 10.3.4 reminds 

us that tritone transposition corresponds to refl ection around the central horizontal 

line of the two-note Möbius strip: every chord gets sent to the point where its image 

would appear, if the “line of tritones” were in fact a mirror. Since tritones are at the 

mirror’s location, they are identical to their tritone transpositions, and since perfect 

fourths (or fi fths) are very close to the mirror, tritone transposition does not move 

them very far. Musically, this means that tritone substitution preserves tritones while 

minimally perturbing fourths and fi fths.

Three points are important here. First, tritone substitution relies crucially on the 

fact that jazz harmony uses seventh chords rather than triads. A four-voice domi-

nant seventh chord can be decomposed into a perfect fi fth and tritone, whereas a 

plain triad cannot. (Similarly, the upper voices of a fi ve-note ninth chord can be 

Figure 10.3.1 (a) A familiar 

seventh-chord ii–V–I voice-

leading schema. (b) The 

dominant chord can be replaced 

with its tritone transposition so 

as to preserve the notes in the 

upper staff, moving those in the 

lower staff by semitone.

Figure 10.3.2 Tritone substitution as applied to 

the quartal version of the A voicing. The notes 

in the middle staff are preserved, while those in 

the upper staff move by semitone.
Figure 10.3.3 Tritone substitution 

produces a f^7®^5 leap reminiscent 

of the f^7®f^6®5 motion in classical 

minor-key harmony.
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decomposed into tritones and fi fths.12) Second, tritone substitution is most natu-

rally applied to the dominant chord, since it preserves the all-important tritone 

between leading tone and fourth scale degree. Contrapuntally, it may be possible 

to apply tritone substitutions very broadly, but many of these substitutions disrupt 

the basic musical skeleton described in §10.1 (Figure 10.3.5). Not surprisingly, jazz 

musicians most often apply tritone substitution to dominant chords, less frequently 

apply it to predominant chords, and almost never apply it to the tonic. Finally, tri-

tone substitution and quartal chord voicings go hand in hand. Originally, jazz har-

monies were much more clearly tertian, and tritone substitution was most often 

found in the basic form shown in Figure 10.3.1. The increased use of added notes 

eventually allowed jazz musicians to reinterpret traditional harmony quartally 

while also  making manifest the underlying logic of tritone substitution. (When a 

chord is arranged in fourths, it is clear that tritone  substitution preserves its quartal 

Figure 10.3.4 (a) Tritones can be linked to their tritone transpositions by zero-semitone 

voice leading, while perfect fourths can be linked to their tritone transpositions by semitonal 

voice leading. (b) These facts refl ect the geometry of two-note chord space.

12 In fact, effi cient voice leading between seventh chords (or the upper voices of ninth chords) pre-
serves this partitioning when chord-roots relate by fourth, fi fth, or tritone: the voice-leading schema in 
Figure 10.1.1a sends the third and seventh of D minor into the seventh and third of G7, while sending 
the root and fi fth of D minor into the fi fth and root of G7. This is also apparent in the upper voices of 
 Figure 10.1.3. With other root progressions, the third/seventh pair exchanges places with the root/fi fth pair, 
as in (C, G, E, B)®(C, G, E, A).
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 organization.) The happy convergence between quartal voicings and tritone substi-

tution may therefore have contributed to the increased systematization of what was 

originally a more ad hoc collection of musical practices.

Readers will no doubt notice that this discussion echoes ideas in earlier chapters. 

In §7.2, we discussed diatonic “third substitution” in classical music—the process 

of replacing a diatonic triad, such as IV, with a third-related diatonic triad, such as 

ii6. Our explanation was that the substitution kept two notes fi xed while moving the 

remaining note by diatonic step (Figure 10.3.6). The preceding explanation of tritone 

substitution has the same essential structure: here, tritone-related dominants share 

two common tones (the crucial third and seventh) while the remaining notes move 

by chromatic step. Tritone substitution, like diatonic third substitution, therefore pre-

serves something of the harmonic and contrapuntal character of the original chord, 

with the difference between the cases lying in the intrinsic geometry of the relevant 

chord spaces: since three-note diatonic triads divide the octave into three nearly even 

parts, they can be linked to their third transpositions by very effi cient voice lead-

ing; since fourths and fi fths divide the octave into two nearly even parts, they can be 

linked effi ciently to their tritone transpositions. This example nicely illustrates the 

power of the geometrical approach: were it not for our intensive exploration of the 

geometry of chord space, we might never think to associate the third substitutions of 

the eighteenth century with the tritone substitutions of the twentieth. And thus we 

would miss an important connection between these two very different periods.

Since the tritone substitution has its roots in basic musical facts, we should expect 

it to appear in earlier styles as well. Figure 10.3.7a reminds us that the standard Ger-

man sixth chord can be understood as a tritone substitution for the applied dominant 

chord V7/V. (Indeed, tritone substitution presumably originates with augmented sixth 

chords, as discussed in Chapter 8.) Figure 10.3.7b applies the tritone substitution to the 

standard viiø$–I6 progression. The result is a striking progression from ivø7 to I6, com-

monly associated with Strauss’ Till Eulenspiegel. The progression demonstrates a prin-

ciple close to any jazz musician’s heart: if a particular half-diminished chord works 

Figure 10.3.5 Tritone substitution applied 

to tonic (b) and predominant (c) chords. The 

tonic substitution is not very effective, while the 

predominant substitution is somewhat more so.

Figure 10.3.6 Diatonic third-

substitution (a) and chromatic 

tritone-substitution (b). Both 

substitutions preserve important 

notes in the fi rst chord while 

moving the remaining notes by 

short distances.
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as a dominant sonority, then its tritone transposition will probably work as well. Figure 

10.3.7c shows that the Tristan chord can be derived by applying the tritone substitution 

to the fi rst chord in a standard iiø$–V7 progression. (Recall from Chapter 8 that Wagner 

explicitly uses these substitutions in Tristan.) Finally, Figure 10.3.7d presents one of many 

passages from Ravel that can be analyzed in terms of tritone substitution—a  beautiful 

g s–G7–c–f s–F7–Bf progression that embellishes 

descending fi fths with tritone-related chords. (Since 

the music presents both chords in the tritone-re-

lated pair, the term “tritone embellishment” might 

be more appropriate here.) These are just some of 

the countless passages from nineteenth- and early 

twentieth-century music that involve something 

like tritone substitution. From this perspective, jazz 

simply codifi es procedures that are already present, 

at least in embryo, in notated music.

Finally, it is worth noting that the tritone sub-

stitution depends on the very same features of 

chord structure at play in descending-fi fths pro-

gressions. The two voice leadings in Figure 10.3.8 

are roughly the same size, since their  second 

Figure 10.3.7 Classical chord progressions that can be understood as tritone substitutions. 

(a) The augmented sixth chord can be seen as a tritone substitution for V7/V. (b) The central 

chord progression in Till Eulenspiegel can be seen as a tritone substitution for a common 

viiø$–I progression. (c) The initial progression of Tristan can be seen as a tritone substitution 

for iiø$–V. (d) In the “Forlane” from Le tombeau de Couperin, Ravel embellishes a descending-

fi fth sequence with tritone transpositions.

Figure 10.3.8 Voice leading 

between fi fth-related (a) and 

tritone-related (b) dominant 

seventh chords. The two voice 

leadings are individually T-related, 

and are nearly the same size.
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chords differ only by semitone. Traditional tonal syntax exploits the fi rst voice 

leading to connect fi fth-related dominant seventh chords in sequence. Tritone 

substitution exploits the second to replace one dominant seventh chord with its 

tritone transposition. In this sense, the possibility of tritone substitution is latent 

in the basic routines of traditional tonality. Over the course of its history, tonal 

harmony exploits this possibility with increasing frequency—beginning with aug-

mented sixths in the eighteenth century, progressing through the occasional use 

of tritone substitutions in the early nineteenth century, leading to more daring 

impressionist uses of the technique, and culminating in its universal acceptance 

in modern jazz.

10.4 altered chords and scales

In composed music, it is possible for chords to change as rapidly as the melody. In 

improvisation, however, very high rates of harmonic change have the effect of con-

straining a player’s freedom; he or she expends so much mental energy thinking 

about chords that little is left for melodic invention. As a result, jazz typically features 

at most one or two chords per measure, with improvisers playing four, eight, or more 

notes per chord. For exactly this reason, scales provide invaluable guidance about 

which melodic notes will sound good, particularly when improvisers need to negoti-

ate the altered and extended chords central to jazz harmony.

The lower staves in Figure 10.4.1 show the basic voice-leading skeleton from 

the beginning of the chapter. Since the harmonies all belong to C diatonic, it would 

be possible to play that scale for the entire passage. But doing so requires the player 

to handle the avoid notes with some care: for instance, the tonic scale degree, when 

played over the dominant chord, will typically need to be treated as a passing or 

neighboring tone. Figure 10.4.1 identifi es an alternative approach, where the avoid 

Figure 10.4.1 An improviser who plays diatonically will need to handle the “avoid notes” 

with care, for instance by making them into passing or neighboring notes. Another alternative 

is to raise the avoid notes by semitone, in which case they can be used more freely. The 

resulting ii–V–I progression uses three different scales.
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notes are raised by semitone to create altered chords.13 Since there are no avoid notes, 

the improviser is now free to treat all seven scale tones as if they were harmonic: for 

instance it becomes possible to leap in and out of the altered notes, sustain them 

for long durations, and so on. But notice that the passage now involves a series of 

three different scales: ii7 is accompanied by C diatonic, V7 by G acoustic, and Imaj7 

by G diatonic. The simple ii–V–I progression, the archetype of functional harmony, 

has become a fundamentally polyscalar construction.

Figure 10.4.2 shows that the G acoustic scale combines a lower whole-tone fragment 

G-A-B-Cs with an upper octatonic fragment Cs-D-E-F-G, each spanning a tritone. 

(Jazz musicians sometimes call this the “lydian dominant scale.”14) Now it can happen 

that one musician will spontaneously use a tritone substitution while others do not, as 

in Figure 10.4.2b: here, the pianist plays fII7 while the bass player plays the fi fth scale 

degree. Given the bass, listeners are likely to hear G as being the most important note 

in the chord, understanding the scale to be the fourth mode of Df acoustic. Notice 

13 George Russell’s Lydian Chromatic Concept (1953, but reprinted in 2001) explicitly discusses this 
practice. However, the technique itself was used by Debussy and other early twentieth-century composers.

14 The term is symptomatic of a widespread tendency to elide the difference between scale and mode.

Figure 10.4.2 (a) The lydian dominant mode of the acoustic scale combines a whole-

tone lower tritone with an octatonic upper tritone. (b) Here, the pianist makes a tritone 

substitution, playing the Df lydian dominant mode, while the bass player does not. (c) The 

result is a G altered scale, which combines an octatonic lower tritone with a whole-tone upper 

tritone.
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that here the whole-tone and octatonic fragments have switched positions: it is the 

lower tritone G-Af-Bf-B-Cs that is octatonic, and the upper tritone Cs-Ds-F-G that 

is whole tone. Jazz musicians call this new scale the G “altered scale,” since it contains 

many more nondiatonic “alterations” than G lydian dominant: rather than the  solitary 

ŝ4, the altered scale has f9, s9, s11/f5, and s5/f13.15 Perhaps its clearest precedent in 

classical music occurs in the minor mode, where the lowered and raised forms of the 

leading tone sometimes collide (Figure 10.4.3).16

We have now considered two ways to fi ll the 

tritones G-Cs and Cs-G with whole-tone or octa-

tonic scale fragments. Since each tritone can con-

tain either fragment, it is reasonable to wonder 

what happens when we combine them freely. It 

turns out that we can form three different scales 

in this way—whole tone, acoustic, and octatonic, 

with the acoustic appearing in both lydian domi-

nant and altered modes (Figure 10.4.4). Each 

contains the notes {G, B, Cs, F} and hence can 

appear over either V7 or its tritone substitute. 

These scales, together with the diatonic, are in 

many ways the central scales of jazz harmony: 

they are played by countless improvisers and 

are highlighted in virtually every jazz text-

book I have encountered.17 They have also 

reappeared at various points throughout this 

book. Chapter 4 argued that these scales are 

theoretically interesting, since they are the 

only scales with one-or-two semitone steps 

and three-or-four semitone thirds. Chapter 9 

showed that the same scales play an impor-

tant role in a wide variety of twentieth-

 century notated music.18 Here we see that 

they are essential to jazz as well.

Figure 10.4.5 reproduces a number of 

extended and altered dominant sonorities 

Figure 10.4.3 
(a) A harmonic 

minor scale with 

an additional 

(neighboring) 

f^7. (b) The 

resulting notes 

are very similar 

to the altered 

scale.

15 The altered scale is often spelled with two thirds and no fourths, as in G-Af-Bf-Bn-Df-Ef-F-G 
(Figure 9.3.18, R43).

16 It would be interesting, in fact, to investigate whether early jazz players played this quasi-harmonic 
minor scale in contexts where later musicians use the altered scale.

17 See Tymoczko 1997 for a survey of various textbooks’ treatments of scales.
18 Interestingly, it was jazz theorists—in their role as practical-minded pedagogues—who fi rst isolated 

this collection of scales and asserted their importance. And though more academic theorists were aware of 
the individual scales, they did not begin to emphasize the group until well after they had been discussed in 
jazz. Indeed, the fi rst published theoretical discussion of the four scales seems to be Tymoczko 1997, which 
was preceded—and directly inspired—by Levine 1989.

Figure 10.4.4 
There are four 

ways to combine 

octatonic and 

whole-tone 

upper and 

lower tritones, 

producing one 

whole tone scale, 

one octatonic 

scale, and two 

modes of the 

acoustic scale.
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from the beginning of Chapter 8, showing that each belongs to one of our four 

scales. One might wonder whether one of these scales will inevitably contain any 

given altered dominant chord. The answer is “almost.” Recall from §4.4 (and Figure 

10.4.6) that seven types of scale contain every “nonchromatic chord”—that is, every 

chord that does not include a chromatic cluster such as {C, Cs, D}. To incorporate 

all of these chords we would need to expand our four-scale vocabulary to include the 

hexatonic and harmonic collections. (Jazz musicians typically use chromatic clusters 

only as a special effect, so we do not need to worry about chords with clusters.) Inter-

estingly, however, it turns out that the hexatonic and harmonic scales are in practice 

rarely needed. Figure 10.4.7 shows that there are only four nonchromatic set classes 

with fi ve or fewer notes not contained within some diatonic, acoustic, whole-tone, 

or octatonic scale. Consequently, the four basic scales are suffi cient for most musical 

circumstances.

Of course, jazz musicians use other scales as well (Figure 10.4.8). Pentatonic scales 

can impart a “fourthy” fl avor to predominant, dominant, and tonic chords. The 

Figure 10.4.5 
Scales that are 

compatible with 

common altered-

dominant 

chords.

Figure 10.4.6 The 

transpositions of 

these seven scales 

contain all the 

sets that do not 

themselves contain 

a chromatic subset 

such as {C, Cs, D}, 

and hence all of the 

common extended 

or altered tonal 

harmonies.



Jazz 369

acoustic scale can be played over a iiø7 or I chord, lending a minor coloring to the 

major mode ii–V–I. Acoustic and harmonic minor scales often appear in minor-

mode contexts, while the hexatonic can be played over a major or minor tonic 

chord. More unusual scales, such as the gypsy scale, are sometimes used to evoke an 

exotic or non-Western ambience. Taken together, these conventions provide a fairly 

robust set of rules for associating chords and scales, thus synthesizing functional 

harmony, nineteenth-century chordal techniques, and impressionist scale use.19 And 

19 Jazz pedagogues, as noted in Chapter 9, describe these conventions as “the principles of chord-scale 
compatibility.”

Chromatic
Dia, Aco,
Wt, Oct Other

Three Notes
Four Notes
Five Notes
Six Notes

1 11 0 

5 23 1 

16 19 3 

32 13 5 

Figure 10.4.7 The fi rst column lists the number of set classes containing a chromatic cluster 

such as {C, Cs, D}. The second lists the number of set classes contained in the diatonic, 

acoustic, whole tone, and octatonic scales. The third lists the number of set classes that do not 

contain a chromatic cluster, but are not contained in one of these four scales. All set classes 

belong to one of these three categories.

Figure 10.4.8 Other scales commonly played in jazz. Pentatonic scales are often used over ii, 

V, and I. The hexatonic scale can be played against a tonic major seventh. The acoustic scale 

often appears over iiø7 in the “locrian s2” mode; the same scale sometimes appears against 

a bare tonic triad (without the seventh). Harmonic minor is sometimes used for minor-key 

dominant chords, as in classical music, and harmonic major can be used over a major-

seventh tonic.
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though these fundamental principles are familiar from the twentieth-century notated 

tradition, they are applied in jazz with a systematic rigor that far exceeds anything 

found earlier.

10.5  bass and upper voice tritone 
substitutions

I have already mentioned that a bass player or pianist will sometimes make a tri-

tone substitution without alerting the other musicians. In bass-only tritone sub-

stitutions, the same upper voices are reinterpreted as belonging to a new root 

a tritone away. This is illustrated in Figure 10.5.1a, where the seventh, ninth, 

third, and thirteenth of a G7 voicing become the third, fl at thirteenth, seventh, 

and sharp ninth of a Df7 altered chord. (This could occur if the bass player, but 

not the pianist, decided to apply a tritone substitution.) In the upper voice ver-

sion of the substitution, the bass stays fi xed, while the upper voices move by tri-

tone. For instance, in Figure 10.5.1b, the seventh, ninth, third, and thirteenth of 

the G7  voicing become the third, fl at thirteenth, seventh, and sharp ninth of a G7 

altered chord.20 (This could happen if the pianist applied the tritone substitution 

independent of the bass player.) Note that this substitution changes the macrohar-

mony more dramatically than the bass-only version, since many more notes are 

affected: both voicings in Figure 10.5.1a belong to the same G acoustic collection, 

while in (b) the second belongs to Df acoustic.

