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Foreword 

The need to authenticate ourselves to machines is ever increasing in today’s 
networked society and is necessary to close the air gap between man and machine to 
secure our transactions and networks. Only biometrics (automatically recognizing a 
person using distinguishing traits) can recognize you as you. 

This first book on biometrics advances the science of biometrics by laying a 
foundation and theoretical framework in contributed chapters by leading experts from 
industry and academia. Biometric technology has advanced tremendously over the last 
few years and has moved from research labs and Hollywood to real-world 
applications. Like any technology with commercial applications, it has been difficult, 
until now, to assess the state of the art in biometrics in the open literature. 

As Mark Twain said, “First get your facts; then you can distort them at your 
leisure.” We are moving away from the Twain era of evaluation to the science of 
evaluation with a chapter on scientifically based performance evaluation. 
Understanding the performance of biometric systems in various real-world situations 
is key to their application. 

Most of today’s major biometric technologies are represented here by chapters on 
face, fingerprint, and speaker recognition, among others. In keeping with the 
networked society theme of this book, included are chapters on systems, networking, 
related technologies, and privacy issues. After the benefits of biometrics exceed their 
cost and their performance is understood, social, legal, and ethical issues are crucial to 
society’s accepting the ubiquitous application of biometrics. This book encompasses 
all these aspects of biometrics, which are introduced by the editors. 

Joseph P. Campbell, Jr. 
Chair, Biometric Consortium, 1994-1998 
http://www.biometric.orgl 
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Determining the identity of a person is becoming critical in our vastly interconnected 
information society. As increasing number of biometrics-based identification systems 
are being deployed for many civilian and forensic applications, biometrics and its 
applications have evoked considerable interest. The current state of affairs is that the 
technical and technological literature about the overall state-of-the-art in biometrics is 
dispersed across a wide spectrum of books, journals, and conference proceedings. As 
biometrics emerges as a multi-billion dollar industry, there is a growing need for a 
comprehensive, consolidated, fair, and accessible overview of the biometrics 
technology and its implications to society from well-reputed information sources. 
This edited book is an attempt to disseminate the technological aspects and 
implications of biometrics. In particular, this book addresses the following needs. 

Survey the biometrics methods in commercial use and in research stage. 
Assess the capabilities and limitations of different biometrics. 
Understand the general principles of design of biometric systems and the 
underlying trade-offs. 
Understand the issues underlying the design of biometric systems. 
Identify issues in the realistic evaluation of biometrics-based systems. 

• To recognize personal privacy and security implications of biometrics-based 
identification technology. 
To nurture synergies of biometric technology with the other existing and 
emerging technologies. 

The book is organized as follows: Chapter 1 is a brief overview of the biometric 
technology and the research issues underlying the biometrics-based identification 
applications. A number of biometrics-based technologies are commercially available 
today and many more are being developed in the educational and commercial research 
laboratories world wide. Currently, there are mainly eight different biornetrics 
including face, fingerprint, hand geometry, iris, retinal pattern, signature, voice-print, 
and thermograms have actually been deployed for identification. In each of the next 
eight chapters (Chapters 2-9), the leading experts and pioneers of biometric 
technology describe a particular biometric, its characteristics, the specific problems 
underlying the design of an identification/authentication system based on that 
biometric, performance evaluation of the existing systems and open issues which need 
to be addressed. The next five chapters (Chapters 10-14) describe biometrics which 
are not yet commercially available but which are under active research for on-line 
identification: keystroke dynamics, dait, odor, ear, and DNA. 

A number of emerging civilian applications involve a very large number of 
identities (e.g., several million) and at the same time have demanding performance 
requirements (e.g., scalability, speed, accuracy). Chapter 15 addresses the research 
issues underlying design of a large identification and authentication system. To 
accomplish and engineer the design of highly reliable and accurate biometrics-based 
identification systems, it may often be necessary to effectively integrate 
discriminatory information contained in several different biometrics. These 
integration issues are dealt with in Chapter 16. A large cross-section of the population 
interested in biometrics is overwhelmed by the quickly growing pace of the 
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technology, by the hype rampant in the media, and by the unsubstantiated 
claims/counter-claims heard from unreliable sources. Issues underlying performance 
metrics and fair evaluations are described in Chapter 17. Often, the biometric 
technologies need to be embedded in other technologies (e.g., smart card). The related 
integration issues are discussed in Chapter 18 in the context of smartcards. 

More than anybody, the technical community needs to be aware of the threats 
posed by foolproof identification schemes to our rights of freedom and privacy. 
Biometrics could potentially unleash methods of covert and unwanted identification 
that might endanger each individual’s privacy. How could we prevent the abuse of 
acquired biometric measurement from its unintended use? Is there a need to legislate 
the legitimate use of biometrics for identification applications? If so, what is the most 
effective method to harness the capabilities of legitimate use of biometrics without 
compromising the rights of individuals? Could a biometric measurement shed 
information about an individual which she would like to keep to herself? Implications 
of biometrics on lives in  our society cannot be fully comprehended without learning 
the capabilities and limitations of each biometric. Privacy and security issues are 
discussed in  Chapter 19. 

A good starting point for additional biometric related resources for the interested 
readers is the biometric consortium’s homepage: http://www.biometrics.org/. Its list 
server provides a forum for discussing the contemporary biometric related topics. 

The book is primarily intended for the technical community interested in 
biometrics: scientists, engineers, technologists, biometrics application developers, and 
system integrators. However, a serious attempt has been made to maintain as much a 
non-technical description of each topic as is possible. Where this was not possible, a 
technical discussion is followed up with a non-technical summary. Additonally, 
readers may further refer to http://members.aol.com/afb31/af00001.htm for a glossary 
of all biometric terms and jargon. As a result, most of the material covered in this 
book should be comprehensible to anyone with a moderate scientific background. 

A number of people helped make this edited book a reality. Lin Hong and Salil 
Prabhakar helped us through every phase of editing this book. Rick Kjeldsen’s 
expertise in MS Word troubleshooting was invaluable. We take this opportunity to 
thank IBM Research management for providing the infrastructure support without 
which this book would not have been possible. In particular, we are grateful to Sharon 
Nunes for her encouragment and enthusiastic support of this project. Many thanks to 
Euklyn Elvy, Maurice Klapwald, Kathleen Pathe, Jim Leonard, and Jennifer Zago for 
their support. We are grateful to the leading biometric experts who agreed to write 
chapters for this book and who extended their full cooperation for expediting a timely 
publication of this book. We also thank Alex Greene at Kluwer Academic Publishers 
for his help in resolving copyright related issues. 

IBM T. J. Watson. Research Center 
Hawthorne 
August 1998 

Anil K. Jain 
Ruud Bolle 

Sharath Pankanti 



1 INTRODUCTION TO BIOMETRICS 
Anil Jain 
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Ruud Bolle and Sharath Pankanti 
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Yorktown Heights, NY 
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Abstract Biometrics deals with identification of individuals 
based on their biological or behavioral characteristics. Biometrics 
has lately been receiving attention in popular media. it is widely 
believed that biometrics will become a significant component of the 
identification technology as (i) the prices of biometrics sensors 
continue to fall, (ii) the underlying technology becomes more 
mature, and (iii) the public becomes aware of the strengths and 
limitations of biometrics. This chapter provides an overview of the 
biometrics technology and its applications and introduces the 
research issues underlying the biometrics. 
Keywords: Biometrics. identification, verification, access 
control. authentication. security, research issues, evaluation, 
privacy. 

1. Introduction 

Associating an identity with an individual is called personal identification. The 
problem of resolving the identity of a person can be categorized into two 
fundamentally distinct types of problems with different inherent complexities: (i) 
verification and (ii) recognition (more popularly known as identification’). 
Verification (authentication) refers to the problem of confirming or denying a person’s 

The term identification is used in this book either to refer to the general problem of identifying 
individuals (identification and authentication) or to refer to the specific problem of identifying an 
individual from a database which involves one to many search. We rely on the context to disambiguate the 
reference. 

 1
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claimed identity (Am I who I claim I am?). Identification (Who am I?) refers to the 
problem of establishing a subject’s identity - either from a set of already known 
identities (closed identification problem) or otherwise (open identification problem). 
The term positive personal identification typically refers (in both verification as well 
as identification context) to identification of a person with high certainty. 

Human race has come a long way since its inception in small tribal primitive 
societies where every person in the community knew every other person. In today’s 
complex, geographically mobile, increasingly electronically inter-connected 
information society, accurate identification is becoming very important and the 
problem of identifying a person is becoming ever increasingly difficult. A number of 
situations require an identification of a person in our society: have I seen this 
applicant before? Is this person an employee of this company? Is this individual a 
citizen of this country? Many situations will even warrant identification of a person at 
the far end of a communication channel. 

2. Opportunities 

Accurate identification of a person could deter crime and fraud, streamline business 
processes, and save critical resources. Here are a few mind boggling numbers: about 
$1 billion dollars in welfare benefits in the United States are annually claimed by 
“double dipping” welfare recipients with fraudulent multiple identities [10]. 
MasterCard estimates the credit card fraud at $450 million per annum which includes 
charges made on lost and stolen credit cards: unobtrusive positive personal 
identification of the legitimate ownership of a credit card at the point of sale would 
greatly reduce the credit card fraud; about 1 billion dollars worth of cellular telephone 
calls are made by the cellular bandwidth thieves - many of which are made from 
stolen pins and/or cellular telephones. Again, an identification of the legitimate 
ownership of the cellular telephones would prevent cellular telephone thieves from 
stealing the bandwidth. A reliable method of authenticating legitimate owner of an 
ATM card would greatly reduce ATM related fraud worth approximately $3  billion 
annually [1 1]. A positive method of identifying the rightful check payee would also 
reduce billions of dollars misappropriated through fraudulent encashment of checks 
each year. A method of positive authentication of each system login would eliminate 
illegal break-ins into traditionally secure (even federal government) computers. The 
United States Immigration and Naturalization service stipulates that it could each day 
detect/deter about 3,000 illegal immigrants crossing the Mexican border without 
delaying the legitimate people entering the United States if it had a quick way of 
establishing positive personal identification. 

3. Identification Methods 

The problem of authentication and identification is very challenging. In a broad 
sense, establishing an identity (either in a verification context or an identification 
context) is a very difficult problem; Gertrude Stein’s [12] quote “rose is a rose is a 
rose is a rose” summarizes the essence of the difficulty of a positive identification 
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problem: an identity of a person is so much woven into the fabric of everything that a 
person represents and believes that the answers to the identity of a person transcend 
the scope of an engineering system and the solutions could (perhaps) only be sought 
in a philosophical realm. For example, can a brain-dead person be identified as her 
fully sane counterpart for authenticating an electronic fund transfer? Engineering 
approach to the (abstract) problem of authentication of a person’s identity is to reduce 
it to the problem of authentication of a concrete entity related to the person (Figure 
1.1). Typically, these entities include (i) a person’s possession (“something that you 
possess”), e.g., permit physical access to a building to all persons whose identity 
could be authenticated by possession of a key; (ii) person’s knowledge of a piece of 
information (“something that you know”), e.g., permit login access to a system to a 
person who knows the user-id and a password associated with it. Some systems, e.g., 
ATMs, use a combination of ‘‘something that you have” (ATM card) and ‘‘something 
that you know” (PIN) to establish an identity. The problem with the traditional 
approaches of identification using possession as a means of identity is that the 
possessions could be lost, stolen, forgotten, or misplaced. Further, once in control of 
the identifying possession, by definition, any other ‘’unauthorized” person could abuse 
the privileges of the authorized user. The problem with using knowledge as an 
identity authentication mechanism is that it is difficult to remember the 
passwordsPINs; easily recallable passwords/PINs (e.g., pet’s name, spouse’s birthday) 

Figure 1.1 Prevalent methods of identification based on possession and knowledge: 
Keys, employee badge, driver license, ATM card, and credit card. 

could be easily guessed by the adversaries. It has been estimated that about 25% of 
the people using ATM cards write their ATM PINs on the ATM card [13], thereby 
defeating possession/knowledge combination as a means of identification. As a result, 
these techniques cannot distinguish between an authorized person and an  impostor 
who acquires the knowledge/possession, enabling the access privileges of the 
authorized person. 
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Yet another approach to positive identification has been to reduce the problem of 
identification to the problem of identifying physical characteristics of the person. The 
characteristics could be either a person’s physiological traits, e.g., fingerprints, hand 
geometry, etc. or her behavioral characteristics, e.g., voice and signature. This method 
of identification of a person based on his/her physiological/behavioral characteristics 
is called biometrics². The primary advantage of such an identification method over 
the methods of identification utilizing ‘‘something that you possess” or ‘‘something 
that you know” approach is that a biometrics cannot be misplaced or forgotten; it 
represents a tangible component of ‘‘something that you are”. While biometric 
techniques are not an identification panacea, they, especially, when combined with 
the other methods of identification, are beginning to provide very powerful tools for 
problems requiring positive identification. 

4. Biornetrics 

What biological measurements qualify to be a biometic? Any human physiological 
or behavioral characteristic could be a biometrics provided it has the following 
desirable properties [15]: (i) universality, which means that every person should have 
the characteristic, (ii) uniqueness, which indicates that no two persons should be the 
same in terms of the characteristic, (iii) permanence, which means that the 
characteristic should be invariant with time, and (iv) collectability, which indicates 
that the characteristic can be measured quantitatively. In practice, there are some other 
important requirements [15,16]: (i) performance, which refers to the achievable 
identification accuracy, the resource requirements to achieve an acceptable 
identification accuracy, and the working or environmental factors that affect the 
identification accuracy, (ii) acceptability, which indicates to what extent people are 
willing to accept the biometric system, and (iii) circumvention, which refers to how 
easy it is to fool the system by fraudulent techniques. 

5. Biornetrics Technology: Overview 

No single biometrics is expected to effectively satisfy the needs of all identification 
(authentication) applications. A number of biometrics have been proposed, 
researched, and evaluated for identification (authentication) applications. Each 
biometrics has its strengths and limitations; and accordingly, each biometric appeals 
to a particular identification (authentication) application. A summary of the existing 
and burgeoning biometric technologies is described in this section. 

Voice 
Voice is a characteristic of an individual [17]. However, it is not expected to be 
sufficiently unique to permit identification of an individual from a large database 
of identities (Figure 1.2). Moreover, a voice signal available for authentication is 

Note the distinction between the terms biometrics and biometry: biometry encompasses a much broader 
field involving application of statistics to biology and medicine [14]. 
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typically degraded in quality by the microphone, communication channel, and 
digitizer characteristics. Before extracting features, the amplitude of the input 
signal may be normalized and decomposed into several band-pass frequency 
channels. The features extracted from each band may be either time-domain or 
frequency domain features. One of the most commonly used features is cepstral 
feature - which is a logarithm of the Fourier Transform of the voice signal in 
each band. The matching strategy may typically employ approaches based on 
hidden Markov model, vector quantization, or dynamic time warping [ 17]. Text- 
dependent speaker verification authenticates the identity of a subject based on a 
fixed predetermined phrase. Text-independent speaker verification is more 
difficult and verifies a speaker identity independent of the phrase. Language- 
independent speaker verification verifies a speaker identity irrespective of the 
language of the uttered phrase and is even more challenging. 

2000, 

1500 - 

1000 

500 

0 

-500 

0 0.05 0.1 0. 
-1000' 

0.25 0.3 0.35 0.4 I 0.45

Figure 1.2 Voice signal representing an utterance of the word "seven". X and Y axes 
represent time and signal amplitude, respectively. 

Voice capture is unobtrusive and voice print is an acceptable biometric in 
almost all societies. Some applications entail authentication of identity over 
telephone. In such situations, voice may be the only feasible biometric. Voice is 
a behavioral biometrics and is affected by a person's health (e.g., cold), stress, 
emotions, etc. To extract features which remain invariant in such cases is very 
difficult. Besides, some people seem to be extraordinarily skilled in mimicking 
others. A reproduction of an earlier recorded voice can be used to circumvent a 
voice authentication system in the remote unattended applications. One of the 
methods of combating this problem is to prompt the subject (whose identity is to 
be authenticated) to utter a different phrase each time. 

0.2
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0 Infrared Facial and Hand Vein Thermograms 

Figure 1.3 Identification based on facial thermograms [1]. The image is obtained 
by sensing the infrared radiations from the face of a person. The graylevel at each 
pixel is characteristic of the magnitude of the radiation. 

Human body radiates heat and the pattern of heat radiation is a characteristic of 
each individual body [ 18]. An infrared sensor could acquire an image indicating 
the heat emanating from different parts of the body (Figure 1.3). These images 
are called thermograms. The method of acquisition of the thermal image 
unobtrusively is akin to the capture of a regular (visible spectrum) photograph of 
the person. Any part of the body could be used for identification. The absolute 
values of the heat radiation are dependent upon many extraneous factors and are 
not completely invariant to the identity of an individual; the raw measurements of 
heat radiation need to be normalized, e.g., with respect to heat radiating from a 
landmark feature of the body. The technology could be used for covert 
identification solutions and could distinguish between identical twins. It is also 
claimed to provide enabling technology for identifying people under the influence 
of drugs: the radiation patterns contain signature of each narcotic drug [19]. A 
thermogram-based system may have to address sensing challenges in 
uncontrolled environments, where heat emanating surfaces in the vicinity of the 
body, e.g., room heaters and vehicle exhaust pipes, may drastically affect the 
image acquisition phase. Infrared facial thermograms seem to be acceptable 
since their acquisition is a non-contact and non-invasive sensing technique. 

Identification systems using facial thermograms are commercially available 
[l]. A related technology using near infrared imaging [2] is used to scan the back 
of a clenched fist to determine hand vein structure (Figure 1.4). Infrared sensors 
are prohibitively expensive which is a factor inhibiting wide spread use of 
thermograms. 
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Figure 1.4 Identification based on hand veins [2]. An infrared image of the back of a 
clenched human fist. The structure of the vasculature could be used for identification. 

Fingerprints 

Fingerprints are graphical flow-like ridges present on human fingers. Their 
formations depend on the initial conditions of the embryonic development and 
they are believed to be unique to each person (and each finger). Fingerprints are 
one of the most mature biometric technologies used in forensic divisions 
worldwide for criminal investigations and therefore, have a stigma of criminality 
associated with them. Typically, a fingerprint image is captured in one of two 
ways: (i) scanning an inked impression of a finger or (ii) using a live-scan 
fingerprint scanner (Figure 1.5). 

Major representations of the finger are based on the entire image, finger 
ridges, or salient features derived from the ridges (minutiae). Four basic 
approaches to identification based on fingerprint are prevalent: (i) the invariant 
properties of the gray scale profiles of the fingerprint image or a part thereof; (ii) 
global ridge patterns, also known as fingerprint classes; (iii) the ridge patterns of 
the fingerprints; (iv) fingerprint minutiae - the features resulting mainly from 
ridge endings and bifurcations. 
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Figure 1.5 A fingerprint image could be captured from the inked impression of a 
finger or directly imaging a finger using frustrated total internal reflection 
technology. The former is called an inked fingerprint (a) and the latter is called a 
live-scan fingerprint (b). 

Face 

Face is one of the most acceptable biometrics because it is one of the most 
common method of identification which humans use in their visual interactions 
(Figure 1.6). In addition, the method of acquiring face images is non-intrusive. 
Two primary approaches to the identification based on face recognition are the 
following: (i) Transform approach [20, 21]: the universe of face image domain is 
represented using a set of orthonormal basis vectors. Currently, the most popular 
basis vectors are eigenfaces: each eigenface is derived from the covariance 
analysis of the face image population; two faces are considered to be identical if 
they are sufficiently “close” in the eigenface feature space. A number of variants 
of such an approach exist. (ii) Attribute-based approach [22]: facial attributes 
like nose, eyes, etc. are extracted from the face image and the invariance of 
geometric properties among the face landmark features is used for recognizing 
features. 

Facial disguise is of concern in unattended authentication applications. It is 
very challenging to develop face recognition techniques which can tolerate the 
effects of aging, facial expressions, slight variations in the imaging environment 
and variations in the pose of face with respect to camera (2D and 3D rotations) 
[23]. 

Iris 

Visual texture of the human iris is determined by the chaotic morphogenetic 
processes during embryonic development and is posited to be unique for each 
person and each eye [24]. An iris image is typically captured using a non-contact 
imaging process (Figure 1.7). The image is obtained using an ordinary CCD 
camera with a resolution of 512 dpi. Capturing an iris image involves cooperation 
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from the user, both to register the image of iris in the central imaging area and to 
ensure that the iris is at a predetermined distance from the focal plane of the 
camera. A position-invariant constant length byte vector feature is derived from 
an annular part of the iris image based on its texture. The identification error rate 
using iris technology is believed to be extremely small and the constant length 
position invariant code permits an extremely fast method of iris recognition. 

Figure 1.6 Identification based on face is one of the most acceptable methods of 
biometric-based identification. 

Figure 1.7 Identification Based on Iris. The visual texture of iris could be used for 
positive person identification. 
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0 Ear 
It is known that the shape of the ear and the structure of the cartilegenous tissue 
of the pinna are distinctive3. The features of an ear are not expected to be unique 
to each individual. The ear recognition approaches are based on matching 
vectors of distances of salient points on the pinna from a landmark location 
(Figure 1.8) on the ear [3]. No commercial systems are available yet and 
authentication of individual identity based on ear recognition is still a research 
topic. 

Figure 1.8 An image of an ear and the features used for ear-based identification [3]. 
Feature vector consists of the distances of various salient locations on the pinna from 
a landmark location. 

Gait 

Gait is the peculiar way one walks and is a complex spatio-temporal behavioral 
biometrics. Gait is not supposed to be unique to each individual, but is 
sufficiently characteristic to allow identity authentication. Gait is a behavioral 
biometric and may not stay invariant especially over a large period of time, due to 
large fluctuations of body weight, major shift in the body weight (e.g., waddling 
gait during pregnancy [25] ,  major injuries involving joints or brain (e.g., 
cerebellar lesions in Parkinson disease [25]), or due to inebriety (e.g., drunken 
gait [ 25]). 

Humans are quite adept at recognizing a person at a distance from his gait. 
Although, the characteristic gait of a human walk has been well researched in 
biomechanics community to detect abnormalities in lower extremity joints, the 

Department of Immigration and Naturalization in the United States specifically 
requests photographs of individuals with clearly visible right ear. 
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use of gait for identification purposes is very recent. Typically, gait features are 
derived from an analysis of a video-sequence footage (Figure 1.9) of a walking 
person [26] and consist of characterization of several different movements of 
each articulate joint. Currently, there do not exist any commercial systems for 
performing gait-based authentication. The method of input acquisition for gait is 
not different from that of acquiring facial pictures, and hence gait may be an 
acceptable biometric. Since gait determination involves processing of video, it is 
compute and input intensive. 

Figure 1.9 Authentication based on gait typically uses a sequence of images of a 
walking person. One of the frames in the image sequence is illustrated here. 

0 Keystroke Dynamics 
It is hypothesized that each person types on a keyboard in a characteristic way. 
This behavioral biometrics is not expected to be unique to each individual but it 
offers sufficient discriminatory information to permit identity authentication [27]. 
Keystroke dynamics is a behavioral biometric; for some individuals, one may 
expect to observe a large variations from typical typing patterns. The keystrokes 
of a person using a system could be monitored unobtrusively as that person is 
keying in other information. Keystroke dynamic features are based on time 
durations between the keystrokes. Some variants of identity authentication use 
features based on inter-key delays as well as dwell times - how long a person 
holds down a key. Typical matching approaches use a neural network architecture 
to associate identity with the keystroke dynamics features. Some commercial 
systems are already appearing in the market. 

DNA (DeoxyriboNucleic Acid) is the one-dimensional ultimate unique code for 
one's individuality - except for the fact that identical twins have the identical 
DNA pattern. It is, however, currently used mostly in the context of forensic 
applications for identification [4]. Three issues limit the utility of this biometrics 
for other applications: (i) contamination and sensitivity: it is easy to steal a piece 

DNA 
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of DNA from an unsuspecting subject to be subsequently abused for an ulterior 
purpose; (ii) automatic real-time identification issues: the present technology for 
genetic matching is not geared for online unobtrusive identifications. Most of the 
human DNA is identical for the entire human species and only some relatively 
small number of specific locations (polymorphic loci) on DNA exhibit individual 
variation. These variations are manifested either in the number of repetitions of a 
block of base sequence (length polymorphism) or in the minor non-functional 
perturbations of the base sequence (sequence polymorphism) [70]. The processes 
involved in DNA based personal identification determine whether two DNA 
samples originate from the same/different individual(s) based on the distinctive 
signature at one or more polymorphic loci. A major component of these processes 
now exist in the form of cumbersome chemical methods (wet processes) 
requiring an expert's skills. There does not seem to be any effort directed at a 
complete automation of all the processes.(iii) privacy issues: information about 
susceptibilities of a person to certain diseases could be gained from the DNA 
pattern and there is a concern that the unintended abuse of genetic code 
information may result in discrimination in e.g., hiring practices. 

Figure 1.10 DNA is double helix structure made of four bases: Adenine (A), Thymine 
(T), Cytosine (C), and Guanine (G) [4]. The sequence of bases is unique to each 
individual (with the exception of identical twins) and could be used for positive person 
identification. 

Signature and Acoustic Emissions 

The way a person signs her name is known to be a characteristic of that 
individual (Figure 1.1 1). Although signatures require contact and effort with the 
writing instrument, they seem to be acceptable in many government, legal, and 
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commercial transactions4 as a method of personal authentication. Signatures are 
a behavioral biometric, evolve over a period of time and are influenced by 
physical and emotional conditions of the signatories. Signatures of some people 
vary a lot: even the successive impressions ,of their signature are significantly 
different. Further, the professional forgers can reproduce signatures to fool the 
unskilled eye. Although, the human experts can discriminate genuine signatures 
from the forged ones, modeling the invariance in the signatures and automating 
signature recognition process are challenging. There are two approaches to 
signature verification: static and dynamic. In static signature verification, only 
geometric (shape) features of the signature are used for authenticating an identity 
[28]. Typically, the signature impressions are normalized to a known size and 
decomposed into simple components (strokes). The shapes and relationships of 
strokes are used as features. In dynamic signature verification, not only the shape 
features are used for authenticating the signature but the dynamic features like 
acceleration, velocity, and trajectory profiles of the signature are also employed. 
The signature impressions are processed as in a static signature verification 
system. Invariants of the dynamic features augment the static features, making 
forgery difficult since the forger has to not only know the impression of the 
signature but also the way the impression was made. 
A relatcd technology is authentication of an identity based on the characteristics 
of the acoustic emissions emitted during a signature scribble. These acoustic 
emissions are claimed to be a characteristic of each individual [29]. 

Figure 1 .11  Identification based on signature. Signatures have long been accepted as 
a legitimate means of identification. 

0 Odor 
It is known that each object exudes an odor that is characteristic of its chemical 
composition and could be used for distinguishing various objects. Among other 
things, the automatic odor detection technology [30] is presently being 
investigated for detecting land mines [31]. A whiff of air surrounding an object 

In some developing countries with low literacy rates, “thumbprint” is accepted as a 
legal signature. 
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is blown over an array of chemical sensors, each sensitive to a certain group of 
(aromatic) compounds. The feature vector consists of the signature comprising of 
the normalized measurements from each sensor. After each act of sensing, the 
sensors need to be initialized by a flux of clean air. 

Body odor serves several functions including communication, attracting 
mates, assertion of territorial rights, and protection from a predator. A 
component of the odor emitted by a human (or any animal) body is distinctive to 
a particular individual. It is not clear if the invariance in a body odor could be 
detected despite deodorant smells, and varying chemical composition of the 
surrounding environment. Currently, no commercial odor-based identity 
authentication systems exist. 

Figure 1.12 Identific :ation based on retinal scan is perceived to be the most secure 
method of authenticating an identity. 

0 Retinal Scan 
The retinal vasculature is rich in structure and is supposed to be a characteristic of 
each individual and each eye (Figure 1.12). It is claimed to be the most secure 
biometrics since it is not easy to change or replicate the retinal vasculature. 
Retinal scans, glamorized in movies and military installations, are mostly 
responsible for the “high-tech-expensive” impression of the biometric 
technology5. The image capture requires a person to peep into an eye-piece and 
focus on a specific spot in the visual field so that a predetermined part of the 
retinal vasculature could be imaged. The image acquisition involves cooperation 
of the subject, entails contact with the eyepiece, and requires a conscious effort 
on the part of the user. All these factors adversely affect the public acceptability 
of retinal biometric. A number of retinal scan-based identity authentication 
installations are in operation which boast zero false positives in all the 
installations to-date6. Retinal vasculature can reveal some medical conditions, 
e.g., hypertension, which is another factor standing in the way of public 
acceptance of retinal scan based-biometrics. 

Although, iris scanning appears to be more expensive than retinal scanning. 
These systems were operating at an unknown high false negative rates [32]. 
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Figure 1.13 Authentication based on hand geometry. Although two-dimensional 
profile of a hand is illustrated here, in commercial hand geometry-based 
authentication systems, three-dimensional profile of the hand is sensed. 

0 Hand and Finger Geometry 
In recent years, hand geometry (Figure 1. 13) has become a very popular access 
control biometrics which has captured almost half of the physical access control 
market [33]. Some features related to a human hand, e.g., length of fingers, are 
relatively invariant and peculiar (although, not unique) to each individual. The 
image acquisition system requires cooperation of the subject and captures frontal 
and side view images of the palm flatly placed on a panel with outstretched 
fingers. The registration of the palm is accomplished by requiring the subject's 
fingers to be aligned with a system of pegs on the panel which is not convenient 
for subjects with limited flexibility of palm, e.g., those suffering from arthritis. 
The representational requirements of the hand are very small (9 bytes) which is 
an attractive feature for bandwidth and memory limited systems. The hand 
geometry is not unique and cannot be scaled up for systems requiring 
identification of an individual from a large population of identities. In spite of 
this, hand geometry has gained acceptability in a number of the installations in 
last few years for identity authentication applications. 

Finger geometry [34] is a variant of hand geometry and is a relatively new 
technology which relies only on geometrical invariants of fingers (index and 
middle). A finger geometry acquisition device closely resembles that for hand 
geometry but is more compact. It is claimed to be more accurate than hand 
geometry. However, the technology for finger geometry based authentication is 
not as mature as that for hand geometry. 
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6. Biometrics Technologies: A Comparison 

Each biometric technology has its strengths and limitations. No single biometrics is 
expected to effectively meet the needs of all the applications. A brief comparison of 
14 different biometric techniques that are either widely used or under investigation, 
including face, fingerprint, hand geometry, keystroke dynamics, hand vein, iris, 
retinal pattern, signature, voice-print, facial thermograms, odor, DNA, gait, and ear 
[15, 35, 24, 16, 36, 1, 2, 27, 31, 4, 3] is provided in Table 1.1. Although each of these 
biometric techniques, to a certain extent, possesses the above mentioned desirable 
properties and has been used in practical systems [15, 35, 24, 16] or has the potential 
to become a valid biometric technique [ 16], not many of them are acceptable (in court 
of law) as indisputable evidence of identity. 

Which biometrics should be used for a given application? The match between a 
biometrics and an application is determined depending upon the requirements of the 
given application, the characteristics of the application, and properties of the 
biometrics. In the context of biometrics-based identification (authentication) systems, 
an application is characterized by the following properties: (i) does the application 
need identification or authentication? The applications requiring an identification of a 
subject from a large database of identities need scalable and relatively more unique 
biometrics. (ii) Is it attended (semi-automatic) or unattended (completely automatic)? 
An application may or may not afford a human operator at or near the biometric 
acquisition stage. In the applications deployed at remote locations with unfriendly or 
unsafe climate, for instance, the use of biometrics requiring an operator assistance for 
the capture of physiological or behavioral measurement may not be feasible. (iii) Are 
the users habituated (or willing to be habituated) to the given biometrics? 
Performance of a biometrics-based system improves steadily as the subjects 
instinctively learn to give “good’ biometric measurements. This is more true for some 
biometrics than others; e.g., it is more difficult to give bad retinal image than a 
fingerprint image. Some applications may tolerate the less effective learning phase of 
the application deployment for a longer time than others. (iv) Is the application covert 
or overt? Not all biometrics can be captured without the knowledge of the subject to 
be identified. Even the biometrics which could be captured without the knowledge of 
a subject may not be used in some countries due to privacy legislations. (v) Are the 
subjects cooperative or non-cooperative? Typically, applications involving non- 
cooperative subjects warrant the use of physiological biometrics which cannot be 
easily changed. For instance, it is easy to change one’s voice compared to changing 
one’s retinal vasculature. (vi) What are the storage requirement constraints? Different 
applications impose varying limits on the size of the internal representation for the 
chosen biometrics. (vii) How stringent are the performance requirement constraints? 
For example, applications demanding higher accuracies need more unique biometrics. 
(viii) What types of biometrics are acceptable to the users? Different biometrics are 
acceptable in applications deployed in different demographics depending on the 
cultural, ethical, social, religious, and hygienic standards of that society. The 
acceptability of a biometrics in an application is often a compromise between the 
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sensitivity of a community to various perceptions/taboos and the value/convenience 
offered by a biometries-based identification. 

7. Automatic Identification 

The concept of individuality of personal traits has a long history, and identification of 
a person based on his physical characteristics is not new. Humans (and other animals) 
recognize each other based on their physical characteristics. As we pick up the 
telephone, we expect our friends to recognize us based on our voice. We know from a 
number of archeological artifacts (Figure 1.14) that our ancestors recognized the 
individuality of fingerprint impressions [5] on their picture drawings. Prehistoric 
Chinese have been known to recognize that fingerprints can help establish the identity 
of an individual uniquely [5]. In 1882 Alphonse Bertillon, chief of criminal 
identification of Paris police department developed a very detailed method of 
identification based on a number of bodily measurements, physical description, and 
photographs [37]. The Bertillon System of Anthropometric Identification system 
gained wide acceptance before getting superseded by fingerprint based identification 
systems. Some of the physical characteristics, e.g., DNA, fingerprints, and signatures, 
have gained a legal status and these characteristics could be used as evidence in the 
court of law to establish a proof of identity. Having gained the legitimacy, elaborate 
systems of rules have been developed for (i) matching these biometrics to decide 
whether a pair of biometric measurements, e.g., two fingerprints, belong to the same 
person or not; (ii) searching a given biometric measurement in a database consisting 
of a number of other measurements of the same biometrics. These rules are derived 
from manual systems of matching and indexing because of historical reasons, and 
require trained experts for operation of manualhemi-automatic identification 
systems. For example, the traditional fingerprint identification systems used in the 
forensic applications require well-trained experts in acquisition of fingerprints, 
classifying/indexing the fingerprint, and fingerprint matching. 

On the other hand, use of biometrics in fully automated applications is a relatively 
new and emerging phenomenon. There is a growing interest in biometrics from a 
wide cross-section of society: engineers, technologists, scientists, and, government 
and corporate executives. The excitement of the emergence of biometries-based 
technology is evident by publication of dozens of biometrics articles in the popular 
press [38], organization of exclusive technical conferences devoted to biometrics [39, 
40, 41, 42, 43], organization of biometrics related workshops [44, 45], increasing 
focus on biometrics in security and financial trade-shows [46, 47], institution of 
biometric consortia [48, 49], special issues of reputed technical journals [50], 
publication of a few periodicals devoted to biometrics [51, 52], and even 
establishment of an exclusive biometric shop [38] in the last couple of years. 

The perception that biometric technologies are hi-tech, high-cost systems and can 
only be afforded in forensics and high-security military installations is rapidly 
changing. Spiraling increase in the availability of inexpensive computing resources, 
advances in image understanding, better matching strategies provided by progress in 
pattern recognition and computer vision field, cheaper sensing technologies, and 
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increasing demand for the identification needs. are forcing biometric technology into 
new applications/markets requiring positive personal identification. 

Figure 1.14 Archeological artifacts depicting fingerprint impressions: (a) Neolithic 
Carvings at Gavrinis Island [5]; (b) Standing Stone at Goat Island (2,000 B.C.) [72]; (c) 
A Chinese clay seal (300 B.C.) [71]; and (d) An impression on a Palestinian lamp (400 
A. D.) [5] . The Chinese clay seal and Palestinian lamp impressions indicate the identity 
of their respective owners. Reprinted with permissions of A. Moenssens and J.Berry. 

The biometrics-based identification (authentication) technology is being either 
adopted or contemplated in a very broad range of civilian applications: (i) bunking 
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security such as electronic fund transfers, ATM security, internet commerce, check 
cashing, and credit card transactions, ( i i )  physical access control such as airport 
access control, ( i i i)  information system security like access to databases via login 
privileges, (iv) government benefits distribution such as welfare disbursement 
programs [53], (v) customs and immigration such as INS Passenger Accelerated 
Service System (INSPASS) which permits faster immigration procedures based on 
hand geometry [54], (vi) national ID systems which provide a unique ID to the 
citizens and integrate different government services [55], (vii) voter and driver 
registration providing registration facilities for voters and drivers. (viii) customer 
loyalty/preference schemes providing incentives to repeat/preferred customers of a 
business establishment, and (ix) Telecommunications such as cellular bandwidth 
access control. 

8. Research Issues 

The general problem of personal identification raises a number of important research 
issues: what identification technologies are the most effective to achieve accurate and 
reliable identification of individuals? In this section, we summarize the challenges in 
biometrics research [56]. Some of these problems are well-known open problems in 
the allied areas (e.g., pattern recognition and computer vision), while the others need 
a systematic cross-disciplinary effort. 

We believe that biometrics technology alone may not be sufficient to resolve these 
issues effectively; the solutions to the outstanding open problems may lie in 
innovative engineering designs exploiting constraints otherwise unavailable to the 
applications and in harnessing the biometric technology in combination with other 
allied technologies. 

Design 

It is not clear whether the use of the features and philosophies underlying the 
identification systems heavily tuned for human use (e.g., faces and fingerprints) is as 
effective for fully automatic processes (Figure 1.15). Nor do we know whether 
identification technologies inspired and used by humans are indeed as amenable and 
effective for completely automatic identification systems. In fact, it is not even clear if 
the solutions solely relying on biometrics-based identifications are the most desirable 
engineering solutions in many real-world applications. Both, a different set of 
functional requirements demanded by the emerging market applications and the 
retrospective wisdom of futility of myopic dependence on human intuition for 
engineering designs suggest that full automation of the biometrics-based identification 
systems warrant a careful examination of all the underlying components of the 
positive identifications of the emerging applications. 

A biometic-based identification (authentication) system operates in two distinct 
modes (Figure 1.16): enrollment and identification (authentication). During 
enrollment, biometric measurements are captured from a given subject, relevant 
information from the raw measurement is gleaned by the feature extractor, and 
(feature, person) information is stored in a database. Additionally, some form of ID 
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for the subject may be generated for the subject (along with the visual/machine 
representation of the biometrics). In identification mode, the system senses the 
biometric measurements from the subject, extracts features from the raw 
measurements, and searches the database using the features thus extracted. The 
system may either be able to determine the identity of the subject or decide the person 
is not represented in the database. In authentication mode of operation, the subject 
presents his system assigned ID and the biometric measurements, the system extracts 
(input) features from the measurements, and attempts to match the input features to 
the (template) features corresponding to subject's ID in the system database. The 
system may, then, either determine that the subject is who he claims to be or may 
reject the claim. In some situations, a single system operates as both an identification 
and an authentication system with a common database of (identity, feature) 
associations. 

Figure 1.15 Human vision is fooled by many subtle perceptual tricks and it is hoped 
that machine vision may be better equipped in correctly recognizing the deceit in such 
situations. Although, a typical human subject may wrongly believe the faces shown in 
this picture to belong to Al Gore and President Bill Clinton, on closer inspection, one 
could recognize that both the faces in the picture identically show Bill Clinton's facial 
features and the crown of hair on one of the faces has been digitally manipulated to 
appear similar to that of Al Gore [6].  

Design of a biometrics-based identification system could essentially be reduced to 
the design of a pattern recognition system. The conventional pattern recognition 
system designers have adopted a sequential phase-by-phase modular architecture 
(Figure 1.17). Although, it is generally known in the research community that more 
integrated, parallel, active system architectures involving feedback/feed-forward 
control have a number of advantages, these concepts have not yet been fully exploited 
in commercial biometrics-based systems. 

Given the speed, accuracy, and cost performance specifications of an end-to-end 
identification system, the following design issues need to addressed: (i) how to 
acquire the input data/measurements (biometrics)? (ii) what internal representation 
(features) of the input data is invariant and amenable for an automatic feature 
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extraction process? (iii) given the input data, how to extract the internal
representation from it? (iv) given two input samples in the selected internal
representation, how to define a matching metric that translates the intuition of
"similarity" among the patterns? (v) how to implement the matching metric?
Additionally, for reasons of efficiency, the designer may also need to address the
issues involving (vi) organization of a number of (representations) input samples into
a database and (vii) effective methods of searching a given input sample
representation in the database.

Enrollment

Figure 1.16 Architecture of a typical biometric system.

Figure 1.17 Architecture of a typical pattern recognition system.

Researchers in pattern recognition have realized that effectively resolving these
issues is very difficult and there is a need to constrain the environment to engineer
feasible solutions. We will describe some of the research problems in the design of
biometrics-based identification systems.
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Acquisition. Acquiring relevant data for the biometrics is one of the critical 
processes which has not received adequate attention. The amount of care taken in 
acquiring the data (often) determines the performance of the entire system. Two 
of the associated tasks are: (a) quality assessment; automatically assessing the 
suitability of the input data for automatic processing and (b) segmentation; 
separation of the input data into foreground (object of interest) and background 
(irrelevant information). 

A number of opportunities exist for incorporating (i) the context of the data 
capture which may further help improve the performance of the system and (ii) 
avoiding undesirable measurements (and subsequent recapture of desirable 
measurements). With inexpensive desktop computing and large input bandwidth, 
typically the context of the data capture could be made richer to improve the 
performance. For instance, a fingerprint is traditionally captured from its 2D 
projection on a flat surface. Why not capture a 3D image? Why not take a color 
image? Why not use active sensing? Such enhancements may often improve the 
performance of the biometric systems. 

Although a number of existing identification systems routinely assign a 
quality index to the input measurement indicating its desirability for matching 
(Figure 1.18), the approach to such a quality assessment metric is subjective, 
debatable, and typically inconsistent. A lot of research effort needs to be focussed 
in this area to systematize both (i) the rigorous and realistic models of the input 
measurements and (ii) metrics for assessment of quality of a measurement. When 
the choice of rejecting a poor quality input measurement is not available (e.g., in 
legacy databases), the system may optionally attempt at gleaning useful signal 
from the noisy input measurements. Such operation is referred to as signal/image 
enhancement (Figure 1.19) and is computationally intensive. How to enhance the 
input measurements without introducing any artifacts is an active research topic. 

Similarly, the conventional foreground/background separation (Figure 1.20) 
typically relies on an ad hoc processing of input measurements and enhancing the 
information bandwidth of input channel (e.g., using more sensory channels) often 
provides very effective avenues for segmentation. Further, robust and realistic 
models of the object of interest often facilitate cleaner and better design of 
segmentation algorithms. 

Representation 

Which machine-readable representations completely capture the invariant and 
discriminatory information in the input measurements? This representation issue 
constitutes the essence of system design and has far reaching implications on the 
design of the rest of the system. The unprocessed measurement values are 
typically not invariant over the time of capture and there is a need to determine 
salient features of the input measurement which both discriminate between the 
identities as well as remain invariant for a given individual. Thus, the problem of 
representation is to determine a measurement (feature) space which is invariant 
(less variant) for the input signals belonging to the same identity and which differ 
maximally for those belonging to different identities (high interclass) variation 
and low intraclass variation). To systematically determine the discriminatory 
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power of an information source and arrive at an effective feature space is a 
challenging problem. 

Quality = 0.93 Quality = 0.63 

Quality = 0.35 Quality = 0.19 

Figure 1.18 Fingerprint Quality: Automatically and consistently determining suitability 
of a given input measurement for automatic identification is a challenging problem. A 
fingerprint quality assessment algorithm quantifies suitability of fingerprint images for 
automatic fingerprint identification system by assigning a quality index in the range of 
[0,1]; numbers closer to zero indicate poor quality images. 
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Figure 1.19 Enhancement: Automatically enhancing fingerprint images without 
introducing artifacts is a challenging problem: (a) a poor quality fingerprint image; (b)  
result of image enhancement of fingerprint image shown in (a) [8]. 

Figure 1.20 Segmentation: Determining the region containing the object of interest 
from a given image is a challenging problem. (a) image showing a face; (b) a face 
detection algorithm identifying the region of interest in (a) for a face recognition 
system; (c) a fingerprint image; and (d) foreground/background separation of the 
fingerprint image shown in (c) [7]. 

A related issue about representation is the saliency of a measurement signal and 
its representation. More distinctive biometric signals offer more reliable identity 
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authentication. Less complex measurement signals inherently offer a less reliable 
identification. This phenomenon has a direct impact in many biometrics-based 
identification, e.g., signature, where less distinctive signatures could be easily 
forged. A systematic method of quantifying distinctiveness of a specific signal 
associated with an identity and its representation is needed for effective 
identification systems. 

Additionally, in some applications, storage space is at a premium, e.g., in a 
smart card application, typically, about 2K bytes of storage is available. In such 
situations, the representation also needs to be parsimonious. The issues of most 
salient features of an information source also need to be investigated. 

Representation issues cannot be completely resolved independent of a specific 
biometric domain and involve complex trade-offs. Take, for instance, the 
fingerprint domain. Representations based on the entire gray scale profile of a 
fingerprint image are prevalent among the verification systems using optical 
matching [57, 58]. However, the utility of the systems using such representation 
schemes may be limited due to factors like brightness variations, image quality 
variations, scars, and large global distortions present in the fingerprint image 
because these systems are essentially resorting to template matching strategies for 
verification. Further, in many verification applications terser representations are 
desirable which preclude representations that involve the entire gray scale profile 
of fingerprint images. Some system designers attempt to circumvent this problem 
by restricting that the representation be derived from a small (but consistent) part 
of the finger [57]. However, if this same representation is also being used for 
identification applications, then the resulting systems might stand at a risk of 
restricting the number of unique identities that could be handled, simply because 
of the fact that the number of distinguishable templates is limited. On the other 
hand, an image-based representation makes fewer assumptions about the 
application domain (fingerprints) and, therefore, has the potential to be robust to 
wider varieties of fingerprint images. For instance, it is extremely difficult to 
extract a landmark-based representation from a (degenerate) finger devoid of any 
ridge structure. 

3. Feature Extraction 

Given raw input measurements, automatically extracting the given representation 
is an extremely difficult problem, especially where input measurements are noisy 
(see Figure 1.21). 

A given arbitrarily complex representation scheme should be amenable to 
automation without any human intervention. For instance, the manual system of 
fingerprint identification uses as much as a dozen features [59]. However, it is 
not feasible to incorporate these features into a fully automatic fingerprint system 
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Figure 1.21 Automatically gleaning finger features from the fingerprint images is 
extremely difficult, especially, when the fingerprint is of poor quality (a) a portion of 
good quality fingerprint image; (b) a portion of poor quality fingerprint image; (c) 3- 
dimensional visualization of (a); and (d) 3-dimensional visualization of (b). 

because it not easy to reliably detect these features using state-of-the-art image 
processing techniques. Determining features that are amenable to automation has 
not received much attention in computer vision and pattern recognition research 
and is especially important in biometrics which are entrenched in the design 
philosophies of an associated mature manual system of identification. 

Traditionally, the feature extraction system follows a staged sequential 
architecture which precludes effective integration of extracted information 
available from the measurements. Increased availability of inexpensive 
computing and sensing resources makes it possible to use better 
architectures/methods for information processing to detect the features reliably. 

Once the features are determined, it is also a common practice to design 
feature extraction process in a somewhat ad hoc manner. The efficacy of such 
methods is limited especially when input measurements are noisy. Rigorous 
models of feature representations are helpful in a reliable extraction of the 
features from the input measurements, especially, in noisy situations. 
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Determining terse and effective models for the features is a challenging research 
problem. 

4. Matching 

The crux of a matcher is a similarity function which quantifies the intuition of 
similarity between two representations of the biometric measurements. 
Determining an appropriate similarity metric is a very difficult problem since it 
should be able to discriminate between the representations of two different 
identities despite noise, structural and statistical variations in the input signals, 
aging, and artifacts of the feature extraction module. In many biometrics, say 
signature verification, it is difficult to even define the ground truth [28]: do the 
given two signatures belong to the same person or different persons? 

A representation scheme and a similarity metric determine the accuracy 
performance of the system for a given population of identities; hence the 
selection of appropriate similarity scheme and representation is critical. 

Given a complex operating environment, it is critical to identify a set of valid 
assumptions upon which the matcher design could be based. Often, there is a 
choice between whether it is more effective to exert more constraints by 
incorporating better engineering design or to build a more sophisticated similarity 
function for the given representation. For instance, in a fingerprint matcher, one 
could constrain the elastic distortion altogether and design the matcher based on a 
rigid transformation assumption or allow arbitrary distortions and accommodate 
the variations in the input signals using a clever matcher. Where to strike the 
compromise between the complexity of the matcher and controlling the 
environment is an open problem. 

Consider design of a matcher in the domain of fingerprint-based identification 
systems (see Figure 1.22). Typically, the fingerprint imaging system presents a 
number of peculiar and challenging situations some of which are unique to 
fingerprint image capture scenario: (I) Inconsistent contact: the act of sensing 
distorts the finger. The three-dimensional shape of the finger gets mapped onto 
the two-dimensional surface of the glass platen. Typically, this (non- 
homogeneous) mapping function is determined by the pressure and contact of the 
finger on the glass platen (see Figure 1.23). (ii) Non-uniform contact: the ridge 
structure of a finger would be completely captured if ridges of the part of the 
finger being imaged are in complete optical contact with the glass platen. 
However, the dryness of the skin, skin disease, sweat, dirt, humidity in the air all 
confound the situation resulting in a non-ideal contact situation: some parts of the 
ridges may not come in complete contact with the platen and regions representing 
some valleys may come in contact with the glass platen. This results in “noisy” 
low contrast images, leading to either spurious minutiae or missing minutiae. (iii) 
Irreproducible contact: vigorous manual work, accidents etc. inflict injuries to the 
finger, thereby, changing the ridge structure of the finger either permanently or 
semi-permanently. This may introduce additional spurious minutiae. (iv) Feature 
extraction artifacts: the feature extraction algorithm is imperfect and introduces 
measurement errors. Various image processing operations might introduce 
inconsistent biases to perturb the location and orientation estimates of the 



Introduction to Biometrics 29 

reported minutiae from their gray scale counterparts. (vi) The act of sensing itself 
adds noise to the image. For example, residues are leftover on the glass platen 
from the previous fingerprint capture. A typical imaging system distorts the 
image of the object being sensed due to imperfect imaging conditions. In the 
frustrated total internal reflection (FTIR) sensing scheme, for example, there is a 

geometric distortion because the image nlane is not parallel to the glass platen. 

Figure 1.22 Fingerprint Matcher: Results of applying the matching algorithm [7] to an 
input and a template minutiae set; (a) input minutiae set; (b) template minutiae set; (c) 
input and template fingerprint are aligned based on the minutiae marked with green 
circles; and (d) matching result where template minutiae and their correspondences 
are connected by green lines. The matching score for the fingerprints was 37. The 
score range was 0-100; scores closer to 100 indicate better match. 
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Figure 1.23 Impressions of a finger captured by exerting different 
(magnitude/direction) forces on the finger during fingerprint acquisition results in a 
significant non-homogenous distortion of the ridge structures; consequently, the 
fingerprints are difficult to match. 

In light of the operational environments mentioned above, the design of the 
similarity functions and matching algorithms needs to establish and characterize a 
realistic model of the variations among the representations of mated pairs. Is the 
distortion, for instance, significant for the given imaging? Is it easier to prevent 
distortion or is it more effective to take into account all the distortions possible and 
formulate a clever similarity function? 

5. Search, Organization, and Scalability 

Systems dealing with a large number of identities should be able to effectively 
operate as the number of users in the system increases to its operational capacity 
and should only gracefully degrade as the system accommodates more users than 
envisaged at the time of its design. As civilian applications (e.g., driver and voter 
registration, National ID systems and IDs for health, medical, banking, cellular, 
transportation, and e-commerce applications) enrolling a very large number of 
identities (e.g., tens of millions) are being designed and integrated, we are 
increasingly looking toward biornetrics to solve authentication and identification 
problems. 

In identity authentication systems, biornetrics are cost effective and are easier 
to maintain because these systems do not have to critically depend on 
issuing/reissuing other identity (magnetic stripe/smart/2D bar code) cards. Tasks 
like maintaining the database of identities, selection of a record etc. may require 
more resources, but the technical complexity of matching a biometric 
representation offered by the user to that stored in the system does not increase as 
the number of identities handled by the system increases arbitrarily. 

On the other hand, identification of an individual among a large number of 
identities becomes increasingly complex as the number of identities stored in the 
system increases. Many applications like National ID systems, passport and visa 
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individual to confirm her identity. It also becomes increasingly difficult to abuse the 
system privileges. However, the challenge of integration is to ascertain that the system 
performance degrades gracefully as some of the information sources become 
unavailable or unreliable. As better performance is demanded of identification 
systems and as a variety of different sensors become affordable, integration of 
different biometrics will become an important issue [62, 63, 64, 65 ,  66]. Integration 
of different technologies is also becoming critical for imparting capabilities to the 
identification system. For instance, biometric sensor integrated smart cards could 
provide facilities for identity authentication without divulging any information about 
biometric measurements. 

Forensic f Applications 

False Reject Rate 

Figure 1.25 Receiver operating characteristics (ROC) of a system illustrates false 
reject rate (FRR) and false acceptance rate (FAR) of a matcher at all operating points. 
Each point on an ROC defines FRR and FAR for a given matcher operating at a 
particular matching score threshold. High security access applications are concerned 
about break-ins and hence operate the matcher at a point on ROC with small FAR. 
Forensic applications desire to catch a criminal even at the expense of examining a 
large number of false accepts and hence operate their matcher at a high FAR. Civilian 
applications attempt to operate their matchers at the operating points with both, low
FRR and low FAR. 

Deciding efficient architectures for integration is an open research problem and it 
is perhaps the single most factor in determining the behavior of an integrated system. 
Decision level, feature level, and measurement level integration architectures have 
been studied in the literature [67, 68]. Determination of which integration strategies 
are appropriate for a given identification application needs more focussed research. 
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Circumvention 

Some problems plague all identification technologies (based on possession, 
knowledge, or biometrics) alike. Fraud in an identification system is possible in 
different forms. Some forms of fraud are characterized as loopholes in the system: 
possibilities of illegitimate access to a system not envisaged by its designers. Other 
forms involve transcending the means and mechanisms of identification used by the 
system (super-system) and hence, in principle, cannot be completely eliminated using 
any strategies embedded inside the system (intra-system). The latter type of fraud 
could be categorized as follows: 

Collusion: In any application, some operators of the system will have a super- 
operator status which allows them to bypass the identification component of the 
processing and to overrule the decision made by the system. This facility is 
incorporated in the system work-flow to permit handling of exceptional 
situations, e.g., processing of individuals with no fingers in a fingerprint-based 
identification system. This could potentially lead to an abuse of the system by 
way of collusion between the super-operators and the users. 
Coercion: The genuine users could be potentially coerced to identify themselves 
to the system. The identification means could be forcibly extracted from a 
genuine user to gain access to the system with concomitant privileges. For 
instance, an ATM user could be forced to give away her ATM card and PIN at a 
gun point. It is desirable to reliably detect instances of coercion without 
endangering the lives of genuine users and take an appropriate action. 
Denial: It is possible that a genuine user may identify himself to the system using 
the legitimate means of the identification to gain access to the privileges and is 
subsequently denied such an access. 
Covert Acquisition: It is possible that the means of identification could be 
compromised without the knowledge of a legitimate user and be subsequently 
abused. For instance, a significant amount of fraud in telecommunication theft is 
ascribed to video-snooping: video-recording the scenes of users punching their 
pins at, say, a public telephone. 

As mentioned earlier, many of these problems may not be fully eliminated. 
Currently, attempts to reduce fraud in an identification system are process-based and 
ad hoc. There is a need to focus research effort on systematic and technology- 
intensive approaches to combat fraud in the system. This is especially true in terms of 
biometrics-based identification systems where the captured biometric measurements 
and context may have sufficient information to deter and detect some forms of fraud. 
In particular, multi-biometrics may show promise in approaching solutions to many of 
the above mentioned problems. 

Some other problems related to identification are more specific to biometrics-based 
systems. For instance, skilled humans have an uncanny ability to disguise their 
identity and are able to assume (forge/mimic) a different (specific) identity (Figure 
1.26). The ‘‘chameleon identities” pose an additional problem to the reliability of the 
identification systems based on some biometrics and warrant more research. 
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9. Privacy 

0 Privacy: Any biometrics-based technology is traditionally perceived as 
dehumanizing and as a threat to an individual's privacy rights (see Figure 1.27). 
As identification technologies become more and more foolproof, the process of 
getting identified itself leaves trails of undeniable private information. e.g., where 
is an individual? What is the individual buying?, etc. In case of biometrics-based 
identification, this problem is even more serious because the biometric features 
may additionally inform others about the medical history or susceptibilities of an 
individual, e.g., retinal vasculature may divulge information about diabetes or 
hypertension [69]. Consequently, there is a legitimate concern about privacy 
issues associated with the biometrics-based identification. 

Figure 1.26 Multiple Personalities: All  the people in this image are the same person 
(The New York Times Magazine, September 1, 1996/section 6, pages 48-49, 
reproduced with permission of Robert Trachtenberg). 

Proscription: This issue is somewhat related to the previous issue. When a 
biometric measurement is offered to a given system, the information contained in 
it should not be used for any other purpose than its intended use. In any 
(networked) information processing system, it is difficult to ensure that the 
biometric measurements captured will only be used for its intended purpose. 

Wide-spread use of biometrics-based identification systems should not only 
address the above mentioned issues from technical standpoint but also from the public 
perception point of view. This is especially true for assuring the users that their 
biometric information will remain private and will only be used for the expressed 
purpose for which it was collected. 
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Figure 1.27 “The true terror is in the card”, an illustration from Robert E. Smith’s 
article [9] in the New York Times Magazine summarizes the essence of public 
perception about biometric technology: it is dehumanizing and is a threat to privacy 
rights of an individual. The original picture by Jana Sterback, “Generic Man”, 1989. 
Copyright 0 1996 by The New York Times. Reprinted by permission. 

10. Novel Applications 

As biometric technology matures, there will be an increasing interaction among the 
(biometric) market, (biometric) technology, and the (identification) applications. The 
emerging interaction is expected to be influenced by the added value of the 
technology, the sensitivities of the population, and the credibility of the service 
provider. It is too early to predict where, how, and which biometric technology would 
evolve and be mated with which applications. 

Applications like automating identification for more convenient travel, for 
transactions via e-commerce, etc. seem to be ready for commercialization, but 
perhaps, biometric technology could open up a whole new genre of futuristic hi-tech 
applications that were not foreseen before. 

Take for instance, the application of content-based search of digital libraries and in 
particular, video. One of the tasks in content-based search involves ascription of 
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sound bytes to individuals (identities) depicted in the corresponding video segment. 
The association of the sound to identity is essentially a closed identification problem. 
What makes this problem interesting is the opportunity to exploit the context and 
clues offered from the vision-based processing (e.g., number of people in the video 
and lip movements) of the video. Voice-based clues could generate plausible 
hypotheses about identities of visual entities. From the visual input, the hypothesis 
could either be accepted or rejected depending on the coherency of the sound and 
vision based results. 

Or imagine, in a hi-tech mall, the features extracted from DNA of millions of cells 
shredded by the body of a passing individual (and a potential customer) would be 
instantly matched to determine the exact identity or a possible category of population. 
That individual would then be treated exclusively depending upon his spending 
pattern. Perhaps, there would be data mining based on the biometric characteristics! 

Interesting scenarios might materialize as a number of civilian applications of 
identification are integrated based on a single or multiple biometric technologies. 
This will certainly have a profound influence on the way we conduct our business. 

11. Summary 

Biometrics is a science of automatically identifying individuals based on their unique 
physiological or behavioral characteristics. A number of civilian and commercial 
applications of biometrics-based identification are emerging. At the same time, a 
number of legitimate concerns are being raised against the use of biometrics for 
various applications; three of them appear to be the most significant: cost, privacy, 
and performance. 

As more and more legislations are brought into effect, both, protecting the privacy 
rights of the individuals as well as endorsing the use of biometrics for legitimate uses 
and as the prices of the biometric sensors continues to fall, the added value of the 
biometrics-based systems will continue to attract more applications. It is expected 
that in the next five years, the rising number of applications may increase the demand 
for the biometric sensors to drive a volume-based pricing. 

For the wide-spread use of the biometrics to materialize, it is necessary to 
undertake systematic studies of the fundamental research issues underlying the design 
and evaluation of identification systems. Further, it is critical to engineer the match 
between the application needs and the available technologies. 
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Abstract The use of fingerprints ,for identification has been 
employed in law enjorcement for  about a century. A much 
broader application of fingerprints is for personal 
authentication, for instance to access a computer, a network. a 
bank-machine, a car. or a home. The topic of this chapter is 
fingerprint verification, where “verification " implies a user 
matching a ,fingerprint againsr a single fingerprint associated 
with rhe identity that the user claims. The following topics are 
covered: history. image processing methods, enrollment and 
verification procedures. system security considerations, 
recognition rate statistics. fingerprint capture devices, 
combination with other biomerrics, and the future of fingerprint 
verification. 
Keywords: fingerprint verification. fingerprint matching. 
biometric. image enhancement, image filtering, feature derection, 
minutiae. security. .fingerprint sensor. 

1. Introduction' 

The use of fingerprints as a biometric is both the oldest mode of computer-aided, 
personal identification and the most prevalent in use today. However, this widespread 
use of fingerprints has been and still is largely for law enforcement applications. 
There is expectation that a recent combination of factors will favor the use of 
fingerprints for the much larger market of personal authentication. These factors 
include: small and inexpensive fingerprint capture devices, fast computing hardware, 
recognition rate and speed to meet the needs of many applications, the explosive 
growth of network and Internet transactions, and the heightened awareness of the need 
for ease-of-use as an essential component of reliable security. 

This chapter contains an overview of fingerprint verification methods and related 
issues. We first describe fingerprint history and terminology. Digital image processing 

Portions of this chapter have previously appeared in, L. O’Gorman, ‘‘Overview of fingerprint 
verification technologies,” Elsevier Information Security Technical Report, Vol. 3,  No. 1, 1998. 
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methods arc described that take the captured fingerprint from a raw image to match 
result. Systems issues are discussed including procedures for enrollment, verification, 
spoof detection, and system security. Recognition statistics are discussed for the 
purpose of comparing and evaluating different systems. We describe different 
fingerprint capture device technologies. We consider fingerprints in combination with 
other biometrics in a multi-modal system and finally look to the future of fingerprint 
verification. 

It is necessary to state at the onset that there are many different approaches used 
for fingerprint verification. Some of these are published in the scientific literature, 
some published only as patents, and many are kept as trade secrets. We attempt to 
cover what is publicly known and used in the field, and cite both the scientific and 
patent literature. Furthermore, while we attempt to be objective, some material is 
arguable and can be regarded that way. 

2. History 

There is archaeological evidence that fingerprints as a form of identification have 
been used at least since 7000 to 6000 BC by the ancient Assyrians and Chinese. Clay 
pottery from these times sometimes contain fingerprint impressions placed to mark 
the potter. Chinese documents bore a clay seal marked by the thumbprint of the 
originator. Bricks used in houses in the ancient city of Jericho were sometimes 
imprinted by pairs of thumbprints of the bricklayer. However, though fingerprint 
individuality was recognized, there is no evidence this was used on a universal basis 
in any of these societics. 

In the mid-1 800’s scientific studies were begun that would established two critical 
characteristics of fingerprints that are true still to this day: no two fingerprints from 
different fingers have been found to have the same ridge pattern, and fingerprint ridge 
patterns are unchanging throughout life. These studies led to the use of fingerprints 
for criminal identification, first in Argentina in 1896, then at Scotland Yard in 1901, 
and to other countries in the early 1900’s. 

Computer processing of fingerprints began in the early 1960s with the introduction 
of computer hardware that could reasonably process these images. Since then, 
automated fingerprint identification systems (AFIS) have been deployed widely 
among law enforcement agencies throughout the world. 

In the 1980s, innovations in two technology areas, personal computers and optical 
scanners, enabled the tools to make fingerprint capture practical in non-criminal 
applications such as for ID-card programs. Now, in the late 1990s, the introduction of 
inexpensive fingerprint capture devices and the development of fast, reliable matching 
algorithms has set the stage for the expansion of fingerprint matching to personal use. 

Why include a history of fingerprints in this chapter? This history of use is one that 
other types of biometric do not come close to. Thus there is the experience of a 
century of forensic use and hundreds of millions of fingerprint matches by which we 
can say with some authority that fingerprints are unique and their use in matching is 
extremely reliable. For further historical information, see [2]. 
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3. Matching: Verification and Identification 

Matching can be separated into two categories: verification and identification. 
Verification is the topic of this chapter. It is the comparison of a claimant fingerprint 
against an enrollee fingerprint, where the intention is that the claimant fingerprint 
matches the enrollee fingerprint. To prepare for verification, a person initially enrolls 
his or her fingerprint into the verification system. A representation of that fingerprint 
is stored in some compressed format along with the person’s name or other identity. 
Subsequently, each access is authenticated by the person identifying him or herself, 
then applying the fingerprint to the system such that the identity can be verified. 
Verification is also termed, one-to-one matching. 

Identification is the traditional domain of criminal fingerprint matching. A 
fingerprint of unknown ownership is matched against a database of known 
fingerprints to associate a crime with an identity. Identification is also termed, one-to- 
many matching. 

There is an informal third type of matching that is termed one-to-few matching. 
This is for the practical application where a fingerprint system is used by ‘‘a few” 
users, such as by family members to enter their house. A number that constitutes 
“few” is usually accepted to be somewhere between 5 and 20. 

4. Feature Types 

The lines that flow in various patterns across fingerprints are called ridges and the 
spaces between ridges are valleys. It is these ridges that are compared between one 
fingerprint and another when matching. Fingerprints are commonly matched by one 
(or both) of two approaches. We describe the fingerprint features as associated with 
these approaches. 

The more microscopic of the approaches is called minutia matching. The two 
minutia types that are shown in Figure 2.1 are a ridge ending and bifurcation. An 
ending is a feature where a ridge terminates. A bifurcation is a feature where a ridge 
splits from a single path to two paths at a Y-junction. For matching purposes, a 
minutia is attributed with features. These are type, location (x,  y),  and direction (and 
some approaches use additional features). 

ending bifurcation 

Figure 2.1 Fingerprint minutiae: ending and bifurcation. 
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The more macroscopic approach to matching is called global pattern matching or 
simply pattern matching.  In this approach, the flow of ridges is compared at all 
locations between a pair of fingerprint images. The ridge flow constitutes a global 
pattern of the fingerprint. Three fingerprint patterns are shown in Figure 2.2. 
(Different classification schemes can use up to ten or so pattern classes, but these 
three are the basic patterns.) 

Two other features are sometimes used for matching: core and delta. (Figure 2.2.) 
The core can be thought of as the center of the fingerprint pattern. The delta is a 
singular point from which three patterns deviate. The core and delta locations can be 
used as landmark locations by which to orient two fingerprints for subsequent 
matching - though these features are not present on all fingerprints. 

There may be other features of the fingerprint that are used in matching. For 
instance, pores can be resolved by some fingerprint sensors and there is a body of 
work (mainly research at this time) to use the position of the pores for matching in the 
same manner that the minutiae are used. Size of the fingerprint, and average ridge and 
valley widths can be used for matching, however these are changeable over time. The 

ARCH LOOP 

\ '  I c*re delta 
core 

WHORL 

\ 

core 

Figure 2.2 Fingerprint patterns: arch, loop, and whorl. Fingerprint landmarks are also 
shown: core and delta. (No delta locations fall within the captured area of the whorl 
here.) 

positions of scars and creases can also be used, but are usually not used because they 
can be temporary or artificially introduced. 
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5. Image Processing and Verification 

Following image capture to obtain the fingerprint image, image processing is 
performed. The ultimate objective of image processing is to achieve the best image by 
which to produce the correct match result. The image processing steps are the 
following: image noise reduction and enhancement, feature detection, and matching. 

This section is organized to describe first the sequence of processing and 
verification via a “common” minutia-based approach. This is described without 
variants and optional methods (of which there are many) for the sake of reading flow 
and simplicity. It is important to note that, though many researchers and product 
developers follow this approach, all do not, and even the choice of what constitutes 
“common” may be contentious. In the final subsections of this section, variations of 
this approach, both minutia-based and non-minutia-based, are described. 