Scales provide a useful way to conceptualize 

these transformations. The whole-tone, octatonic, 

lydian dominant, and acoustic scales all contain 

both the dominant note ( ^5) and its tritone substi-

tute (f ^2); thus as long as a chord’s notes are cho-

sen from one of these scales, they will be consistent 

with either of the chord roots a bass player might 

play (Figure 10.5.2). Furthermore, since both whole 

tone and octatonic are tritone symmetrical, upper 

voice substitution will send a whole-tone voic-

ing to another whole-tone voicing, and an octa-

tonic voicing to another octatonic voicing. (Since 

any of the notes in these scales can reasonably be 

played over a V7 chord, these new chords will be 

guaranteed to work reasonably well.) Meanwhile, 

upper-voice substitution exchanges the G lydian 

dominant mode for G altered: hence any collection 

of upper voices drawn from one of these scales can 

Figure 10.5.1 Bass substitution 

and upper-voice substitution. 

Here either the bass player or 

pianist makes the substitution, 

but not both. In each case, the 

effect is to transform a diatonic 

voicing containing the seventh, 

ninth, third, and thirteenth above 

the root into an altered voicing 

containing third, fl at thirteenth, 

seventh, and sharp nine.

20 This is just the A voicing of Df7 over a G bass.
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be  transposed by  tritone to produce a voicing drawn from the other. By contrast, 

this same procedure can lead to problems in diatonic contexts: since upper-voice 

substitution sends the C diatonic scale to Fs diatonic, it can create clashes with the 

bass line, as in Figure 10.5.3.

One important musical consequence is that a soloist can always play a descend-

ing-by-semitone melodic sequence over a sequence of dominant harmonies that 

descend by fi fths. In effect, the soloist applies the upper-voice tritone substitution 

to every other chord, as shown in Figure 10.5.4. The harmonic meaning of the notes 

thus alternates between chords: for example, in Figure 10.5.4a, the augmented triad 

represents the seventh, sharp eleventh, and ninth in the fi rst and third chords, and 

the third, root, and sharp fi fth of the second and fourth chords (Figure 10.5.5). 

Similarly, the melodic fourths in 10.5.4b alternate between lydian dominant and 

altered  voicings. This idiom, by which dominant voicings move chromatically over 

a descending fi fth bass line, is ubiquitous in jazz, providing an easy way to cope with 

fast descending fi fth sequences.

Readers will not be shocked to learn that these ideas are again anticipated, often 

very explicitly, in the music of Debussy, Ravel, and other early twentieth-century 

 composers. Debussy in particular was extremely fond of the lydian  dominant mode, 

and often constructed textures in which a dominant seventh chord is accompanied 

Figure 10.5.2 Upper-voice substitution leaves the whole-tone and octatonic scales 

unchanged (top two lines), exchanges the lydian dominant and altered modes of the acoustic 

scale (line three), and sends the diatonic scale to its tritone transposition (bottom line).

Figure 10.5.3 Independent applications of the tritone transposition can clash with purely 

diatonic voicings. Here, the diatonic notes C and D clash with the bass player’s (tritone 

substitute) Df; similarly, the unsubstituted G in the bass clashes with the pianist’s Gf 

diatonic.
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by a sharp eleventh. (See Figure 10.5.6a.) Both Debussy 

and Ravel also apply tritone substitution indepen-

dently to either the bass or upper voices: for instance, 

in Figure 10.5.6b, Ravel begins by alternating between 

C7 (expressed by the “mixolydian f6 mode”) and Gf7 

(expressed by a voicing that belongs both to Gf diatonic 

and lydian dominant); when the music returns, how-

ever, the bass stays fi xed, producing an “altered” voicing 

of the C7. In (c), from Debussy’s “La danse de Puck,” a Cs 

altered scale alternates with standard V7 voicing, suggest-

ing an upper-voice substitution. Finally, Figure 10.5.6d 

presents a much-discussed passage from Debussy, in 

which semitonally descending A voicings in the right 

hand appear over descending fi fths in the bass, exactly 

as in Figure 10.5.4. (This passage includes an upper 

voice Af pedal.21) In light of the preceding examples, 

it does not seem entirely anachronistic to describe this 

as a series of Debussian dominants, in which diatonic 

 voicings alternate with their tritone substitutes.

Figure 10.5.4 Chromatically descending voicings can always accompany descending-fi fths 

patterns in the bass. In effect, tritone transposition is applied to every other chord in the 

sequence.

21 This progression echoes a similar passage in Berg, as discussed in Stuckenschmidt 1965.

Figure 10.5.5 This 

table shows how tritone 

substitution affects the 

notes in a dominant voicing. 

The root of the dominant 

chord becomes the s4 (or 

s11) and vice versa. (Notes 

here are labeled according 

to their intervals above the 

bass.) The f9 and fi fth are 

exchanged, and so on.
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Figure 10.5.6 Impressionist composers prefi gured many central ideas of jazz harmony. In 

(a), from Prelude to “The Afternoon of a Faun,” mm. 61–62, Debussy uses an acoustic scale 

over V7, as in Figure 10.4.1. In (b), from Ravel’s “Ondine,” bass substitution is applied to 

the dominant chord at the end of m. 46 and m. 51. In (c), from the Prelude “La danse de 

Puck,” Debussy applies something like upper-voice substitution, moving between altered 

and diatonic dominant voicings. In (d), from Six épigraphes antiques, No. 4, Debussy uses 

descending-semitone voicings over a descending-fi fths bass line, applying the upper-voice 

substitution to every other chord in the sequence.
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10.6  polytonality, sidestepping, and 
“playing out”

So far we have been imagining an idealized performance situation in which players 

are always perfectly in synch, and their notes systematically related. But of course this 

is unrealistic: in the blur of the improvisatory moment, there is room for a good deal 

of asynchrony, as players go their own way by stepping outside of the underlying har-

mony. One of the most interesting features of contemporary jazz is the way players 

negotiate and exploit this possibility—deliberately moving between states of being 

together and being apart.

The origins of this technique can perhaps be traced to the blues, which is character-

ized by “blue notes” that create a delicious dissonance with the underlying harmony. 

In Figure 10.6.1, scale degrees f3 and f5 are superimposed above a dominant seventh. 

The music thus suggests a kind of polytonal-

ity, or clash between independent harmonic 

streams, in which an  upper-register (Afri-

can American) “blues scale” contrasts with 

a lower-register European harmony. Figure 

10.6.2 presents a more audacious example, 

drawn from Warne Marsh’s solo on the tune 

“Smog Eyes.” The underlying harmony here 

is a tonic Ef major, but Marsh begins his 

solo with a wonderfully brash E major chord a half step too high. What is more, he 

embellishes the top note of the line with an upper neighbor. As s ^4 in Ef major, An 

would typically resolve upward to the Bf; but as the fourth scale degree in E major, 

it is an upper neighbor to the Gs. The authority of Marsh’s phrasing is such that 

the downward resolution feels utterly compelling, suggesting that we hear E major 

as being both locally stable (relative to the An, which wants to resolve downward 

to it) and globally unstable (relative to the key of the rest of the ensemble). Marsh 

intensifi es the feeling of resolution by lowering Gs to Gn, initiating a descending 

arpeggio that resolves the entire E major triad down by semitone to the tonic Ef. 

(Note how register and tonality interact: the line ascends to the doubly  dissonant 

An, the upper neighbor to the third of a chord that is itself an upper neighbor; then 

Figure 10.6.1 The blues often features 

polytonal clashes between melody and 

harmony.

Figure 10.6.2 Out-of-key playing in Warne Marsh’s solo on “Smog Eyes.” Marsh plays an 

E major fi gure over an Ef harmony; the A is an upper neighbor to the Gs, and the entire E 

major triad resolves downward to Ef.



Jazz 375

Figure 10.6.3 Sidestepping in Chopin. (a) In the fi rst Nocturne (Op. 9 No. 1), Chopin shifts 

suddenly from Df major to D major, in the middle of the phrase. (b) In the second Nocturne 

(Op. 9 No. 2), he returns from Bf to Ef by way of E major.

the descent brings the music back into the key.) All of this, of course, occurs over 

a supposedly stable tonic triad. Marsh thus exploits two fundamentally different 

mechanisms of tension and release: there is the standard tonal oscillation between 

dominant and tonic, but also the oscillation between states of being in the same key 

and states of being apart.

These concepts can again be applied, mutatis mutandis, to music in the classi-

cal tradition. Chopin, for example, was an improvising musician who also liked to 

exploit sudden shifts between semitonally related keys. For example, the B section 

of his fi rst Nocturne, shown in Figure 10.6.3a, contains a four-measure phrase that 

shifts from Df major to D major and back. This semitonal shift—which a jazz 

musician might call “sidestepping”—is perhaps comparable to Marsh’s temporary 

shift from Ef to E major. Figure 10.6.3b shows an example from Chopin’s second 

Nocturne, where a cadence on Bf major immediately leads to a dazzling digression 

to E major. The underlying musical impulse here is again not so foreign to jazz: the 

music briefl y and dramatically shifts to a distant and colorful key, before settling 

back to its proper home. Of course, an improviser like Marsh typically shifts key 

independently of the rest of the ensemble, creating a polytonal clash. Chopin, who 
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as a solo player was in complete control of the music, and who was in any case unin-

terested in polytonality, shifts the entire texture at the same time.22

There are some jazz pieces in which the ii–V–I architecture of functional har-

mony disappears almost entirely, being replaced by this process of moving in and 

out of synchrony. (The ambiguous term “modal jazz” is sometimes used in this con-

text, though it can also refer to other musical phenomena.23) McCoy Tyner’s “Passion 

Dance” is a good example: although the tune itself contains a few chord changes, the 

solo section is entirely based on a tonic F7 chord, implying a drone-like mixolydian. 

In his solo, Tyner reinforces this drone-like feeling by continually reverting to a low 

F-C fi fth in the bass. Above this, the right hand plays melodic stacks of fourths, with 

the fourths F-Bf-Ef and G-C-F representing the tonic voicings, and formations like 

Fs-B-E representing the nontonic (out-of-key) states.

Figure 10.6.4 shows two phrases that occur near the beginning of Tyner’s solo, 

each exhibiting the same basic oscillation between in-key and out-of-key playing. In 

the fi rst, Tyner repeats the descending stepwise pattern G-F-Ef in an unsystematic 

22 The semitonal shifts in Prokofi ev and Shostakovich sometimes do create polytonal effects, and are 
perhaps even closer to those in jazz. See Frankenhauser 2008.

23 “Modal jazz” can be used to describe either highly diatonic pieces with very few chord changes, or 
relatively chromatic music in which harmonic tension is generated by out-of-key playing.

Figure 10.6.4 Harmonic motion in “Passion Dance” largely consists in oscillations between 

in-key and out-of-key playing.
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chromatic sequence, presenting it on Ef (in a variant form), Fs, F, D, Ds, Cs, C and 

Bf, before returning to F mixolydian. (Note that the out-of-key section begins with 

the hands moving in contrary motion, with the right-hand scale fragment descend-

ing while the left-hand fourths ascend.) The second phrase departs from F mixolyd-

ian only in its fourth measure, moving to the black-note pentatonic collection while 

the quartal voicing shifts up to Fs-B-E. One can hear this music as suggesting a domi-

nant seventh sonority on Fs, a semitone away from the tonic. However, the musical 

impression is not so much of motion between well-defi ned chords as of oscillation 

between two basic harmonic states—“home” and “away,” with the “away” state poten-

tially manifesting itself in a variety of different harmonic colors.

While the solos on “Passion Dance” are almost entirely devoid of traditional 

chord progressions, many jazz pieces combine this sort of “playing outside” with tra-

ditional tonal functionality. Harmonic tension in this music thus arises from motion 

within a key (from stable I to unstable V and back), from motion between keys (from 

the global tonic to various subsidiary regions), from neighboring and passing tones 

( creating fl eeting dissonances with the underlying harmony), and from more radical 

motion between states of being together and being apart. The interaction between 

these four kinds of tension can produce music of extraordinary subtlety, in which 

the choice between functional tonality and other modes of pitch organization can be 

made anew every few seconds.

I should also mention one more way in which jazz musicians evoke a sense of 

polytonality or “being apart”: the use of dominant voicings that contain a triad foreign 

to the tonic key. (Pedagogues sometimes call these “upper structure” voicings.) Fig-

ure 10.6.5 shows how to combine the essential notes of the dominant harmony (root, 

third, and seventh) with a triad foreign to the underlying key. (The fi gure eliminates 

those voicings that contain an Fs, which would create a chromatic cluster with F-G 

in the dominant voicing, or a C, which would prematurely anticipate the  resolution 

Figure 10.6.5 “Upper structure” dominant voicings combine root, third, and seventh in 

the bass with a foreign triad in the upper voices. Upper-voice tritone substitution leaves the 

lowest three notes unchanged, transposing the triad by tritone. This provides a convenient 

way to remember and categorize these voicings.
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of the leading tone.) Jazz soloists can create polychordal effects by emphasizing the 

“upper structure” triads, for instance by playing prominent E-major or Ef-major 

arpeggios over an accompanimental G7 chord. Although these upper structure arpeg-

gios could in principle be described as altered dominant chords, they evoke a sensation 

of polytonality not too dissimilar from the cases we have been considering.

10.7 bill evans’ “oleo”

We’ll now use these ideas to analyze Bill Evans’ version of Sonny Rollins’ “Oleo,” from 

the 1958 trio album Everybody Digs Bill Evans. It’s an unusual and austere piece, like 

Bach in its stripped-down rigor: for much of the recording, Evans plays only with his 

right hand, while the drummer Philly Joe Jones lays out, leaving the bass player (Sam 

Jones) to improvise two-part counterpoint with the solo line. By omitting left-hand 

chords, Evans creates space to depart from the tune’s underlying framework— playing 

outside the key for a signifi cant portion of the solo. (Because of the wide registral and 

timbral separation between the instruments, clashes between melody and bass are 

not at all jarring.) The coordination in the ensemble is itself virtuosic—the tempo 

is fast (approximately 240 beats per minute) and the music replete with destabiliz-

ing syncopations and polyrhythms. Yet the players manage not only to make musical 

sense, but also to swing.

The piece is a repeating 32-bar AABA form, based on the chord changes to 

Gershwin’s “I Got Rhythm” (Figure 10.7.1). (Each AABA unit is called a “chorus.”) 

 Traditionally, the B section of “Oleo” is improvised, with only the chords being fi xed. 

In the fi rst three choruses, Philly Joe Jones drums normally only in the B section; in 

the A sections he either remains silent or plays a dotted half-note polyrhythm on the 

hi-hat. (At the start of the fourth chorus, he explodes into activity in what is, to my 

mind, one of the most dramatic entrances in all of jazz.) Two features of the tune are 

noteworthy. First, the B section (mm. 17–24) features a series of whole-tone voic-

ings that descend semitonally over descending fi fth chords, discussed earlier in §10.5. 

Second, Evans begins the dotted-quarter fi gure on the second eighth note of measure 

17, creating a continuous dotted-quarter pulse that lasts until the second half of mea-

sure 20. This is a common technique, whereby soloists start a polyrhythm so that it 

will synchronize with the main pulse at a structurally important moment—here the 

downbeat of m. 19.

10.7.1 Chorus 1

The solo opens with a blues gesture emphasizing f5 and f3, shown in Figure 10.7.2. 

The phrase is delayed so as to start on beat three of the fi rst measure, although the 

casual listener might easily miss this. The sixth measure of the solo features an octa-

tonic scale over Ef7 and is followed by a pair of two-measure phrases that recall the 

blues-infl ected opening. (These phrases develop the Bf-F-Ef-D motive bracketed on 

the example.) Evans then plays two repetitions of a two-and-a-half-measure phrase, 
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each divided into six-beat units. These phrases sidestep between a B major triad, 

whose third is embellished with an upper neighbor, and a Bf major triad embellished 

in the same way. The B major chord can be understood either as an out-of-key ele-

ment or as a (triadic!) tritone substitution for a dominant F major triad.

The B section begins with a development of this six-beat idea: what was once a 

second-inversion B major triad becomes a root position G major triad, representing 

the seventh, ninth, and eleventh of an Aø7 chord. Figure 10.7.3 interprets this as an 

effi cient voice leading between Bf and G major triads—reminiscent of the chromatic 

progressions we fi nd in nineteenth-century music, although here the G major triad 

is an upper structure of Aø7. (The Bn suggests the A mode of the F acoustic scale, also 

known as “locrian s2.”) The next phrase spins out this idea into a longer melodic 

line. The fi nal A section begins with another example of sidestepping, as second-

inversion major triads slide chromatically back and forth between Bf and C, leading 

Figure 10.7.1 
Sonny Rollins’ 

tune “Oleo,” as 

played by Bill 

Evans.
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to an embellished scalar descent from F5 to A3. It is interesting that the fi nal sixteen 

bars of the chorus feature four appearances of the same basic musical shape, marked 

on the score with the Greek letter b. Having somewhat less individuality than a clas-

sical motive, this “shape” is more like a turn or melodic curlicue, a stylized way to get 

from one place to another.24 This particular pattern is characteristic of Evans’ play-

ing, and appears repeatedly in many of his solos; almost every jazz improviser has a 

similar collection of favorite melodic devices, small “signatures” that help defi ne the 

player’s style or sound.

Figure 10.7.2 
The fi rst chorus 

of Evans’ solo.

24 In this respect it is perhaps analogous to the small cells that contribute to the identity of an Indian 
Rag.
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10.7.2 Chorus 2

The second chorus, shown in Figure 10.7.4, begins by linearizing a set of four-note 

voicings. Figure 10.7.5 shows that the Cs minor seventh can be understood as a tritone 

substitution for, or upper structure of, G7, though it is also possible to understand it 

as a chromatic passing chord.25 The next phrase features rhythmic displacement of 

a sort that is quite common to jazz: the rhythmic and registral accents are on beats 

2 and 4, as if the entire phrase had been shifted forward by one beat (Figure 10.7.6).

Figure 10.7.3 Measures 47–49 

articulate an effi cient voice leading 

between Bf and G major triads. 

However, the G triad represents 

the upper notes of an extended Aø7 

chord.

25 One implication of Figure 10.5.4 is that “tritone substitute” and “chromatic passing chord” are 
 intimately connected.

Figure 10.7.4 
The second 

chorus of Evans’ 

solo.
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The B section begins with a trick that appears in the statement of the tune: the 

augmented triad D-Bf-Fs, originally the root, fl at thirteenth, and third of the chord, 

is shifted down by semitone as the chord roots fall by fi fth, producing Cs-A-F, the 

sharp eleventh, ninth, and seventh of the chord. The pitches of the sixth phrase recall 

the very opening of the solo (Figure 10.7.2, mm. 33–35), except here the En is treated 

as a lower neighbor to the F; meanwhile, the dotted-quarter rhythm sets up the vir-

tuosic polyrhythms of the next chorus. The end of the phrase returns to eighth notes, 

delaying the resolution of the Bf7 chord until the third beat of m. 94. Philly Joe Jones 

enters precisely when Evans ends his phrase, one bar before the end of the chorus—an 

incredibly brash entrance that sets the stage for the dazzling music that is to follow.

10.7.3 Chorus 3

The climactic chorus, shown in Figure 10.7.7, reaches a peak of rhythmic density, 

chromaticism, and polyrhythmic complexity. It is built on a common rhythmic 

device, an extended series of dotted sixteenth notes grouped in fours. On the page, the 

rhythm looks almost unplayable, particularly at this tempo, but it is not actually that 

diffi cult. (To practice it, begin by playing a series of dotted quarters against a quar-

ter-note pulse; then, while holding the dotted-quarter pulse fi rmly in mind, let your 

fi ngers play four notes in the span of each dotted quarter.) Although c onceptually 

Figure 10.7.5 The fi rst phrase of the chorus linearizes a collection of 

four-note voicings, similar to those discussed earlier in the chapter.

Figure 10.7.6 The second phrase of the chorus displaces the accent: on its own, the melody 

would be heard with the registrally accented notes on strong beats (lower line); as played, 

however, the notes are rhythmically weak, creating a kind of polyrhythm.
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straightforward, the device produces a spectacular impression and has been adopted 

by a number of musicians.

Evans’ playing here is largely chromatic and outside the tonal system: he moves 

the motive F-Gf-F-D up and down by semitone, with no regard for the underly-

ing chord changes—an apotheosis of the more cautious sidestepping earlier in the 

solo. (Note, by the way, that both the rhythm and the contour of this motive are 

anticipated by the seemingly throwaway turn in mm. 5 and 13 of the tune.) Since 

the dotted-sixteenth groups fall on the downbeat of every third measure, the rhythm 

Figure 10.7.7 
The third chorus 

of Evans’ solo.
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articulates three-measure units. However, the pitches articulate a phrase of nine dot-

ted-quarters that is repeated a half step lower (Figure 10.7.8).26 Evans breaks off his 

polyrhythm on the fourth beat of the seventh measure of the chorus, taking a one-

bar rest that allows him to resynchronize with the tune’s eight-bar units. After this 

brief pause, the second phrase begins a fi ve-group unit that descends chromatically 

(mm. 105–106), repeated at the interval of an ascending major third (mm. 107–108). 

(Note that here Evans observes the two-measure phrasing of the tune, reigning in 

the dotted quarters’ tendency to group the measures into threes.) The next phrase 

(mm. 109–112) begins with another chromatically descending fi ve-group unit, but 

continues diatonically, creating a subtle feeling of resolution as the chromatic macro-

harmony clarifi es. Note that the sequence picks up right on schedule on the second 

eighth note of m. 109, suggesting that there is a missing dotted-quarter unit across 

the barline of mm. 108–109.

The B section opens with the last appearance of the dotted-sixteenth-note idea, 

this time using a G harmonic minor scale over a D7 chord. The next phrase returns 

to the shapely melodic playing of the earlier sections of the solo: we hear a G altered 

scale over G7; a Gf7 arpeggio that suggests an upper structure of (or tritone substitu-

tion for) the C7; and a slightly chromaticized C-7 arpeggio. The phrase ends with a 

little octatonic fi llip over F7. Evans marks the return of the A section by introducing a 

new harmonic idea, a quartal passage articulating the notes F-G-Bf-C.

10.7.4 Chorus 4

Like the last act of a Shakespeare play, Chorus 4 lowers the energy level of the cli-

mactic Chorus 3, bringing the solo to a satisfying close (Figure 10.7.9). The music 

opens by developing the quartal idea introduced in the last eight bars of Chorus 3. 

(Jazz players pride themselves on this sort of fl exible phrasing, in which the impro-

vised motives blur the tune’s section boundaries.) The subtle process of variation in 

these measures is illustrated in Figure 10.7.10: we begin by moving straight up and 

down the inverted stack of fourths F-Bf-C-F. Evans then varies the gesture’s con-

tour and rhythm, playing a series of “down by step, up by third” motions along the 

“scale” Fs-B-Cs-[Fs]. He repeats this varied form a semitone lower in the “tonic” 

stack of fourths. The fourth statement moves the pattern backward in time by one 

26 I have my doubts about whether Evans meant to do this, though I feel uncomfortable betting against 
his ingenuity.

Figure 10.7.8 The rhythm of the dotted sixteenth-note fi gure articulates three-measure 

groups. However, the pitches articulate a nine dotted-quarter sequence.
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eighth note. Finally, the fi fth iteration recalls the beginning of the fi rst, though with 

the triplet now displaced f orward in time. The impression is of a kaleidoscopic 

series of ever-changing variations, as the same basic elements are recombined in 

new ways.

A relatively simple descending line in mm. 134–136 leads to an idea whose overt 

bluesiness recalls the very beginning of the solo. Figure 10.7.11 shows how Evans 

plays with this musical idea in these next few measures: the second statement shifts 

the pattern upward so that it starts on Fn rather than Dn—transposing the motive 

up by step along the non-octave repeating scale (D4, F4, Bf4, Df5, Ef5, E5). He also 

compresses the third note so the repetitions occur on weak eighth notes. The third 

statement uses the same pitches and rhythms as the second, but begins an eighth 

note later, so that the repeated notes are now on the beat again. (Note that these 

two phrases also vary the number of repeated notes.) Once more, the impression is 

Figure 10.7.9 
The fourth 

chorus of Evans’ 

solo.
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Figure 10.7.10 Motivic development at the 

opening of the fourth chorus.

Figure 10.7.11 
Development of 

the bluesy motif.

of a dazzling process of continuous musical variation, wherein the same basic ele-

ments are constantly reconfi gured—as if you could never step twice into the same 

musical river.

The B section begins with a series of chromatically fi lled-in major thirds; these 

ascend by minor third while the harmonies descend by fi fth (Aø7, D7, G7). Figure 

10.7.12 interprets the underlying musical logic: in the lower staves, we fi nd augmented 

triads descending semitonally over descending fi fths harmonies as in mm. 17–24 and 

82–83. Evans, not content to use this stock pattern for a third time, hits upon a clever 

variation: instead of moving down by semitone from one augmented triad to the 

next, he moves up by minor third—producing the same series of augmented triads, 

but now in an ascending fashion. This spontaneous stroke of music-theoretical inspi-

ration exploits two different kinds of substitution: tritone substitution, which allows 

semitonally descending augmented triads to accompany dominant seventh chords 

descending by fi fth, and what might be called “major-third substitution” (deriving 

from the augmented triad’s threefold symmetry), which allows Evans to replace aug-
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mented triads that descend by semitone with augmented triads that ascend by minor 

third.27

The rest of the phrase is more typical, using scales and arpeggios to outline the 

underlying harmonies. The solo ends by returning to the bluesy idea of m. 137, dou-

bling its repeated notes at the major third, evoking Stravinsky as much as the blues 

proper. Evans ends his solo by developing the last two notes of this gesture, falling 

chromatically to A-Cs. Noticing the waning intensity, Philly Joe Jones stops drum-

ming in preparation for the bass solo.

These sorts of relationships would be interesting if they were found in a piece 

of composed music, carefully constructed over weeks or months. But their appear-

ance in such a rhythmically complex improvisation is truly remarkable. Many clas-

sical musicians, I suspect, would be hard pressed simply to keep time with Evans’ 

rhythm section—indeed, it can be hard enough to follow the form while listening to 

the record. (Philly Joe Jones, with his dotted half-note polyrhythms, certainly doesn’t 

help!) That Evans is able to do so, while spontaneously developing a coherent musi-

cal statement, must be counted an act of genuine virtuosity. Whether we look at the 

large-scale form of the piece, with its recurrent motives and organic formal develop-

ment, or at small-scale processes of variation, the improvisation seems logical, clear, 

and carefully constructed. This is not simply a virtuosity of the body but of the mind 

as well—the spontaneous expression of a deep understanding of the fundamental 

principles of twentieth-century tonal composition.

10.8 jazz as modernist synthesis

Arnold Schoenberg and Walter Piston both observed that theirs was an age marked 

by the proliferation of styles.28 Like many of their contemporaries, they despaired 

of trying to synthesize these diverse trends into a coherent body of knowledge, 

Figure 10.7.12 
With augmented 

triads, ascending 

minor thirds 

and descending 

semitones 

produce the 

same sequence of 

chords.

27 It is interesting to compare this passage to the opening of Radiohead’s “Just,” where the triads C–Ef–
D–F support a melodic octatonic scale. Radiohead’s progression can be understood as an ascending minor-
third pattern (C–Ef–Fs–A) that has been transformed by a major-third substitution (Fs®D) which changes 
an ascending minor third into a descending semitone. (After this substitution the ascending minor thirds 
continue apace.) The Fs®D substitution preserves the chord tone Fs, so that the octatonic scale sounds the 
root of the fi rst two chords and the third of the second two. In Evans’ solo, descending augmented triads 
become ascending minor-third augmented triads; in Radiohead’s song, ascending minor-third major triads 
instead descend by semitone. Underlying both procedures is the same fundamental geometry.

28 See Piston 1941 and Schoenberg 1975.
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 explaining that they were too close to the developments they surveyed. (Indeed, it was 

precisely Piston’s despair that gave rise to modern American pedagogy, centering on 

the “common practice period” of the eighteenth and nineteenth centuries.) Instead, 

both prophesied that there would come a time in which the various developments of 

the early twentieth century would be clarifi ed, coalescing into a coherent musical lan-

guage. I fi nd it marvelous to refl ect that these prognostications were essentially cor-

rect. For there is a late twentieth-century musical language that synthesizes many of 

the developments of nineteenth and early twentieth-century music, including chro-

matic voice leading, quartal harmony, polychords, impressionist scales, and poly-

tonality. This musical language has been codifi ed in textbooks, is taught at (some) 

conservatories, and can be heard on any given night in New York, Riga, Dubrovnik, 

Tokyo, and throughout much of the rest of the world.

Of course, Schoenberg and Piston would have been shocked to see the form in 

which their prophecies were realized. First, the synthesis was not achieved by the 

inheritors of the European notated tradition—composers of string quartets and sym-

phonies, trained in the best conservatories and having access to the fi nest orchestras 

and concert halls. Instead the language was forged by improvising musicians, many 

poor and African American, who carved an alternative musical tradition out of the 

materials afforded by popular culture. Second, the modernist synthesis did not take 

the form of a robust alternative to tonality: instead, it created a hybrid style that incor-

porates modernist devices while continuing to exploit functionally tonal ideas. For 

the contemporary jazz musician, chromatic voice leading, octatonic scales, quartal 

harmonies, and polychords are just more grist for the tonal mill. Figure 10.8.1 shows 

that a simple jazz ii–V–I is an accretion of musical techniques formed over the ages: 

at its core, we have a ii–V–I schema dating from the time of Monteverdi; in the upper 

voices of the piano’s right hand, we fi nd an effi cient chromatic voice leading between 

Figure 10.8.1 A simple jazz progression incorporates techniques from the entire history of 

tonality.
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third-related major triads (Ef, G, Bf)®(D, G, B), reminiscent of the progressions 

that fascinated Schubert, Brahms, and Wagner. On top of this we fi nd scales char-

acteristic of early twentieth-century modernism: an acoustic scale over the V chord, 

and the lydian mode over the tonic chord. This routine passage, in other words, is a 

musical synthesis literally centuries in the making, incorporating and domesticating 

the ideas of previous revolutionary eras.

From an economic point of view, there are clear reasons why jazz musicians would 

emphasize synthesis and shared musical practices. Notated music is a highly individ-

ualized business, created by composers who largely work alone. Jazz, as an inherently 

social form of music making, is more fertile ground for constructing a genuinely 

shared musical language: the constant formation and reformation of musical ensem-

bles facilitates an exchange of musical ideas, and the necessity of playing together 

forces musicians to agree on a set of common principles. As a result, innovations in 

jazz tended to accumulate, forming an ever-growing common practice. Notated com-

posers, on the other hand, are free to rethink musical syntax from the ground up. Not 

surprisingly, then, twentieth-century concert music contains a multitude of highly 

individual musical languages, stunning in their diversity, but sometimes completely 

disconnected from one another.

Ultimately, this economic difference allowed jazz musicians to act as custodians 

of a tradition of advanced tonal thinking, bridging the gap between the tonality of 

Debussy and Ravel, and that of Louis Andreissen, Steve Reich, and John Adams. To 

composers who grew up during the modernist ascendancy—a time when atonality 

was in fashion and tonality was occasionally dismissed as a remnant of the past—jazz 

must have provided a beacon of hope, an example of a sophisticated tonal language 

that drew on the past, yet went beyond it in signifi cant ways. For these composers, 

jazz would have provided a major source, if not the major source, for ideas about how 

to compose in a distinctively modern and tonal style. Certainly this was true in my 

own case: it was pieces like Bill Evans’ “Oleo” (as well as the music of Art Tatum, John 

Coltrane, and Miles Davis) that convinced me that tonality had continued to develop 

and grow throughout the twentieth century, unnoticed by offi cial academic culture. 

And I learned as much about the mechanics of tonal harmony from jazz theorists like 

Mehegan and Levine, as I did from the atonal composers who taught me about Bach 

and Schubert.

Today, of course, both tonality and jazz have made some inroads into elite musi-

cal culture. Nevertheless, it remains true that jazz continues to occupy a subordinate 

position in American music theory and music education (Figure 10.8.2). Students 

continue to receive music degrees from major American universities without ever 

engaging seriously with jazz. It is possible that this represents only the intrinsic dif-

fi culties of teaching non-notated music, exacerbated by a serious case of institutional 

inertia: for a long time, jazz education was an oral tradition, and there were few good 

written resources to be found. (Furthermore, even under the best of circumstances, 

academic institutions are like ocean liners, requiring a long time to turn around.) 

But it is also possible that the current status of jazz refl ects, at least in some ways, 

the legacy of decades of systematic bias. It is sobering to think that many of the most 
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important jazz innovations occurred during a time when it was still illegal, in some 

parts of this country, for people of different races to marry. Given this, it is perhaps 

not surprising that a musical style that married African and European approaches 

might have had diffi culty making inroads into university curricula. One can only 

hope that the recent election of the fi rst African-American president of the United 

States foreshadows a future, however distant, in which irrational barriers may mean 

less than they once did, and in which we can start to appreciate the profound connec-

tions between jazz and other musical styles.

Hits 
Search Subject JSTOR RILM

Arnold Schoenberg 2421 2545 

John Cage 2368 1448 

“serial music” or serialism 2688 2433 

Duke Ellington 1227 354 

John Coltrane 453 210 

tritone substitution 15 3

Figure 10.8.2 According to online databases of academic journals, jazz plays a relatively 

minor role in contemporary music scholarship. For example, just a handful of articles 

mention tritone substitution, whereas thousands mention serial music.
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Imagine yourself as a European composer at the beginning of the twentieth century, 

when the world was changing at an unimaginable pace. The decreasing cost of travel 

had made it possible to bring, say, a gamelan to Paris, or to mount strangely terrifying 

exhibitions of “primitive” art. Unprecedented scientifi c and technological discover-

ies were expanding your sense of what was possible: suddenly, images and sounds 

could be preserved for posterity, information could be transmitted instantaneously 

across vast distances, and the very distinction between space and time was in ques-

tion. Under the circumstances, it would be perverse not to wonder whether there 

could be musical analogues to this revolutionary ferment. Surely, there were some 

features of Western music that were just conventions—parochial habits that went 

unchallenged simply because no one had ever thought to challenge them. Perhaps 

the V–I cadence was one of these, or the use of familiar meters, or even the notion of 

consonance itself. . . . 