Image Specifications 

Depending upon the fingerprint capture device, the image can have a range of 
specifications. Commonly, the pixels are 8-bit values, and this yields an intensity 
range from 0 to 255. The image resolution is the number of pixels per unit length, and 
this ranges from 250 dots per inch (100 dots per centimeter) to 625 dots per inch (250 
dots per centimeter), with 500 dots per inch (200 dots per centimeter) being a 
common standard. The image area is from 0.5 inches square (1.27 centimeter) to 1.25 
inches (3.175 centimeter), with 1  inch (2.54 centimeter) being the standard. We 
discuss more on image capture devices in Section 8. 

Image Enhancement 

A fingerprint image is one of the noisiest of image types. This is due predominantly to 
the fact that fingers are our direct form of contact for most of the manual tasks we 
perform: finger tips become dirty, cut, scarred, creased, dry, wet, worn, etc. The 
image enhancement step is designed to reduce this noise and to enhance the definition 
of ridges against valleys. Two image processing operations designed for these 
purposes are the adaptive, matched filter and adaptive thresholding. The stages of 
image enhancement, feature detection, and matching are illustrated in Figure 2.3. 

There is a useful side to fingerprint characteristics as well. That is the 
“redundancy” of parallel ridges. Even though there may be discontinuities in 
particular ridges, one can always look at a small, local area of ridges and determine 
their flow. We can use this ‘‘redundancy of information” to design an adaptive, 
matched filter. This filter is applied to every pixel in the image (spatial convolution is 
the technical term for this operation). Based on the local orientation of the ridges 
around each pixel, the matched filter is applied to enhance ridges oriented in the same 
direction as those in the same locality, and decrease anything oriented differently. The 
latter includes noise that may be joining adjacent ridges, thus flowing perpendicular to 
the local flow. These incorrect “bridges” can be eliminated by use of the matched 
filter. Figure 2.3(b) shows an orientation map where line sectors represent the 
orientation of ridges in each locality. Thus, the filter is adaptive because it orients 
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itself to local ridge flow. It is matched because it should enhance - or match - the 
ridges and not the noise. 

After the image is enhanced and noise reduced, we are ready to extract the ridges. 
Though the ridges have gradations of intensity in the original grayscale image, their 
true information is simply binary: ridges against background. Simplifying the image 
to this binary representation facilitates subsequent processing. The binarization 
operation takes as input a grayscale image and returns a binary image as output. The 
image is reduced in intensity levels from the original 256 (8-bit pixels) to 2 (1-bit 
pixels). 

The difficulty in performing binarization is that all the fingerprint images do not 
have the same contrast characteristics, so a single intensity threshold cannot be 
chosen. Furthermore, contrast may vary within a single image, for instance if the 
finger is pressed more firmly at the center. Therefore, a common image processing 
tool is used, called locally adaptive thresholding. This operation determines thresholds 
adaptively to the local image intensities. The binarization result is shown in Figure 
2.3( c). 

The final image processing operation usually performed prior to minutia detection 
is thinning. Thinning reduces the widths of the ridges down to a single pixel. See 
Figure 2.3(d). It will be seen in the next section how these single-pixel width ridges 
facilitate the job of detecting endings and bifurcations. A good thinning method will 
reduce the ridges to single-pixel width while retaining connectivity and minimizing 
the number of artifacts introduced due to this processing. These artifacts are 
comprised primarily of spurs, which are erroneous bifurcations with one very short 
branch. These artifacts are removed by recognizing the differences between legitimate 
and erroneous minutiae in the feature extraction stage described below. 

Image enhancement is a relatively time-consuming process. A 500x500-pixel 
fingerprint image has 250,000 pixels; several multiplications and other operations are 
applied at each pixel. Both matched filtering and thinning contribute largely to this 
time expenditure. Consequently, many fingerprint systems are designed to conserve 
operations at this stage to reach a match result more quickly. This is not a good 
tradeoff. The results of all subsequent operations depend on the quality of the image 
as captured by the sensor and as processed at this stage. Economizing for the sake of 
speedup will result in degraded match results, which in turn will result in repeated 
attempts to verify or false rejections. Therefore, it is our contention that a system 
offering reasonable speed with a correct answer is much better than a faster system 
that yields poorer match results. 

Feature Extraction 

The fingerprint minutiae are found at the feature extraction stage. Operating upon the 
thinned image, the minutiae are straightforward to detect. Endings are found at 
termination points of thin lines. Bifurcations are found at the junctions of three lines. 
See Figure 2.3(e). 
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Figure 2.3 Sequence of fingerprint processing steps: a) original, b) orientation, c) 
binarized, d) thinned, e) minutiae, f) minutia graph. 
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There will always be extraneous minutiae found due to a noisy original image or 
due to artifacts introduced during matched filtering and thinning. These extraneous 
features are reduced by using empirically determined thresholds. For instance, a 
bifurcation having a branch that is much shorter than an empirically determined 
threshold length is eliminated because it is likely to be a spur. Two endings on a very 
short isolated line are eliminated because this line is likely due to noise. Two endings 
that are closely opposing are eliminated because these are likely to be on the same 
ridge that has been broken due to a scar or noise or a dry finger condition that results 
in discontinuous ridges. Endings at the boundary of the fingerprint are eliminated 
because they are not true endings but rather the extent of the fingerprint in contact 
with the capture device. 

Feature attributes are determined for each valid minutia found. These consist of: 
ridge ending or bifurcation type, the (x,y) location, and the direction of the ending or 
bifurcation. Although minutia type is usually determined and stored, many fingerprint 
matching systems do not use this information because discrimination of one from the 
other is often difficult. 

The result of the feature extraction stage is what is called a minutia template.  This 
is a list of minutiae with accompanying attribute values. An approximate range on the 
number of minutiae found at this stage is from 10 to 100. If each minutia is stored 
with type (1 bit), location (9 bits each for x  and y) ,  and direction (8 bits), then each 
will require 27 bits - say 4 bytes - and the template will require up to 400 bytes. It is 
not uncommon to see template lengths of 1024 bytes. 

Verification 

At the verification stage, the template from the claimant fingerprint is compared 
against that of the enrollee fingerprint. This is done usually by comparing 
neighborhoods of nearby minutiae for similarity. A single neighborhood may consist 
of three or more nearby minutiae. Each of these is located at a certain distance and 
relative orientation from each other. Furthermore, each minutia has its own attributes 
of type (if it is used) and minutia direction, which are also compared. If comparison 
indicates only small differences between the neighborhood in the enrollee fingerprint 
and that in the claimant fingerprint, then these neighborhoods are said to match. This 
is done exhaustively for all combinations of neighborhoods and if enough similarities 
are found, then the fingerprints are said to match. Template matching can be 
visualized as graph matching, that is comparing the shapes of graphs joining 
fingerprint minutiae. This is illustrated in Figure 2.3(f). 

Note that the word, “similar” is used in the paragraph above instead of “same”. 
Neighborhoods will rarely match exactly because of two factors. One is the noisy 
nature of a fingerprint image. The other is that the skin is an elastic surface, so 
distances and minutia directions will vary. 

One result of the verification stage is a match score, usually a number between 0 
and 1 (or 10 or 100). Higher values in the range indicate higher confidence in a match. 
This match score is then subject to a user-chosen threshold value. If the score is 
greater than the threshold, the match result is said to be true (or 1) indicating a correct 
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verification, otherwise the match is rejected and the match result is false (or 0). This 
threshold can be chosen to be higher to achieve greater confidence in a match result, 
but the price to pay for this is a greater number of false rejections. Conversely, the 
threshold can be chosen lower to reduce the number of false rejections, but the price 
to pay in this case is a greater number of false acceptances. The trade-off between 
false acceptance and false rejection rates is further discussed in Section 7. 

The user has control of only one parameter, the threshold, for most commercial 
verification products. This customization procedure is called back-end adjustment, 
because a match score is calculated first and a threshold can be chosen after to 
determine the match result. There are systems that, in addition to offering back-end 
adjustment, offer front-end adjustment as well. This enables the user to adjust some of 
the parameter values before the match score is calculated, then to adjust the threshold 
after. Systems with front-end adjustment offer more versatility in obtaining the best 
results for different conditions, but are more complex for the user to adjust. This is 
why, for most systems, the vendor sets the optimum front-end parameter values and 
the user has control only of the matching threshold value via back-end adjustment. 

Identification and One-to-Few Matching 

Although the emphasis in this chapter is verification, we briefly mention identification 
and one-to-few matching methods. For identification, the objective is to determine a 
match between a test fingerprint and one of a database of fingerprints whose size may 
be as high as 10,000 to tens of millions. One cannot simply apply the verification 
techniques just described to all potential matches because of the prohibitive 
computation time required. Therefore, identification is usually accomplished as a two- 
step process. Fingerprints in the database are first categorized by pattern type, or 
binned. The same is done for the test fingerprint. Pattern comparison is done between 
test fingerprint and database fingerprints. This is a fast process that can be used to 
eliminate the bulk of non-matches. For those fingerprints that closely match in 
pattern, the more time-consuming process of minutia-based verification is performed. 

One-to-few matching is usually accomplished simply by performing multiple 
verifications of a single claimant fingerprint against the 5 to 20 potential matches. 
Thus the execution time is linear in the number of potential matches. This time 
requirement becomes prohibitive if “few” becomes too large, then an approach akin to 
identification must be used. 

Variations on the Common Approach: Other Methods 

Since one of the most vexing challenges of fingerprint processing is obtaining a clean 
image upon which to perform matching, there are various methods proposed to 
perform image enhancement. Most of these involve filtering that is adaptively 
matched to the local ridge orientations [23, 19, 25, 22, 24, 37, 26, 27, 14]. The 
orientation map is first determined by dividing the image into windows (smaller 
regions) and calculating the local ridge orientations within these. The orientation can 
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be determined in each window by spatial domain processing or by frequency domain 
processing after transformation by a 2-dimensional fast Fourier transform. 

After image enhancement and binarization of the fingerprint image, thinning is 
usually performed on the ridges. However, a different approach eliminates the 
binarization and thinning stages (both computationally expensive and noise 
producing) [20]. This approach involves tracing ridges not from the binary or thinned 
image, but from the original grayscale image. The result of grayscale ridge-following 
is the endpoint and bifurcation minutiae similar to the common approach. 

Instead of using only a single size window to determine the orientation map, 
multiple window sizes can be used via a multi-resolution approach [24, 15]. Local 
orientation values are determined first throughout the image at a chosen, initial 
resolution level - that is a chosen window size of pixels within which the orientation 
is calculated. A measure of consistency of the orientation in each window is 
calculated. If the consistency is less than a threshold, the window is divided into four 
smaller sub-windows and the same process is repeated until consistency is above 
threshold for each window or sub-window. This multi-resolution process is performed 
to avoid smoothing over small areas of local orientation, as will be the case especially 
at the fingerprint core. 

Because of the difficulty of aligning minutiae of two fingerprints, neighborhood 
matching was one of the earliest methods of facilitating a match [28, 1, 42]. Groups of 
neighboring minutiae are identified in one fingerprint, usually two to four minutiae to 
a neighborhood, and each of these is compared against prospective neighborhoods of 
another fingerprint. There are two levels to matching. One is matching the 
configurations of minutiae within a neighborhood against another neighborhood. The 
other is matching the global configurations formed by the separate neighborhoods 
between enroll and verify fingerprints. 

Because it is time-consuming to compare all neighborhood combinations between 
enroll and verify fingerprints, methods have been proposed to align the fingerprints to 
reduce the number of comparisons. A common method, and also a traditional method 
used for visual matching, is to locate a core and delta and align the fingerprints based 
on these landmarks [29]. The core and delta are usually found on the basis of their 
position with respect to the ridge flow, therefore the orientation map is determined 
and used for this [41]. An elegant method to locate singular points in a flow field is 
the Poincare index [ 17, 36, 16]. For each point in the orientation map, the orientation 
angles are summed for a closed curve in a counter-clockwise direction around that 
point. For non-singular points, the sum is equal to 0 degrees; for the core, the sum is 
equal to 180 degrees; for a delta, the sum is equal to -1 80 degrees. 

Other methods have been proposed to reduce the computational load of minutia 
matching. One approach is to sort the list of minutiae in some order conducive to 
efficient comparisons prior to matching. (This is especially appropriate for one-to- 
many matching, since sorting is done once per fingerprint, but matching many times.) 
A linearly sorted list of minutiae can be compiled by scanning the fingerprint from a 
selected center point outward by a predetermined scanning trajectory such as a spiral 
[39]. In this way, one-dimensional vectors of minutiae, including their characteristics, 
can be compared between enroll and verify fingerprints. Another method to linearize 
the minutia comparison is the “hyperladder” matcher [ 11]. This hyperladder is 
constructed sequentially by comparing minutia pairs in enroll and verify fingerprints 
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and adding more rungs as consecutive neighboring minutiae match. In another 
approach, an attributed graph can be constructed where branches constitute nearest- 
neighbor minutiae and these emanate like “stars” on the graph [l0]. These stars are 
compared between fingerprint pairs, the number of matching branches constituting the 
degree of confidence in the match. 

Because there is so little discriminating information at a single minutia (even the 
type is unreliable), a different approach is to describe minutiae by more features [47, 
40]. For instance, a minutia can be described by the length and curvature of the ridge 
it is on and of similar features on neighboring ridges. 

Variations on the Common Approach: Correlation Matching 

This discussion of matching has been minutia-focused to this point, to the exclusion 
of the global pattern matching approach mentioned in Section 4. Instead of using 
minutiae, some systems perform matches on the basis of the overall ridge pattern of 
the fingerprint. This is called global matching, correlation, or simply image 
multiplication or image subtraction. 

It is visibly apparent that a pair of fingerprints of different pattern types, for 
instance whorl and arch, does not match. Global matching schemes go beyond the 
simple (and few) pattern categories to differentiate one whorl from a different whorl, 
for instance. Simplistically, this can be thought of as a process of aligning two 
fingerprints and subtracting them to see if the ridges correspond. There are four 
potential problems (corresponding to three degrees of freedom and another factor). 

The fingerprints will likely have different locations in their respective images 
(translational freedom). We can establish a landmark such as a core or delta by 
which to register the pair, however if these are missing or not found reliably, 
subsequent matching steps will fail. 

The fingerprints may have different orientations (rotational freedom). If a proper 
landmark has been found in (l) ,  the fingerprint can be rotated around this, but this 
is error-prone, computationally expensive, or both. It is error-prone because the 
proper center of rotation depends on a single, reliably determined landmark. It is 
computationally expensive because performing correlation for many orientations 
involves repeatedly processing the full image. 

Because of skin elasticity (non-linear warping), even if matching fingerprints are 
registered in location and orientation, all sub-regions may not align. 

Finally, there is the inevitable problem of noise. Two images of matching 
fingerprints will have different image quality, ridges will be thicker or thinner, 
discontinuities in ridges will be different depending on finger dryness, the portion 
of the fingerprint captured in each image will be different, etc. 

The descriptions below are more sophisticated modifications and extensions to the 
basic correlation approach to deal with the problems listed. 

Strictly speaking, correlation between two images involves translating one image 
over another and performing multiplication of each corresponding pixel value at each 
translation increment [38]. When the images correspond at each pixel, the sum of 
these multiplications is higher than if they do not correspond. Therefore, a matching 
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pair will have a higher correlation result than a non-matching pair. A threshold is 
chosen to determine whether a match is accepted, and this can be varied to adjust the 
false acceptance rate versus false rejection rate tradeoff similarly to the case for 
minutia matching. 

Correlation matching can be performed in the spatial frequency domain instead of 
in the spatial domain as just described [12]. The first step is to perform a 2- 
dimensional fast Fourier transform (FFT) on both the enrollee and claimant images. 
This operation transforms the images to the spatial frequency domain. The two 
transformed images are multiplied pixel-by-pixel, and the sum of these 
multiplications is equivalent to the spatial domain correlation result. An advantage of 
performing frequency domain transformation is that the fingerprints become 
translation-independent; that is, they do not have to be aligned translationally because 
the origin of both transformed images is the zero-frequency location, (0,0). There is a 
trade-off to this advantage however, that is the cost of performing the 2-dimensional 
FFT. 

Frequency domain correlation matching can be performed optically instead of 
digitally [43, 44, 21]. This is done using lenses and a laser light source. Consider that 
a glass prism separates projected light into a color spectrum, that is it performs 
frequency transformation. In a similar manner, the enrollee and claimant images are 
projected via laser light through a lens to produce their Fourier transform. Their 
superposition leads to a correlation peak whose magnitude is high for a matching pair 
and lower otherwise. An advantage of optical signal processing is that operations 
occur at the speed of light, much more quickly than for a digital processor. However, 
the optical processor is not as versatile - as programmable - as a digital computer, 
and because of this few or no optical computers are used in commercial personal 
verification systems today. 

One modification of spatial correlation is to perform the operation not upon image 
pixels but on grids of pixels or on local features determined within these grids [8, 6]. 
The enrollee and claimant fingerprint images arc first aligned, then (conceptually) 
segmented by a grid. Ridge attributes are determined in each grid square: average 
pixel intensity, ridge orientation, periodicity, or number of ridges per grid. 
Corresponding grid squares are compared for similar attributes. If enough of these are 
similar, then this yields a high match score and the fingerprints are said to match. 

The relative advantages and disadvantages between minutia matching and 
correlation matching differ between systems and algorithmic approaches. In general, 
minutia matching is considered by most to have a higher recognition accuracy. 
Correlation can be performed on some systems more quickly than minutia matching, 
especially on systems with vector-processing or FFT hardware. Correlation matching 
is less tolerant to elastic, rotational, and translational variances of the fingerprint and 
of extra noise in the image. 

6. Systems Issues 

The effectiveness of a complete fingerprint verification system depends on more than 
the verification algorithms just described. There are other, higher level considerations, 
which we will call systems issues. These include enrollment and verification 
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procedures, speed and ergonomics, user-feedback, anti-spoofing, and security 
considerations. 

It is essential to the goal of high recognition rate that the enrollment procedure 
results in the capture of the highest quality fingerprint image(s) obtainable because 
enrollment occurs once while verification occurs many times. Therefore, a well- 
designed verification system will require the user to go through more time and effort 
for enrollment than for verification. A fingerprint may be captured multiple times and 
the best taken or some combination of each taken as the enrolled fingerprint. 

There are options in the design of the verification procedure as well. The 
fingerprint can be captured once or a few times until a positive match is made. A 
procedure such as this will decrease false rejections, but increase false acceptances. 
Verification can be performed on not just one, but two or more fingers. This will 
enhance the recognition rate, however it will also cause the user to expend more time. 

System ergonomics are important. For instance, there are limits to the amount of 
time that a person is willing to wait in personal authentication applications. That 
amount of time varies with the particular application and depends on what the person 
is also doing during processing, for instance swiping a bankcard or entering an 
identification number. Between 0.5 and 1 second are usually regarded as an 
acceptable range for processing time. Other user ergonomics considerations include: 
the number of repeated attempts in case of false rejections, the procedures for 
enrollment and verification, the design of the capture device, and the recognition 
setting that determines the trade-off between false acceptance and false rejection. 

Quality feedback is useful when an image is captured to indicate to the user how to 
place the finger for the best possible image quality. The type of feedback includes: 
‘‘finger is placed too high”, “finger is not pressed hard enough”, etc. 

Anti-spoofing deterrents must be built into a fingerprint system to prevent use of 
an artificial fingerprint, a dead finger, or latent fingerprint. A latent fingerprint 
sometimes remains on a sensor surface due to skin oil residue from the previously 
applied fingerprint. Countermeasures are built into some sensors, such as the ability to 
distinguish true skin temperature, resistance, or capacitance. 

Since the fingerprint system is only as secure as its weakest link, a complete, 
secure system must be designed. For instance, minutia templates must be secured by 
some means such as encryption to prevent impostors from inserting their templates 
into the database in place of properly enrolled users. The end result of fingerprint 
verification is a “yes” or “no” that is used to gain access. If it is simple just to 
circumvent the fingerprint system to send a ‘‘yes”, then the system provides little 
security. A solution to this problem is to ensure that the host receiving the recognition 
decision knows that this is from the trusted client, such as by digitally signing the 
information passed to the host. (For further information on encryption, see reference 
[33]. 



56  O 'Go rm a n 

7. Recognition Rate 

Terminology and Measurement 

The ultimate measure of utility of a fingerprint system for a particular application is 
recognition rate. This can be described by two values. The false acceptance rate 
(FAR) is the ratio of the number of instances of pairs of different fingerprints found to 
(erroneously) match to the total number of match attempts. The false rejection rate 
(FRR) is the ratio of the number of instances of pairs of the same fingerprint are found 
not to match to the total number of match attempts. FAR and FRR trade off against 
one another. That is, a system can usually be adjusted to vary these two results for the 
particular application, however decreasing one increases the other and vice versa. 
FAR is also called, false match rate  or Type 11 error, and FRR is also called false 
non-match rate  or Type I error. These are expressed as values in [0, 1] interval or as 
percentage values. 

The ROC-curve plots FAR versus FRR for a system. (ROC stands for Receiver 
Operating Curve for historical reasons. Yes, “ROC-curve” is redundant, but this is the 
common usage.) ROC-curves are shown in Figure 2.4. The FAR is usually plotted on 
the horizontal axis as the independent variable. The FRR is plotted on the vertical axis 
as the dependent variable. Because of the range of FAR values, this axis is often on a 
logarithmic scale. Figure 2.4 contains two solid curves and three dotted curves. The 
solid curves do not represent any particular data; they are included for illustrative 
purposes to show better and worse curve placements. The typical ROC-curve has a 
shape whose “elbow” points toward (0,0) and whose asymptotes are the positive x- 
and y-axes. The sharper the elbow and (equivalently) the closer is the ROC-curve to 
the x-  and y-axes, the lower is the recognition error and the more desirable is the 
result. 
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I I I I I 
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Figure 2.4 ROC-curves. The 2 solid curves are of hypothetical data illustrating 
desirable and less desirable recognition performance. The 3 dotted curves are of real 
data measuring the performance of 3 commercial AFlS [46]. 
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The procedure for using the ROC-curve is as follows. Choose an acceptable level 
of FAR. On Figure 2.4, a dashed line is shown at 0.01% FAR. The FRR 
corresponding to this choice is the attainable FRR, in this example about 4%. 
Alternatively, the FRR can be specified and the FAR found on the curve. 

There is no single set of FAR and FRR specifications useful for all different 
applications. If the fingerprint system is specified for very high security situations 
such as for military installations, then the FAR will be chosen to be very low (e.g., 
<0.001%). However, this results in higher FRR, sometimes in the range from 5% to 
20%. Typical customer applications such as for automatic teller machines cannot 
afford to alienate users with such a high FRR. Therefore, the choice in these 
applications is low FRR (e.g., <0.5%), at the sacrifice of higher FAR. (An FRR 
specification that is sometimes quoted for automatic teller machines is less than 1 per 
100,000 false rejection.) 

Third-Party Benchmarking 

In Figure 2.4, we include three ROC-curves of AFIS data from third-party 
benchmarking [46]. The database was compiled from employees of the Philippine 
Social Security System, mostly white-collar workers. The database consists of 600 
people, 8 fingers per person, and two sets per person, where enrollment and 
verification sets were captured with an intervening interval of 2 to 8 weeks. From this 
database, 3278 matching fingerprint pairs and 4129 non-matching pairs were tested. 
These images were captured with an Identicator DF-90 optical scanner at 500dpi, 
512x512 pixels, 1x1” image size. 

We include these AFIS data from a respected third-party tester for the reader to 
compare against other data whose validity may be suspect. There is much misleading 
information in the commercial biometric industry regarding recognition rates. In 
general, these AFIS can be expected to yield better recognition results than most 
verification systems (though AFIS generally have higher cost, they are slower for 1- 
to-1 matching, and require more memory). Note that this AFIS test is only for single 
image comparisons. A verification system can take advantage of the real-time nature 
of its application to perform multiple verification attempts so as to improve the 
recognition rate. 

Specifying and Evaluating Recognition Rate Statistics 

For statistical results to be properly evaluated, they must be accompanied by the 
following information: sample size, description of population, and testing description. 
The sample size should contain the following information: the number of subjects 
(people), the number of fingers, the number of images per finger, and the total number 
of fingerprint images. In addition, the image number should be broken out into 
number of match and non-match images. For example, a test might consist of 100 
subjects, 2 fingers per subject and 4 images per finger. The total number of images is 
l00x2x4=800. If each finger (200) is compared against each of the other images from 
the same finger (4 choose 2 = 6 pairs per unique finger), there are 200x6=1200 
matching pairs. If one image from each finger (200) is compared against all images 
from different subjects (99x4x2=792), there are 200x792=158,400 non-match pairs. 
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The description ofpopulation states the type of subjects included in the sample. Of 
particular importance in judging fingerprint statistics is the type of work engaged in 
by the subjects. A study involving masons will have different statistical results than 
that involving white-collar workers whose hands are subject to less abuse. The age 
statistics should be described, at least stating a relative breakdown on the number of 
children, adults, and elderly people included in the sample. The proportion of males 
and females should also be stated. 

Finally, the test design should be described. Of particular interest is who performed 
the tests. The strong preference is that a reputable third-party conducts and reports the 
test. Was the capture procedure supervised or not? Were the subjects given training or 
visual feedback to place the finger correctly on the fingerprint capture device? Was 
the sample manually filtered in any way to remove “goats” (people whose fingerprints 
are very difficult to capture and match with reliable quality)? Was the procedure 
adjusted using a practice sample of fingerprints, then tested separately on different 
images to yield the published results? What was the range of rotational and 
translational variance allowed, or were the fingerprints manually centered in the 
image? What were the make and specifications of the capture device? Where and 
when were the tests conducted (e.g., Florida humid summer or Minnesota dry winter)? 
What components of the system were involved in the test: just matching algorithms, 
just sensor, full system? Most test results do not list all these conditions, but the most 
possible information enables more valid evaluation. 

It is important to emphasize that results cannot be compared if determined under 
different test conditions. It is a misrepresentation of test data to state that a matcher 
achieved certain results for test design A, so it can be compared against the results 
from test design B. Valid comparisons between results can be done only for the same 
database under the same conditions. 

8. Image Capture Devices 

We organize image capture devices into three categories: optical, solid-state, and 
other. There is yet another category, fingerprint acquisition via inking, which is the 
traditional mode of criminal fingerprint capture. It is evident that this is inappropriate 
for fingerprint verification due to the inconvenience involved with ink,  the need for 
subsequent digitization, and perhaps the stigma of this type of capture. The type of 
image acquisition for fingerprint verification is also called “live-scan fingerprint 
capture”. 

Optical fingerprint capture devices have the longest history and use of these 
categories, dating back to the 1970s. These operate on the principal of frustrated total 
internal reflection (FTIR). A laser light illuminates a fingerprint placed on a glass 
surface (platen). The reflectance of this light is captured by a CCD array (solid-state 
camera). The amount of reflected light is dependent upon the depth of ridges and 
valleys on the glass and the finger oils between the skin and glass. The light that 
passes through the glass into valleys is not reflected to the CCD array, whereas light 
that is incident upon ridges on the surface of the glass (more precisely, the finger oils 
on the ridges that constitute the ridge-to-glass seal) is reflected. 
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Innovations in optical devices have been made recently, primarily in an effort to 
reduce the size of these devices. Whereas an optical sensor was housed in a box about 
6x3x6 inches as recently as the mid-l990s, smaller devices have recently appeared 
that are in the order of 3x1x1 inches. Different optical technologies than FTIR have 
also been developed. For instance, fiber optics has been proposed to capture the 
fingerprint [7 ] .  A bundle of optical fibers is aimed perpendicularly to the fingerprint 
surface. These illuminate the fingerprint and detect reflection from it to construct the 
image. Another proposal is a surface containing an array of microprisms mounted 
upon an elastic surface [4]. When a fingerprint is applied to the surface, the different 
ridge and valley pressures alter the planar surfaces of the microprisms. This image is 
captured optically via the reflected light (or absence of it) from the microprisms. 

Solid-state sensors have appeared on the marketplace recently, though they have 
been proposed in the patent literature for almost two decades. These are microchips 
containing a surface that images the fingerprint via one of several technologies. 
Capacitive sensors have been designed to capture the fingerprint via electrical 
measurements [45, 18, 48, 13]. Capacitive devices incorporate a sensing surface 
composed of an array of about 100,000 conductive plates over which is a dielectric 
surface. When the user places a finger on this surface, the skin constitutes the other 
side of an array of capacitors. The measure of voltage at a capacitor drops off with the 
distance between plates, in this case the distance to a ridge (closer) or a valley 
(further). Pressure-sensitive surfaces have been proposed where the top layer is of an 
elastic, piezoelectric material to conform to the topographic relief of the fingerprint 
and convert this to an electronic signal [30, 3 1, 9, 34]. Temperature sensitive sensors 
have been designed to respond to the temperature differential between the ridges 
touching the surface of the device and the valleys more distant from them [9]. 

Ultrasonic scanning falls into the final category of fingerprint capture technologies 
[32]. An ultrasonic beam is scanned across the fingerprint surface much like laser 
light for optical scanners. In this case, it is the echo signal that is captured at the 
receiver, which measures range, thus ridge depth. Ultrasonic imaging is less affected 
by dirt and skin oil accumulation than is the case for optical scanning, thus the image 
can be a truer representation of the actual ridge topography. 

Two of the three most important factors that will decide when fingerprint 
verification will be commercially successful in the large-volume personal verification 
market are low cost and compact size. (The other factor is recognition rate, discussed 
in Section 7.) Capture device prices have fallen over an order of magnitude between 
the early to late 1990s (from approximately $1500 (US) to $l00), and manufacturers 
promise close to another order of magnitude decrease in the next few years. As far as 
size, we have mentioned the reduction of optical sensor size from 6x3x6 inches to 
3x1x1. Solid-state sensor systems are this size or smaller, and as further integration 
places more circuitry on the chip (such as digitizer circuitry to convert the fingerprint 
measurements to digital intensities), these systems are becoming even smaller. Solid- 
state sensors are approaching the lower limit of size needed to capture the surface area 
of the finger, about 1x1 inch with a fraction of an inch depth. 

A functionality that has not been available before solid-state sensors is locally 
adjustable, software-controlled, automatic gain control (AGC). For most optical 
devices, gain can be adjusted only manually to change the image quality. Some solid- 
state sensors, however, offer the capability to automatically adjust the sensitivity of a 



60 O'Gorman 

pixel or row or local area to provide added control of image quality. AGC can be 
combined with feedback to produce high quality images over different conditions. For 
instance, a low-contrast image (e.g., dry finger) can be sensed and the sensitivity 
increased to produce an image of higher contrast on a second capture. With the 
capability to perform local adjustment, a low-contrast region in the fingerprint image 
can be detected (e.g., where the finger is pressed with little pressure) and sensitivity 
increased for those pixel sensors on a second capture. 

Optical scanners also have advantages. One advantage of larger models is in image 
capture size. It is costly to manufacture a large, solid-state sensor, so most current 
solid-state products have sub- 1 inch square image area, whereas optical scanners can 
be 1 inch or above. However, this advantage is not true for some of the smaller optical 
scanners. The small optical scanners also have smaller image capture areas because a 
larger area would require a longer focal length, thus larger package size. Optical 
scanners are subject to linear distortion at the image edges when larger image capture 
area is combined with smaller package size. 

9. Multi-Modal Biometrics 

Multi-modal biometrics refers to the combination of two or more biometric modalities 
into a single system. The most compelling reason to combine different modalities is to 
improve recognition rate. This can be done when features of different biometrics are 
statistically independent. For the different modalities listed in Table 2.1, it is likely 
that each is largely independent from the other (though we know of no research study 
to date that confirms this). 

There are other reasons to combine biometrics. One is that different modalities are 
more appropriate in different situations. For a home banking application for instance, 
a customer might enroll both with fingerprint and voice. Then, the fingerprint can be 
used from a home or laptop sensor; while voice and a PIN (personal identification 
number) can be used over the phone. Another reason is simply customer preference. 
For instance, an automatic teller machine could offer eye and fingerprint and face 
biometrics, or a combination of two of these for the customer to choose. 

Although fingerprints can be combined with other modalities, there are reasons to 
suggest that this would not be the first biometric to require complementing. One 
reason is that, along with eye systems, fingerprint systems already have very high 
recognition rates. This contrasts with less reliable modalities where combining one 
with another or with a PIN is more advantageous. Another reason is that a single 
person has up to ten statistically independent samples in ten fingers, compared to two 
for eye and hand, and one for face, voice, and signature. 

Table 2.1 shows selected features of each modality and can be used to determine 
complementary modalities for multi-modal systems. A few notes on this table: 

0 Biometric technologies are changing rapidly; for the most up-to-date information, 
check company literature and industry reports such as at reference [3] and review 
issues such as [35,  5]. 
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Biometric 

fingerprint 

eye 

hand 

face 

voice 

signature 

The row for the eye biometric describes features applying to either iris or retinal 
scanning technologies. 

In the matching column, whereas all technologies are appropriate for 1-to-1 
matching, only fingerprint and eye technologies are proven to have acceptable 
recognition rates to be practical for 1-to-many matching. This is an indication that 
these two modalities provide the highest recognition rates for verification as well. 

Variation of the salient features used for recognition is very different for different 
modalities. Fingerprint and eye features remain consistent for a lifetime, whereas 
the others change with growth. On a day-to-day basis, there is far less variation 
for all modalities, though voice can change with illness and signature with 
demeanor. 

As far as sensor cost, eye systems are currently more costly than the others; voice 
systems can be zero cost to the user if a telephone is used. 

Fingerprint and voice systems have the smallest comparative sizes with eye 
systems currently the largest. 

Matching Variation: Maximum Sensor Sensor 
1-to-I, Lifetime, Independent Cost Size 

1-to-many Day-to-Day Samples per [$US] 
Person 

yes, yes none, 10 10-10’ very 
little small 

yes, yes none, 2 10’- 1O3 medium 

yes, no much, 2 1 o2 medium 

yes, no much, 1 1 o2 small 

very little 

very little 

medium 

yes, no much, 1 0- 1 o2 very 
medium small 

yes, no much, 1 1 o2 medium 
medium 

Table 2.1 Features of different biometric modalities. 

10. Future 

Where is biometric technology going? System price will continue to decrease along 
with size, while recognition rates will improve (at a slower rate than price and size 
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changes). Recognition rate will be a deciding factor in acceptance for demanding 
applications such as automatic teller machines (requiring a very low rate of false 
rejections), and military (requiring a very low rate of false acceptances). For 
especially demanding applications, multi-modal systems will evolve to combine 
biometrics to provide an optimum level of security and convenience to users. 
Alternatively, multiple verifications, such as by using multiple fingers, will be used to 
enhance recognition reliability. If costs plummet as the industry projects, personal use 
of biometric systems will grow to replace the current reliance on passwords, PINS, 
and door keys that are used for computers, home security systems, restricted entry, 
ATMs, credit cards, Internet access, corporate networks, confidential databases, etc. 
The biometrics promise is to make access much simpler while at the same time 
providing a higher level of security. 
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Abstract Identifying an individual from his or her face is one 
o f the  most nonintrusive modalities in biometrics. However, it is 
also one of‘the most challenging ones. This chapter discusses why 
it is challenging and the ,factors that a practitioner can take 
advantage of in developing a practical face recognition system. 
Some of’ the well known approaches are discussed along with 
some algorithmic considerations. A ,face recognition algorithm is 
presented as an example with some experimental data. Some 
possible future research directions are outlined at the end o f the  
chapter. 
Keywords: Face recognition, face detection. appearance-based 
methods, principal component analysis. linear discriminant 
analysis, recursive partition trees, incremental learning. 

1. Introduction 

Face recognition from images is a sub-area of the general object recognition problem. 
It is of particular interest in a wide variety of applications. Applications in law 
enforcement for mugshot identification, verification for personal identification such as 
driver’s licenses and credit cards, gateways to limited access areas, surveillance of 
crowd behavior are all potential applications of a successful face recognition system. 

The environment surrounding a face recognition application can cover a wide 
spectrum - from a well controlled environment to an uncontrolled one. In a 
controlled environment, frontal and profile photographs of human faces are taken, 
complete with a uniform background and identical poses among the participants. 
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These face images are commonly called mug shots. Each mug shot can be manually 
or automatically cropped to extract a normalized subpart called a canonical face 
image, as shown in Fig. 3.1. In a canonical face image, the size and position of the 
face are normalized approximately to the predefined values and the background 
region is minimized. Face recognition techniques for canonical images have been 
successhlly developed by many face recognition systems. 

Figure 3.1 A few examples of canonical frontal face images. 

General face recognition, a task which is done by humans in daily activities, comes 
from a virtually uncontrolled environment. Systems to automatically recognize faces 
from uncontrolled environment must first detect faces in sensed images. A scene may 
or may not contain a set of faces; if it does, their locations and sizes in the image must 
be estimated before recognition can take place by a system that can recognize only 
canonical faces. A face detection task is to report the location, and typically also the 
size, of all the faces from a given image. Fig. 3.2 gives an example of an image which 
contains a number of faces. From this figure, we can see that recognition of human 
faces from an uncontrolled environment is a very complex problem: more than one 
face may appear in an image; lighting condition may vary tremendously; facial 
expressions also vary from time to time; faces may appear at different scales, 
positions and orientations; facial hair, make-up and turbans all obscure facial features 
which may be useful in localizing and recognizing faces; and a face can be partially 
occluded. Further, depending on the application, handling facial features over time 
(e.g., aging) may also be required. 

Given a face image to be recognized, the number of individuals to be matched 
against is an important issue. This brings up the notion of face recognition versus 
verification: given a face image, a recognition system must provide the correct label 
(e.g., name label) associated with that face from all the individuals in its database. A 
face verification system just decides if an input face image is associated with a given 
face image. 

Since face recognition in a general setting is very difficult, an application system 
typically restricts one of many aspects, including the environment in which the 
recognition system will take place (fixed location, fixed lighting, uniform background, 
single face, etc.), the allowable face change (neutral expression, negligible aging, 
etc.), the number of individuals to be matched against, and the viewing condition 
(front view, no occlusion, etc.). 
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Figure 3.2 An image that contains a number of faces. The task of face detection is to 
determine the position and size (height and width) of a frame in which a face is 
canonical. Such a frame for a particular face is marked in the image. 

2. The Human Capacity for Face Recognition 

Though we currently are unable to endow machines with the capability of the human 
visual system, it is a good reference point from which to start. Much research has 
been done on face recognition, both by machine vision and biological system 
researchers. Research issues of interest to neuroscientists and psychophysicists 
include the human capacity for face recognition [29], the modeling of this capability 
[35, 42], and the apparent modularity of face recognition [36]; the human facility for 
learning to recognize faces [7, 21, 11, 32]; the role of distinctive or unusual features in 
faces for recognition [49]; the degradation of face recognition capability as humans 
age [2, 30, 50]; and conditions which result in the human inability to recognize faces, 
such as prosopagnosia [46]. 

There is evidence to suggest that the human capacity for face recognition is a 
dedicated process, not merely an application of the general object recognition process 
[10]. This may have encouraged the views that artificial face recognition systems 
should also be face-specific. The issue that which features humans use for face 
recognition has been subject to much debate and the result of the related studies has 
been used in the algorithm design of some face recognition systems. Apparently, in 
human, both global and local features are used in a hierarchical manner, the local 
features providing a finer classification system for facial recognition [22]. The most 
difficult faces for humans to recognize are those faces which are considered neither 
“attractive” nor ‘’unattractive” by the observer. This gives support to the theories 
suggesting that distinctive faces are more easily recognized than typical ones [1]. 
Information contained in low spatial frequency bands is used in order to make the 
determination of the sex of the individual, while the higher frequency components are 
used in recognition [40]. Young children typically recognize unfamiliar faces using 
unrelated cues, such as glasses, clothes, hats, and hair style. By age twelve, these 
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paraphernalia are usually reliably ignored [ 8]. Psychosocial conditions also affect the 
ability to recognize faces. Humans may encode an “average” face; these averages 
may be different for different races, and recognition may suffer from prejudice or 
unfamiliarity with the class of faces from another race [20] or gender [19]. 
‘‘Thatcher’s illusion” [47] demonstrates that facial expression is very difficult to 
recognize if the face is presented at a rarely seen orientation (upside down). 

Some recent studies on neural network models in psychology and neuroscience 
have put innateness into a new perspective [12]. The neural processing modules 
responsible for face recognition result from extensive interactions between nature 
(genes) and nurture (learning through experience). Such interactions span the entire 
life of a human individual. That is why children and adults recognize faces 
differently, as mentioned above. In terms of the learning mechanism, the face 
recognition and general object recognition may have a lot in common, although the 
resulting recognition processes can be very different in terms of what features each 
uses. This view is related to the appearance based approach discussed in the 
following section. 

The emulation of the human capacity for face recognition is the goal espoused by 
many computer vision researchers in face recognition. However, systems which are 
designed for specific environments are very useful for the intended application, even 
though they do not have the general face recognition capacity of a human being. 

3. Approaches 

A wide variety of approaches to machine recognition of faces has been published in 
the literature. Categorization of the approaches may depend on different criteria. In 
terms of the sensing modality, a system can take 2-D intensity images, color images, 
infra-red images, 3-D range images, or a combination of them. In terms of viewing 
angle, a system may be designed for frontal views, profile views, general views, or a 
combination of them. In terms of temporal component, a system can be designed for 
a static image or for time-varying image sequences (which may facilitate face 
segmentation, face tracking, expression identification, and other use of temporal 
context). In terms of computational tools used, a system can use programmed 
knowledge rules, statistical decision rules, neural networks, genetic algorithms, etc. 
The reader is referred to two excellent surveys for face recognition research. One is 
the survey written by Samal and Iyengar for research prior to 1991 [39]. The other 
was authored by Chellappa, Wilson and Sirohey [9] which surveyed research on face 
recognition up to 1994. A good source for more recent research on face recognition 
is the series of Proceedings of International Conferences on Automatic Face and 
Gesture Recognition [14, 15, 16]. 

The last 10 years have seen very active research on face recognition. 
Accompanying the increase in research activities is a wave of commercialization for 
face recognition technology. In a survey by Biornetric Technology Today [5], a total 
of 25 commercially available facial systems from 13 companies were listed. The 
FERET program, a face recognition program administered by US Army Research 
Laboratory, provided, for the first time, a large face database and conducted a series 
of blind tests for many face recognition algorithms [34]. 



Face Recognition 69 

Many factors have contributed to the recent increase in these face recognition 
activities and the successes. One of the major reasons is attributed to a basic, but 
fundamental change in methodology. That is, manually defining features versus 
automatically deriving features using statistical methods. 

Manually Defining Features 

Traditionally, face recognition methods have relied on humans to define geometry- 
dependent features to be used for recognition. These feature values depend on the 
detection of geometric facial features, including items such as the distance and angles 
between geometric points such as eye comers, mouth extremities, nostrils and chin 
top. The features defined for face profiles (side views) typically include a set of 
characteristic points on the profile (such as the notch between the brow and the nose 
or the tip of the nose) and the angles between these points. For example, Kaya and 
Kobayashi [25] used Euclidean distances between manually identified points in the 
images to characterize the faces. Kanade [24] used the distances and angles between 
eye comers, ends of the mouth, nostrils, and top of the chin, but the location of those 
facial features were extracted automatically by a program. More resent work used a 
combination of distance and angle measurements with local intensity patches. For 
example, Campbell, et al. [6] utilized hair and cheek intensity values coupled with 
subimage patches for eye regions to recognize faces. 

Automatically Deriving Features 

Manually defined features are intuitively understandable. However, methods based 
on this approach have run into basic problems. First, automatic detection of these 
features is not reliable due to various variations. Second, the number of features 
measurable is small. Third, the reliability of each feature measurement is difficult to 
estimate accurately. Thus, the subsequent classification method, even if itself is 
optimal, does not result in a reliable overall system. An important advance is brought 
about by neural networks which implicitly but automatically derive features. 

Nonstatistical methods. Using a neural network, humans do not need to define facial 
features for face recognition. Kohonen [27] demonstrated the use of a self-organizing 
map for face recollection applications. Even when the input images were very noisy 
or had portions missing, an accurate recall capability was achieved on a small set of 
face images. Multilayer perceptron neural networks and radial basis function 
networks have also been used for face recognition. A back-propagation training 
algorithm for multi-layer perceptron may be sufficient for a low dimensionality 
feature vector with a small number of classes. For example, for face detection (a two- 
class problem) [37] used low resolution images and have successfully tested a multi- 
layer feedforward network with back-propagation training with momentum. More 
sophisticated and more powerful training methods (such as the statistical methods) 
have been used when the input dimension is high and the number of classes is large. 

A different example of automatic feature derivation for face recognition is the 
Cresceptron [53] which was tested for general object segmentation and recognition, 
including faces. The method uses multilevel retinotopic layers of neurons to 
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automatically determine the configuration of its network in the training phase. Unlike 
most neural networks, the Cresceptron does not use back propagation for learning. 
Instead, it analyzes the structure of an object in a bottom-up manner. Although this 
method allows incremental learning for general objects, the network grows quickly 
and suffers from speed and performance problems when the number of faces is large. 
The network structure can be predesigned and fixed if only faces need to be 
recognized, which allows effective size control. Lawrence et al. [28] used a 5-layer 
self-organization feature map for face recognition. 

Although the neural network based methods can alleviate the problems with 
manually defined features, an efficient and scalable framework is required in order not 
only to use the information in the image as much as possible, but also use it 
efficiently. 

Statistical methods. This type of approach originated from an image representation 
task. Kirby and Sirovich [26] treated a face image as a high dimensional vector, each 
pixel being mapped to a component in that vector. They used the Karhunen-Loève 
projection to the corresponding vector space for face image characterization. 
Although they did not use it originally for face recognition [26], their idea of 
representing the intensity image of a face by a linear combination of the principle 
component vectors can be used for recognition as well. Turk and Pentland used this 
technique for face recognition problem [48]. This statistical approach was extended 
later for 3-D object recognition [33]. Using this image vector representation, the 
linear discriminant analysis (LDA) has been independently used for face recognition 
by several research groups, including [ 13, 3, 5 1, 45, 44], among many other groups. 
It has been proposed that this type of approaches be called appearance-based 
approach, in order to distinguish other view-based approaches (e.g., aspect graph 
based). For distinguishing it from neural-network based approaches that use 
intensities directly, we call them appearance-based statistical approaches. 
Appearance-based statistical methods derive features directly from intensity images, 
using statistical techniques. They do not require humans to write explicit procedures 
to detect facial features, such as eyes, nose, and mouth. 

It should be noted that neural network and statistical methods are not incompatible. 
In fact, a significant amount of recent research on neural networks uses statistical 
methods in combination with a network computational structure. For example, [43] 
used a combination of statistical measures and a multi-layer perceptron network for 
face detection. A major limitation of the appearance-based statistical methods is that 
they are not invariant to the position and size of the face. They require the input face 
images to be canonical. To deal with variation in the position and size of the faces in 
an input image, a pixel-based scan window has been used. The size of the window 
changes within an expected range. For each size, the scan window scans the input 
image by centering it at each pixel (or along a subsampled pixel grid for efficiency). 
Each position with each size of the scan window determines a subimage. Such a 
subimage is scaled to the standard input size for face recognition. Many appearance- 
based statistical methods use such a scan method to deal with position and size 
variation of face in a static input image. If an image sequence is available, motion 
information can be used to roughly locate a moving face [48]. 
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Major Algorithmic Considerations 

The appearance-based statistical methods are well understood and easy to implement. 
Various versions of this class of method have been implemented by many research 
groups and have been tested extensively in the blind FERET tests [34] with a large 
number of images. A large number of commercial systems are based on this class of 
algorithms. Therefore, in the remainder of this chapter, we concentrate on this class 
of methods and discuss some major algorithmic considerations when using this class 
of methods. 

Face space. First, we describe a now well-used vector representation for an image: A 
digital image with r rows and c pixel columns can be denoted by a vector X in a d- 
dimensional space S, where d = rc. Suppose the pixel intensity at the i-th row and j-th 
column of the image is denoted by fij, 0 5 i  < r and 0 I j < c. The vector X 
representing the image can be defined as a d-dimensional vector X = (g0, g1, .., gd-1),
where gic+j = f i j ,  0 5 i  < r and 0 I j < c. It is worth noting that this vector 
representation is just a notation change. It does not lose any 2-D neighborhood 
information among pixels. In the following, a face image is a canonical image unless 
stated otherwise. 

Statistically, face images can be considered as random samples in the 
corresponding space S. From the sample covariation matrix r computed from all the 
training face images G = {X1, X2 ,  ..., X s}  , the principal component analysis (PCA) 
[ 18] computes the basis vectors of a linear subspace S' (S' E S) that contains the 

centered face images Gs = {X1 - X ,  X2  - X ,  ..., Xs - X }  , where X is the 
sample mean vector of the face images in G. These basis vectors are the eigenvectors 
of r and are mutually orthogonal. We rank them according to the decreasing 
eigenvalues. The top k eigenvectors span a subspace S" that minimizes mean squared 
errors between the original samples and their projections onto the subspace S" [ 18, 
23]. In this sense, they are suited for image reconstruction [26]. We call them the 
Most Expressive Features in contrast to the Most Discriminating Features described 
below1. Fig. 3.3 shows the mean face and the top 8 MEFs computed from images in 
the Weizmann face database. 

Given any face image X , the Karhunen-Loéve projection projects X - X onto the 
subspace S" (S" C_ S') spanned by the top k MEFs. If k is large enough to include all 
the nonzero eigenvalues, S" is the same as S'. However, for practical applications, the 
number k can be much smaller than the number of training images [48] due to the fact 
that the regions representing face images can be roughly contained in a relatively 
lower dimensional space S". The number k is determined so that the sample variation 
represented by the sum of the eigenvalues of MEFs not retained, is small enough 
compared to the total sample variation represented by the sum of all the eigenvalues. 

In the training 
phase, every training face image is projected onto space S" and its projection is 
represented by a k-dimensional vector. Every projection of training samples is 

- - - - 

- 

A simple PCA-based face recognition algorithm is as follows. 

It is also called eigenfaces by [48] in the context of face recognition. I 
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associated with the name of the corresponding person. In the performance phase, an 
unknown face image X is given. It is then projected onto space S". The nearest 
neighbor, in the Euclidean distance sense, among all the training samples in S" is 
considered the best match of X. The class label of the nearest neighbor is assigned to 
the input image X, if it is known or assumed that X belongs to a person in the 
database. For face detection, the distance between an input image X and that of the 
nearest neighbor can be used to decide if X is a face or not [3 1]. 

Mean MEF1 MEF2 MEF3 MEF4 MEF5 MEF6 MEF7 MEF8

Mean MDF1 MDF2 MDF3 MDF4 MDF5 MDF6 MDF7 MDF8 

Figure 3.3 MEFs and MDFs. The first row shows the mean image followed by MEFs. 
The second row shows the mean image followed by MDFs. 

The most discriminating feature space. As can be seen from Fig. 3, the first several 
MEFs characterize lighting variation, since lighting variation typically accounts for a 
major variation from the mean face. The MEFs capture the direction of major 
variations in the training images, such as those due to lighting direction; but these 
variations may well be irrelevant to how the classes are divided. 

If class labels of the training images are available (i.e., all the images of the same 
person have the same class label), Fisher's linear discriminant analysis (LDA)[ 17, 18] 
can be performed. LDA determines a subspace in which the between-class scatter is 
as large as possible while keeping the within-class scatter constant. In this sense, the 
subspace obtained using the LDA optimally discriminates classes represented in the 
training set, among all the linear projections [17 , 55]. The basis of this optimal 
subspace is the eigenvectors of W-1B associated with the largest eigenvalues, where 
W and B are the within-class scatter and the between-class scatter matrices, 
respectively. Ranking these eigenvectors according to the decreasing eigenvalues, we 
call them the Most Discriminating Features (MDF)2. 

The discriminant analysis procedure breaks down, however, when the number of 
classes is smaller than the dimensionality of the input image (i.e., W is not invertible). 
This problem can be resolved by performing LDA in the full MEF space, which is 
represented by a sufficient number, m, of MEFs [45]. Thus, MDFs are a set of basis 
vectors, each of which is a linear combination of MEF vectors. Therefore, LDA 
actually computes optimal matrix weights (linear combinations) for MEFs so that the 
resulting MDF subspace maximizes the ratio of the between-class scatter over the 

It is also called Fisherface by [3] in the context of face recognition 

M t F 3  M t F 3  M t F 3  



Face Recognition 73 

within-class scatter. Fig. 3.3 shows the first 8 MDFs. As can be seen in the figure, 
MDFs show patterns consisting of higher order frequency than MDFs. In some sense, 
MDFs tend to capture a combination of edge locations. 

It is common that some classes have more samples for training and others have few 
or even just one. Since each pixel has at least some digitization noise, we can add a 
base scatter matrix a2Z to the within-class scatter matrix of each class, including 
classes that have only one sample for training, where (T is the expected standard 
deviation of pixel-value noise. Examining the detail of the computational procedure 
described in [45], we realize that the (average) within-class scatter matrix of the 
training face images in MDF space is a unit matrix. This means that the average 
shape of all the class clusters is a unit ball in the MDF subspace. Although this does 
not mean that the Mahalanobis distance is degenerated into the Euclidean distance 
(unless all the covariance matrices of all the classes are the same), it does support the 
use of Euclidean distance in the nearest neighbor search if there are not enough 
samples in each class to estimate the class-specific distribution. For example, if a 
class has only one training sample available and its within-class scatter matrix is thus 
estimated by the base scatter matrix o*I. The Euclidean distance in the MDF subspace 
then corresponds to a matrix weighted distance in the original MEF subspace using 
the within-class scatter and between-class scatter information of other classes, many 
of which have more training samples. Such a cross-class distribution generalization 
property of LDA is not used if one estimates the distribution of every class using only 
the samples from the class. 

A special case of the above discussion is worth mentioning. MDFs weight input 
components automatically according to the discrimination power of each. For 
example, if a component corresponds to pure random noise, its contribution in the 
MDF subspace will be nearly zero. However, in the MEF subspace, the amount of 
contribution of such a noise component will be roughly proportional to the variance of 
the noise. The larger the variance, the more weight it has in the more significant 
MEFs. That explains why we have the well-known curse-of-dimensionality problem 
in MEF space (i.e., more features do not necessarily give a better recognition rate) but 
such a problem does not exist in the MDF space - it is true that larger the number of 
MDF features the better the recognition rate. In our experiments, we have observed 
that this is indeed the case, and we may use all the MDFs although the lower order 
MDFs contribute less to the performance improvement. 

PCA vs. LDA. From the above discussion, we expect that LDA can give a better 
recognition rate than PCA. In our own test using Weizmman face database (29 
individuals each with different lightings and different expressions), LDA producing 
MDF) produced significantly better face recognition result than PCA (producing 
MEF), as shown in Fig. 3.4. 

In the training phase, different images from the same person under different 
lightings and expressions do have the same label. As shown in the figure, when 
recognition based on the nearest neighbor rule in the MDF space has reached 100% 
correct recognition rate using 14 features, the corresponding result in MEF space 
reached a maximum recognition rate of about 89%. 

In practice, one can use MDFs when the class labels of the training images are 
available. Otherwise, MDF degenerates into MEF. 
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Figure 3.4 The performance of the system for different numbers of MEF/MDF features. 
The number of features from the subspace used was varied to show how the MDF 
subspace outperforms the MEF subspace. 95% of the variance for the MDF subspace 
was attained when fifteen features were used; 95% of the variance for the MEF 
subspace did not occur until 37 features were used. Using 95% of the MEF variance 
resulted in an 89% recognition rate, and that rate was not improved using more MEF 
features. 

Hierarchical spaces vs. a flat space. The advantage of using a hierarchical space is 
twofold: speed and generalization. The hierarchical space allows the search for top 
matches to be much faster. The time complexity for searching a roughly balanced 
classification tree is O(log(n)) instead of O(n). This is a very important property for a 
large face database. In contrast, other flat-space methods have a time complexity of 
O(n). The speedup due to the hierarchical space (represented by a tree) is O(n/log(n)). 
Only when n is large, the speed up is large. 

The hierarchical space makes features more effective in separating different classes 
and thus allows better generalization with a given set of training samples. When 
many samples from many classes are put together into a single set, it is not always 
possible to find a linear subspace (or a set of features) in which all different classes 
are separated well. This is because the boundary between classes are typically very 
nonlinear (i.e., curved hyper-surfaces). However, when the training samples are 
broken into smaller and smaller sets through a hierarchical space partition scheme, 
each smaller set typically contains fewer number of classes and fewer number of 
samples. Thus, at deep levels of the tree, it is much more likely to be able to produce 
a good set of linear features that separate the samples into different classes. The 
hierarchical space partition can use piecewise linear boundary (linear features MEFs 
and MDFs) to approximate curved, nonlinear decision boundaries needed to separate 
classes in the training set. 

Among the existing appearance-based facial recognition methods, the SHOSLIF to 
be explained later in this chapter is among the very few that uses a hierarchical space. 
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Incremental learning vs. batch learning. Learning methods fall into two categories, 
batch and incremental. A batch learning method requires that all the training face 
images are available at a fixed training time. It is difficult to determine a priori how 
many and what kinds of training images are needed in order to reach a required 
performance level. Thus, a batch learning method requires multiple cycles of 
collecting data, training, and testing. The limited space available to store training 
images and the need for more images for better performance are two conflicting 
factors. Therefore, if a batch learning method is used, the task of collecting a 
sufficiently good set of training samples is very tedious in practice. Further, each 
batch training session takes a significant amount of time to learn the entire batch of 
the training data. 

With an incremental learning method, training samples are available only one (or a 
small set) at a time. Each training sample is discarded as soon as it has been 
incorporated into the system. If the output result from the current system is not 
correct (or with a large error), the current sample is used to update the system [54]. 
Otherwise, the current training image is rejected. This selective learning mechanism 
effectively prevents redundant learning in order to keep the size of the face-image 
database relatively small. Using this incremental learning mode, updating the system 
is convenient. We do not need to load all the old images to re-learn when new images 
are added. All we need to do is to run an update algorithm using only the new 
images. 

Built-in deformation models. The appearance-based method directly uses intensity 
patterns of a face image. Given a face, some parts of the face may deform more than 
other parts. For example, the mouth region may deform more than the nose region. 
There arc two types of approaches in dealing with such deformations. (1) Let the 
system learn the deformation, (2) hand build a deformation model into the system. 

For the first approach, one can use the techniques discussed earlier. However, one 
must collect enough samples that sufficiently cover the observable deformations. For 
example, for deformations caused by expression changes, all the expressions that the 
system must deal with should be contained in the training samples. 

Following the second approach, one needs to design a deformation model. 
Moghaddam et al. [3 1] used a method that treats an image I(x, y) as a 3-D surface (x, 
y, I(x, y)), where I(x, y) is the height of the 3-D surface at position (x, y). A 3-D 
deformable surface model is applied to this 3-D surface, which includes the mass and 
the stiffness of the surface. Thus the deformation is allowed in both position (x, y) 
and intensity I(x, y). When matching a face image I1 with a reference image I2, the 
external force at each 3-D point on the surface I1 is the 3-D vector from the point to 
the closest point on surfaceI2. The 3-D deformation thus estimated is used to 
estimate the intrapersonal deformation and extrapersonal deformation. The maximum 
a posterior (MAP) rule is used to decide if the two images arise from the same person. 
[56]  used a type of elastic graph matching based on position deformation and the 
intensity pattern information computed using a set of Gabor filters. 

The second approach may impose some assumptions. For example, the statistics 
of a face deformation is based on all the faces instead of a particular face or a 
particular group of faces. This treatment is effective when the number of training 
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samples is limited and the deformation present between an unknown image and the 
trained images is large. 

In the following, we present a specific face recognition algorithm as an example. 

4. The SHOSLIF 

The Self-organizing Hierarchical Optimal Subspace Learning and Inference 
Framework (SHOSLIF) [52] is a framework that aims to provide a unified 
methodology for visual learning. The SHOSLIF uses PCA and LDA to generate a 
hierarchical tessellation of a space defined by the training images. The incremental 
version of the SHOSLIF learns incrementally [54]. Each query to the SHOSLIF takes 
O(1og n) time. 

System overview 

The method generates a Space-Tesselation Tree (STT) during the training phase. An 
example of such a tree is shown in Figure 3.5. 

Figure 3.5 (a) A sample partition of the face image space generated from the training 
samples. (b) The tree structure associated with the partition shown in (a). Each cell in 
(a), which corresponds to a node in (b) does not need to cover a meaningful class. 
Each cell operates in a different subspace, and the leaf nodes give the final 
tessellation, which can approximate virtually any complex decision region. The 
hierarchy provides a logarithmic retrieval complexity. 

As the processing moves down from the root node of the tree, the Space-Tessellation 
Tree recursively subdivides the training samples into smaller problems until a 
manageable problem size is achieved. When a face image is presented to a node, a 
distance measure from each of the node's children is computed to determine the most 
likely child to which the face image belongs. At each level of the tree, the node that 
best captures the features of the face image is used as the root of the subtree for 
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furtherrefinement, thereby greatly reducing the search space for the best matches. 
This scheme is very similar to other works on classification trees used in statistics [4]. 
Two major differences are (a) that SHOSLIF uses LDA to automatically generate the 
splitter at each internal node and (b) the input to SHOSLIF is the high-dimensional 
image vector instead of a number of feature values defined by system designer. 

Figure 3.6 explains how additional training images are generated at the root node 
and the processing performed at each node of the tree. 

We want to allow for some variations in the position, scale, and orientation of the 
faces in the canonical face image to be recognized. This can be accomplished either 
through more image acquisition, but that is expensive in terms of time, storage, and 
cost. Each canonical image this system receives provides an attention point and scale 
to be used to extract a fovea image of the object of interest. Rather than extracting 
just a single fovea image from this attention point and scale, a family of fovea images 
are generated by varying the attention point and scale from the supplied points, as 
shown in Fig. 6. This allows the system to learn some measure of positional and scale 
variation in the training set. 

L Project Samples -1 toMDF J 
Subspace 

Pro'ection . Mabices for 
this node 

Figure 3.6 A top-level flow of the processing in the Space-Tessellation Tree during the 
training phase. The steps after the vectorization are performed also at every internal 
node of the tree. 

Hierarchical Space Tessellation 

As we discussed earlier, the hierarchical space tessellation allows one to recursively 
decompose a large and complex problem into smaller and simpler problems. Figure 
3.7 shows an example of the difference in the complexity of the class separation 
problem for the root node and an internal node of the tree. A child node contains 
fewer samples than its parent does, and the MDF vectors can therefore be optimized 
to the smaller set of samples in the child node. The finest tessellation level in a 
hierarchical space tessellation tree allows the linear features such as the MEFs and 
MDF to approximate any smooth decision regions to a desired accuracy using 
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piecewise hyper-planes, as shown in Fig. 6 ,  as long as the number of training samples 
is sufficiently large. 
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Figure 3.7 An example showing the complexity of the class separation problem at two 
different levels of the tree. Samples from the same classes are given for both the 
graphs. This figure shows a more effective clustering in (b) than in (a) because the 
number of samples and classes in (b) is smaller than in (a). 
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Definition 1 Given n leaves, a Bounded Unbalanced Tree with Unbalance Bound 0 < 
a < 1 (a constant) is a tree such that for any node N containing n1 + n2 + ··· + nk  
leaves, where N has k children with ni leaves assigned to node i and n l 2  n2 2 ···2 nk, 
n1 I a(n1 + n2 + ··· nk) . 

Automatic Tree Construction 

Each level of the tree has an expected radius r(l) to characterize the size of the cells at 
level l. Note that r(l) is a decreasing positive function based on the level. Let d(X, A)  
be the distance measure between node N with center vector A and a sample vector X. 
The tree is built one level at a time. The algorithm is summarized in Figure 3.9. 

Lemma 1 The number of levels in a Bounded Unbalanced Tree with n leaves is 
bounded above by log n, where a is the Unbalance Bound of the tree. 

Proof 1 Each node N of the tree is assigned with nl + n2 + ··· + nk leaves, where ni is 
the number of leaves assigned to the ith child of N. Rank these nI's so that n l r  n2 2 
... 2 nk. Because the tree is a Bounded Unbalanced Tree, we know that n l  I a (n1 + 
n2 + ··· + nk), and this is true for all nodes N of the tree; a is a constant. Each deeper 
level of the tree will reduce the number of leaves by a factor of at least a. The lth 
level down the tree will receive na1 leaves . At tree height h, we have just a single 
sample by Algorithm 1. So, nah = 1, and ah = (l/n), or (l/a) = n. Then the height of 
the tree h = log(l/a)n = (log(n)/log(l/a)). 

Figure 3.8 Lemma 1. 

Algorithm 1 The Hierarchial Quasi-Voronoi Tessellation Algorithm 

-  1 , list of samples X to add. 

Output: A tessellation of N based on the new samples. 

1. 

2. 

Compute the projection matrices V and W for the MEF and MDF subspaces for 
this node. 
For each sample X i : 
(a) Project Xi to the MEF space to get Yi. 
(b) Project Yi to the MDFspace to get Zi . 
(c) If d(Zi,Cj)   > r(l) for all Cj children of N, add Zi as the center vector for a 

For each feature vector Zi , add Zi  to the child Cj with the nearest center vector. 
For each child Cj of N ,  perform the space tessellation. 

new child of N .  
3.  
4. 

Figure 3.9 The Hierarchial Quasi-Voronoi Tessellation Algorithm. 

Inpute: Node N at level  l   
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Recognition as Tree Retrieval 

The retrieval algorithm is given by Figure 3.10, which provides the top k matches for 
human examination. Given an unknown face image, the nearest neighbor in the 
Euclidean distance in image space S is typically not the best match because the class 
variation is not taken into account. For the same reason, the nearest neighbor in the 
MEF space is not either, as shown in Figure 3.1 1. 

We do not want the STT to give the nearest neighbor in any single space and it will 
not either, since each internal node uses its own subspace. 

Algorithm 2 The Image Retrieval Algorithm 

Input: Probe X, level l, and a list of at most constant k nodes which were explored at 
level 

Output: A list of nodes explored at level l+ 1.  

1. For each node Ni in the list explored at level l: 
(a) If Ni is not a leaf node: 

i. 
ii. 

Project X to the MDF subspace of node Ni, producing Z . 
Compute d(Cj, Z) for all children j of Ni with center vectors Cj. 

Transfer at most constant k of the children of Ni to the 
output list such that those transferred are the k nearest neighbors of 
Z .  

iii. 

2. Truncate the output list to hold at most constant k nodes to explore at the next level. 

This algorithm is repeated for all levels of the Space-Tessellation tree until k leaves 
are found. 

Figure 3.10 The image retrieval algorithm. 

Distance Measure 

In the SHOSLIF tree, every node has its own different MEF and MDF spaces. Given 
an input, we must compare its match with all the competitive nodes. The Distance 
from Subspace (DFS) distance measure takes into account the distance from the 
projection space in addition to the distance of the projection to the node centers. The 
DFS distance measure is given by 

where M = VW, X is the test probe, A is the center vector, V is the projection 
matrix to the MEF space, and W is the projection matrix to the MDF space. Figure 
3.12 gives a geometric illustration. 

.
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Figure 3.11 (a) The binary tree built without class information taken into account, as 
would be built using the MEF space. (b) The binary tree built optimized to separate 
classes, as would be built using the MDF space. The MDF typically yields a smaller 
tree than the MEF space provides. The MDF is effective if the samples cover all the 
within-class variations. The samples of a class are denoted by a single type of 
character. 

Figure 3.12 Distance from subspace description for 3D. 

5. Experimental Results 

In the following, we present some experimental results which provide quantitative 
examples for some design options. 



76% 

I Top 15 1 100%  I 100% I 100% 

Table 3.1 Results of subspace comparison study. 

Face Recognition 

To test face recognition, a face database of individuals was organized; each individual 
had a pool of images which are divided into disjoint training and test data sets. Each 
individual had at least two images for training with a change of expression. The 
images of 38  individuals (182 images) came from the Michigan State University 
Pattern Recognition and Image Processing laboratory. Images of individuals in this 
set were taken under uncontrolled conditions, over several days, and under different 
lighting conditions. Another 303 classes (654 images) came from the FERET 
database. All of these classes had at least two images of an individual taken under 
controlled lighting, with a change of expression; 24 of these classes had additional 
images taken of the subjects on a different day with very poor contrast. Sixteen 
classes (144 images) came from the MIT Media lab under identical lighting 
conditions (ambient laboratory light). Twenty-nine classes (1 74 images) came from 
the Weizmann Institute, and are images with three very controlled lighting conditions 
for each of two different expressions. Table 2 shows a summary of the results 
obtained both by re-substituting the training samples as test probes and by using a 
disjoint set of images for testing. 