Composers, in other words, faced the broadly scientifi c problem of determin-

ing which features of musical language were arbitrary and which were rooted more 

fi rmly in our biology or unchangeable cultural habits. Different musicians responded 

in different ways, arraying themselves along the spectrum from extreme conservatives 

(almost in denial about the changes sweeping the world) to utopian radicals (who in 

retrospect seem somewhat naive about humanity’s appetite for musical revolution).1 

For a time, music really was “experimental,” as composers drew and redrew the line 

between what would be different and what would remain the same. The problem is 

that in music, unlike science, “experiments” rarely produce unequivocal answers: it 

is entirely likely that a particular compositional style—be it impressionism, atonal-

ity, or bebop—will attract some adherents while repulsing others. And so, a century 

later, we are still struggling with the aftershocks of the modernist explosion. Rather 

than reaching consensus on the fundamental mechanisms of musical coherence, the 

musical world has split into distinct and sometimes hostile camps. For every musi-

cian who thinks that tonality is a thing of the past, there is another who thinks that 

atonality was a vast and horrible mistake—the musical analogue, as Milan Kundera 

once wrote, of the Dictatorship of the Proletariat.

1 Interestingly, music theorists like Riemann and Schenker tended toward the conservative end of the 
spectrum, insisting on the naturalness of traditional Western music well into the twentieth century.
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This situation is exacerbated by the fact that music occupies an intermediate posi-

tion in our psychic economy. It is possible to splash paint relatively haphazardly on 

canvas without creating something that is truly noxious—at worst, the result will 

be bland but inoffensive, a kind of apocalyptic wallpaper. By contrast, imagine the 

situation of the avant-garde cook who simply combines all possible tastes in the way 

Jackson Pollock splashed paint. (Please note that I am not limiting myself to food 

tastes!) It’s safe to say that the culinary avant-gardist would have to close up shop 

relatively quickly, and that even the most diehard aesthetes would give Aleatoric Eat-

ery a pass. Somewhere between these two extremes lies the situation of the avant-

garde composer, who faces an audience less tolerant than the audience for paintings, 

but more tolerant than the audience for food. It is quite possible to develop a taste 

for atonal music, and as a result there are more fans of atonal music than there will 

ever be for Atonal Food. But at the same time, developing a taste for atonality often 

involves a signifi cant investment of time, and it is not for everybody—meaning that 

avant-garde music will never be as popular as avant-garde painting. Atonality is nei-

ther so abrasive as to die out completely, nor so attractive as to achieve widespread 

acceptance.2

My initial motivation in writing this book was to try to imagine a time in which 

the aftershocks of modernism were no longer so keenly felt, and in which we could 

begin to glimpse rudimentary answers to the old modernist questions. To my mind, 

the fi ve properties of Chapter 1 are fairly basic to the Western conception of musi-

cal coherence and not likely to be supplanted soon: for the foreseeable future, the 

majority of successful Western music will continue to exploit acoustic consonance, 

small melodic motions, consistent harmonies, clear tonal centers, and identifi able 

macroharmonies. (Whether this is a matter of biology, deep cultural inertia, or some 

combination of the two is practically speaking not that important.) And this in turn 

means that familiar chords and scales—overdetermined and multiply optimized as 

they are—will continue to play a central role in our musical life. Thus the goal of Part 

I, to provide a conceptual framework for composers who are less interested in replac-

ing tonality than in devising new tonal styles. I like to think of the fi ve features as basic 

fl avors that can be combined and recombined endlessly—as if the composer were a 

chef attempting to create new musical dishes with the same basic set of ingredients.

From a purely theoretical perspective, the important point is that it is extremely 

diffi cult to satisfy all fi ve features simultaneously. This can be seen by considering the 

continuous geometrical spaces in Chapter 3. To combine harmonic consistency and 

conjunct melodic motion is to utilize short-distance line segments between struc-

turally similar chords, and this is possible only if we exploit some unusual feature 

of the geometry: either the global “twist” by which opposite faces are identifi ed, or 

2 There is also the fact that painters sell one-of-a-kind commodities which often appreciate in value, 
whereas composers (like cooks) sell repeatable experiences and depend for their profi ts on a high volume 
of sales. This results in a tragicomic disparity between avant-garde painters and composers: while it is 
almost de rigueur for successful visual artists to buy their own palaces and islands, even the most successful 
atonal composers typically need to augment their modest compositional income by teaching.
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the boundaries that act like mirrors. (These two possibilities can be associated with 

traditional tonality and 1960s “micropolyphony,” respectively.) But there are other, 

more subtle forms of constraint as well, leading us to expect that composers would 

naturally gravitate toward scales that (for example) contain many consonances while 

also dividing the octave nearly evenly. In this sense, tonality is not one among an 

infi nitude of habitable planets, all easily accessible by short rocket fl ight; instead, it 

is much closer to being the only habitable planet that we have discovered so far. And 

just as we have an interest in conserving the ecology of this, our only habitable planet, 

so too might we have an interest in protecting the sophisticated tonal languages that 

manage to survive in today’s unfriendly economic climate.

This is not to say that there is nothing new under the sun, or that the music of 

the future is doomed to repeat the procedures of the past. Over the course of the 

book, I have described a number of new ideas—including individual T-relatedness, 

near symmetry, pitch-class circulation, global macroharmonic profi les, chord lattices, 

interscalar transposition, and so on—that naturally suggest directions for further 

musical exploration. Previous composers have explored these ideas in a fairly intui-

tive and unsystematic manner. My hope is that a deeper theoretical understanding 

will open new compositional doors, suggesting new ways in which we might trans-

mute the basic materials of tonality into something rich and strange. (Even the simple 

harmonic “grammar” of §7.1 is potential grist for the twenty-fi rst-century composi-

tional mill, providing a way to tweak or automate or parody the ancient procedures of 

functional tonality.) And while I had initially envisioned an entire chapter describing 

the potential compositional applications of these ideas, I eventually decided against 

this. For it seemed to me that readers might prefer to discover for themselves how 

to use these new concepts to create new music. And I thought that I myself might 

prefer to be surprised by what readers come up with, rather than pushing them to 

walk along the paths that I had already made.

As I said, my initial goal in writing this book was to explore basic theoretical and 

compositional issues. But during the course of my thinking, I gradually began to real-

ize that my fi ve features could also provide a helpful framework for understanding 

the development of Western music. The narrative sketched in Chapter 6—and fl eshed 

out by the rest of Part II—suggests a reasonably systematic progression wherein com-

posers repeatedly grappled with the problems and opportunities bequeathed to them 

by their predecessors. Increasing interest in three- and four-voice composition led 

to triadic harmony, which eventually paved the way for the functional conventions 

of the classical era. The gradual standardization of major and minor modes led to 

an increased emphasis on chromatic transposition, which eventually underwrote 

the expanded modal vocabulary of twentieth-century tonality. Nineteenth-century 

chromatic voice leading led to more chromatic macroharmonies, resulting in a split 

between atonal composers who followed the vector of increasing chromaticism to 

its logical conclusion, and scalar composers who ameliorated chromaticism with the 

three scalar techniques of Chapter 9.

My hope is that these sorts of ideas might inspire theorists and historians to do 

more careful and detailed work. My chief goal has been to introduce (or reframe) 
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basic theoretical concepts such as voice leading, pitch-class intervals, chord similarity, 

key distance, scale, mode, centricity, and so on. I have provided some hints about how 

we might use these concepts, both in traditional analysis and in statistical investiga-

tions of larger trends. But in a book such as this, it is impossible to consider these 

issues in anything like the detail that they deserve. Forced to play the dual role of tool 

salesman and carpenter, I have left you with a frame rather than a completed house. 

Consequently, there is more to be said about the varieties of nineteenth-century chro-

maticism, or the various statistical approaches to musical analysis, or really any of the 

historical topics broached in this book. Hopefully, readers will see this as an invitation 

to future work, rather than a defect of the book as it stands.

To my mind, the most novel feature of my historical narrative concerns the tran-

sition from the nineteenth to the twentieth century. I am fascinated by the thought 

that, amid the fog and confusion of recent history, it is just possible to discern the 

outlines of a genuine common practice, stretching from impressionism through jazz 

to contemporary postminimalism. This common practice fuses nineteenth-century 

voice leading with a distinctively twentieth-century interest in scales, combining a 

fl exible attitude toward centricity with a serious concern for macroharmony. I do 

not want to suggest that this is the only twentieth-century music worth paying atten-

tion to, but for me it forms a kind of central core, the twentieth century’s most 

obvious contribution to elementary mechanisms of tonality. Particularly interesting 

here is the thought that jazz, rather than being some marginal offshoot of classical 

music, is actually more continuous with early twentieth-century tonality than many 

forms of more avant-garde music. Thus my claim that the history of twentieth-

century tonality runs straight through jazz: we cannot possibly hope to understand 

the development of notated tonal music without understanding its relation to non-

notated styles.

This brings me to my fi nal point. I began by suggesting that early twentieth-

 century composers faced the diffi cult problem of determining which aspects of 

musical practice might be changed and which were more deeply ingrained. Twen-

ty-fi rst-century composers confront a very different challenge. In the past, notated 

composers had a monopoly on high-culture respectability, since notation was vir-

tually the only way to preserve and transmit one’s music. Over the last hundred 

years, however, the primary means of musical dissemination has shifted from scores 

to recordings. And while the notated tradition was conducting its experiments in 

musical coherence, alienating audience members in the process, jazz and rock were 

becoming increasingly sophisticated, to the point where they now challenge the 

status of notated music. New instruments—the electric guitar, the synthesizer, the 

drum set—changed our sonic frame of reference, so that there is now something 

archaic about the very sound of string quartet or orchestra. The upshot is that young 

composers not only have to answer the metaphysical questions of their modernist 

ancestors, but also have to fi gure out how notated music fi ts into this new cultural 

context. They need to think about what it means to write string quartets in the world 

of Metallica—or, failing that, to establish how best to marry the strengths of nota-

tion to the raw power of the electric guitar.
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This, then, is contemporary composers’ biggest challenge: to rebuild interest on 

the part of audiences who are largely indifferent to avant gardism, who think that 

notated music begins and ends with the classics, and who in any case care more about 

jazz, rock, rap, and electronica. The task is to show that notation—and more gener-

ally, a certain kind of sophisticated musical thinking—has something to contribute 

to contemporary culture. I myself believe that this is possible, and that there is music 

waiting to be written that combines the intellectuality of Bach (or Debussy) with the 

raw energy of Coltrane (or The Pixies or Einstürzende Neubauten). I would love to 

think that something in this book had inspired some young musician to grapple with 

this challenge, perhaps by exploring some of the ideas I have described. But failing 

that, it would be enough to say something useful about the deep questions of tonality 

and atonality, still with us a century after the advent of modern music.
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Measuring Voice-Leading Size

My view is that measures of voice leading should depend only on the distance moved 

by each voice. Mathematically, we take the absolute value of the difference between 

the initial and fi nal pitches: thus the distance from C4 to D4 is |60 – 62| or 2, while the 

distance from Cμ4 to C5 is |60.5 – 72| or 11.5. (In some cases, we might want to mea-

sure relative to a scale, but we will ignore that complication as it does not change the 

underlying mathematics.) When several voices move simultaneously, then a measure 

of voice-leading distance should depend only on the collection of distances moved by 

each voice. For instance, the fi rst voice leading in Figure A1 moves its three voices by 

two, zero, and zero semitones, while the second moves its voices by one, one, and one 

semitones.1 A measure of voice-leading size therefore needs to tell us whether the col-

lection {2, 0, 0} is larger or smaller than {1, 1, 1}. We can assume that larger motions in 

any individual voice do not result in smaller overall voice leadings; thus the collection 

{6, 3, 1} should be at least as large as {4, 3, 1}, since six is greater than four.

Unfortunately, as mentioned in Chapter 2, it is 

not obvious how to compare collections. One pos-

sibility is to compare their largest element, in which 

case {2, 0, 0} is larger than {1, 1, 1} (since 2 > 1). (I 

call this the “largest-distance metric.”) Another pos-

sibility is to add the distances in the two collections, 

in which case the fi rst (total distance = 2) is smaller 

than the second (total distance = 3). (This is some-

times called the “taxicab metric.”) Yet a third pos-

sibility is to treat the set of distances as determining 

the coordinates of a line segment in Euclidean space, 

with the length of the line segment representing the 

size of the collection. Here again, the fi rst collection is larger than the second, since 

the line segment (2, 0, 0) is 2 units long, whereas (1, 1, 1) is only 3 units long. 

(This is called the “Euclidean metric.”2)

Since each of our methods is in itself perfectly reasonable, we have no reason to 

choose one rather than another. Faced with this embarrassment of riches, we could 

Figure A1 The fi rst voice 

leading moves one note by 

two semitones, while the 

second moves three notes by 

one semitone each.

1 Note that the distance is always a positive number and does not depend on whether the voice moves 
up or down.

2 The formula for computing distance in n-dimensional Euclidean space is 2 2 2
1 2 ... nx x x+ + + .
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arbitrarily choose one and hope for the best. (This is what music theorists have tra-

ditionally done.3) Alternatively, we might note that there are some facts about which 

“reasonable” metrics should agree: surely, for example, no reasonable metric can treat 

the voice leading (C, G)®(Fs, Cs), in which both voices move by tritone, as being 

smaller than (C, G)®(Cs, Fs), in which the voices move by semitone!4 This suggests 

the strategy of trying to demarcate the “zone of agreement” among reasonable met-

rics. In the best-case scenario, we might fi nd that all of the claims we would like to 

make are valid for all reasonable metrics—and thus there is no need to choose one 

rather than another. Less optimistically, we might fi nd that we occasionally need to 

select a method of measuring voice leading; but by charting the “zone of agreement,” 

we will at least be able to see where particular choices lie in the space of reasonable 

alternatives.

This is the strategy I follow here. I propose that any method of measuring voice 

leading is acceptable, as long as it does not have the counterintuitive consequence that 

“voice crossings” make a voice leading smaller (Figure 2.7.2).5 It is actually quite easy 

to formulate this principle mathematically: if a metric is not to favor voice crossings, 

then it must treat the collection of distances {x
1
 + c, x

2
, . . . , x

n
} as being at least as large 

as {x
1
, x

2
 + c, . . . , x

n
}, whenever x

1
 > x

2
 and c ³ 0. Furthermore, {x

1
, x

2
 + c, . . . , x

n
} should 

be at least as large as {x
1
, x

2
, . . . , x

n
}. Intuitively, this means that the metric should not 

prefer an uneven distribution of distances, such as {4, 0, 0} over a more even distri-

bution, such as {1, 1, 2}. This well-known mathematical principle can be stated in 

a number of equivalent ways.6 Originating in early twentieth-century economics, it 

is called the submajorization partial order, and it appears in an extraordinarily wide 

range of applications.7 The principle determines a “partial order” because it provides 

a way to compare some but not all collections of numbers. For instance, it tells us that 

{1, 1} can be no larger than {2, 0}, but it does not tell us anything about the relative 

sizes of {3, 3} and {4, 1}.

Figure A2 uses the Möbius strip to illustrate the geometry underlying this 

approach. The arrows in the upper left show that the musical “no-crossings prin-

ciple” is equivalent to the geometrical principle that voice leadings bouncing off the 

mirror (which contain crossings) should never be shorter than those that directly 

3 See, for example, Straus (2003), who chooses the taxicab metric, and Callender (2004), who chooses 
Euclidean distance. For early (and somewhat vague) discussions of voice leading size, see Masson 1697/1969, 
Hostinský 1879, and Schoenberg 1975.

4 To be clear, there may be some notions of distance according to which, say, G is closer to C than Cs is, 
but I claim that these alternatives measure something other than voice-leading distance.

5 Composers regularly employ voice crossings, but there is no reason to think that in doing so they are 
reducing voice-leading size.

6 For instance, here is a not obviously equivalent formulation: given two voice leadings A and B, A is 
no larger than B if the largest distance moved by any single voice in A is less than or equal to the largest 
distance moved by any voice in B, and if the sum of the largest two distances in A is less than or equal to the 
sum of the largest two distances in B, and if the sum of the largest three distances in A is less than or equal 
to the sum of the largest three distances in B, and so on.

7 See Marshall and Olkin 1979, and Hall and Tymoczko 2007.
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connect their endpoints.8 (This, in turn, is related to what mathematicians call “the 

triangle inequality.”) In the lower right, I show how the no-crossings principle gives 

us a method of comparing some, but not all, voice leadings. The vertical arrow corre-

sponds to the voice leading (C, G)®(D, F). The inner diamond determines the voice 

leadings that, according to any reasonable metric, must be at least as small as this one. 

The outer white space contains voice leadings that must be at least as large as the ver-

tical arrow. The shaded area, meanwhile, represents the zone of acceptable disagree-

ment; arrows that terminate in this area may reasonably be considered to be either 

Figure A2 Two connections between geometry and voice-leading distance. (Möbius strip, 

upper left) To say that voice crossings never make a voice leading smaller is to say that the 

two edges of this triangle are not shorter than the third. Since the voice leading b contains 

a crossing, it bounces off the mirror boundary. The “uncrossed” alternative (a) forms the 

triangle’s third edge. According to all reasonable measures of voice-leading size, the uncrossed 

voice leading in a is no larger than the crossed voice leading in b. (Möbius strip, lower right) 

The fi gure provides a geometrical illustration of the submajorization partial order. All voice 

leadings in the inner diamond are smaller than (C, G)®(D, F). All voice leadings outside 

the shaded area are larger. The shaded area represents the zone of acceptable disagreement 

among reasonable metrics.