Handling Variations 

In the experiments further conducted, the training images include 1316 images from 
526 classes of human faces and other objects. We trained the system using training 
samples artificially generated from the original training samples to vary in (a) 30%  of 
size, (b) positional shift of 20% of size and 20% of size; (c) 3D face orientation by 
about 45 degrees and testing with 22.5 degrees. A total of 298 images from 298 
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Feature Spaces and the Tree 

We examined the effects of MEF and MDF flat subspaces, a single-space tree in 
which a tree is built in a single subspace, and the multi-subspace tree (SHOSLIF) as 
described above. The training images come from a set of real-world objects in natural 
settings. At least two training images from each of 36 object classes were provided; a 
disjoint set of test images were used in all of the tests. The results of the studies are 
summarized in Table 3.1. Top one means that the top one choice retrieved is correct. 
Top 15 means that the correct one is among the top 15 retrieved from the tree. 

Flat           Single-space    SHOSLIF 
tree tree 
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classes, all disjoint from the training images, were used for test. The top 1 and top 10 
correct recognition rates were, respectively, (a) 93.3% and 98.9%, (b) 93.1% and 
96.6%, (c) 78.9% and 89.4%. 

Disjoint test set: 
No. of test images I 246 of 246 individuals 

Top one I 95.5% 
Top 10 I 97.6% 

Table 3.2 Summary of experiment on a face database of 1042 images (384 
individuals). The number of explored paths equals the number of top matches 
explored in the level-by-level tree retrieval. 

Timing 

Table 3.3 shows how the tree structure speeded up the retrieval process. The test was 
done on a Sun SPARC-20. A total of 2,850 training images were used in the learning. 
Three schemes are compared in the table. The flat image space scheme uses a linear 
search for the nearest neighbor in the original image space S. The flat MEF space 
scheme uses a linear search for the nearest neighbor in the MEF subspace S" and the 
projection time for the input image is included. The SHOSLIF tree scheme is a real- 
time version using a binary tree of the SHOSLIF [54]. The speed-up of the tree is 
more drastic when n is larger. 

Table 3.3 Average computer time per test probe. 

6. Conclusions 

Face recognition research has been very active and has made tremendous progress 
over the past 10 years. Face recognition systems have a lot of immediate applications 
as long as the environment can be controlled appropriately. 

An important lesson that we can draw from the history of face recognition is as 
follows. For very complex perception tasks, such as face recognition, it is not the 
most productive way to develop a system according to manually developed content- 
level rules, rules that are directly related to the object to be perceived. For face 
recognition, such rules include what facial features should be used, how face images 
may change if the lighting is changed, what facial changes one may see when one 

Method                     Flat image space    Flat MEF space    SHOSLIF  tree
Time 2.854 s 0.738 s 0.027 s
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smiles, which part of the face is more invariant, etc. A general learning scheme, one 
that does not depend on the objects to be perceived can turn out to be very effective 
because it can adapt well to the objects without being impaired by the content-level 
rules. 

Although the current face recognition systems have achieved very good results for 
faces that are taken in a controlled environment, they perform poorly in less 
uncontrolled situations (see, e.g. FERET tests [34]. Humans know how to take 
environmental context into account but our existing systems do not3. A fundamental 
methodology revolution is necessary for a breakthrough advance from the current 
state of the art. It becomes increasingly evident that breakthrough solutions to tough 
computer vision problems can probably be found by looking beyond the visual 
modality. 
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Abstract The physica1 dimensions of a human hand contain 
information that is capable of’ authenticating the identity o f  an 
individual. This information has been popularly known as hand or 
palm geometry; the hand geometry based identity verification 
systems are being widely used in a number of access control, time 
and attendance, and point-of-sale applications. This chapter 
introduces hand geometry based identity authentication system. It 
provides an overview of operation of a specific system and its 
performance. Finally. it discusses some emerging applications of 
hand geometry based authentication systems. 
Keywords: hand geometry, palm geometry, ,finger geometry, 
access control. 

1. Introduction 

Anthropologists suggest that humankind survived and evolved due to our large brains 
and opposing thumbs. The versatile human hand allows us to grasp, throw, and make 
tools. Today, the human hand has another use, a media to verify identity. Ancient 
Egyptians used body measurements to classify and identify people. Today’s hand 
geometry scanners use infrared optics and microprocessor technology to quickly and 
accurately record and compare hand dimensions. Several hand geometry verification 
technologies have evolved during this century. They range from electro-mechanical 
devices to the solid state electronic scanners being manufactured today. The U.S. 
Patent office issued patents to Robert P. Miller in the late 1960’s and early 1970’s for 
a device that measures hand characteristics, and records unique features for 
comparison and ID verification (e.g., [ 1]). Miller’s machines were highly mechanical 
and manufactured under the name “Identimation.” Several other companies launched 
development and manufacturing efforts during the 70’s and early 80’s (e.g., [2,3,7,8]). 
In the mid- 1980’s, David Sidlauskas developed and patented an electronic hand 
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scanning device (e.g., [ 5 ] )  and established the Recognition Systems, Inc. of Campbell, 
California in 1986. 

Figure 4.1 Hand geometry biometrics for access control. 

The first applications for hand scanners were as access control components. 
Government and nuclear facilities used them to protect their facilities [6]. The 
availability of low cost, high speed processors and solid state electronics made it 
possible to produce hand scanners at a cost that made them affordable in the 
commercial access control market. At first, systems providers installed hand scanners 
in the stand-alone mode. The products contained basic access control functions such 
as time zones, alarm inputs and outputs, duress, and request for exit functions. Sensor 
Engineering’s Wiegand format became widely used to interface hand scanners into 
existing access control systems. Hand scanners have a twenty-six bit Wiegand output 
format as one of the menu choices. As the access control market expanded, 
manufacturers introduced other data formats. Systems integrators demanded, and got 
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alternative protocols. End users became more sophisticated and demanded more 
elaborate engineered versions of the hand scanner. Today, hand scanners perform a 
variety of functions including access control, employee time recording and point-of 
sale applications (Figure 4.1). 

2. System Operation 

Each human hand is unique. Finger length, width, thickness, curvatures and relative 
location of these features distinguish every human being from every other person 
(Figure 4.2). The hand geometry scanner uses a charge coupled device (CCD) 
camera, infrared light emitting diodes (LEDs) with mirrors and reflectors to capture 
black and white images of the human hand silhouetted against a thirty-two thousand 
pixel field (Figure 4.3). The scanner records no surface details, ignoring fingerprints, 
lines, scars and color. The process is much like placing a hand on a beaded projector 
screen. The hand scanner reads the hand shape by recording the silhouette of the 
hand. In combination with a side mirror and reflector, the optics produce two distinct 
images, one from the top and one from the side. This method is known as 
orthographic scanning. 

Figure 4.2 Typical hand geometry measurements. 
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Figure 4.3 Input image for extraction of hand geometry features. The smaller inset 
image shows a view of the thickness of the hand. 

Scanners typically use an optical path approximately 11 inches (28 cm) between 
the camera and the platen. An optical path folded with mirrors reduces the space 
required to half the original length. Enclosing the optical path in a structure results in 
the typical hand geometry scanner that is approximately 8-1/2 inches (22 cm) square 
by 10” (25 cm) high (Figure 4.4) The scanner takes ninety-six measurements of the 
user’s hand. A microprocessor and internal software convert the measurements to a 
nine-byte ‘’template” that it stores for later comparison. The process of recording a 
user’s hand template is known as enrollment. During the enrollment session, the 
scanner prompts the enrollee to place his or her hand on the scanner platen three 
consecutive times. The platen is the highly reflective surface that projects the 
silhouetted hand image. Pins projecting from the platen surface position the 
enrollee’s fingers to assure accurate image capture. The hand geometry scanner 
mathematically averages the three templates and generates an accurate template that 
the scanner stores in resident memory. To verify, the user enters a personal 
identification number (PIN) in the scanner through the use of a keypad or other data 
entry device. The scanner retrieves his or her individual template for comparison. 
The user places his or her hand on the scanner. The hand image is captured and a 
representation is derived using the same steps as those used for generating the 
template at the time of enrollment. The representation thus derived is compared to the 
stored template. The comparison may involve, for instance, accumulation of absolute 
differences in the individual features in the input representation and the stored 
template. The comparison typically results in a single number indicating the strength 
of the similarity (score) or their difference (distance). A predetermined threshold 
determines whether the score/distance is acceptable to consider the input 
representation and stored templates are “matched”. The match/no-match decision 
controls the output of the scanner. 
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Figure 4.4 Hand scanner optics. 

Enrollment 

The quality of enrollment affects the false reject rate, especially during the first few 
weeks of use. Quality enrollment depends on several factors. Different platen heights 
change the relative position of the body and hand, and affect the hand shape. 
Enrolling at one height and verifying at another can cause enough difference in the 
hand shape to reject the user. The enrollment scanner should be of the same height as 
the verification scanner. If persons must stand to use a verification scanner, they 
should also stand to enroll. Likewise, if the user normally sits to use the verification 
scanner, (such as using a scanner to enter a password into a computer), they should 
also enroll in the sitting position. 

Enrollers should train users during the enrollment process and correct potential 
errors before they occur. Successful and correct enrollment may require 
demonstration and user training. Hand placement training greatly reduces verification 
problems; it involves enrollees learning the “feel” of the hand geometry scanner 
platen and finger pins. The popular methods of user training rely on visualization 
techniques to teach the correct hand placement. For example, it is found that ‘‘landing 
an airplane” scenario is an effective teaching aid, where the enrollee is told to touch 
the platen with the ends of the index and middle fingers, then slide the hand onto the 
platen in a motion much like a landing airplane. Learning (e.g., to keep the hand flat, 
to feel the surface of the platen with the second knuckle of each finger, and to squeeze 
the fingers against the finger pins) improves the performance of the system. 
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Therefore, user training is recommended before enrollment. When the user shows that 
he or she can place the hand properly, the user is enrolled. The enroller enters the 
user’s ID number and prompts the user to place his or her hand on the platen. The 
hand geometry scanner may prompt the user to place the hand multiple (e.g., three) 
times. Multiple placements allow the scanner to capture images of the hand in 
slightly different positions. The scanner processor may use a statistic of the multiple 
measurements (e.g., average) to form the template, which constitutes the 
mathematical representation of the hand. 

At birth, human hands are nearly symmetrical. As the body ages, the hands change 
due to natural and environmental changes. Most people become either right or left 
handed, causing one hand to be slightly larger than the other. The “favored” hand 
tends to be more susceptible to injury from sports or work activities. Young peoples’ 
hands change rapidly as they mature. Older peoples’ hands change with the natural 
aging process or the onset of arthritis. All these factors necessitate that practical hand 
geometry scanners “learn” minor hand shape changes and continually update 
templates as users are verified by the system. This process is known as template 
averaging. Template averaging updates the mathematical description of the user’s 
hand. It occurs when the differences between user’s hand and the template stored 
during enrollment reach a predetermined limit. 

One particular installation, a large metropolitan housing project, uses hand 
geometry scanners for access by tenants and their children. Many of the children first 
used the scanners at about the age eight. Now in their mid-teens, their hands have 
changed considerably, but they continue to use the scanners without difficulty. Hand 
geometry scanners will work reliably for children above the age of seven or eight, 
depending on the size of their hands. The user’s fingers must be of sufficient length 
to reach the platen finger pins. Children of some ethnic groups are smaller in stature, 
and may have to be older before they can reliably use hand geometry scanners. 
Likewise, some population groups are larger in stature and their fingers will reach the 
platen pins at a younger age. The hand geometry scanners update their templates as 
children use them and mature. 

Ideally, the placements of the hand on the platen at enrollment and verficiation 
need to be identical. This process is called registration. Present hand geometry 
technology accomplishes registration by requiring the use of locator pins on the platen 
to position fingers. As mentioned, children’s and small adults’ fingers must be long 
enough to reach the pins for them to verify. Likewise, persons with amputations or 
birth defects that prevent them from contacting each of the finger pins may have to 
use alternative enrollment and verification methods. Standard production hand 
scanners are designed to accept right hands, palms down. However, because they 
capture shape information, and not surface details, it is possible to enroll a user’s left 
hand with the palm facing upward. While this placement feels unnatural at first, left- 
hand verification becomes easier with practice. Other factors affect enrollment and 
verification. Hand geometry scanners accept non-biological shapes such as rings and 
small bandages during the enrollment process. To ensure that the contaminants in the 
optical path do not affect performance, it is advisable to occasionally wipe exposed 
platens and mirror surfaces with non-abrasive window cleaner on a cloth. 
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Figure 4.5 Sandia Labs evaluation results for ID3D System for authenticating identity 
based on hand geometry [4].  

Verifying the user identity is the primary purpose of a hand geometry scanner. There 
are several outputs from the typical scanner. In the stand-alone mode, the system can 
enable a locking device directly. In this mode, the scanner lock output operates a 
control relay upon verification of the user. The relay enables the lock for a pre- 
determined period, then releases it. Direct lock control upon verification is the most 
basic access control function. Door contacts connected to scanner input terminals 
sense door position and cause the scanner to shunt the lock time to reduce the chance 
of people following the user through an unlocked door. 

The FRR/FAR crossover error rates for Recognition System’s hand geometry 
scanner was 0.1% at the manufacturer’s default threshold as documented by Sandia 
Laboratories, in 1991 [4] (Figure 4.5). The results were based on a two-try false 
reject rate. The one-try false reject rate was 0.2%. Field results taken from actual 
sites with over 100,000 events confirm the controlled test false reject rate. 

3. Implementation Issues 

Card Reader Emulation 

Hand scanner interfaces emulating a card reader are available. In this arrangement, the 
hand scanner connects to a third-party access control terminal and acts as a card 
reader. Three common card protocols emulated by hand scanners are Wiegand, 
magnetic stripe, and barcode. The Wiegand protocol is a stream of binary data sent 
over two opposing channels commonly known as ‘‘data 0” and ‘‘data 1” that share a 
common ground. The data stream has a field of “bits” that contains the card number, 
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another that has a facility or “site” code and two parity bits for error correction. The 
user enters a PIN number in the scanner keypad or presents a card to an auxiliary card 
reader connected to the scanner. The scanner reads the ID field from the Wiegand 
data stream and recalls the user’s template from memory for comparison. Upon 
verification. the card number including the facility code and parity bits are output to 
the access control terminal in Wiegand format. The third party access control makes 
the decision to admit or deny the user. 

The magnetic card emulation mode operates very much the same as the Wiegand 
output. A field of data and additional characters are transmitted over the data line 
with markers or “sentinel” characters that the card access system recognizes. Another 
channel transmits clocking information and a third conductor is common. 

The implementations of hand scanner interfaced as barcode emulators are also 
available. In this emulation mode. information is transmitted to a receiver over two 
wires, data and ground. The operation is much the same as the other card emulation 
modes, where the user enters data in the scanner. Upon verification, the scanner sends 
the emulated barcode information to a third party device. 

The systems integrator has several ID input choices when integrating hand 
scanners into card reader systems. The typical hand scanner has an integral numerical 
keypad with which the user can enter a PIN number. In this application, the scanner 
forwards the user’s ID number and a pre-programmed facility code (where applicable) 
to the third party device once the user’s identity has been verified by the scanner. 
Optionally, a card reader can be attached to the hand geometry scanner thus allowing 
the user to simply present or swipe a card to start the verification process. Integrating 
the card reader and hand scanner reduces the total verification time and greatly 
reduces user errors in entering PIN numbers. 

The typical user template in a hand scanner is a 9 byte or 72 bit string of data. The 
template is small enough to be written on other media, such as a card. In this 
scenario, the user swipes a card, which sends his or her ID number and the actual 
hand geometry template to the hand scanner. The scanner makes the comparison 
based on the template received and sends the ID number on to a third party system 
that makes the access decision. The advantage of keeping the template on the card is 
that biometric information does not have to be in the resident memory of the hand 
scanner. Therefore, large networks and user databases are easily managed using only 
ID numbers. However, the human hand changes over time and there is a risk of the 
template becoming obsolete. The evolution of “smart” cards easily solves this 
problem. Upon enrollment. the chip within the card receives the user’s template from 
the hand scanner where it remains in memory. The user inserts or presents the card at 
a smart card reader that forwards the user’s template to a hand scanner for 
comparison. The scanner verifies the user, records the image of the user’s hand and 
returns an updated template to the smart card. The smart card retains the user’s latest 
template information. 

Stand Alone Access Control 

The simplest implementations of hand geometry based authentication operate in stand 
alone mode. In the stand-alone mode, a hand geometry scanner is more than a 
comparison device. It is a complete single door access control system. When 
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configured as an unlocking device, the hand scanner has two control outputs, a lock 
output and an auxiliary output that controls other devices. The lock output energizes 
whenever a user successfully verifies. assuming there are no time or location 
restrictions in the user’s database file. Typically, a relay connected to the lock output 
controls an electric locking device. A built-in timer keeps the lock output energized 
for a pre-programmed period after successful verification. 

Other inputs to the scanner can also energize the lock output. A door position 
switch connected to one of the scanner inputs will cause the lock output to 
immediately time out when it senses an opened door. The time shunt causes the lock 
to re-secure the moment it closes thus reducing the opportunity for a follow-on 
unauthorized entry. 

An internal tamper switch energizes the auxiliary output if the scanner is dislodged 
from its mounting. Operation of a ‘‘request to exit” switch or motion sensor on the 
secure side of an entrance energizes the lock output unlocking the door to allow 
persons to exit. The request to exit can also be controlled by a numerical keypad on 
the secure side. This requires the entry of an ID number stored in the scanner’s 
database to energize the lock output. The lock output can also be controlled from a 
programmed time zone within the scanner. This function causes the automatic 
unlocking and relocking of doors during business hours or at any time determined by 
the system administrator. Using external logic components, it is also possible to 
devise a ‘‘first in” function, wherein the door remains locked until the scanner 
processes a valid entry. The door remains unlocked throughout the balance of the 
time zone. 

Privacy Issues 

Hand geometry measurments have information to verify a person’s identity but the 
templates cannot be accurately “reverse engineered” to identify users. Consequently, 
hand geometry based authentication protects privacy of the users better than other 
biometrics, say, fingerprints. 

Operation by Disabled People 

In general, hand scanners could be enabled for blind persons to use. Keys on the ID 
entry keypad are raised and arranged in the typical “telephone” format, with three 
keys across and four keys down. An audio feedback can be provided to guide the 
blind user. 

Outdoor Conditions 

Typical hand scanner electronics and scanning components will work in extreme cold 
conditions, however, cold can hamper performance due to naturally occurring 
phenomena when a human hand contacts a cold surface. The moisture of the human 
body forms an “aura” of vapor when exposed to cold temperatures and may adversely 
affect imaging optics. For instance, when the hand comes in contact with the hand 
scanner platen, the vapor condenses, causing a visible “halo” to form on the platen 
surface. If the halo i s  sufficiently dense, the scanner’s optics interprets it as being part 
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of the hand and will likely reject it. The use of integral platen and LCD heaters allows 
the use of hand scanners in sub-freezing environments. 

Typical hand geometry sensing employs infra-red imaging. The infrared content of 
sunlight may “blind’ scanner optics. Stray infrared light (or the lack of it) does not 
affect the false accept rate but may adversely affect false reject rate. When possible, 
systems designers should shield hand scanners from direct sunlight. When sun 
shielding is not practical, the users should be trained to block stray sunlights with 
their bodies. 

4. Applications 

Parking Lot Application 

It would seem that hand scanners would make an ideal access control for parking lots. 
Users need not carry cards and facility managers will be assured that only authorized 
users can enter the lot. However, there are human engineering factors to consider. 
Hand scanners presently on the market are designed for use with the right hand. Left- 
hand drive automobiles make it difficult for users to reach a scanner platen. It is 
possible to enroll users with the left hand palm facing up, but it still requires extra 
effort to verify. Further, sports utility vehicles and sports cars may require the platen 
height to vary by as much as three feet (.9 meter). In general, hand scanners are not 
recommended for ordinary parking lot use, however, they are in use in some special 
circumstances. Some truck terminals, especially those at trade free zones require 
drivers to log in using biometric verification. In this application, all truck cabs are the 
same height. Specially built left-hand scanners allow drivers to verify without leaving 
their cabs. In entrances where both car and truck drivers must verify, it may be 
necessary for them to leave their vehicle to use the hand scanners. 

Cash Vault Applications 

A particularly interesting hand scanner application is in use within a cash vault 
mantrap. The trap has two doors, an entry and an exit, and a hand scanner inside the 
trap to verify entrants. A personnel counter records the number of people entering 
from the public side of the mantrap. A programmable logic controller (PLC) reports 
the “count” to the hand scanner. The number of different people using the scanner 
must match the count. For example, if three people enter the trap, the scanner 
requires three verifications from three different people before the inner door unlocks. 
If the count is under or over, the inner door will not unlock and a supervisor manually 
processes the users. 

Dual Custody Applications 

Dual custody access control is common in physical security. Two persons, each with 
a key must operate two separate locks to gain access. This concept translates easily to 
electronic access control. In hand scanner dual custody applications, two different 
people must verify before the scanner sends an output. There are several variations on 



Hand Geometry 97 

this method. The most common requires any two people from the database. A 
variation of dual custody requires one person from one database and one person from 
the other. Another variation requires two persons from one database and one person 
from another for a total of three different hands to produce an output. 

Anti-passback 

Anti-passback is a common access control function. To prevent a user from “passing” 
a card to an accomplice, the access control requires an exit before it will grant the card 
an access, or a time interval must pass before the card can be used again. At first, 
anti-passback would seem redundant for hand scanner applications. It would be 
difficult at best to pass back a hand. However, another possible scenario makes hand 
scanner anti-passback a viable application. Again, it assumes an accomplice. The 
authorized enrollee verifies, but sends the accomplice through the turnstile or 
revolving door. Then he or she verifies again and also passes through the security 
barrier. A special hand scanner option prevents the ID from being used twice in 
succession without either an exit or a time delay after verification. A higher security 
application places the hand scanner inside a revolving door. The user enters his or her 
unique PIN number to start the door in motion and the user steps in. Meanwhile, the 
scanner retrieves the user’s template from resident memory or a host computer. The 
door rotates one-quarter turn and stops, making the hand scanner accessible to the 
user, now inside the door quadrant. The user places his or her hand to verify and 
continue through the door. There is no opportunity to enter a different ID number in 
the hand scanner as it has no keypad or data entry device. It only receives information 
from the outside keypad or card reader. Ultrasonic or weight sensors in the door 
assembly detect two persons attempting to pass as one. Upon successful verification, 
the door rotates another one-quarter turn allowing the user to exit on the secure side. 
If the user fails to verify, the door reverses returning the user to the public side. 

Time and Attendance 

The first hand scanner applications were for security access control. They were used 
like card readers. Users enter data and place their hands. In the mid-1990’s a new 
market for hand scanners appeared, time and attendance. The market evolved from 
the security applications. Payroll and human relations managers saw employees using 
hand scanners to enter their buildings. They realized these devices worked on 
peoples’ identity, not what they were carrying. It became apparent that hand 
geometry technology could take the place of a traditional punch clock. Business 
owners asked systems integrators to adapt hand geometry technology to time and 
attendance use. 

The first hand geometry time and attendance installations used hand scanners 
connected to a printer or access control software to record users’ arrival and 
departure. This required manual sorting of the event data, though some ‘‘computer 
savvy” managers exported event data files to spreadsheet programs where they could 
sort and calculate the data. When it appeared there was a market emerging, hand 
scanner firmware was changed to include specific time and attendance functions. 
During verification, workers could enter employment specific data such as 
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departmental or job codes in the scanner keyboard. Access control software stored 
this information for later retrieval by a host computer. Hand scanner time and 
attendance functions were limited and data exportation was cumbersome compared to 
the functions of automated time and attendance systems and software. End users 
wanted all the time and attendance functions with biometric verification. As a result, 
time and attendance providers connected hand scanners to electronic time clocks. The 
scanners function as ‘‘dumb terminals,” using magnetic stripe or barcode outputs to 
send employees’ ID numbers to the clocks. Users “punch” at the hand scanner, then 
enter job specific data in the electronic time clock. This interface method is still very 
much in use today. 

The market for electronic time keeping products continues to grow. This growth 
has resulted in an increasing demand for fully integrated biometric terminals to reduce 
system cost and simplify employee data entry. The result is a hand scanner dedicated 
to time and attendance use. It includes many of the time and attendance functions of 
an electronic time clock. Employees enter their ID numbers in the scanner, then 
select from a menu of work related functions. These include: 

17 Explicit punch. The scanner prompts the employee to select from a menu to 
record if he or she is reporting to work, leaving, taking a break, lunch, etc. 

Departmental transfer. The employee enters his or her department or job code. 0 

Supervisors have specific functions as well. These may include: 

0 Supervisor override. Supervisors can edit employee punch information to 
authorize overtime or pay employees for work related activities prior to coming 
on site. 

Bell schedules. The scanner can operate bells or other annunicating devices at 
specific times programmed into time zone menus. 

0 

Time and attendance hand scanners store employee and supervisor events in a 
memory buffer. A host computer polls the scanner on a regular basis to collect data 
and leave new employee hand templates or change existing employee status. 

Point of Sale Applications 

The ability to verify identity has many other uses. Among them is a growing market, 
point of sale applications. Debit systems are becoming more common in our 
everyday lives as we move toward being a cashless society. The ATM (automatic 
teller machine) card is no longer restricted to cash withdrawals. It is rapidly 
becoming a universal payment card. However, there are many debit systems that are 
not tied to ATM cards. They are closed systems specifically for a defined group of 
people such as students of a high school or college, health care recipients or members 
of an athletic club. Members present identification, select a commodity or service, and 
the service provider deducts payment for goods and services from the member’s 
account. Many service providers use hand scanners as the means to collect their 
members’ transactions. The following are three examples of hand scanners used in 
point of sale applications. 
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A school district administers a government subsidized lunch service. The program 
requires accurate reporting of the number of students receiving lunches. Some 
students purchase the lunch program by paying a monthly fee. The school deducts the 
cost of each lunch served from the student’s account. Other students are on public 
assistance and a social service agency pays the school for each lunch served to 
students receiving benefits. Previously, the school depended on the staff verifying 
student identity by examining each participating student’s ID card. The staff entered 
each transaction on a log sheet. An administrator collected the information and 
manually settled accounts. The accounting process alone was a nightmare. Students 
frequently lost their ID cards or damaged them to the point where they were 
unreadable. Rather than deny students their lunches, the staff often allowed them 
access to the lunch program without identification. There were other problems. The 
number of students being served often exceeded the number enrolled in the program. 
To solve the problem, the school district installed an automated point of sale system 
with two hand scanners in each of eleven schools. Students no longer present ID 
cards to receive lunches. Each participating student enters his or her ID number in a 
hand scanner. The automated cash register and point of sale system records the 
transaction to be later processed by a computer running accounting software. The 
cashier permits verified students to proceed through the lunch line and collects cash 
from students who do not participate in the program. The lunch program runs 
smoothly and the savings paid for the hand scanners and software in one school term. 

A resort hotel in the Crimea, the “Riviera” of the former Soviet Union uses hand 
scanners to debit guests’ accounts. The hotel debits the account of guests with funds 
in a sponsoring bank for hotel services such as bars and restaurants. Guests who do 
not have an account with the sponsoring bank simply leave a deposit with the hotel 
when they check in. To pay a bill, the guest enters his or her room number in a hand 
scanner at the cashier’s station and verifies. The point of sale terminal automatically 
debits the guest’s account for the cost of the goods or service. If the guest has 
insufficient funds or is otherwise denied access to accounts, the cashier tactfully 
records the transaction and advises the guest to check with the hotel accounting staff. 
The biometric debit system assures that only registered guests can use hotel services. 
It is customary for European Hotels to require guests to leave their keys with the front 
desk when they are not in their rooms. With the hand scanner interface to the debit 
system, they need not carry identification to purchase hotel goods and services. 

In the U.S., athletic clubs use a similar system. Members pay a monthly or annual 
fee to use the club’s facilities. They can access the club without a key or 
identification using a hand scanner. The automated point of sale terminal logs each 
user’s arrival time for accounting and marketing purposes. The scanner may unlock 
the door or release a turnstile, allowing verified members into the club. The 
administrative staff places members whose dues are in arrears into a null time zone 
within the scanner. Scanners deny access or alert staff to any attempted entry by non- 
active members. When the member settles his or her account, club administrators 
restore his or her ID and template to an active time zone. 

Software used in this application can enhance biometric access by displaying the 
member’s name and file information on a monitor screen when the member enters. 
The supervising staff member can greet the member by name, even though the greeter 
has never seen the member before. The monitor can display messages concerning 
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account status, or special discounts available. Because the point of sale transaction is 
biometric, the staff administrator can be assured that the file belongs to the member 
who just verified. 

Hand scanners adapt to many point-of-sale terminals through the use of an 
intermediate decoder, also known as a “keyboard wedge.” The hand scanner attaches 
to the decoder “wand” port. The computer keyboard, usually located away from the 
hand scanner, also attaches to the decoder, which connects to the keyboard port on the 
computer. When an enrolled user verifies, the scanner sends the user ID number to 
the decoder, which forwards the number to the computer with a “return.” Therefore, 
the user enters his or her ID number in the computer the same way as if using the 
computer keyboard. However, programmers can add characters to the decoder output. 
A password or keyboard entry contains information from both the hand scanner and 
decoder thus making unauthorized data entry difficult. The decoder application is not 
intended as a high security means to protect computer programs. It is intended for 
unsupervised data entry in point-of-sale applications. 

Interactive Kiosks 

Hand scanners have found broad applications in the interactive kiosks. A host 
computer maintains user files and interacts with the user through a touch screen 
monitor or keyboard. When the user verifies, the monitor displays a menu of choices 
from which the user may select. Similar to modern automatic teller machines, the 
interactive kiosk communicates with the user after ID entry and verification. The 
interactive biometric kiosk is in use in automated border crossings. 

5. Conclusions 

Current technology hand scanners have been in use for over ten years. Their 
applications are limited only by imagination. They offer fast. reliable ID verification 
in applications from nuclear power plants to day care centers. Future hand scanners 
will be smaller and faster as the ‘‘silicon revolution” produces faster and smaller 
processors. The day will come when hand scanners look just like the in movies. 
where the hero just waves his hand in front of a small dot on the wall and the door 
opens, automatically, of course. 
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Abstract Performance in biometric identification is determined 
by two kinds of variability among the acquired biometric 
templates: (1) within-Subject variability. which sets a minimum 
False Reject rate: and (2) between-Subject variability, whose 
lower limit sets a minimum False Match or False Accept rate.
Clearly, it is desirable for  a biometric to have maximal between- 
Subject variability but minimal within-Subject variability. It is 
also desirable for recognition decisions to be based upon features 
which have very little genetic penetrance (so that genetically 
identical or related individuals would still be distinguishable), yet 
high complexity or randoniness. and stability over the life of the 
individual. A  phenotypic facial ,feature with exactly these 
properties is the iris pattern within either eye. When imaged at 
distances up to a meter. the population entropy (information 
density) of iris patterns is about 3.4 bits per square millimeter, 
and their complexity spans about 266 independent degrees-of- 
freedom. The resulting decision
persons by their iris patterns has a decidability index of about d '=  

 environment for recognizing 

11. Quantitative decision metrics such as these, resulting from 
223,000 comparisons between IrisCodes in tests published by 
British Telecom, may be used to compare the intrinsic decision- 
making power of different biometries. 
Keywords: Phenotype. genotype, monozygotic twins, iris, 
randoniness. complexity, degrees-of- freedom. 2D Gahor wavelets,
IrisCode, demodu la tion, decida bility. 

1. Introduction: Biological Variability, Genotype, and 
Phenotype 

The central issue in pattern recognition is the relation between within-class variability 
and between-class variability. These are determined by the number of degrees-of- 
freedom (forms of variation) spanned by the pattern classes. Ideally the within-class 
variability should be small and the between-class variability large, so that decisions 
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about “same” versus “different” can easily and reliably be made. In the case of 
biometric identification of persons, this basic principle implies that an optimal 
biometric measurement should have maximal variation across individuals, but 
minimal variation for any given person across time or conditions. These two 
dimensions of biological variation, in turn, reflect the genetic, developmental, and 
environmental influences associated with the concepts of genotype, phenotype, and 
genetic penetrance. 

Genotypic and Phenotypic Limitations on Biometric Performance 

Genotype refers to a genetic constitution, or a group sharing it, and phenotype refers 
to the actual expression of a feature through the interaction of genotype, development, 
and environment. Genetic penetrance describes the heritability of factors or the 
extent to which the features expressed are genetically determined. Those that are 
(such as blood group or DNA sequence) I will here call genotypic features , and those 
that are not (such as fingerprints or iris patterns, as shown below) I will call 
phenotypic features.  (This terminology is somewhat idiosyncratic, but it serves to 
capture the intended distinction.) 

Persons who are genetically identical share all their genotypic features, such as 
gender, blood group, race, and DNA sequence. All biological characteristics of 
individuals can be placed somewhere along this “genotypic-phenotypic” continuum of 
genetic determination, with many features (e.g., gender, fingerprints) placed firmly at 
either endpoint. Some features such as overall facial appearance reveal both a 
genotypic factor (hence identical twins ‘‘look identical”) and a phenotypic factor 
(hence everyone‘s facial appearance changes over time). 

The importance of these properties of biometric features, especially in the context 
of forensics, is that they directly influence the two basic error rates. Nearly one 
percent of persons have an identical twin, with whom they share all genotypic features 
such as their entire DNA sequence; this creates a minimum False Match rate (for a 
population) which we may call the genotypic error rate.  Similarly, the tendency for 
some biometric features to change over time (such as facial appearance) creates some 
minimum rate of False Rejections which we may call a phenotypic error rate. 

Roughly one in 80 births are twins, and about a third of these are “identical” 
(monozygotic). So a representative sample of 240 births (counting twin births as one 
event) usually yields 243 persons, among whom there are three pairs of twins; one 
such pair of persons are genetically identical. Thus the chances are roughly one in 
121 (or 21243 = 0.82%) that any person selected at random has an identical twin. 
Biometrics dependent upon genotypic features thus must have a minimal False Match 
rate of 0.82% due to this birth rate alone. Exactly the same argument, and numbers, 
pertain to the maximum possible confidence levels that can theoretically be achieved 
by DNA tests. This minimum error rate for genotypic features will worsen 
proportionately if human cloning, now on the horizon, becomes a future reality. 

Using the example of overall facial appearance and variation, it is interesting to 
consider these factors especially for the case of identical (monozygotic) twins. 
Obviously any pair of twins are always matched in age. Each twin’s appearance 
changes over time in the normal dramatic way, yet the pair usually remain strikingly 
similar to each other in appearance at any age. Nobody would deny that identical 
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“Phenotypic” 

twins look much more similar to each other than do unrelated persons. Since such 
twins are genetically identical, their similarity in appearance serves to calibrate the 
extent of genetic determination of facial structure. A further, but secondary, 
calibration for this factor is provided by persons who share only 50% rather than 
100% of their genes. These include fraternal twins, full siblings, double cousins, and 
a given parent and offspring. Occasionally the latter pairings have virtually 
indistinguishable appearance at a similar age, such as Robert F. Kennedy and his son 
Michael in adulthood. 

It is clear that the phenotypic variation over time of any biometric such as facial 
appearance imposes one limit on its performance (not necessarily the lowest limit), 
since when such variation is great enough, it causes a False Reject. Likewise, the 
high genetic penetrance for facial appearance imposes a different limit on 
performance (again, not necessarily the lowest such limit), since persons with 
identical genetic constitution look so similar and so would be susceptible to a shared- 
genotype error, namely a False Match. These two performance limitations are 
summarized in the following general table: 

False Reject Rate 
2 feature variability over time 

Type of Feature 1 Performance Limitation 
False Match Rate 
2 birth rate of identical twins “Genotypic” 

2. Iris Patterns: Complex Phenotypic Features 

The most numerous and dense degrees-of-freedom (forms of variability across 
individuals), which are both stable over time and easily imaged, are found in the 
complex texture of the iris of either eye. This protected internal organ, whose pattern 
can be encoded from distances of up to almost a meter, reveals about 266 independent 
degrees-of-freedom of textural variation across individuals. One way to calibrate the 
‘‘information density” of the iris is by its human-population entropy per unit area. As 
we will see, this works out to 3.4 bits per square millimeter on the iris, based upon 
222,743 IrisCode comparisons recently reported by the British Telecom Research 
Laboratories using the algorithms for iris encoding and recognition to be described 
here. 

Properties of the Iris  

The iris is composed of elastic connective tissue, the trabecular meshwork, whose 
prenatal morphogenesis is completed during the 8th month of gestation. It consists of 
pectinate ligaments adhering into a tangled mesh revealing striations, ciliary 
processes, crypts, rings, 

furrows, 

furrows, a corona, sometimes freckles, vasculature, and other 
features. During the first year of life a blanket of chromatophore cells often changes 
the colour of the iris, but the available clinical evidence indicates that the trabecular 
pattern itself is stable throughout the lifespan. Because the iris is a protected internal 
organ of the eye, behind the cornea and the aqueous humour, it is immune to the 
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environment except for its pupillary reflex to light. (The elastic deformations that 
occur with pupillary dilation and constriction are readily reversed mathematically by 
the algorithms for localizing the inner and outer boundaries of the iris.) Pupillary 
motion, even in the absence of illumination changes (termed hippus ), and the 
associated elastic deformations in the iris texture, provide one test against 
photographic or other simulacra of a living iris in high security applications. There 
are few systematic variations in the amount of detectable iris detail as a function of 
ethnic identity or eye colour; even visibly dark-eyed persons reveal plenty of iris 
detail when imaged with infrared light. Further discussion of anatomy, physiology, 
and clinical aspects of the iris may be found in Adler [2]. 

Figure 5.1 Example of an iris pattern, imaged in infrared at a distance of about 50 cm. 

Localizing Irises and Analyzing Their Patterns 

The two-dimensional modulations which create iris patterns are extracted by 
demodulation  [9] with complex-valued 2D wavelets (Figure 5.2). 

First, it is necessary to localize precisely the inner and outer boundaries of the iris, 
and to detect and exclude eyelids if they intrude. These detection operations are 
accomplished by integro-differential operators of the form 
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where contour integration parameterized for size and location coordinates r, x0, y0 at a 
scale of analysis 0 set by G,(r) is performed over image data I(x,y). 

Figure 5.2 Pattern encoding by phase demodulation using complex-valued 2D 
wave I ets . 

Then, a doubly-dimensionless coordinate system is defined which maps the tissue 
in a manner that is invariant to changes in pupillary constriction and overall iris image 
size, and hence also invariant to camera zoom factor and distance to the eye. This 
coordinate system is pseudo-polar, although it does not assume concentricity of the 
inner and outer boundaries of the iris since the pupil is normally somewhat nasal, and 
inferior, in the iris. The coordinate system compensates automatically for the 
stretching of the iris tissue as the pupil dilates. It is illustrated graphically in Figure 
5.3, together with a phase-demodulation IrisCode indicated in the top left as a bit 
stream. 
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Figure 5.3 Isolation of an iris for encoding, and its resulting “IrisCode.” 

The detailed iris pattern is encoded into a 256-byte “IrisCode” by demodulating it 
with 2D Gabor wavelets [5,6], which represent the texture by phasors in the complex 
plane. Each phasor angle (Figure 5.2) is quantized into just the quadrant in which it 
lies for each local element of the iris pattern, and this operation is repeated all across 
the iris, at many different scales of analysis. Such local phase quantization is 
described by the following conditional integral equations, in which each code bit h is 
represented as having both a “real part” hRe and an “imaginary part” hIm, with h = hRe + 
i hIm, and the raw image data is given in a pseudo-polar coordinate system I@,#): 
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Independence and the Degrees-of-Freedom in Iriscodes 

It is important to establish that there exists independent variation in iris patterns, 
across populations and across positions in the iris. This is confirmed by tracking the 
probability of a bit being set, as shown in Figure 5.4. If there were any systematic 
correlations among irises, this plot would not be flat. The fact that it is flat at a value 
of 0.5 means that any given bit in an IrisCode is equally likely to be set or cleared, 
and so Iriscodes are maximum entropy codes [7] in a bit-wise sense. 

O L  
0 

I I I I I I 

0 20 40 60 80 100 120 
Code Bit Location 

Figure 5.4 Test for independence of code bits across a population of Iriscodes. 

The histogram in Figure 5.5 compares different eyes' Iriscodes by vector 
Exclusive-OR'ing them in order to detect the fraction of their bits that disagree. Since 
any given bit is equally likely to be set or cleared, an average Hamming Distance 
fraction of 0.5 would be expected. The observed mean was 0.498 in comparisons 
between 222,743 different pairings of Iriscodes enrolled by British Telecom. The 
standard deviation of this distribution, 0.0306, indicates that the underlying number of 
degrees-of-freedom in such comparisons is N = pq/d  = 266. This indicates that 
within any given Iriscode, only a small subset of the 2,048 bits computed are 
independent of each other, due to the large correlations (mainly radial) that exist 
within any given iris pattern. (If every bit in an IrisCode were independent, then the 
distribution in Figure 5.5 would be very much sharper, with an expected standard 

deviation of only p q N  = 0.011; thus the Hamming Distance interval between i /  
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0.49 and 0.51 would contain most of its area.) The solid curve fitted to the data is a 
binomial distribution with 266 degrees-of-freedom; this is the expected distribution 
from tossing a fair coin 266 times in a row, and tallying up the fraction of heads in 
each such run. The factorials which dominate the tails of such a distribution make it 
astronomically improbable that two different Iriscodes having these many degrees-of- 
freedom could accidentally disagree in much fewer than half their bits. For example, 
the chances of disagreeing in only 25%  or fewer of their bits (achieving a Hamming 
Distance below 0.25, or equivalently the chances of getting fewer than 25%  heads in 
266 coin tosses) are less than one in Thus the observation of a match even of 
such poor quality (25%  bits incorrect) is extraordinarily compelling evidence of 
identity. 

m 

d 

7 

0 

222,743 paired Iriscode comparisons 

mean = 0 498, stnd dev. = 0 0306 

min = 0.360, max = 0.636 

N! p^(m) q^(N-m) curve: 

N = 266 Degrees-of-Freedom 

I ,  I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Hamming Distance 

Figure 5.5 Histogram of raw Hamming Distances between 222,743 pairs of unrelated 
IrisCodes. The fitted curve is a binomial distribution with 266 degrees-of-freedom. 

3. Genetically Identical Irises 

Just as the striking visual similarity of identical twins reveals the genetic penetrance 
of overall facial appearance, a comparison of genetically identical irises reveals that 
iris texture is a phenotypic feature, not a genotypic feature. A convenient source of 
genetically identical irises are the right and left pair from any given person. Such 
pairs have the same genetic relationship as the four irises of two identical twins, or 
indeed in the probable future, the 2N irises of N human clones. Eye colour of course 
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has high genetic penetrance, as does the overall statistical quality of the iris texture, 
but the textural details are uncorrelated and independent even in genetically identical 
pairs. This is shown in Figure 5.6,  comparing 648 right/left iris pairs from 324  
persons. 

I 

Estimated Degrees-of-Freedom: 259 

mean = 0.497, stnd.dev.= 0.031 08 

648 eyes as 324 Right/Left pairs 

I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Hamming Distance 

Figure 5.6 Histogram of raw Hamming Distances between IrisCodescomputed from 
324 pairs of genetically identical irises (648 eyes in right/leftpairs). This distribution is 
statistically indistinguishable from Figure 5.5, which compared unrelated irises. 

The mean Hamming Distance is 0.497 with standard deviation 0.03 1, indicating 
259 degrees-of-freedom between genetically identical irises. These results are 
statistically indistinguishable fromthose shown in Figure 5.5 for genetically unrelated 
irises. This shows that the detailed phase structure extracted from irises by the phasor 
demodulation process is purely phenotypic, so performance is not impaired (as it is 
for faces) by the birth rate of identical twins. 

4. Statistical Recognition Principle 

The principle of operation underlying this approach to pattern recognition is the 
failure of a test of statistical independence. Samples from stochastic sequences with 
sufficient complexity need reveal only a little unexpected agreement, in order to reject 
the hypothesis that they are independent. For example, in two runs of 1,000 coin 
tosses, agreement rates between their paired outcomes higher than 56%  or lower than 
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44% are extremely improbable: the odds against a higher or lower rate of agreement 
are roughly 10,000 to 1. The failure of a statistical test of independence can thereby 
serve as a basis for recognizing patterns with very high confidence, provided they 
possess enough degrees-of-freedom. Combinatorial complexity of random patterns 
generates similarity metrics having binomial-class distributions, even when the 
underlying Bernoulli trials are correlated [13] as they are in IrisCode comparisons. 
With so many degrees-of-freedom, the binomial-class distributions have tails that are 
dominated by large factorials. For this key reason, iris patterns allow recognition 
decisions about personal identity to be made with astronomic confidence levels. The 
practical importance of such astronomic odds against any False Match arising by 
chance is that it permits huge databases (even of “planetary” size) to be searched 
exhaustively, without diluting down the odds to unacceptable levels as a consequence 
of allowing so many opportunities for a False Match by performing (say) lo8 or lo9 
comparison tests, Biometrics that lack so many degrees-of-freedom and therefore 
lack this huge combinatorial property would be limited to use in one-to-one 
verification mode, or to searching only rather small databases. 

Extreme-Value Distribution for Rotated IrisCodes
- 

222,743 paired IrisCodecomparisons 

mean = 0.456, stnd.dev.= 0.018 

min = 0.348, max = 0.520 

1 
I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Hamming Distance 

Figure 5.7 Histogram of Hamming Distances between unrelated IrisCodescomputed 
aftercomparisons in multiple (n=7) relative rotations, keeping only each best match. 

The computed IrisCodefor any eye is invariant under translations and dilations (size 
change), including changes in the pupil diameter relative to the iris diameter. 



Recognizing Persons by Their Iris Patterns 113

However, the phasor information scrolls in phase as the iris is rotated, due to tilt of the 
head or camera or due to torsional rotation of the eye in its socket. Therefore all iris 
comparisons need to be repeated over a range of relative rotations, keeping only the 
best match. This amounts to sampling the distribution of Figure 5.5 many times and 
keeping only the smallest value, which leads to the extreme-value distribution given 
in Figure 5.7. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Hamming Distance 

Figure 5.8 Theoretical density function for the derived binomial distribution for best 
IrisCodematches after multiple (n=7)relative rotations. 

The raw binomial distribution shown earlier in Figure 5.5  had the form: 

N !  p 4 ( N  - m )  

m!(N - m)! f (4 = 

where N = 266, p = q = 0.5, and x = m/N is the Hamming Distance. Let Fo(x) be its 

cumulative from the left, up  to x: Fo(x) = f(x)dx. When only the smallest of n

samples from such a distribution is kept, the resulting extreme-value distribution 
(derived in [7])has densityhj;,(x): 

JOX 
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as plotted in Figure 5.8 (fit to the data will be seen later in Figure 5.9.) The areas
under the tail of this probability density function are shown marked off at various
points, illustrating that, for example, finding accidental agreement of two unrelated
IrisCodes in even 65% or more of their bits (a Hamming Distance of 0.35 or lower)
has very small probability (1 in 295,000). This illustrates that we can tolerate a huge
amount of corruption in iris images due to poor resolution, poor focus, occluding
eyelashes and eyelids, contact lenses, specular reflections from the cornea or from
eyeglasses, camera noise, etc. We can accept matches of very poor quality, say up to
30% of the bits being wrong, and still make decisions about personal identity with
very high confidence.

5. Decidability of Iris-Based Personal Identification

The overall decidability of the task of recognizing persons by their iris patterns is
revealed by comparing the Hamming Distance distributions for "same" versus
"different" irises. To the degree that one can confidently decide whether an observed
sample belongs to the left or the right distribution in Figure 5.9, this recognition task
can be successfully performed.

Figure 5.9 Decision environment for personal identification based on iris patterns.

For such a decision task, the Decidability Index d' measures how well separated
the two distributions are, since recognition errors are caused by their overlap. If their
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two means are p i  and p2, and their two standard deviations are o1 and 02, then d’ is 
defined as 

This measure of decidability (or detectability) is independent of how liberal or 
conservative is the acceptance threshold used. Instead it reflects the degree to which 
any improvement in (say) the False Accept error rate must be paid for by a worsening 
of the False Reject error rate. The measured decidability is d’ = 11.36 for iris 
recognition, which is much higher than that reported for any other biometric or 
inferred from their corresponding dual histogram plots showing “same” versus 
“different” template comparisons as in Figure 5.9. 

By calculating the areas under the curves fitted to the observed distributions of 
Hamming Distances, we can compute the theoretical error rates as a function of the 
decision criterion employed. These are provided in the following Table, for various 
Hamming Distance acceptance thresholds. The cross-over point is at 0.342, at which 
fraction of disagreeing bits the odds of either type of error are equal to 1 in 1.2 million 
for the fitted pair of distributions in Figure 5.9. 

6. Identification versus Verification 

Because the probabilities of False Accepts are so low even at rather high Hamming 
Distances, as shown in the Table above, it is possible (indeed routine) with this 
approach to perform exhaustive searches through very large databases for 
identification of a presenting iris pattern, rather than merely a one-to-one comparison 
for verification. Clearly, exhaustive search identifications are far more demanding 
than mere verifications, since the probabilities of a False Accept in any single 
comparison are increased proportionately with the size of the exhaustive search 
database. More precisely, if P1 is the probability of a False Accept in a single (one-to- 
one) verification trial with an impostor, then PN, the probability of getting any False 
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Matches in identification trials after searching exhaustively through a database of N 
different impostors, is: 

PN =l-(l-P1)N (5.9) 

This is a terribly demanding relationship. For example, even if  were 0.001 (better 
than any published test results for overall face recognition, or most other non-iris 
biometrics), then even after searching through a database of merely N = 200 
impostors, the probability of getting one or more False Matches among these 
impostors is Phi = 0.181 When the database of impostors has grown merely to N = 
2,000 the probability of a False Match among them will have grown to PN = 0.86. 
However, with iris recognition, the confidence levels against a False Match are so 
high that one can afford to search even a national or a planetary database 
exhaustively, and still suffer only minuscule chances of a False Match despite so 
many opportunities. The above Table of cumulatives under the fitted British Telecom 
distributions indicates that if we use an acceptance Hamming Distance criterion of 
0.28 (i.e. allowing up to 28% of the bits in two Iriscodes to disagree while still 
accepting them as a match), the False Accept probability in single trials is lo-’*. Even 
after diluting down these odds by performing an exhaustive search over the total 
number of human irises on the planet, roughly lo’’, the chances of any False Match 
among them would still be only about 1%. This is an extraordinary statistical 
situation for a recognition system, and it reveals the power of combinatorics to solve 
pattern recognition problems by reducing them to the detection of the failure of a test 
of statistical independence, when there are enough degrees-of-freedom. 

7. Stability of Iris Patterns Over Time 

The within-class variability for a biometric (variation in a given person’s template 
over time or conditions) is the source of False Reject decisions. We saw in Figure 5.9 
that typically about 10% of the bits in an IrisCode disagree when the enrolled and 
presenting patterns are compared, due to factors such as inadequate imaging 
resolution, poor focus, motion blur, occlusion by eyelashes, artifacts from contact 
lenses, corneal reflections, scattering from scratches or dust on eyeglasses, CCD 
camera noise, etc. Because of non-uniform thickness of the iris, its elasticity is not 
uniform, and hence the first-order (‘‘rubber sheet”) model for inverting the 
deformations in the iris pattern as the pupil undergoes large dilation or constriction is 
not completely accurate. Moreover, at extreme dilations an iris may display radial 
folding rather than elastic deformation. All of these sources of corruption produce 
non-zero Hamming Distances for genuine matches; the tests by British Telecom 
(reported in [ 111 and reproduced above in Figure 5.9) show typical disagreement even 
under “good” imaging conditions in 8.9% of the bits. The fitted binomial distribution 
shown at left in Figure 5.9 has 46 degrees-of-freedom: this is the distribution one 
would expect to obtain from tossing a coin, whose probability of heads is p = 0.089, 
in runs of N = 46 tosses. We can tolerate this distribution because it remains so well 
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separated from the narrower one having 266 degrees-of-freedom centered on much 
higher Hamming Distances, that results from comparing different irises. 

There is a popular belief in long-term changes in the appearance of the iris, 
reflecting the state of health of the various organs in the body, one's personality or 
mood, and indeed one's future. Practitioners skilled in the art of interpreting these 
aspects of iris patterns and in diagnosing one's health, personality, and mutual 
compatibilities, are called iridologists. Iridology is popular in Rumania and in 
California; a Bay-Area directory of practitioners is available at 
htp://www.best.com/~joyful/contactlist.htm1, and a chart showing how each 
individual organ of the body is mapped onto a specific region of each iris for 
diagnosis is given at http://www.best.comi-joyful/charttoiridology.GIF. 

There may be a scientific basis for two sorts of changes in iris appearance: (1) soon 
after birth, a blanket of chromatophore cells establishes eye colour; until this happens, 
many babies have slate-blue eyes; and (2) some drug treatments for glaucoma 
involving prostoglandin-analogues are reported anecdotally to change iris colour, but 
this is not yet documented in the medical literature. In any case, changes in iris colour 
itself are irrelevant for the method of iris recognition described here, as all imaging is 
done with monochrome cameras and using primarily infrared illumination, in the 
700nm - 900nm band. The clinical database of iris images made available to this 
author from ophthalmologists' photographs spanning a 25 year period did not reveal 
any noticeable changes in iris patterns for individual Subjects; some changes of hue in 
the colour prints were apparent, but these are difficult to disentangle from variations 
in the colour printing process over such a long time period. 

As for the general claim that iris patterns reveal one's state of health and thus may 
change systematically over time, there have been four reviews published in medical 
journals reporting various scientific tests of iridology [3,4,10,12], and all dismiss it as 
a medical fraud. In particular, the review by Berggren [3] concludes: ''Good care of 
patients is inconsistent with deceptive methods, and iridology should be regarded as a 
medical fraud." 

8. Countermeasures Against Subterfuge 

There are several ways to confirm that a living iris is being imaged, and not (for 
example) a photograph, a videotape, or a fake iris printed onto a contact lens, glass 
eye, or other artifice. One obvious method is to track the ratio of pupil diameter to iris 
diameter, either when light levels are changing, or even under steady illumination. 
The pupil can be driven larger or smaller by programmed random changes in light 
level, with a response time constant of about 250 msec for constriction and about 400 
msec for dilation. But even without programmed illumination changes, the 
disequilibrium between excitatory and inhibitory signals from the brainstem to the 
enervation of the pupillary sphyncter muscle [2] produces a steady-state small 
oscillation at about 0.5 Hz termed hippus.  Since the algorithms must constantly track 
both the pupil boundary and the iris boundary anyway [7], it is routine to monitor the 
amount of hippus; its coefficient of variation is normally at least 3%. 

Further tests to exclude a photograph of somebody else's iris involve tracking 
eyelid movements, and indeed examining ocular reflections when simply turning on 
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and off small infrared LEDs in random sequences at various positions on a device 
face plate in front of the Subject. These should create correspondingly changing 
reflections fromthe moist cornea of a living eye, whereas a photograph would not be 
able to change the locations of specular reflections from the cornea of the 
photographed eye. (In fact there are four “Purkinje” reflections from a real eye, 
arising from its four optical surfaces: the front and back of the cornea, and the front 
and back of the lens. Three of these surfaces are curved outward and produce 
ipsilateral reflections, whereas the fourth is curved inward and so produces a 
contralateral reflection. Normally all four reflections can be detected, but the first 
dominates in intensity.) 

Natural iris Fake iris printed on a contact lens 

2D Fourier spectrum of natural iris 2D Fourier spectrum of fake iris 

Figure 5.10 Illustration of one countermeasure against subterfuge: detecting a printed 
iris pattern on a contact lens by the 2D Fourier domain artifacts of printing. 

Still further tests involve the characteristic spectral signature of living tissue in 
infrared illumination. Hemaglobin in oxygenated blood has an absorption band in 
near infrared wavelengths, and in specialized applications it is even possible to 
distinguish between arterial (oxygenated) versus venous (deoxygenated) blood with 
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such measures. Vein patterns create distinctive silhouettes in infrared wavelengths, 
and indeed this is the basis of a number of other biometrics. In contrast, printers’ dyes 
and emulsions and the reflectance properties of photographic papers are often 
completely ineffective for infrared light. 

Finally, certain vanity contact lenses are available in the USA with fake iris 
patterns printed onto them (purely for the purpose of changing one’s apparent eye 
colour). The fact that such a fake “iris” is floating on the spherical, external surface of 
the cornea, rather than lying in an internal plane within the eye, lends itself to optical 
detection; likewise the fact that the printed iris pattern does not undergo any 
distortions when the pupil changes in size, as a living iris pattern does. Moreover, the 
printing process itself creates a characteristic signature that can be detected, as 
illustrated in Figure 5.10. The panels show a natural iris, and a fake one printed onto 
a contact lens, together with their 2D Fourier power spectra. (The central square of 
each Fourier spectrum has been blanked out to prevent its domination.) The dot 
matrix printing process generates four points of spurious energy in the Fourier plane, 
corresponding to the directions and periodicities of coherence in the printer’s dot 
matrix, whereas a natural iris does not have these spurious coherences. 

9. Execution Speeds 

On an embedded Intel 486DX66 processor (66 MHz), the execution times 
critical steps in iris recognition are as follows, with optimized integer code: 

for the 

Once an IrisCode has been computed, it is compared exhaustively against all 
enrolled Iriscodes in the database, in search of a match. This search process is 
facilitated by vectorizing the Exclusive-OR comparisons to the word-length of the 
machine, since two integers of such length (say 32 bits) can have all of their bits 
XOR'd at once in a single machine instruction. Thus the elementary integer XOR 
instruction is an extremely efficient way to detect and tally up the total number of bits 
that disagree (i.e. the Hamming Distance) between two Iriscodes. Ergodicity 
(representativeness of subsamples) and commensurability (universal format of 
Iriscodes) facilitate extremely rapid comparisons in searches through large databases. 
On a 486DX66 processor the rate of raw comparisons approaches 100,000 Iriscodes 
per second, and this rate could be increased using dedicated PLA hardware to many 
millions of persons per second if such large databases of Iriscodes are ever enrolled. 
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10. Current Usage of this Technique 

All current commercially available systems for iris recognition are based on the 
algorithms described here, by software license of the executable binary code. These 
include systems made or under research by: British Telecom (UK); Sensar/Samoff 
Inc. (USA); NCR Corp. (UK); Oki Electric Co. (Japan); NTT Data (Japan); LG 
Electronics (Korea); Gamy AG (Germany); GTE Corp . (USA); Electronic Data 
Systems (USA); Spring Technologies (USA); and IriScan Inc. (USA) to which the 
author’s Patent 5,29 1,560 has been assigned. Current applications include: bank 
automatic teller machines (ATMs); telecommunications and Internet security; portal 
entry control; nuclear power station security; computer login validation; prison 
controls; electronic commerce security; and various government applications. 
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Abstract Retina based identification is  perceived as the most 
secure method of authenticating an identity. This chapter traces 
the basis of retina based identification and overviews evolution of 
retina based identification technology. It presents details of the 
innovations involved in overcoming the challenges related to 
imaging retina and user interface. The retinal information used 
for  distinguishing individuals and a processing method for 
extracting an invariant representation of such information ,from 
an image of retina are also discussed. The issues involved in 
verifying and identifying an individual identity are presented. The 
chapter describes performance of retina based identification and 
the source of inaccuracies thereof. The limitations of the retina 
based technology are enumerated. Finally. the chapter attempts to 
speculate on the future of the technology and potential 
applications. 
Keywords: Fundus. choroid, fundus  camera, astigmatism. 
ergonomics, infrared imaging, fixation. 

1. Introduction 

Identification of a given person is often an essential part of transactions on a network. 
While this is the goal, the fact is we often are left with substitutes for true personal 
identification in such transactions such as something the person knows (password) or 
has (a card, key, etc.). Retinal identification (RI) is an automatic method that 
provides true identification of the person by acquiring an internal body image, the 
retina/choroid of a willing person who must cooperate in a way that would be difficult 
to counterfeit. 

RI has found application in very high security environments (nuclear research and 
weapons sites, communications control facilities and a very large transaction- 

1 The author of this chapter is the original RI inventor and the founder of EyeDentify, Inc. 
( 1 976). Although, he no longer owns stock or otherwise has an interest in EyeDentify, ha has, 
at various times since 1987, served as its consultant. 
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processing center). The installed base is a testament to the confidence in its accuracy 
and invulnerability. Its small user base and lack of penetration into high-volume price-
sensitive applications is indicative of its historically high price and its unfriendly 
perception. 

2. Retina/Choroidas Human Descriptor 

Awareness of the uniqueness of the retinal vascular pattern dates back to 1935 when 
two ophthalmologists, Drs. CarletonSimon and Isodore Goldstein, while studying eye 
disease, made a startling discovery: every eye has its own totally unique pattern of 
blood vessels. They subsequently published a paper on the use of retinal photographs 
for identifying people based on blood vessel patterns [7]. 

Later in the 1950's, their conclusions were supported by Dr. Paul Tower in the 
course of his study of identical twins [S]. He noted that, of any two persons, identical 
twins would be the most likely to have similar retinal vascular patterns. However, 
Tower's study showed that of all the factors compared between twins, retinal vascular 
patterns showed the least similarity. 

The eye shares the same stable environment as the brain and among physical 
features unique to individuals, none is more stable than the retinal vascular pattern. 

Because of its internal location, the retina/choroid is protected from variations 
caused by exposure to the external environment (as in the case of fingerprints, 
palmprints etc.). 

Referring to Figure 6.1, the retina is to the eye as film is to camera. Both detect 
incident light in the form of an image that is focused by a lens. The amount of light 
reaching the retina (or film) is a function of the iris (f-stop). The retina is located on 
the back inside of the eyeball. Blood reaches the retina through vessels that come 
from the optic nerve. Just behind the retina is a matting of vessels called the choroidal 
vasculature. 

k (Area Band) 

Figure 6.1 Eye and scan circle (area band). 

The products of EyeDentify,Inc. have always used infrared light to illuminate the 
retina as will be discussed later. The retina is essentially transparent to this 
wavelength of light. The mat of vessels of the choroid just behind the retina reflect 
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most of the useful information used to identify individuals, so the term ‘‘retinal 
identification” is a bit of a misnomer but nevertheless useful because the term is 
familiar. RI in this chapter will be used interchangeably to mean retina/choroid 
identification. This area of the eye is also referred to by medical doctors as the eye 
fundus. 

It might seem that corrective error changes (such as becoming more near-sighted 
over time) might change the image of this very stable structure. In fact, the low 
resolution required to acquire adequate identification information masks any effect the 
focus errors might have. The RI products of EyeDentify, Inc. take advantage of this 
fact. No focusing of the RI system optics is necessary reducing cost and making the 
unit easier to use. 

The operational rule-of-thumb for the circular scan RI systems described here is as 
follows: If the person to be identified can see well enough to drive with at least one 
eye, it is highly likely that he/she can use RI successfully. 

Children as young as four years of age have been taught how to use RI. Once 
learned, RI is simple to use for the vast majority of the human population. 

3. Background 

The concept of a simple device for identifying individuals with RI was conceived in 
1975. A practical implementation of this concept did not emerge for several years. 
The author formed a corporation, EyeDentify, Inc. in 1976 and a full time effort began 
to research and develop RI. In the late 1970s several different brands of ophthalmic 
instruments called fundus cameras were modified in an attempt to obtain live images 
of the retina suitable for personal identification [9,10]. Using then available fundus 
cameras for the optics portion of RI had at least three major disadvantages: 
1 .  Critical alignment was necessary requiring either extraordinary expertise or the 

assistance of an operator. 

A bright illumination light was necessary. 

They were too complex and therefore too expensive. 

2. 

3.  

The early RI experiments used visible light to illuminate the retina. This proved 
undesirable since the amount of light required for a sufficient signal-to-noise ratio was 
often uncomfortable to the user. An experiment was tried using near infrared as the 
illuminating source. This wavelength is invisible to the human eye and eliminates the 
bright illuminating light that can be annoying to the subject and cause his/her pupils to 
constrict (lowering the detected light). Inexpensive light sources and detectors existed 
for the near IR providing a cost saving advantage as well. 

The first practical working prototype of RI was built in 1981. An  RI camera using 
an infrared light was connected to a general-purpose desktop computer for analyzing 
the reflected light waveforms. Several forms of feature- extraction algorithms were 
evaluated. Simple correlation proved to be a superior matching technique however. 

Four years of refinement led to the first production RI system built by EyeDentify, 
Inc. (then of Portland, OR). It was called the EyeDentification System 7.5 and 
performed three basic functions: 
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1. Enrollment - where a person’s reference eye signature is built and a PIN number 
and text (such as the person’s name) is associated with it. 

Verification - a person previously enrolled claims an identity by entering a PIN 
number. The RI scans the ID subject’s eye and compares it with the reference eye 
signature associated with the entered PIN. If a match occurs, access is allowed. 

Recognition - RI scans the ID subject’s eye and “looks-up” the correct, if any, 
reference eye signature. If a match occurs, access is allowed. 

System 7.5 performed a circular scan of the retina, reducing the circular fundus 
image composed of 256 twelve bit logarithmic samples into a reference signature for 
each eye of 40 bytes. The contrast pattern was coded in the frequency domain. An 
additional 32 bytes per eye of time-domain information was added to speed up the 
Recognition mode. 

2. 

3. 

Patents 

State-of-the-art RI is covered by at least nine active U.S. patents. The RI 
implementation described here is covered by at least four major U.S. patents dating 
back to 1978 [2,3,4,5]. The patent with broad first claim to the method of RI [2] 
expired in 1995 and is thought to have discouraged others from developing RI 
technology. Now that the method of identifying individuals by their retinal patterns is 
no longer protected (as opposed to the apparatus to identify), we may see more 
interest by others in developing RI technology that is not protected by the active 
patents whose claims are less general than the expired patent. EyeDentify, Inc. either 
owns or has exclusive license to the three aforementioned patents that have not, as 
yet, expired. These patents deal with the alignment/fixation and user interface 
subsystems of the RI technology. 

4. Technology 

The three major subsystems of the RI technology are: 
Imaging, signal acquisition, and signal processing: An RI Camera that 
translates a circular scan of the retina/choroid into a digital waveform. 

Matching: A computer that verifies or recognizes the acquired eye pattern with a 
stored template. 

0 Representation: The eye (retina) signature reference templates with the 
corresponding identification information; storage issues. 

Sections 6, 7, 8, 9, and 10 describe in more detail the entire RI system. Section 5 
discusses representation issues. 

0 
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5. Eye Signature (Reference Template) 

The representation of retina is derived from a retina scan composed of an annular 
region of retina, scan circle (Figure 6.1). The spot size (width of annular band) and 
scan circle size are chosen to return sufficient light and contrast detail in the worst 
case (very small eye pupil) to support the performance specification of the RI. 

Two major representations for the RI eye signature have emerged. The original 
representation consisted of 40 bytes of contrast information encoded as real and 
imaginary coordinates in the frequency domain and was generated with the fast 
fourier transform. 

The second representation, while slightly larger at 48 bytes, leaves the contrast 
data in the time domain. The primary advantage of the time domain representation of 
the eye signature is computing efficiency resulting in lower computer cost and/or
higher processing speed. 

Taking the ratio of the brightness at any point to the average regional brightness 
removes artifacts that are due to non-uniformity of the beam at the point where it 
enters the eye. This also normalizes the identifying signal for varying pupil sizes that 
greatly influence the total light returned to the detector. 

The fully processed digital eye signature can be described as a normalized contrast 
waveform of the entire scan circle. Average RMS contrast averages approximately 1.5 
to 4% of the total light detected. The contrast maximum is the brightest reflection 
from the scan circle and the contrast minimum is the darkest reflection from the scan 
circle. The waveform is normalized so that the maximum or the minimum is at the 4 
bit limit (either +7 or -8, respectively) to fully utilize digital dynamic range. 

The simplest form of the RI reference eye signature is an array of 96 four-bit 
contrast numbers for each of 96 equally spaced scan circle positions for a time- 
domain pattern of 48 bytes per eye. An optional 49th byte carries the AC RMS value 
of the waveform to be used for equalizing the RMS values of the acquired and 
reference waveforms in the correlation (match) routine. 

6. RI Camera 

Most of us, at one time or another, have gone to an optometrist or ophthalmologist to 
have our eyes examined. As part of the exam, the doctor uses an instrument called a 
retinascope. The RI  camera accomplishes the same thing as a retinascope. Its light 
source is projected onto the subject's retina and (the doctor in case of the retinascope) 
detects the return light. The light coming from the retinascope is in a collimated beam 
so that the eye lens focuses it to a spot on the retina. 

The retina reflects some of the light back towards the eye lens, which once again 
collimates the light. This light leaves the eye at the same angle that it enters the eye, a 
process called retro-reflection. The light reflected from the retina is observed by the 
examining doctor who holds the instrument to his own eye. In the case of RI, a light 
detector replaces the examining doctor's eye. 

If the doctor were to examine the eye from a number of points 10 degrees off the 
visual axis of the patient's eye, it would simulate the action of the fovea centered RI 
scan we will discuss here. 
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Old Camera 

Light Transmitter 

Figure 6.2 Old  camera. 

The first products of EyeDentify used a camera disclosed in detail in US Patent 
#4620318 [4] (Figure 6.2). This design used a rotating mirror assembly to generate 
the scan circle on the retina. Hot mirrors (reflecting infra red while transmitting 
visible light) are used to combine the Scanner optical path and the align/fixatetarget 
optical path. What follows is a description of the operation of the relevant portions of 
the camera described in the patent as they relate to the EyeDentificationSystem 7.5. 

A fixation target (33) allows the RI subject to properly focus his/her eye (5) and 
align its visual axis (10) with an optical axis (34) of the scanner. Fixation target (33) 
includes a visible light emitting diode (35) positioned in a mounting structure (36) 
having a pinhole (37). LED (35) illuminates the fixation reticle (38). 

US Patent#4923297 [ 1 ] describes an improved fixation targeting system that 
replaced the system described above in production 7.5‘s. This patent describes the 7.5 
fixation target system as a quasi-reticle that generates enhanced multiple ghost 
reflections of a single pinhole. It is a simple plate of glass with a partially silvered 
mirror on one surface and an opaque mirror surface with a pinhole on the other 
illuminated by a light emitting diode. 

Alignment is a critical requirement of RI and this so-called “ghosticle” 
alignmentlfixation system accomplishes its function elegantly. It is simple and 
intuitive -just line up the dots - and both alignment and fixation are assured. Yet it is 
inexpensive and easier to align in production than previous RI alignment/fixation
systems. 

Once alignment and fixation are accomplished the scan can be initiated either 
manually by pressing a button or automatically when the RI is placed in the Auto-
Acquire mode (a feature introduced in the model 8.5 product). 

An IR source (39) provides a beam of IR radiation for scanning fundus(12) of eye 
(5). IR source (39) includes an infrared light emitting diode (the drawing shows a 
tungsten bulb (40) as the light source) that produces light that passes through a spatial 
filter (42) and is refracted by a lens (44). An  IR filter (46) (not used in the IR LED 
version) passes only the IR wavelength portion of the beam, which then passes 
through a pinhole (48). The beam is then reflected by a mirror (50) onto a beam 
splitter (52) that is mounted to coincide with the fixation target optical axis (34). 
. The scanner directs the beam into the fixated eye from an angle of 10 degrees 

offset fromthe optical axis. The scanner includes a rotatable housing (57) and scanner 
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optics that rotate with the housing as indicated by a circular arrow (58). As the 
scanner rotates, the 10 degree offset beam rotates about the optical axis. 

The scanner optics include a hot mirror (59) (one that reflects IR radiation while 
passing visible light), located in the path of the source beam and the fixation beam. 
The visible wavelength fixation beam is passed through hot mirror (59), while the IR 
source beam is reflected away from the housing (57) at a point spaced apart from 
optical axis (34) and is oriented to direct the IR beam through an IR filter (62) and 
into the eye (5) as housing (57) rotates. Hot mirror (59) causes a displacement of the 
fixation beam so an offset plate (64) is positioned to compensate for the displacement. 

When housing (57) rotates, the IR beam is directed into the eye (5) in an annular 
scanning pattern centered on the fovea as represented by circular locus of points (32). 
Light reflected from fundus (1 2) of the eye (5) varies in intensity depending on the 
structures encountered by the scan. The reflected light is re-collimated by the lens 
(30) of the eye (5) directed out pupil (28), back through objective lens (66) and IR 
filter (62), and reflected off scanner mirror (60) and hot mirror (59). The reflected 
beam is then focused by objective lens (56) on to beam splitter (52) which passes a 
portion of the reflected scanning beam to a hot mirror (70) that reflects the beam 
through a spatial filter (72). The beam is next reflected by a mirror (74), refracted by a 
lens (76) and passed through another spatial filter (78) to a detector (80). 

New Camera 

Current RI camera technology is based on an active US Patent [ 5 ] .   It is a much 
simpler design that also takes advantage of the concentric nature of the RI's fixation 
and scanning to reduce labor intensive alignment of camera parts and the part count. 

The current RI camera is shown schematically in Figure 6.3. It includes a rotating 
scanner disk (116) that integrates a multi-focal Fresnel fixation lens (114), a Fresnel 
optical scanner (122,124) and an angular position encoder (140) into a unitary, 
inherently aligned, compression-molded scanner disk. An RI subject views through 
the multi-focal Fresnel lens, an image of a pinhole (108) illuminated by a krypton 
bulb (104). The multi-focal lens is centered on the disk and creates a multiple in- and 
out-of-focus images (180 182, 184, 186) of the pinhole image. By setting the focal 
distances of these images along a range that includes corrective errors of from -7 
diopters (very near sighted) to +3 diopters (very far sighted), at least one of the 
pinhole images will be in relatively sharp focus for virtually everyone in the RI 
subject population. The images will appear concentric when the RI subject is properly 
aligned with the scanner disk and associated optics. 

Once aligned, the subject initiates scanning which causes the scanner disk to rotate. 
The Fresnel optical scanner receives IR light from the krypton bulb light source and 
creates an IR scanning beam (126). IR light reflected by the eye fundus (12) of the RI 
subject returns via a reciprocal path, by way of a beam splitter (1 12) and into a 
detector (134) to generate eye waveform data. Rotational position information from 
the encoder instructs the signal acquisition system when to sample the detector's 
output. 

The key feature of this new RI camera design is that it integrates and inherently 
aligns multiple optical elements greatly reducing both the material and labor costs of 
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the original RI camera. Overall costs of the camera yields to manufacturing 
economies of scale much more so than with the original RI camera. 
Both camera types share the same subsystem functions: 

loo\ P, 

Figure 6.3 New camera. 

Target - Align & Fixate 

To insure that the circular scan of the RI is centered on the fovea and that the subject 
is in the scanner beam throughout the scan, an alignment/ fixation target is presented 
to the ID subject. One form of this target is an optical system that presents say four 
simple reticles at focal distances of -7, -3, 0 and +3 diopters. For virtually all of the ID 
population, at least one of the reticles will be in focus regardless of corrective error 
(near-sightedness through far-sightedness). When the ID subject “focuses” (fixates) 
on the target, the RI is angularly aligned to subject’s eye, centering the RI's scan circle 
on the eye fundus,When he/shealigns two or more of the reticle patterns nulling their 
parallax, the RI illumination beam is centered on the eye pupil. Translation along the 
optical (Z) axis is not critical and is achieved by providing a rest for some part of the 
face (forehead, eye socket, etc.). Rotation about the Z-axis caused by head tilt is 
addressed by the Rotator algorithm, discussed later. 

It is important to note that Fixation/Alignment is an absolute requirement for this 
method of RI to work. It would be prohibitively difficult to identify someone using 
RI without his or her cooperation in performing this function. Depending on one’s 
perspective, this requirement can be seen as a benefit (usually to the ID subject) or a 
negative (covert ID). This does, however, prevent RI's use in identifying an 
individual against his or her will which may make RI appear more acceptable to the 
ID subject population. 
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Transmitter (Light Source) 

The light source is ideally near infrared and is not visible to the identification subject. 
The illumination spot projected on the retina must be uniform. A suitable diffuser is 
required to achieve spot uniformity when using a light source that, when projected on 
the retina/choroid, is not homogenous. This is usually the case with an IR Light 
Emitting Diode and can also be true of other light sources. 

A tungsten lamp is considerably brighter than an IRED and can produce better S/N 
figures. The disadvantages of such a lamp compared to an IRED is the need for filter, 
turn-on time and lamp life. Retinal identification systems have been proposed that 
would use a laser (preferably solid state). The author is not familiar with any 
commercially available system that uses a laser, however. Further, lasers can be 
considered dangerous by the RI subject population. 

Receiver 

The light receiver is composed of a silicon photodetector, a high gain preamplifier 
and a sharp cut-off low-pass filter. The filter is necessary to sharply reduce high 
frequency noise generated by the detector/preamp that is outside of the useable 
passband which is determined by the spot and scan circle sizes and the scanner speed. 
With the selected parameters a good choice is an 8th order switched capacitor elliptic 
filter with a corner frequency of approximately 220 Hz. 

Scanner 

The scanner has to deal with the light noise arising from (i) corneal reflections, (ii) 
other scattered light sources, and (iii) ambient light. Reflected noise in the RI comes 
from essentially four sources, the front and back surfaces of the cornea, and the front 
and back surfaces of crystalline lens. Extensive spatial filtering that is conjugate to 
the retina and the scan angle reduces the light noise to insignificance. 

Corneal reflections of the scanner light source is one of the primary reasons for 
using a circular rather than a raster scan of the eye fundus. The reflections would 
render the center pixels of a raster scan of the retina useless unless an annular 
illumination requiring very critical alignment is used. The scanner consists of the 
following components comprising the signal acquisition and processing subsystem: 

7. Signal Acquisition Subsystem 

The signal acquisition subsystem consists of the following components: 

Detector/Preamplifier 

The silicon photodetector operating in the photo-ampuric mode receives the light 
collected from the RI camera. It is converted to a voltage by a low noise op-amp 
configured as a trans-impedance amplifier. With a carefully selected op-amp, the 
primary sources of electrical noise are the thermal noise of the feedback resistor and 
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quantum noise. A second op-amp brings the signal level up to a level sufficient to 
drive the contrast processor. 

A/D Conversion 

The raw unprocessed analog signal derived from the camera photodetector can span at 
least two orders of magnitude due to the range of pupil sizes encountered in normal 
operation of the RI. Performing the conversion at this point requires close to 16 bits 
of resolution to accommodate absolute signal variations, contrast figures and 
sufficient resolution left to quantize the “contrast” portion of the signal. A more 
economical scheme is to perform the contrast processing function ahead of the 
conversion. An 8 bit analog-to-digital converter is all that is required in this case 

Contrast Processor 

8. The function of this stage in the signal chain is to reduce the raw camera signal 
into salient contrast information that has both human descriptor qualities of 
invariance and discrimination. It can be done in hardware or software and both 
methods have been used successfully in EyeDentify’s commercial products. The 
far less expensive modality is hardware because it dramatically reduces the 
resolution required of the analog /digital converter. The contrast processor 
removes the redundant or variable content from the acquired scanner waveform 
while retaining sufficient information to yield a unique eye signature. 

8. Computing Subsystem 

The computing subsystem could be explained in terms of its hardware and software 
components. 

Hardware 

EyeDentify’s System 7.5, the first widely available RI, used a Motorola 68000 
microprocessor as both the controller and signal processor. By moving contrast 
processing to hardware and coding correlation in the time domain in the late 1980s, it 
was possible to move to a 68HC11 micro-controller to replace most of the 
functionality of the 68000 based System 7.5. The cost of the computing elements of 
RI have been and currently are insignificant compared to the opto-mechanical portion 
of the system. 

Software 

The software performs the following two functions: phase correction and matching. 

Phase Correction 
Each time the RI subject looks into the RI camera, his or her head may be slightly 
tilted (rotated) from the position it was before. The rotator algorithm (phase corrector) 
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shifts the acquired waveform through the equivalent of several degrees of rotation or 
head tilt. This is done while correlating it with the stationary reference eye signature 
to find the best match (highest correlation). 

Matching 

Comparison of the acquired contrast waveform is done with a routine that performs 
the following steps: 
1. Sample rate converts the reference eye signature into an array with the same 

number of elements as the acquired array. 

2. Normalize both arrays to have a RMS value of 1.0. 

3. Correlate arrays using the time domain equivalent of Fourier-based correlation. 

The quality of match is indicated by the correlation value, where the time shift is 
zero. It ranges from + 1 .O, a perfect match, to - 1 .O, a perfect mismatch. Experience has 
shown that scores above 0.7 can be considered a match (see Performance discussion 
below). 

8. System Operation 

Taking an Eye Reading 

Central to every RI transaction is the process wherein the camera scans the RI 
subject's eye. We present here the detailed user instructions below to give an idea of 
the user involvement and training needed for retina based identification. The subject is 
instructed as follows: 

If you wear glasses, take them off (does not apply to contacts). 

If the system requires PIN (Personal Identification Number), enter it (recognition 
does not require a PIN). 

Position camera at eye level (or eye to camera) 

The target consists of a number of softly illuminated dots. Moving the head in 
relation to the eye lens opening, without tilting or skewing the head centers the 
target. Do this until all of the dots move one behind the other. The smaller dots 
will then appear inside the larger dots. 

Both eyes should be wide open. Squinting or closing one eye can cause eyelashes 
to be included in the reading. 

Be sure that your eye is about three-quarters of inch from the eye lens. 

Press the scan button (or wait for scanner to stop if in the Auto-Acquire mode). 

Hold your head steady during the reading. 
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0 Although it is important to fixate on the center of the target during the reading, 
you should not fixate for more than a couple of seconds before pressing the 
button. Otherwise, the eye may drift. 

Various incarnations of RI cameras and systems have different user requirements, 
but the steps above apply generally to all of them. 

Alignmen t/Fixa tion 

To use RI, it is important for the subject to be aligned with the RI camera and fixated 
on its target. After peering into the camera, the subject achieves alignment by lining 
up the dots of the target so they appear as one. At that point fixation is also 
accomplished since the virtual dot image is then focused on the fovea of the subject's 
eye (Figure 6.1). This process assures that the subject's eye pupil is within the 
''acceptance diamond" which is the cross sectional shape of the volume where the 
entire scan's beam will fill the eye pupil. This volume is essentially like two cones 
placed together at their bases with their centers along the eye's optical axis (the Z 
axis). A larger volume means less critical alignment. The volume is a function of the 
exit/entrance aperture, which is determined by the size of the RI camera's objective 
lens. 

Scanning 

Eyeglasses must be removed for the RI camera to work reliably. There are two 
reasons: 1) Reflections from the lens surface may interfere with the scanner signal, 
and 2) Distortion of the retinaichoroid image may occur if eye glasses are not in the 
same position on the face from use to use such as when they slide down the ID 
subject's nose. If an attempt is made to enroll an individual with eyeglasses, it is 
possible that the eye glass reflection will be enrolled, not the retinaichoroid, resulting 
in a very simple eye signature that might be duplicated. 

Contacts do not need to be removed. Certain types of contacts can prove 
problematical. Lenses can cause improper signatures if any part of the edge of the lens 
is inside the eye pupil while the eye is being scanned. Generally, the effect of contacts 
on eye signatures is so slight that it is not necessary to enroll a given eye both with 
and without them, except possibly in cases of severe or unusual correction (extreme 
near- or far-sightedness and/or astigmatism). 

RI at a Distance 

Just as the eye doctor can use a retinascope at a distance from the patient, a suitably 
designed RI can be used at a distance from the ID subject. However, the size of the RI 
must increase proportionate to the scan distance in order to support the RI's scan circle 
diameter. Working RI  systems with an operating distance of 12 inches have been 
demonstrated in the laboratory. Other considerations in such systems include ambient 
light conditions and Fixation/Alignment issues. Light shields sizes have to grow in 
proportion to the operating distance. A long distance universal focus target's 
requirements change when the operating distance exceeds a certain threshold. Scanner 
beam size will need to be larger as well. 
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Enrollment 

RI enrollment is the process of acquiring the reference eye signature. Each eye 
signature is built from several eye readings. The person responsible for enrolling a 
new RI subject, the enroller guides that person through the following steps: 

Instruction on camera use. Enroller instructs the enrollee on correct RI camera 
use. Enroller usually demonstrates this by scanning his/her own eye and then 
describes what the Enrollee must do to align the camera. Fixation is automatic 
when the enrollee achieves alignment. 

Several scans until correct fixation/alignment is verified. Out of beam condition 
(meaning the subject has not achieved alignment) is detected when the raw signal 
drops off in some part of the waveform. Both manual and automatic modes have 
proven effective for this purpose. Fixation can only be verified when scans are 
compared. Correlation scores of a scan with the reference eye signature greater 
than, say, 0.75 to 0.8 indicate that correct fixation has been achieved. 

Several scans averaged. Scans that have a correlation within a certain range 
(such as 0.75 to 0.8 are added to a waveform average. The impact on correlation 
scores of variant features such as a choroidal vessel that is substantially tangent to 
the scan circle is reduced with averaging. 

Optional Recognize - verifies whether or not the new enrollment eye signature 
already exists in the database either because the new enrollee has already enrolled 
the eye or the database is large enough to include a sufficiently similar eye 
signature to cause a false accept error in the Recognition mode. This step assures 
the new enrollment eye signature is unique to the database. 

Assignment of linked data (Name, Pin #, etc.). 

Store enrollment data. 

Automatic RI enrollment techniques have been studied wherein eye scans that do 
not match any eye signature in the database (using the Recognition algorithm 
described below) but appear repeatable are given a label indicating such and stored to 
indicate intrusion attempts. The RI system can alert an administrator when 
unrecognized but repeatable eye signatures occur by displaying/printing that label. 

It is important to note that enrolling is somewhat of an art as well as a science. 
The enroller, through experience, learns how best to train each new enrollee and to 
interpret correlation scores during the enrollment process. An enroller should 
remember several key points. Correlation scores should get progressively better as 
enrolment progresses. It is important for the enrollee to look away between scans to 
insure that the averaging process creates a true average of variations in head position. 
A person’s ‘‘dominant eye” can be easier to enroll. If one eye is difficult to enroll, try 
the other. 
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Verify 

Subsequent to enrollment an enrollee can authenticate hisiher identity by entering a 
code (such as a PIN number). An eye scan is taken and compared with the eye 
signature associated with the PIN number. If the eye scan matched against the eye 
signature produces a correlation score above the match threshold (typically a 
correlation score of 0.7), the person scanned is said to be the person enrolled with the 
given PIN and an appropriate action is taken. 

Recognize 

A scan is taken and using the recognize algorithm, a match to the entire database 
above the correlation threshold identifies the person requesting access. Any eye 
signature recognize algorithm is considerably more compute intensive than verify 
algorithm. The simplest form of recognize would take the verify time and multiply it 
by the number of people in the eye signature database. Several multi-level techniques 
have been developed that reduce the time it takes for the recognition mode on given 
computing resources. In some cases, execution time has been reduced as much as two 
orders of magnitude. The down side of the methods tried is that they sometimes 
eliminated good candidates, producing false reject errors. 

Today's fast microprocessors and time domain correlators have nearly eliminated 
the need for multi-step recognition routines for databases of medium size (hundreds to 
tens of thousands) and, in the process, have virtually eliminated false reject errors 
produced by multi-level recognition algorithms. 

Large Database Recognition 

Recognition is identification where the ID subject does not claim an identity (with a 
PIN number, card etc.) as part of the process. The acquired scan waveform is 
compared to an entire database of eye signatures to find the best match. 

Currently available parallel processing computers can perform high accuracy RI 
recognition of databases composed of millions of eye signatures at very low relative 
cost. Indeed, some RI recognition mode feasibility has been studied on massively 
parallel processing supercomputers with very promising results. Simply dividing up 
the database and having each processor correlate the acquired scan with its portion of 
the database is the simplest method. RI's small signature size, uniqueness and small 
variance gives it a significant competitive advantage in terms of cost, speed and 
reliability for large database recognition mode over other biometric ID methods. 

Counterfeiting the Scan 

A counterfeit eye must have the following characteristics. 
0 

0 

The same optical system to simulate retinaichoroid reflectivity. 

A lens to substantially focus the incoming collimated beam and to re-collimate 
the reflected beam. 
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0 An alignment/fixationsystem that angulary orients the counterfeit eye about it's 
X and Y axes, translates the counterfeit eye along its X and Y axes, positions the 
eye at the correct distance from RI camera (translation along Z) and rotates the 
eye about its Z axis within the tilt range of the Rotation algorithm. 

The last item is the most difficult to counterfeit. A well-designed RI provides as 
little information about the correct alignment/fixationas possible to the would-be 
counterfeiter. Variable fixation displays could also require a counterfeiter to perform 
an interpretation of the target in order to correctly interact with the acquisition 
process. For example, the ID subject could be instructed to remember a random three 
digit sequence that is displayed in the RI fixation target and to key it in later. This 
would force the counterfeiting system to see, interpret and output to the RI keypad the 
three digit sequence. 

9. Performance 
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Figure 6.4 Mismatch distribution in retina based identification. 

Many tests of performance of the retina/choroidscanning technology described have 
taken place, some with databases of several hundred individual eyes. Sandia National 
Laboratory has tested the products of EyeDentifyand reported no false accepts and a 
three-attempt false reject error rate of less than 1 .O% [11  ] .

Mismatch Frequency Distribution 

A frequency distribution of each eye signature compared against all others matches 
very closely with an ideal guassian distribution with a mean of 0.144 and a standard 
deviation of 0.117 as shown in Figure 6.4. The corresponding right tail probability of 
guassian distribution with this mean and standard deviation at a threshold score of 0.7 
is approximately one in one million. 
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Source of Errors 

The retina/choroid contrast waveform has a low variability when acquired under 
correct conditions. The conditions under which the variability could increase and 
cause false reject (Type II)  errors are: 

0 

0 

U 

Insufficient pupil size 

 

Lack of Fixation or sustained fixation 

Out of scanner beam condition 

Incorrect eye distance to RI camera lens 

Obstruction and distortion of the optical path from: 

dirty camera window 

contact lens edges 

subject neglects to remove eyeglasses 

0 Ambient light interference 

Small pupils can cause false rejects. The purpose of the eye pupil is to regulate the 
amount of light reaching the retina. Bright environments such as those encountered 
outdoors in the daytime can cause pupils to constrict to a very small size compared to, 
say, indoor lighting conditions. Because light must pass the eye pupil twice (once 
entering and once exiting the eye), the return light to the RI camera varies inversely 
with the fourth power of the pupil diameter. In the worst case (smallest pupil size), 
resulting retinaichoroid signals can be attenuated by as much as four orders of 
magnitude. The signal can be so low that system noise swamps the acquired eye 
signature data, lowering correlation scores. 

Outdoor environments can also be less conducive to reliable RI performance 
because of the potential for high ambient light noise entering the camera and 
interfering with the scanned waveform. Because of the uniqueness of the 
retina/choroid contrast circle characteristic, false accept (Type I) errors tend to be 
limited to large database recognition. 

10. RI Subject Motivation 

An important and enduring observation of the use of RI to enroll and identify several 
thousand individuals over a period of two decades is the importance of motivation to 
have the enrollment and identification transactions succeed. Many of these 
observations can be said, in a general sense, of other biometrics as well. 

Enrollment is the subject's first hands-on use of RI The subject should not fear 
harm from the RI camera before using it the first time. Learning to align and fixate 
the RI camera, while a simple process, can be impeded willfully or subconsciously by 
a suspicious subject. Several scans are necessary and depending on the quality of the 

0 
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scans, this procedure can take several minutes. Because RI requires cooperation from 
the subject, sabotage at this stage is very easy. If a subject is difficult to enroll, the 
subject’s motivation can deteriorate as time passes during the enrollment process. 

The identification transaction (verify or recognize) is less susceptible to fear based 
motivational problems simply because if a subject has been successfully enrolled 
he/she must have overcome considerable fear or reluctance already. But subtle 
sabotage can be a factor here as well. Deliberate false reject transactions with an 
accompanying complaint such as “it gives me a headache” can diminish confidence in 
the system. It is very difficult to ascertain whether subjective comments of this kind 
are truthful yet the result is the same - RI is less attractive. 

Many user’s have naively assumed that the lack of negative consequences (I can’t 
work here because I can’t/won’t use RI) is sufficient to gain acceptance of a RI system 
by the ID subject population. Experience has taught users of RI that a perceived 
personal benefit (I am better off than people who can't/won’t use RI) to the ID subject 
has a dramatically positive effect on RI enrollment and identification speed and 
acceptance. 

11. Limitations 

Perceived Health Threat 

While the low light level is harmless to the eye, there is a widely held perception that 
retinal identification can hurt the retina. This appears to be less true in information 
access applications since ID subjects are generally less fearful of new technology. 

Outdoors vs. Indoors 

Small pupils can reduce the Type I I (False Reject) performance. Because light must 
pass the eye pupil twice (once entering and once exiting the eye), the return light can 
be attenuated by as much as four orders of magnitude when the ID subjects pupils are 
small. The signal can be so low that quantum and feedback resistor noise swamp the 
eye signature data lowering correlation scores. Further, outdoor environments are less 
conducive to reliable RI performance than indoor environments because of ambient 
light conditions. 

Ergonomics 

The need to bring the RI device to an eye or the eye to the device makes the RI more 
difficult to use in some applications than other biometric identification technologies. 
For instance, it is quite easy for a subject, regardless of his height to reach a hand to a 
fingerprint or hand geometry. The eye is much less easily manipulated. Bringing the 
RI camera to the eye seems more practical in “workstation” applications while the 
opposite is true in physical access control applications. 
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Severe Astigmatism 

Because eyeglasses must be removed in order to use RI systems reliably, people with 
severe astigmatism may have trouble aligning the dots in the camera's align/fixate 
target. To these individuals, what appears to them can be quite different than dots. 
This can result in ambiguous feedback during the alignment step of RI  camera use, 
causing the eye pupil to be outside the ''acceptance diamond" for part of the scan. 
That part of the scan will therefore be invalid. 

, 

High Sensor Cost 

The camera requirement of RI puts a lower limit on the cost of the system. 
Manufacturing economies of scale can mitigate this problem, but RI is likely to 
always be more expensive than some other biometrics such as fingerprint (using 
chips) or speaker recognition (telephone hand-set as sensor). 

12. Future 

The inherent simplicity of the RI means that in mass production the cost of the entire 
unit could come below, say, $100. This is still considerably more expensive than 
some competing technologies which have a much cheaper scan component (such as 
fingerprint chips). The trade off is accuracy. If accuracy is important to the ID 
application, perhaps the additional cost of RI can be justified. 

With the proliferation of e-commerce applications, RI might reach a critical mass. 
Because of the RI's accuracy and small signature size it fits more naturally with the 
encryption that is needed for e-commerce security than competing biometric ID 
technologies. Public key encryption systems are only as secure as their private keys 
and a high performance biometric identifier like RI is ideal for keeping private keys 
secret. 

13. Conclusions 

RI is a highly accurate and secure biometric identification method. The example RI 
system presented utilizes a small reference data size that makes it attractive in large 
population networked systems in both verification and recognition modes. RI, 
currently, is both image and performance based. The performance aspect restricts 
successful use to those who are motivated to see the ID transaction successful. 

0 

0 

0 Unfriendly access 

The future will likely bring the cost of RI down dramatically if a sufficiently large 
demand is created to achieve manufacturing economies of scale especially as it 

RI's weakness are: 
The cost of the signal acquisition hardware 

ID subject's unfounded fear that it is harmful 
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applies to the RI camera optics and mechanics. Fear becomes less of an issue as the 
computer/internet age expands and raises the level of technological awareness and 
acceptance. Lack of a sufficient level of friendly access may prevent RI from 
becoming a truly ubiquitous method of identification. 
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Abstract Automatic on-line signature verification is an 
intriguing intellectual challenge with many practical applications. 
I review the context of this problem and then describe my own 
approach to it. My approach breaks with tradition by relying 
primarily on the detailed shape of a signature for its automatic 
verification. rather than relying primarily on the pen dynamics. I
propose a robust, reliable. and elastic local-shape-based model 
for handwritten on-line curves. Further, I suggest the weighted 
and biased harmonic mean as a graceful mechanism of combining 
errors f rom multiple models of which at least one model is 
applicable but not necessarily more than one model is applicable. 
recommending that each signature be represented by multiple 
models. Finally. I outline a signature-verification algorithm that I 
have tested successfully. 
Keywords: Signature verification, on-line, shape based, 
petformance evaluation, harmonic mean. jitter, aspect. sliding 
window. warping. saturation. cross-correlation, characteristic 

function. center of mass. torque, moments of inertia. 

1. Introduction
1
 

Signature verification is an art: Whereas we may bring objective measures to bear on 
the problem, in the final analysis, the problem remains subjective. This art is both 
well studied and well documented as it applies to the verification by humans of 
signatures whose only records are visual [ 13,5,10] - that is, as it applies to signatures 
during whose production no measurement is made of the pen trajectory or dynamics. 
Let us call such signatures, for which we have only a static visual record, off-line, and 
let us call signatures during whose production the pen trajectory or dynamics is 

1 This chapter is condensed from V. S. Nalwa, ‘‘Automatic On-Line Signature 
Verification,” Proceedings of IEEE, pp. 215-239, Feb. 1997. 
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captured, on-line. Whereas attempts to automate the verification of off-line 
signatures have fallen well short of human performance to this point, I shall 
demonstrate that automatic on-line signature verification is feasible. 

In a break with tradition, I challenge the notion that the success of automatic on- 
line signature verification hinges on the capture of velocities or forces during 
signature production. Whereas velocities and forces can assist us in automatic on-line 
signature verification, I contend that we should not depend on them solely, or even 
primarily. If we were indeed unavoidably consistent over the dimensions of time and 
force when we signed, the use of pen dynamics during signature production - over 
and above that of signature shape - would be very useful in detecting forgeries, as 
dynamic information pertinent to a signature is not as readily available to a potential 
forger as is the shape of the signature, given just the signature’s off-line specimens. 
However, I have seen no substantive evidence to the effect that our pen dynamics is as 
consistent as, or more consistent than, our final signature shape when we sign. My 
own informal experiments indicate that we typically exhibit similar temporal 
variations over the production of similar handwritten curves: In general, our speed 
along high-curvature curve segments is low relative to our speed along low-curvature 
curve segments, our average overall speed varying greatly from one instance of a 
pattern to another irrespective of whether we are producing our own pattern or forging 
someone else’s. This observation suggests that at least the requirement of consistency 
over time during signature production is of limited value beyond that of consistency 
over shape. At any rate, irrespective of the velocities and forces generated during the 
production of a signature, for us to declare two signatures to be produced by the same 
individual, clearly, it is necessary that the shapes of the signatures match closely. 

I have organized this chapter into eight sections, describing the fundamental 
concepts that underlie my approach in Section 4. In Section 2, I describe what 
constitutes successful signature verification. In Section 3, I summarize the state of the 
art of automatic on-line signature verification as recorded in the published literature. 
In Section 5 ,  I outline my algorithm, which I have implemented and tested both on 
databases and in live experiments. In Section 6, I illustrate my algorithm with a 
detailed example. In Section 7, I describe the performance of my implementation on 
three databases created by Bell Laboratories. I conclude with Section 8, where I list 
some of the outstanding issues in automatic on-line signature verification. 

2. Evaluating Performance 

For a signature-verification system to be useful, the system must commit few errors in 
practice. The strategy often adopted to obtain an indication of a system’s error rates, 
without actually introducing the system into the marketplace, is to field test the 
system on a limited scale; but even a limited field test can be expensive and time 
consuming. Hence, it is useful to devise criteria to help us decide whether to field test 
a system. I have come up with the following two criteria to evaluate a signature- 
verification system that is yet to be field tested. 
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Criterion 1: When you try the system in person, it must work. 

Criterion 2: When you test the system on large databases, it must exhibit low 
statistical error rates. 
Neither criterion is sufficient, and both are necessary. 

Criterion 1, of course, begs the issue unless we can reach an agreement on what 
work means. I can think of at least three conditions that must be met for us to declare 
a system to work when it is tried in person: 

The system must recognize your visually similar scribbles consistently. 

You must find it difficult, if not impossible, to forge someone else's signature 
successfully. 

You must not be able to generate a scribble that is visually disparate from your 
signature and is yet accepted by the signature-verification system as your 
signature. 

The first condition enables genuine transactions. The second condition hinders 
second-party fraud - that is, fraud by an entity other than the genuine signer. The 
third condition hinders self fraud -that is, fraud by the genuine signer. Omission of 
the third condition would open up the possibility of a genuine signer authorizing a 
transaction with the a priori intent of later denying this authorization by pointing to 
the visual discrepancy between the authorizing signature and the expected signature as 
proof of second-party fraud. 

Criterion 2 for evaluating a signature-verification system also warrants some 
discussion. Now, in any verification task, there are two types of errors we can 
commit: false rejects and false accepts. In the current context, a false reject is a 
signature that we reject even though the signature is not a forgery, and a false accept 
is a signature that we accept even though the signature is a forgery. Clearly, we can 
trade off one type of error for the other type of error. In particular, if we accept every 
signature as a genuine, we shall have 0% false rejects and 100% false accepts, and, if 
we reject every signature as a forgery, we shall have 100% false rejects and 0% false 
accepts. Thus, in the statistical evaluation of a -verification system, whether on a 
database or otherwise, we must determine the percentage of false accepts as a function 
of the percentage of false rejects. The ensuing curve - the error trade-off curve - 
which trades off false accepts for false rejects, is often characterized by its equal- 
error rate, which is the error rate at which the percentage of false accepts is equal to 
the percentage of false rejects. The equal-error rate, despite its convenience as an 
indicator of system performance, of course, is no substitute for the actual trade-off 
curve, especially if we intend to operate the system in a range outside the immediate 
vicinity of the equal-error rate. 

3. Prior Art 

My review of the literature, and of the most comprehensive published survey [9] with 
its accompanying bibliography [14] (see also [7]), indicates the existence of a widely 
held belief that the temporal characteristics of the production of an on-line signature 
are key to the signature's verification. I am not sure what the basis for this belief is - 
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after all, we have for centuries relied on a visual examination of a signature to verify 
the signature's authenticity. Of the many possible reasons for this belief, two reasons 
come readily to mind. The first reason is that, in experiments, the temporal 
characteristics of signature production are seen to provide better system performance 
than alternate characteristics. The second reason is that the production of a signature 
is believed to be necessarily a reflex action, or a ballistic action, rather than a 
deliberate action; see, for instance, [9]. Ballistic handwriting is characterized by a 
spurt of activity, without positional feedback, whereas deliberate handwriting is 
characterized by a conscious attempt to produce a visual pattern with the aid of 
positional feedback. 

I challenge, on two counts, the belief that signature production is necessarily 
ballistic, and also the more widely held notion that the temporal characteristics of 
signature production are key to signature verification. The first count is that many 
signers - including most of my acquaintances - can produce their signatures both 
ballistically and deliberately, the exact mechanism of production in a particular 
instance depending on the urgency and importance of the task. In general, it is fast 
handwriting that is ballistic (see [3]) rather than signature production per se, and many 
of us have and exercise control over the speed with which we sign. The second count 
is that even if we were to group together all the instances of the ballistic production of 
a signature, there is no compelling reason why these instances would exhibit temporal 
consistency. I suspect that the apparent success of the use of the temporal 
characteristics of on-line signatures in their verification is, at least partially, an artifact 
of the testing methodology: It is clearly easy to detect forgers on the basis of time 
when these forgers, being unaware that time is critical to verification, are making 
every effort to reproduce the shape of the signature they are trying to forge, with little 
attention to time. I must emphasize that I am not arguing here that the temporal 
characteristics of signature production are not potentially useful for automatic 
signature verification, but rather that these characteristics should not be the primary 
determinants of our decision. 

The various strategies reported in the literature for the automatic verification of on- 
line signatures rely typically either on comparing specific features of signatures or on 
comparing specific temporal functions captured during signature production, or, 
perhaps, on both (see [9]). Although the signature features that are compared are 
typically global - such as the total time taken, or the average or root-mean-square 
speed, acceleration, force, or pressure (e.g., [2,12]) - these features could be local, 
such as the starting orientation or speed. Typical signature functions that are 
compared include pressure versus time, and the horizontal and vertical components of 
position, velocity, acceleration, and force, each versus time (e.g., [ 15,16,17]). The 
more sophisticated among the temporal-function-based approaches allow the 
horizontal axes of the functions to warp during comparison (e.g., [15,17]), and, 
approaches that rely on comparing temporal functions reputedly perform better, in 
general, than approaches that rely solely on comparing features. Barring the 
straightforward representation of the coordinates, orientation, and curvature of a 
signature along its length, all as functions of time, few attempts have been made to 
characterize the local shape of a signature. One exception to this observation is the 
work of Hastie and his coauthors [6], who match signatures by first segmenting them 
at places of low speed, and then seeking the optimal affine transformation between 
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each segment and its stored prototype. However, segmentation-based approaches are, 
in general, not robust owing to their rapid deterioration in the presence of 
segmentation errors that are bound to occur sooner or later. 

I have had the opportunity to try out, in person, only one well-known signature- 
verification system created outside Bell Laboratories, and the various statistical results 
reported in the literature are difficult to compare because of the very disparate 
conditions under which these results were produced. In database testing, we can in 
practice obtain almost any desired statistical trade off between false rejects and false 
accepts if we allow ourselves the luxury of suitably pruning or restricting the database 
on which we test the system. Such pruning is often easy as the performance of a 
verification system on a database is typically limited by the database’s goats, a term 
used to describe the typically few individuals who account for a large majority of the 
errors - in our case, by producing signatures that are either inconsistent or 
degenerate; see, for instance, [2], and also [9]. Note, here, also that the false-reject 
statistics obtained in laboratory settings are likely to be overly optimistic vis-a-vis 
results that would be obtained in more unregulated settings (see [9]). Further, I point 
out that the validity of many of the results reported in the literature is suspect in real- 
world settings, because, in most experiments, forgers are not provided all the 
knowledge that they could gain over time if the verification system were ever 
introduced into the marketplace. For instance, it is clearly easy to detect forgers who 
are making every effort to duplicate a shape while all that the verification system is 
measuring is the total time taken; under such circumstances, a forger would clearly 
have greater success by ignoring the shape completely and concentrating on 
duplicating the total time taken. I believe this artifact of testing to be a significant 
contributor to the widespread emphasis given to the temporal characteristics of on-line 
signatures in their automatic verification. 

There is a plethora of reasons other than those that I have just mentioned why a 
direct comparison of the various published statistical results is of little value. Some 
tests allow each user multiple tries to have a signature validated by the verification 
system, whereas other tests do not permit multiple tries. In some experiments, the 
users are highly motivated - for instance, by financial reward [16] - whereas in 
other experiments, the users are largely unmotivated. In some experiments, the false- 
accept statistics are based on so-called random forgeries that typically have little or no 
similarity to the genuine signatures they are supposed to represent. A random 
forgery, as its name suggests, is a pattern that by design is not related to the original 
signature; such a forgery is to be expected when a forger does not have ready access 
to the original signature, as might happen, for instance, if a credit card were stolen in 
transit before a genuine signature could be produced on the card. 

All the reasons stated above point to the difficulty of comparing the various 
published statistical results. Hence, as a practical matter, we have no choice but to 
take recourse to our common sense in judging the quality of the various efforts toward 
automatic on-line signature verification. My own examination of the various 
published techniques makes me very skeptical of their efficacy in practice as stand- 
alone techniques. This skepticism is borne of my conviction that the varying local 
shape of a signature, as we proceed along the length of the signature, is key to the 
signature’s verification, and, in my judgement, the published techniques are by and 
large conceptually inadequate at capturing this. 
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4. Key Concepts 

In this section, I briefly describe some of the key ideas that underlie my approach to 
on-line signature verification. Please see the original paper from which this chapter is 
condensed for details. 

Harmonic Mean 

The most popular method of combining two errors is to compute their root weighted- 
mean square. Given two errors and r2, their root weighted-mean square is ( = 
[al(:+ a&]”2, whose isocontours are ellipses - that is, each of whose loci in the 
t l - ( 2  plane for a particular ( is an ellipse. An immediate generalization of this error 
combination is The 
isocontours of this expression for various n when ( = 1, which are generalizations of 
ellipses, are called superellipses (see, for instance, A possible drawback of this 
ubiquitous family of error combinations is that this family takes into account each of 
the two errors, irrespective of the other error. In a sense, this mechanism of 
combining errors ANDs the errors - assuming here that a low error corresponds to a 
Boolean 1, and a high error corresponds to a Boolean 0. But, what if we wish to OR 
the errors? We might want to do this, for instance, if and (2 are derived from two 
different models of which only one model is applicable. 

= a; lcf1T + a; I(21n, where al ,  a2, and n are all positive. 

One mechanism of ORing two errors, if you will, is by constraining n in the 
superelliptic error expression above to be negative instead of positive. Say, m = -n. 
Then, we get, l/<”’ = l/(a ‘ y  l(ll ) + l/(a ‘y I <Z I”’), where a l ,  a2, and m are all positive. 
Isocontours of this expression, which are generalizations of hyperbolas, are called 
superhyperbolas. Now, if we put m = 1, and assume that both and c2 are positive, 
then < will become the weighted harmonic mean of and &, which is 

a1a25 1 5 2  

a151 + a252 
5 =  

The isocontours of this expression are hyperbolas with asymptotes = ( I a l  and r2 = 
< / a2, as illustrated in Fig. 7.1 for al  = 2 and a2 = 1. Notice that if we put al  = a2 = 2 
in the above expression, then ( will simply become the unweighted harmonic mean of 

and t2. See [ l ]  for more on the harmonic mean. Finally, we may define the 
weighted and biased harmonic mean cf of two numbers and ( 2  to be 

Here, ( 1  is said to be biased by b,, and (2 by b2. What such biasing does to the 
hyperbolic isocontours of the weighted harmonic mean is translate them by -bl along 
the rl-axis and by -b2 along the &-axis. 
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Figure 7.1 lsocontours of weighted harmonic mean. 

- Jitter 

When individuals attempt to copy or trace a preexisting curve closely, as often 
happens in forgery, they produce a “jitter” owing to the act of constantly correcting 
the pen trajectory to conform to the a priori curve. This jitter often exceeds the 
quantization errors that result from the use of a discrete spatial sampling grid to 
capture on-line signatures - these quantization errors, of course, depend on the rate 
of pen motion vis-a-vis the temporal sampling rate. A measure of jitter that I have 
found useful is 

length of polygonal (or other) smoothing approximation to data 

total sum of intersample distances 
Jitter = 1 - . (7.3) 

Note that 0 I Jitter I 1 

Aspect  Normalization 

Individuals do not scale their signatures equally along the horizontal and vertical 
dimensions when they sign (e.g., see [4]). You might, for instance, make your 
signature fatter without making it any taller. Hence, before we verify the shape of a 
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signature, we must standardize the signature’s ratio of height to width - this ratio 
called the signature’s aspect. A measure of aspect that I have found useful is 

total sum of vertical displacements 

total sum of horizontal displacements 
Aspect = (7.4) 

The displacements in this expression are the unsigned vertical and horizontal 
components of the arc-lengths of curves fitted to the data. 

Parameterization over Normalized Length 

The parameterization of a curve is the creation of a one-to-one mapping from a 
subset of the real line onto the curve. The real line here, which is said to 
parameterize the curve, provides an index or parameter by which we can 
conveniently locate any point on the curve. Once we have parameterized a curve, we 
can describe various properties of the curve as functions of the curve’s parameter. 
Such functions, which we call characteristic functions, could provide us with robust 
descriptions of the local shape of the curve along its length. 

One possible parameter of an on-line curve is the time instant(s), relative to an 
arbitrary fixed time, at which the pen is located at a position along the curve. This 
particular choice of parameter seems to have been adopted universally for on-line 
signatures in the past, in part, perhaps, because of the ready availability of the pen 
trajectory as a function of time, and in part because of the widespread belief we 
discussed in Section 3 that the temporal characteristics of signature production are key 
to on-line signature verification. I contend that the parameterization of any 
handwritten on-line curve, including on-line signatures, should be over a spatial 
metric, rather than over a temporal metric. I suggest that we parameterize each 
handwritten on-line signature over its normalized arc-length - that is, over the 
distance traveled by the pen while the pen is in contact with the writing surface, this 
distance measured as a fraction of the total distance traveled by the pen while the pen 
is in contact with the writing surface. Let us denote the normalized arc-length of a 
signature by l. Parameterization of a curve over its arc-length is typical in differential 
geometry (e.g., see [8]). 

Slidina Computation Window 

Once we have parameterized a signature over its normalized arc-length, the question 
that arises is, what characteristics of the signature do we represent as functions of the 
signature’s normalized arc-length? The characteristics of the signature we shall 
represent are derived from the center of mass, the torque, and the moments of inertia 
of the signature computed over a window that is sliding along the length of the 
signature in unison with the motion of a coordinate frame. Before we discuss each of 
these characteristics in sequence, let us spend some time on the sliding window over 
which we shall compute these signature characteristics. Let us call this sliding 
window the computation window to distinguish it from another sliding window that 
we shall discuss in the context of the moving coordinate frame later in this section. 

.
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Two questions that arise immediately in the context of a sliding window are, what 
is the window’s width? and, what is the weighting along the length of the window? 
With regard to the window’s width, the broader we make the sliding window, the 
more we shall average the signal noise, thus increasingly suppressing the net effect of 
noise on our computations of signature characteristics. However, a broader window 
does more than just increasingly smooth out noise: It also increasingly smooths out 
actual signature variations, making it harder to detect discrepancies between forgeries 
and genuine signatures. Hence, in choosing the width of our window, we must 
balance the prospect of undersmoothing the noise against the prospect of 
oversmoothing the signature. Typically, a reasonable choice for the width of the 
sliding window is a fraction of the length of an individual “character.” 

Now, coming to the question of the weighting along the length of the window, let 
us choose for this task a normalized one-dimensional Gaussian weighting function 
centered at the center of the sliding window, the o of this Gaussian satisfying L = 20,  
where L is half the width of the sliding window. That is, let us choose the window 
function 

where 0 = L/2, and g(A) = 0 outside the range ±L. 

Center of Mass 

Assume the following: The signature is parametrized over its normalized arc-length l ;  
the signature has a weighted window g(A) of span ±L sliding over its length; and the 
signature has unit mass per unit length. Then, the coordinates of the center of mass 
of the signature within the sliding window are 

where (x(l), y(l)) are the point coordinates along the length of the signature. The 
varying coordinates of the center of mass, x(l) , y(l) , computed over a window that 

- - 

is sliding along the length of a signature, together provide us with a robust position- 
dependent description of the shape of the signature. 

Torque 

The torque T exerted by a vector v, which is located at position p with respect to the 
point about which we measure the torque, is T = v x p. Now, assume the following: 
The signature is parameterized over its normalized arc-length l; the signature has a 
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weighted window g (1) of span ±L sliding over its length; and the signature is 
decomposed into a series of infinitesimal vectors, each vector with magnitude equal to 
its length and with direction pointing in the direction of pen motion. Then, we can 
define the torque exerted about the origin by the signature within the sliding window 
to be 

where      (x(l),  y(l))  are the point coordinates along the length of the signature. Here, 
dx(l + 1 ) and dy(l + 1) are the differential changes in x and y at the location (l + 1)  
under a d1 change in 1. Given that each of our on-line signatures resides in the x-y 
plane, T here can point only in a direction orthogonal to the x-y  signature plane: T 
will point orthogonally out of the x-y  plane if the net torque is counterclockwise, and 
T will point orthogonally into the x-y  plane if the net torque is clockwise. As a result, 
it suffices for us to consider only the following scalar T, which we obtain by 
expanding the above vector T: 

If we ignore the window function g(A), we can interpret the torque T(l) here to be 
twice the signed area swept with respect to the origin by the portion of the signature 
within the sliding window centered at position 1, a positive value of T(l) indicating a 
net counterclockwise sweep and a negative value indicating a net clockwise sweep. 
The varying torque, T(l), computed over a window that is sliding along the length of a 
signature, can provide us with a robust position- and orientation-dependent 
description of the shape of the signature. 

Moments of Inertia 

Assume the following: The signature is parameterized over its normalized arc-length 
1; the signature has a weighted window g (A) of span ±L sliding over its length; and 
the signature has unit mass per unit length. Then, the moments of inertia about the 
y-axis and the x-axis, respectively, of the signature within the sliding window are 

(7.10) 

(7.1 1) 

where (x(l), y(l)) are the point coordinates along the length of the signature. And, the 
second-order cross-moment is 
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- - - 
The varying second-order moments, x²(l), y²(l), and xy(l), computed over a 
window that is sliding along the length of a signature, when expressed in forms s1(l) 
and s2(l) below can together provide us with a robust orientation- and curvature- 
dependent description of the shape of the signature: 

where a and b are positive weights. Together, sl(l) and s2(l) provide us with measures 
of the curvature and orientation of a curve segment that are independent of scale - 
that is, that are invariant under uniform magnification or reduction of the curve 
segment. Let us, for brevity, call s1 and s2 curvature-ellipse measures. 

Moving Coordinate Frame and Saturation 

We now have a complete list of the signature characteristics we shall represent as 
functions of the normalized length l of the signature. These characteristics are x ( l )  , 

y ( l ) ,  T, s,, and s2, as defined in equations (7.6), (7.7), (7.9), (7.13), and (7.14). Given 

the dependence of x(l) , y(l) , and T on the location of the origin of the coordinate 
frame in which we compute them, we are now faced with deciding how to choose our 
coordinate frame as our computation window slides along the length of the signature. 
Let us attach our coordinate frame to the center of mass of the signature computed 
over another window that too is sliding along the length of the signature. However, 
let us align the axes of this moving coordinate frame permanently with the global axes 
of maximum and minimum inertia, rather than compute these axes locally. 

Now, we have two windows that are sliding over the length of the signature - one 
window over which we compute the origin of our moving coordinate frame, and the 
other window over which we measure the center of mass, the torque, and the moments 
of inertia of the signature. Let us call the window over which we compute the origin 
of our moving coordinate frame the coordinate-frame window; we earlier named the 
window over which we compute the signature characteristics the computation 
window. As illustrated in Fig. 7.2, both windows slide in unison over the length of 
the signature with a fixed - but, in general, nonzero - displacement between their 
centers. Further, the two windows have fixed - but, in general, unequal - widths. 
Just as we had earlier weighted the computation window by a Gaussian centered over 
the window, let us now weight the coordinate-frame window by its own Gaussian 
centered over the window. 

- 

- 

- - 
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Coordinate-Frame 
Window 

Figure 7.2 Sliding computation and coordinate-frame windows. 

In our discussion to this point, we have assumed implicitly that both our sliding 
windows span continuous curve segments. Gaps along the length of a signature, in 
themselves, do not pose any conceptual hurdle to the motion of our sliding windows: 
All we have to do whenever either of our sliding windows spans a gap is split the 
window, with its (Gaussian) weighting function, across the gap in the curve segment. 
Although such window splitting suffices to characterize a signature continuously 
across gaps in the signature, it is not sufficient for our purposes: Our measurements of 
signature characteristics in the vicinity of gaps in a signature could exhibit unusually 
large magnitudes when the gaps are large, these large magnitudes posing the threat of 
disproportionately influencing comparisons of characteristic functions to their models. 
We can circumvent this threat by saturating our measurements of the two center-of- 
mass coordinates and the torque exerted about the origin, employing, in each case, the 
following saturation function: 

r 1 

where mlrnsat is the original unsaturated measurement, 
after saturation, and mo - which is positive and 

(7.15) 

msat is the same measurement 
chosen individually for each 

signature characteristic - determines the degree of saturation. When I mUnsat I << I m, 

munsat always being the same. 
I, I msat I z I ml,nsat I, but when I mumat I >> I mo I 7 I msat I z I mo I, the signs ~ f m s a t  and 

Weighted Cross-Correlation and Warping 

No signer is uniformly consistent along the entire length of the signer's signature. 
Further, the consistency of a signer at a particular location along a signature depends 
on the signature characteristic we examine. As a result, whenever we measure a 
characteristic of a signature along its length, we must also measure, as a function of 
the normalized length of the signature, the consistency of the characteristic across 
multiple instances of the signature. Doing so, for every characteristic function of a 
signature, we shall have a consistency function that provides a measure of the 
consistency of the characteristic function along its length. A natural choice for the 
consistency function of a characteristic function is the inverse standard deviation of 
the characteristic function at each point along its length. Let us adopt this choice. 
Once we have a consistency function to accompany the prototype of a characteristic 
function, whenever we compare a characteristic function to this prototype, we shall 
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weight each of the two functions along its length by the consistency function of the 
prototype. 

The question now is, how do we compare a characteristic function to its prototype? 
or equivalently, what is our measure of error in comparing a characteristic function to 
its prototype? Of the several error measures that are possible - for instance, the 
integral of the difference of squares - I have chosen this: (1 - cross-correlation), 
where we compute the cross-correlation between the characteristic function and its 
prototype while weighting each function by the consistency function of the prototype. 
The weighted cross-correlation of two functions f(l) and h(l), each function weighted 
by the function w(l), is, by definition, 

(7.16) 
j w2(0 f ( 0  dl 

Cross - Correlation = 
/Iw2(Z) f ’ ( l )  dl Iw2( l )  h2(l) dl 

If f(l) is a characteristic function here, h(l) is this characteristic function’s prototype, 
and w(l) is the prototype’s consistency function, then, for us,  f(l),h(l), and w(l) are 
related as follows: h(l) = E[f(l)] and w(l) = l/(E [ f(l)-E[f(l) 

When we compute the various individual weighted cross-correlations between a 
signature’s characteristic functions and their models, we will allow all the 
characteristic functions of the signature - or, equivalently, all the models of these 
functions - to warp simultaneously along their lengths such that an overall error 
measure is minimized. This simultaneous warping of the individual functions must, 
of course, be constrained to be identical at identical abscissae along the lengths of all 
the functions because the abscissa of each function is the same length parameter l,  
whose each specific value corresponds to a specific physical location along the 
signature. Warping allows us to accommodate instances of signatures that deviate 
from one another with respect to the fractional lengths of their various parts, such 
deviations being unavoidable even when all the signatures are produced by the 
original signer. 

5. Algorithm 

My algorithm has three distinct components - normalization, description, and 
comparison - each of which I outline broadly next. Normalization makes the 
algorithm largely independent of the orientation and aspect of a signature; the 
algorithm is inherently independent of the position and size of a signature. 
Description generates the five characteristic functions of the signature. Comparison 
computes a net measure of error between the signature characteristics and their 
prototypes. 
A.  Normalization 

1. Fit a polygon to the ordered set of samples of the on-line signature, and keep a 
count of the total number of pen-down samples, a number proportional to the 
total pen-down time under uniform temporal sampling. 
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2. 

3. 

Compute the jitter. There is no further need for the original samples. 

Compute the global axes of maximum and minimum inertia of the signature 
through the signature’s global center of mass, and then rotate the signature to 
normalize the orientation of these axes. 

Compute the aspect of the signature from the fitted polygon, and then scale the 
signature either vertically or horizontally to normalize its aspect. 

4. 

B. Description 

1. Parametrize the signature over its length l, measured along the fitted and 
normalized polygon as a fraction of the total length. 

Compute a moving coordinate frame. 

In the moving coordinate frame, measure, as a function of l,  the following 
signature characteristics over a sliding computation window: the coordinates 
x(l) and y(l) of the center of mass, the torque T(l)  exerted about the origin, and 
the curvature-ellipse measures s1(l) and s2(l). All these computations can be 
conveniently performed over a discrete l  that is uniformly sampled. 

Saturate the characteristic functions and normalize each function to have a zero 
mean. 

2. 

3. 

- - 

4. 

C. Comparison 

1. Simultaneously warp the five characteristic functions to maximize the sum of the 
weighted cross-correlation of each function with respect to its model, and retain a 
measure of the total warping performed. 

Compute the error between each characteristic function and its model by 
subtracting from 1 .0 the weighted cross-correlation between the two functions; 
then, normalize each such error by first subtracting its mean from it and then 
dividing the resultant by the error’s standard deviation; finally, bias each 
normalized error and then threshold it so as to make it 0.0 if it is negative. 

Compute the root mean square of the individual biased and thresholded errors 
between each of the five characteristic functions and their models (C-2) to arrive 
at the net local error. 

Compute the root mean square of the differences between the following four 
global entities and their means, after first normalizing each difference by the 
entity’s standard deviation, to arrive at the net global error:  jitter (A-2), aspect 
(A-4), warping (C-l), and the total number of pen-down samples (A-1). 

Compute the weighted and biased harmonic mean of the net local error (C-3) and 
the net global error (C-4) - the weights and biases reflecting the overall spatial 
consistency of the signature across its multiple instances - to arrive at the net 
error, which provides us a measure of the discrepancy between the signature 
being verified and its model and whose comparison against a threshold 
determines whether we accept or reject the signature being verified. 

2. 

3. 

4. 

5 .  
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6. Example 

I now illustrate the algorithm we discussed in Section 5 - specifically, the nature of 
the characteristic functions that lie at the core of this algorithm - through an 
example. This pedagogically contrived example, shown in Fig. 7.3, has four 
signatures, all shown in the left-most column: Proceeding from top to bottom, the 
first signature is a typical genuine, the second signature has a loop missing from its 
“w”, the third signature has an extra loop in its “w,” and the fourth signature is written 
with a slant. Shown alongside each signature, in a row, are the characteristic 
functions of that signature: Proceeding from left to right, shown in sequence are x(l) ,  

y(l), T(l), sl(l), and s2(l), with the result of the weighted cross-correlation of each 
characteristic function with its prototype indicated at the lower right of the function. 
The prototype of each characteristic function is shown immediately above the four 
corresponding characteristic functions of the four signatures, and immediately above 
each prototype is shown the consistency function of the signature characteristic, this 
function bounded below by 0. 

As is clear from the figure, local deviations in the shape of a signature from its 
typical genuine instance lead to locally identifiable deviations in the characteristic 
functions from their prototypes, and systematic deviations in the shape of a signature 
from its typical genuine instance lead to distributed deviations in the characteristic 
functions from their prototypes. In particular, note that the characteristic functions of 
the two signatures with the extra and missing loop in “w” each differ from its 
prototype roughly within the interval of l between 0.5 and 0.6; because of the 
discrepancy between the shapes of the signatures, the characteristic functions of these 
two signatures are neither aligned with each other along the l axis, nor are they 
aligned with their prototypes (until we warp the 1 asix).

- 

- 

7. Database Results 

The three databases on which I tested my implementation of the algorithm we 
discussed in Section 5 were compiled by Bell Laboratories, and are proprietary. Let 
us call these databases DB1, DB2, and DB3, calling their union DB. The details of 
the creation of these databases are available in the original paper on which this 
chapter is based. In a nutshell, DB1 was created in the most carefully controlled 
fashion, and DB3 was created in the least carefully controlled fashion. Owing to the 
varying circumstances of their creation, I report not only the error trade-off curve (see 
Section 2) for the three databases collectively, but also the error trade-off curves for 
the three databases individually. 
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Figure 7.3 Example illustrating characteristic functions of signatures (cont’d...). 
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Figure 7.3 Example illustrating characteristic functions of sianatures (...cont'd). 
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Figure 7.4 Error trade-off curves when modeling with first 6 genuine signatures. 

In Fig. 7.4, I show the error trade-off curves for the three databases individually 
and collectively, labeling the last curve DB. Each curve was generated using the first 
6 genuine signatures of each signer to build a model of the signer's signature, this 
model requiring about 600 bytes of storage after suitable compression. Under these 
circumstances, DB 1 provided a test set of 550 genuines from 59 signers in addition to 
325 forgeries, DB2 provided a test set of 370 genuines from 102 signers in addition to 
401 forgeries, and DB3 provided a test set of 532 genuines from 43 signers in addition 
to 424 forgeries. For the curve labeled DB in Fig. 7.4, then, the total number of 
genuines tested is 1452 from 204 signers, and the total number of forgeries tested is 
1150. 

I used 6 genuine signatures to build each signature model because, at least on these 
databases, as I increased the number of signatures for modeling up to 6, there were 
tangible, albeit increasingly smaller, improvements in the various error trade-off 
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curves. However, I did not see a tangible improvement in the error trade-off curves as 
I increased the number of signatures for modeling up from 6. 

It is clear from the various error trade-off curves that each such curve depends 
highly on the nature of the database on which the curve was produced. For instance, 
in Fig. 7.4, the equal-error rates for DB1, DB2, and DB3 are about 3%, 2%, and 5%, 
respectively. The equal-error rate of my implementation's net error trade-off curve in 
Fig. 7.4 is about 3.6%. An operating point that I consider reasonable for many credit- 
card transactions is at about 1% false accepts, which corresponds to about 7% false 
rejects on the net error trade-off curve in Fig. 7.4. At this operating point, 
statistically, approximately 1 out of every 100 forgeries will be accepted and 
approximately 1 out of every 14 genuine signatures will be rejected - an instance of 
rejection requiring either a fresh signature, or some other action. In practice, of 
course, the point on the error trade-off curve at which we operate in a particular 
situation must depend on the relative penalties we would incur for committing the two 
types of errors in that situation. 

A final point I would like to make is this: For any given database, perhaps a 
composite of multiple individual databases, we can always fine tune a signature- 
verification system to provide the best overall error trade-off curve for that database - 
for the three databases here, I was able to bring my overall equal-error rate down to 
about 2.5% -but we must always ask ourselves, does this fine tuning make common 
sense in the real world? If the fine tuning does not make common sense, it is in all 
likelihood exploiting a peculiarity of the database. Then, if we do plan to introduce 
the system into the marketplace, we are better off without the fine tuning. 

8. Conclusions 

Topics in on-line signature verification that deserve our further attention include the 
following: 

Better models for signatures whose instances are not shaped consistently or for 
which we have fewer than 6 instances to build a model. 

Acquisition of instances of a signature used to build its model over multiple 
sessions, rather than over a single session, to obtain a more representative variety 
of instances of the signature. 

Invocation of multiple models for individuals with multiple distinct signatures. 

Statistically well-founded procedures for determining the parameters of a model 
from the relatively few instances of a signature available to model the signature. 

Automatic adaptation of models to signatures as they evolve over time. 

Theoretically sound statistical framework to exploit fully each of the various 
individual error measures generated from comparing the characteristic functions 
of a signature to their prototypes. 

Partial matching of signatures, highlighting discrepancies if they are specific. 
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 •     Identification of problem signers, including those who are unusually inconsistent 
or have signatures that are trivial to forge. 

Comparison of signatures to their models at multiple or personalized resolutions, 
rather than at a single common resolution. 

Over and above these issues, we must also further investigate the usefulness of pen 
dynamics during on-line signature production in automatic on-line signature 
verification. Such dynamics might include not only velocities and forces, but also the 
varying orientation of the pen, and the way in which a signer grasps a pen. 
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Abstract A tutorial on the design and development of automatic 
speaker recognition systems is presented. Automatic speaker 
recognition is the use of a machine to recognize a person from a 
spoken phrase. These systems can operate in two modes: to 
identify a particular person or to verify a person’s claimed 
identity. Speech processing and the basic components of 
automatic speaker recognition systems are shown and design 
tradeoffs are discussed. The performances of various systems are 
compared. 
Keywords: Access control, authentication, biometries, 
biomedical measurements, biomedical signal processing, 
biomedical transducers, communication system security, computer 
network security, computer security, corpus, databases, 
identification of persons, public safety, site security monitoring, 
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1. Introduction 

The focus of this chapter is on facilities and network access-control applications of 
speaker recognition. Speech processing is a diverse field with many applications. 
Figure 8.1 shows a few of these areas and how speaker recognition relates to the rest 
of the field. This chapter will emphasize the speaker recognition applications shown 
in the boxes of Figure 8.1. 

Speaker recognition encompasses verification and identification. Automatic 
speaker verification (ASV) is the use of a machine to verify a person’s claimed 
identity from his voice. The literature abounds with different terms for speaker 
verification, including voice verification, speaker authentication, voice authentication, 
talker authentication, and talker verification. In automatic speaker identification 
(ASI), there is no a priori identity claim, and the system decides who the person is, 
what group the person is a member of, or (in the open-set case) that the person is 
unknown. General overviews of speaker recognition have been given by Atal, 
Doddington, Furui, O’Shaughnessy, Rosenberg, Soong, Sutherland, and Jack 
[2,9,13,28,38,39,46]. 
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Figure 8.1 Speech processing. 

Speaker verification is defined as deciding if a speaker is who he claims to be. This 
is different than the speaker identification problem, which is deciding if a speaker is a 
specific person or is among a group of persons. In speaker verification, a person 
makes an identity claim (e.g., entering an employee number or presenting his smart 
card). In text-dependent recognition, the phrase is known to the system and it can be 
fixed or not fixed and prompted (visually or orally). The claimant speaks the phrase 
into a microphone. This signal is analyzed by a verification system that makes the 
binary decision to accept or reject the user’s identity claim or possibly to report 
insufficient confidence and request additional input before making the decision. 

A typical ASV setup is shown in Figure 8.2. The claimant, who has previously 
enrolled in the system, presents an encrypted smart card containing his identification 
information. He then attempts to be authenticated by speaking a prompted phrase(s) 
into the microphone. There is generally a tradeoff between recognition accuracy and 
the test-session duration of speech. In addition to his voice, ambient room noise and 
delayed versions of his voice enter the microphone via reflective acoustic surfaces. 
Prior to a verification session, users must enroll in the system (typically under 
supervised conditions). During this enrollment, voice models are generated and stored 
(possibly on a smart card) for use in later verification sessions. There is also generally 
a tradeoff between recognition accuracy and the enrollment-session duration of 
speech and the number of enrollment sessions. 

Many factors can contribute to verification and identification errors. Table 8.1 lists 
some of the human and environmental factors that contribute to these errors, a few of 
which are shown in Figure 8.2. These factors are generally outside the scope of 
algorithms or are better corrected by means other than algorithms (e.g., better 
microphones). However, these factors are important because, no matter how good a 
speaker recognition algorithm is, human error (e.g., misreading or misspeaking) 
ultimately limits its performance. 
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Table 8.1 Sources of verification error. 

Smart Card 

Figure 8.2 Typical speaker-verification setup. 

Motivation 

ASV and ASI are probably the most natural and economical methods for solving the 
problems of unauthorized use of computer and communications systems and 
multilevel access control. With the ubiquitous telephone network and microphones 
bundled with computers, the cost of a speaker recognition system might only be for 
the software for the recognition algorithm. 

Biometric systems automatically recognize a person using distinguishing traits (a 
narrow definition). Speaker recognition is a performance biometric; i.e., you perform 
a task to be recognized. Your voice, like other biometrics, cannot be forgotten or 
misplaced, unlike knowledge-based (e.g., password) or possession-based (e.g., key) 
access control methods. Speaker-recognition systems can be made somewhat robust 
against noise and channel variations [25,36], ordinary human changes (e.g., time-of- 
day voice changes and minor head colds), and mimicry by humans and tape recorders 

[18]. 

Problem Formulation 

Speech is a complicated signal produced as a result of several transformations 
occurring at several different levels: semantic, linguistic, articulatory, and acoustic. 
Differences in these transformations appear as differences in the acoustic properties of 
the speech signal. Speaker-related differences are a result of a combination of 

|
|
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anatomical differences inherent in the vocal tract and the learned speaking habits of 
different individuals. In speaker recognition, all these differences can be used to 
discriminate between speakers. 

Generic Speaker Verification 

The general approach to ASV consists of five steps: digital speech data acquisition, 
feature extraction, pattern matching, making an accept/reject decision, and enrollment 
to generate speaker reference models. A block diagram of this procedure is shown in 
Figure 8.3. Feature extraction maps each interval of speech to a multidimensional 
feature space. (A speech interval typically spans 10 to 30 ms of the speech waveform 
and is referred to as a frame of speech.) This sequence of feature vectors Xi is then 
compared to speaker models by pattern matching. This results in a match score zi for 
each vector or sequence of vectors. The match score measures the similarity of the 
computed input feature vectors to models of the claimed speaker or feature vector 
patterns for the claimed speaker. Last, a decision is made to either accept or reject the 
claimant according to the match score or sequence of match scores, which is a 
hypothesis-testing problem. 

Figure 8.3 Generic speaker verification system. 

For speaker recognition, features that exhibit high speaker discrimination power, 
high interspeaker variability, and low intraspeaker variability are desired. Many forms 
of pattern matching and corresponding models are possible. Pattern matching methods 
include dynamic time warping (DTW), hidden Markov modeling (HMM), artificial 
neural networks, and vector quantization (VQ). Template models are used in DTW, 
statistical models are used in HMM, and codebook models are used in VQ. 

Previous Work 

Table 8.2 shows a sampling of the chronological advancement in speaker verification. 
The following terms are used to define the columns in Table 8.2: “Source” refers to a 
citation in the references, ‘‘org” is the company or school where the work was done, 
“features” are the signal measurements such as linear prediction (LP) and log area 
ratio (LAR), “input” is the type of input speech (laboratory, office quality, or 
telephone), “text” indicates whether text-dependent or text-independent mode of 
operation is used, “method” is the heart of the pattern-matching process, ‘‘pop” is the 
population size of the test (number of people), and “error” is the equal error 
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percentage for speaker verification systems or the recognition error percentage for 
speaker identification systems “i” given the specified duration of test speech in 
seconds. This data is presented to give a simplified general view of past speaker- 
recognition research. The references should be consulted for important distinctions 
that are not included; e.g., differences in enrollment, differences in cross-gender 
impostor trials, differences in normalizing “cohort” speakers [40],differences in 
partitioning the impostor and cohort sets, and differences in known versus unknown 
impostors [5]. It should be noted that it is difficult to make meaningful comparisons 
between the text-dependent and the generally more difficult text-independent tasks. 
Text-independent approaches, such as Gish’s segmental Gaussian model [ 15 ] and 
Reynolds’ Gaussian Mixture Model (GMM) [36] need to deal with unique problems 
(e.g., sounds or articulations present in the test material, but not in training). It is also 
difficult to compare between the binary-choice verification task and the generally 
more difficult multiple-choice identification task [9,29]. 