8 Any voice leading with a crossing in pitch space is represented by a line segment that bounces off the 
mirror boundary at the point where two voices cross.
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smaller or larger than (C, G)®(D, F).9 If we are interested in making comparisons 

between similar-sized voice leadings we therefore need to choose a specifi c metric, 

but when comparing very different voice leadings we often do not: for instance, we 

can say that the arrow (C, G)®(B, D) on Figure A2 is at least as large as the two other 

arrows originating at the same point for any reasonable metric whatsoever.

It turns out that reasonable metrics agree about a surprisingly large number of 

musically interesting facts. For instance, they agree that more-even chords in gen-

eral have smaller voice leadings to their various transpositions.10 They also agree that 

“inversionally symmetrical” voice leadings are particularly small: suppose A®B is a 

voice leading such as (C, E, G)®(B, E, Gs), in which, for every voice that moves up by 

x semitones, there is also a voice that moves down by x semitones; reasonable metrics 

will all agree that A®B is at least as small as any other individually T-related voice 

leading A®T
x
(B). From this it follows that, for any reasonable metric, major triads 

can be connected by minimal voice leading when they are related by major third, and 

dominant seventh chords can be connected by minimal voice leading when they are 

related by minor third or tritone. (In other words, reasonable metrics agree about the 

importance of the major-third and minor-third systems.) Thus we need not always 

select one voice-leading metric from among the many equally plausible alternatives: 

in many cases, we can assume only that our voice-leading metric is a “reasonable” one 

obeying the submajorization partial order.11

It bears repeating that my distinction between “reasonable” and “unreasonable” 

metrics applies only when we are interested in measuring voice-leading size. In other 

contexts, there are other conceptions of musical distance that we might want to con-

sider. For example, we might sometimes want to consider G4 to be particularly close 

to C3, since the upper note is the lower note’s third harmonic.12 Although this is a 

legitimate measure of musical distance, it cannot be considered a measure of voice-

leading size, as I use the term: voice-leading size has to do with how far the hands move 

on the piano keyboard from one chord to another. It is, in other words, a measure of the 

aggregate effort needed to move along a specifi c path between two musical “places.” 

This quantity is known to be relevant to listeners’ psychology, determining our ability 

to separate notes into individual melodic streams.13 And it is this quantity, rather than 

the other distances considered above, that composers seem to try to minimize as they 

move from one chord to another.

 9 Strictly speaking, this is true only of voice leadings that do not touch the edges; once a voice leading 
passes into the exterior white region it is necessarily larger than the vertical arrow.

10 See Tymoczko 2006. Here I am considering only bijective voice leadings.
11 This principle is general enough that it can plausibly be attributed to composers’ individual psychol-

ogy: it is certainly hard to imagine that a composer would think that the voice leading (C, G)®(B, D) on 
Figure A2 is smaller than (C, G)®(D, F). By contrast, it is much harder to imagine that, say, Mozart used 
the largest-distance metric rather than the taxicab metric.

12 Or we might consider the chord {C, Cs, E, Fs} to be close to {C, Df, Ef, G}, since they contain the 
same collection of intervals (Tymoczko 2008c); in still other cases, we might measure distance by counting 
how many voices are moving.

13 See Huron 2001. Wessel 1979 contains an important caveat.
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Chord Geometry: A More Technical Look

This appendix offers a more technical description of the higher dimensional chord 

spaces. My goal is to provide enough information to allow you to work with the spaces 

directly, either by hand or using a computer. My treatment will presuppose only ele-

mentary mathematics, explaining technical terms (such as “fundamental domain” 

and “quotient space”) along the way. However, I will not shy away from messy details 

omitted from the main text.

Musically, a pitch can be represented by a number, as discussed in §2.1. An ordered 

sequence of n pitches is therefore represented by an ordered sequence of n numbers, 

or in mathematical parlance an “n-tuple.” (Chapter 2 refers to these n-tuples as “basic 

musical objects.”) Geometrically, an n-tuple determines a point in infi nite n-dimen-

sional Cartesian space, or “ordered pitch space.” To generate the space of unordered 

sequences of pitch classes, we need to “fold” this space to eliminate octave and order 

information. (Mathematicians would say that this folding produces a quotient of the 

original space.) In other words, we move from an infi nite, periodic “wallpaper space” 

to the fi nite space representing one of its individual tiles (§3.2). In three dimensions 

we obtain the tile by gluing together all points such as (x
1
, x

2
, x

3
), (x

2
, x

3
, x

1
), and (x

2
, x

1
, 

x
3
), which represent different ways of ordering the same pitches, as well as all points 

such as (x
1
, x

2
, x

3
) and (x

1
 + 12, x

2
, x

3
), in which the same pitch classes appear in dif-

ferent octaves.

The easiest way to approach this process is to fi nd a region of the original space 

that contains exactly one point for each unordered set of n pitch classes. This region, 

by itself, will not have any interesting mathematical or topological qualities: as a por-

tion of plain-vanilla Euclidean space, it will be completely unremarkable, just like 

the space from which it is drawn. (Mathematicians would say that this region is a 

fundamental domain, which is not yet a quotient space.) Our region becomes math-

ematically interesting only when we ascribe unusual properties to its boundaries: for 

instance, when we assert that some points act like mirrors, or are glued together in 

various ways. We make these assertions because we would like to use the region to 

model distances or trajectories in the original, infi nite space—much as we used the 

single tile of wallpaper to record the ant’s progress in §3.2.

This distinction between a fundamental domain (a region of ordinary Euclidean 

space) and a quotient space (a more topologically exotic space) is worth illustrating. 

Figure B1a depicts the infi nite, one-dimensional line containing single pitches. To 

convert this into a space of pitch classes, we need to glue together all octave-related 
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pitches x and x + 12. We begin by constructing a region of the original space contain-

ing one point for every pitch class. This is an ordinary line segment such as that in 

Figure B1b, consisting of all points greater than or equal to zero, and less than 12. 

(Note that our fi gure does not include the point 12, since it represents the same pitch 

class as zero; however, it contains every point less than 12, including points infi nitesi-

mally close to 12.) Because this is just a line segment, there is no reason (yet!) to say 

that the points at different ends are close together. It is only when we start to use the 

space to represent distances or trajectories in our original pitch space that we notice 

that it its endpoints are related: for instance, the motion shown in Figure B1c disap-

pears off the right edge of our line segment to reappear on the left. This tells us that 

the two edges of the line segment should be glued together, and that two points near 

Figure B1 (a) Pitch space is a line. (b) The region 0 £ x < 12 contains one point for 

every pitch class. (c) The line segment 59®64 disappears off the right edge of our region, 

reappearing on the left. (d) This tells us that we should attach the right edge to the left, 

forming a quotient space. We can represent this quotient space as a circle in two dimensions. 

Alternatively, we could simply add a new point, 12, to the right edge of our space and declare 

it to be the same as the point at the left edge.
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opposite ends are actually close together. We can express this visually by bending the 

line segment, producing the familiar pitch-class circle shown in Figure B1d. Alterna-

tively, we could simply add the point 12 to the right edge, declaring it to be the same 

as the point 0 on the left.1

Our goal, then, is to determine how to identify a region of n-dimensional Euclid-

ean space containing one point for every unordered set of n pitch classes.2 To do 

this, we can choose the region containing all and only those chords whose pitches 

(1) are in nondescending order, (2) span no more than an octave, and (3) together 

sum to a number less than 12 and greater than or equal to zero.3 Clearly, by reorder-

ing and octave transposing, we can transform any sequence into one that meets the 

fi rst two criteria: for instance, we can turn (G4, C3, E5) into (C4, E4, G4), which is in 

nondescending order and spans no more than an octave. However, the pitches (C4, 

E4, G4) do not meet the third criterion, since the numbers (60, 64, 67) sum to 191. 

Observe, though, that we can reduce their sum by 12 by transposing the last note 

down by octave and moving it to the front of the list. (In Chapter 4 we describe this 

process as transposition by one descending step along the “scale” C-E-G.) The result-

ing sequence, (G3, C4, E4), sums to 179 (or 191 – 12), while still meeting the other 

criteria. By repeating this process, therefore, we can eventually bring the sum into the 

range 0 £ x < 12.4

Our region is therefore bounded by the following mathematical inequalities:

 x
1 
£ x

2 
£  . . . £ x

n 
£ x

1 
+ 12 (B.1)

 0 £ x
1 
+ x

2
+ x

3 
+ . . . + x

n 
< 12 (B.2)

Equation B.1 says that the pitches are in nondescending order, spanning no more 

than an octave. Equation B.2 says that the sum of the pitches is greater than or equal 

to zero, and less than 12. Together, these inequalities determine a region of infi nite 

n-dimensional Cartesian space, in which there is exactly one point for every collection 

of n unordered pitch classes. Of course, points in this region still represent ordered 

pitch sequences, and not chords proper; in this sense the region, like a single tile of 

wallpaper, is a kind of steppingstone between our original “ordered pitch space” and 

the topologically complex “unordered chord space” we are trying to construct.

Before I try to explain what this region looks like, I should note that in some 

sense, complicated mathematics is unnecessary. For if we wanted to, we could sim-

ply program a computer to display the lower dimensional chord spaces directly. 

There are numerous computer graphics packages that allow users to draw in two- or 

1 In fact, this might be preferable since it shows that our quotient space is intrinsically one-dimensional; 
the circular representation may falsely suggest that the space has two dimensions.

2 There will actually be many different regions satisfying this criterion, of varying shapes; in what fol-
lows, I will describe a region that is particularly useful.

3 I use “nondescending” rather than “ascending” because I want to include chords that have pitch dupli-
cations, such as (C4, C4, C4, E4).

4 This process will never run afoul of the other two constraints, since the original ordering spans no 
more than an octave.
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 three-dimensional space; using the algorithm in Figure B2, we can transform any 

arbitrary ordered pitch sequence into a point lying in our region, and can thus graph 

arbitrary chords in the space. Furthermore, as explained in Chapters 2 and 3, we can 

graph voice leadings simply by imagining that each voice glides smoothly from its 

origin to the destination. (A computer can be programmed to provide the illusion 

of a smooth glide by taking discrete steps that are too small for the eye to follow.) At 

each stage along the glide, we project the current point into our fundamental region. 

Were we to do this, we would immediately see the shapes in Figures 3.3.1 and 3.8.2. 

Furthermore, as we plotted various voice leadings on the fi gure, we would fi nd that 

our algorithm automatically accounts for the space’s “exotic” boundary points: some 

boundaries would act like mirrors, while others would seem to be glued together. 

(That is, we would sometimes see a trajectories disappear off one part of the fi gure to 

reappear on another.) For someone who is not comfortable with geometry or abstract 

mathematics, or for someone who does not recognize what shapes Eqs. B.1 and B.2 

correspond to, this sort of direct, intuitive hands-on exploration may perhaps be the 

easiest way to proceed.

However, my job here is to try to explain—in a principled way—how to under-

stand the two sets of inequalities. In preparation for this task, I will review several 

elementary musico-geometrical facts.

 Fact 1. Transposition is represented by adding a constant to every note in 

a chord: (x
1
 + t, x

2
 + t, . . . , x

n
 + t) is the transposition of (x

1
, x

2
, . . . , x

n
) by 

t semitones (§2.1).

 Fact 2. Geometrically, adding t to every note in a chord corresponds to moving 

in parallel to the “unit diagonal” that connects (0, 0, . . . , 0) to (1, 1, . . . , 1) 

(Figure B3).

Figure B2 An algorithm for moving any ordered pitch set into the fundamental region 

defi ned by equations (1) and (2).
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 Fact 3. The equation x
1
 + x

2
 . . . x

n
 = c determines a higher dimensional 

analogue to the plane—a “hyperplane”—perpendicular to the unit diagonal 

described in Fact 2 (Figure B3).5

 Fact 4. There is exactly one transposition of any ordered pitch sequence 

with elements that sum to any particular value. The number t = (c − x
1
 − x

2
 

− . . . − x
n
)/n is the unique transposition such that (x

1
 + t, x

2
 + t, . . . , x

n
 + 

t) sums to c. Geometrically, this means that there is a unique way to move 

any point p parallel to the unit diagonal until it reaches an arbitrary plane 

perpendicular to that diagonal (Figure B3).

tra
ns

po
sit

io
n

       contains pairs

of pitches summing to 0

first note

se
co

nd
 n

ot
e

(a, b)

(1, 1)

(0, 0)

(a/2 – b/2, b/2 – a/2)

Figure B3 Transposition is 

represented by motion parallel to 

the line stretching from (0, 0) to 

(1, 1). The planes perpendicular 

to this line contain chords 

summing to a constant value.

Armed with these facts, let us return to our two equations:

 x
1 
£ x

2 
£  . . . £ x

n 
£ x

1 
+ 12 (B.1)

 0 £ x
1 
+ x

2
+ x

3 
+ . . . + x

n 
< 12 (B.2)

Fact 3 tells us that Eq. B.2 determines a collection of hyperplanes perpendicular to 

the line connecting (0, 0, 0, . . . , 0) to (1, 1, 1 . . . , 1), with sums in the range 0 £ c < 12. 

By Fact 2, these hyperplanes are related by transposition.6 Next, we observe that if any 

5 The term “hyperplane” refers to a fl at Euclidean space with one fewer dimension than the n-dimen-
sional space in which it resides. To see that the equation x

1
 + x

2
 + . . . + x

n
 = c determines a hyperplane, it 

helps to know that any linear equation a
1
x

1
 + a

2
x

2
 + . . . + a

n
x

n
 = c, with the a

i
 all real numbers, determines 

a hyperplane. (Intuitively, we can freely choose n − 1 of the n coordinates, with the fi nal coordinate being 
determined by our earlier choices.) To see that the plane is perpendicular to the line connecting (0, 0, . . . , 
0) to (1, 1, . . . , 1) recall that two vectors are perpendicular when x • y = 0. (Here “•” is the dot product of 
linear algebra: x

1  
y

1
 + x

2  
y

2
 + . . . + x

n  
y

n
.) That is, (x

1
, x

2
, . . . , x

n
) • (1, 1, . . . , 1) = 0, or x

1
 + x

2
 + . . . x

n
 = 0. Thus 

the (n − 1)-dimensional plane x
1
 + x

2
 + . . . x

n
 = 0 contains vectors perpendicular to the vector (1, 1, . . . , 1). 

The expression (x
1
, x

2
, . . . , x

n
) • (1, 1, . . . , 1) = c, or x

1
 + x

2
 + . . . x

n
 = c, identifi es the hyperplane that is c units 

away along the line connecting (0, 0, . . . , 0) to (1, 1, . . . , 1).
6 If two of our hyperplanes sum to c

1
 and c

2
, then they are related by (c

2
 − c

1
)/n semitone transposition, 

with n being the size of the chord.
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ordered pitch sequence satisfi es the fi rst set of inequalities (Eq. B.1), then so do all its 

transpositions. (This is just to say that if an ordered pitch sequence is in nondescend-

ing order spanning less than an octave, then its transpositions are, too.) It follows 

that Eq. B.1 determines the same shape in each of the cross sections x
1
 + x

2
 . . . + x

n
 = c. 

The space of musical chords is therefore some sort of prism: the inequalities x
1
 £ x

2
 

£ . . . £ x
n
 £ x

1
 + 12 determine the shape of the cross section, while the equation x

1
 + x

2
 

+ x
3
 + . . . + x

n
 = c identifi es the particular cross section containing pitch sequences 

summing to c.

The next problem is to determine the shape of the cross section. We begin by 

reviewing the defi nition of a “simplex”—an n-dimensional fi gure bounded by the 

lines interconnecting n + 1 vertices.7 (A simplex is so-called because it is, in some 

sense, the “simplest” n-dimensional fi gure, with the minimal number of vertices.) In 

two dimensions, the simplex’s three vertices determine a triangle. In three dimen-

sions, the four vertices determine a tetrahedron. Mathematicians sometimes use the 

term “the standard simplex” to refer to the simplex bounded by the endpoints of the 

basis vectors in n-dimensional Cartesian space. Figure B4 shows that the basis vectors 

in two-dimensional space defi ne a one-dimensional simplex stretching from (0, 1) to 

(1, 0); the three basis vectors in three-dimensional space determine a simplex stretch-

ing from (1, 0, 0) to (0, 1, 0) to (0, 0, 1). (The higher dimensional fi gures, although 

harder to visualize, are analogous.) Every point in these two simplexes is represented 

by coordinates that are all nonnegative and sum to one. For this reason, these sim-

plexes are important in applications in which a total quantity of “stuff” is divided up 

into a fi xed number of parts: for example, the one-dimensional simplex in Figure B4 

might be used to represent the result of an election featuring two candidates, while 

the two-dimensional simplex might be used for a three-party election.

(0, 1)

(1, 0)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

x x

z

y y

Figure B4 The “standard simplex” in two-dimensional space is a one-dimensional 

line segment (i.e. a one-dimensional simplex) stretching from (1, 0) to (0, 1); in three 

dimensional space, it is a two-dimensional triangle (two-dimensional simplex) bounded by 

(1, 0, 0), (0, 1, 0), and (0, 0, 1). The standard simplex contains all points with nonnegative 

coordinates summing to 1.