There are over a dozen commercial ASV systems, including those from ITT, 
Lernout & Hauspie, T-NETIX, Veritel, and Voice Control Systems. Perhaps the 
largest scale deployment of any biometric to date is Sprint’s Voice FONCARD®, 
which uses TI’S voice-verification engine. Speaker verification applications include 
access control, telephone banking, and telephone credit cards. The accounting firm of 
Ernst and Young estimates that high-tech computer thieves in the U.S. steal $3 to $5 
billion annually. Automatic speaker-recognition technology could substantially reduce 
this crime by reducing these fraudulent transactions. It takes a pair of subjects to make 
a false acceptance error: an impostor and a target. Because of this hunter and prey 
relationship, in this work, the impostor is referred to as a wolf and the target as a 
sheep. False acceptance errors are the ultimate concern of high-security speaker- 
verification applications; however, they can be traded off for false rejection errors. 

The following section contains an overview of digital signal acquisition, speech 
production, speech signal processing, and speaker characterization based on linear 
prediction and me1 cepstra modeling. 

2. Speech processing 

Speech processing extracts the desired information from a speech signal. To process a 
signal by a digital computer, the signal must be represented in digital form so that it 
can be used by a digital computer. 

Speech Signal Acquisition 

Initially, the acoustic sound pressure wave is transformed into a digital signal suitable 
for voice processing. A microphone or telephone handset can be used to convert the 
acoustic wave into an analog signal. This analog signal is conditioned with 
antialiasing filtering (and possibly additional filtering to compensate for any channel 
impairments). The antialiasing filter limits the bandwidth of the signal to 
approximately the Nyquist rate (half the sampling rate) before sampling. The 
conditioned analog signal is then sampled to form a digital signal by an analog-to- 
digital (A/D) converter. Today’s A/D converters for speech applications typically 



170 Campbell

Table 8.2 Selected chronology of speaker-recognition progress.
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Table 8.2 Selected chronology of speaker-recognition progress (contd.).

sample with 12 to 16 bits of resolution at 8,000 to 20,000 samples per second.
Oversampling is commonly used to allow a simpler analog antialiasing filter and to
control the fidelity of the sampled signal precisely (e.g., sigma-delta converters).

In local speaker-verification applications, the analog channel is simply the
microphone, its cable, and analog signal conditioning. Thus, the resulting digital
signal can be very high quality, lacking distortions produced by transmission of
analog signals over telephone lines.

YOHO Speaker-Verification Corpus

The work presented here is based on high-quality signals for benign-channel speaker
verification applications. The primary database for this work is known as the YOHO
Speaker Verification Corpus, which was collected by ITT under a U.S. Government
contract. The YOHO database was the first large-scale, scientifically controlled and
collected, high-quality speech database for speaker-verification testing at high
confidence levels. Table 8.3 describes the YOHO database [17]. YOHO is available
from the Linguistic Data Consortium (University of Pennsylvania) and test plans have
been developed for its use [5]. This database already is in digital form, emulating the
third generation Secure Terminal Unit's (STU-III) secure voice telephone input
characteristics, so the first signal processing block of the verification system in
Figure 8.3 (signal conditioning and acquisition) is taken care of.

In a text-dependent speaker-verification scenario, the phrases are known to the
system (e.g., the claimant is prompted to say them). The syntax used in the YOHO
database is "combination lock" phrases. For example, the prompt might read: "Say:
twenty-six, eighty-one, fifty-seven."

YOHO was designed for U.S. Government evaluation of speaker-verification
systems in "office" environments. In addition to office environments, there are
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enormous consumer markets that must contend with noisy speech (e.g., telephone 
services) and far-field microphones (e.g., computer access). 

”Combination lock“ phrases (e.g., "twenty-six, eighty-one, fifty-seven”) 
I38  subjects: 106  males. 32 females 
Collected with a STU-III electret-microphone telephone handset over 3 month period in 
a real-world office environment 
4 enrollment sessions per subject with 24 phrases per session 
10 verification sessions per subject at approximately 3-day intervals with 4 phrases per 
session 
Total of 1380 validated test sessions 
8 k H z  sampling with 3.8 k H z  analog bandwidth (STU-III l ike)  
1.2 gigabytes of data 

Table 8.3 The YOHO corpus [5]. 

Speech Production 

There are two main sources of speaker-specific characteristics of speech: physical and 
learned. Vocal tract shape is an important physical distinguishing factor of speech. 
The vocal tract is generally considered as the speech production organ above the vocal 
folds. As shown in Figure 8.4 [11], this includes the following: laryngeal pharynx 
(beneath epiglottis), oral pharynx (behind the tongue, between the epiglottis and 
velum), oral cavity (forward of the velum and bounded by the lips, tongue, and 
palate), nasal pharynx (above the velum, rear end of nasal cavity), and the nasal cavity 
(above the palate and extending from the pharynx to the nostrils). An adult male vocal 
tract is approximately 17 cm long [11]. 

The vocal folds (formerly known as vocal cords) are shown in Figure 8.4. The 
larynx is composed of the vocal folds, the top of the cricoid cartilage, the arytenoid 
cartilages, and the thyroid cartilage (also known as “Adam’s apple”). The vocal folds 
are stretched between the thyroid cartilage and the arytenoid cartilages. The area 
between the vocal folds is called the glottis. 

As the acoustic wave passes through the vocal tract, its frequency content 
(spectrum) is altered by the resonances of the vocal tract. Vocal tract resonances are 
called  formants. Thus, the vocal tract shape can be estimated from the spectral shape 
(e.g., formant location and spectral tilt) of the voice signal. 

Voice verification systems typically use features derived only from the vocal tract. 
As seen in Figure 8.4, the human vocal mechanism is driven by an excitation source, 
which also contains speaker-dependent information. The excitation is generated by 
airflow from the lungs, carried by the trachea (also called the ‘‘wind pipe”) through 
the vocal folds (or the arytenoid cartilages). The excitation can be characterized as 
phonation, whispering, frication, compression, vibration, or a combination of these. 

For other aspects of speech production that could be useful for speaker recognition, 
please refer to [6]. 
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Figure 8.4 Human vocal system (reprinted with permission from J. Flanagan, Speech 
Analysis Synthesis and Perception, 2"d ed. New York and Berlin: Springer-Verlag, 
1972, p. 10, Fig. 2.1 0 Springer-Verlag). 

Linear Prediction 

The all-pole LP models a signal s, by a linear combination of its past values and a 
scaled present input [24] 

k = l  

where s, is the present output, p is the prediction order, ak are the model parameters 
called the predictor coefficients (PCs), s,-~ are past outputs, G is a gain scaling 
factor, and u, is the present input. In speech applications, the input u, is generally 
unknown, so it is ignored. Therefore, the LP approximation in, depending only on 
past output samples, is 
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Power of z                  0 -1 -2 -3                    -4          -5                -6    -7
Predictor    1 -2.346 1.657 -0.006 0.323 -1.482 1.155 -0.190  
Coefficient 

P 
2, = -C ak - s , - ~  

-8 
-0.059 

Campbell 

k=l  

The source un, which corresponds to the human vocal tract excitation, is not modeled 
by these PCs. It is certainly reasonable to expect that some speaker-dependent 
characteristics are present in this excitation signal (e.g., fundamental frequency). 
Therefore, if the excitation signal is ignored, valuable speaker-verification 
discrimination information could be lost. 

Defining the prediction error en (also known as the residual) as the difference 
between the actual value Sn  and the predicted value in yields 

P 
en = sn - 2, = sn + C ak - s,,-~ (8.3) 

k= l  

Using the a k  model parameters, Eq. (8.4) represents the fundamental basis of LP 
representation. It implies that any signal is defined by a linear predictor and the 
corresponding LP error. Obviously, the residual contains all the information not 
contained in the predictor coefficients (PCs). 

P 
s, = - X u k  . s , , -~  +en 

k = l  

From Eq.  (8. 1), the LP transfer function is defined as 

which yields 

where A (z) is known as the p -order inverse filter. 
LP analysis determines the PCs of the inverse filter A(z)  that minimize the 

prediction error en in some sense. Typically, the mean square error (MSE) is 
minimized because it allows a simple, closed-form solution of the PCs. For example, 
an 8  -order 8 kHz LP analysis of the vowel /U/ (as in "foot") had the predictor 
coefficients shown in Table 8.4. 

th

th

Table 8.4 Example of 8  -order linear predictor coefficients for the vowel /U/ as in
"foot".

th
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Evaluating the magnitude of the z transform of H(z) at equally spaced intervals on the 
unit circle yields the following power spectrum having formants (vocal tract 
resonances or spectral peaks) at 390, 870, and 3040 Hz (Figure 8.5). These resonance 
frequencies are in agreement with the Peterson and Barney formant frequency data for 
the vowel /U/ [33]. 

0 500 1000 1500 2000 2500 3000 3500 -60 

Frequency (Hz) 
)O 

Figure 8.5 Frequency response for the vowel /U/. 

Features are constructed from the speech model parameters; for example, the uk 
shown in Eq. (8.6). These LP coefficients are typically nonlinearly transformed into 
perceptually meaningful domains suited to the application. Some feature domains 
useful for speech coding and recognition include reflection coefficients (RCs); log- 
area ratios (LARS) or arcsin of the RCs; line spectrum pair (LSP) frequencies 
[4,6,21,22,41]; and the LP cepstrum [33]. 

Reflection Coefficients and Log Area Ratios 
The vocal tract can be modeled as an electrical transmission line, a waveguide, or an 
analogous series of cylindrical acoustic tubes. At each junction, there can be an 
impedance mismatch or an analogous difference in cross-sectional areas between 
tubes. At each boundary, a portion of the wave is transmitted and the remainder is 
reflected (assuming lossless tubes). The reflection coefficients ki are the percentage 
of the reflection at these discontinuities. If the acoustic tubes are of equal length, the 
time required for sound to propagate through each tube is equal (assuming planar 
wave propagation). Equal propagation times allow simple z transformation for digital 
filter simulation. For example, a series of five acoustic tubes of equal lengths with 
cross-sectional areas A1, ..., A5 is shown in Figure 8.6. This series of five tubes 
represents a fourth-order system that might fit a vocal tract minus the nasal cavity. 
The reflection coefficients are determined by the ratios of the adjacent cross-sectional 
areas with appropriate boundary conditions [33]. For a pth-order system, the boundary 
conditions given in Eq. (8.7) correspond to a closed glottis (zero area) and a large area 
following the lips. 
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Figure 8.6 Acoustic tube model of speech production. 

Narrow bandwidth poles result in 1 ki I x 1 . An inaccurate representation of these 
RCs can cause gross spectral distortion. Taking the log of the area ratios results in 
more uniform spectral sensitivity. The LARs are defined as the log of the ratio of 
adjacent cross-sectional areas 

gi = log[ ?] = log[ 21 = 2 tad- '  ki for i = I,&. . . p (8.8) 

Mel- Warped Cepstrum 

The mel-warped cepstrum is a very popular feature domain that does not require LP 
analysis. It can be computed as follows: 1) window the signal, 2) take the fast Fourier 
transform (FFT), 3) take the magnitude, 4) take the log, 5) warp the frequencies 
according to the me1 scale, and 6) take the inverse FFT. A variation on the cepstrum is 
the LP-cepstrum, where steps 1 - 3 are replaced by the magnitude spectrum from LP 
analysis. The me1 warping transforms the frequency scale to place less emphasis on 
high frequencies. It is based on the nonlinear human perception of the frequency of 
sounds [32]. The cepstrum can be considered as the spectrum of the log spectrum. 
Removing its mean reduces the effects of linear time-invariant filtering (e.g., channel 
distortion). Often, the time derivatives of the me1 cepstra (also known as delta cepstra) 
are used as additional features to model trajectory information. The cepstrum's 
density has the benefit of being modeled well by a linear combination of Gaussian 
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densities as used in the Gaussian Mixture Model [36]. Perhaps the most compelling 
reason for using the mel-warped cepstrum is that it has been demonstrated to work 
well in speaker-recognition systems [ 15] and, somewhat ironically, in speech- 
recognition systems [32], too. Furui addresses this irony and other issues plaguing 
speaker recognition in his set of open questions [14]. 

The next section presents feature selection, estimation of mean and covariance, 
divergence, and Bhattacharyya distance. It is highlighted by the development of the 
divergence shape measure and the Bhattacharyya distance shape. 

3. Feature selection and measures 

To apply mathematical tools without loss of generality, the speech signal can be 
represented by a sequence of feature vectors. The selection of appropriate features and 
methods to estimate (extract or measure) them are known as feature selection and 
feature extraction, respectively. 

Traditionally, pattern-recognition paradigms are divided into three components: 
feature extraction and selection, pattern matching, and classification. Although this 
division is convenient from the perspective of designing system components, these 
components are not independent. The false demarcation among these components can 
lead to suboptimal designs because they all interact in real-world systems. 

In speaker verification, the goal is to design a system that minimizes the 
probability of verification errors. Thus, the underlying objective is to discriminate 
between the given speaker and all others. A comprehensive review of discriminant 
analysis is given in [16]. For an overview of the feature selection and extraction 
methods, please refer to [6]. The next section introduces pattern matching. 

4. Pattern matching 

The pattern-matching task of speaker verification involves computing a match score, 
which is a measure of the similarity between the input feature vectors and some 
model. Speaker models are constructed from the features extracted from the speech 
signal. To enroll users into the system, a model of the voice, based on the extracted 
features, is generated and stored (possibly on an encrypted smart card). Then, to 
authenticate a user, the matching algorithm compares/scores the incoming speech 
signal with the model of the claimed user. 

There are two types of models: stochastic models and template models. In 
stochastic models, the pattern matching is probabilistic and results in a measure of the 
likelihood, or conditional probability, of the observation given the model. For 
template models, the pattern matching is deterministic. The observation is assumed to 
be an imperfect replica of the template, and the alignment of observed frames to 
template frames is selected to minimize a distance measure d. The likelihood L can be 
approximated in template-based models by exponentiating the utterance match scores 

L = exp( -a d)  (8.9) 
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where a is a positive constant (equivalently, the scores are assumed to be proportional 
to log likelihoods). Likelihood ratios can then be formed using global speaker models 
or cohorts to normalize L. 

The template model and its corresponding distance measure is perhaps the most 
intuitive method. The template method can be dependent or independent of time. An 
example of a time-independent template model is VQ modeling [45]. All temporal 
variation is ignored in this model and global averages (e.g., centroids) are all that is 
used. A time-dependent template model is more complicated because it must 
accommodate human speaking rate variability. 

Template Models 

The simplest template model consists of a single template X,  which is the model for a 
frame of speech. The match score between the template X for the claimed speaker and 
an input feature vector xi from the unknown user is given by d(xi,X). The model 
for the claimed speaker could be the centroid (mean) of a set of N training vectors 

(8.10) 

Many different distance measures between the vectors Xi and X can be expressed as 

d(x,,X) = (Xi -X)'W(X, -X) (8.11) 

where W is a weighting matrix. If W is an identity matrix, the distance is Euclidean; 
if W is the inverse covariance matrix corresponding to mean X, then this is the 
Mahalanobis distance. The Mahalanobis distance gives less weight to the components 
having more variance and is equivalent to a Euclidean distance on principal 
components, which are the eigenvectors of the original space as determined from the 
covariance matrix [10].

Dynamic Time Warping 
The most popular method to compensate for speaking-rate variability in template- 
based systems is known as DTW [42]. A text-dependent template model is a sequence 
of templates (X

1
,..., xN) that must be matched to an input sequence (x1,...,xM).  

In general, N is not equal to M because of timing inconsistencies in human speech. 
The asymmetric match score z is given by 

- 

M 

i=l 

where the template indices j(i) are typically given by a DTW algorithm. Given 
reference and input signals, the DTW algorithm does a constrained, piecewise linear 
mapping of one (or both) time axis(es) to align the two signals while minimizing z. At 
the end of the time warping, the accumulated distance is the basis of the match score. 
This method accounts for the variation over time (trajectories) of parameters 
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corresponding to the dynamic configuration of the articulators and vocal tract. 
Figure 8.7 shows a warp path for two speech signals using their energies as warp 
features. 

3 - 
22  A g 8 Sample 

Energy 

Figure 8.7 DTW path for two energy signals. 

If the warp signals were identical, the warp path would be a diagonal line and the 
warping would have no effect. The Euclidean distance between the two signals in the 
energy domain is the accumulated deviation off the dashed diagonal warp path. The 
parallelogram surrounding the warp path represents the Sakoe slope constraints of the 
warp [42], which act as boundary conditions to prevent excessive warping over a 
given segment. 

Vector Quantization Source Modeling 
Another form of template model uses multiple templates to represent frames of speech 
and is referred to as VQ source modeiing [45]. A VQ code book is a collection of 
codewords and it is typically designed by a clustering procedure. A code book is 
created for each enrolled speaker using his training data, usually based upon reading a 
specific text. A pattern match score can be formed as the distance between an input 
vector x and the minimum distance codeword B in the claimant's VQ code book C. 
This match score for L frames of speech is 

(8.13) 

The clustering procedure used to form the code book averages out temporal 
information from the codewords. Thus, there is no need to perform a time alignment. 
The lack of time warping greatly simplifies the system; however, it neglects speaker- 
dependent temporal information that may be present in the prompted phrases. 
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Nearest Neighbors 
A technique combining the strengths of the DTW and VQ methods is called nearest 
neighbors (NN) [17,20]. Unlike the VQ method, the NN method does not cluster the 
enrollment training data to form a compact code book. Instead, it keeps all the training 
data and can, therefore, use temporal information. 

As shown in Figure 8.8, the claimant’s interframe distance matrix is computed by 
measuring the distance between test-session frames (the input) and the claimant’s 
stored enrollment-session frames. The NN distance is the minimum distance between 
a test-session frame and the enrollment frames. The NN distances for all the test- 
session frames are then averaged to form a match score. Similarly, as shown in the 
rear planes of Figure 8.8, the test-session frames are also measured against a set of 
stored reference “cohort” speakers to form match scores. The match scores are then 
combined to form a likelihood ratio approximation [ 17]. 

The NN method is one of the most memory- and compute-intensive speaker- 
verification algorithms. It is also one of the most powerful methods, as illustrated later 
in Figure 8.10. 

+Enrollment Session Frames* 

Test t ’  
Session 
Frames Nearest 

Neighbor 
Distances 

Average 

Likelihood 
Ratio z 

Figure 8.8 Nearest neighbor method. 

Stochastic Models 

Template models dominated early work in text-dependent speaker recognition. This 
deterministic approach is intuitively reasonable, but stochastic models recently have 
been developed that can offer more flexibility and result in a more theoretically 
meaningful probabilistic likelihood score. 

Using a stochastic model, the pattern-matching problem can be formulated as 
measuring the likelihood of an observation (a feature vector of a collection of vectors 
from the unknown speaker) given the speaker model. The observation is a random 
vector with a conditional probability density function (pdf) that depends upon the 
speaker. The conditional pdf for the claimed speaker can be estimated from a set of 
training vectors and, given the estimated density, the probability that the observation 
was generated by the claimed speaker can be determined. 
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The estimated pdf can either be a parametric or a nonparametric model. From this 
model, for each frame of speech (or average of a sequence of frames), the probability 
that it was generated by the claimed speaker can be estimated. This probability is the 
match score. If the model is parametric, then a specific pdf is assumed and the 
appropriate parameters of the density can be estimated using the maximum likelihood 
estimate. For example, one useful parametric model is the multivariate normal model 
and it is parameterized by a mean vector p and a covariance matrix C. In this case, the 
probability that an observed feature vector xi was generated by the model is 

p(xj(model) = (2~) -~” lCl - ’ ’~  exp{-i(xi - P ) ~ C - ’ ( X ~  -p)} (8.14) 

Hence, p(x,lmodel) is the match score. If nothing is known about the true densities, 
the unknown densities can be approximated by a GMM or nonparametric statistics 
can be used to find the match score. 

The match scores for text-dependent models are given by the probability of a 
sequence of frames without assuming independence of speech frames. Although a 
correlation of speech frames is implied by the text-dependent model, deviations of the 
speech from the model are usually assumed to be independent. This independence 
assumption enables estimation of utterance likelihoods by multiplying frame 
likelihoods. The model represents a specific sequence of spoken words. 

A stochastic model that is very popular for modeling sequences is the HMM. In 
conventional Markov models, each state corresponds to a deterministically observable 
event; thus, the output of such sources in any given state is not random and lacks the 
flexibility needed here. In an HMM, the observations are a probabilistic function of 
the state; i.e., the model is a doubly embedded stochastic process where the 
underlying stochastic process is not directly observable (it is hidden). The HMM can 
only be viewed through another set of stochastic processes that produce the sequence 
of observations [32] .  The HMM is a finite-state machine, where a pdf (or feature 
vector stochastic model) p(xlsi) is associated with each state si (the main 
underlying model). The states are connected by a transition network, where the state 
transition probabilities are aii = p(si I s j ) .  For example, a hypothetical three-state 
HMM is illustrated in Figure 8.9. 

a 11 a 22 a 33 

a 13 

Figure 8.9 An example of a three-state HMM. 
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The probability that a sequence of speech frames was generated by this model can be 
found by Baum-Welch decoding [30,31]. This likelihood is the score for L frames of 
input speech given the model 

(8.15) 
all state i=l 
sequences 

This is a theoretically meaningful score. HMM-based methods have been shown to be 
comparable in performance to conventional VQ methods in text-independent testing 
[47] and more recently to outperform conventional methods in text-dependent testing 
(e.g., [35]). 

5. Classification and Decision Theory 

Having computed a match score between the input speech-feature vector and a model 
of the claimed speaker’s voice, a verification decision is made whether to accept or 
reject the speaker or request another utterance (or, without a claimed identity, an 
identification decision is made). If a verification system accepts an impostor, it makes 
a false acceptance (FA) error. If the system rejects a valid user, it makes a false 
rejection (FR) error. The FA and FR errors can be traded off by adjusting the decision 
threshold, as shown by a Receiver Operating Characteristic (ROC) curve. The 
operating point where the FA and FR are equal corresponds to the equal error rate. 

The accept or reject decision process can be an accept, continue, time-out, or reject 
hypothesis-testing problem. In this case, the decision making, or classification, 
procedure is a sequential hypothesis-testing problem [48]. For a brief overview of the 
decision theory involved, please refer to [6]. 

6. Performance 

Using the YOHO prerecorded speaker-verification database, the following results on 
wolves and sheep were measured. The impostor testing was simulated by randomly 
selecting a valid user (a potential wolf) and altering his/her identity claim to match 
that of a randomly selected target user (a potential sheep). Because the potential wolf 
is not intentionally attempting to masquerade as the potential sheep, this is referred to 
as the ‘‘casual impostor” paradigm. Testing the system to a certain confidence level 
implies a minimum requirement for the number of trials. In this testing, there were 
9,300 simulated impostor trials to test to the desired confidence [5,17]. 

DTW System 

The DTW ASV system tested here was created by Higgins, et al. [18]. This system is 
a variation on a DTW approach that introduced likelihood ratio scoring via cohort 
normalization in which the input utterance is compared with the claimant’s voice 
model and with an alternate model composed of models of other users with similar 
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At least one FA Error 
17 Wolves (9%) 
1 1  Sheep (6%) 

voices. Likelihood ratio scoring allows for a fixed, speaker-independent, phrase- 
independent acceptance criterion. Pseudorandomized phrase prompting, consistent 
with the YOHO corpus, is used in combination with speech recognition to reduce the 
threat of playback (e.g., tape recorder) attacks. The enrollment algorithm creates 
users’ voice models based upon subword models (e.g., "twen,” “ti,” and ‘‘six”). 
Enrollment begins with a generic male or female template for each subword and 
results in a speaker-specific template model for each subword. These models and their 
estimated word endpoints are successively refined by including more examples 
collected from the enrollment speech material [ 18]. 

Cross-speaker testing (casual impostors) was performed, confusion matrices for 
each system were generated, wolves and sheep of DTW and NN systems were 
identified, and errors were analyzed. 

Table 8.5 shows two measures of wolves and sheep for the DTW system: those 
who were wolves or sheep at least once and those who were wolves or sheep at least 
twice. Thus, FA errors occur in a very narrow portion of the 186-person population, 
especially if two errors are required to designate a person as a wolf or sheep. The 
difficulty in acquiring enough data to adequately represent the wolf and sheep 
populations makes it challenging to study these errors. 

At least two FA Errors 
2 Wolves ( 1 % )  
5 Sheep (3%) 

Number of FA errors 
15 
1 
3 

The DTW system made 19 FA errors over the 9,300 impostor trials. Table 8.6 
shows that these 19 pairs of wolves and sheep have interesting characteristics. The 
database contains four times as many males as it does females, but the 18: 1 ratio of 
male wolves to female wolves is disproportionate. It is also interesting to note that 
one male wolf successfully preyed upon three different female sheep. The YOHO 
corpus provides at least 19 pairs of wolves and sheep under the DTW ASV system for 
further investigation. 

Wolf sex Sheep sex 
Males Males 
Female Female 
1 Male     3 Females 

Table 8.6 Wolf and sheep distribution by sex. 

ROC of DTW and NN Systems 

Figure 8.10 shows the NN system’s ROC curve and a point on the ROC for the DTW 
system (ROCs of better systems are closer to the origin). The NN system was the first 

186 Subjects of the YOHO Database

Table 8.5 Known wolves and sheep of the DTW system.

19 FA errors across 9300 impostor trials
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one known to meet the 0.1% FA and 1% FR performance level at the 80% confidence 
level and it outperforms the DTW system by about half an order of magnitude. 

These overall error rates do not show the individual wolf and sheep populations of 
the two systems. As shown in Figures 8.1 1-8.14, the two systems commit different 
errors. 

0.001 0.01 0.1 1 10 
False Acceptance (%) 

Figure 8.10 Receiver operating characteristics. 

Wolves and Sheep 

FA errors due to individual wolves and sheep are shown in the 3-D histogram plots of 
Figures 8.1 1 through 8.14. Figure 8.11 shows the individual speakers who were 
falsely accepted as other speakers by the DTW system. For example, the person with 
an identification number of 97328 is never a wolf and is a sheep once under the DTW 
system. 

The DTW system rarely has the same speaker as both a wolf and a sheep (there are 
only two exceptions in this data). These exceptions, called wolf-sheep, probably have 
poor models because they match a sheep’s model more closely than their own and a 
wolfs model also matches their model more closely than their own. These wolf-sheep 
would likely benefit from retraining to improve their models. 

Now let us look at the NN system. Figure 8.12 shows the FA errors committed by 
the NN system. Two speakers, who are sheep, are seen to dominate the NN system’s 
FA errors. A dramatic performance improvement would result if these two speakers 
were recognized correctly by the system. 
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Figure 8.11 Speaker versus FA errors for the DTW system’s wolves and sheep. 

Now we will investigate the relations between the NN and DTW systems. 
Figure8.13 shows the sheep of the NN and DTW systems. The two sheep that 
dominate the FA errors of the NN system are shown not to be sheep in the DTW 
system. This suggests the potential for making a significant performance 
improvement by combining the systems. 

Figure 8.14 shows that the wolves of the NN system are dominated by a few 
individuals who do not cause errors in the DTW system. Again, this suggests the 
potential for realizing a performance improvement by combining elements of the NN 
and DTW systems. Along these lines, a high-performance speaker detection system 
consisting of eight combined systems has been demonstrated recently [27]. 

7. Conclusions 

Automatic speaker recognition is the use of a machine to recognize a person from a 
spoken phrase. Speaker-recognition systems can be used to identify a particular person 
or to verify a person’s claimed identity. Speech processing, speech production, and 
features and pattern matching for speaker recognition were introduced. Recognition 
accuracy was shown by coarse-grain ROC curves and fine-grain histograms revealed 
the wolves and sheep of two example systems. Speaker recognition systems can 
achieve 0.5% equal error rates at the 80% confidence level in the benign real-world 
conditions considered here. 
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Figure 8.1 2 Speaker versus FA errors for NN system’s wolves and sheep. 

Figure 8.13 Speaker versus FA errors for DTW and NN systems’ sheep. 
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Figure 8.14 Speaker versus FA errors for DTW and NN systems’ wolves. 
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Abstract Infrared imaging offers a robust technique for 
identification of faces and body parts. The anatomical 
information which is utilized by the infrared identification (IRID) 
technology involves subsurface features unique to each person. 
Those features may be imaged at a distance, using passive 
infrared sensor technology, with or without the cooperation of 
the subject. IRID therefore provides an unique capability for 
rapid, on-the-fy identification, under all lighting conditions 
including total darkness. A comparison between minutiae from 
facial thermograms and from fingerprints, based upon the 
anatomical structures underlying each, supports the 
experimental findings that facial thermograms are as unique as 
fingerprints. For many biometric applications, identification 
based upon facial thermograms is  preferable over fingerprints, 
since the former requires no physical contact with the subject 
and can be collected on-the-Jly. Also, a significant percentage of 
the population does not produce good enough fingerprints for 
identification; in contrast with the fact that every living person 
presents a thermal pattern. Thermal images of part of the face 
may be identified if a sufficient area is seen, just as with latent 
fingerprints. Systems for analyzing fingerprint minutiae may be 
utilized to analyze facial thermal minutiae with good results. 
Keywords: IRID, infrared, disguise, face. thermograms, 
minutiae, non-contact, biometric, passive sensing, security, 
intrusion. 
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1. Introduction 

Thermography, which is the use of cameras sensitive in the infrared spectrum, 
provides highly secure, rapid, noncontact positive identification of human faces or 
other parts of the body, even with no cooperation from the subject being identified. 
When the need is for "on the fly" identification such as to maintain accountability 
during emergency evacuations, or to spot targeted Faces in a Crowd, only imaging 
technologies in either the visible or infrared spectra are suitable. Infrared 
identification (IRID) is similar to visual identification in that both are completely 
passive and able to be performed from a distance using either manual or automatic 
comparison with previously collected images. However, identification from 
infrared images provides several significant benefits. 

Figure 9.1 The ideal  biometric. 

Human thermograms are affected by changes in ambient temperature, by 
ingestion of substances which are vasodilators or vasoconstrictors, by sinus 
problems, inflammation, arterial blockages, incipient stroke, soft tissue injuries, and 
other physiological conditions. Radiometric IR camera systems can even produce a 
non-contact EKG by exhibiting local temperature fluctuations associated with the 
cycle of heart beats. Medical providers can utilize these time-varying temperature 
maps for triage, diagnosis, and treatment monitoring. 

When the objective is identification only, the temperature data itself is not 
directly used. Rather, the thermal data is analyzed to yield anatomical information 
which is invariant to such changes. The IR image provides such detailed anatomical 
information that each person's information is unique, and is constant regardless of 
the medical condition variables. Consider this analogous to analyzing fingerprints; 
whether the print is formed by coating the finger with oil, blood, or ink, and 
whether a full rolled or partial latent print is seen, the same fingerprint pattern 
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emerges. Similarly, facial thermograms yield the same blood vessel pathways and 
minutiae regardless of apparent temperatures. 

Infrared video cameras are passive, emitting no energy or other radiation on the 
subject, but merely collecting and focusing the thermal radiation spontaneously and 
continuously emitted from the surface of the human body. IR cameras operating in 
the mid (3-5 micron) or long (8-12 micron) infrared bands produce images of 
patterns caused by superficial blood vessels which lay up to 4 cm below the skin 
surface. The human body is bilaterally symmetrical. Any significant asymmetry 
indicates a potential health-related abnormality. The assumption of symmetry 
facilitates assigning face axes. The reality of minor local asymmetries in each 
person's face facilitates alignment of images for comparison, classification, and 
identification of unique thermograms for each person. 

2. Comparison of IRlD to Other Biometrics 

All biometric techniques deal with the physiology of the human body, which 
involves aging effects, seasonal variations, biorhythm cycles, variations due to 
medical conditions, and changes associated with metabolic effects. 

Uniqueness and Repeatability  

Biometric technologies intended to be used in automated identification systems 
are routinely advertised as using data which is unique to each person, and which is 
repeatable over time and under varying conditions. In fact, there is no proof that 
any biometric signature, including fingerprints, is unique for each person. At best, 
statistically significant sampling can be performed, over time and under a set of 
controlled conditions, to support the hypothesis of uniqueness. Improvements in 
sensor technology generally aid in the demonstration of uniqueness by detecting 
finer inherent details, which can lead to lower rates of false positive errors. 
However, those improvements may exaggerate variations due to aging, 
physiological or ambient conditions, or system equipment modifications, which can 
lead to higher false negative errors. Therefore, a proper balance must be established 
between tuning a biometric system to yield a unique signature for each enrollee, and 
accommodating expected variations in those signatures over time. Facial 
thermography is a robust biometric, meeting the dual requirements of uniqueness 
and repeatability, as can be demonstrated through comparison with fingerprints. 

The thermal patterns seen by an infrared camera derive primarily from the 
pattern of blood vessels under the skin, which transport warm blood throughout the 
body. Figure 9.6 illustrates the major superficial blood vessels of the face. Figure 
9.7 shows the added details discernible from hotter areas near the heart. Current 
commercially-available infrared cameras provide sufficient thermal sensitivity and 
spatial resolution to produce images such as shown in Figure 9.2 wherein the shape 
of the thermal contours is anatomically determined by the structure of the head and 
face, and the position of the blood vessels. Aside from growth, accidental injury, 
and surgical intervention, a person's anatomy does not change, and the complexity 
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of the vast network of blood vessels assures that each person's vascular patterns are 
unique. Even identical twins have different thermograms, as shown in Figure 9.3. In 
contrast, visual ID systems cannot differentiate between identical twins. In fact, 
many people look very similar in visual images, and the use of disguises can often 
enable one person to look like any other, without detection. 

While there is no way to prove that facial thermograms are unique, it is possible 
to show they contain inherently more information than fingerprints. Similarly, it 
has never been proven that fingerprints are unique. However, that working 
hypothesis has been supported by many years of experience. Facial thermogram 
minutiae is analogous to fingerprint minutiae in that two sets of minutiae may be 
considered to identify the same person if a significant number of the minutiae in the 
two sets have corresponding positions and characteristics. In the United States, 16 
minutiae points must correspond in order for an unknown fingerprint to be 
considered a match to a known print for evidentiary purposes. Efforts are underway 
to establish guidelines for similar evidentiary rules regarding the use of infrared 
facial imagery for positive identification in legal proceedings. 

Immunity from Forgery 

Infrared Identification systems can detect attempted disguise. The IRID technique 
utilizes hidden micro parameters which lie below the skin surface, and which cannot 
be forged. Although that IR signature can be blocked, it cannot be changed by 
applique or surgical intervention, without those processes being detectable. The 
temperature distribution across artificial facial hair or other appliques is readily 
distinguished from normal hair and skin. Plumpers in cheeks, dental reconstruction, 
and external skin tightening appliances distort the skin surface but do not add 
minutiae. The distortion they cause can be modeled by using finite element analysis 
of the local rubber sheeting effects applied to groups of minutiae. 

Plastic surgery done for reconstruction or intentional disguise may add or 
subtract skin tissue, redistribute fat, add silicone or other inert materials, create or 
remove scars, resurface the skin via laser or chemicals, apply permanent color by 
tattooing eyelids and lips, remove tattoos and birthmarks by laser, implant or 
dipilate hair. Any one or combination of such procedures would probably defeat a 
visual identification system, but would generally not affect infrared identification 
unless the blood vessels were repositioned across most of the face. Procedures 
which are sufficiently invasive to reroute the patterns of superficial blood flow 
would necessarily cause incisions detectable in infrared, and would risk damaging 
facial nerves. It is, therefore, considered possible that a person could surgically 
distort his facial thermogram to avoid recognition, but the thermogram would 
contain evidence that he had done so. 
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Figure 9.2 Visual and infrared images of three individuals.
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Figure 9.3 Visible and infrared imagery of identical twins.

Figure 9.4 Visible and infrared imagery of an infant.

Figure 9.5 Visible and infrared imagery of an individual having dark complexion.
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Superficial Temporal Vein 

Internal Jugular Vein 
External Jugular Veln 

Superior Vena Cava 
Common Carotid Artery Subclavian Veln 
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Descending Aorta 
Inferiior Vena Cava 

Figure 9.6 Facial and thoracic arteries and veins. 

In general, only a single frame of infrared imagery is required to make a positive 
identification, given that it includes sufficient area of the face. It has been 
hypothesized but never demonstrated, that a person could paint his face with 
different emissivity materials in order to mimic another's facial thermogram. If that 
were ever determined to be a credible threat, then two or more frames would be 
captured and compared, to detect the presence of the minute thermal variations 
associated with heart rate and respiration cycles. The painted face could not evince 
such variations. Slight air flow past the face can be used to enhance the 
detectability of such materials. 

Operation under Uncontrolled or Dim Light, or Total Darkness 

IRID systems work accurately even in dim light or total darkness, whereas 
visible light systems are poor in dim light and useless in the dark. Using IR or UV
strobes to illuminate the face for a visible identification system produces poor 
quality images not suitable for accurate identification. When the requirement is for 
identification under poor lighting conditions, only IRID technology is effective. 
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Figure 9.7 Infrared image of chest and neck showing vasculature. 

Tolerance for Aging and Changes in Appearance 

The body's pattern of blood vessels is "hardwired" into the face at birth (Figure 9.4) 
and remains relatively unaffected by aging, except for predictable growth as with 
fingerprints. This provides for less inherent variability in the identifying features 
than is provided by visual images. Visible changes to hair color and style, colored 
contact lenses, suntan and makeup have no effect on the accuracy of thermal 
analysis. Other changes, such as weight loss and gain, cause rubber sheeting 
distortions only, which are dealt with in the matching algorithm. 

Non-Intrusiveness 

Both IRID and visual ID share the advantageous features of non-contact and hands- 
free on-the-fly operation, causing no interference with or slowing down of the 
entrants. All persons provide usable images, whereas significant percentages of 
persons do not provide usable fingerprints, retinal/iris scans, or voiceprints. 
Therefore, no secondary identification technique is needed to accommodate special 
cases. Most people are accustomed to the presence of surveillance cameras, and 
little if any training is required for cooperative ID system use. Facial recognition 
systems can provide accurate real-time automated identification even without the 
entrant's cooperation or awareness, which is not true of other biometrics. 
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Identification of Dark-Skinned Subjects 

Reported results on visual recognition systems include low incidences of dark 
skinned subjects in the databases. It is expected that inclusion of a representative 
distribution of skin tones might significantly degrade the performance results cited 
unless the lighting were adjusted for proper illumination of all skin tones. By 
contrast, skin tone does not affect the accuracy of thermal identification (Figure 
9.5). This is an important factor in commercialization of any system which will be 
used for high security applications, or in relation to the criminal justice system. 
Wide implementation and acceptance of automated facial recognition will require 
that the accuracy of the system is irrespective of race and gender, as well as other 
characteristics such as age. 

Scaling up to Large Populations 

The underlying features behind IRUD are the locations of specific junctions among 
blood vessels in the face, each of which is about 0.1" in diameter. Minutiae points 
may be either derived from thermal contours created by less sensitive thermal 
cameras, or may be extracted from absolute locations in imagery from more 
sensitive cameras. In either case, 175 minutiae can be extracted from a full facial 
image, each of which is associated with a relative location on the face, one or more 
vectors, and relative thermal band. The totality of possible minutiae configurations 
is significantly greater than the foreseeable maximum human population. 

Use of a FaceCode technique as illustrated in Figure 9.1 would in theory 
eliminate the need for image matching. Given the coding were sufficiently robust to 
compensate for expected variations in appearance and expression, a person's 
FaceCode would be read similarly to scanning a barcoded product. 

Maxim um Throughput 

The use of infrared identification provides the fastest throughput of any biometric 
technique. Since it is non-contact, it can be done at a distance limited only by the 
selection of optics. It does not require processing to correct lighting effects, and can 
recognize multiple faces in a single frame simultaneously. The non-contact nature 
of IRID helps to minimize maintenance costs and reduce the chance of accidental or 
intentional damage or vandalism. The limiting factor in IRID throughput is the 
matching engine decision time, which is less than 1 second for verification on a 
Pentium II/333 with current software. Any contact technique (such as fingerprints 
or hand geometry) or any action technique (such as voice or handwriting signature) 
requires more entrant time, and also requires training of the user and maintenance of 
the user interface. Other non-contact techniques include: iris scan, retinal scan, and 
visual images. Iris and retinal scans require more precise positioning, and the 
cooperation of the entrant in looking at a particular point. Additionally, these 
techniques can identify only one person at a time. Visual image identification 
throughput speed can match IRID under ideal conditions, but typically requires 
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additional processing to analyze the visual images under varying lighting 
conditions, resulting in a processing rate slower than for IRID. 

Minimum False Rejects (False Negatives) 

IRID works automatically with essentially all of the population; more than other 
biometrics. IRID systems are expected to systematically produce false rejects only 
for persons who have a new gross thermal condition such as severe sunburn or 
extensive facial surgery. Less than 1% of the travel population is affected by such 
conditions. This contrasts with a larger percentage of persons who do not produce 
good quality fingerprints on livescan systems due to the ridge structure of their 
fingers and/or dry skin. Contact lens wearers cause problems with the iris scan if 
they wear colored lenses or bifocal lenses, or wear their lenses only sometimes. 
Also, persons with glaucoma or cataracts may not be reliably identified by iris 
scanning. The situation is similar for retinal scans. Voice recognition is affected by 
colds, allergies, tiredness, dryness, and other variables. As speech processing 
technology improves, these effects will be less of a problem. However, current 
technology seems to be inadequate in dealing with the effects of airline travel on the 
vocal tract, especially lengthy foreign travel on speaker recognition. Visual 
imaging may produce false rejects for changes to facial hair, hair style, makeup, 
headgear, facial expression, and lighting. Even under laboratory conditions, false 
rejects occur due to normal daily variations in appearance. Hand geometry should 
have a low false reject rate since there is little variation in the basic features being 
measured, but variations in the mechanical readers and in the training and behavior 
of the users commonly produce false rejects. 

Minimum False Accepts (False Positives) 

Using thresholding for match/no match decisions to compare facial thermograms, 
the probability of false positives can be set as tightly as desired. Depending on the 
quality of the imagery and the repeatability of the face position, a single correlation 
value can be produced for each match, or local correlation values can be produced 
for each area of the face or cluster of minutiae. Prior to correlation, relatively cold 
pixels representing background, hair, and eyeglasses are converted to random noise 
so as to not influence the correlation process. The autocorrelation values for whole 
frame or local areas are used to tailor the match decision thresholds for each entrant. 
These steps avoid the occurrences of the matching engine recognizing hair styles, 
glasses, or head outline rather than the true biometric of facial thermal patterns, and 
thereby minimize the rate of false accepts. 

Other biometrics often rely on more sophisticated analysis to reduce false 
accepts when allowing for normal variations in biometric features. For example, 
detecting papercuts on fingerprints, varied contact lens patterns on iris scanning, 
effects of a sore throat on voice recognition, and facial hair changes in visual face 
recognition requires more computationally intense processing than does converting 
cold pixels to noise in IRID. 
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Correlation between Visual and lnfrared Images 

The two frequently cited disadvantages of IRID relative to visual recognition are 
that infrared cameras cost more, and there do not exist large databases of thermal 
images comparable to mug shot files. Both those citations deserve comment. The 
camera cost disparity will remain, but will continue to be reduced during the next 
three years as IR camera production increases. When the cost of providing 
controlled lighting for a visible ID system is included, the current cost discrepancy 
is about $10,000 per system. That figure has been decreasing by about 30% per year 
for the past 10 years, which reduction is expected to continue. The strong 
advantages of infrared identification are expected to justify the higher camera price 
for many applications. 

IRID matching techniques can utilize existing visible image databases. There are 
several correspondences between an IR and a visible image of the same person as 
can be seen in the figures. In particular, the head shape and size and the position of 
features such as the eyes, mouth, nose and ears are the same in both. The infrared 
image lacks the color of the skin, hair, and eyes; however, it provides detailed 
anatomical information missing from the visible image. Infrared images are unique 
to each person; visual images of corresponding resolution are not unique because 
many people look similar and can disguise themselves to look enough like one 
another that an automated system cannot distinguish them. Therefore, in a large 
database, it is not possible to automatically perform a one-to-one linkage between 
infrared and visual images because the visual images are not sufficiently unique and 
so a number of people may have visual images which could match the IR image. 

However, for each infrared image an automated system can eliminate all visual 
images which cannot be a match because the corresponding features are not similar 
enough. In general, more than 95% of the persons in a visual database can be 
eliminated as a match to a given infrared image. This has application to the use of 
infrared surveillance imagery to identify wanted persons for whom we may have 
only a visual image database. The IR-Visual correlation system compares each 
person seen in infrared to a visual image database, and determines all the possible 
matches. Therefore, IRID can be used to correlate between IR surveillance images 
and mug shot, DMV, and other available visual databases. Large scale use of 
infrared imagery can therefore proceed without waiting until large databases of 
infrared images are established. 

3. Principles of infrared Identification 

Human Identification Accuracy is the Standard 

Psychological research on how humans recognize one another’s face indicates the 
importance of the location and shape of eyes, nose, eyebrows, face shape, chin, lips, 
and mouth, in order of decreasing utility. Humans can in general achieve accuracy 
on the order of 97% in identification tasks involving determining the identity of a 
person whom they have previously seen. The 3% error is primarily due to the fact 
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that people are very similar to one another in visual imaging, and other cues are 
used in daily life to compensate for that similarity. For example, height, voice, hair 
style, location, style of movement, body language, etc. all contribute to visual 
recognition. Automated identification systems for recognition of persons based 
upon visual facial images in general seek to duplicate the behavior of humans 
performing that same task. The use of neural nets, adaptive clustering networks, 
retinal sampling, template matching, eigenfaces, etc. all seek to replicate human 
performance. The best systems currently achieve results comparable to human 
identification. 

Earlier research by the authors found that humans were error-free in recognizing 
various thermal images as belonging to the same person when the imagery was 
taken under a wide variety of temperature, pose, hair style, lighting, and clothing 
changes. When asked to describe the features used in making their determinations, 
it is the connectedness of the thermal contours which are most considered, along 
with the thermal shapes of specific areas such as the canthi, and the degree of 
asymmetry in the forehead, cheek, and nose area. Whether the nose is hot or cold, 
and the amount of definition within the nose area are significant sorting features for 
quickly considering possible matches. Therefore, attempts to automate 
identification based upon thermal images can be expected to be optimized when 
different features are used compared to visual image recognition. However, the fact 
that humans can, with little experience, learn to accurately recognize thermal facial 
images demonstrates that sufficient information exists within the thermal face to 
allow very accurate automated identification. 

Preprocessing Requirements 

Certain standard preprocessing requirements exist for any pattern recognition task, 
regardless of the category: (i) the target must be found in the data; (ii) the quality of 
the target data must be analyzed and found to be adequate; (ii) the target data must 
be normalized for amplitude, distribution, and orientation; and (iv) background, 
clutter, and noise must be subtracted. 

For facial identification tasks in either visible or IR, the recognition engine must 
contend with appearance variations that include: (i) hair falling on forehead, (ii) side 
and top hair style changes - on and off the face, (iii) facial hair added or removed, 
(iv) facial expression changes, (v) rotation, tilt, and tip of the head, (vi) sunglasses 
and eyeglasses, (vii) sunburn, (viii) hats, (ix) distinguishing chin edge from neck, 
(x) focus and motion blur, and (xi) makeup. 

Other variables pose different problems between visual and thermal imagery. In 
particular, illumination variations in intensity and direction are the greatest source 
of error in visual identification tasks. The resulting shadows and glare and apparent 
changes in facial relief outlines cause problems for template matching and feature- 
based automated systems. Thermal identification is relatively immune to 
illumination changes, unless the illumination produces measurable thermal changes 
in the face temperature patterns. Eyeglasses are a potential problem in both modes 
of identification, although visual identification of persons who always wear the 
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same eyeglasses can improve the overall accuracy of the system, since the resulting 
image is probably more distinguishable from other faces in the database. Glare 
from the glass can mask the area behind it from visual detection, and that area is 
always masked from infrared view due to the inability of the thermal energy to 
transmit through most glasses and plastics. The effect of any eyeglasses on thermal 
images can be considered analogous to the effect of sunglasses or photosensitive 
lenses on visual images, in terms of impact on identification. 

Edge Effects and Rotation 

The accuracy of matching images where one is rotated with respect to the other 
varies with the amount of overlap between the two images. If analysis is performed 
using template matching, the size and position of the templates limits the amount of 
rotation which can be tolerated. If feature analysis is used for matching, then the 
edge effect impact on features affected by the rotation will limit the potential 
accuracy. To accommodate greater repositioning of the head, small templates and 
small features should be selected. This also produces less accumulated error at the 
edges of templates due to tilt or rotation or tip, and also reduces the error introduced 
by assumptions of flatness for local shape areas. If minutiae matching is used, each 
minutia is either seen or not; its positions and characteristics are not affected 
otherwise by head position. 

4. Facial Identification using Templates and Matching of Shapes 

R I D  systems built and tested to date have employed either template or shape 
matching engines . 

Common Processing Approaches 

The two generic classical approaches to facial recognition, namely template 
matching and feature matching, apply both to visual and thermal images. It would 
be expected, therefore, that the same general rules governing use of each approach 
for visual faces would apply to thermal images, although the specific 
implementations would differ. For template matching, if the templates represent 
the entire database, the system may lose the utility of fine differences among 
subjects. If the templates are individually established for each subject, that may 
drastically lengthen the processing time. However, when the task to be considered 
is verification of purported identity, that implies a cooperative situation where the 
verification time is typically expected to be on the order of 3 seconds. Therefore, 
there would seem to be enough time to apply two sets of templates: an individual 
one representing the purported identity, and a global one representing the database. 
Persons who are highly differentiated from the norm would be more reliably 
identified using their own templates, whereas persons closer to the average would 
generate fewer false negatives (or correspondingly allow a tighter acceptance 
threshold) if they were compared to a standard template set. 
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The template areas which seem to be most effective for visual and thermal 
recognition have some similarity. In both modalities, the nose is considered a poor 
choice for discrimination of frontal images, and so is not included in the templates. 
For both modalities, the upper face offers more significance for recognition of 
identity, where the lower face presents more clues to gender and expression 
recognition. Eye areas are important to both modalities, however for visual images 
the total eye area is used and for thermal the canthi or areas between the nose and 
inner edge of the eyes are most significant. Visual recognition often utilizes the 
mouth, chin, head shape, and eyebrows for template areas, with the eyes and mouth 
the primary ones selected. For thermal imaging, however, the mouth is not used, 
since the thermal signature varies greatly depending on whether the mouth is open 
or shut. Face edges can be used with the same effectiveness in either modality. In 
addition, however, the inner thermal curve produced by the main facial artery of 
each cheek is found to be highly discriminating. 

Feature extraction approaches follow the same mathematical derivations, but 
result in consideration of different sets of features in the visible and IR. For 
example, simple metric graph matching in visual images commonly selects the 
comers of the mouth, centers of the eyes, tip of the nose, and edges of the face as 
feature points. However, the nose tip and mouth comers experience rubber sheeting 
effects with changes in expression, which adds fuzziness to their positions and 
distances. For thermal images, there are many more feature points which can be 
selected which are in the upper portion of the face and less prone to rubber sheeting 
effects. In particular, centroids and maxima on the canthi, the angle and position of 
the major arteries through the forehead, and the uppermost thermal cheek contour 
projections on each side seem to be reliable markers whether used as kernels for 
Gabor wavelet transforms or as anchor points for grid matching. The use of a 
standard rectangular overlaid grid is expected to be equally useful in both 
modalities. However, for IR there are many more feature points having greater 
variability. 

Different Processing Approaches 

Other differences between visual and thermal processing result from the more 
consistent and sharper edge effects found in thermal faces. Visual face gray values 
are produced from a combination of changes in apparent skin tone (with perhaps 
overlaid cosmetics) resulting from shadows and depth of facial features --- strongly 
influenced by the intensity and directionality of the ambient light. There simply is 
not a lot of consistent variation in gray values across a face other than at the 
boundaries and within the facial features (eyes, nostrils, mouth). In contrast, 
thermal images have a wealth of variation in gray values, regardless of ambient 
conditions. Therefore, whereas contour matching has not been found to provide 
very good results for visual identification, it does provide reasonable results for 
thermal imagery. 



Infrared Identification of Faces and Body Parts 205 

Current Results for Thermal Images 

Several IRID tests have been performed using various IR cameras and matching 
engines. No training of the system was performed and no adaptive algorithms were 
used in any of the exercises. The databases included a broad variety of individuals 
of varying height, skin tone, and hair style, with and without glasses. Images were 
obtained over a period of weeks. A single try was allowed for each attempted entry. 
The best results generated a crossover point for Type I and Type I I errors of 1%. 

Computational Intensity. The current IRID matching engine program is not 
computationally intensive, relative to some of the visual recognition systems. It 
utilizes only spatial information rather than feature extraction to transform space. 
Transformation of the image can often reduce the computation time, enhance the 
separability of images in the database over that obtained in the original spatial 
presentations, and reduce the impact of minor distortions such as linear translations 
and rotations. With the use of a dedicated processor or faster PC, significantly more 
computation could be performed on the thermal image without exceeding the 3 
second desired decision time. A wavelet technique for alignment and scaling has 
been evaluated and shown to significantly improve accuracy in matching images 
taken over long intervals. That technique currently requires a workstation and 15- 
30 seconds per match decision. 

Enrolling and Classifying Infrared Images. Only a single frame of infrared video 
(1/30 second), full frontal view, is required to uniquely identify a person. It can be 
taken at the same time and with the same care as a standard photograph used for 
passports. There are strong correlations between the infrared and visual facial 
images: head shape and size, location and shape and size of features. The database 
of images can be segmented into classes using those values, and the same 
classification system will work for visual or infrared images. 

Template Matching. If thermograms are first standardized as to size, and then 
normalized as to gray scale, the areas about the canthi and the inner cheeks can be 
compared using template matching with rather good results. On databases of 250 
people, a crossover error of 7.5% was obtained by matching the four template areas, 
using older cooled IR cameras having NETD (noise equivalent temperature 
difference) of approximately 0.1° C. At that level of sensitivity, detailed thermal 
contours are not seen and so shape analysis does not apply. Inexpensive uncooled 
IR cameras can now provide that level of verification accuracy with a simple 
processor chip installed in the camera, for a system cost below $5000. 

Elemental Shape Real-Time Matching. With IR cameras having NETD of 0.7° C 
or less, 100 or more different closed thermal contours are seen in each face. The 
sets of shapes are unique for each individual, even in the case of identical twins, 
because they result from the underlying complex network of veins and arteries. 
Variation in defining the thermal slices from one image to another has the effect of 
shrinking or enlarging the resulting shapes, while keeping the centroid location and 
other features of the shapes constant. Each nesting of thermal closed contours is 
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called an “elemental shape”. Pre-production systems based on elemental shape 
analysis have been built and have undergone extensive testing with more then 250 
persons, and databases of more than 10,000 images over the past three years. This 
has proven the persistence of those features of the facial thermograms which are 
used for identification and the uniqueness of each person’s thermal image. Facial 
thermograms for a limited number of subjects have been obtained for periods of 8 to 
23 years, demonstrating the required persistence over those durations. Automated 
IRID using elemental shapes in real time has achieved 96% accuracy. Studies on 
pairs of identical twins have demonstrated that they can be separately identified 
through elemental shape analysis. 

Elemental Shape Post-Processed Matching. The totality of shapes in a library of 
facial thermal images were analyzed. Eigenshape analysis was used to compare 
eleven characteristics of each shape including: perimeter, area, centroid (x, y) 
locations, minimum and maximum chord length through the centroid, standard 
deviation of that length, minimum and maximum chord length between perimeter 
points, standard deviation of that length, and area/perimeter. Shapes whose edges 
are interrupted may need to be ignored when compared against images with 
different edge effects. As examples, shapes along the face edge will change when 
the face is turned; shapes around the eyes will be affected when glasses are put on. 

Each person’s image was then characterized by a set of 11-coefficient vectors. 
The difference in eigenspace between any two images was calculated to yield a 
measurement to which a threshold was applied to make a “match/no match” 
decision. The resulting system accuracy was 97% for non-cooperative imagery; and 
98.5% for cooperative imagery, when tuned for 0% false positive identification. 
While these studies proved that IRID can produce high accuracy identification for 
cooperative access control applications, the calculation techniques are 
computationally intensive and would need to be hardware-based for real-time use. 
The shape analysis approach is adversely impacted by edge effects due to head 
rotation, tip and tilt especially in the noncooperative mode. Future systems using 
facial minutiae matching will reduce the impact of edge effects on IRID system 
accuracy. 

5. Current IRlD System Design, Cost, Features, and Performance 

Prototype IRID systems for access control were developed by Unisys Corporation. 
The configured systems were designed for unattended cooperative access control. 
Components include IR camera, Pentium I PC-class computer, face acquisition 
assembly, keypad, and the enrollment subsystem of a monitor and keyboard. The 
face acquisition assembly includes the mechanisms which move the camera and 
focus it so that the face is within the field of view. The primary cost component of 
the system is the infrared camera. The camera in the current system was designed 
and built by Lockheed Martin. It is uncooled and produces images of 320 x 240 
pixels in the 8-12 micron band. The stand-alone access control system version of 
the IRID system was designed to sell for $25,000 initially with reduction to $5000 
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in quantity, and to offer a false positive rate of less than 1% and false negative rate 
of less than 2% for single entry attempts. 

A non-cooperative, non-real-time faces-in-the-crowd version of the IRID system 
was also built and demonstrated, with more than 100 persons represented in a 
database of 500 images. Twelve targeted persons were selected, and the database 
was searched for all appearances by the targeted persons. An accuracy of 98% was 
achieved, with no false positives. All the database images were manually selected 
from IR videotapes obtained at trade shows. Only in-focus, essentially full face 
images were selected and manually scaled and centered. Processing was not done 
in real time. The I I-coefficient eigenanalysis required 20 hours on a 486/66 PC. 
Future faces-in-the-crowd use of IRID will utilize minutiae analysis with the goals 
ofpermitting the system to run in real time and utilizing a larger percentage of non- 
full frontal images. 

Operational use of IRID systems requires setting the decision threshold to 
minimize false positive errors. This requires quality imagery and selection of 
unique and persistent features. False negative errors are reduced by providing 
feedback to the entrants and/or performing additional analysis of the imagery. This 
accomplishes maximum overall throughput while providing additional processing 
for more difficult identifications in those cases where a particular entrant has a 
wider day-to-day variation than the average entrant; or where multiple individuals 
in the database have some common or similar features in their thermograms that 
require additional analysis to separate them. 

6. Future IRlD Systems using Thermal Minutiae 

IRID systems now under development will utilize lower cost cooled and uncooled 
infrared cameras, and will perform identification based upon thermal minutiae. 

Infrared Camera Sensitivity Determines Minutiae Analysis 

Images produced by current commercial IR cameras with NETD of approximately 
0.07' C exhibit thermal contours from which minutiae may be derived. On the 
order of 100 sizable closed contour shapes are produced for each face. One or more 
minutiae may be associated with each shape, such as by using the centroid, or using 
all inflection points. Since each shape has 11 or more measurable characteristics, 
which can be associated with that minutia point, with wide ranges of possible 
values, the total set of possible facial thermograms would appear to be far more 
numerous than the set of possible fingerprints. However, matching of eigenshape- 
derived minutiae is computationally intensive, requiring hardware embodiment for a 
PC-based system. Also, those points will vary in location and characteristics if their 
shape encounters edge effects due to the face being turned, or its appearance 
changed by glasses or facial hair, causing a major impact on the accuracy of 
systems using the derived minutiae. More sensitive infrared cameras offer the 
potential for absolute minutiae extraction, which is more accurate and more 
comparable to fingerprint analysis. 
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Cameras with an NETD of 0.04°C or better are able to directly image the 
superficial blood vessels, displaying them as a network of hot pathways 
superimposed on the thermal facial image. Such cameras permit the direct 
extraction of minutiae, and do not require production or consideration of elemental 
shapes. Comparison of these "absolute" thermal minutiae is more akin to fingerprint 
minutiae matching, rather than the computationally intensive approaches required 
for eigenshape comparisons. Images have been obtained from prototype improved 
infrared cameras and used to develop the techniques summarized here. 

Fingerprints are characterized by a limited range of intensity values 
corresponding to three dimensional ridges which are essentially concentric rings 
about a single center, plus anomalous arches, line endings, and bifurcations. High 
sensitivity facial thermograms are characterized by a continuously varying wide 
distribution of temperatures overlaid with the pattern of underlying blood vessels, 
which appear as relatively hot pathways superimposed on the varying background. 

Fingerprint matching techniques commonly extract minutiae points from the 
prints, and then compare the sets of minutiae rather than compare the entire prints. 
Generally, line endings, branch points, and islands are considered to be minutiae. 
Features of each minutiae point are considered. They may includes: the type, 
orientation, location, and the count of the numbers of skin ridges lying on each of 
the lines between that minutia and each and every other minutia. Using such an 
approach, on the order of 80 to 150 minutiae points are identified in each 
fingerprint. Other fingerprint minutiae extraction and matching approaches 
produce essentially the same number of minutiae, with differences in what features 
are considered in attempted matching and in how the matching is performed. 

For facial thermograms, the analogous features which are most easily extracted 
are branch points of the superficial blood vessels. A face includes on the order of 
175 such points. Once the minutiae have been extracted, prior techniques 
associated with fingerprint minutiae matching can then be applied. 

Minutiae Variations 

Matches between different prints taken from the same finger are never perfect, since 
the fingers are deformable three-dimensional connected and jointed structures 
which leave two-dimensional prints on surfaces they encounter through pressure. 
The exact angles between the fingers and the surfaces, the amount and direction of 
pressure, and the effect of movement between the fingers and the surfaces all cause 
variations in the exact prints produced. Even when prints are produced by a live 
scan technique, variations in the scanner optics, hand position, oil or dust on the 
fingers, use of lotions, and scratches or paper cuts will produce variations in the 
prints produced. Therefore, the exact number, position, and characteristics of 
minutiae extracted from two prints may be different even though they are produced 
by the same finger. 

Analogous techniques and systems may be applied to the extraction and 
matching of minutiae points from human faces for identification of individuals. 
Persons who have previously been identified and logged-into a facial recognition 
system can later be automatically identified from live or recorded images, by 
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comparing the facial minutiae of the unknown image with that of all known images 
in the database. The database can be partitioned by first classifying the faces either 
based on minutiae-related characteristics or on other characteristics such as the 
degree of bilateral asymmetry. Such classification reduces the search requirements 
for identification against a reference database. 

The underlying anatomical features which produce facial thermograms aid in 
locating and orienting the face for analysis. The face is basically bilaterally 
symmetrical. There is variation of temperatures from the hot areas on either side of 
the nose to the relatively cool areas of the ears and cheeks. The eyes appear to be 
cooler than the rest of the face. The nostrils and mouth, and surrounding areas, will 
look warm or cool depending upon whether the subject is inhaling or exhaling 
though them. Since the face surface can be distorted through changes in expression, 
through activities such as eating and talking, and as a result of weight gain and loss, 
analysis of the minutiae points must consider those changes, as with analogous 
fingerprint deformations. 

Also, since it is of interest to identify faces seen in crowds, or faces turned at any 
angle, a significant number of minutiae points must be extractable for those 
applications so that even a partial face can be used for ID. This is again analogous 
to the situation with fingerprints, where a partial latent print may be matched against 
a rolled print obtained at a booking station and entered into the FBI database, if 
enough minutiae are found in the latent. The particular technique used to extract 
thermal minutiae from facial images, and the number extracted, depend on the 
sensitivity of the IR camera used; just as the number of fingerprint minutiae found 
depends on the resolution of the image scanner. 

Minutiae Matching Approaches 

Various minutiae extraction algorithms are used by fingerprint identification 
systems, some of which merely utilize the location of the minutiae and others which 
also utilize additional information about the type of minutia each point represents. 
For example, simple graph matching techniques can be used to compare two 
clusters of minutiae locations. Or, the ridge angle at each minutia point can be 
considered and matched along with the coordinates. Or the type of minutia can 
also be considered and matched along with coordinates and angles. A measure of 
goodness of fit can then be computed and used to rank order possible matches. The 
distances between ridges of a fingerprint average 0.4 millimeters but can vary by a 
factor of two for any individual finger depending on skin displacement when the 
finger contacts the hard surface normally encountered in establishing a print. The 
matching algorithm should consider such possible deformation in the print and 
accommodate local warping to the grid of minutiae. 

Thermal face identification systems based on absolute minutiae can similarly 
consider only the location of the minutiae, or can also consider the vectors of the 
branching blood vessels. In addition, however, the thermogram provides a third 
dimension, apparent temperature, which is significantly more varied than is ridge 
depth for fingerprint analysis. Thermal minutiae can be characterized by associated 
temperatures, as well as by location and vector. Deformations in the facial minutiae 
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grid due to varying facial expressions can be modeled similarly as with deformation 
in prints. 

There are other direct comparisons which can be made between fingerprint and 
facial thermogram minutiae analysis, such as techniques for locating the center and 
axes of the face or finger. The inherent bilateral symmetry of the facial 
thermogram, as well as the universality of the underlying vascular structure, 
produces a more consistent and unambiguous center and axes for the face, even 
when only a partial face, analogous to a partial latent, is seen. Consideration of 
ridge crossings in fingerprints is analogous to consideration of thermal contour 
crossings in facial thermograms. 

Automatic systems 
generally require better quality imagery. The matcher engine must allow for some 
degree of inaccuracy or variability with respect to each of the encoded coordinates 
and their characteristics, to accommodate distortions caused by the subject's 
movements and by the limits to precision of the scanning and analysis subsystems. 

The same thermal minutiae are repeatedly extracted from a given individual. 
They may be overlaid and annotated on the infrared image, or in fact on a visual 
image or on any image obtained from another medical sensor having the same 
orientation to the subject. The thermal minutiae, therefore, provide reference or 
fiducial points for manual or automated comparison, merging, or registration among 
a set of images taken at different times, with different orientations, and with 
different cameras. The merging of infrared and visual identification can effectively 
use superimposed thermal minutiae on visual mug shots. 

Minutiae may be extracted manually or automatically. 

7. FaceCode and the Future of IRlD 

Once a large number of subjects' minutiae patterns are collected, it may be possible 
to derive a unique FaceCode repeatably from each person, eliminating the need for 
comparing against a database. As an example, by restricting attention to a particular 
area of faces (such as a square whose top edge is determined by a line through inner 
comers of the eyes, with the edge length equal to twice the inter-eye spacing), a 
standard grid can be superimposed on that square area and a binary or other code 
produced corresponding to the location of specific vascular branches seen in the 
thermal image. If the grid is fine enough, that code is expected to be unique for 
each person, and be persistent for the person's life and under all imaging conditions. 
If that technique is successful, then a FaceCode can be read directly from a person's 
face without the need to match facial thermogram contours or minutiae patterns. It 
would be as if the person's personal ID number were barcoded across his face as 
suggested in Figure 9.1. 

It is expected that an effective thermal face encoding technique will be 
developed in the future. The coding scheme will take account of head position, and 
allow for degraded accuracy of identification when only a partial face is seen. The 
resulting systems would not require use of a keypad, ID card, or other technique by 
which the entrant asserts his identity for verification by the system. Depending on 
the computational complexity of the processing required, such a capability could 
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allow for rapid throughput with minimal cooperation by the entrant. This technique 
would also support real time faces-in-the-crowd and digital signature applications. 

Identification of Body Parts 

Infrared images can be processed to yield repeatable minutiae points corresponding 
to specific vascular and other physiological locations under the skin from any 
extended area of the body, generating a corresponding set of minutiae which is 
unique to each individual. Expanding the facial minutiae approach to whole body 
applications produces the technique called SIMCOS (Standardized Infrared 
Minutiae CO-ordinate System). SIMCOS-derived minutiae use standardized 
anatomical references to obtain a standard set of minutiae for each body part for 
each person. Knowing the wiring chart between blood vessels at the different 
locations, evidence of vasoactivity, which is seen as thermal activity, can provide 
information about otherwise inaccessible portions of the body hidden by hair, 
clothing, or other coverings. For example, SIMCOS points provide consistent and 
meaningful nodes for a wireframe or finite element analysis of the thermodynamic 
behavior of the face in response to specific protocols of anesthesia or drug use. 

The MIKOS SIMCOS technique provides a built-in set of registration points on 
the body’s surface, which can be annotated onto images produced by visible or 
infrared cameras, or by any medical imager used in conjunction with a thermal 
sensor. The registration points then can be used to compare and combine images 
taken with different equipment at different times and under different conditions, 
facilitating comparison of those images. Also, for medical uses the minutiae 
provide reference points for continuous re-alignment of surgical instruments, 
radiation sources, and other diagnostic equipment. Since the infrared camera is 
totally passive, it can be used continuously during other surveillance or medical 
procedures to overlay precise registration points on all images while also 
monitoring for overheating, shock, hypothermia, renal failure, and other conditions 
observable from the thermal data. 