7 Strictly speaking, the vertices must be “affi nely independent”—that is, that there should be no c-di-
mensional plane containing more than c + 1 of the points.
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Now a mathematician would immediately recognize that the equation x
1
 £ x

2
 

£ . . . £ x
n
 £ x

1
 + 12 determines a simplex in the hyperplane x

1
 + x

2
 + x

3
 + . . . + x

n
 = 

c. There are a number of ways to see why this is so.8 Perhaps the most instructive is 

to note that there is a close relation between our equations and the standard sim-

plex described in the previous paragraph. To see why, note that we can rewrite the 

inequalities x
1
 £ x

2
 £ . . . £ x

n
 £ x

1
 + 12 as

 x
i 
– x

i–1 
³ 0 for 1 < i £ n

 x
1
 + 12 – x

n
 ³ 0

Since x
i
 − x

i − 1
 is the interval from note x

i − 1
 to x

i 
, our new inequalities simply say that 

the intervals between adjacent notes in the sequence are all nondescending, including 

the “wraparound” interval from the last note, x
n
, to the note an octave above the fi rst, 

x
1
 + 12. Furthermore, these n positive numbers must sum to 12, since they begin with 

x
1
 and end with x

1
 + 12. Dividing by 12 therefore gives us the coordinates of a point 

in the standard simplex.9 Conversely, for any point in the standard simplex, we can 

multiply its coordinates by 12 and construct a pitch sequence with those numbers as 

its consecutive intervals. According to Fact 4, there will be one and only one transpo-

sition of this sequence lying in the hyperplane x
1
 + x

2
 + x

3
 + . . . + x

n
 = c.10 We conclude 

that there is a “coordinate transforma-

tion” sending our original simplex, in 

which numbers represent pitches, into 

the standard simplex, in which the 

numbers represent intervals, as mea-

sured in fractions of an octave (Figure 

B5). Mathematicians will recognize 

that this coordinate change is an “affi ne 

transformation,” which means that it 

transforms one simplex into another. 

It follows that our original inequalities 

determine a simplex as well.11

 8 The simplest is to note that each of the inequalities x
i
 £ x

j
 carves the space into two halves, bounded 

by the hyperplane x
i
 = x

j 
. If n such half-spaces determine a fi nite region in (n − 1)-dimensional space, then 

that region is bounded by n hyperplanes, which is just to say that it is a simplex.
 9 For example, beginning with the pitch sequence (60, 64, 67) we can construct the interval sequence 

(4, 3, 5) representing the interval from 60 to 64, from 64 to 67, and from 67 to the note an octave above 60. 
Dividing by 12 gives us (4/12, 3/12, 5/12) which is a point on the standard simplex.

10 For instance, we multiply (½, ½, 0) by 12 to obtain the sequence of intervals (6, 6, 0). We then 
 construct a sequence of pitches whose successive notes are separated by these intervals, for instance (Fs2, 
C3, Fs3) or (42, 48, 54). These values sum to 144; transposing down by four octaves gives (−6, 0, 6), which 
sums to zero.

11 Suppose x and y are two points that the coordinate transformation sends to x' and y'. An affi ne 
transformation sends the point x + b(y − x) to the point x' + b(y' − x'), thus transforming a line in the 
original space into a line in the second. (It is easily checked that the coordinate transformation in Figure 
B5 is affi ne.) Algebraically, affi ne transformations represent the new coordinates as linear functions of the 
old coordinates—e.g. functions like x

1
' = ax

1
 + bx

2
 + c, which do not involve higher powers of the original 

variables x
1
 and x

2
.

Original
Coordinate

New
Coordinate 

x1 x2 – x1)/12

x2

(

(x3 – x2)/12 

… … 

xn (x1 + 12 – xn)/12 

Figure B5 The coordinate transformation 

from pitch-class space, in which coordinates 

represent numbers, to interval space, in which 

they represent intervals.
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We conclude, therefore, that our fundamental region is a prism whose face is a 

simplex. The lower face is determined by the equations

 x
1 
+ x

2 
+ x

3 
+ . . . + x

n 
= 0 and x

1 
£ x

2 
£ . . . £ x

n 
£ x

1 
+ 12

This simplex is “extruded” along the line connecting (0, 0, . . . , 0) to (1, 1, . . . , 1), a pro-

cess that corresponds musically to transposing upward, and algebraically to increas-

ing the sum of the chords in the cross section

 x
1 
+ x

2 
+ x

3 
+ . . . + x

n 
= c and x

1 
£ x

2 
£ . . . £ x

n 
£ x

1 
+ 12,

with the parameter c varying from 0 to 12. Each layer of the prism contains pitch 

sequences with a different sum; we can transpose until the sum is equal to 12, at 

which point we return to the chords that appear on the sum-zero face.

Fact 4 tells us that any ordered pitch sequence satisfying Eq. B.1 has exactly one 

transposition in each cross section of the space. This means that no two ordered 

pitch sequences in the same cross section are transpositionally related. However, the 

cross sections will contain sequences that are transpositionally related when we ignore 

octave and order. For suppose (x
1
, x

2
, . . . , x

n
) satisfi es Eqs. B.1 and B.2. Then,

 (x
2 
– 12/n, x

3 
– 12/n, . . . , x

n 
– 12/n, x

1 
+ 12 – 12/n)

will as well. (Those of you who have read Chapter 4 will note that this operation 

combines a chromatic transposition by –12/n semitones with a scalar transposition 

by one ascending step.12) As ordered pitch sequences, these are not transposition-

ally related, but if we disregard octave and order, they are.13 Thus, given an n-note 

sequence meeting our criteria, we can easily construct another by moving the fi rst 

note of the sequence to the end, adding 12 to it, and subtracting 12/n from every note 

in the resulting sequence. For example, starting with (0, 4, 7), we generate (4 − 12/3, 

7 − 12/3, 12 − 12/3) or (0, 3, 8). Repeating this procedure gives (3 − 4, 8 − 4, 12 − 4) 

or (−1, 4, 8). A fi nal repetition returns us to (0, 4, 7), where we began. Musically, the 

sequences (0, 4, 7), (0, 3, 8), and (−1, 4, 8) represent C major, Af major, and E major 

triads, each in a different mode or registral inversion: (0, 4, 7) is a C major chord 

whose fi rst note is its root, (0, 3, 8) is an Af major chord starting on its third, and (−1, 

4, 8) is an E major chord starting with its fi fth.14 In general, every n-note chord type 

will appear in each cross section n times, in each of its modes.

To determine the vertices of our cross section, we can exploit the relation with the 

standard simplex. In three dimensions, the standard simplex is bounded by the points 

(1, 0, 0), (0, 1, 0), and (0, 0, 1), which will correspond to the vertices of our cross sec-

tion. Multiplying by 12 transforms these numbers into the interval sequences (12, 0, 0), 

12 That is, it sends (x
1
, x

2
, . . . , x

n
) to (x

2
, . . . , x

n
, x

1
 + 12), transposing up by one scale step, and then sub-

tracts 12/n from these coordinates, transposing chromatically downward by 12/n.
13 If we ignore octave and order (x

1
, x

2
, . . . , x

n
) is the same as (x

2
, . . . , x

n
, x

1
 + 12). Subtracting 12/n from 

each number transposes the chord downward.
14 Remember that to fi nd the pitch class to which a number belongs, add or subtract 12 until it lies in 

the range 0 £ x < 12. Thus the number −1 refers to the pitch class B.



Appendix B 409

(0, 12, 0), and (0, 0, 12). Each determines a unique sequence of pitches on the face that 

sums to 0: (−8, 4, 4), (−4, −4, 8), and (0, 0, 0), or in scientifi c pitch notation (E–2, E–1, 

E–1), (Gs–2, Gs–2, Gs–1), and (C–1, C–1, C–1). In other words, they represent the three 

“modes” of the “scale” containing just one pitch class (Figure B6). The same procedure 

of course works in other dimensions: the boundaries of the cross section can always be 

determined by fi nding the pitch sequences summing to zero, and whose one-step scalar 

intervals are (12, 0, . . . , 0), (0, 12, 0, . . . , 0), (0, 0, 12, . . . , 0), . . . , and (0, 0, . . . , 0, 12).

Two Notes Three Notes Four Notes Five Notes 
(0, 0) (0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0, 0) 

(–6, 6) (–4, –4, 8) (–3, –3, –3, 9) (–2.4, –2.4, –2.4, –2.4, 9.6) 
(–8, 4, 4) (–6, –6, 6, 6) (–4.8, –4.8, –4.8, 7.2, 7.2) 

(–9, 3, 3, 3) (–7.2, –7.2, 4.8, 4.8, 4.8) 
(–9.6, 2.4, 2.4, 2.4, 2.4) 

Figure B6 
The vertices of 

the zero-sum 

cross section 

in various 

dimensions.

The fi nal step is to understand the “strange” points on the boundary of our region. 

We begin by considering how to attach the sum-zero face at one edge of the prism to 

the opposite, sum-12 face.15 Suppose that (x
1
, x

2
, . . . , x

n
) lies on the face of the prism 

summing to zero. Recall that the following chords all lie on the same face.

 A
1 
= (x

1
, x

2
, . . . , x

n
)

 A
2 
= (x

2 
– 12/n, x

3 
– 12/n, . . . , x

n 
– 12/n, x

1 
+ 12 – 12/n)

 A
3 
= (x

3 
– 24/n, x

4 
– 24/n, . . . , x

n 
– 24/n, x

1 
+ 12 – 24/n, x

2 
+ 12 – 24/n)

 .
 .
 .
 A

n 
= (x

n 
– 12 + 12/n, x

1 
+ 12/n, . . . , x

n–1
 + 12/n)

If we transpose these chords up by 12/n semitones, we obtain a series of chords that 

sum to 12:

 A
1
¢ = (x

1 
+ 12/n, x

2 
+ 12/n, . . . , x

n 
+ 12/n)

 A
2
¢ = (x

2
, x

3
, . . . , x

n
, x

1
 + 12)

 A
3
¢ = (x

3 
– 12/n, x

4 
– 12/n, . . . , x

n 
– 12/n, x

1 
+ 12 – 12/n, x

2 
+ 12 – 12/n)

 .
 .
 .
 A

n
¢
 
= (x

n 
– 12 + 24/n, x

1 
+ 24/n, . . . , x

n–1
 + 24/n)

15 Note that we have excluded this sum-12 face from our fundamental domain, since it contains the 
same chords as the sum-0 face. However, when we are constructing the quotient space, we need to think 
about how to attach various points on the boundaries. As in Figure B1d, we therefore add extra points, 
declaring them to be “the same” as some that we have already included.
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As ordered pitch sequences, A
1
¢ is the transposition of A

1
, A

2
¢ is the transposition of A

2
, 

and so on. But when we disregard octave and order, then A
1
 and A

2
¢ are the same chord, 

as are A
2
 and A

3
¢, A

3
 and A

4
¢, etc. Therefore we need to imagine that the sum-zero face 

of the prism should be attached to the opposite (sum-12) face with a “twist.” This 

twist acts as a cyclic permutation of the simplex’s vertices, connecting A
i
 to A¢

i + 1
.

Finally, we consider the boundary points such as (x, y, y), which contain pitch 

duplications. Consider a point in the interior of our simplex, such as (x
1
, x

2
 − c, x

2
 

+ c), with c some small positive number. As c goes to zero, the point (x
1
, x

2
 − c, x

2
 + 

c) approaches (x
1
, x

2
, x

2
), moving in a line toward the boundary of the cross section. 

When c becomes negative, the ordered pitch sequence (x
1
, x

2
 − c, x

2
 + c) lies outside 

of our fundamental region, since the second number is now greater than the third. 

According to the algorithm in Figure B2, then, we need to reorder the sequence so 

that it returns to our region. This reordering returns us to a point on the line segment 

along which we have just been traveling, since (x
1
, x

2
 − (−c), x

2
 + (–c) ) is a reordering 

of (x
1
, x

2
 − c, x

2
 + c). It follows that the boundaries containing pitch duplications act 

like mirrors: a point moving directly toward the boundary is “refl ected” backward 

along its approaching trajectory.16

Putting it all together then, the space of n-note chords is an n-dimensional prism 

whose simplicial (“simplex-shaped”) faces are glued together with a twist, and whose 

remaining boundaries act like mirrors. By attributing this behavior to our bound-

ary points, we have fi nally managed to convert our fundamental region—an unre-

markable portion of ordinary Cartesian space—into a quotient space (or orbifold), 

an exotic mathematical space with a nontrivial topology. Mathematicians would 

describe our quotient space as “the n-torus modulo the symmetric group that acts 

on n elements”—symbolically, Tn/S
n
. Here, Tn is the mathematical symbol for the 

n-torus, the space of ordered pitch-class sequences; S
n
 refers to the collection of oper-

ations that reorder n elements; and the division symbol instructs us to glue together 

points related by the operations that follow. Thus the mathematical symbol “Tn/S
n
” 

means “the space that results when you start with ordered pitch-class sequences and 

disregard order.” As discussed in Chapter 3, this is something very much like the space 

of chords as musicians ordinarily conceive of them.17

Readers are now prepared to plot voice leadings in the space. To do this, we must 

augment the algorithm in Figure B2 with two additional rules. First, when trans-

posing or reordering the notes in a voice leading, we must always do so uniformly, 

applying the same operations to both chords: if we transpose the fi rst note in the fi rst 

chord up by octave, then we must transpose the fi rst note in the second chord up by 

octave as well; similarly, if we exchange the fi rst and second notes in the fi rst chord, 

16 This argument considers trajectories moving perpendicular toward the boundary. More general tra-
jectories can be decomposed into a perpendicular and parallel components; the argument can then be 
applied to the perpendicular component.

17 Of course, musicians typically consider (C, C, E, G) to be the same as (C, E, G). When modeling voice 
leading, however, we often do not want to do this, as it can disrupt the relationship between distance and 
voice-leading size. See Callender, Quinn, and Tymoczko 2008.
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then we must do the same in the second. Second, we may sometimes fi nd that we can 

move a line segment into our fundamental domain only by breaking it into pieces. 

For example, suppose we would like to plot the voice leading (C4, Ef4, Gf4)®(Ef4, 

Gf4, C5), or (60, 63, 66)®(63, 66, 72), which shifts the C diminished chord up by 

one scale step. To get the sum of the fi rst chord’s notes to lie between 0 and 12, we 

must transpose down by fi ve octaves; this means we need to transpose the second 

chord down by fi ve octaves as well, producing (0, 3, 6)®(3, 6, 12). Here we encoun-

ter a problem. The fi rst part of this line segment—from (0, 3, 6) to just before (1, 4, 

7)—lies within our region, since its chords sum to less than 12. However, the rest of 

the line segment—(1, 4, 7)®(3, 6, 12)—sums to 12 or more. We therefore split the 

voice leading into two parts: (0, 3, 6)®(1, 4, 7) and (1, 4, 7)®(3, 6, 12). To move the 

second part of the voice leading into our fundamental region, we lower the fi nal note 

in each chord by 12 and move it to the front of the list. (Once again, we do this uni-

formly, applying the same transposition and reordering to both chords.) This gives 

us (−5, 1, 4)®(0, 3, 6), which is a line segment that begins on the lowest (sum-zero) 

face of the prism and moves to (0, 3, 6). Our voice leading (C4, Ef4, Gf4)®(Ef4, 

Gf4, C5) therefore disappears off the top face of the fundamental region, reappearing 

on the bottom. A little experimentation will show that any one-step ascending scalar 

transposition, in any chord space of any dimension, moves off the top face to reap-

pear on the bottom in a very similar way.

The fundamental idea here—and it is both simple and profound—is that ordi-

nary numbers provide a natural and musically meaningful set of geometrical coordi-

nates, with points representing chords and line segments representing voice leadings. 

Any sequence of numbers can be understood as an ordered list of pitches, while any 

pair of (equal-length) sequences can be understood as a voice leading in pitch space. 

When we disregard octave and order information, we are restricting our attention 

to a region of Cartesian space defi ned by Eqs. B.1 and B.2 above. This involves mov-

ing arbitrary points and line segments into our region. If we do this carefully and 

thoughtfully, we realize that the boundaries of this region have special properties. 

In other words, we make the transition from regions of ordinary Euclidean space to 

quotient spaces proper.18

18 Note that it is often possible to work with the original Cartesian coordinates: it is obvious that the 
voice leading (60, 64, 67)®(64, 60, 67) exchanges two notes, and hence bounces off a mirror boundary, 
and that (60, 64, 67, 70)®(64, 67, 70, 72) is an ascending one-step scalar transposition, and hence is rep-
resented by a path that disappears off the sum-12 face to reappear on the sum-zero face, returning to its 
starting point. After a little practice, you will start to feel comfortable with statements such as “there is a 
tritone halfway between (C4, G4) and (Cs4, Fs4)”—and even with more diffi cult tasks, such as imagining 
the cross section of an arbitrary voice leading in three-note chord space.
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Discrete Voice-Leading Lattices

In recent decades, music theorists have produced a number of graphs representing 

voice-leading relationships. Often, these graphs seem to imply something like the fol-

lowing methodology. First, one selects some interesting domain of chords and some 

interesting set of voice-leading relationships among them. (For example, semitonal 

voice leading among major, minor, and augmented triads.) Second, one constructs a 

graph representing all of the voice-leading relationships among all of the objects in 

question. Third, one interprets the resulting graph as providing a measure of distance 

between the objects it contains. Thus, for example, one might use the graph to ana-

lyze music that moves between nonadjacent chords, or claim that larger leaps on the 

graph are musically disfavored in some way.

However, this third step involves a subtle logical leap. For while the method generates 

graphs whose local structure is perfectly clear, it does not follow that the graphs’ global 

structure is equally meaningful. Consider, for example, the familiar Tonnetz—invented 

by Leonhard Euler, made famous by Hugo Riemann, and resurrected by contemporary 

theorists such as Lewin, Hyer, and Cohn (Figure C1).1 Two triads are adjacent on the 

Tonnetz if they can be linked by what Cohn calls “parsimonious” voice leading, voice 

leading in which a single voice moves, and it moves by just one or two semitones. How-

ever, there is no similarly intuitive way to characterize larger distances in the space. On 

the Tonnetz, C major is two units away from F major but three units from F minor—

even though it takes just two semitones to move from C major to F minor, and three 

to move from C major to F major (Figure C2). (This is precisely why F minor so often 

appears as a passing chord between F major and C major.) It follows that we cannot use 

the Tonnetz to model the ubiquitous IV–iv–I progression, in which the two-semitone 

motion 6̂®̂5 is broken into the semitonal steps 6̂®f̂6®̂5. More generally, it shows 

that Tonnetz distances do not correspond to voice-leading distances. (Nor do they cor-

respond to common tone distances: both F minor and Ef minor are three Tonnetz steps 

away from C major, even though C major and F minor have one common tone, while 

C major and Ef minor have none.) Indeed, it is an open question whether there is any 

intuitive notion of musical distance that is being modeled here.2

1 For a history of the Tonnetz, see Mooney 1996. For a general discussion of recent work featuring vari-
ous analogous discrete lattices, see Cohn 1998a.

2 Tymoczko 2009a notes that the Tonnetz may capture an acoustic conception of distance, according to 
which C3 is particularly close to its second overtone G4; the point here is that this is very different from 
voice-leading or common-tone distance.



Appendix C 413

A surprising number of discrete music-theoretical graphs suffer from similar 

problems. For example, the graph in Figure C3 shows single-semitone voice leadings 

among diminished, dominant, French sixth, and half-diminished seventh chords.3 

While it would be entirely appropriate to use it to analyze a passage that moves by sin-

gle-semitone voice leading between these chords, it is problematic to use it to model 

voice-leading distance between nonadjacent chords: the graph contains no two-step 

path between C7 and Aø7, even though the chords can be connected by two-semitone 

voice leading. For another example, consider Figure C4a, which represents single 

semitone voice-leading among major thirds and perfect fourths. On this graph, {C, F} 

Figure C1 Two versions of the Tonnetz. In (a) points represent notes, and chords are 

represented by triangles. In (b), points represent chords, and hexagons represent single notes. 

(For example, the hexagon containing C and f can be associated with the note C, common to 

all six of its triads.)

3 This graph is quite similar to Douthett and Steinbach’s “Power Towers” (1998).
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Figure C2 (a) On the Tonnetz, F major (triangle 3) is closer to C major (triangle 1) than F minor 

(triangle 4) is. Consequently, the voice leading (C, E, G)®(C, F, A) is represented as a two-step 

motion, while it takes at least three steps to represent (C, E, G)®(C, F, Af). (b) In actual music, 

however, F minor frequently appears as a passing chord between F major and C major.

Figure C3 A graph of single-semitone voice-leading relations among diminished, dominant, 

half-diminished and French sixth chords. On the graph it takes four steps to get from C7 to 

Aø7, even though the chords can be connected by two single-semitone shifts.
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and {Fs, B} are twelve steps apart, even though the minimal voice leading between 

them moves each voice by just a semitone. Once again, local voice-leading concerns 

give rise to a graph whose global distances are diffi cult to interpret.

This last example provides a key to understanding what is going on. Figure C4b 

embeds the circular graph within the Möbius strip representing two-note chords, 

showing that one can move from {C, F} to {B, Fs} across the center of the larger 

space. We cannot take advantage of this shortcut if we stay on the discrete lattice, 

because the lattice forces us to go “the long way around”—off one side of the strip 

and onto the other. A little thought will show that these sorts of voice-leading “short-

cuts” always pass through chords dividing the octave at least as evenly as those we 

happen to be interested in. (This is obvious in two-note chord space and less than 

obvious in higher dimensions; but the general principle holds there as well.) This 

leads to a very useful rule of thumb: in general, we should expect that a faithful rep-

resentation of voice-leading possibilities will contain whatever chords we are inter-

ested in, as well as all the chords that divide the octave at least as evenly as those chords. 

Thus if we are interested in voice leading among major thirds and perfect fourths, we 

should also include tritones. This is precisely why the lattices in §3.11 are all reliable: 

they include the most even chords in any given scale, and hence faithfully represent 

voice-leading distances.

More generally, we can specify criteria ensuring that a graph’s global structure 

faithfully represents voice-leading distances:

 1.  Every edge on the graph should represent voice leading in which a single 

voice moves by a single scale step or chromatic semitone (a condition violated 

by the Tonnetz).

Figure C4 (a) A graph of single-semitone voice-leading relations between major thirds and 

perfect fourths. (b) Since it does not contain tritones, it cannot represent voice leadings such 

as (C, F)®(B, Fs), which move vertically across the center of the space.
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 2.  For any two of its chords, the graph should contain all the interscalar 

transpositions between them (§4.9). This implies that the graph should not 

present the appearance of multiple disjoint segments in a cross section of the 

space of all chords, a condition violated by Figure C4b.

 3.  The chords on the graph should all have the same size.4

 4.  The paths representing these interscalar transpositions should not involve 

ascending and descending motion in the same voice (a condition violated by 

the Tonnetz and Figure C3 above).

 5. The graph should not contain any multisets.

It is relatively easy to see that any graph satisfying these three requirements will faith-

fully refl ect voice-leading distances, even between nonadjacent chords: condition 2 

implies that the graph contains the shortest voice leading between any of its chords 

(§4.9); condition 1 implies that edges have unit voice-leading length; and condition 3 

implies that the edges representing an interscalar transposition do not cancel each 

other out.5 The fi ve requirements are satisfi ed by all of the lattices in §3.11.

Of course, geometry can also provide a deeper perspective on these “faithful” voice-

leading graphs. For instance, Douthett and Steinbach’s “Cube Dance” ( Figure C5a). 

4 For discussion of the problems arising when graphs combine chords of different sizes, see Callender, 
Quinn, and Tymoczko 2008 and Tymoczko 2010.

5 Note that if we are measuring paths by counting the number of edges they contain, then we are using 
the “taxicab” metric of voice-leading size.

Figure C5 Douthett and Steinbach’s “Cube Dance” (a) and the lattice at the center of three-

note chord space (b).
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is virtually identical to the lattice at the center of three-note chord space, and was 

 discovered almost a decade before the continuous spaces of Chapter 3. However, 

it turns out that we can extract much more information from the graph when we 

understand how it is embedded within the continuous space. For example, geometry 

tells us that the graph represents all and only the strongly crossing-free voice leadings 

between its chords; that the three spatial axes correspond to motion in the three 

musical voices; that these spatial axes can only be defi ned locally, since the fi gure has 

a global topological twist; and that two paths on the fi gure represent the same voice 

leading if they have the same “winding number” (that is, if they take the same num-

ber of clockwise or counterclockwise steps). All of which shows that the geometrical 

perspective can do more than just reveal that some graphs  faithfully represent voice 

leading; it can also help us use these graphs in a more sophisticated and musical 

fashion.
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The Interscalar Interval Matrix

Chapter 4 noted that strongly crossing-free voice leadings can be decomposed into 

chromatic and interscalar transpositions. As it happens, there is a useful mathemati-

cal way to represent this idea. Figure D1 depicts what I call an interscalar interval 

matrix, representing the four interscalar transpositions that take a half-diminished 

seventh chord to a dominant seventh chord with the same root. The numbers in 

the matrix are paths in pitch-class space, showing how far and in what direction 

each note moves. To combine these scalar transpositions with chromatic transpo-

sitions, we simply add a constant value to the relevant matrix row. For instance, 

the fi rst row represents the voice leading 0, 1, 1, 0(C,E , G ,B ) (C, E,G,B )¾¾¾¾®f f f f , 

which sends the root of the C half-diminished chord to the root of the C domi-

nant seventh chord; by subtracting one from the values (0, 1, 1, 0), we get (−1, 0, 

0, −1), representing the voice leading 1, 0, 0, 1(C, E , G , B ) (B, D , F , A)- -¾¾¾¾®f f f s s . In 

effect, we have transposed the second chord down by chromatic semitone, from C7 

to B7. (The two voice leadings are individually T-related since they differ only by 

the transposition of their second chord.) Every strongly crossing-free (four-voice) 

voice leading from half-diminished to dominant seventh can be obtained by adding 

some constant to some row of the interscalar interval matrix: for example, to obtain 
0,0, 1, 1(C,  E ,  G ,  B ) (C,  E ,  F,  A)- -¾¾¾¾®f f f f ,  subtract seven from the values in the third 

row. This is equivalent to combining interscalar transposition upward by two steps 

with chromatic transposition downward by seven semitones.

With a little practice, we can learn to “read” these matrices, seeing at a glance the 

voice-leading possibilities between all the transpositions of any two chord types. For 

example, suppose we want to fi nd the most effi cient voice leading between C half-

diminished and A dominant seventh. Our matrix contains voice leadings that send 

a half-diminished chord to the dominant seventh with the same root. Since we want 

a voice leading that moves the root down by third, we will be subtracting three from 

the numbers in some row of the matrix.1 To fi nd the ascending scalar transposition 

that most nearly offsets descending chromatic transposition by three semitones, we 

1 Note that the matrix contains ascending scalar transpositions, which we will be attempting to neu-
tralize with descending chromatic transpositions; hence we transpose by subtracting three rather than by 
adding nine.
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simply look for the row of the matrix whose values come closest to three. This is 

clearly the second row: subtracting three from these values gives (1, 1, 1, −1), repre-

senting 
1, 1, 1, 1(C,  E ,  G ,  B ) (C ,  E,  G,  A)-¾¾¾¾®f f f s .2

After a bit of time, this sort of computation becomes automatic; one virtually starts 

to see the voice leading 1, 1, 1, 1(C,  E ,  G ,  B ) (C ,  E,  G,  A)-¾¾¾¾®f f f s  directly in the matrix 

in Figure D1. To test yourself, try to use the matrix to identify the most effi cient voice 

leading from a C half-diminished chord to an Ef dominant seventh chord.3 Then use 

Figure D1 (a) The rows of this matrix correspond to the voice leadings in (b). All of the 

strongly crossing-free (four-voice) voice leadings from half-diminished to dominant seventh 

can be derived by adding a constant number to some row of this matrix. For example, to 

combine interscalar transposition up by two steps with chromatic transposition downward by 

seven semitones, subtract 7 from the values in the third row of the matrix, as illustrated by (c).

2 Interscalar interval matrices provide another way to understand the relationship between near even-
ness and effi cient voice leading: for two nearly even chords, the rows of the interscalar interval matrix will 
all be very close to a constant value, which means that the interscalar transpositions and chromatic trans-
positions will nearly cancel each other out. Hence we can fi nd reasonably effi cient voice leadings between 
that chord and all of its various transpositions.

3 To do this, simply subtract nine from the row of the matrix whose values are closest to nine. (Again, 
we want to combine a descending chromatic transposition with an ascending scalar transpositions in the 
matrix, and hence will be subtracting nine rather than adding three to some row.) In this case, the relevant 
row is the last one: subtracting nine from the values in the fourth row gives us (1, 0, 1, 0), representing 

1,0,1,0(C, E , G , B ) (D , E , G, B )¾¾¾®f f f f f f .
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it to fi nd the minimal voice leading that maps the root of the half-diminished chord 

onto the fi fth of some dominant seventh.4

Analogous matrices can be constructed for any pair of chords, using the following 

algorithm5:

 1. Assign scale degree numbers to the two scales A and B.

 2.  Arrange chord A in pitch space in ascending scale degree order (i.e. with the 

fi rst scale degree at the bottom and the last scale degree at the top) such that 

the top and bottom notes are no more than an octave apart. Arrange chord B 

similarly.

 3.  Write down the voice leading that maps the lowest note of A to the lowest 

note of B, the second-lowest note of A to the second-lowest note of B, and 

so on. Write this voice leading as a pitch-class voice leading of the form 

¾¾¾¾¾®1 2 1 2
1 2, ,...,

( , ,  . . . , ) ( , ,  . . . , )n n
nx x x

a a a b b b  (§2.5). The numbers above the 

arrow are the fi rst row of the interscalar interval matrix.6

4 Here, we begin with the third row of the matrix (which maps root to fi fth) and ask what chromatic 
transposition comes closest to neutralizing these values. There are two equally good possibilities: sub-
tracting six gives us a two-semitone voice leading from Cø7 to Fs7, while subtracting seven gives us a two-
semitone voice leading from Cø7 to F7.

5 It is assumed that A and B have the same number of notes. One can always add “doublings” to the 
smaller chord so that it has the same number of notes as the larger chord. However, there are multiple 
ways to do this.

6 Or more mathematically: the numbers are obtained by subtracting the pitches of B componentwise 
from those of A.

Figure D2 Constructing the interscalar interval matrix from (C, D, E, F, G, A, B) to 

(C, D, E, Fs, G, A, Bf). The resulting matrix is shown in Figure D3.
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 4.  Transpose the lowest note of B up by octave and move it to the end of the 

sequence, replacing (b
1
, b

2
, …, b

n
) with (b

2
, b

3
, …, b

n
, b

1
 + 12).

 5.  Repeat steps 3–4 to obtain the second row of the interscalar interval 

matrix. Continue repeating until the chord B has been transposed upward 

by octave.

Figure D2 generates the interscalar interval matrix that takes the C diatonic 

scale to the C acoustic scale. Note that the result is affected both by how we assign 

scale degrees to the two chords, and by how we arranged them register. For exam-

ple, suppose we had numbered the C acoustic scale so that D was its fi rst scale 

degree, and arranged it in register so that it began 10 semitones below middle C: 

(D3, E3, Fs3, G3, A3, Bf3, C4). This would yield an interscalar interval matrix 

whose fi rst row is (−10, −10, −10, −10, −10, −11, −11) rather than (0, 0, 0, 1, 0, 

0, −1). Figure D3 compares the matrix that results with the matrix we originally 

generated: each row of Figure D3b is either identical to a row in Figure D3a, or can 

be obtained from one by subtracting 12. In principle, the difference between these 

two matrices is immaterial; they contain the same information and can be used in 

more or less the same way. However, it is in practice easier to work with the matrix 

in Figure D3a.

In the special case where the second chord is the same as the fi rst, then we have a 

scalar (rather than an interscalar) interval matrix. One can construct these matrices 

in exactly the same way, though we should always label the scale degrees so that the 

fi rst row of the matrix contains only zeros. Figure D4 generates the scalar interval 

matrix that takes the dominant seventh chord to itself. Its four rows correspond to 

the voice leadings at the bottom of the fi gure.

Again, the matrix can be used to represent every combination of scalar and chro-

matic transpositions. For example, to combine scalar transposition by ascending step 

with chromatic transposition downward by three semitones, subtract three from the 

 second row of the matrix, giving 1,0,0, 1(C, E, G, B ) (C , E, G, A)-¾¾¾®f s .

Figure D3 Two equivalent interscalar interval matrices. Each of the fi rst six rows in the right 

matrix can be obtained by subtracting twelve from the next row down in the left matrix. The 

last row of the right matrix is identical to the fi rst row of the left.



appendix d422

The key point is that these scale-theoretic ideas provide another way to think 

about the geometrical spaces described in Chapter 3. Consider Figure D5, which 

reproduces the cross section of three-note chord space (§3.8). The line segments 

on the fi gure represent the three paths connecting 047 to a minor triad without 

touching the boundary: (0, 4, 7)®(0, 3, 7), (0, 4, 7)®(0, 5, 8), and (0, 4, 7)®(0, 4, 

9). Each line segment corresponds to a different category of interscalar transposi-

tion between major and minor triads. The fi rst, (0, 4, 7)®(0, 3, 7), links root to 

root; the second, (0, 4, 7)®(0, 5, 8), links root to fi fth; and the third, (0, 4, 7)®(0, 

4, 9), links root to third. In fact, there is a very close connection between the idea of 

isolating the purely contrary component of a voice leading and the techniques we 

are discussing here: roughly speaking, the interscalar transposition corresponds to 

the pure contrary component of a crossing-free voice leading, while the chromatic 

transposition corresponds to the pure parallel component.7 What is particularly 

useful about the scalar approach is that it can be applied to large chords, with-

out requiring that we try to visualize higher dimensional geometry. The interscalar 

7 More precisely: each of the strongly crossing-free, purely contrary voice leadings between chord A 
and a chord transpositionally related to B involves a distinct interscalar transposition. By focusing on pure 
contrary voice leadings or interscalar transpositions, we select one voice leading from among a class of 
individually T-related voice leadings, using it as the representative of that larger class.

Figure D4 The four voice leadings corresponding to the four rows of the scalar interval 

matrix that takes (C, E, G, Bf) to itself.

0,0,0,0(C, E, G, B ) (C, E, G, B )¾¾¾®f f

4,3,3,2(C, E, G, B ) (E, G, B , C)¾¾¾®f f

7,6,5,6(C, E, G, B ) (G, B , C, E)¾¾¾®f f

10,8,9,9(C, E, G, B ) (B , C, E, G)¾¾¾®f f
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interval matrix thus provides a kind of “road map” of chord space, displaying the 

most commonly traveled routes between any two points. In many cases, the lan-

guage of interscalar transpositions is considerably more intuitive than its higher 

dimensional, geometrical equivalent. I fi nd it wonderful that these two languages—

one heavily geometrical, the other more recognizably musical—are essentially say-

ing the same thing.