8. Future IRlD System Design, Cost, Features, and Performance 

Uncooled IRID systems within the next three years are expected to incorporate 
better thermal sensitivity, autofocus, expanded depth of focus, and prices below 
$1000 in large quantities. Cooperative IRID access control systems will then match 
the initial cost of current live scan fingerprint readers, but will offer non-contact 
passive operation, will apply to all persons without exception, and will be more 
secure and accurate. Applications to computer security, ATM and point of sales 
terminals, and electronic passports will offer the ease of photographs with the 
security of fingerprints at a cost competitive with other biometric techniques. 
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9. Conclusions 

Infrared imaging analysis offers a robust technique for classification, recognition, 
and identification of faces and body parts. Depending upon the sensitivity and 
resolution of the thermal camera used, accuracies of 85% to 98% are currently 
obtained from pre-production systems in Beta testing. Further improvements in the 
cameras, and in image centering and scaling techniques, are expected to offer 
further accuracy gains. The inherent anatomical information which is utilized by 
the infrared identification (IRID) technology involves subsurface features unique to 
each person. Those features may be imaged at a distance, using passive infrared 
sensor technology, with or without the cooperation of the subject. 

IRID, therefore, provides an unique capability for rapid, on-the-fly identification, 
under all lighting conditions including total darkness. As the cost of uncooled 
infrared cameras continues to decline, and medical applications for thermal imaging 
become commonplace, it is anticipated that IRID will increasingly provide cost 
effective security of physical spaces, computer systems, distribution of goods and 
services, and evidentiary proof of identity for law enforcement. 
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Abstract This chapter deals with the applications of keystroke 
dynamics to authenticate/verify access to computer systems and 
networks. It presents our novel contribution to this area along with 
other related works. The use of computer systems and networks has 
spread at a rate completely unexpected a decade ago. Computer 
systems and network are being used in almost every aspect of our 
daily life. As a result. the security threats to computers and 
networks have also increased significantly. We give a background 
injormation including the goals of any security system for 
computers and networks, followed by types of security attacks on 
computers and networks. We present the applications of keystroke 
dynamics using interkey times and hold times as features to 
authenticate access to computer systems and networks. 
Keywords: Keystroke dynamics, computer security, computer 
verification/authentication, interkey times, hold times, neural 
networks, pattern recognition, system identification. 

1. Introduction 

Computer systems and networks are now used in almost all technical, industrial, and 
business applications. The dependence of people on computers has increased 
tremendously in recent years and many businesses rely heavily on the effective 
operations of their computer systems and networks. The total number of computer 
systems installed in most organizations has been increasing at a phenomenal rate. 
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Corporations store sensitive information on manufacturing process, marketing, credit 
records, driving records, income tax, classified military data, and the like. There are 
many other examples of sensitive information that if accessed by unauthorized users, 
may entail loss of money or releasing confidential information to unwanted parties [ 1- 

Many incidents of computer security problems have been reported in the popular 
media [ 1]. Among these is the recent incident at Rice University where intruders were 
able to gain high level of access to the university computer systems which forced the 
administration to shut down the campus computer network and cut its link with the 
Internet for one week in order to resolve the problem. Other institutions such as Bard 
College of the University of Texas Health Science center reported similar breaches. 
Parker [10] reported that one basic problem with computer security is that the pace of 
the technology of data processing equipment has outstripped capability to protect the 
data and information from intentional misdeeds. 

Attacks on computer systems and networks can be divided into active and passive 
attacks [11-12]. 

9]. 

Active attacks: These attacks involve altering of data stream or the creation of a 
fraudulent stream. They can be divided into four subclasses: masquerade, replay, 
modification of messages, and denial of service. A masquerade occurs when one 
entity fakes to be a different entity. For example, authentication sequence can be 
collected and replayed after a valid authentication sequence has taken place. 
Replay involves the passive capture of data unit and its subsequent retransmission 
to construct an unapproved access. Modification of messages simply means that 
some portion of a genuine message is changed, or that messages are delayed or 
recorded, to produce an unauthorized result. 

Passive attacks: These are inherently eavesdropping on, or snooping on, 
transmission. The goal of the attacker is to access information that is being 
transmitted. Here, there are two subclasses: release of message contents, and 
traffic analysis. In the first subclass, the attack occurs, for example, on an e-mail 
message, or a transferred file that may contain sensitive information. In traffic 
analysis, which is more sophisticated, the attacker could discover the location and 
identity of communicating hosts and could observe the frequency and length of 
encrypted messages being exchanged. Such information could be useful in 
guessing the nature of information/data. 

Passive attacks are difficult to detect, however, measures are available to prevent 
them. On the other hand, it is difficult to prevent the occurrence of active attacks. 

Computer security goals consist of maintaining three main characteristics: 
integrity, confidentiality, and availability [ 12]. These goals can overlap, and they can 
even be mutually exclusive. For example, strong protection of confidentiality can 
severely restrict availability to authorized parties. 

1. Integrity: This characteristic means that the assets can be modified (e.g., 
substitution, deletion, or insertion) only by authorized parties or only in 
authorized ways. Integrity means different things in different contexts [ 12]. 
Among the meanings of integrity are precise, accurate, unmodified, consistent, 
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and correct result. Three aspects of integrity are commonly recognized: (i) 
authorized actions, (ii) separation and protection of resources, and (iii) error 
detection and correction. 

Confidentiality: This is also called privacy or secrecy. It means that the computer 
and network systems are accessible only to authorized parties. The type of access 
can be read-only access; the privileges include viewing, printing, or even just 
knowing the existence of an object. 

Availability: This term is also known by its opposite, denial of service. Here, the 
term means that assets are accessible to authorized parties. An authorized 
individual should not be prevented from accessing objects to which he/she has 
legitimate access. Availability applies both to data and service. 

One major aspect of a multiuser computer system that can be a significant threat to 
security arises from access to remote terminals. Denning [13] states that the 
effectiveness of access control is based on two ideas: (1) user identification and (2) 
protection of the access rights of users. Protecting the access rights of users is 
generally done at the system level, by not allowing access permissions to be altered 
except by authorized "super-users". Denning [ 13] presents several cryptographic types 
of user authentication, in addition to password schemes. To properly identify a valid 
user, one or more of the following techniques are commonly used [ 1-8,14]: 

User passwords are the most common means of identification, but they are subject to 
compromise, either by interception as the user types it, or by a direct attack. 
Hardware locks are secure, but there is no way for a computer system to know that the 
users who have logged on are really who they say they are. 

A third method, using biometric characteristic such as the user's typing technique, 
was discounted by Walker as impractical [14]. However, more recent work by 
Obaidat et al. [l-8], Gaines et al. [22], Umphress and Williams [15], Leggett and 
Williams [25], Yong and Hammon, and Joyce and Gupta [21] has shown that a user 
can be identified based on his/her typing technique using traditional pattern 
recognition and neural network techniques. These research efforts in keystroke 
dynamics have focused on attributes like stream of interkey times (latency periods 
between keystrokes) and hold times (durations between the hit and release moments 
of key hold) to provide a unique featureiidentifierisignature for authenticating an 
individual's identity. 

2. 

3. 

•    What the user knows or has memorized (password). 

What the user carries or possesses (e.g., a physical key). 

2. Types of Security Attacks 

The attacks on the security of a computer system or network can be characterized by 
viewing the function of the computer system/network as a provider of information. 
The possible attacks that may occur on a computer and networking system are as 
follows [ 11]: 
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1. 

2 .  

3.  

4. 

Interruption: In this case, an asset of a system becomes unavailable, lost, or 
unusable due to alteration. Clearly, this is an attack on availability. Examples 
include vicious destruction of hardware devices, deletion of a program/data file, 
cutting of a communication link, disabling of a file management system, failure 
of an operating system function, etc. 

Interception: This means that an unauthorized individual has gained access to an 
asset. Clearly, this is considered an attack on confidentiality. The consequences 
range from inconvenience to catastrophe. Examples include copying of data 
files/programs, and wiretapping to obtain data in a network. The unauthorized 
party could be a person, a program, or a computer system. 

Modification: Here the unauthorized party not only accesses but also tampers 
with an asset. Clearly, this is an attack on integrity. Examples include changing 
values in a record or data file, altering a program so that it performs differently, 
and modifying the contents of messages being sent over a network. The 
modification can be done on the hardware configuration as well. Some cases of 
modification can be detected with simple schemes, but others may be more 
difficult if not impossible to detect. 

Fabrication: Here an unauthorized party inserts counterfeit objects into the 
system. This is considered an attack on the authenticity of the computer system or 
network. The intruder may insert spurious transactions into the system, or add 
records to an existing data base. In some cases, these additions can be detected as 
forgeries, but if done skillfully, they are virtually indistinguishable from the real 
thing. 

Computer networks, in particular, have security problems due to the following 
reasons [11-12]: 

1. 

2 .  

3.  

4. 

5.  

Sharing: Since resources and work are shared, more users have the potential to 
access networked systems than a single computer node. 

Anonymity: An intruder can attack from thousands of kilometers away and thus, 
never have to touch the system attacked or come into contact with any of its 
managers or users. 

Complexity of system: Operating systems tend to be very complex. Reliable 
security is not easy to implement on a large operating system, especially one not 
designed specifically for security. Designing a secure computer network is even 
more difficult since it combines two or more computer systems with possibly 
dissimilar operating systems. 

Multiple points of attack: When a file physically exists on a remote host, the file 
may pass via many nodes in order to reach to the user over the computer network. 

Unknown path: network users seldom have control on the routing paths of their 
own packets. Routes taken depend on many factors including load conditions and 
traffic patterns. 
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3. Predicting Human Characteristics 

As early as the beginning of the 20th century, psychologists, and mathematicians have 
experimented with human actions. Psychologists have demonstrated that human 
actions are predictable in the performance of repetitive, and routine tasks [15]. In 
1895, observation of telegraph operators showed that each operator had a distinctive 
pattern of keying messages over telegraph lines [16]. Furthermore, an operator often 
recognized who is typing on the keyboard and sending information simply by 
listening to the characteristic pattern of dots and dashes. Since the beginning of 
civilization, humans are able to recognize the person coming into a room from the 
sound of steps of the individual. Clearly, each person has a unique way of walking. 
Similarly, telegraph operators were able to find out who was sending message by just 
listening to the characteristics of dots and dashes. 

Today, the telegraph keys have been replaced by other input/output devices such as 
keyboard and mouse. It has been established that keyboard characteristics are rich in 
cognitive qualities and hold promise as an individual identifier. Anyone sitting close 
to a typist or has an office next to a typist is usually able to recognize the typist by 
keystroke patterns. 

Over many centuries, humans have relied on written signatures to verify the 
identity of an individual. It has been proven that human hand and its environment 
make written signatures difficult to forge. It has been shown [21] that the same 
neurophysiological factors that make written signature unique are also exhibited in an 
individual typing pattern. Once a computer user types on the keyboard of a computer, 
he/she leaves a digital signature in the form of keystroke latencies (elapsed time 
between keystrokes and hold times). 

Human nature dictates that a person does not just sit before a computer and deluge 
the keyboard with a furious and continuous stream of non-stop data entry. Instead, the 
person types for a while, pauses to collect thoughts and ideas, pauses again to take a 
rest, continues typing, and so forth. In developing a scheme for identity verification, a 
common baseline must be established for determining which keystrokes characterize 
the individual's key pattern and which do not. Physiologists have studied human 
interface with computer systems and developed several models describing the 
interface to computers. One of the popular models is the keystroke-level model 
developed by Card et al. [17]. Their model describes the human-machine interaction 
during a session at a computer terminal. It was intended as a vehicle for the evaluation 
and comparison of competing designs for highly interactive programs. The keystroke 
level model summarizes the terminal session as follows: 

Tt = Ta + Te, 

where Tt represents the duration of the terminal session; Ta represents the time 
required to assess the task, build mental representation of the functions to be 
performed, and choose a method for solving the problem; and Te represents the time 
needed to execute all functions constituting the task. 

Note that Ta varies according to the extent of the considered task, experience of the 
user, and understanding of the functions to be performed. Clearly, this term is not 
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quantifiable. Thus Ta cannot be used to characterize a person. On the other hand, Te 
describes mechanical actions which itself can be expressed as: 

where Tk is the time to key in information and Tm is the time needed for mental 
preparation. Note that when interacting with a program, the user does not divide his 
actions into mental time followed by keystroke time. Instead, the two are intermixed. 

Shaffer [ 18] has shown that when a typist is keying data, the brain acts as a buffer, 
which then outputs the text onto the keys of the keyboard. Average capacity of the 
buffer is about 6-8 characters in length [19]. Because of the limited size of the buffer, 
typists group symbols into smaller cognitive units and pause between each unit. 
Cooper [19] established that the typical pause points are between words as well as 
within words that are longer than 6-8 characters. 

4. Applications of Keystroke Dynamics Using lnterkey Times 
as Features 

Although handwriting and typing are distinct manual skills, they both have 
measurable characteristics that are unique to those who perform the task [5,6]. 
Umphress and Williams [15] have conducted an experiment for keystroke 
characterization. They used two sets of inputs for user identification, namely, a 
reference profile and a test profile. Each keystroke was time-tagged to the nearest 
hundredth of a second and stored on a floppy disk. Another program was used to 
analyze the keystrokes and produced a database of reference profiles for each 
individual participating in the experiment. A third program was used to compare test 
profile keystrokes to reference profiles. Seventeen persons participated in that 
experiment. Each person was asked to take two typing tests. These tests were 
separated over several days. In the first test, the participants were asked to type about 
1400 characters of prose. The second typing test, the test profile, consisted of 300 
characters of prose. It was found that a high degree of correlation could be obtained if 
the same person typed both the reference and test profiles. Several medium 
confidence levels were assigned in cases where the typists of the profile differed. 
However, in most cases test profiles had low scores when the typists was not the same 
person who typed the reference profile. 

Obaidat and his colleagues [3,5,6] described a method of identifying a user based 
on the typing technique of the user. The inter-character time intervals measured as the 
user types a known sequence of characters was used with traditional pattern 
recognition techniques to classify the users, with good verification results. By 
requiring the character sequence to be typed two times, and by using the shortest 
measurements of each trial, better results were obtained than if the user typed the 
sequence only once. The minimum-distance classifier provided the best classification 
accuracy. In order to obtain a better classification accuracy, their analysis considered 
the effect of the dimensionality reduction, and the number of classes in the 
identification system. The measurement vector is obtained by computing the real-time 
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durations between the characters entered in the password. Figure 10.1 shows the flow 
chart of the overall steps general recognition system. 

Obaidat and Macchiarolo [4, 7-8] used some traditional neural network paradigms 
along with classical pattern recognition techniques for the classification/identification 
of computer users using as feature the interkey times of the keystroke dynamics. They 
considered six users in their work. The dataset used for the recognition of computer 
users is made up of the time intervals between successive keystrokes by users while 
typing a known sequence of characters (phrase). The participants in the experiment 
were asked to enter the same phrase, which was not visible during the process of 
typing; therefore, it was important to display the message on the monitor after 
entering it. The phrase was retyped by the participant if it was entered incorrectly. The 
time duration between keystrokes was then collected by using an IBM compatible PC- 
based data acquisition system which used Fortran and assembly language 
programming. The assembly language procedures make use of the software keyboard 
interrupt facility and provide the main program with the time duration between 
keystrokes. For example, if the password “OBAIDAT” were entered, then the 
assembly language program would compute the time duration between the letter pairs 
(0 , B), (B, A), (A, I), (I, D), (D, A), and (A, T). An open period of time was given to 
the participants to conduct the experiment. This helped in averaging out the effect of 
uncorrelated sources of noise that could be introduced by instruments and 
participants. Furthermore, it helped to gather data that represent the different modes of 
the participants. A phrase that consists of 30 vector components was used first; 
however, only the first 15 vector components were used later since using the 
remaining vectors did not change the results. The data were collected from six 
different users over a six-week period. The total number of measurement vectors per 
user was 40. The raw data were arranged as follows: 

0 each pattern consisted of 15 values, which were the time durations in 
milliseconds between successive keystrokes of a known character sequence; 

there were 40 trials per user (class) (600 values per class), and 

there were six classes that were defined (3600 values total). 

For training purposes, the raw data were separated into two parts: all of the odd- 
numbered patterns of each class, and all of the even-numbered patterns. In any given 
simulation run, only half of the data were used to form the training set. After each 
network was trained, the entire pattern set (24 patterns) was presented to the network 
for classification. 

Several versions of the training data were created to investigate the network’s 
ability to generalize, rather than to memorize the training set. The difference in the 
training pattern sets are: (a) whether the patterns are from the odd or even half of the 
raw data, and (b) the granularity of the training set which is defined by the number of 
raw patterns averaged to compose each training pattern. For example, if all raw 
patterns in a class are averaged together to form a single training pattern, the 
granularity is low. On the other hand, if no averages are used, i.e., all of the patterns 
are used in training, the granularity is high. Intuitively, when a higher granularity is 
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used for training then better classification performance should be obtained. Table 1 
shows one example of a training set used [4]. 

During the investigation phase, various combinations of these patterns were 
created to test the learning abilities of the three different neural network paradigms. 
After experimentation determined the best neural network architecture for this 
application, the network was incorporated into an "on-line" system that would collect 
the character time intervals from users in real-time and perform a classification 
immediately. The simulators used to simulate the neural network paradigms were 
written using C programming language. Some critical timing functions were written 
in assembly language. The on-line computer security system consists of the following 
major tasks: 

Data Input 

The timing functions used the 8253 timer that is located in all IBM-PC compatible 
computers to measure the interkey time intervals. In the case of a PC-AT computer, a 
BIOS microsecond timing function [4] is used instead, as the 8253 timer outputs are 
not accessible. Similar schemes can be used for other computer platforms. In all 
platforms, a calibration subroutine is called before any timings are measured. The 
calibration routine first determines which timing method to use based on the computer 
type and then calibrates the timer using the time-of-the day clock. During actual 
timing of keystrokes, the routine gets each keystroke, stores it, and then begins 
timing, while waiting for the next keystroke. When the next keystroke occurs, it stores 
the time intervals and the key hit. This process is then repeated, and a second set of 
measurements is recorded. It has been shown that taking the lowest value of each 
interval, based on two sets of values, improves the classification accuracy. 

Training 

To train the neural network, a set of measurement vectors from each user class was 
required. These vectors are collected from each user and stored. When a sufficient 
number of vectors have been collected, they may be averaged and normalized to form 
a set of patterns that will be used to train the network. The number of pattern vectors 
is defined by the user of the program. The user can describe the network configuration 
to the program, and memory is allocated for the processing units (neurons), training 
pattern storage, and weight vector storage. Training consists of applying a pattern 
vector to the input, comparing the current output with the target output, and adjusting 
the weight values according to the training algorithm. When the error of the training 
vector set is reduced to a pre-defined threshold which is the total summed squared 
(TSS) error less than or equal to 0.01 in ow work, training is stopped, and the entire 
network is saved to a disk file. 

Classification 

To run the program as an on-line classifier/identifier, the network is recalled from the 
file saved after training. Memory is allocated as needed, and the weight vectors are 
read from the file. The user is prompted to type the keyword phrase. The inter- 

- 
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character intervals are stored, normalized using the user-selected normalization 
function (either the percentage of the largest value, unit-length vector, or none) and 
presented to the network inputs. The input values are propagated through the network, 
which has the same number of output units as there are defined user classes. The 
output unit which is strongly activated (above a user-defined threshold) represents the 
classification of the input measurement vector. 

Normalization, Performance, and Incorporation 

In an operational test, six user typed a 15-character phrase 20 times, each over a 
period of 6 weeks. The raw data were used to create pattern sets to train the network. 
Two types of normalization of data were investigated: unit length vector, and fraction 
of the largest element. The unit length vector normalization is obtained by dividing 
each element of the measurement vector by the total magnitude of the vector (square 
root of the sum of the square of each element's value). This proved to be 
unsatisfactory in that the vectors of different users were made more similar, and the 
network could not distinguish the difference between them during training. By 
dividing each element's value by the largest element value, the elements were simply 
rescaled into a range from 0 to 1. This is the range needed for the inputs of the neural 
network, while preserving the relative differences in the elements. To create the 
training patterns, two normalized vectors were averaged together to create each 
training pattern. 

The training time of the network can be varied by adjusting the learning rate and 
momentum parameters. The learning rate is the fraction of the error value that is used 
to compute the weight adjustments. The momentum value is the fraction of the 
previous adjustment that is added into the current adjustment. After training is 
finished, each user tested the network. The overall accuracy was 97.8%. 

The system can be easily incorporated into a computer security system. Initially, 
each user that is to have privileged access would be required to submit samples of his 
inter-character typing for a known phrase. These samples are acquired through the use 
of the data input module, and are kept by an administrator. The administrator then 
generates the training set, and configures a network using the training module. The 
network will have a number of inputs equal to the number of measurements in each 
vector, a number of hidden units, and a number of outputs equal to the number of 
users. The weight values are then determined through training, which could take place 
off line or as a background process. After training, the weights are stored and can be 
quickly recalled for on-line classification. When a user needed to be removed or 
added to the authorized list, the training set would have to be regenerated, however, 
the training module can automatically regenerate a training set from the existing and 
new sample data. Adding a user would require adding another output unit to the 
network, and the additional weights adjusted through training. 

In practice, a user would identify himself by using the number assigned to his 
sample classification. He would then be asked to type the keyword phrase. His inter- 
character typing intervals would be collected and classified. If the user's number 
matches the class assigned by the classification system, then the user is granted 
access. If the classification does not match, several things could happen: 
1. The user is denied access. This is the highest security level. 
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2. 

3. 

4. 

The user is granted access, after providing a higher-level password. 

The user is granted only limited access. 

The user is granted access, but a "warning" is signaled to the administrator, and 
the user's actions are intercepted for later analysis. This is considered the lowest 
security level. 

There is a tradeoff to consider with any security system; the risk of security breach 
balanced with the user inconvenience. 

Bleha and Obaidat [6] experimented with the Percepton algorithm as a classifier to 
verify the identity of computer users. By performing the real-time measurements of 
the time durations between keystroke entered in the user's password, data was 
collected from 10 valid users and 14 invalid users over a period of 8 weeks. The 
password used was the user's name. Decision functions were derived using half of the 
data (training data) to compute the weight vectors. The decision functions were 
applied to the remaining half of the data (testing data) to verify the users. An error of 
9% in rejecting valid users, and an error of 8% in accepting invalid users were 
achieved. The percepton algorithm was found to be robust with respect to the choice 
of the initial weight vector. 

Obaidat [ 13] evaluated the performance of five pattern recognition algorithms as 
applied to the identification of computer users using the time intervals between 
successive keystrokes created by users while typing a known sequence of characters. 
These algorithms are potential function, Bayes classifier, minimum distance and the 
cosine measure. A 100% accuracy was achieved when the potential function 
algorithm was used. The least successful algorithm was the cosine measure. Obaidat 
and Sadoun [ 2 ]  evaluated the performance of a newly devised neural network 
scheme, called Hybrid-Sum-Of-Products (HSOP) [27] for computer users verification 
and other classification problems. They compared the performance of HSOP to the 
Sum-Of -Products and Backpropagation neural network paradigms. They found that 
HSOP performs better than the other two paradigms. In their work they used interkey 
time intervals between keystrokes while typing a known phrase. 

5. Applications of Keystroke Dynamics using Hold Times as 
Features 

Obaidat and Sadoun [ l ]  verified computer users using hold times of keystroke 
dynamics as features to authenticate computer users. The participants in the 
experiment were asked to enter their login user ID during an eight-week period. The 
program collected key hit and key release times on an IBM compatible PC to the 
nearest 0.1 ms. The program was implemented as a terminate and stay resident 
program in an MS-DOS based environment. The standard keyboard interrupt handler 
was replaced by one that could sense the incoming keyboard scan codes and record 
them along with a time stamp. The program measures the time durations between the 
moment every key button is hit to the moment it is released. This procedure was 
performed for each letter of the user ID and for each participant. A scan code is 
generated for both the hit and release of any key. 
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The login routine was modified so that each time a login attempt was made, the 
timing vector of the assart (hit and release time) was stored for analysis. This 
procedure increases the dimensionality of an N character string to (2N-1). Such a high 
dimensionality can provide better discrimination even if the number of characters is 
not large. The login monitoring results were collected from 15 users who were given 
open period of time to conduct the experiment. Such approach averaged out the 
effects of fatigue and stress as well as the uncorrelated sources of noise. The forgery 
attempts of the 15 ID's used were collected from each of the 15 invalid users who 
attempted each of the 15 ID's 15 times. All attempted forgeries were collected in one 
session for each invalid user. Participants used the system interactively and the results 
were recorded. The interkey times were collected using the key interrupt facility. The 
average user ID length was seven characters. The data set was divided into two parts: 
the training part and testing part. Pattern recognition and neural network [28] 
techniques were used for the classification process. It was found that hold times are 
more effective than interkey times and the best identification performance was 
achieved by using both time measurements. An identification accuracy of 100%  (zero 
false accept and zero false reject) was obtained when the combined hold times and 
interkey times-based approaches were considered as features using the fuzzy 
ARTMAP, radial basis function network (RBFN), and learning vector quantization 
(LVQ) neural network. Other neural network and classical pattern recognition 
algorithms such as backpropagation with sigmoid transfer function (BP, Sig), hybrid 
sum-of-products (HSOP), sum-of-products (SOP), potential function, and Bayes' 
decision rule also gave good accuracy. 

The success of this approach was measured mainly in terms of false rejection rate 
(type I error) and false acceptance rate (type II  error), cost of recognition system, and 
time to access identity verification. The two important measures considered in our 
work are type I error rate and type II  error rate. The false rejection rate (type I error 
rate) of a verification system gives an indication of how often an authorized individual 
will not be properly recognized. Type II  error describes how often an unauthorized 
individual will be mistakenly recognized and accepted by the system. It is generally 
more indicative of the level of a mechanism. This is due to the fact that it describes 
the degree to which the security measure may be breached by intruders. Type I error 
is important since it describes the amount of user frustration in using the security 
system. Our research results have shown that the most successful pattern recognition 
technique was the potential function followed by the Bayes' rule. The least successful 
algorithm was the cosine measure. The hold time-based verificatiodauthentication 
scheme gave better accuracy than the interkey time-based scheme. When neural 
network paradigms were used for the classification process, it was found that the hold 
time-based verificatiodauthentication scheme is superior to the interkey time-based 
scheme. Furthermore, the combined hold and interkey time-based approach gave the 
least misclassification error. The most successful neural network paradigms for the 
verificatiodauthentication task are the LVQ, RBFN, and Fuzzy ARTMAP. They 
basically gave a zero misclassification error for both false acceptance rate and false 
rejection rate. Figures 10.2-10.7 illustrate these findings. 

The average string length used in this recent work was just seven characters. In our 
previous work [3-8], we obtained lower classification accuracy with a password of 15 
characters long. In all the experiments we conducted, it was observed that when 
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considering hold times alone we obtained better accuracy as compared when interkey 
times are considered as the only characterizing features. Clearly, hold times are more 
effective for identification than interkey times. Such results suggest that hold times 
may in general provide better characterization of the typing skills than the interkey 
times. Also, we found that the most successful neural network paradigm provides 
better authentication/verification accuracy than the best classical pattern recognition 
schemes. 

One recent related work was conducted by Robinson et al. [20] in which the 
authors used key hold times to characterize typing style more effectively. They 
applied some traditional pattern recognition schemes for the classification procedure. 
They used hold times and interkey times as features and the best performance was 
obtained when the inductive learning classifier was used. 

6. Conclusions 

To conclude, keystroke dynamics are rich with individual mannerism and traits and 
they can be used to extract features that can be used to authenticate/verify access to 
computer systems and networks. The keystroke dynamics of a computer user’s login 
string provide a characteristic pattern that can be used for verification of the user’s 
identity. Keystroke patterns combined with other security schemes can provide a very 
powerful and effective means of authentication and verification of computer users. 
Neither our work nor any other work we are aware of has dealt with typographical 
errors. Further research into reliable methods for handling typographical errors is 
needed in order to make keystroke-based authentication systems non-irritating and 
widely accepted by the computing and network security community. Finally, it is 
found that artificial neural network paradigms are more successful than classical 
pattern recognition algorithms in the classification of users. 
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Abstract Gait is an emergent biometric aimed essentially to 
recognisepeople by the way they walk. Gait’s advantages are that 
it requires no contact, like automatic face recognition. and that it 
is less likely to be obscured than other biometrics. Gait has allied 
subjects including medical studies, psychology, human body 
modelling and motion tracking. These lend support to the view 
that gait has clear potential as a biometric. Essentially, we use 
computer vision techniques to derive a gait signature from a 
sequence of images. The majority of current approaches analyse 
an image sequence to derive motion characteristics that are then 
used for recognition: only one approach is feature based. Early 
results by these studies confirm that there is a rich potential in 
gait for recognition. Only continued development will confirm 
whether its performance can equal that of other biometrics and 
whether its application advantages will indeed make it a 
pragmatist’s choice. 
Key words:  Gait, walking, biometrics. 

1. Introduction 

In many applications of person identification, many established biometrics can be 
obscured. The face may be hidden or at low resolution; the palm is obscured; the ears 
cannot be seen. However, people need to walk, so their gait is usually apparent. This 
motivates using gait as a biometric and it has recently attracted interest. Gait is 
attractive since it requires no subject contact, in common with automatic face 
recognition and other biometrics. The Oxford Dictionary definition of gait is “manner 
of walking, bearing or carriage as one walks” suggesting that studies can concentrate 
on different facets of a person’s walk. Apart from perceptibility, another attraction of 
using gait is that motion can be hard to disguise. Consider for example a robbery: the 
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robber will need to make access either quickly, to minimize likelihood of capture, or 
without being obvious in order not to provoke attention. On escape, again the robber 
will either exit at speed, or in (apparent) leisure. The motion in both cases is natural, 
for the subject will either not want to attract attention or to move quickly. 

Clearly, there are limits to the use of gait as a biometric, a detailed study of the 
limitations awaits development of technique. However, it is not unlikely that 
footwear can affect gait, as can clothing. Equally, physical condition can affect gait 
such as pregnancy, affliction of the legs or feet, or even drunkenness. These factors 
are not new to biometrics: a face can be made up or have spectacles, ears can be 
obscured by hair, hands can even be cut off, as acknowledged in other chapters. As 
usual, a major question concerns whether these are part of human perception whereas 
a biometric system can perceive the underlying characteristics of the biometric - in the 
case of gait, the individual’s musculature which essentially limits the variation of 
motion. As such, these factors await investigation. 

The view that gait can be used to recognize individual is not new: Shakespeare 
used a rich lexicon of adjectives to describe gait, including princely, lion’s, heavy, 
humble, weary, forced, gentle, swimming, and majestic. Further, in The Tempest [Act 
4 Scene 1], Ceres observes 

“High’st Queen of state, Great Juno comes; I know her by her gait”. 
Even more, in Troilius and Cressida [Act 4 Scene 5], Ulysses states 

“Tis he, I ken the manner of his gait; He rises on the toe: that spirit of his in 
aspiration lifts him from the earth”. 
The former is one of Shakespeare’s many observations on recognizing people by their 
gait; the latter includes a concise description of Diomedes’ demeanour. 

Accordingly, there appears much potential for using gait as a biometric. There 
have been allied studies, particularly those in medical studies for therapy, but there 
have also been psychological studies, and approaches aimed to model and track 
human targets through an image sequence, though not usually for recognition, as 
discussed in Section 2. Current approaches to automatic gait recognition are surveyed 
in Section 3, together with a more detailed examination of two extant approaches to 
automatic recognition. Possibilities for further work are discussed in Section 4 prior to 
the conclusions concerning the potential for gait as a biometric. 

2. Allied Research 

Medical Studies 

The aim of medical research has been to classify the components of gait for the 
treatment of pathologically abnormal patients. Murray et al. [34] produced standard 
movement patterns for pathologically normal people which were used to compare the 
gait patterns for pathologically abnormal patients [35]. The data collection system 
used required markers to be attached to the subject. This is typical of most of the data 
collection systems used in the medical field, and although practical in that domain, 
they are not suitable for identification purposes. Gait was considered by Murray as “a 
total walking cycle” - the action of walking can be thought of as a periodic signal. The 
following terms are used to describe the gait cycle, as given in [34], and are used 
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Rt-Lt Step Length 

throughout the report. Fig. 1 1.1 illustrates the terms described. A gait cycle is the time 
interval between successive instances of initial foot-to-floor contact ‘heel strike’ for 
the same foot. Each leg has two distinct periods; a stance phase, when the foot is in 
contact with the floor, and a swing phase, when the foot is off the floor moving 
forward to the next step. The cycle begins with the heel strike of one foot which 
marks the start of the stance phase. The ankle flexes to bring the foot flat on the floor 
and the body weight is transferred onto it. The other leg swings through in front as the 
heel lifts of the ground. As the body weight moves onto the other foot, the supporting 
knee flexes. The remainder of the foot, which is now behind lifts off the ground 
ending the stance phase. 

LtRt Step Length 

0% 1OO”h 
Rt Heel Strike Lt Heel Strike Rt Heel Strike 

Duration of Total Rt Walking Cycle 

Single-Limb Support 

Double-Limb Support 

Figure 11.5 Relationship between temporal components of the walking cycle and the 
step and stride lengths during the cycle. 

The start of the swing phase is when the toes of the foot leave the ground. The 
weight is transferred onto the other leg and the leg swings forward to meet the ground 
in front of the other foot. The gait cycle ends with the heel strike of the foot. Stride 
length is the linear distance in the plane of progression between successive points of 
contact of the same foot. Step length is the distance between successive contact points 
of opposite feet. A step is the motion between successive heel strikes of opposite feet; 
a complete gait cycle is comprised of two steps. 

Murray et al.'s work [34,35] suggests that if all gait movements were considered, 
gait is unique. In all there appear to be twenty distinct gait components, some of 
which can only be measured from an overhead view of the subject. Murray found “the 
pelvic and thorax rotations to be highly variable from one subject to another” [35]. 
These patterns would be difficult to measure even from an overhead view of the 
subject, which would not be suited to application in many practical situations. Murray 
also suggested that these rotation patterns were not found to be consistent for a given 
individual in repeated trials. In [34,35] ankle rotation, pelvic tipping and spatial 
displacements were shown to possess individual consistency in repeated trials. 
Unfortunately, these components would be difficult to extract from real images. 
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The normal hip rotation pattern of the angle of the thigh (the angle between the 
thigh and horizontal) is characterized by one period of extension and one period of 
flexion in every gait cycle, as described by Murray. Fig. 11.2 gives the average 
rotation pattern: the upper and lower lines indicate the standard deviation from the 
mean. In the first half of the gait cycle, the hip is in continuous extension as the t runk  
moves forward over the supporting limb. In the second phase of the cycle, once the 
weight has been passed onto the other limb, the hip begins to flex in preparation for 
the swing phase. This flexing action accelerates the hip, directing the swinging limb 
forward for the next step. Later, we will see how these angles have featured in a 
model-based recognition system. 

There is an extensive literature on studies of gait for medical use, none of which is 
concerned primarily with biometrics. Intuitively, measurements by gait researchers 
could prove to be of benefit in biometrics, though there is natural concern that the 
markers used do not realistically capture individual characteristics. Using gait as a 
biometric concerns its derivation by computer vision, for this is the only way it can 
satisfy its purpose. Some insight into gait as a biometric can however be drawn from 
psychology. 
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Figure 11.6 Mean hip rotation pattern [35]. 

Psychology of  Gait 

In the earliest studies of gait perception [2 1] participants were presented with images 
produced from points of light attached to body joints. When the points were viewed in 
static images, they were not perceived to be in human form, rather that they formed a 
picture - of a Christmas tree even. When the points were animated, they were 
immediately perceived as representing a human in motion. Later work showed how by 
point light displays a human could be rapidly extracted and that different types of 
motion could be discriminated, including jumping and dancing [15]. More recently 
Bingham [5] has shown that point light displays are sufficient for the discrimination 
of different types of object motion and that discrete movements of parts of the body 
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can be perceived. As  such, human vision appears adept at perceiving human motion, 
even when viewing a display of light points. Indeed, the redundancy involved in the 
light point display might provide an advantage for motion perception [39] and could 
perhaps offer improved performance over video images. 

Naturally, studies in perception have also addressed gender as well as pure motion, 
again using point light displays. One early study [25] showed how gender could be 
perceived, and how accuracy was improved by inclusion of height information [44]. 
The ability to perceive gender has been attributed to anatomical differences which 
result in greater shoulder swing for men, and more hip swing for women [30]. Indeed, 
a torso index (the hip:shoulder ratio) has been shown to discriminate gender [14], and 
the identification of gender by motion of the center of moment was also suggested. 

Gender identification would appear to be less demanding than person 
identification. However, it has been shown that subjects could recognize themselves 
and their friends [12], and this has been explained by considering gait as a 
synchronous, symmetric pattern of movement from which identity can be perceived 
[ 13]. Like Shakespeare’s observations, these studies encourage the view that gait can 
indeed be used as a biometric. Surprisingly, research into the psychology of gait has 
not received much attention, especially using video, in contrast with the enormous 
attention paid to face recognition. One recent study [45], using video rather than point 
light displays, has shown that humans can indeed recognize people by their gait, and 
can learn their gait for purposes of recognition. The study concentrated on 
determining whether illumination or length of exposure could impair the ability of 
gait perception. The study confirmed that, even under adverse conditions, gait could 
still be used as a cue to identity. 

Clearly, psychological studies confirm Shakespeare’s earlier observations, and 
support the view that gait can indeed be used for recognition. Prior to study of 
automatic recognition, we shall consider some of the (many) approaches to human 
body and motion modeling, for these are of potential benefit in recognition. Indeed, 
some of the approaches have found deployment in automatic gait recognition. 

Modeling the Human Body and its Motion 

Many studies have considered human motion extraction and tracking, though not for 
recognition purposes. The selection of good body models is important to efficiently 
recognize human shapes from images and analyze human motion properly. Stick 
figure models and volumetric models are commonly used for three-dimensional 
tracking, and the ribbon model and blob model are also used but are not so popular. 
Stick figure models connect sticks at joints to represent the human body. Akita [1] 
proposed a model consisting of six segments: two arms, two legs, the torso and the 
head. Lee and Chen’s model [27] uses 14 joints and 17 segments. Guo et al. [18] 
represent the human body structure in the silhouette by a stick figure model which has 
ten sticks articulated with six joints. 

On the other hand, volumetric models are used for a better representation of the 
human body. One model [38] consists of 24 segments and 25 joints and those 
segments and joints are linked together into a tree-structured skeleton. The “flesh” of 
each segment is defined by a collection of spheres located at fixed positions within the 
segment’s co-ordinate system. Concurrently, angle limits and collision detection are 
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incorporated in the motion restrictions of the human model. Among the different 
volumetric models, generalized cones are the most commonly used. A generalized 
cone [29] is the surface swept out by moving a cross-section of constant shape but 
smoothly varying size along an axis. Generalized cylinders are the simplified case of 
generalized cones that have a cross-section of constant shape and size. Fig. 11.3 
shows examples for a stick figure model, a cylinder model and a blob model. 

/ 
i 

I 
\ 
\ 8 

stick figure model cylinder model blob model 

Figure 11.7 Human body models. 

Later work developed Marr’s approach [19, 42] to a set of 14 elliptical cylinders 
representing the feet, legs, thighs, hands, arms, upper-arms, head and torso. Kurakake 
and Nevatia [26] treat the human body as an articulated object having parts that can be 
considered as almost rigid and connected through articulations. They use the ribbon 
which is the two-dimensional version of the generalized cylinder to represent the 
parts. The blob model was developed by Kauth et al. [24] for application to multi- 
spectral satellite (MSS) imagery and used in human motion tracking [3]. The person is 
modeled as a connected set of blobs, each of which serves as one class. Each blob has 
a spatial and color Gaussian distribution, and a support map that indicates which 
pixels are members of the blobs. 

However, these structural models need to be modified according to different 
applications and arc mainly used in human motion tracking. The alternative is to 
consider the property of the spatio-temporal pattern as a whole. Among the current 
research, human motion can be defined by the different gestures of body motion, 
different athletic sports (tennis, ballet) or human walking or running. The analysis 
varies according to different motions. There are two main methods to model human 
motion. The first is model-based: after the human body model is selected, the 3-D 
structure of the model is recovered from image sequences with [27,41] or without 
moving light displays [ 1,18,19,42]. The second emphasizes determining features of 
motion fields without structural reconstruction [28,33,39]. 

Ideas from human motion studies [34] can be used for modeling the movement of 
human walking. Hogg [19] and Rohr [43] use flexion/extension curves for the hip, 
knee, shoulder and elbow joints in their walking models. Guo et al. [18] use joint 
angles between different sticks as features of different walking persons. A different 
approach for the modeling of motion was taken by Akita [ 1], who used a sequence of 
stick figures, called the key frame sequence, to model rough movements of the body. 
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In his key frame sequence of stick figures, each figure represents a different phase of 
body posture from the point view of occlusion. The key frame sequence is determined 
in advance and referred to in the prediction process. In order to find out the 
interpretation tree of human body and reduce its computational complexity, Chen and 
Lee [ 10] applied general walking-model constraints from walking motion knowledge 
to eliminate the number of unfeasible solutions. Campbell and Bobick [9] proposed 
techniques for representing movements based on space curves in subspaces of a 
"phase space", a symbolic description that translates the continuous domain of human 
motion into a discrete sequence of symbols. The phase space has axes of joint angles 
and torso location and attitude, and the axes of the subspaces are subsets of the axes of 
the phase space. 

Other approaches that are different from above consider the properties of the 
spatio-temporal pattern as a whole. Polana and Nelson [40] define temporal textures 
to be the motion patterns of indeterminate spatial and temporal extent, activities to be 
motion patterns which are temporally periodic but are limited in spatial extent, and 
motion events to be isolated simple motions that do not exhibit any temporal or spatial 
repetition. Little and Boyd's approach [28] is similar to Polana and Nelson's, but they 
derive dense 2-D optical flow of the person and derive a series of measures of the 
position of the person and the distribution of the flow. The frequency and phase of 
these periodic signals are determined and used as features of the motions. 

Tracking People 

There have been a number of approaches to tracking humans in scenes, more for 
security applications rather than for recognition. A model-based approach was used in 
one of the earliest tracking studies [ 19]. The WALKER model mapped images into a 
description in which a person was represented using a series of hierarchical levels. 
The performance of the system was illustrated by superimposing the machine- 
generated picture over the original photographic images. 

There has been much progress since, and we shall review only some of the more 
recent work. Gavrila and Davis [17] presented a vision system for the 3-D model- 
based tracking of unconstrained human movement. Multiple view images were 
employed, to avoid using markers, to recover 3D body pose. Initial results were 
presented for performance on a (large) Humans-In-Action database and shown to 
track some demanding postures. In an extension to learned dynamical models for 
robust curve tracking [4] (for describing non-rigid motions of articulated and 
deformable objects) an improved model is derived from a  set of examples in which 
the object deforms resulting in a shape description of low dimensionality. This is 
applied to automatically describe the shape of a moving pedestrian. A new method for 
the 3D model-based tracking of human body uses multiple views to avoid occlusion 
of body parts [23]. Available parts are then tracked between frames of a video 
sequence in a model aimed to minimize the difference between the human model and 
the imaged views. Initial results were presented showing how humans could be 
tracked in the presence of severe occlusion. 

Parameterised optical flow has actually been used to track articulated motion in an 
image sequence [22]. Limbs were represented as a set of connected cardboard patches 
where analyzed motion was constrained to enforce articulated motion. The approach 
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was demonstrated to track humans walking, over long image sequences. The
possibility of recognition from these data was noted, but not explored greatly. One
system used 3D planar projections to achieve better tracking than contemporaneous
2D trajectory-based systems [7]. The system was based on detecting and segmenting
optical flow from within a central region. Then 3D planar geometry was used with an
active camera system to ensure focus on the central region. Extended Kalman filters
were used to analyze the trajectories and the system was shown to successfully track
moving objects, including people, and pursuit performance was shown to improve on
2D performance.

Another recent approach, the "person finder" Pfinder system [46], has been aimed
to solve the problem of tracking a single person given a fixed-camera. The system is
based on the blob description of human motion [24] which uses coherent connected
regions. The statistics of the blobs are then recursively updated to combine present
information with prior knowledge. The system then learns the scene of the fixed
camera and then detects a person as a large deviation from that scene. Then, the
person can be tracked through an image sequence. The system is not aimed at
recognition and applications include real-time interface devices and video games.

Most tracking approaches naturally lack the accuracy required for recognition
since that was not their original purpose. However, it would seem reasonable to
assume that tracking procedures could be deployed to develop a gait signature. The
result of tracking a subject's progress through a sequence of frames is shown in Fig.
11.4 showing the estimates, provided by a Kalman filter, of the horizontal position of
the waist/crotch and of the ankle/foot. These estimates are derived by tracking the
position of regions of high curvature in successive frames. Clearly, the position of the
waist gives a better estimate of velocity than a measurement which can be used for
recognition. However, the position of the ankle alters according to Murray's earlier
model, as such potentially leading to a biometric.

Figure 11.8 Tracking human motion for recognition.

Each of the allied subjects continues to support the notion that gait can be used as a
biometric. The physical characteristics of gait are established and viewed to be
unique, humans can perceive gait and gait can be modeled and extracted by computer
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vision techniques. Much of this work has been of benefit to the approaches to 
automatic gait recognition. 

3. Automatic Gait Recognition 

Current Approaches 

In what was perhaps the earliest approach to automatic recognition by gait, the gait 
signature was derived from the spatio-temporal pattern of a walking person [37]. 
Here, in the XT dimensions (translation and time), the motions of the head and of the 
legs have different patterns. These patterns were processed to determine the body 
motion’s bounding contours and then a five stick model was fitted. The gait signature 
was derived by normalizing the fitted model for velocity and then by using linear 
interpolation to derive normalized gait vectors. This was then applied to a database of 
26 sequences of five different subjects, taken at different times during the day. 
Depending on the values used for the weighting factors in a Euclidean distance 
metric, the correct classification rate varied from nearly 60% to just over 80%, a 
promising start indeed. 

Later, optical flow was used to derive a gait signature [28]. This did not aim to use 
a model of a human walking, but to describe features of an optical flow distribution. 
The optical flow was filtered to produce a set of moving points together with their 
flow values. The geometry of the set of points was then measured using a set of basic 
measures and further information was derived from the flow information. Then, the 
periodic structure of the sequence was analyzed to show several irregularities in the 
phase differences; measures including the difference in phase between the centroid’s 
vertical component and the phase of the weighted points were used to derive a gait 
signature. Experimentation on a limited database showed how people could be 
discriminated with these measures, appearing to classify all subjects correctly. 

Another approach was aimed more at generic object-motion characterization [33], 
using gait as an exemplar of their approach. The approach was similar in function to 
spatio-temporal image correlation, but used the parametric eigenspace approach to 
reduce computational requirement and to increase robustness. The approach first 
derived body silhouettes by subtracting adjacent images, with further processing to 
reduce noise. Then, the images were projected into eigenspace, a well established 
approach in automatic face recognition. Eigenvalue decomposition was then 
performed on the sequence of silhouettes where the order of the eigenvectors 
corresponds to frequency content. Recognition from a database of 10 sequences of 
seven subjects showed classification rates of 100% for 16 eigenvectors and 88% for 
eight, compared with 100% for the (more computationally demanding) spatio- 
temporal correlation approach. Further, the approach appears robust to noise in the 
input images. Recently, this has been extended to include Canonical Analysis (CA) 
[20] for better discrimination, as described in the next section. 

In the only model-based approach, the gait signature is derived from the spectra of 
measurements of the thigh’s orientation [ 11]. This was demonstrated to achieve a 
recognition rate of 90% on a database of 10 subjects. Contemporaneously, the nature 
of gait has been recognized by “probabilistic decomposition of human dynamics at 
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multiple abstractions” [8] where the dynamics of gait in video sequences were 
recognized. Also, different types of gait have been recognised from the trajectories of 
tracked body parts [32]. The feature vector was extracted from optic flow and from 
trajectory information and then classified by use of Hidden Markov models, showing 
good gait discrimination. 

Recognition by Statistical Measurement 

Eigenspace transformation (EST) based on Principal Component Analysis (PCA) or 
the Karhunen-Loeve Transform has been demonstrated to be a potent metric in 
automatic face recognition and gait analysis, but without using data analysis to 
increase classification capability. A new approach combines canonical space 
transformation based on CA or Linear Discriminant Analysis (LDA), with the 
eigenspace transformation, for gait analysis [20]. This gives a ‘statistical’ approach to 
automatic gait recognition where the image sequence is described as a whole, and 
neither by a model- nor by a motion-based approach, but one which describes the 
motion content. 

Face image representations based on PCA have been used successfully for various 
face recognition applications. However, PCA based on the global covariance matrix 
of the full set of image data is not sensitive to class structure in the data. In order to 
increase the discriminatory power of various facial features, LDA has been used to 
optimize the class separability of different face classes and improve the classification 
performance [ 16].  Unfortunately, this has high computational cost. Moreover, the 
within-class covariance matrix obtained via CA alone may be singular. Combining 
EST with canonical space transformation (CST) reduces data dimensionality and 
optimizes class separability of different gait sequences simultaneously. 

Given c training classes to be learnt, where each class represents a walking 
sequence of a single subject, X'i.j is the j-th image (of n pixels) in class i and Ni is the 
number of images in i-th class. The total number of training images is 

N ,  = N 1  + N 2  +.....+ N c  (11.1)  

and the training set is represented by [ x'1,1...
brightness of each sample image is normalized by 

,xi'c,Nc
] First, the 

||
After normalization, the mean pixel value for the full image set is: 

(11.2) 

(1 1.3) 

Then we form an n X NT matrix X, where each column is formed from each of xi , j

less the mean as: 

x = [ x ] (11.4)  

x'1,N1

Xi,j = X 'i,j / || X'i,j

- mx ,...,x1,N1 - mx,...,xc,Nc - mx
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EST uses the eigenvalues and eigenvectors, generated by the data covariance matrix
derived from the product XXT, to rotate the original data co-ordinates along the
direction of maximum variance. Calculating the eigenvalues and eigenvectors of the
n x n matrix XXT is computationally intractable for typical image sizes. Based on
singular value decomposition, we can compute the eigenvalues of XTX, where the
matrix size is NT x NT and is much smaller than n x n. The eigenvectors of XTX
are used as an orthogonal basis to span a new vector space. Each image can be
projected to a single point in this space. According to the theory of PCA, the image
data can be approximated by taking only the largest eigenvalues and their associated
eigenvectors. This partial set of k eigenvectors spans an eigenspace in which the
points yi,j are the projections of the original images xi,j by the eigenspace
transformation matrix, [e1,...,ek ], as

(a) Original (b) Silhouette n (c) Silhouette n+l

(d) First Eigenvalue (e) Second Eigenvalue (f) Third Eigenvalue
Figure 11.9 Original image and derived silhouettes and eigenvalues.

In CST, the classes of the transformed vectors resulting from eigenspace
calculation are used to calculate a scatter matrix St, a within-class matrix Sw and a
between class matrix Sb which reflect the dispersion, the variance and the variance of
the difference, respectively. The objective of CST is to minimize Sw and to maximize
Sb, simultaneously. This is achieved by minimizing the generalized Fisher linear
discriminant function J, where

(11.6)

After this transformation, each original image can be approximated by the linear
combination of these eigenvectors.

(11.5)
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0. 

-0.1. 

s! -0.2. 

This ratio is maximised by the selection of the feature W if 

dJ/dW = 0 (11.7) 

Supposing W* to be the optimal solution and that W*
i be its column vector which is a 

generalised eigenvector and corresponds to the i-th largest eigenvector 4, then 

s,w; = Ais,w;. (11.8) 

After the generalised eigenvalue equation is solved, we obtain a set of eigenvalues 
and eigenvectors that span the canonical space where the classes are much better 
separated and the clusters are much smaller. 

0.1, 

person 1 o 
person 2 + 
person 3 x 

0.1 -0.3 
v2 vl 

Figure 11 . 1 0 Canonical space trajectories for five subjects. 

In application, this analysis is applied to human silhouettes derived by subtracting 
the background from the image and then thresholding the result. Fig. 11.5  shows in 
(a) one image from the original sequence and in (b) and (c) two of the extracted 
silhouettes. The eigenvalues are then extracted from the sequence of silhouettes, the 
first three of which for the subject are shown in Fig. 11.5(d-f). The trajectories in 
eigenspace overlap and their centroids are very close together. After CST, the 
trajectories are much better separated and with lower individual variance as in Fig. 
1 1.6 (though for three dimensions only, for visualization purposes). Recognition from 
the canonical space is accomplished using the distance between the accumulated 
center to each centroid. On five sequences of five people from the Visual Computing 
Group, University of California, San Diego [28] , an 85%  classification rate was 
achieved by CST alone whereas 100% was achieved with combined EST and CST (as 
evidenced by the cluster size and separation in Fig. 11.6). 
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Recognition by Feature-Based Measurement  

An alternative approach to collecting the motion information in an image sequence is 
to find feature(s) and collect their motion information. Here we show how gait 
signatures can be derived from spectra of the variation in inclination of the thigh, as 
extracted by computer vision techniques [ 11]. The bi-pendular model is used as the 
leg motion is periodic and each part of the leg (upper and lower) appear to have 
pendulum-like motion, consistent with earlier studies [34,35]. Fourier theory allows 
periodic signals to be represented as a fundamental and harmonics - the gait motion of 
the lower limbs can be described in such a way. The model of legs for gait motion 
allows these rotation patterns to be treated as periodic signals, so Fourier Transform 
(FT) techniques can be used to obtain a frequency spectrum. The spectra of different 
subjects can then be compared for distinctive, or unique, characteristics. 

(a) Original Image (b) After Canny Edge Detection and the 
Hough Transform 

Figure 11.11 Example image of walking subject (a) original and (b) extracted lines. 

To collect data, the camera was situated with a plane normal to the subject’s path, 
and with a static background, an example is given in Fig. 11.7(a). The environment 
was controlled to improve the data collection with a simple, plain background, with 
controlled lighting. To resolve difficulty in occlusion, subjects wore trousers which 
had a stripe painted on the outside. As such, some useable data could still be collected 
when the legs crossed. The video sequences were averaged to reduce high frequency 
noise and edge images were produced by applying the Canny operator with hysteresis 
thresholding. 

The Hough Transform (HT) was then applied to the edge image resulting in an 
accumulator space that has several maxima, each corresponding to a line in the edge 
image. A peak detection algorithm is applied to extract the parameters of each of these 
lines (in x and y co-ordinates) using the standard foot-of-normal form 

s = xcos4 +ysin4, (11.9) 



244 Nixon et al. 

where s  and 4 are the distance and angle to the foot of normal. There are several 
methods for peak detection. In back-mapping, the peak in the accumulator at 
(spk, &k) is found. For each edge point in the image which lies on the line represented 
by (spk, &k), the points in the accumulator associated with that edge point are 
decremented. This effectively removes the votes cast by the line (spk, &k), and so the 
peak is reduced. This process is repeated until the parameters for all the lines have 
been found, the result of processing Fig. 1 1.7(a) is shown in Fig. 11.7(b). To infill for 
missing data, and to smooth noisy components, the thigh angles given by the lines' 
inclinations were fitted to a high order polynomial by least squares. For variation in 
the thigh angle 8 with time 1, we have an eighth-order polynomial: 

(11.10) B(t) = a0 +a1 t+a2 t2+.. . .+a8 t8 .

An example of the least squares fit for four sequences of single cycles of a 
particular subject are shown in Fig. 1 1.8. These fit nicely within the range of Murray's 
data, Fig. 11.2. 

-10 - 
- 13 - 
- 20 ' ' ' I ' ' ' 

0 10 20 30 40 50 60 70 80  90  100

Figure 11.12 Least squares fitting. 

These data were then analyzed using the DFT to provide phase and magnitude 
spectra. The magnitude spectrum dropped to near-zero above the fifth harmonic, again 
agreeing with earlier work [2]. The magnitude spectra for the two subjects can be used 
to distinguish between them but the phase spectra were much more different though 
some components carry little information since their respective magnitude component 
is very small. 

The k-nearest neighbor rule was then used to classify the transform data using the 
'leave one out' rule. Four video sequences were acquired for each of ten subjects. 
Note that the magnitude component of the FT is time shift invariant; it will retain its 
spectral envelope regardless of where in time the FT is performed. The phase 
component does not share this characteristic, and a time shift in the signal will change 
the shape of the phase envelope. Accordingly, the rotation patterns were aligned to 
start at the heel-strike, to allow phase comparison. This is because the magnitude plots 
do not confer discriminatory ability whereas the phase plots do. The multiplication 
appears reasonable, since gait is not characterized by extent of flexion alone, but is 
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controlled by musculature which in turn controls the way the limbs move. 
Accordingly, there is physical constraint on the way we move our limbs. However, we 
cannot use phase alone, since some of the phase components occur at frequencies for 
which the magnitude component is too low to be of consequence. By multiplication of 
the spectra, we retain the phase for significant magnitude components. Clearly, in this 
analysis, using phase-weighted magnitude spectra gives a much better classification 
rate (90%) than use of magnitude spectra alone (40%), for k = 3.  Selecting the nearest 
neighbor, as opposed to the 3-nearest neighbor, reduced the classification capability, 
to 40% for the magnitude and 50% for the phase weighted magnitude, as expected. 

As such, feature based metrics can be used to provide gait signatures in a way 
which agrees with human insight, allowing the results to be validated visually. 

4. Further Work 

Clearly, gait research is still in an exploratory phase, rather than at an established one. 
Accordingly, gait extraction and recognition offers a rich avenue of research 
opportunity. These opportunities exist not only in development and extension of basic 
technique, but also in application and as a potential contributor to multi-biometric 
systems. 

In terms of technique, analysis of image sequences is at a very rudimentary stage, 
especially for the purposes of moving-feature extraction. As yet there are few 
techniques aimed primarily to integrate the whole image sequence, only one of which 
uses evidence gathering [36]. These could be extended further, not only to incorporate 
image context, perhaps including ego-motion or perspective mappings, but also to 
focus on description and extraction of complex objects, such as a walking human. For 
gait, we require techniques to isolate moving articulated objects. Naturally, these will 
focus more on the legs but there is also potential for extension to the thorax. As noted 
earlier, upper torso movement might offer greater potential for recognition. Equally, 
these techniques could be aimed at extracting the generic shape of the human body. 
As such, this requires extraction of arbitrary moving articulated shapes, as required 
for human motion analysis and recognition. 

In terms of gait recognition, we require to derive a signature from an image 
sequence. So far, this has been derived by approaches that integrate motion across the 
sequence, and by one which is feature based. A common paradigm in many statistical 
approaches has been to use binary images for recognition. There are many other 
approaches which offer similar capabilities, such as Fourier descriptors of an object’s 
shape. Extension of feature based measurement (or a model based approach) would 
naturally focus on development of a technique, that was mentioned previously. 

As with all biometrics, gait research will benefit from an established database for 
purposes of development, preferably with a separate database for test purposes and 
hopefully with the stringency of the FERET test. Clearly any database will need to 
include variation in factors which can affect the perception of gait. These include 
variety in clothing (especially skirts), and in footwear and with subjects carrying 
common articles such as handbags or shopping. Also, we will require subjects 
walking with a wide variety of trajectories relative to the camera together with normal 
views as used in preliminary studies. Such a database will allow establishment of the 
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properties and limits of signatures derived from gait. As such, they will provide an 
estimate of the confidence that can be associated with the use of gait to buttress other 
biometric measures. As stated earlier, gait may be evident where other biometrics can 
be assessed with limited precision, or are obscured. Clearly, a good database can only 
serve to evidence the uniqueness or otherwise of automatic gait measurement. 

5. Conclusions 

Gait represents a potential biometric as humans can perceive it. It is attractive because 
it requires no contact and less likely to be concealed. Allied studies in physiology 
suggest that it can be modeled and is unique, as supported by psychological studies. A 
number of approaches have modeled the body and tracked it through image 
sequences, though not for recognition. All these allied subjects either lend support to 
the potential for gait as a biometric, or suggest that its analysis can be achieved by 
computer vision. 

Indeed, a number of approaches have already shown that it is possible to recognize 
people by their gait. Naturally, this work is more exploratory than established system 
development, but results suggest that further development is warranted. The majority 
of current approaches are motion-based, combining the image sequence by its motion 
or by statistical analysis. Only one technique is feature-based and its results can 
clearly be identified with the data from which they were derived. 

There is great scope for future research effort, both in application and 
development. Clearly, gait would benefit from an established database on which to 
assess new developments. These developments could be improvements in recognition 
procedure or in automated technique. As such, future work will establish more 
precisely the results that can be achieved by this new biometric. If its performance can 
equal that of other biometrics, then by its practical advantages it could indeed become 
a pragmatist’s choice. 
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Abstract The biological chemoreception mechanisms are 
complex, and the sense of smell is extremely powerful in terms of 
discrimination between complex mixtures of chemicals, sensitivity 
to certain classes of chemicals and the range of concentrations 
thai are detectable. This chapter introduces the biological 
concepts of chemoreception and information processing and goes 
on  to describe approaches in producing biomimetic devices that 
may ultimately be used for biomeiric applications. Promising 
sensor technologies applicable for use in sensor arrays are 
introduced, and information processing strategies applicable to 
the pattern recognition problems are presented. 
Keywords: Odour descripiors, perceptrons. electronic nose, 
chemoreception, taste, olfactometer, odour classification. 
chemosensory systems. 

1. Introduction 

There has been a large growth of interest in building systems that imitate the five 
senses of the mammal. An instrument that could perform simple odour discrimination 
and provide measurement of odour intensity, without the influences mentioned above, 
would be very useful in modern industry. This chapter investigates possible 
approaches to biomimetic chemosensory systems that may someday approach the 
capacity and ability of the olfactory system in mammals. Using instruments for smell 
recognition of humans is currently under investigation by a number of research groups 
and companies, but this is a very complex task, and no practical devices are yet 
available. 
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The Mammalian Chemoreception System

When an animal or a person sniffs an odorant, molecules carrying the scent are
captured by receptor neurons located in the roof of the nose. The receptors are loosely
specialised in the kinds of odorants to which they respond. Cells that become excited
fire action potentials, or pulses, that propagate through neural projections called axons
to a part of the brain known as the olfactory bulb. The number of activated receptors
indicates the intensity of the stimulus, and the pattern of activity in the nose conveys
the nature of the scent. The olfactory receptor neurons are special nerve cells that
interact with molecules contained in the inhaled air. Since the chemical receptors
interact only with specific molecules, olfactory sensitivity is restricted to a limited
repertoire of odours. The molecules detected are of low molecular weight, typically
less than 300 Daltons. They are diverse in structure and size, containing hydrophobic
regions as well as functional groups that may determine the classification of the odour
[1]. The chemical sensors in the olfactory system act as receptors and the response
forms a pattern (a set of signals) that is processed in the brain to produce an
appropriate response due to a stimulus. Figure 12.1 shows a block diagram of the
olfactory system. In a human, there is an array of 100 million odour sensors. Within
this array, there are a number of different types of sensors, which display differing
odour specificity to particular classes of odours. Individual elements in the array
show broad and overlapping selectivity to chemical species. Importantly, olfactory
receptors are not highly selective, but selectivity is achieved by the unique patterns of
responses from numbers of such receptors [3].

Figure 12.1 The functional components of the olfactory system.
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The olfactory bulb carries out a great deal of pre-processing and feature extraction 
of the signals arriving from the olfactory receptors, analysing each input pattern and 
then producing specific messages, which it transmits via axons to another part of the 
olfactory system, the olfactory cortex. From there, new signals are sent to many parts 
of the brain, including an area called the entorhinal cortex, where the signals are 
combined with those from other sensory systems. The result is a meaning-laden 
perception, that is unique to each person, where some scents may produce a sense of 
well-being, and others a sense of nausea, and others may be linked to specific 
memories or events [2]. 

Odour classification studied using psychophysical methods would suggest that 
there are several primary odour groups. These include camphor-like, musky, floral, 
pepperminty, ether-like, pungent, and putrid. Unique mixtures of aromatic compounds 
including phenolics, ketones, and terpenes [4] determine the characteristic odours of 
fruits and vegetables. Smell sensitivity is genetically determined and varies from 
person to person, hence different people perceive or may react to different odours, or 
react differently to the taste of foods. 

The nose is an important regulator of social life. Pheromones are a class of long- 
distance chemical messenger hormones that regulate social relations, behavioral and 
physiological responses in insects and many mammals. Observations of human 
behavior have linked smell messages to menstrual cycle timing, and women living in 
a dormitory over an extended period of time tend to menstruate at about the same time 

Taste and smell are highly associated with each other, and flavours are composite 
sensations, derived from primary taste and smell sensations by processes within the 
limbic brain areas that participate in emotion. The human emotional system emerged 
in evolutionary terms from the olfactory brain of earlier animals and remains closely 
linked to taste, smell, and eating behaviours. Taste and smell evaluation may be an 
important diagnostic screen for early brain changes destined to result in serious 
dementia [6]. The odours of coffee, chocolate, almond (benzaldehyde), and oil of 
lemon are often used for casual testing of olfactory function. 

Figure 12.2 shows a block diagram of the major pathways of olfactory information 
in the brain. The brain actively seeks information about the outside world, mainly by 
directing an individual to look, listen and sniff. The search results from self- 
organising activity in the limbic system (a part of the brain that includes the entorhinal 
cortex and is thought to be involved in emotion and memory), that sends commands 
to the motor systems. As the motor command is transmitted, the limbic system issues 
what is called a reafference message, alerting all the sensory systems to prepare to 
respond to new information, and this cycle of activity is repeated [2]. 

The human nose is a very interesting chemosensory system that is full of contrasts. 
On the one hand, there is exquisite sensitivity to some chemicals such as mercaptans 
while on the other hand there is very poor sensitivity to other classes such as 
hydrocarbons. The estimation of odour intensity is on a very poor and compressed 
scale. A trained human nose is able to discriminate between subtle differences in the 
odours between almost identical mixtures of chemicals, but the perception of odour 
quality is not constant and is dependent on the concentration of the mixture of 
chemicals being assessed. The sensors in the nose are capable of regeneration and 

[5]. 
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reconnection to the correct places in the olfactory bulb, and as yet these processes are 
poorly understood. 

Recognition 

t 
Motor Cortex- 

Thalamus Limbic System - 
\ /  

Olfacto Cortex tiy 
t Olfactory Bulb 

Sensory Receptors 
.f 
f 

Brain - Command to sniff - 
Figure 12.2 The major pathways of information processing in the brain for olfactory 
stim ul i. 

Panels of human noses continually assess the quality of raw materials, their 
processing and the quality of the final product in many industries. Because, human 
noses are fallible and can only cope with small numbers of samples in a given time, 
automated artificial odour sensing devices become attractive. 

2. Odour Evaluation Using Human Panels 

The character of an odour is reported using “odour descriptors”. There are no 
consistent ways of standardising the descriptors of odours and many individuals and 
companies have compiled lists of descriptors that may be used to train a human odour 
panel. Since the odour panel may be specialised to assess only certain products, or 
odour quality problems, the lists of relevant descriptors are often expanded or 
contracted as required. Table 12.1 illustrates a portion of a list compiled by Amoore 
[7]. It would be seen that in order to assess odour quality, a specialised vocabulary 
must be learnt, with each descriptor associated with specific notes, or nuance in a 
particular odour. In fact, an odour is normally comprised of many chemical species 
mixed together in different proportions that the receptors in the nose perceive all at 
once, without separation into individual chemical species. 
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Ta 

Alcohol-Like 
Almond-Like 
Animal 
Anise (Licorice) 
Apple (Fruit) 
Aromatic 
Bakery (Fresh Bread) 
Banana-Like 
Bark-Like, Birch Bark 

Bean-Like 
Beery (Beer-Like) 
Bitter
Black Pepper-Like 
Burnt Candle 
Bumt Rubber-Like 
Bumt, Smoky 
Bumt milk 
Buttery (Fresh) 
Cadaverow 
Camphor Like 
Cantaloupe Melon 
Caramel 
Caraway 
Cardboard-Like 
Cat-Urine-Like 
Cedarwood-Like 
Celery 
Chalky 
Clheesy 
Chemical 
Cherry (Berry) 
Chocolate 
Cinnamon 
Clove-Like 
Coconut-Like 
Coffee-Like 
Cologne 
Cooked Vegetables 
Cool, Cooling 
Cork-Like 
Creosote 
Crushed Grass 
Crushed Weeds 
Dill-Like 
Dirty Linen-Like 
Disinfectant, Carbolic 
Dry, Powdery 
Eggy (Fresh Eggs) 
Etherish, Anaesthetic 

12.1 Odour descriptors. 

Eucalyptus 
Fecal (Like Manure) 
Fermented (Rotten) 
Fruit 
Fishy 
Floral 
Fragrant 
Fresh Green Vegetables 
Fresh Tobacco Smoke 
Fried Chicken 
Fruity (Citrus) 
Fruity (Other) 
Garlic, Onion 
Geranium Leaves 
Grainy (As Grain) 
Grape-Juice-Like 
Grapefruit 
Green Pepper 
Hay 
Heavy 
Herbal, Green, Cut 
Grass 
Honey-Like 
Houseold Gas 
Incense 
Kerosene 
Kippery (Smoked Fish) 
Laurel Leaves 
Lavender 
Lemon (Fruit) 
Like Gasoline, Solvent 
Like Mothballs 
Light 
Like Ammonia 
Like Blood, Raw Meat 
Like Cleaning Fluid 
Like Burnt Paper 
Malty 
Maple (As In Syrup) 
Meaty(Cooked, Good) 
Medicinal 
Metallic 
Minty, Peppermint 
Molasses 
Mouse-Like 
Mushroom-Like 
Musk-Like 
Musty, Earthy, Moldy 
Nail Polish Remover 
Nutty (Walnut, Etc.) 

Oak Wood 
Cognac-Like 
Dily, Fatty 
Drange (Fruit) 
Paint-Like 
Peach (Fruit) 
Peanut Butter 
Pear (Fruit) 
Perfumery 
Pineapple (Fruit) 
Popcom 
Putrid, Foul, Decayed 
Raisins 
Rancid 
Raw Cucumber-Like 
Raw Potato-Like 
Rope-Like 
Rose-Like 
Rubbery (New Rubber) 
Sauerkraut-Like 
Seasoning (For Meat) 
Seminal, Sperm-Like 
Sewer Odor 
Sharp, Pungent, Acid 
Sickening 
Soapy 
sooty 
Soupy
Sour Milk 
Sour, Acid, Vinegar 
Spicy 
Stale 
Stale Tobacco Smoke 
Strawberry-Like 
Sulphidic 
Sweaty 
Sweet 
Tar-Li ke 
Tea-Leaves-Like 
Turpentine (Pine Oil) 
Urine-Like 
Vanilla-Like 
Varnish 
Violets 
Warm 
Wet Paper-Like 
Wet Wool, Wet Dog 
Woody, Resinous 
Yeasty 
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Determination of how much of an odour is present is often carried out by 
olfactometry. Odour samples are evaluated using an instrument called an 
“olfactometer” with a human odour panel, typically consisting of four to eight 
persons. Both European and American Standards for olfactometry exist, and odours 
are evaluated in accordance with defined standard practices. Odour panels consist of 
individuals (panelists) that are selected and trained. An odour panel is conducted 
using a panel of individuals and an olfactometer. Many olfactometer designs exist, 
but typically sample odour is delivered at a fixed rate from a TedlarTM gas-sampling 
bag to the olfactometer. A filtered air system delivers non-odourous dilution air to the 
olfactometer. The trained odour panelist sniffs the diluted odour sample as it is 
discharged from one of two or three sniffing ports. The panelist sniffs all sniffing 
ports and must select one that is different from the others. This is a forced choice 
approach. The panelist decides if the selection was a “guess”, “detection” or 
“recognition”. The panelist then sniffs the next set of ports, one of which also contains 
the diluted odour sample. However, this next set presents the odour at a higher 
concentration (i.e., two to three times). The panelist continues to additional sets of 
sniffing ports. This statistical approach is called “ascending concentration series”. 
This method is a rapid means of determining sensory thresholds of any substance 
usually in an air medium. The threshold may be characterised as being either (a) only 
detection (awareness) that a very small amount of added substance is present but not 
necessarily recognisable, or (b) recognition of the nature of the added substance [8,9]. 
It is recognised that the degree of training received by a panel with a particular 
substance may have a profound influence on the threshold obtained with that 
substance, and that thresholds determined by using one physical method of 
presentation are not necessarily equivalent to values obtained by another method. 

The number of binary dilutions of the odour sample to human threshold, gives an 
objective, numerical measure of ‘odour units’ present in the sample. While these are 
dimensionless units, dimensions of odour unit per unit volume are commonly applied. 
Odour concentrations have been previously reported in a variety of ways that are 
difficult to compare. These include detection threshold, recognition threshold, dilution 
to threshold, effective dose at 50 percentile, dilution ratio, odour units, odour dilution 
units, and best estimated threshold. 

The use of a human panel for assessment of odour is highly subjective, costly and 
time consuming. However in industries that are associated with foods, beverages, 
cosmetics, soaps, and deodorants the human panel plays an invaluable role. However 
many industrial processes and agricultural operations also produce malodours as well 
as chemically toxic substances that need to be monitored and controlled. The human 
panel can only cope with limited numbers of samples, and has to be protected from 
exposure to potential hazardous substances. Hence, automated methods for odour 
measurement are desirable. 

3. Analytical Procedures for Odour Measurement 

Chemical mixtures are commonly analysed using gas chromatography (GC). Gas 
chromatography-mass spectrometry (GC-MS) combines the sample mixture 
separation obtainable with GC with the ease of sample identification associated with 
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MS. This technique can be highly selective and sensitive, but is time consuming and 
expensive. Other common methods used for odour identification include: 

GC-olfaction (also known as GC-sniffing) - where the effluent of a GC 
separation is presented to an olfactometry panel for identification of individual 
sample constituents. 

Infrared spectroscopy - gas identification is achieved by measuring the energy 
adsorbed in the excitation of chemical bonds in the compound; 

Nuclear magnetic resonance - compound structure can be elucidated by the 
interacting effects of resonating atoms in the compound; 

0 

0 

0 Mobile mass-spectrometry. 

All of the methods mentioned above, despite their particular strengths, are inadequate 
to replace the human nose, either in terms of the cost and equipment needed or their 
limited discriminatory power. There is a great need for a low-cost, portable sensor 
system that is able to sense and identify a wide range of chemicals, not necessarily 
odourous, at low concentrations and with the ability to cope with discrimination of 
complex mixtures. 

In the design of artificial odour sensing devices, much attention needs to be paid to 
the analysis of the requirements of the human user, and in what areas the instrument 
are likely to be used. An odour-sensing device will perform well in a particular 
defined context where a specific question is being asked of the apparatus. For such an 
instrument to be useful to a wide variety of users, it needs to be flexible enough to 
adapt to changing requirements of odour discrimination and intensity estimation. It is 
noted that the chemosensory system of humans and vertebrates consist of arrays of 
chemical transducers, where each type of sensing element has chemical specificity's 
that are broad, but distinct from each other. The signals from this system are 
processed in the brain to produce descriptors of the odour of individual chemicals, or 
mixtures of chemicals, as well as the intensity of the odour. It thus makes sense to 
design artificial chemical sensing arrays on this basis. Pattern recognition systems 
based on neural network odour classifier software and statistically based classifiers 
may then be applied to produce an analogy of the higher information processing 
mechanisms in the brain. 

Biometric Aspects of Human Odour Discrimination 

Mastiff Electronics (UK) demonstrated a system (Scentinel) on British Television in 
1996 that verifies a person by their body odour, the makeup of which is genetically 
linked. The volatile chemicals that make up a person's smell are emitted from skin 
pores all over the body and it is claimed that the instrument can pick it up from a 
person's hand. The basis for the work stems from some fundamental studies on the 
composition of body odour carried out by Sommerville and co-workers [10] who 
demonstrated that the pattern of volatiles in human axillary sweat reflects a genetic 
influence and can be used to distinguish identical twins from unrelated people. These 
were later correlated to some common HLA Class 1 antigens. Practical difficulties 
exist, however. The odour profile of the human body may be affected by habits such 
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as the use of deodorants or perfumes. Diet and medication also influence the body 
odour. There is the possibility of odour contamination or transfer from one person to 
the other. These aspects make body odour identification difficult. However it has been 
demonstrated that despite these variables, trained dogs are able to distinguish between 
persons on the basis of odour [ 1 1]. Hence there is research interest in the area of 
security applications where smell may be one parameter that may be monitored. 

Currently, ‘electronic nose’ instruments are finding their way into applications 
such as the diagnosis of bacterial infections, and many medical diagnosis applications, 
where the normal odour is distinguished from an abnormal odour. In some cases the 
species of bacteria can be identified, as shown in a study of patients with bacterial 
vaginosis [ 12]. 

4. Odour Sensing Instruments 

An electronic system reproducing the characteristics of the human nose could utilise 
the approach taken by human evolution, i.e. use a large array of sensors, where each 
sensor element has broad but overlapping sensing characteristics with the other 
sensors. In order for the information from the artificial array-based odour sensing 
system to be applied practically, information is required from the biological system, in 
terms of odour/structure relationships, to provide the basis for translation criteria 
between the patterns produced by the sensor arrays and odour descriptions. More 
thought has to be given to the system as a whole and not just to the chemical sensing 
elements. 

Although steps to design odour sensing systems had been taken as early as 1950 
[ 13], one of the first practical instruments specifically designed to detect odours was 
developed in 1961 [14]. An electronic nose was reported in 1964 by Wilkens and 
Hartman [ 15] based on redox reactions of odorants at an electrode. In the following 
year, Buck et al. [16] and Dravnieks and Trotter [I7] showed the potential of 
electronic noses based on the modulation of conductivity and the modulation of 
contact potential by odorants, respectively. Little progress was reported until 1982 
when Persaud and Dodd [ 18] reported a successful discrimination of a wide variety of 
odours using plural semi-conductor transducers. The concept of an electronic nose, as 
an intelligent chemical array sensor system, for odour classification was introduced. 

Array Based Odour Sensors 

The first steps to viable odour sensing technology were taken when it was proved that 
discrimination between odours was possible using a small array of broad specificity 
semiconductor sensors [ 18,19]. The discriminatory power of a small array lies in the 
utilisation of cross-sensitivities between sensor elements. The responses of the 
individual sensors, each possessing a slightly different response towards the sample 
odours, when combined by suitable mathematical methods, can provide enough 
information to discriminate between sample odours. Since then many research groups, 
exploiting a variety of sensor technologies have joined in development of electronic 
multi-sensor systems that could eventually start to mimic some aspects of the 
biological olfactory system. These system have been given the terminology 
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‘electronic nose’ and consist of an array of chemical sensors possessing broad 
specificity, coupled to electronics and software that allow feature extraction - 
extraction of salient data for further analysis, together with pattern recognition - 
identification of sample odour. Software techniques and material science are 
important aspects of the development of the system. Advancement in software signal 
processing techniques, coupled with pattern recognition, enable optimum usage of 
sensor responses. The specificity and sensitivity of existing chemical sensors are 
constantly being developed, as well as new materials. Table 12.2 summarises some of 
the most popular technologies used currently. This list is expanding rapidly as more 
research groups become active in this exciting field. 

Sensor Technology Application 

Table 12.2 Sensor technologies currently in use for ‘electronic nose’ applications. 

Many pioneering investigations into the use of sensor arrays, before intelligent gas 
sensing systems were developed, used various multisensor systems for identification 
of different types of gases, often in parallel with analytical methods. Zaromb and 
Stetter [ 19] provided a theoretical basis for the selection and effective use of an array 
of chemical sensors for a particular application. Bott and Jones [20] attempted to 
build a multisensor system to monitor hazardous gases in a mine using six sensors of 
three different types in combination with oxidising layers and absorbent traps. The 
system was able to distinguish between gases evolved from a fire and those evolved 
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from diesel engines or explosives. Odour identifying systems containing two or more 
different types of sensors are often an attempt to enhance the different dimensional 
characteristics of the responses. Stetter [21-24], who was also involved in developing 
a portable device to detect hazardous gases and vapours to warn U.S. Coast Guard 
emergency response personnel using four different electrochemical sensors, 
demonstrated a combined system with a hydrocarbon sensor and an electrochemical 
sensor. He managed to get responses from both the hydrocarbon sensor and the 
electrochemical sensors after passing the vapours through a combustible gas sensor. 
The resulting data was successfully analysed using pattern recognition methods based 
on neural networks. 

There are numerous types of gas sensor arrays used in electronic noses as shown in 
Table 12.2. The most popular types include metal oxide semiconductor (MOS) 
sensors, catalytic gas sensors, solid electrolyte gas sensors, conducting polymers, 
mass-sensitive devices, and fibre-optic devices based on Langmuir-Blodgett films. 
The oxide materials, which have been popular for use in electronic noses, operate on 
the basis of modulation of conductivity when the odorant molecules react with 
chemisorbed oxygen species. There are commercially available metal oxide sensors 
(e.g., Figaro Inc., Japan) which operate at elevated temperatures, between 1 00-6000°C, 
to help adsorption/desorption kinetics [25]. They are sensitive to combustible 
materials (0.1-100 ppm), such as alcohols, but are generally poor at detecting sulphur 
or nitrogen based odours and have a major problem of irreversible contamination with 
these compounds. Integrated thin-film metal oxide sensors have been designed using 
planar integrated microelectronic technology which has advantages of lower power 
consumption, reduction in size and improved reproducibility; however, they tend to 
suffer from poor stability. Although there are some oxide materials that show good 
specificity to certain odours [26], there are a number of advantages in employing 
organic materials in electronic noses. A wide variety of materials are available for 
such devices and they operate close to or at room temperature (20-60°C) with a 
typical sensitivity of around 0.1-100 ppm. Furthermore, functional groups that 
interact with different classes of odorant molecules can be built into the active 
material, and the processing of organic materials is easier than oxides. 

Despite of a number of disadvantages including high power consumption, elevated 
operational temperature, poisoning effects from sulphur-containing compounds, and 
poor long-term stability, MOS gas sensors are the most widely used in gas and odour 
detection. The main reason is that MOS commercial products have been available for 
a number of years. Abe et al. examined an automated odour sensing system based on 
plural semiconductor sensors to measure 30 substances [27] and 47 compounds [28]. 
They analysed the sensor outputs using pattern recognition techniques: Karhunen- 
Loeve (K-L) projection for visual display output; and k-nearest neighbourhood (k- 
NN) method and potential function method for classification. Shurmer et al. worked 
on discrimination of alcohols and tobaccos using tin-oxide sensors based on the 
correlation coefficient method in their research [29]. Weimar et al. demonstrated the 
possibility of determining single gas components, such as H2, CH4 and CO, in air 
from specific patterns of chemically modified tin-oxide based sensors by using two 
different multicomponent analysis approaches [30]. Most methods applied to 
identification, classification and prediction of gas sensor outputs were based on 
conventional pattern recognition techniques until the late 1980's, when artificial 
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neural networks were applied [3 1] Gardner and co-workers implemented a three layer 
back-propagation network with 12 inputs and 5 outputs architecture for the 
discrimination of several alcohols, where they reported that it was better than the 
previous work [32] carried out using analysis of variance (ANOVA). Cluster analysis 
and principal component analysis (PCA) were used to test 5 alcohols and 6 beverages 
from 12 tin-oxide sensors. The results were presented by raw and normalised 
responses, and showed that the theoretically derived data normalisation substantially 
improved the classification of chemical vapours and beverages. Further investigations 
were carried out to discriminate the blend and roasting levels of coffees, the 
differences between tobacco blends in cigarettes, and three different types of beer. 
The result confirmed the potential application in an electronic instrument for on-line 
quantitative process control in the food industry. Hines and Gardner developed a 
stand-alone microprocessor-based instrument which can classify the signals from an 
array of odour sensitive sensors [33]. Data from the odour sensor array were used to 
train a neural network and then the neuronal weights were sent to an artificial neural 
emulator (ANE), which consisted of microprocessor, ADC chips, ROM (Read Only 
Memory) and RAM (Random Access Memory). 

Another approach to odour sensing was studied using a quartz-resonator sensor 
array where the mechanism of odour detection based on the changes in oscillation 
frequencies when gas molecules are adsorbed onto sensing membranes. Nakamoto et 
al. employed neural network, including three layer back-propagation and principal 
component analysis, for the discrimination of several different types of alcoholic 
drinks using a selection of sensing membranes [34-36]. 

Persaud and Pelosi [37-40] proposed an odour sensing instrument using conducting 
polymers after investigating properties of a number of conducting polymers. They 
have found several organic conducting polymers that respond to gases with a 
reversible reaction of conductivity, fast recovery and high selectivity towards different 
compounds. In an experiment with an array of five different conducting polymer 
sensors and 28 odorants, they observed 20 different sets of responses and showed 
possible discrimination with 14 of the odorants by measuring changes in the electrical 
resistance. These results led Persaud et al. to produce arrays of 20 gas sensitive 
polymers that had reversible changes in conductivity and rapid adsorption/desorption 
kinetics at ambient temperatures when they were exposed to volatile chemicals. The 
concentration-response profiles of such sensors are almost linear over a wide 
concentration range to single chemicals. This is advantageous as simple 
computational methods may be used for information processing. The odour sensing 
system, developed at UMIST, and commercialised by Aromascan plc is the successful 
outcome of this research. The array of sensors have been expanded to thirty-two 
sensor elements, and may be expanded further. 

Conducting Polymers 

Conducting polymers based on aromatic or heteroaromatic compounds such as 
polypyrrole and polythiophene [41,42] are sensitive to many odorants and a reversible 
change in conductance is observed. Conducting polymer sensor arrays are being 
increasingly reported for use in odour detection and identification [43,44]. Although 
the understanding of chemical interaction with conducting polymers is still poor, it is 
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believed that reversible characteristics of conformational and/or charge transfer take 
place between volatile odour chemical and polymer. Several advantages exist over 
other technologies such as little poisoning effects, rapid reversibility, use at room 
temperature (little power consumption and no breakdown of volatiles at the sensor 
surface from increased heating), rapid response absorption/desorption within seconds 
to most volatile chemicals, and a long sensor lifetime of several years. Polypyrrole is 
one of the most stable of the organic conducting polymers (OCPs) under ambient 
conditions and as such has been the focus for most of the research on OCPs. To 
develop conducting polymers that are useful for sensing volatile chemicals, a good 
understanding of the physical, chemical and electrical mechanisms is required. The 
problems of repeatable and reproducible manufacture are immense, and require very 
strict control of the synthetic conditions. The base unit of polypyrrole is pyrrole, a 
five-member heteroaromatic ring containing nitrogen Polypyrrole is synthesised from 
the pyrrole monomer by mild oxidation, using either chemical or electrochemical 
methods. The polymer formed is usually a black solid, the exact form depending on 
the nature of preparation, the counterions are usually incorporated in the conducting 
polymer during oxidation of the monomers. The stoichiometric ratio of monomer 
units to counterions is generally 3: 1 to 4: 1, decreasing slightly with molecular weight 
and negative charge of the anion [45]. 

The microstructure of the polypyrrole layer can be significantly altered by the 
introduction of counterions. Ions with more than one charge will tend to associate 
with the same number of charges on the polymer chain, causing distortion of an 
anisotropic (ordered) chain as the distance between the anion and the associated chain 
charges is minimised. As the polymer structure becomes more isotropic, this effect 
will diminish, as the disordered structure will generally possess more positive charges 
in the vicinity of the counterion. 

In a semiconductor the band gap is narrow, allowing electrons to be energetically 
excited from one band to another, thereby enabling current to flow. The thermal 
excitation of an electron results in a ‘hole’ in the top of the valence band. The 
resulting positive charge is delocalised over the entire material, no local lattice 
distortion occurring within the crystalline material. Remaining electrons in the 
valence band are able to jump to this ‘hole’, leading to the appearance of metallic 
character. The addition of impurity (dopant) increases the number of charge carriers, 
which coupled with the high mobilities of the charge carriers in the crystalline lattice, 
leads to high conductivity’s for doped semiconductors. However, this theory does not 
sufficiently explain conduction in OCPs [46]. The charge carriers in OCPs appear to 
be spinless, unlike the charge carriers considered above (i.e., electrons). This has led 
to the introduction of other theories, which are outlined below. 

Conducting Polymer Mechanisms 

When an electron is removed from the polymer chain by doping, a radical cation, 
possessing a spin of ½ is produced which partially delocalises over a small number of 
monomer units. This phenomenon is termed a polaron, derived from the fact that it 
polarises its surroundings in order to stabilise itself. This polarisation results in an 
electronically excited area, raising the local energy level above the valence band and 
into the band gap [47]. This polarisation does not occur in normal, ‘intrinsic’ 
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semiconductors. OCPs do not possess the rigid lattice structure of metal and normal 
semiconductors, having a more amorphous, 'springy' structure, permitting local 
distortions in the chain. 

If another electron is removed from the polymer by doping [48] it can either come 
from a separate site, in which case a second polaron is created, or the lone electron in 
the polaron can be removed creating a bipolaron. The formation of this spinless 
charge carrier would explain the general lack of spin observed in this semiconductor. 
The polarons are unstable compared to the bipolarons, and so tend to disappear at 
higher doping levels. This has been confirmed by ESR studies [49]. However, some 
spin character still remains in the polymer, and is thought to be due to polarons 
trapped in lattice defects or from thermal dissociation of bipolarons [50]. 

The actual mechanism of charge transport in polypyrrole can consist of two 
components; intrachain transport occurring along the polymer chains by 
rearrangement of the conjugated bond system and interchain charge transport 
involving hopping of the charge carriers to neighbouring chains. Considering the 
chain length of polypyrrole is estimated to be up to 1000 monomer units, and the large 
degree of conjugation-limiting defects in the polymer chain, it would be expected that 
interchain conductivity would be the limiting factor in the conductivity. 

The gas sensing properties of polypyrrole were first investigated by Nylander [51] .
Exposure of a polypyrrole impregnated filter paper to ammonia vapour reversibly 
altered the resistance of the polymer. The performance of the sensor, operating at 
room temperature, was linear with higher concentrations (0.5% - 5%), responding 
within a matter of minutes. 

The gas sensing abilities of polypyrrole may be altered in a number of ways. These 
include polymerisation of derivatised monomers [52] and the dopant ion used. Many 
types of gas sensitive conducting polymers have now been prepared, and these are 
typically based on functionalised pyrroles, thiophenes, anilines, indoles and others. 

Data Acquisition 

The software provided for the volatile chemical sensing system consists of three 
modules: data acquisition and instrument control; data manipulation for extraction of 
patterns; and pattern recognition. 

The acquisition software samples the sensor array resistance at regular intervals, 
storing the resultant data in the computer. As the resistance of conducting polymers 
are inversely proportional to temperature, the temperature of the array is controlled 
and monitored (typically to 35°C ± 0.1°C). The sample temperature and sample 
humidity are also monitored, since these parameters are important for reproducible 
sampling. Individual sensors on the array may be deactivated or activated as required. 
The responses of the sensors are shown in real time in a strip chart display on screen, 
as seen in Figure 12.3. The signal is expressed as the percentage resistance change of 
each sensor compared to the initial sensor resistance. 
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Figure 12.3 Response of a 32 sensor conducting polymer array to ethyl acetate 
vapour. The % change in resistance (dR/R) in response to the vapour is shown. 

The response of a sensor is then normalised by expressing the fractional change of 
the individual sensor as a percentage of the fractional changes summed over the whole 
array, as denoted in Equation 12.1 for an array of n sensors: 

(12.1) 
where 1 I x I n, Nx is the normalised response of sensor x, Arx is the resistance 
change of sensor x, rx is the base (initial) resistance of sensor x, and ArJq is the 
fractional change in resistance of the i’th component of the array. The normalised data 
thus forms a pattern across the sensor array, as shown in Figure 12.4. 

Sensor Element 

Figure 12.4. Normalised response pattern averaged between the cursors shown in 
Figure 12.3. 
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Data Processing 

Any biometric application will rely heavily on the data processing and pattern 
recognition software associated with it. The response to a volatile odour of each 
sensor is proportional to the concentration, and is unique for each type of single or 
complex odour. With each sensor in an array having a certain response character, an 
array of sensors with broad but different chemical specificities provides a 
measurement pattern of broad overlapping selectivity. These responses, or signals, are 
processed to produce a set of descriptors for the input, which can be identified as a 
“fingerprint” for an odour, and then saved into a database for further manipulation 
within statistical pattern recognition methods, cluster analysis, and artificial neural 
networks. The input data into these methods is a normalised pattern of responses of 
each sensor relative to the whole array. For pure solvents the normalised patterns 
produced are almost concentration-independent for some, but not all of the 
technologies listed in Table 12.2; however, in general, when monitoring a complex 
odour or chemical mixture the patterns are non-linearly concentration dependent. This 
creates difficulties for information processing. 

From the previous discussions, it would be seen that it is desirable to discriminate 
between odours, compare one odour sample with another, and get an estimate of 
intensity or concentration of the odour. Ideally, it is desirable to map these properties 
to the human perception using descriptors such as those described in Table 12.1. The 
use of neural networks within artificial sensory analysis has been growing in 
momentum in recent years. The ability to recognise pattern characteristics from 
relatively small pieces of information has led to growing interest in the possible 
applications and development within sensory recognition. A variety of pattern 
recognition techniques including neural networks may be applied to the classification 
of different odours, quantitative prediction and recognition of unknown gases and 
odours. Backpropagation, used for multilayer perceptron networks, is probably the 
most widely used neural network paradigm [52]. This algorithm has been used with 
good results with a wide variety of odour recognition problems. In this case an 
exemplar set of data is measured experimentally, and patterns for each odour class of 
interest are collected. The neural network is then used to associate these patterns with 
outputs that are descriptors. Once trained, such a system is able to generalise, and is 
able to recognise even noisy patterns. One disadvantage is a difficulty in classifying a 
previously unknown pattern that is not classified to any prototypes in the training set. 
We have investigated the characteristics of radial basis function (RBF) networks 
applied to odour classification problems. RBF networks train rapidly, usually orders 
of magnitude faster than backpropagation, while exhibiting none of backpropagation’s 
training pathologies such as paralysis or local minima problems. A RBF network [53- 
57] is a two-layer network where the output units form a linear combination of the 
basis functions computed by hidden units. The basis functions in the hidden layer 
produce a localised response to the input and typically uses hidden layer neurones 
with Gaussian response functions. 

The performance of radial basis function classifiers is highly dependent on 
the choice of basis centres and width. This has been a focus of our attention in order 
to optimise RBF networks for odour classification. For a minimum number of nodes, 
the selected centres should well represent the training data for acceptable 
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classification. We have found that one optimum solution is to combine a learning 
vector quantizer (LVQ) [56,57] algorithm with RBF, the LVQ being used to find 
suitable cluster centres. The LVQ network is based on competitive learning and is 
used to both quantize input pattern vectors into reference values and to use these 
reference values for classification. The distance measurement between one vector and 
neighbouring vectors is a useful means of deciding whether correct classification is 
possible. 

Performance of the RBF Network 

In order to test the classifier based on RBF, the odour sensing system was used to 
collect representative patterns of pure chemicals as well as a mixture of methanol and 
ethanol in fixed ratios. Once validated, the network was then applied to a real world, 
complex odour measurement problem involving characterisation of the ageing process 
of a foodstuff. 

The final output from the RBF network is presented in such a way that the 
recognition output values are directly displayed as a map instead of class labels and 
error values. The results of applying the radial basis function are seen in all figures 
with Gaussian non-linearities using a constant, fixed parameter and centres chosen by 
tentative classification using the network explained previously from the training 
patterns. The x-axis in Figures 12.5 and 12.6 depicts the target values (or the desired 
output); the y-axis represents the sequencing of individual patterns. Any symbol on 
(or closer to) a target line means the pattern is recognised as the class which holds the 
target value. Four mixtures of methanol and ethanol in ratio of 1: 1, 1:2, 1:4, 1:8 were 
trained and tested, and the results are shown in Figure 12.5. Figure 12.5(b) also 
shows the output when untrained input data of mixture 1:4 is tested with a network 
previously trained with methanol, ethanol and the three previous mixtures. While the 
prediction does have some error associated with it, the performance of RBF network 
to previously unseen patterns is very robust. 

Further studies were then carried out on real complex odour changes from one type 
of dry food material (biscuits). Data were collected over a thirteen week period on a 
particular sample batch of biscuits in order to assess if ageing effects on foods could 
be measured by the conducting polymer array and identified using radial basis 
function neural networks. Controls of water, methanol, ethyl acetate and butyl acetate, 
were used to assess the reliability and stability over this period. Little sensor drift and 
a high reliability in sensor response were observed. At the start of the experimentation 
period, a part of the biscuit sample was frozen to minimise any ageing effects and 
stored at -20°C, and were used as control samples. The other part of the biscuit 
sample was kept at room temperature within the original food container. Each week 
an amount of control sample and aged sample was analysed by the thirty-two sensor 
conducting polymer array. In Figure 12.6(a) the radial basis function was trained with 
control and aged samples from weeks 1, 3, 5, 7, 9, 11, and 13. The radial basis 
function was then tested in Figure 12.6(b) with unknown control and aged data from 
weeks 2, 4, 8, 10, and 12. 

The radial basis function worked very well in the prediction of unknown unaged 
and aged samples compared to known unaged and aged exemplar samples. In this 
case the change in odour being detected was due to oxidation of fats in the samples, 
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leading to the onset of rancidity. A trend over the thirteen-week period of ageing is 
clearly seen. The capability to quantify and discriminate between complex odours has 
been demonstrated, by the use of the radial basis function network. 

The results would demonstrate that by combining array based sensor systems with 
powerful pattern recognition methods, it is possible to produce odour-sensing 
instruments that have practical applications in industry. While the particular example 
illustrates the use of conducting polymer arrays, other technologies may have similar 
or better performance for a given application. Hence the user would need to evaluate 
which sensor technology has the best performance for the perceived needs. 

5. Conclusions 

It  will be seen that it is very difficult to create a biomimetic device with the 
capabilities of the human nose. Improvements in sensor technologies combined with 
the revolution in microprocessor-based electronics, as well as the parallel evolution of 
pattern recognition algorithms, mean that practical devices with limited capabilities 
can now be realised. Difficulties remain however, due to the nature of the sensors that 
are available. Sensors may drift, or suffer from poisoning. In the biological systems, 
the sensors have a limited lifetime and are continually replaced. Somehow, the 
biological system is able to maintain invariant pattern recognition, even though the 
characteristics of the sensors involved may have changed. The new odour sensing 
instruments are not yet able to cover the full repertoire of the human nose, in terms of 
the diversity of odours that can be discriminated. As sensor arrays become larger, and 
the sensor types become more tuned to specific odour classes, some of these 
limitations will disappear. Sensitivity is also another problem, the sensors available 
are not as sensitive as the human nose. This may be overcome in the future by the 
combination of large numbers of sensors, carrying out signal averaging to increase the 
signal to noise ratio. For biometrics applications, discrimination between humans on 
the basis of body odour may be feasible. However this is complicated by the fact that 
humans often use deodorants, perfumes, and have diets that may affect their body 
odour. Instruments capable of distinguishing invariant components of human odour 
are still in the process of development. 

Acknowledgements 

This work was supported by grants from the EPSRC, BBSRC, and Aromascan UK. 

References 

1 .  
2. 

3. 

G. Ohloff, “Chemistry of odor stimuli,” Experientia,  Vol. 42 pp. 27 1-279, 1986. 
W. G. Freeman, “The Physiology of Perception,” Scientific American, Vol. 264, NO. 2, 

L. B. Buck, “Information coding in the vertebrate olfactory system,” Annual Review  Of 
Neuroscience,  Vol. 19, pp. 5 17-544, 1996. 

pp.78-85, 1991. 



268 Persaud et al. 

4. 

5. 

6. 

K. Bauer, D. Garbe, and H. Surburg, Common fragrance and flavor materials, VCH 
Verlagsgesselschaft, FRG, 1990. 
M. K. McClintock, “Menstrual synchrony and suppression,” Nature, Vol. 299, pp. 244- 
245, 197 1. 
F. Wortmann, “Receptor multispecificity and similarities between the immune system, the 
sense of smell, and the nervous system from the point of view of clinical allergology,” 
Ann. Allergy, Vol. 59, pp. 65-73, 1987. 
J. Amoore, Molecular Basis of Odor, Thomas, Springfield, Illinois, 1970. 
F. H. H. Valentin and A. A. North, Odour control - A concise guide, Warren Springs 
Laboratory, Stevenage, 1980. 
M. Hangartner, J. Hartung, M. Paduch, B. F. Pain, and J. H. Voorburg, “Improved 
recommendations on olfactometric measurements,” Environmental Technology Letters, 
Vol. 10, pp. 231, 1989. 

10. B. A. Sommerville, J. P. McCormick, and D. M. Broom, “Analysis of human sweat 
volatiles: an example of pattern recognition in the analysis and interpretation of gas 
chromatograms,” Pestic. Sci., Vol. 41, pp. 365-368, 1994. 

11.  B. A. Sommerville, M. A. Green, and D. J. Gee, “Using chromatography and a dog to 
identify some of the compounds in human sweat which are under denetic influence,” 
Chemical signals in vertebrates Vol. 2 (Eds. D. W. MacDonald, D. Muller-Schwartze, S. 
E. Natynczug), Oxford University Press, Oxford, pp. 634-639, 1990. 

12. S. Chandiok, B. A. Crawley, B. A. Oppenheim, P. R. Chadwick, S. Higgins, and K. C. 
Persaud, 1997, “Screening for bacterial vaginosis: a novel application of artificial nose 
technology,” J. Clin. Path., Vol. 50, No. 9, pp. 790-791, 1997. 

13. N. N. Tanyolaç and J .  R. Eaton, “Study of odors,” J. Am. Pharm. Assoc., Vol. 39, No. 10, 

14. R. W. Moncrieff, “An  instrument for measuring and classifying odors,” J. Appl. 
Physiology, Vol. 16, pp. 742-749, 1961. 

15. W. F. Wilkens and J. D. Hartman, 1964, “An electronic analogue for the olfactory 
processes,” Ann. N .  Y. Acad. Sci., Vol. 1 16, pp. 608-612, 1964. 

16. T. Buck, F. Allen, and M. Dalton, “Detection of chemical species by surface effects on 
metals and semiconductors”, In: Bregman and Dravnieks (eds.), Surface effects in 
detection, Spartan Books Inc., USA, 1965. 

17. A. Dravnieks and P. Trotter, “Polar vapour detection based on thermal modulation of 
contact potentials,” J.Sci., Instrum., Vol. 42, pp. 642, 1965. 

18.  K. C. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the mammalian 
olfactory system using a model nose,” Nature, Vol. 299, pp. 352-355, 1982. 

19. S. Zaromb and J. Stetter, “Theoretical basis for identification and measurement of air 
contaminants using an array of sensors having partly overlapping selectivities,” Sensors 
and Actuators, Vol. 6, pp. 225-243, 1984. 

20. B. Bott and T. Jones, “The use of multisensor systems in monitoring hazardous 
atmospheres,” Sensors and Actuators, Vol. 9, pp. 19-25, 1986. 

21. J. Stetter, P. Jurs, and S. Rose, “Detection of hazardous gases and vapors : pattern 
recognition analysis of data from an electrochemical sensor array,” Anal. Chem., Vol. 58, 

22. T. Otagawa and J. Stetter, “A chemical concentration modulation sensor for selective 
detection of airborne chemicals,” Sensors and Actuators, Vol. 1 1, pp. 251 -264, 1987. 

23. J. Stetter, “Sensor array and catalytic filament for chemical analysis of vapors and 
mixtures,” Sensors and Actuators B, Vol. 1 pp. 43-47, 1990. 

24. J. Stetter, “Chemical sensor arrays: Practical insights and examples,” In Sensor and 
sensovy systems for  electronic nose,  (Eds. Gardner J. and Bartlett P.), NATO ASI Series E: 
Applied Sciences, Vol. 2 12, Springer-Verlag, Berlin, pp. 273-301, 1992. 

7. 
8. 

9. 

pp. 565-574, 1950. 

pp. 860-866, 1986. 



Objective Odour Measurements 269 

25. P. Moseley, J. Norris, D. Williams (eds.), Techniques and mechanisms in gas sensing, 
Adam Hilger, Bristol., 199 1. 

26. M. Egashira, Y. Shimizu, and Y. Takao, “Trimethylamine sensor based on semiconductive 
metal oxides for detection of fish freshness,” Sensors and Actuators B, Vol. 1, pp. 108- 
112, 1990. 

27. H. Abe, T. Yoshimura, S. Kanaya, Y. Takahashi, Y. Miyashita, and S. Sasaki, “Automated 
odor-sensing system based on plural semiconductor gas sensors and computerized pattern 
recognition techniques,” Analytica Chimica Acta, Vol. 194, pp. 1-9, 1987. 

28. H. Abe, S. Kanaya, Y. Takahashi, and S. Sasaki, “Extended studies of the automated odor- 
sensing system based on plural semiconductor gas sensors with computerized pattern 
recognition techniques,” Analytica Chimica Acta, Vol. 215, pp. 151-168, 1988. 

29. H. Shurmer, J. Gardner, and H. Chan, “The application of discrimination techniques to 
alcohols and tobaccos using tin-oxide sensors,” Sensors and Actuators, Vol. 18, pp. 361 - 
371, 1989. 

30. U. Weimar, K. Schierbaum, and W. Göpel, “Pattern recognition methods for gas mixture 
analysis: Application to sensor arrays based upon SnO2,” 
Sensors and Actuutors B, Vol. I ,  pp. 93-96, 1990. 

3 1. R. Sleight, Evolutionary strategies and learning for neural networks, MSc. Dissertation, 
UMIST, 1990. 

32. J. Gardner, E. Hines, and M. Wilkinson, “Application of artificial neural networks to an 
electronic olfactory system,” Meas. Sci. Technol., Vol. 1, pp. 446-451I ,  1990. 

33. E. Hines and J. Gardner, “An artificial emulator for an odour sensor array,” Sensors and 
Actuators B, Vols. 18-19, pp. 661-664, 1994. 

34. K. Ema, M. Yokoyama, T. Nakamoto, and T. Moriizumi, “Odour-sensing system using a 
quartz-resonator sensor array and neural-network pattern recognition,” Sensors and 
Actuators, Vol. 18, pp. 291-296, 1989. 

35. T. Nakamoto, K. Fukunishi, and T. Moriizumi, “Identification capability of odor sensor 
using quartz-resonator arrays and neural-network pattern recognition,” Sensors and 
Actuators B, Vol. I ,  pp. 473-476, 1990. 

36. T. Nakamoto, A. Fukuda, and T. Moriizumi, “Improvement of identification capability in 
an odor-sensing system,” Sensors and Actuators B,  Vol. 3, pp. 221 -226, 1991. 

37. P. Pelosi and K. C. Persaud, “Gas sensors : Towards an artificial nose,” In Sensors and 
sensory systems for advanced robots, (Eds. Dario P. et al.), NATO ASI Series F: 
Computer and System Science, Springer-Verlag, Berlin, pp. 361 -382, 1988. 

38. K. C. Persaud, J. Bartlett, and P. Pelosi, “Design strategies for gas odour sensors which 
mimic the olfactory system,” In Robots and biological systems, (Eds. Dario P. et al.), 
NATO ASI Series, Springer-Verlag, Berlin, 1990. 

39. K. C. Persaud and P. Travers, “Multielement arrays for sensing volatile chemicals,” 
Intelligent Instruments and Computers, pp. 147-1 53, July-August, 1991. 

40. K. C. Persaud and P. Pelosi, “Sensor arrays using conducting polymers for an artificial 
nose,” In Sensors and sensory systems for an electronic nose, (Eds. Gardner J. and Bartlett 
P), NATO ASI Series E: Applied Sciences, Vol. 212, Springer-Verlag, Berlin, pp. 237- 
256, 1992. 

41. A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, “Electrochemical polymerization of 
pyrrole,” J. Chem. Soc. Chem. Comms., pp. 635-636, 1979. 

42. J. Roncali, “Conjugated poly(thiophenes): synthesis, functionalization, and applications,” 
Chem. Rev., Vol. 92, pp. 711-738, 1992. 

43. J. J. Miasik, A. Hooper, and B. C. Tofield, “Conducting polymer gas sensors,” J. Chem. 
Soc. Faraday Trans. 1 ,  Vol. 82, pp. 1 117-1 126, 1986. 

44. R. Cabala, V. Meister, and K. Potje-Kamloth, 1997, “Effect of competitive doping on 
sensing properties of polypyrrole,” J. Chem. Soc. Faraday Trans., Vol. 93, 13 1 - 137, 1997. 



270  Persaud et al. 

45. G. Zott, G. Schiavon, and N. Comisso, “On effects on conductivity of isomorphous 
polypyrrole: charge pinning by nucleophilic anions,” Syn. Metals, Vol. 40, pp. 309-3 16, 
1991. 

46. D. Bloor and B. Movaghar, 1983, “Conducting polymers,” IEE Proc. I, Vol. 130, pp. 225- 
232, 1983. 

47. G. Zotti, G. Schiavon, and N. Comisso, 1990, “The charge-potential relationship in 
polyconjugated conducting polymers: Determination of E0 values and n-values for 
polypyrrole and polythiophene,” Electrochim. Acta, Vol. 35, pp. 181 5-1 819, 1990. 

48. H. S. Nalwa, “Phase-transitions in polypyrrole and polythiophene conducting plymers 
demonstrated by magnetic susceptibility measurements,” Phys. Rev. B - Condensed 
Matter, Vol. 39, pp. 5964-5974, 1989. 

49. J. L. Brédas, B. Thémans, J. G. Fripiat, J. M. André, and R. R. Chance, “Highly 
conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio study 
of the geometry and electronic-structure modifications upon doping,” Phys. Rev. B - 
Condensed Matter, Vol. 29, pp. 6761 -6773, 1984. 

50. G. B. Street, S. E. Lindsey, A. I. Nazzal, and K. J. Wynne, “The structure and mechanical 
properties ofpolypyrrole,” Mol. Cys t .  Liq. Cyst . ,  118: 137-148, 1985. 

51.  C. Nylander, M. Armgarth, and I. Lundström, In Proceedings of the international meeting 
on chemical sensors, Fukuoka, 1983. (Eds. Seiyama T, Fueki K, Shiokawa J, Suzuki S) 
Elsevier, Amsterdam, 1983. 

52. J. Gardner and P. Bartlett, 199 I ,  “Pattern recognition in gas sensing,” In Techniques and 
Mechanisms in Gas Sensing, (Eds. Moseley P. et al.), Adam Hilger, Bristol, pp. 347-384, 
1991. 

53. J. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” 
Neural Computation, Vol. I ,  pp. 28 1-294, 1989. 

54. M. Musavi, W. Ahmed, K. Chan, K. Faris, D. Hummels, On the training of radial basis 
function classifiers, Neural Networks, Vol. 5, pp. 595-603, 1992. 

55. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 3rd  ed., pp. 

56. K. C. Persaud and H-G. Byun, 1998, “Classification of complex odours using conducting 
polymer arrays and neural networks,” In Industrial applications of neural networks, Eds. 
Fogelman Soulié, World Scientific, Singapore, New Jersey, pp. 85-90, 1998. 

57. D-H. Lee, J. S. Payne, and H-G. Byun, and K. C. Persaud, 1996, “Application of radial 
basis neural networks to odour sensing using a broad specificity array of conducting 
polymers,” In Lecture Notes in computer science (Eds. C. Von der Malsburg, W.  von 
Seelen, J. C. Vorbroggen, B. Sendhoff), Vol. 1112, pp. 299-304, 1996. 

199-202, 1989. 



Objective Odour Measurements 27 1 

1 2 3  k 5 6  
TARGET VALUES 

TRAINED DATA 

METHANOL 

V Meth 1: Eth 1 

+ Meth 1: Eth 2 

A Meth 1: Eth 8 

ETHANOL 

/ TARGET LINES 

TESTED DATA 

METHANOL 

V Meth 1: Eth 1 

+ Meth 1: Eth2 

A Meth 1: Eth 4 

Meth 1 : Eth 8 

V ETHANOL 

/ TARGETLINES 

1 2 3 4 5 6  

TARGET VALUES 

Figure 12.5 (a) Four mixtures of methanol and ethanol in ratio of 1 :1, 1 :2, 1 :4, 1 :8 
were trained and tested using a radial basis function neural network.(b) shows the 
output when previously unseen input data of mixture 1:4 is tested with a network 
previously trained with methanol, ethanol and the three previous mixtures. The x-axis 
in figures depicts the target values (or the desired output); the y-axis represents the 
sequencing of individual patterns, offset for clarity. 
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Figure 12.6 (a) The radial basis function was trained with control and aged samples of 
biscuits from weeks 1, 3, 5, 7, 9, 11, and 13. The radial basis function was then tested 
(b) with unknown control and aged data from weeks 2, 4, 8, 10, and 12. 
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Abstract A new class of biometrics based upon ear features is 
introduced for use in the development of passive identification 
systems. The availability of the proposed biometric is shown both 
theoretically in terms of the uniqueness and measurability over 
time of the ear, and in practice through the implementation of a 
computer vision based system. Each subject‘s ear is modeled as 
an adjacency graph built from the Voronoi diagram of its curve 
segments. We introduce a novel graph matching based algorithm 
for authentication which takes into account the erroneous curve 
segments which can occur due to changes (e.g.. lighting, 
shadowing, and occlusion) in the ear image. This new class of 
biometrics is ideal for passive identification because the features 
are robust and can be reliably extractedfrom a distance. 
Keywords: Ear biometrics. passive identification. structural 
image analysis, generalized Voronoi diagrams. error correcting 
graph matching. 

1. Introduction 

Try a simple experiment, try to visualize what your ears look like. You were not able 
to? Well, then try to describe the ears of someone you see everyday. You will find 
that even if you are looking directly at someone’s ears, they are still difficult to 
describe. We simply do not have the vocabulary for it; our everyday language 
provides only a few adjectives which can be applied to ears, all of which are generic 
adjectives like large or floppy  and not ones which are solely’ used to describe ears. 
On the other hand, we are all capable of describing the faces of even briefly glimpsed 
strangers with significant detail to allow police artists to reconstruct remarkable 
resemblances of them. Even though we apparently lack the means to recognize one 
another from our ears, we will see that the rich structure of the ear is unique and that it 
can be used as an effective biometric for passive identification. 

In fact, in English at least two ear specific adjectives do exist, namely “Vulcan” and 
“Charlesesque”. 

1
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2. Automated Biometrics 

Automating identification through biometrics [ 15], especially face recognition [8], has 
been extensively studied in machine vision. Despite extensive research, many 
problems in face recognition remain largely unsolved due to the inherent difficulty of 
extracting face biometrics. A wide variety of imaging problems (e.g., lighting, 
shadows, scale, and translation) plague the attempt for unconstrained face 
identification [ 13]. In addition to the many imaging problems, it is inherently difficult 
to collect consistent features from the face as it is arguably the most changing part of 
the body due to facial expressions, cosmetics, facial hair and hair styling. The 
combination of the typical imaging problems of feature extraction in an unconstrained 
environment, and the changeability of the face, explains the difficulty of automating 
face biornetrics. Despite the attractiveness of face biometrics (e.g., they are easily 
verifiable by non-experts), other biometrics (e.g., fingerprint based) provide the basis 
for most commercial implementations. 

Unlike facial biometrics, fingelprint-based biometrics have been shown to be 
highly amenable to automation by machine vision techniques [6]. The automation of 
fingerprint biornetrics began in 1971 [14] and has culminated in a number of 
commercial machine vision based systems. Fingerprint imaging is done within a 
controlled environment, usually with a specially designed scanner, which eliminates 
the problem of localization and artifacts from shadowing and lighting variations. 
Physical changes, a bane of facial biometrics, is a miniscule problem as the finger, 
barring surgery, remains comparatively constant over time. Machine vision 
techniques [11] have been successfully applied to create highly accurate and robust 
commercial systems which are in use worldwide. 

3. Passive Biometrics 

Fingerprints are not the only successful example of the application of machine vision 
techniques to automated biometrics; both the three dimensional shape of the hand and 
retinal patterns have also been used. All of the biometrics which have been 
successfully automated using machine vision techniques are inherently invasive. 
They require the subject to participate actively in both enrolling into the system and 
during subsequent identification. The willing participation of the subject in the 
controlled environment of these systems is intrinsic to the success of the 
identification. 

One class of passive physiological biometrics are those based upon iris scans. 
Unlike retinal scans, which require close contact with the scanner, iris-based 
recognition has been reported to be successful at distances of up to 46 cm [17]. The 
unique collection of striations, pits, and other observable features of the iris along 
with the ease of segmenting the iris from the white tissue of the eye which serves as 
its background, make iris based biornetrics attractive. The decided disadvantage is the 
small size of the iris which makes image acquisition from a distance, and therefore 
passive usage, problematic. 

To summarize the two classes of passive physiological biometrics which have been 
researched in machine vision up to now: face and iris based techniques both have a 
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number of drawbacks which make their usage in commercial applications limited. 
Facial biometrics fail due to the changes in features caused by expressions, cosmetics, 
hair styles, and the growth of facial hair as well as the difficulty of reliably extracting 
them in an unconstrained environment exhibiting imaging problems such as lighting 
and shadowing. Unlike facial biometrics, iris biometrics remain relatively consistent 
over time and are easy to extract, but acquisition of the image at the necessary 
resolution from a distance is difficult. Therefore, we propose a new class of 
biometrics for passive identification based upon ears which have both reliable and 
robust features which are extractable from a distance. 

4. Ear Biometrics 

In proposing the ear as the basis for a new class of biometrics, we need to show that it 
is viable (i.e., unique to each individual, and comparable over time). In the same way 
that no one can prove that fingerprints are unique, we can not show that each of us has 
a unique pair of ears. Instead, we will assert that this is probable and give supporting 
evidence by examining two studies from Iannarelli [ 10]. The first study compared 
over 10,000 ears drawn from a randomly selected sample in California, and the 
second study examined fraternal and identical twins, in which physiological features 
are known to be similar. The evidence from these studies supports the hypothesis that 
the ear contains unique physiological features, since in both studies all examined ears 
were found to be unique though identical twins were found to have similar, but not 
identical, ear structures especially in the Concha and lobe areas. Having shown 
uniqueness, it remains to ascertain if the ear provides biometrics which are 
comparable over time. 

It is obvious that the structure of the ear does not change radically over time. The 
medical literature reports [ 10] that ear growth after the first four months of birth is 
proportional. It turns out that even though ear growth is proportional, gravity can 
cause the ear to undergo stretching in the vertical direction. The effect of this 
stretching is most pronounced in the lobe of the ear, and measurements show that the 
change is non-linear. The rate of stretching is approximately five times greater than 
normal during the period from four months to the age of eight, after which it is 
constant until around 70 when it again increases. 

We have shown that biometrics based upon the ear are viable in that the ear 
anatomy is probably unique to each individual and that features based upon 
measurements of that anatomy are comparable over time. Given that they are viable, 
identification by ear biometrics is promising because it is passive like face 
recognition, but instead of the difficult to extract face biometrics, robust and simply 
extracted biometrics like those in fingerprints can be used. 

5. Application Scenarios 

Ear biometrics can be used as a supplementary source of evidence in identification 
and recognition systems, for example a system designed for face recognition already 
includes all the necessary hardware for capturing and computing ear biometrics. A 
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typical example is supplementary identification at an automated teller machine 
(ATM). Most ATMs contain a camera mounted so that it records the face of the user 
during the transaction. These cameras could be supplemented with a simple optical 
mirror setup to allow simultaneous recording of the face and the ear of the user. 
While a user identifies himself to the ATM by inserting the bank card and keying in 
his personal identification number (PIN), the camera simultaneously records the face 
and ear of the user and uses ear biometrics to supplementary verify the identification 
of the user. 

A second scenario, where passive ear biometrics are ideal, is where different levels 
of security are assigned to different groups of people. Typically, this situation is 
solved through the use of active badges. These badges, usually small identification 
cards containing passive transmitters, are automatically queried at each point of 
access (e.g., a door or elevator). Access to restricted areas (e.g., unlocking of the 
door) is automatically allowed or disallowed according to the identity supplied by the 
badge. A well known drawback of such a system is that someone can illegitimately 
obtain and use the active badge of another to gain access to restricted areas. For this 
reason, cameras are often installed to monitor the access points. The cameras record 
access and in the case that illegitimate access to an area is later discovered, the video 
tape can be examined to visually determine the perpetrator - but only afterthe fact. A 
prohibitively expensive solution, which defeats the purpose of automation, is to have 
a human analyze each request for access by comparing the identification reported by 
the active badge and the image provided by the camera to some stored image of the 
subject. Ear biometrics can be used in such a scenario to allow more secure 
automated access. 

In the proposed solution, as the subject approaches the access point, the active 
badge is queried and the identification is ascertained. At the same time, an image of 
the subject‘s ear is acquired and biometrics are used to verify the identification 
provided by the active badge. In case the two identifications do not match, the video 
of the access point including the subject is displayed at the central security station 
along with an image retrieved from the database of the subject who should be in 
possession of that badge. The two images can then be visually compared by the 
security personnel and appropriate action taken. 

6. lannarelli’s Ear Biometrics 

An anthropometric technique of identification based upon ear biometrics was 
developed by Iannarelli [10]. The “Iannarelli System” is based upon the 12 
measurements illustrated in Figure 13.l(b). The locations shown are measured from 
specially aligned and normalized photographs of the right ear. To normalize and align 
the images, they are projected onto a standard “Iannarelli Inscribed” enlarging easel 
which is moved horizontally and vertically until the ear image projects into a 
prescribed space on the easel. The system requires the exact alignment and 
normalization of the ear photos as is explained by Iannarelli: 

Once the ear is focused and the image is contained within the easel boundaries, adjust the 
easel carefully until the oblique guide line is parallel to the outer extreme tip of the tragus 
flesh line .... The oblique line should now be barely touching the tip of the tragus. (The left 
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white lines in Figure 13.l(a)) Move the easel slightly, keeping the oblique line touching the 
tip of the tragus, until the upper section of the oblique guide line intersects the point of the 
ear image where the start of the inner helix rim overlaps the upper concha flesh line area just 
below the slight depression or  hollow called the triangular fossa .... 

When the ear image is accurately aligned using the oblique guide line, the ear image has 
been properly positioned. The technician must now focus the ear image to its proper size. 
The short vertical guide line (The right white line in Figure 13,l(a)) on the easel is  used to 
enlarge or reduce the ear image to its proper size for comparison and classification purposes. 
[ 10, pp. 83-84] 

(a) Anatomy. (b) Measurements. 

Figure 13.1 Ear Biometrics: (a) 1 Helix Rim, 2 Lobule, 3 Antihelix, 4 Concha, 5 Tragus, 
6 Antitragus, 7 Crus of Helix, 8 Triangular Fossa, 9 lncisure Intertragica. (b) The 
locations of the anthropometric measurements used in the “lannarelli System”. 

Since each ear is aligned and scaled during development, the resulting photographs 
are normalized, enabling the extraction of comparable measurements directly from the 
photographs. The distance between each of the numbered areas in Figure 13.l(a) is 
measured in units of 3 mm and assigned an integer distance value. These twelve 
measurements, along with information on sex and race, are then used for 
identification. The system as stated provides for too small of a classification space as 
within each sex and race category a subject is classified into a single point in a 12 
dimensional integer space, where each unit on an axis represents a 3 mm 
measurement difference. Assuming an average standard deviation in the population 
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of four units (i.e., 12 mm), the 12 measurements provide for a space with less than 17 
million distinct points. 

Though simple remedies (e.g., the addition of more measurements or using a 
smaller metric) for increasing the size of the space are obvious, the method is 
additionally not suited for machine vision because of the difficulty of localizing the 
anatomical point which serves as the origin of the measurement system. All 
measurements are relative to this origin which, if not exactly localized, results in all 
subsequent measurements being incorrect. In fact, Iannarelli himself was aware of 
this weakness as he states on page 83, ‘‘This is the first step in aligning the ear 
image .... and it must be accurate or the entire classification of the ear will be 
inaccurate”. 

In the next section we present a proof of concept implementation which avoids the 
problem of localizing anatomical points and the frailty of basing all subsequent 
feature measurements on a single such point. 

7. Automating Ear Biometrics 

The goal in identification is to verify that the biometric extracted from the subject 
sufficiently matches the previously acquired biometric for that subject. Let s’ be the 
subject at the time of identification and s the subject at the time of enrollment, further 
let Gs =f(s) represent a function which extracts some biometric from a subject s as a 
graph Gs, and let d(Gs, Gs') compute some previously defined distance metric between 
these two graphs. Identification is then the task of determining if d(Gs,Gs') < t, where 
t is a given acceptance threshold. 

Since the subject and the environment change over time, a certain tolerance in the 
matching criterion must be permitted. This tolerance can be defined in terms of the 
false reject rate (FRR) and the false acceptance rate (FAR) exhibited by the system. 
A system is usually designed to be tunable to minimize either the FAR or the FRR 
(i.e., in the given formulation by lowering or raising t, respectively) depending upon 
the type of security which is required. 

The problem of recognition is harder than that of identification since the system 
must determine if the subject’s identity can be verified against any previously enrolled 
subject. If the system’s enrolled identities are the set I =  {G0, G1, ..., Gn} then 
recognizing some subject s’ is equivalent to finding the member of the set { Gi |Gi E I A 
d(Gs'Gj) < t }  with the smallest distance. We have developed a machine vision system 
as a proof of concept of the viability of ear biometrics for passive identification. The 
system implements f(s' using the following steps: 

1. Acquisition: A 300 by 500 grayscale image is taken of the subject’s head in 
profile using a CCD camera. Next the location of the ear in the image must be 
found. Fortunately, a number of techniques from face localization are applicable. 
Two particularly promising methods for still images are the application of Iconic 
Filter Banks [16] and Fischerface [l]. When sequences of color images are 
available then color and motion based segmentation [ 18] can be used to locate the 
subject before applying ear localization. Since our goal was to construct a proof 



Ear Biometrics 279 

of concept system, we used a relatively simple method based on deformable 
contours. 

(a) Ear print. 

(d) Ear print. 

(b) Voronoi diagram. (c) Neighbor graph. 

(e) Voronoi diagram. (f) Neighbor graph. 

Figure 13.2 Stages in building the ear biometric graph model. 

2. Localization:  The ear is located by using deformable contours [ 12] on a Gaussian 
pyramid representation of the image gradient. 

Edge extraction:  Edges are computed using the Canny [7] operator (i.e., Q = 3.0) 
and thresholding with hysteresis using upper and lower thresholds of 46 and 20 
(Figure 13.2(b)). 

3. 
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4. Curve extraction: Edge relaxation [9] is used to form larger curve segments, after 
which the remaining small curve segments (i.e., length less than 10) are removed 
as is shown in Figure 13.3(b). We could attempt to perform identification at this 
stage by trying to match features computed from the extracted curves to those 
computed from the model. Differences in lighting and positioning would render 
such a method very unreliable. What is needed is a description of the relations 
between the curves in a way which is first invariant to affine transformations and 
secondly invariant to small changes in the shape of the curves resulting from 
differences in illumination. To achieve invariance under affine transformations, 
we turn to the neighboring relation, and construct a Voronoi neighborhood graph 
of the curves and use it as our model. 

Graph model:  A generalized Voronoi diagram [4] of the curves is built and a 
neighborhood graph is extracted (Figure 13.2(c)). 

Using the above steps results in a high FRR due to variations in the graph models 
due to underlying differences in the spatial relations of the extracted curves [3]. To 
improve the FRR rate, we first eliminate some of the erroneous curves and then 
develop a new matching process which takes into account broken curves. 

5 .  

Error Correcting Graph Matching 

Let G(V,E) denote the graph model with each vertex v E V containing unary features 
of a curve and edges e E E containing binary features between two neighboring 
curves. Matching is done by searching for subgraph isomorphisms between the 
subject's stored graph G, and the extracted graph G,.. If the distance d(G,;G,J between 
them is less than the established acceptance threshold t then identification is verified. 

(a) Inner ear. (b) Noise curves (gray). 

Figure 13.3 Removal of noise curves in the inner ear. 

In the case where G,. and G, belong to the same subject, erroneous curves can rise 
from differences in lighting and orientation. From our analysis [4], most of these 
false curves occur within the inner cavity (Figure 13.3(a)) of the ear. The main 
reasons are that areas of high specularity arising from oil and wax buildup and 
shadowing caused by the Tragus and Antitragus (Figure 13.1 (a) parts 5 and 6) create 



Ear Biometrics 28 1 

edges in Step 3 which are built into false curves in Step 4. These false curves (Figure 
13.3(b)) are removed by first segmenting the inner cavity and then removing small, 
high curvature, and closed curves occuring within it. 

This removes many of the false curves while preserving those arising from ear 
structures. Unfortunately, due to imaging problems, many of the remaining curves 
may be broken even after Step 4. To compensate for this, we have developed 
Algorithm 1 for computing subgraph isomorphisms between Gs and Gs' which 
considers the possibility of broken curves in Gs'. The idea is to merge neighboring 
curves in Gs' if their Voronoi regions indicate that they are possibly part of the same 
underlying feature. 

Algorithm 1 Calculate d(Gs' Gs') 

1 

2 for all VEV' do 

3 

4 

5 contract (v,a) 

6 end if 

7 end for 

8 end for 
9

10 end while 

While d(Gs, Gs')·c < t and (VI 5 IV'I do 

for all a adjacent to v do 

if dv(v,a) < y then {see Equation 13.1 } 

increase t and decrease c

Let the boundary of the Voronoi region of a curve cJ be represented by aVc, such 
that Wc, = @Id(p,cJ = d(p,ck), j f k } ,  where d(p,cJ is the distance d(p,q) 
between a point p and any point on the curve cJ. Then the adjacent vertices v and a 
are contracted (i.e., all incident edges of a are added to v and self-loops removed) 
when 

J 

(13.1) 

is less than some threshold, y, the contraction threshold (n denotes set intersection 
operation and I . I is set cardinality operator). We continue in this way to change the 
topology of G,. until either we have a match or the number of vertices in Gsf is less 
then that in G, and since curves may be erroneously merged, we decrease our 
confidence in the match each time by a factor c. 
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Decreasing the FAR  

As only the topological relations between the extracted curve segments are used 
during the matching process, there is the possibility of a false acceptance since there 
exists a set of ears having the same topology. By measuring physical features of the 
ear curves, we can significantly decrease the FAR. We have found that measurements 
based on the length of the ear curves are not reliable since small changes occur due to 
lighting. More reliable is the width of an ear curve, in particular we have found that 
the width of the curve corresponding to the upper Helix rim (Figure 13.3) can be 
reliably extracted and normalized against the height of the ear (i.e., the distance from 
the top of the upper Helix rim to the lowest point on the Lobule as shown in Figure 
13.l(a)) as found during the Localization step. 

Figure 13.4 Improving the FRR with ear curve widths. 

Thermograms and Occlusion by Hair 

The main drawback of ear biometrics is that they are not usable when the ear of the 
subject is covered. In the case of active identification systems, this is not a drawback 
as the subject can pull his hair back and proceed with the authentication process. The 
problem arises during passive identification as in this case no assistance on the part of 
the subject can be assumed. 

In the case of the ear being only partially occluded by hair, it is possible to 
recognize the hair and segment it out of the image. This can be done using texture 
and color segmentation, or as we have implemented it, using thermogram images. A 
thermogram image is one in which the surface heat (i.e., infrared light) of the subject 
is used to form an image. Figure 13.5 is a thermogram of the external ear. The 
subject’s hair in this case has an ambient temperature between 27.2 and 29.7 degrees 
Celsius, while the pinna (i.e., the external anatomy of the ear) ranges from 30.0 to 
37.2 degrees Celsius. Removing partially occluding hair is done by segmenting out 
the low temperature areas which lie within the pinna. 

The Meatus  (i.e., the passage leading into the inner ear) of the ear is easily 
localizable using the thermogram imagery. In a profile image of a subject, if the ear is 
visible, then the Meatus will be the hottest part of the image, with an expected 8 
degree Celsius temperature differential between it and the surrounding hair. In Figure 
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13.5, the Meatus is the clearly visible section in the temperature range of 34.8 to 37.2 
degrees Celsius. By searching for this high temperature area, it is possible to detect 
and localize ears using thermograms. 

Figure 13.5 Thermogram of an ear. 
Thermography Laboratory, Lawrence Berkeley National Laboratory. 

Image provided by Brent Griffith, Infrared 
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8. Conclusions 

The proof of concept system discussed lends support to the theoretical evidence that 
ear biometrics are a viable and promising new passive approach to automated human 
identification. They are especially useful when used to supplement [4] existing 
automated methods. Though ear biometrics appear promising, additional research 
needs to be conducted to answer important questions like: 

Feature or appearance based Can primitives (e.g., curves) be extracted under 
varying imaging conditions with sufficient reliability for a feature based approach 
or will appearance based approaches (e.g., Fisherimages) be necessary? 

Occlusion by hair: In the case of the ear being completely occluded by hair, there 
is no possibility of identification using ear biornetrics. It remains to be seen with 
what degree of partial occlusion identification is possible and if thermogram 
imagery can resolve this problem. 

In conclusion, we have shown that ear biometrics can be used for passive 
identification. For the further development, testing, and comparison of ear biometric 
algorithms, the creation of a database of ear images and a set of standardized tests 
must be the next step. 
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Abstract No single biometric technique provides an optimal 
identification method in all cases. However. depending on the 
biological system a particular biometric may stand out as the 
preferred method of identification. DNA profiling clearly emerges 
as the most powerful and reliable system for measuring genetic 
traits. DNA typing provides valuable informution in such diverse 
applications as medical science, environmental science, historical 
research, and. of course, forensic science. In this chapter, we 
review the most common genetic typing systems and the laboratory 
techniques employed to analyze the markers. We discuss the 
precautions that must be taken in collecting samples and the 
consequences of analyzing non-optimal material. of particular 
interest from a societal standpoint is the creation of DNA 
databank and the privacy issues associa ted with them. Finally, 
when two samples appear to be indistinguishable by the tests 
conducted. the significance of the association must then be 
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determined. The methods by which the rarity of a genetic profile is 
determined provide the DNA typing community with it's most fertile 
ground for debate. We review the major elements of the discussion 
here. With the advent of solid state and automated methods for 
DNA typing, the technique will soon become not only 
indispensable, but practical. 
Keywords: DNA, DNA typing, DNA testing, DNA profiling. 
genetic typing, genetic testing, genetic profiling. 

1. Introduction 

No single biometric technique provides an optimal identification method in all cases. 
However, depending on the biological system, a particular biometric may stand out as 
the preferred method of identification. DNA profiling clearly emerges as the most 
powerful and reliable system for measuring genetic traits [ 1]. 

That genetic traits, displayed at their most fundamental level in DNA 
(deoxyribonucleic acid), provide an excellent tool for both species and individual 
identification is not a coincidence. All living organisms result from complex 
developmental interactions between their original genetic blueprints and both the 
cellular and external environment. Although different cells may express only various 
portions of genetic information, the DNA in each cell (excluding gametes) contains all 
the genetic information inherent in the organism. Additionally, when a cell's DNA 
complement is copied during mitosis (cell division), the cellular machinery performs 
the process with incredible fidelity. These attributes result in one of the greatest 
advantages to DNA analysis, the fact that the DNA profile throughout an organism is 
homogeneous. 

But to understand how DNA analysis is helpful in differentiating between 
individual organisms, it is the variability that we must explore. Because the normal 
physical and biological specifications of humans leave little room for modification, all 
humans share about 99.5% to 99.9% of their DNA; only about 0.1% to 0.5% may 
vary. However, even that small percentage of the human genome contains millions of 
base pairs, the building blocks of DNA. Because those regions are rarely responsible 
for specifying physical functions, evolutionary mutations may accumulate without 
detriment to the organism or the species. This provides the genetic basis for variability 
in DNA that is so useful in individual identification. 

As with any technique, DNA typing has its advantages and disadvantages. 
Compared to some of the other biometrics discussed in this book, it is slow, labor 
intensive and difficult to automate. However, when the fingerprints, eyeballs, and 
even teeth are lost or destroyed, and all that is left is a few cells of biological material, 
DNA techniques still hold the power to identify that person. 

2. A Brief History of DNA Identification 

In 1944 Oswald Avery defined the role of the cellular component known as DNA as 
the vehicle of generational transference of heritable traits. In 1953, James Watson and 
Francis Crick elucidated the structure of the DNA molecule as a double helix. In 
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science, as in art, form follows function; the very nature of the molecule provided an 
explanation for its unique properties, including the ability to propagate itself faithfully 
from generation to generation. 

‘‘...Our rmodel for deoxyribonucleic acid is, in effect, a pair of templates, 
each of which is complementary to the other. We imagine that prior to 
duplication the hydrogen bonds are broken, and the two chains unwind and 
separate. Each chain then acts as the template for the formation onto itself 
of a new companion chain, so that eventually we shall have two pairs of 
chains, where we only had one before. Moreover, the sequences of the pairs 
of bases will have been duplicated exactly. ” (Watson and Crick)[2] 

In 1980, David Botstein and coworkers were the first to exploit the small variations 
found between people at the genetic level as genetic landmarks to construct a human 
gene map. The particular type of variation they used is called Restriction Fragment 
Length Polymorphism or RFLP. In 1984, while searching for disease markers in 
DNA, Jeffreys et al. [3] discovered a unique application of RFLP technology to the 
science of personal identification. His method, which he termed a ‘‘DNA fingerprint”, 
has been modified since its original inception. Scientists generally agree that a more 
descriptive and inclusive term for the process as currently applied is DNA typing or 
DNA profiling. In 1986, the polymerase chain reaction (PCR) was invented by 
Mullis [4],  who received a portion of the 1993 Nobel prize in chemistry for his 
discovery. PCR, more than any other scientific advance since the elucidation of the 
structure of DNA, has changed the face of molecular biology. RFLP and PCR 
technology together form the cornerstone of forensic DNA typing. 