Figure D5 The cross section of three-note chord space contains three line segments that 

connect 047 to a minor triad without touching the boundary (a). Each corresponds to a 

different interscalar transposition between major and minor triads (b).
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Scale, Macroharmony, and Lerdahl’s 
“Basic Space”

In some ways, Fred Lerdahl and I have very different approaches to music the-

ory. Lerdahl postulates a kind of lossless listening in which ordinary people typi-

cally recover all of the details in a musical score; I emphasize the importance of 

information loss in music perception. Lerdahl is strongly infl uenced by Schenker, 

believing that entire tonal pieces can be described by giant, recursive “tree struc-

tures” analogous to those found in linguistics; I am skeptical of these approaches, 

preferring to emphasize local harmonic norms such as “IV goes to ii but not vice 

versa.” (Lerdahl does not discuss harmonic norms in Tonal Pitch Space, leading me 

to suspect that he does not consider them to be particularly important.1) Finally, 

Lerdahl is primarily concerned with modeling cognitive structures in the listener’s 

mind, whereas I am interested in how contemporary musicians might think about 

composing music.

Nevertheless, there are some ways in which our views are rather similar. On 

a very general level, Lerdahl and I both present theoretical models that seek to 

integrate the local (“chordal”) and larger (“scalar”) levels. Furthermore, we use 

very similar graphs to represent “centricity” or pitch prominence. Figure E1 pres-

ents a five-tiered pitch-class profile that is very similar to what Lerdahl calls the 

“basic space” for the key of C major; indeed, to the casual observer they are virtu-

ally indistinguishable. There are, however, two subtle but important differences 

between our figures. First, Lerdahl uses his graphs to represent not just macro-

harmony and centricity, but also music’s scalar structure. And second, Lerdahl’s 

basic space does double duty, representing both global harmonic stability and 

the local harmonic expectations associated with being on the tonic chord in a 

particular key.

Let’s consider these points in more detail. Lerdahl’s basic space encodes the claim 

that listeners hear tonal melodies relative to fi ve melodic “alphabets”: the chromatic 

scale (level e), diatonic scale (level d), the triad (level c), the perfect fi fth (level b), and 

the unison (level a). By contrast, the pitch-class profi les in Chapter 5 represent only 

1 He also suggests (2001, p. 215) that terms like “tonic” and “dominant” can be translated into  statements 
about “prolongational position,” a position that seems to court monism (§7.6).
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the stability of individual notes, and do not refl ect anything about music’s melodic 

or scalar structure. I think this is an advantage of my approach. Lerdahl is surely cor-

rect to assert that traditionally tonal melodies are often interpreted relative to his fi ve 

melodic alphabets, but I am not sure that they always or necessarily are. Figure E2a 

presents the end of the Chopin “black-key” etude. Intuitively, I would imagine that 

listeners interpret this passage relative to the pentatonic scale, which does not consti-

tute a distinct layer of Lerdahl’s space. The same is true of Figures E2b–c, which also 

feature melodic pentatonic scales. To me, these examples strongly suggest that tonal 

music sometimes uses a pentatonic “melodic alphabet”—one that is not included in 

Lerdahl’s basic space.

The deep issue here, it seems to me, is that scale, macroharmony, and centricity 

are in principle independent, even though they are often linked in practice. This is 

precisely what allows a musician like Chopin to use pentatonic melodies to articulate 

pitch-class profi les like the one in Figure E1a. From the contemporary composer’s 

perspective, or from the standpoint of the theorist interested in charting the full 

space of tonal possibilities, Lerdahl’s basic space is therefore too confi ning, precisely 

because it forces us into a relatively traditional understanding of the relation between 

scale, macroharmony, centricity. By separating scale from macroharmony, we sever 

the link between pitch-class profi les and melodic alphabets, thereby allowing our-

selves to consider more ambiguous profi les such as that in Figure 5.6.12.

Lerdahl also means for his basic space to play two similar but related roles: it 

represents both the global stability of notes within a key and also the local stability 

of notes relative to a sounding tonic chord. In its fi rst role, the basic space expresses 

Figure E1 A fi ve-tiered pitch-class profi le for the key of C major (a) and Fred 

Lerdahl’s “basic space” (b).
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thoughts like “in the key of C major, C is the most important pitch, then G, then E, 

then the remaining white notes, then the black notes—no matter what chord is actu-

ally sounding.” In its second role, the basic space expresses sentiments like “when I am 

hearing a C major chord in the key of C major, the C is the most stable note because 

it is the root of the chord I am hearing, then G, because it is the fi fth of the chord that 

I am hearing, then E, then the white notes, because they belong to the main scale of 

the key I am in.” Lerdahl not unreasonably assumes that these two kinds of stability 

should correspond: the global importance of notes relative to a key should refl ect the 

local stability of notes when the tonic chord is sounding.

But in many modern tonal styles, this requirement is inappropriate. For example, 

a contemporary jazz pianist might regularly play the tonic chord of an F blues as a 

stack of fourths F-Bf-Ef (Figure E3). Relative to this particular voicing of the tonic 

Figure E2 Pentatonic scales playing a prominent melodic role at the conclusion of Chopin’s 

Op. 10 No. 5 (a), in Dvorák’s Op. 96 “American” Quartet (b), and at the opening of McCoy 

Tyner’s solo on “Pursuance” (c).
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F7 chord, the Bf might be conceived as more stable than the A—in fact, a melodic 

A played over this voicing will produce a distinctive “bite” since it forms a semitone 

with the Bf in the harmony. However, it would be odd to interpret this local chord 

voicing as upsetting the global stability of notes in the key: jazz musicians conceive 

of voicings as fl exible things that can be altered and changed spontaneously, without 

restructuring the key itself. (The chord voicing does not, for example, destroy the 

sense that Bf is attracted melodically to A.) Here, then, the stability of notes within 

the key diverges from the local stability of notes when the tonic chord is sounding.2

Figure E3 The opening of Chick Corea’s solo on “Matrix,” from Now he sings, now he sobs 

(transcribed by Bill Dobbins in Corea 1988). In jazz, the global harmonic stability of notes 

need not correspond to their local stability over tonic chords: Corea often plays F-Bf-Ef for 

the F7 chord, but this does not mean that Bf is globally more stable than A.

Of course, Lerdahl’s theory is optimized for the purpose of modeling listeners’ 

responses to classical music, in which these complications typically do not arise. My 

points should therefore be taken as obstacles to extending Lerdahl’s methods to other 

styles, rather than intrinsic problems within its own domain. It is also important to 

reiterate that Lerdahl and I are pursuing fundamentally different aims: unlike Ler-

dahl, I am not trying to develop an accurate quantitative model of listeners’ responses 

to the classical style in particular; instead, my goal is to develop more general repre-

sentations that can help musicians think about a much wider range of tonal styles, 

including those of the past hundred years. To this end, I want more fl exible tools that 

are sensitive to the ways in which macroharmony, scale, and centricity can sometimes 

diverge.

2 Jazz is fi lled with examples of this phenomenon—as when improvisers play the lydian mode over the 
tonic triad (Chapter 10).
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Some Study Questions, Problems, and Activities

chapter 1

1. Compose a short etude, about a minute long, exploring one or more 

combinations of the fi ve features.

2. Write a simple melody exploiting a small voice leading between two closely 

related scales.

chapter 2

1. Using the formulas in §2.3, show that transposition and inversion are 

distance-preserving functions (requires basic algebra).

2. Using the formulas in §2.3, show that every inversion leaves some pitch 

unchanged and moves every other point by twice the distance to this “fi xed 

point” (requires basic algebra).

3. Determine which (if any) combination of O, P, T, I, and C is required to 

transform

a. (C4, E4, G4) into (A3, Cs5, E3)

b. (C4, E4, G4) into (Ef3, G4, C3, Ef2)

c. (C4, Ef4, G4, Bf4) into (Bf4, G4, G4, Ef4, C4)

d. (C4, D4, Ef4) into (A3, Fs2, G5)

e. (C4, D4, F4) into (B5, A5, Fs5)

f. (C4, E4, F4) into (G4, Fs4, D4, C4)

4. Choose a Bach chorale and write the voice leadings in the fi rst measure as 

shown in Figure 2.7.1. Ignore nonharmonic tones.

5. How (if at all) are the following pitch-class space voice leadings related?

a. (C, E, G)®(Bf, Ef, G) and (C, Ef, G)®(C, E, A)

b. (C, E, G, Bf)®(B, E, Gs, B) and (C, Ef, Gf, A)®(C, E, G, G)

c. (C, E, G)®(C, E, A) and (E, G, C)®(E, A, C)

d. (Fs, A, C, E)®(Fs, A, C, D) and (D, F, Af, C)®(Ds, Fs, A, B)

e. (C, E, G, Bf)®(C, Ef, F, A) and (Fs, A, C, D)®(Fs, Af, C, Ef)
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f. (C, D, E, F, G, A, B)®(D, E, F, G, A, B, C) and (C, D, E, F, G, 

A, B)®(C, D, Ef, F, G, A, Bf)

g. (C, E, G)®(C, E, Gs) and (C, Ef, G)®(C, Ef, Gf)

6. Find a symmetrical chord that is very close to the following chords and 

describe its symmetries. Construct a voice leading that exploits the near 

symmetries of the chords below.

a. {E, G, B, Ds}

b. {C, E, G, Bf}

c. {C, F, Fs}

d. {C, Cs, D, Fs}

e. {C, D, Ef, F, G, Af, B}

7. Nearly even chords are also nearly inversionally symmetrical. Why? What 

about chords whose notes are clustered very close together?

8. Compose a small musical etude that exploits the near symmetries of some 

chord.

chapter 3

1. Make several copies of the two-note Möbius strip (Figure 3.3.1), and draw 

the following voice leadings:

a. (Ef4, Af4)®(Ef4, Bf4)

b. (Ef4, Af4)®(Bf3, Ef4)

c. (Ef4, Af4)®(Ef4, Bf3)

d. (Ef4, Af4)®(Ef3, Bf4)

e. (C4, E4)®(A3, F4)

f. (Af3, Bf3)®(A3, G3)

2. On the two-note Möbius strip, choose two major thirds and draw two 

different generalized line segments between them, neither of which touches 

the mirror boundary. In ordinary musical notation, write voice leadings 

corresponding to these two paths.

3. On the two-note Möbius strip, choose two major thirds and draw two 

generalized line segments between them: one bouncing off the lower mirror 

boundary and one bouncing off the upper mirror boundary. Write voice 

leadings in pitch space corresponding to these two paths.

4. On the triangular cross section of three-note chord space (Figure 3.8.6), 

represent the pure contrary component of the following voice leadings:

a. (C, E, G)®(B, E, G)

b. (C, G, E)®(C, Af, F)

c. (C, F, Af)®(C, Ef, A)
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d. (C, Df, G)®(Df, C, G)

e. 7,1, 2(G, B, D) (C, C, C)- -¾¾¾®
f. (A, C, E)®(Af, C, F)®(G, B, F)

5. On the triangular cross section of three-note chord space, choose a point 

representing a minor triad. Draw the three line segments that connect this 

point to major triads without touching the mirror boundary. Then come up 

with diatonic voice leadings (i.e. voice leadings between chords belonging to 

the same diatonic scale) whose “purely contrary” component is represented 

by these line segments.

6. The chord {A, Cs, F, Fs} has two notes clustered together, and there is one 

effi cient voice leading that permutes the clustered notes; the chord {A, D, 

Ds, E} has three notes clustered close together, and there are fi ve effi cient 

voice leadings that permute the clustered notes. Explain this geometrically, 

in terms of the chords’ positions in the cross section of four-dimensional 

chord space. What about a chord like {A, Bf, B, C}?

7. Locate the inversionally symmetrical set classes in the cross section of three-

dimensional space.

8. Write out a new Möbius strip, labeling only the points contained in 

seven-note equal temperament. (You can identify scale degrees using 

the letters A through G, but note that this scale is not the familiar major 

scale—it divides the octave into seven completely equal parts, rather than 

having steps of two different sizes.) Compare the cross sections of this 

space to those of the chromatic Möbius strip. Are there any interesting 

differences?

9. (Advanced) Chapter 2 showed that the chord (B, C, E, Fs) is near its tritone 

transposition. Explain this fact using the geometry of four-note chord space. 

Hint: consider the two-dimensional “slice” of the space containing all chords 

with both C and Fs. What does this slice look like? How is the voice leading 

(C, E, Fs, B)®(C, F, Gf, Bf) represented in it?

10. (Advanced) Consider the slice of four-note chord space containing chords 

that can be decomposed into two perfect fourths. What does it look like? 

What voice leadings does it depict? How does this slice differ from the 

slice containing chords that can be decomposed into a perfect fourth and 

a major third? Optional: use this space to analyze a passage from Bartók’s 

“Fourths,” no. 131 in the Mikrokosmos.

chapter 4

1. What is the smallest (three-voice) voice leading between the D minor and 

E major triads if you measure distance according to the A harmonic minor 

scale? What if you measure distance according to the chromatic scale?

2. Compose a brief etude using one of the scales described in §4.4.
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3. Figure F1, at the end of this appendix, contains several unlabeled graphs. 

Select the appropriate graph and label the chords described in the following 

list. In each case, measure distances using scale steps. Consult §3.11 for help.

a. The most even two-note chords in the acoustic scale

b. The most even two-note chords in the octatonic scale

c. The most even three-note chords in the hexatonic scale

d. The most even four-note chords in the octatonic scale (Note: you 

may need to use multiple copies of the graph to do this 

completely.)

e. The “generalized circle of fi fths” at the center of  four-note diatonic 

space.  (That is, the one-dimensional space representing voice-leading 

relations among the most even type of four-note diatonic chord.)

f. The two-dimensional graph representing the two most even types of 

four-note diatonic chords.

g. The three-dimensional analogue of the graph in the previous problem, 

containing four types of nearly even diatonic chords.

h. The most even four-note chords in the chromatic scale (don’t look back 

at Chapter 3).

4. Using Appendix D, construct the scalar interval matrix for

a. the major triad considered as an object in chromatic space

b. the triad considered as an object in diatonic space

c. the acoustic scale

5. Use the scalar interval matrices from the previous problem to fi nd the most 

effi cient voice leading between

a. two major triads in chromatic space

b. two triads in diatonic space

c. two acoustic scales

6. Write the most effi cient (three-voice) voice leadings from a C major triad 

to each of the twelve minor triads and catalogue them according to which 

interscalar transposition is used.

7. Choose a sequence of fi ve diatonic, acoustic, and harmonic scales that are 

related by effi cient voice leading. Now chart this sequence on both the scale 

lattice (Figure 4.6.1) and the alchemistical diagram (Figure 4.6.5). Use this 

opportunity to familiarize yourself with the alchemistical diagram.

8. (Very advanced) Consider any single-step voice leading between two chords 

belonging to the same scale. This voice leading defi nes a unique single-step 

voice leading between the complements of those chords. (The complement 

of a chord relative to a scale contains all the notes of the scale not in the 

chord.) For instance, the diatonic voice leading (C, E, G)®(C, E, A) defi nes a 

complementary voice leading among seventh chords (B, D, F, A)®(B, D, F, G). 
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This seems to show that the lattices representing complementary chords are 

structurally similar, even though they have different dimension. (For instance, 

the space representing diatonic triads has three dimensions, whereas that 

representing diatonic seventh chords has four dimensions.) Explain.

9. Explain why the scales discussed in §4.4 have a compact appearance on the 

Tonnetz (Figure C1a).

chapter 5

1. Use pitch-class profi les to imagine one or more “generalized keys” and write 

a short etude in this “key.”

chapter 7

1. Identify the appearances of the 3 + 1 and “nonfactorizable” schemas in some 

phrase of a Bach chorale.

2. (Advanced) Consider the nonfactorizable voice leading (C, C, E, G)

®(A, C, F, F). Show that this voice leading exploits the fact that the major 

triad is near the tritone. (Hint: show that the size of the voice leading can 

be continuously shrunk to zero by moving E and G closer to Fs (in the 

fi rst chord) and A and C closer to B (in the second), while also changing 

the transpositional relationship between the triads from fi ve semitones to 

six.) Can you fi nd analogues to this voice leading that use other three-note 

chords?

3. (Advanced) Now consider the voice leading (C, C, E, G)®(B, D, F, F). What 

near symmetries of the triad does this voice leading exploit? How can it be 

shrunk to zero? Can you fi nd analogues to this voice leading that use other 

three-note chords? (Hint: consider the triad as an object in diatonic space.)

4. (More advanced) Provide a similar analysis of the voice leading 

(C, C, E, G)®(B, D, D, G).

5. Show that every instance of the “nonfactorizable” schema falls into one of 

the cases considered in the previous three questions.

chapter 8

1. Analyze the development section of the fi rst movement of Dvorak’s New 

World Symphony, paying attention to the role of the major-third and minor-

third systems.
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Figure F1 Unlabeled graphs that can be used to represent voice leading relations among 

various sorts of chords.

chapter 9

1. Analyze Debussy’s prelude “Les tierces alternées” (Book II, no. 11), paying 

particular attention to scales.

chapter 10

1. Transcribe and analyze a jazz solo.



Figure F1 (Continued)
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