Applications of DNA Identification Technology 

DNA analysis enjoys a broad usage across many disciplines, including human health, 
forensic sciences, parentage, missing persons, anthropology and animal sciences. 

Medical science 
An initial and ongoing application is the search for genes implicated in disease. Due 
to the efforts, in large part, of the human genome project, all of the information 
contained in the human genetic code is rapidly being deciphered and catalogued. In 
addition to improved diagnosis and drug therapies, actual gene replacement is already 
in clinical trials for some of these diseases. Because the genetic information collected 
in this application contains information about disease predisposition, it poses a serious 
ethical dilemma that has yet to be resolved at a societal level. 

Forensic science 
Wherever an individual leaves a nucleated cell (most cells other than red blood cells 
or surface skin cells), she has also left her complete DNA signature. Forensic 
laboratories may use that information to link suspects of a crime with the biological 
evidence left at the crime scene. DNA typing is particularly well suited to evidence 
left as a result of violent crimes (e.g., blood, semen, hair, skin), and like the time- 
honored biometric of dermatoglyphic fingerprinting, provides a direct association to 
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an individual. Because the markers used in forensic DNA analysis are typically 
located in regions of DNA that produce no physical traits, ethical considerations are 
somewhat reduced. 

The first forensic use of DNA took place in England and made use of Alec 
Jeffrey’s original method of ‘‘DNA fingerprinting”. In conjunction with a police 
investigation, the Home Office was able to identify the murderer responsible for 
killing two young girls in the English Midlands. Significantly, an innocent suspect 
was the first accused murderer to be freed based on DNA evidence. The exclusion of 
a suspect by DNA is absolute; there is no statistical probability associated with it. 
Numerous wrongly convicted men continue to be freed from prison after old evidence 
is re-tested using the newer DNA techniques. 

Parentage and missing persons 
Because the DNA molecule contains the hereditary information that is transmitted 
generationally from parent to child, it is an obvious choice for parentage 
determination. Immigration and paternity disputes were among the first legal arenas in 
which DNA typing was used. DNA testing can provide valuable clues about the 
identity of missing persons when remains are tested and compared to living relatives. 
Recently, DNA testing has been used to identify the biological families of children 
who were abducted as newborns during the military dictatorship in Argentina, 
enabling grandparents to be reunited with grandchildren they had never known. The 
U.S. Armed Forces DNA Identification Laboratory (AFDIL) now routinely collects 
and stores samples from all members of the armed forces for later comparison to 
remains recovered from combat, much in the same way fingerprints have been 
collected for decades. DNA typing systems are also invaluable in the identification of 
bodies and body parts from mass disasters. 

Anthropology and animal sciences 
Because of its relative stability as compared to other biological molecules, DNA, and 
in particular a certain type of DNA, mitochondria1 DNA, has become an important 
tool in the study of anthropology and ancient history. Animal geneticists are typing 
DNA in endangered species, such as cheetahs and whales, to track migration and 
breeding patterns. Inroads have also been made into poaching and illegal trafficking in 
animal parts. 

DNA testing for identification is now ubiquitous around the world. It is worth 
noting here that, with the exception of the use of DNA to link a suspect to the scene of 
a crime, none of the other uses of DNA typing detailed above has been seriously 
contested by the legal or scientific communities. 

3. Molecular Biology and Genetics 

Biophysics of DNA 

The DNA molecule consists of a linear arrangement of basic units called nucleotides 
or bases. These chemical moieties come in four types: Adenine (A), Cytosine (C), 
Guanine (C) and Thymine (T). The specific sequence of the bases determines all the 
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genetic attributes of a person. The genetic and chemical properties of the DNA 
molecule are directly related to its physical structure. DNA in nature takes the form of 
a double helix. Two ribbon-like entities (the sugar-phosphate backbone) are entwined 
around each other and held together by ladder rungs composed of hydrogen bonded 
base pairs. Only specific pairings between the four bases are chemically compatible. 
A always pairs with T, and G with C. This obligatory pairing, called complementary 
base pairing, is exploited in all DNA typing systems. When the double helix is intact, 
the DNA is called double-stranded; when the two halves of the helix come apart, 
either in nature or in the test tube (in vitro), the DNA is called single-stranded. Thus, 
in a double-stranded DNA molecule, the sequence AGTCGGTCA is paired with its 
complementary sequence to form the double-stranded structure: 

AGTCGGTCA 
TCAGCCAGT 

In nature, complementary base-pairing is responsible for the ability to accurately 
replicate the DNA molecule, with its encoded genetic information, and pass it on to 
the next generation. The double helix is unzipped by special enzymes, and new 
building blocks (nucleotides) are brought in. Using each half of the original helix as a 
template, a second half is created, resulting in two molecules identical to the original. 
Because each original base captures a complementary replacement to complete the 
base pair, the order of the bases in the new strands is specified by the existing strands. 
This process can be recreated in vitro to a limited extent, and is the basis of the 
polymerase chain reaction (PCR) to be discussed in detail in a later section. 

Under appropriate conditions, even short segments of complementary DNA will 
find each other and reanneal or hybridize. If the sequence at a particular location in 
the genome is of interest, single-stranded fragments can be artificially synthesized to 
target that location. These single-stranded fragments of known sequence are called 
DNA probes or DNA primers, depending on their intended function. 
Complementary base-pairing is essential to the detection of the genetic variations 
described in Subsection Sources of Genome Variability below. 

Genome Organization 

Nuclear genome 
In eukaryotes (all organisms except bacteria), most of the cellular DNA resides in the 
cell nucleus and is organized into linear structures called chromosomes. This is 
called the nuclear genome. Human cells (except for gametes) contain 23 pairs of 
matched chromosomes. One pair comprises the sex chromsomes (either XX or XY) 
and the remaining 22 pairs are termed autosomes. Because the chromosomes are 
physical entities, genetic markers residing on the same chromosomes are inherited 
together; they exhibit genetic linkage. In contrast, markers on different chromosomes 
are generally inherited independently of one another. This principle is called random 
assortment. 

The genetic information contained in the chromosomes can be compared both 
between the paired chromosomes of an individual and between the corresponding 
chromosomes of different people. If the DNA sequence (or those portions detected in 
a specific test) of two paired chromosomes within an individual is the same at a 
particular location (locus; pl. loci), the situation is termed homozygous; if the 
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sequence is different, the chromosomes are heterozygous at that locus. Different 
forms of the same gene or genetic marker at a locus are called alleles. 

Mitochondrial genome 
A small amount of cellular DNA is found outside of the nucleus in several cell 
organelles. Of particular interest in DNA typing is mitochondria1 DNA (mtDNA). 
Mitochondrial DNA is physically organized into a small circular molecule (1 6.5 Kb), 
and exists in 100s to 1,000s of copies within the mitochondria of each cell. 
Mitochondrial DNA has a unique inheritance pattern. In contrast to nuclear DNA, 
which is inherited in equal parts from both parents, genetic material from 
mitochondria is inherited only from the egg cell of the mother. Thus mtDNA is said to 
exhibit maternal inheritance. Therefore, the mtDNA type of an individual cannot be 
heterozygous, or exhibit two different types. Because the mitochondrial chromosome 
lacks a matched partner, it is termed hemizygous. 

Sources of Genome  Variability 

Through scientific investigation, mostly as a by-product of disease research, standard 
loci in the human genome have been established where the sequence varies more than 
usual between people. The existence of multiple alleles of a genetic marker at a single 
locus is called polymorphism. When such loci exhibit extreme numbers of variants 
(as many as hundreds), they are called hypervariable. Variations, or polymorphisms, 
can occur either in the sequence of bases at a particular locus or in the length of a 
DNA fragment between two defined endpoints. Sequence polymorphisms are like 
different spellings for the same word in British English and American English. When 
you see anafyze spelled as analyse, the word and meaning are still recognizable. In 
DNA, a sequence mutation would be manifest by small changes in the sequence. For 
example, a point mutation might look like this: 

AGTCGGTCA to AGGCGGTCA 
TCAGCCAGT to TCCGCCAGT 

Length polymorphisms are most easily analogized to a train that can 
accommodate different numbers of boxcars. The engine and caboose define the end of 
the train; the total length may vary according to the number of cars attached between 
them at any one time. Each boxcar contains the same small DNA sequence. In genetic 
terminology, the boxcars are termed tandem repeats. A locus that shows variation in 
the number of tandem repeats is called a variable number tandem repeat (VNTR) 
locus. A particular number of tandem repeats, for instance, 35, defines a VNTR allele 
at that locus. The following is an example of a double-stranded tandem repeat region: 

...... [AGTCGGTCA][AGTCGGTCA] [AGTCGGTCA] 
¨¨¨[TCAGCCAGT][TCAGCCAGT][TCAGCCAGT]""" 

...... 

4. Forensic DNA Typing Systems 

The space limitations of this chapter do not permit us to provide detailed laboratory 
protocols for DNA analysis. Such protocols can be found in [5] and [6]. We will 
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concentrate here on giving a general description of the techniques such that the reader 
will be in a position to appreciate the advantages and limitations of different typing 
systems. 

RFLP Systems 

FWLP analysis determines variation in the length of a defined DNA fragment. When 
complete, an RFLP pattern looks like a very simple supermarket bar code. In looking 
at two samples, the pattern of bars on the autoradiograph is compared to determine if 
they could have originated from the same source (Figure 14. 1). 

1 2  3 4 5 6 7 8 9 10 

Figure 14.1 RFLP autorad. The end result of RFLP analysis at one locus. Each 
vertical lane contains a different DNA sample. Lanes 1, 4, 8, and 10 contain synthetic 
molecular weight standards from which the unknown band sizes can be measured. 
The samples in lanes 5-7, 9 all exhibit the genetic profiles at the locus tested. The 
donors of these samples cannot be distinguished by this genetic test. The samples in 
lanes 2 and 3 show different patterns. The donors of these samples could not have 
contributed the samples in lanes 5-7, 9 and also could not be the same individual. All 
of the human samples are heterozygous (show two bands) for this locus. 

FWLP, at this writing, still provides the highest degree of discriminationper locus. 
If two samples originate from different sources, RFLP is the technique most likely to 
differentiate them. Two circumstances contribute to the huge power of 
discrimination (Pd) of RFLP. One is that many loci have been established for RFLP 



294 Rudin et al. 

analysis; the more places you look, the greater the chance of finding a difference 
between two people. Forensic DNA laboratories now have access to probes for over 
15 different loci. Second, forensic workers have chosen RFLP loci that have as many 
as hundreds of variations at each locus, increasing the chance that samples from 
different individuals will be differentiated. 

Although the number of loci for newer systems, namely STR (short tandem 
repeat) analysis, are rapidly increasing, simple genetics will always maintain RFLP 
as the most discriminating technique per locus. Because of this, RFLP remains the 
method of choice for distinguishing among the contributors of mixed samples. Both 
contributors will likely be detected clearly on the final readout. Unfortunately, the 
RFLP technique requires more and better quality DNA than some of the newer PCR 
techniques. Because forensic evidence is often old, degraded and of limited quantity, 
RFLP analysis is sometimes not possible. 

PCR Amplification 

PCR-based techniques have gained preference because of all the other advantages 
they provide. At least some information may be gleaned from samples that might 
otherwise be refractory to analysis because of limited or degraded starting material. 
While the sample preparation time is the same for both RFLP and PCR methods, a 
PCR-based analysis is much more rapid than an RFLP analysis and also more 
amenable to automation. 

The DNA samples prepared using PCR are analyzed in a variety of different ways. 
Although not yet ready for forensic laboratory applications, researchers are even 
working on applying optimized PCR techniques to the larger size DNA fragments 
generated by RFLP that have traditionally been recalcitrant to reliable and consistent 
amplification. 

Of the genetic systems now in use for forensic analysis of PCR-amplified DNA, 
each locus tends to show less variation than for RFLP loci. Therefore, results may be 
obtained for a sample of limited quantity and quality, but the Pd will be lower. 
Because the combined Pd, at least for single-source samples, increases with each 
additional locus, the recent development of numerous short tandem repeat (STR) 
loci has greatly increased the usefulness of PCR-based typing. The simultaneous 
amplification of multiple loci (as many as 8 or 9) in a single “cocktail” (multiplexing) 
most efficiently utilizes a limited or degraded sample. However, the relatively smaller 
number of alleles at each locus will always limit the application of current PCR-based 
systems in mixed samples. 

HLA DQAl and AmpliTypeB PM (“Polymarker”) 
The first system adapted for forensic analysis of PCR-amplified DNA is from the 
HLA DQAl locus. The type of variation present at this locus resides in the DNA 
sequence and is detected using specially designed molecular probes, synthetic 
fragments of DNA designed to be complementary to, and thus target, particular 
subregions within this locus. Since only one locus with limited variability is analyzed 
in this system, the Pd is not nearly as high as for RFLP. The chief advantages of HLA 
DQAl are the ability to investigate very small samples and the rapidity of analysis. 
The final results are seen as a series of blue dots on a paper-like strip. A comparison 
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of the pattern of the dots between typing strips indicates whether two samples may 
have originated from the same source (Figure 14.2). 

Figure 14.2 AmpliTypem PM (polymarker) dot blot. The end result of PCR-PM 
analysis at 5 different loci. Each horizontal strip represents one DNA sample. The 
vertical demarcations on each strip separate the individual loci. LDLR, GYPA, HBGG, 
D7S8 and GC are the names of the loci analyzed by this test. The S dot at the far left 
of each strip is a threshold control. All three strips show different genetic profiles, 
indicating that they were contributed by different individuals. The LDLR locus in sample 
1 is homozygous; the GYPA locus in sample 1 is heterozygous. 

The AmpliTypeB PM system, commonly known as polymarker, is just an 
expansion of the technique used in HLA DQA1 analysis. This was the first forensic 
system to exploit multiplexed amplification of DNA. Although each of the five 
additional markers do not contain as much individual variation as HLA DQA1, the 
combined result, along with that from HLA DQA1, increases the power of the test 
considerably. A disadvantage of this test is that it is often more difficult to interpret 
the results from samples containing DNA from more than one contributor. 

DlS80 
The first length-based PCR system that was implemented in forensic laboratories is 
called DlS80. Like RFLP, DlS80 is a VNTR; however, because of its relatively 
smaller size, this fragment is amenable to amplification by PCR. The DNA fragments 
produced by the D 1 S80 system can be counted in hundreds of base pairs, about an 
order of magnitude smaller than the fragments normally analyzed in RFLP typing. 
Thus D1S80 analysis combines the advantages inherent in any PCR system 
(specifically the ability to analyze samples of limited quantity and quality) with the 
greater variation generally seen in length-based systems. Again, because only one 
locus is analyzed in this system, the power of discrimination is not as high as RFLP. 
Also, the DlS80 locus in particular contains two alleles that are common among 
many people in some racial groups. If one of these two alleles is present in the sample 
being analyzed, the significance of the test result may be reduced. 

In RFLP analysis, all of the DNA is processed, and the regions of interest are 
detected with molecular probes. In DlS8O analysis, the regions defined by the PCR 
amplification are effectively purified before the DNA is analyzed. Thus no special 
probes are needed to visualize the final result. This is like buying a package of 1-inch 
nails which are pre-selected for you instead of buying a package of assorted nails and 
having to fish out the ones you need for your fence. While subtle variation exists 
within all tandem repeat polymorphisms, the DlS80 system has been designed so that 
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variants are detected as discrete alleles (digital system) and thus can be compared 
directly to a standard ruler made up of all possible alleles (allelic ladder) run on the 
same gel. The DNA is commonly detected using a silver stain, and the final result 
looks much like the simplified supermarket bar- code often used to describe RFLP. 
The DlS80 locus is also amenable to the automated detection and analysis techniques 
described later in this chapter, although the laboratories that can afford such 
automated systems tend to use them to run more powerful systems, such as STRs. 

STRs 
Short Tandem Repeats (STRs) are similar to the DlS80 system described above, 
except that the repeat units are shorter. The loci chosen for forensic use generally have 
a tandem repeat unit of 3 or 4 bp and may be repeated from a few to dozens of times. 
The number of alleles present in the population varies from about 5 to 20, depending 
on the locus. Like DlS80, STR loci are detected as discrete alleles and thus can be 
compared directly to an allelic ladder run on the same gel, simplifying comparison 
and analysis. Including flanking sequences amplified by the primers, the size of the 
DNA fragments produced by amplification of STR loci tends to be in the range of 
hundreds of base pairs, rather than the thousands of base pairs found in RFLP 
fragments. This makes STRs an ideal choice for degraded DNA. 

Although each locus is only moderately polymorphic (i.e. fewer alleles are found), 
many such loci exist and can be analyzed simultaneously. In this respect, the system is 
similar to RFLP. In fact, PCR amplification of several different loci is often 
performed simultaneously in the same tube (multiplexing), conserving time, materials, 
and most important, sample. Because the human genome contains an almost unlimited 
choice of STR loci, it is possible to choose those in which the alleles in any given 
population tend to be reasonably well distributed, another advantage over the D1S80 
system. Laboratories are increasingly employing semi-automatable systems, in 
particular capillary electrophoresis, for the detection and analysis of STR loci. 

Gender ID 
It is often useful to know if male or female components are present in a forensic 
sample. The amelogenin locus, which is coincidentally the gene for tooth pulp, shows 
a length variation between the sex chromosomes. Analysis of this locus is often 
appended to another PCR system, such as DQAl or a multiplex STR system. Then no 
additional sample need be expended to make this determination, which in and of itself 
might eliminate only 50% of the population. 

Mitochondrial DNA 
Mitochondrial DNA analysis tends to be used more often to answer identification 
questions that arise outside the criminal justice system. Because mtDNA is inherited 
maternally, it is particularly useful in tracking families and populations. Also, because 
of its relatively small size in comparison to nuclear chromosomes and the presence of 
numerous multiple copies in a single cell, it is often the last typable DNA present in a 
small, old or badly degraded sample, so is particularly useful for anthropological 
research. Researchers have even been successful in typing mtDNA embedded in the 
anucleated cells of hair shafts, as well as in bones and teeth. However, because 
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mtDNA constitutes only a single locus and presents some technical challenges, this 
analysis is best reserved for cases where nuclear DNA analysis has failed due to 
minimal quality or quantity. At present, only a few forensic DNA laboratories in the 
world possesss mtDNA analysis capabilities. 

5. Acquisition and Storage of DNA Evidence 

Collection and Preservation 

From the moment biological material is out of the body, it is in a foreign environment 
and changes begin to take place. DNA is subject to degradation and that degradation 
can have an effect on the ability to obtain a useful result from DNA typing, 
particularly RFLP. Factors leading to the degradation of DNA include time, 
temperature, humidity, light (both sunlight and UV light), and chemical or biological 
contamination. Numerous studies have been conducted to determine the effects of 
these conditions, which, with a few exceptions, tend to degrade the samples into 
smaller fragments. 

An important outcome of these studies is the finding that these environmental 
factors will not change DNA from one type into another; in other words, there is no 
danger that environmental degradation will produce a complete DNA pattern that 
would include someone who is not the donor of the sample (when interpreted by an 
experienced analyst). It is true that only a partial type may remain, but wholesale 
change of types is not seen. Degradation limits the usefulness of DNA typing, but 
does not invalidate it. DNA, under normal environmental conditions, can remain 
stable and typable for years. This is especially true of the PCR systems, which can 
tolerate a large amount of degradation and still yield readable types. 

An important goal in collecting and preserving biological evidence is to halt any 
degradative process already in progress and limit any future deterioration. In general, 
biological processes are slowed by removing moisture and lowering the temperature. 
Thus the goal of the crime scene investigator is to dry a sample, and freeze it as soon 
as it is practical. 

Contamination 

Just as important as preserving the biological integrity of the sample is the 
consideration of any contamination that might interfere in the analysis. In fact, there 
are different types of contamination, and the final effect on evidence, if any, varies. 
Non-biological contamination (e.g., dyes, soaps and other chemicals) may affect the 
sample by interfering in the analytical procedures. This type of interference typically 
produces an inconclusive result or no type at all. Non-human biological contamination 
includes the physiological material or DNA from other organisms. Although cross- 
typing is occasionally seen in some systems, it generally does not interfere with 
interpretation of the final result. A particular concern is microorganismal 
contamination. Crime scene samples such as blood and semen provide a fertile 
environment for the growth of bacteria and fungi. As they grow, these 
microorganisms secrete biochemicals that degrade the human DNA in the sample. 
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Even so, the DNA type will simply go away, as opposed to being magically converted 
into someone else’s type. 

The most significant type of contamination is that from a human source. In this 
sense, contamination is defined as the inadvertent addition of an individual‘s 
physiological material/DNA during or after collection of the sample as evidence. It is 
important to differentiate between a ‘‘mixed sample” and a ‘‘contaminated sample”. A 
mixed sample is one that contains DNA from more than one individual, and where the 
mixture occurred before or during the commission of the crime. A contaminated 
sample is one in which the foreign material was deposited during collection, 
preservation, handling, or analysis. 

PCR-type testing, inherently a more sensitive technique than RFLP, is more likely 
to detect traces of a second type, whatever the source. Safeguards are set up not only 
to guard against contamination with non-evidence DNA, but to detect it should it 
occur. 

Evaluation of Evidence 

Before an evidence item is analyzed for DNA type, presumptive tests are sometimes 
performed to establish the type of biological material that is present. It would be 
wasteful to run a full spectrum of DNA tests with no result only to find that ketchup 
or shoe polish was being analyzed. Presumptive color tests for various fluids such as 
blood, semen, or saliva may be performed at the scene before a sample is collected, or 
in the laboratory. 

Once the identification of a sample as a particular biological substance is 
established, preliminary tests are conducted to establish the “state of the DNA” 
contained in the sample. It is possible to run tests that will reveal the quality of the 
DNA (how much degradation is present) in an item of evidence, how much total DNA 
is present, and how much of the total DNA is human. An evaluation of the ‘‘state of 
the DNA” is crucial in making decisions about what might be accomplished with any 
particular sample, for example, whether RFLP is possible or whether a PCR method 
might be more suitable. 

DNA and the Databank 

Direct comparison of a sample to a suspect utilizes only a small fraction of the 
potential of DNA typing. The storage of DNA profiles from convicted criminals in a 
databank engenders the possibility to search for possible perpetrators of suspectless 
and serial crimes. Most people are familiar with the databanks now in use to track 
latent fingerprints. The Automated Fingerprint Identification System (AFIS) contains 
millions of people’s fingerprints in computer files. 

DNA profiles are particularly suited for computer storage and automated searches 
because information can be stored as a set of numbers, requiring very little in the way 
of sophisticated technology. It is essential to realize that an initial “cold hit” in a 
databank is only used as probable cause to obtain a sample from a suspect for further 
testing. The markers used to identify the suspect are then retested, and the samples are 
compared further, using yet additional markers. This system provides a safeguard 
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against any clerical errors or sample switches that may have occurred in generating 
the databank. 

In order for databanks to be most effective, especially on a national level, the DNA 
system used to create them must be standardized. The FBI is leading the effort to 
create a national databank, to which all states will contribute information. PCR-type 
systems that are just now corning on-line are beginning to be included and will greatly 
streamline the task of processing the tens of thousands of backlogged samples sitting 
in some state freezers. 

Useful databanks may be created from groups of individuals other than crime 
suspects. For example, a databank composed of DNA profiles from evidence samples 
in suspectless cases could be searched against itself, linking cases to a common 
(unknown) perpetrator. A databank containing DNA profiles from unidentified bodies 
would obviously be useful in identifying them as new information is uncovered. The 
U.S. Armed Forces DNA Identification Laboratory (AFDIL) has already instituted a 
sample collection program from military personnel. This will greatly assist in the 
identification of victims of war, particularly when extremities containing fingerprints 
are missing. 

Privacy considerations in general are a larger issue for DNA testing than for other 
personal identification methods. Additional information pertaining to diseases, 
relatedness and physical traits are contained in the DNA sample. These are not traits, 
however, that are tested in forensic labs, and any data stored in a computer would 
consist only of information about specific forensic markers. Nevertheless, great care 
must be taken to protect the privacy of the individual, convict or not, as well as the 
security of the sample. Recommendations to this effect have been made by national 
committees, such as the National Research Council (NRC), and are being followed 
[7,8]. 

6. Procedures for Forensic DNA Analysis Isolation and 
Evaluation of DNA 

Before any type of testing can be performed, DNA must be isolated from the rest of 
the cellular components, as well as from any non-biological material that might be 
present. The isolation or extraction procedure varies somewhat according to the type 
of biological evidence present (e.g., blood, semen, saliva, hair etc.), the amount of 
evidence (which influences the type of test that is subsequently performed), and the 
kinds of cells that are present. These determinations are made by the visual inspection, 
microscopic examination, presumptive, and confirmatory testing. 

A special situation involves samples in which sperm are present along with other 
types of cells, often vaginal in origin. Many cells found in forensic evidence fall into a 
category called epithelial cells or e.cells. This includes saliva, skin, buccal, and 
vaginal cells, as well as those found in urine and feces. The different properties of 
epithelial cells from sperm cells are exploited in order to separate them from each 
other before DNA is isolated. This simplifies the final interpretation, as the victim’s 
and suspect’s types may be analyzed and compared separately. 

Before any analysis proceeds, it is imperative to determine not only how much 
DNA is present, but how much of it is human and how degraded (broken up) it is. 
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DNA remaining in relatively large pieces is said to be of high molecular weight 
Specific tests are performed to define these parameters before proceeding 

with any analysis. 

RFL P Procedures 

RFLP analysis measures the size of the DNA fragments produced by restriction 
enzymes. Restriction enzymes recognize specific short DNA sequences, and cleave 
the strand when this sequence is encountered. When a VNTR occurs between two 
restriction enzyme sites, the resulting fragment sizes will vary depending on the 
number of repeat units between the restriction sites. After restriction enzyme 
digestion, the cut DNA is separated according to fragment length in an agarose gel to 
which an electric field is applied. Because DNA carries an overall negative (-) charge, 
all of the DNA fragments, which have been loaded at the negative pole, will start to 
migrate towards the positive (+) pole. At the end of the run, the fragments are arrayed 
from largest to smallest in parallel lanes. The DNA fragments in the gel are then 
denatured (separated into single strands) and transferred by capillary action to a 
piece of nylon membrane. This procedure is called Southern blotting (Figure 14.3). 

In order to detect DNA originating from designated locations in the genome, short 
single-stranded fragments of DNA, now used as probes, are labeled with a radioactive 
or chemiluminescent tag. These probes are designed to match specific places in the 
genome that are well-characterized as highly polymorphic. Under the right conditions, 
DNA strands that match will reunite into a double-stranded form. This process is 
called hybridization. The labeled fragments signal where they have hybridized and 
this signal is recorded on a sheet of X-ray film. Each piece of exposed film is called 
an autorad, short for autoradiogram or autoradiograph (Figure 14.1). 

In the RFLP loci chosen for forensic use, the two chromosomes inherited from 
each parent will frequently contain different numbers of repeat units (heterozygous), 
producing DNA fragments of different sizes. Thus, two bands are generally detected 
in each sample lane. If a person is homozygous for a particular locus (that is, they 
have inherited the same length allele from both parents), only one band will be 
detected on the autorad. 

Once the information from probe number 1 is recorded, it is stripped (removed) 
and the nylon membrane is exposed to the next probe in the series. The process is 
repeated for every additional probe. In forensic DNA analysis, as many as 5 or 6 
different loci are commonly analyzed so that 10 to 12 bands are ultimately detected in 
each lane. The exposed films, or autorads, from each particular probe provide a 
permanent record of the results of the analysis. The band locations are compared from 
lane to lane in order to identify any similar patterns. Samples which look visually 
similar are then subjected to computer imaging and analysis. In order to aid in this 
analysis, an artificially constructed molecular ruler is run on each gel; the computer 
then has an objective internal standard from which to calculate band (fragment) sizes. 
If two samples are suspected to have originated from the same source, a calculation is 
also performed in order to estimate how often the evidence profile occurs in any 
population. 
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PCR Amplification 

PCR amplification faithfully replicates a defined segment of DNA millions of times, a 
process dependent on the enzyme Taq polymerase. An  essential feature of this 
particular enzyme is that it can survive high temperatures and still keep working. As 
will be seen, this is key to the ‘‘chain reaction” used to replicate the DNA. 

Au t oradiogra ph 
radioactive probeshvbridize nylon 

on nylon. which is then 
exposed to X-ray film trapped - 

c a pi I I ar y- d 
DNA tran - 

double-stranded DNA 
is denatured into 
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Figure 14.3 Southern blot. After DNA fragments are separated by size in an agarose 
gel, they are denatured into single strands and transferred to a nylon membrane by 
capillary action. The membrane is then exposed to tagged DNA probes for the region 
of interest. The fragments corresponding to the genomic location specified by the 
probe are visualized on X-ray film. An autorad, the end result of this process, is 
depicted in Figure 14.1. 

The three main steps of 1) denaturing the double helix into single strands, 2) 
annealing DNA primers to define the amplification region, and 3) extension to 
create new DNA strands, are repeated dozens of times. In each cycle, the number of 
DNA copies is doubled, resulting in millions of copies identical to the original (Figure 
14.4). 

Analysis of PCR Product 

Depending on the type of polymorphism being investigated, the product of PCR 
reactions, henceforth called “PCR product” is analyzed in one of two ways. Sequence 
polymorphisms are detected using a hybridization procedure, or less commonly, by 
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direct sequence analysis. Length polymorphisms are most commonly detected using 
various procedures similar to the gel used in RFLP analysis. 
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Figure 14.4 Polymerase chain reaction (PCR). PCR allows a selected portion of 
DNA to be replicated many times over the rest of the genome. The fragment is 
doubled in each cycle of the reaction, resulting in a geometric increase. After several 
dozen PCR cycles, the region of interest is increased by a factor of millions. 

Sequence Polymorphisms 

DQAZ, Polymarker.  Complementary base pairing forms the scientific basis for the 
detection of sequence polymoxphisms. A nylon strip, to which DNA probes have been 
attached, is challenged with the PCR product. The strips contain specific DNA 
sequences originating from the same locus in the genome as the DNA that has been 
amplified by PCR. Each probe contains a specific sequence of DNA that defines an 
allele. These types of probes are known as sequence specific oligonucleotides (SSO). 
The SSO probes on the strip (in the shape of dots) define a finite number of variations 
(types) seen in that particular region. The type of the sample is revealed by the 
hybridization of the amplified DNA to a specific immobilized probe on the strip. 
Hybridization is detected via a chain reaction that ultimately results in a blue color 
appearing on those dots where PCR product has hybridized, hence the term ''dot- 
blot". The pattern of dots corresponds to the alleles present in the sample (Figure 
14.2). 

Mitochondria1 DNA. A number of analysis and detection systems for the 
polymorphisms found in mitochondria1 DNA are currently in use or development. The 
variations exhibited in the two hypervariable regions are generally point mutations, 
although small deletions and insertions may also occur. The most common method 
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currently in use involves direct DNA sequencing. Other methods, based on defined 
hypervariable regions within the mtDNA control region are under development. 

Length polymorphism (D1S80, STRs, Gender ID) 
Similar procedures are employed in the analysis of all three PCR-amplified, length- 
based marker systems used in forensic testing. The PCR product is loaded into either 
an acrylamide gel or capillary column to be separated on the basis of length. Because 
no extraneous DNA is present, the bands may be visualized directly, negating the 
need for the secondary detection method of probing and hybridization used in RFLP. 
In manual detection, a silver stain is used to visualize the separated DNA bands, and 
the gel is then dried to be kept as a permanent record. In automated detection, a 
fluorescent tag is incorporated into the fragments via the amplification primers; the 
bands may then be detected, statically, after the run is complete, or dynamically, 
during the run. 

In fluorescent detection, only the primer complementary to one strand is tagged, 
thus eliminating any confusion resulting from reading doublets (resulting from the 
resolution of single DNA strands) at each allele. Additionally, the use of multiple 
colored fluorescent tags allows the combination of STR loci (multiplexing) in which 
the lengths of some alleles overlap. These systems can be run in the same gel lane, 
and still be clearly distinguished by color. The possibility of in-lane sizing standards 
mean that the computer will calculate the size of a particular band against a ruler that 
has been subjected to exactly the same electrophoretic micro-environment as the 
sample, rendering extremely reliable results. 

Because of its high sensitivity and relative ease of use, partially automated 
capillary electrophoresis has become the preferred method of detecting and analyzing 
STRs for forensic use. The use of mass spectrometry to detect and analyze the STR- 
PCR products is currently under development and it is expected that other new 
systems, such as mass-array chip technology will eventually also be adapted for 
forensic use. 

7. Significance of Results 

The entire purpose of DNA typing is to test the hypothesis that a particular person is 
the source of an item of biological evidence. An attempt is made to ascertain whether 
an association exists between an evidence sample and a reference sample taken from 
an individual. The evidence sample (a biological fluid or tissue) and reference 
(typically a blood sample) are subjected to a battery of DNA tests. Upon completion, 
the analyst is able to render a determination as to the genetic similarity of the samples. 
Three conclusions are possible. 

1. exclusion. The types are different and therefore must have originated 
from different sources. This conclusion is absolute and requires no 
further analysis or discussion. 

2. inconclusive. It is not possible to be sure, based on the results of the 
test, whether the samples have similar DNA types. This might occur for 
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a variety of reasons including degradation, contamination, or failure of 
some aspect of the protocol (e.g., inhibition of restriction enzyme). 
Various parts of the analysis might then be repeated with the same or a 
different sample in an attempt to obtain a more conclusive result. One 
way of thinking about an inconclusive result is that there is no more 
information after the analysis than before; it is as if the analysis had 
never been performed. 

3. inclusion. The types are similar, and could have originated from the 
same source. If the samples are determined to be similar, the question 
becomes: What is the significance of this similarity? 

Determination of Similarity 

Frequently the word “match” is used to describe the genetic similarity between the 
evidence and reference samples. Scientists are careful to limit the term match to mean 
that no significant differences were observed between the two samples in the 
particular test(s) conducted. It is certainly possible that two samples may be different, 
but that the test used has failed to reveal those differences. Because DNA tests 
currently sample a relatively small percentage of the entire human genome, further 
analysis might reveal differences that would lead to a exclusion. In contrast, the 
perception of the general public is that the word match connotes an absolute 
“individualization”. A conclusion of genetic similarity or genetic concordance 
merely describes the fact that no differences were seen between the two samples in 
the particular tests conducted. Having said that, however, the strength of DNA typing 
lies in its immense powers of discrimination; samples that show genetic concordance 
over several highly discriminating DNA loci approach, and in some cases reach, 
individuality. 

In determining whether two samples have similar types, it is important to know the 
kind of marker system used. Typing systems may be divided into those detecting 
continuous alleles and those detecting discrete alleles. 

Evaluation of Results-The Strength of the Association 

Samples may show genetic similarity under three circumstances: 
a) The samples come from a common source. This means that the evidence 

sample (blood stain, semen sample, saliva stain, etc.) comes from the same 
person who provided the reference sample. 

b) The similarity is a coincidence. This means that the evidence sample 
comes from someone other than the person who provided the reference sample. 
The genetic similarity results from two individuals, the reference donor and the 
true donor, who share the same genetic profile for the particular markers 
examined. 

c) The similarity is an accident (erroneous). This means that the evidence 
sample comes from someone other than the reference donor but that some 
collection/analytical/clerical error has occurred to make the evidence and 
reference samples appear to have the same DNA profile. 
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We want to evaluate which of these three alternatives is the correct one for the case 
under consideration. The likelihood of each alternative provides insight into the 
strength of the association between the evidence and reference sample. 

The samples come from a common source 
Keep in mind that if the evidence sample is, in fact, from the reference donor 
(common source), then the probability of finding the evidence profile is one (1). 

The similarity is a coincidence 
If many individuals have this type, then the significance is minimal, because it means 
that there is some reasonable chance that anyone taken at random from the population 
(e.g., the wrong suspect chosen by the detective) will have the same type. If, on the 
other hand, only a low probability exists that the types found are from someone other 
than the reference donor, then the association is strong. 

The question then becomes: What is the probability of a “match” if someone other 
than the reference donor is the true donor? (or what is the probability of a random 
match?) The answer has typically been provided in the form of a profile frequency, 
that is, the number of times that this profile is seen in some reference population. An 
alternate form of that question is: What is the probability of finding this profile if the 
reference donor were the true donor, compared to the probability of finding this 
profile if someone other than the reference donor were the true donor? While this 
seems like a more complicated question, in fact it is a more complete statement of the 
first question. 
Frequency estimate calculations. In simple terms, we want to express how many 
people might possess the profile seen in the biological evidence. The only way to 
determine this is by testing a representative number of people from a reference 
population and counting the number of times each genotype occurs. For genetic 
marker systems with just a few alleles, it is likely that all of the genotypes will be seen 
several times in a relatively small population such as 10 or 20 people. The problem 
becomes more complex with additional alleles. We may have to test 50 to 100 people 
to have confidence that the genotype frequencies are a true representation of the 
population makeup. 

Some of the hypervariable RFLP loci have 50 or more alleles, such that each locus 
can produce approximately 1275 genotypes (49x50/2=1225 heterozygotes and 50 
homozygotes). Typing enough people to find how often each of these types occurs 
would be a daunting task. Considering four hypervariable loci, each with 50 alleles; 
the number of possible allele combinations at four loci is (1275) x (1275) x (1275) x 
(1275), or about 2.6 trillion possible genotypes. Testing everyone in order to obtain a 
fair representation of all these types is clearly impossible. Additionally, since there are 
only about 6 billion people alive on earth at this time, most of these combinations do 
not even exist. 

The solution to this dilemma (how to estimate frequencies when there are a large 
number of alleles, each at low frequency) is to invoke population genetics theory, 
particularly two principles called Hardy-Weinberg equilibrium (H-W) and linkage 
equilibrium (LE). These principles allow for the estimation of genotypes based on 
individual allele frequencies, rather than observed genotype frequencies. Since the 
total number of alleles is much smaller than the possible combinations of those alleles 
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Linkage equilibrium is defined as the steady- 
population where the frequency of any multi-lo 
frequency is the product of each separate l 
estimation of a DNA profile over several loci, even if the p 
not been seen in an actual population survey. 

into genotypes, this is clearly a much more practical proposition. The principles may 
be summarized as follows: 

Population substructure. Theoretical application of the Hardy-Weinberg principle 
rests on several assumptions. Mating must be random, the mating population large, 
and migration negligible. However, it can be reasonably argued that mating is not 
random in most human populations, that some mating populations are not large, and 
that migration is variable among mating populations throughout the world. In fact, it 
is well accepted that the United States population is a mixture of people of various 
origins. For instance, in New York City, it is well known that neighborhoods exist of, 
for example, Italians, Germans, and Russians. It is also commonly accepted that 
people tend to mate among those with similar ancestry. This results in matings among 
people who are more closely related to each other than to people outside of their 
common ancestry. If a suspect comes from such a group, a greater number of people 
with similar DNA types may exist in this particular community than we would 
estimate from a survey of the general population. The phrases used to express this 
existence of smaller populations within a larger group include population subgroups, 
subpopulations, population substructure, and structured populations. 

Given that the U.S. population is structured to some extent, and the assumptions 
for Hardy-Weinberg cannot be met, how is it possible to use these principles and 
arrive at useful frequency estimates? In actual fact, imperfect adherence to Hardy- 
Weinberg and linkage equilibrium does not invalidate the use of these principles in 
estimating frequencies for DNA profiles. This is substantiated by both scientific 
theory and empirical testing. 

Research has shown that the effects of substructuring are predictable. Relative to 
theoretical Hardy-Weinberg proportions, the effect is to increase the occurrence of 
homozygotes and to reduce the number of heterozygotes at a single locus. The effect 
on linkage equilibrium is to increase the correlation between some loci, while 
decreasing the correlation between others. These deviations can be taken into account 
and accommodated statistically. Once sufficient data has been gathered for a specific 
population, departures from both Hardy-Weinberg and linkage equilibrium can be 
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estimated. This allows for an evaluation of the extent and direction of the error that 
might occur if frequency estimates are calculated using H-W and LE calculations. 

The concern over the lack of knowledge regarding the effects of population 
substructure has instigated two major studies by the National Research Council 
(NRC) of the National Academy of Sciences. The first study [7], concluded that 
insufficient knowledge existed to substantiate use of the H-W and LE calculations. 
Several recommendations were made that resulted in an extremely conservative 
method of estimating the frequency of a DNA profile (termed the ‘‘ceiling 
principle”). The second NRC report (known as NRC II) [8] concluded that enough 
information had been collected since the original study to eliminate the most 
conservative recommendations (including the ceiling principle) as unnecessary. This 
second report is an excellent source for a deeper understanding of the issues and the 
solutions presented here. 

Finally, it is imperative to emphasize that frequencies are estimated for the 
evidence profile, not the suspect profile. The race/ethnicity of the suspect is irrelevant 
when interpreting test results. It is erroneous to assume that the suspect was at the 
crime scene to determine if the suspect was at the crime scene! Most of the time, 
general population frequencies (often limited to a particular geographical region, such 
as a state) can be employed, and racial/ethnic frequencies are used as comparisons or 
limits. In the case of a mixture where alleles cannot be reliably paired into genotypes, 
the correct frequency is calculated by the sum of all possible genotypes that could be 
present in the sample. The significance of the evidence can then be assessed under 
several different scenarios or assumptions, and the scenarios then compared via 
likelihood ratios. Most analysts agree that likelihood ratios are the only way to handle 
the complexities of mixed samples. 

Estimating Frequencies. The goal in deriving frequencies for any DNA profile is to 
provide an estimate that is scientifically conservative; that is, it should not overstate 
the strength of the association. Forensic scientists, geneticists, and biostatisticians 
have devised several methods to accomplish this goal. First, population studies must 
be performed for the specific loci that will be used and the data evaluated for H-W 
and LE. Once data for a specific case has been generated, genotype frequencies must 
be calculated for each locus, then the frequencies for each locus multiplied to obtain a 
profile frequency. 

Different workers have formulated a variety of correction factors that ensure 
conservative frequency estimates. NRC II provides guidance on reasonable 
corrections that prevent over-estimating the significance of the concordance without 
seriously compromising the power of the tests. Because of the ultimate destination of 
forensic DNA results (often a court of law), the way in which the results are presented 
are often limited by court rulings and case law. Thus, sometimes, a more accurate 
scientific calculation must be sacrificed to a legal ruling. It must be remembered that 
forensic scientists work solely at the behest of the legal system. The most recent 
example of this compromise of scientific accuracy for legal conservatism is California 
v. Venegas, 1998, which adopted the (admittedly) absurdly conservative 
recommendations of the first National Research Council committee report (NRC  I). 

The calculations outlined above are for random unrelated individuals. A special 
case exists for related individuals. Siblings potentially share more genetic material 
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with each other than anyone else. This is because they inherit their genes from the 
same two people, Mom and Dad. This idea can be extended to more distant 
relationships such as children, grandchildren, and cousins. In these relationships some 
genetic material is shared, but the more distant the relationship, the fewer the genes 
that are held in common. For the highly variable DNA regions that are used in 
forensic testing, this means that even siblings are unlikely to share the same profiles 
when several highly variable DNA regions are analyzed. Special calculations, usually 
based on Bayesian statistics, are applied in those circumstances where relatives might 
be involved. 

The power of DNA testing is such that the information provided by several highly 
variable loci is often sufficient to convince us of the source of a sample. With 
adequate data, it might be concluded that two samples originate from a single 
common source to the exclusion of all other individuals. We suggest that when close 
relatives can be eliminated (including identical twins), the appropriate quality control 
measures have been followed, and the conservative frequency estimates reach one 
thousand times the population of the earth (presently 6 billion people), individuality 
can be concluded. 

The similarity is an accident 
When the genetic similarity is an accident (through sample switch, contamination, or 
clerical error), the reference donor only appears to be the true donor, when, in fact, the 
evidence DNA is from someone else. A few authors have suggested that the power of 
DNA testing is limited to the error rate for the industry, the lab, or the individual 
conducting the test, whichever is available. NRC II and others have suggested that the 
risk of error can only be evaluated on a case-by-case basis. 

Quality assurance and quality control are ways in which laboratories have 
attempted to prevent and detect errors. While not fool-proof, accreditation of 
laboratories, certification and proficiency testing of individual scientists, and the 
proper use of standards and controls, greatly reduce the risk of error in lab analysis 
and reporting. 

8. Strengths and Limitations of DNA Typing 

The immense diversity (the great capacity to discriminate between individuals) of the 
hypervariable RFLP loci that makes them so attractive for forensic work also presents 
analytical challenges and renders them susceptible to environmentally induced 
alterations. A great amount of work has been performed to determine whether these 
artifacts constitute fatal flaws, or merely complications that can be factored into the 
conclusions drawn from analytical results on a case-by-case basis. The exquisite 
sensitivity of PCR-based systems, both sequence-based and length-based, and the 
relatively low variation per locus, confers upon them another set of interpretational 
issues. These issues have also been addressed, both empirically and theoretically. In 
particular, the recent success in multiplexing STR systems promises discrimination of 
single-source samples approaching that of RFLP systems. The enormous amount of 
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validation and proficiency testing performed using forensic DNA analysis systems has 
led to the consensus among crime labs and academic experts (with a few exceptions) 
that the difficulties can be adequately addressed and accounted for in most cases, and 
that the DNA results can be properly and conservatively applied to the case or 
situation as a whole. 

The ‘‘wet chemistry” necessitated by current techniques limits both the portability 
and rapidity of DNA typing. This stands to change as the chemistry involved in the 
reactions is adapted to solid-state technologies already in development for basic 
research. It is not unreasonable to expect that, in the foreseeable future, the DNA 
typing laboratory might be reduced to a small mobile package that could produce a 
DNA result in minutes or hours instead of the days or weeks now necessary. 
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Abstract This chapter describes some of the fundamental issues 
related to biometric identification (one-to-many matches) on a 
large scale as well as some details of a particular implementation 
of a scalable fingerprint matcher. The decomposition of system 
error rates into expressions in terms of component error rates and 
the extrapolation of identification accuracy from verification 
accuracy are explained. Details of the Flash fingerprint matcher 
are presented including assumptions about allowable 
transformations connecting instances of model fingerprints and 
the structure of the invariant index used to form tentative model 
correspondences. Finally, the pose clustering stage used to filter 
tentative correspondences and accumulate evidence is described. 
Results using this preliminary implementation on a database 
containing 100,000 models are presented and interpreted in the 
context of the above-mentioned extrapolation framework 
described above. 
Keywords: Flash, fingerprint, performance evaluation, 
geometric hashing, indexing. 

1. Introduction 

There are two general classes of problems which a fingerprint matcher is expected to 
address. The first class of problems involves situations for which it is necessary to 
verify or authenticate an individual's identity. This is a one-to-one matching problem 
which is of interest here primarily as a conceptual basis for one-to-many matching. 

The second, more challenging, problem occurs when it is important to ensure that a 
particular database contains only a single entry for any given individual. This occurs 
in the case of social services wherein one wishes to prevent individuals from 
collecting welfare under multiple aliases or in the case of identity card issuance. This 
identification problem requires that one search a large database of individuals and 
determine whether a person is already in the database. 
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Previous work in automatic fingerprint identification systems has concentrated on 
criminal justice applications. In the criminal justice application arena the cost of 
missing a potential match is quite high, e.g., a wanted criminal is released, and it is 
acceptable to require the employment of trained fingerprint officers to inspect large 
number of candidate matches. Also, criminal fingerprint identification queries almost 
always involve a large amount of filtering, effectively reducing the size of the 
database that is actually searched. This filtering may involve classification based on 
general ridge pattern, but also includes demographic filtering based on age, race, 
geographic location, etc. Finally, criminal justice fingerprinting systems retain 
images of all ten fingers. 

This work was undertaken to address the requirements of a non-criminal 
identification application. The challenges for this application are to support the large 
throughput required for enrollment of a large population over a limited period of time 
and to minimize the time a clerk in a social service agency must spend in investigating 
ambiguous cases. Additionally, to simplify the enrollment process and minimize 
storage requirements, the system must achieve acceptable performance with as few 
fingerprint impressions from each individual as possible. A common requirement is 
to take imprints of the two index fingers only. 

Large scale social service or national identity registry applications will require 
searches of databases containing imprints from a large fraction of the total population 
of a state or country; the ability to search databases of tens of millions of people is 
required. An understanding of the systematic changes in the error rates of a 
fingerprint identification system with database size is also needed as part of a 
framework for extrapolating measurements from small benchmarking or sample 
databases. Criminal justice fingerprint systems are not characterized in a manner that 
allows extrapolation of measured performance data to large database sizes. In 
particular, there is a focus on characterization in terms of the frequency with which 
the correct result appears in the top-ranked position or in the top ten positions, metrics 
which are useful for comparing results achieved on a particular database, but which 
are ill-suited for making estimates of the identification error rates on larger databases. 
The existing ANSUIAI standard [ 1] for benchmarking of fingerprint identification 
systems is focused on criminal justice applications and on relative performance of 
competing systems. Some of the issues in measuring accuracy in law enforcement 
applications are discussed in [ 11]. 

System Performance vs. Matcher Performance 

When architecting a large-scale identification system based on any biometric, there 
are several universally applicable strategies for improving throughput that do not 
depend on any details of the matcher. That is, the matcher can be treated as a “black 
box”, characterized only by its error rates for verification and the time required to 
perform a match as a function of database size. These strategies include front-end 
filtering (a.k.a. classification) and fusion of multiple biometric data, such as using 
fingerprint impressions from multiple fingers. Before estimating the system 
performance of a particular configuration of filtering and data-fusion, characterization 
of the component performance is needed In particular, the performance of the 
classifier and the matcher operating on a single instance of a biometric must be 
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measured individually. From these building blocks, the system performance for a 
particular choice of filtering and data fusion can be derived. The very simple data 
fusion methods described here are only a small subset of the available possibilities. 
Flash and Geometric Hashing 

The straightforward approach to searching a large database is to scan the entire 
database and to compare the query fingerprint against each reference model. The 
increased efficiencies obtained from generating index tables to speed access are well 
known in the database community [ 13]. An index can be formed from a subset of the 
feature points in a model instance and if multiple indices are generated for a single 
model instance from subsets that redundantly include feature points; the indexing 
scheme allows retrieval of models that differ from the query by one or more feature 
points. One of the attractions of redundant indexing schemes in computer vision 
applications, the earliest example of which is geometric hashing [8], is their 
robustness in the presence of partial occlusion. 

The Flash algorithm uses a higher dimensional indexing scheme than geometric 
hashing by adding additional invariant properties of the feature subset to the index. 
Scalar properties such as color might be appropriate in some vision applications, 
while in fingerprint recognition, the relationship of the chosen subset of features to the 
local ridge pattern provides additional distinguishing power. The second stage of the 
Flash algorithm uses transformation parameter clustering to accumulate evidence [2]. 

Object instances are represented by a collection of feature points, which might be 
points of maximum curvature in a vision application, minutiae in a fingerprint 
application, or an ASCII character in a string matching application. When a model is 
added to the database, invariant information computed from each subset of feature 
points is used to form a key or index labeling an entry which is added to a multi-map 
or bag [ 13], a variant of associative memory which permits more than one entry to be 
stored with the same key value. This entry minimally contains the identifier of the 
model that generated the key and may also contain information concerning the feature 
subset as shown in Figure 15.1. 

When servicing a query, each key generated by the query object instance is used to 
retrieve any items in the multi-map which are stored under the same key. Each item 
retrieved represents a hypothesized match between subsets of features in the query 
object instance and the reference model instance which created the item stored in the 
multi-map. This hypothesized match is labeled by the reference model identifier and 
possibly, parameters characterizing the geometric transformation which bring the two 
subsets of features into closest correspondence. 

Votes for these hypothesized matches are accumulated in another associative 
memory structure, keyed by the model fingerprint identifier and the transformation 
parameters as shown in Figure 15.2. This structure is a map or keyed set, a container 
which permits only a single item to be stored under a given key. Each time that a 
hypothesis is constructed, the program checks to see if a hypothesis with the same 
label already exists in the hypothesis table (map container). If the hypothesis already 
exists, the score of the existing hypothesis entry is updated appropriately. If there is 
no hypothesis with the same label, a new hypothesis entry is added to the hypothesis 
table with its score set to an initial value. Finally, a sorted list of hypotheses whose 
scores exceed some threshold can be used to determine whether a match to the query 
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object instance exists in the database or as input to another stage of matching 
machinery. 

If a globally parameterizable transformation can be computed from each set of 
local feature correspondences, then when a good match exists, many of the local 
feature subset correspondences located during the index lookup phase will generate 
the same parameters for the geometric transformation and a large number of votes for 
that hypothesized match will be accumulated. Examples of globally parameterizable 
transformations include affine, similarity, or rigid transformations in one, two, or 
three dimensions. The computation of transformation parameters and accumulation of 
evidence based on binned values for these parameters is an instance of the “pose- 
clustering” [12] technique. This is related to the alignment technique used by other 
workers [6], but the Flash algorithm [10] permits parallel accumulation of evidence at 
a finer granularity. It is only necessary to compute transformations or relative poses 
for pairs of corresponding feature subsets that are mapped to the same invariant index. 
Verification of consistency in the correspondence of different local feature sets is 
implicit in the evidence accumulation process since large numbers of consistent 
relative poses will only be generated when the relative positions of many local feature 
sets are consistent in both the query and model object instances. 

Figure 15.1 The extracted features from each fingerprint are used to generate keys or 
indices. For each key generated, an entry is added to the multi-map data structure. 
For example, fingerprint CD generates keys k and I, fingerprint I- generates key I, and 
fingerprint q generates keys k and m. 
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Figure 15.2 Retrieval. 

2. Application to Fingerprint Matching 

In the fingerprint application, the class of transformations that connects different 
object instances is assumed to be that of two-dimensional distance preserving (rigid) 
transformations. A least squares estimation methodology is used to solve the over- 
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constrained pose estimation problem for each hypothesized local correspondence 
generated by the index look-up process. 

Data Abstraction and Index Generation 

Both automatic and manual fingerprint recognition schemes use the feature points 
determined by singularities in the finger ridge pattern. Unlike the general shape 
recognition problem [2], in fingerprint matching, the singularities in the ridge pattern 
known as minutiae provide a natural choice for feature points. These features, which 
consist of points where a ridge either ends or splits into two ridges, form the basis of 
most fingerprint matching applications. Each feature point is represented by a triplet 
of numbers (X, Y, 0) as shown in Figure 15.3. A typical “dab” impression has 
approximately 40 minutiae which are recognized by the feature extraction software, 
but the number of minutiae can vary from zero to over one hundred depending on the 
finger morphology and imaging conditions. Not all of these minutiae will be 
reproducible from imprint to imprint and therefore the redundancy in the 
combinatorial index formation process described below is essential. 

One additional piece of information is utilized by the Flash matcher. Part of the 
output of the feature extraction process is a skeletonized version of the ridge pattern 
on the finger. If a line is drawn between each pair of minutiae, the number of ridges 
crossed by this line may be counted as shown in Figure 15.4. This ridge-counting 
procedure is carried out for each pair of minutiae in the fingerprint and the results are 
used as part of the Flash index. 

The Flash algorithm uses redundant combinations of three feature points when 
forming indices to give some immunity against noise consisting of insertions and 
deletions of feature points as well as to provide more uniquely descriptive information 
than is available from a single feature point. An exhaustive listing of the possible 

combinations of three feature points requires entries where n is the number of 

minutiae. To keep the number of indices generated within bounds, restrictions are 
placed on the “acceptable” combinations of feature points to be used when forming an 
index. Only triplets for which the distances separating each pair of points fall into the 
specified range are used. 

Even the restriction on pairwise separations does not prevent large variations in the 
number of indices generated by different fingerprints. In order to guarantee a 
relatively constant number of generated indices, a deterministic selection process is 
used to select a sampling of those indices whose generating triangles satisfy the 
imposed side length constraints. 

The search engine requires the generation of indices used for table look-up that are 
simultaneously descriptive of the objects stored in the database and invariant under 
the transformations to which an object might be subjected. Each component of the 
index is invariant under rotation and translation. 

While the model used here assumes that mated fingerprint impressions may be 
mapped onto each other by a rigid transformation, the realities of the imaging and 
feature extraction process are such that a certain amount of uncertainty is associated 
with the coordinates of a minutia. The implementation of the Flash algorithm requires 

“1) 
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that the index take on discrete values, hence some binning mechanism must be used; 
the bin size can be used to allow appropriate tolerance for irreproducibility in 
minutiae positions. 

A reproducible choice for the ordering of the sides is made by traversing the 
triangle in a consistent sense (clockwise in this implementation) as shown in Figure 
15.5. This procedure is invariant under rotation and translation, but not under 
reflection. The full index consists of nine components: the length of each side, the 
ridge-count between each pair, and the angles measured with respect to the fiducial 
side. 

Figure 15.3 An example of a minutia point in a fingerprint. The (X,Y) coordinates are 
the location of the minutia in the reference frame of the print while 8 is the angle that 
the ridge makes with respect to the x-axis of the reference frame of the print. With the 
appropriate convention for choosing this direction, 0 has an unambiguous value in the 
range [0,24 radians. 

Figure 15.4 Triplet of minutiae on skeletonized image of fingerprint with the direction of 
ridges at minutiae (minutiae angles) shown. 



318 Germain 

Figure 15.5 Geometry of ordered triangle without background of fingerprint. The 
ordering of the sides allows the expression of the minutiae angle direction with respect 
to an ordered side without any ambiguity. S i  are the lengths of the three sides. 8i are 
the minutiae angles encoded in an transformation invariant fashion. RCi are the 
number of ridges crossed by a line connecting a pair of minutiae. The sides are 
ordered so that the largest side appears first. Successive sides are enumerated 
proceeding in a defined orientation (e.g. in a clockwise fashion). The order used for 
the ridge counts RCi is the same as that of the sides, while any quantity such as the 
minutia angle 8 is ordered using the convention for the ordering the minutiae described 
here. The order of the minutiae will be the same as that of the sides with the first 
minutia being in a well-defined orientation with respect to the first side. For example, 
the first minutia is always taken to be the most counter-clockwise point on the first side. 

Evidence Accumulation 

In the Flash framework, the index generated by the procedure described above is used 
as the key to identify triangles that “resemble” one another. During the storage phase, 
each one of the indices generated by a fingerprint cause the storage of a data object 
labeled by the index and containing the identity of the fingerprint generating this 
index as well as information concerning the triplet of feature points that generated the 
index. 

During the query phase, each index generated by the query fingerprint is used to 
retrieve all model objects stored in the table which are labeled with the same index. 
Each of these retrieved model objects represents a hypothesized correspondence 
between three points in the query print and three in the model print. Given this 
correspondence, the coordinate transformation that best maps the query triplet onto 
the model triplet is computed. The algorithm that computes the coordinate 
transformation does so in a way that minimizes the sum of the squared distances 
between the transformed query points and their corresponding model points. The 
essentials of the retrieval procedure are outlined in Figure 15.6. 
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t e s t  says  Ho i s  t r u e  
and H0  i s  t r u e  

t e s t  says H1 is t r u e  
and H1 is t r u e  

The computed transformation parameters, X and Y translation and rotation 8, are 
binned and along with the reference fingerprint ID, used to form a key that indexes 
the map (keyed set) used for evidence accumulation pictured in Figure 15.2. 

If a large number of feature points can be brought into correspondence by a rigid 
transformation of the coordinate system, all of the indices generated by the 
combinations of three feature points belonging to this set will generate the same 
coordinate transformation parameters. Hence a large number of votes for a correct 
match will be tabulated. There may be a number of random correspondences between 
triplets of points in the query print and some arbitrary reference print, but the 
likelihood of a number of consistent transformation parameters being generated by 
such random correspondences is quite small. 

After all of the indices from the query fingerprint have been generated and all of 
the relevant hypotheses have been computed, the entries in the hypothesis table 
exceeding some threshold are sorted by score with the highest scores appearing first. 
This ranked list of scores can be provided in response to the original query or used as 
input to other decision-making machinery that might combine the results from queries 
using imprints taken from additional fingers. 

T e s t  says  H0  i s  t r u e  
and H0  i s f a l s e  

tes t  says  t h a t  H1 i s  
t r u e  and H1 i s  f a l s e  

3. Characterizing Accuracy for Verification and Identification 

First consider the problem of determining whether or not two fingerprints were made 
by the same finger (verification). This problem amounts to assigning the pair to 
either of the mated or non-mated pair populations. The objective is to find a test that 
assigns a pair of prints to one of these two populations while making the smallest 
number of mistakes in large a number of trials. This problem in statistical decision 
making has a very long history [9]. The decision framework described here is similar 
in spirit to that used to describe recent work on iris identification [3]. In the case 
where one of two mutually exclusive hypotheses, H0 and H1,  must be selected, two 
classes of errors can be made. Suppose that H0 is the hypothesis that the pair of prints 
belongs to the non-mated population and that H1  is the hypothesis that the pair of 
prints belongs to the mated population. Four scenarios are possible: 

• False Negative or Miss: incorrectly assigning a mated pair to the non-mated 
population 

False Positive or False Alarm: incorrectly assigning a non-mated pair to the 
mated population 

0 
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Extract feature points (minutiae) from 
Query fingerprint data 

For each data item contained in the 
multi-map which is labeled by this 

index/key 

I 
Retrieve the data item from the 

Multi-map 

Use the retrieved data and the 
query fingerprint data to 

construct a hypothesized match 
between the query and 
reference fingerprints 

Construct a label or key for this hypothesis 
I 

Does a key corresponding to this 
hypothesis already exist in th 

E hypothesis table? 

I 

End of FOR loop over indices/keys 

update score of 
existing entry initialize score 

I 1 
I I 

End of FOR loop over data items 
I 

Figure 15.6 The main portion of the query phase is given in broad outline. Hypothesis 
key construction involves the estimation of the rigid transformation parameters, rotation 
and translation, using the hypothesized correspondence between triplets of minutiae in 
the queryand model fingerprint. A description of the algorithm used for this sort of 
estimation can be found in the literature [5]. 

The number of matching triangles, henceforth referred to as the score, that generate 
a consistent rigid transformation between two prints can be used as the basis for a test 
that assigns a pair of fingerprints to the mated pair population or to the non-mated pair 
population. Histograms of the scores achieved by the matcher on the two test 
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populations can be used as estimates for the conditional probability densities of the 
score, fmated (x)  and  fnon-mated(x) . . It is natural to use a threshold x l h  to assign a pair of 
imprints to one of the two possible populations. Any pair whose score exceeds Xth 

will be assigned to the mated pair population and other pairs will be assigned to the 
non-mated pair population. Note that there is a tradeoff between the false positive 
error rate (FPR) and the false negative error rate (FNR). The FNR  can be reduced to 
an arbitrarily small value by decreasing Xth sufficiently, but a large number of false 
alarms will result with a corresponding increase in the FPR. 

If this decision criterion is used, it is straightforward to compute the two error rates 
from the conditional probability densities computed from the test populations. The 
error rate for incorrectly assigning a mated pair to the non-mated population (false 
negative rate) is given by the distribution function defined below: 

FNR = Fmated(xth) = I,"" fmated(t)dt. 

Similarly, the error rate for incorrectly assigning a non-mated pair to the mated 
pair population (false positive rate) is given by the following function of the 
conditional probability distribution function: 

(15.1) 

Xrh FPR = 1 - Fnon - rnured(~01) = 1 -Io $0. - muren( t )d t .  (15.2) 

Insofar as the mated and non-mated pair test populations form representative 
samples of the real populations, the estimates may be used to extrapolate to behavior 
on the real populations. The measured accuracy of a matcher is a strong function of 
the database from which estimates of the error rates are derived, most importantly, the 
variation of the false negative error rate with threshold depends on the care with 
which fingerprint images were acquired. Note that these estimates of the error rates 
are independent of the size of the test database used although the uncertainties in the 
estimates depend on the sizes of the sample pair populations. 

Now consider a one-to-many identification query, which may be viewed as a series 
of one-to-one verifications executed against every print in the database. With the 
assumption that at most one mate to the query is present, and the assumption that the 
candidate list of hypothesized matches is formed by taking all prints from the 
reference database whose verification matching scores with the query print exceed 
some fixed threshold, the false positive rate (FPR) and the false negative rate (FNR) 
for an identification search against a database of N individuals is as follows: 

FNR = FNR(1) 
FPR(N) = 1 - (1 - FPR(1)N (15.3) 

1 = N x FPR(1) for FPR(1) << - 
N 

The false positive rate increases drastically with database size because each 
additional entry in the database provides another opportunity to randomly achieve a 
high score. A matcher operating at a point where its false positive verification rate is 
1% may be satisfactory in a verification application, but in even a small scale 
identification application, the error rate will become unacceptable. For example, 
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when used on a ten person database, this matcher will generate false matches at a rate 
of 1 - 0.99" or 9.5%. On a hundred person database this matcher's false positive error 
rate will be 1 - O.99lo0 or 63%. Figure 15.7 shows the extrapolated false positive rate 
versus population size for a variety of one-to-one error rates. In order to keep the 
false positive rate within reasonable bounds when operating on large population sizes, 
a matcher must be operating in a mode for which its false positive rate for verification 
is in the range of 109-10-6. To make model-independent estimates of false positive 
rates in this range requires a correspondingly large sample population of mismatched 
pairs of prints. Because of the tradeoff between FPR and FNR, the need to operate at 
very small values of the false positive rate in identification applications may lead to 
unacceptable miss rates (FNR) when using only a single finger. The system miss rate 
can be reduced dramatically by executing searches using two different query fingers 
and considering a match on either finger to be a hit while causing a modest increase in 
the false positive rate. More sophisticated schemes involving larger numbers of 
fingers and requiring matches on multiple fingers can be used to design identification 
systems with less stringent requirements on the false positive rate of the matcher 
component. 

1 oo 

c a, lo2 
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Figure 15.7 Extrapolated false positive identification error rate (FPR) plotted versus 
population size for a series of verification false positive rates. 

4. Results 

There are two aspects of the system to be characterized, the accuracy and the 
matching speed. Results for these two matcher characteristics are presented in 
Figures 15.8 and 15.9. 
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1 o4 

In order to characterize the accuracy of the system, a reference database of model 
prints was constructed from approximately 100,000 inked dab images (actually 
97,492) acquired in 1995 which were processed by feature extraction code developed 
by the Exploratory Computer Vision Group at the IBM Thomas J. Watson Research 
Center. A description of this class of feature extraction algorithms can be found in 
[7]. A set of 657 queries were executed against this database. The query set of prints 
were a subset of the 100,000 models. Conceptually, 657 x 97,492 comparisons of 
pairs took place. These pairs can be divided into three groups: 

I I I I I I I I  I I I l l l t  

2 3 4 5 6 7 8  

1. 

2. 

3. 

The pairs in the first group are excluded from the analysis of results because they 
represent an experimental artifact. The reason that there are 768 pairs in the second 
group is because some query prints had a single mate while others had two or even 
three mates in the reference database. 

pairs consisting of identical fingerprints (657) 

pairs consisting of different impressions of the same finger (768) 

pairs consisting of impressions of different fingers (64,050,819) 

False Negative Rate 
Figure 15.8 False positive verification error rate (FPR) plotted versus false negative 
verification error rate (FNR) for a variety of decision thresholds. The error bars 
represent the 90% confidence intervals for the estimates of the corresponding error 
rates obtained from this set of experiments. This presentation is similar to the 
Receiver Operating Curve (ROC) used to characterize the ability of a statistical test to 
distinguish between two alternative hypotheses [9] .  
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Figure 15.9 Measured average query times for a series of database sizes sizes: 
13726, 26317, 50047, and 97492. Each point represents the average of 657 queries 
and the line is a least squares fit to the data. No front-end filtering was used in these 
tests--each data-point represents a similarity search of the entire database. The 
hardware and software configuration used for each test was the same. The non-zero 
intercept is a consequence of the requirement for doing index look-ups. In this series 
of runs, 32 disks were used to spread out the i/o burden. 

The distributed Flash algorithm as implemented for fingerprint matching requires a 
few thousand i/o operations to look up the indices generated by each query. These i/o 
operations can be spread over a large number of disks to keep the elapsed time down. 
With 32 disks distributed over an 8 node IBM SP2  system, the incremental addition to 
the average query time caused by an additional print in the database is approximately 
7 microseconds as shown in Figure 15.9. Thus, the system configuration used for 
these trials could search a database of 10 million prints in approximately 70 seconds. 
Additional experiments indicate that the load balancing of the i/o is such that disk 
parallelism can be used effectively to reduce the i/o contribution to the query time. 
Identification searches of very large databases of fingerprints without pre-filtering are 
thus possible through indexing subsets of features on the fingerprints. 

The work presented here comprises the preliminary findings [4] of an IBM 
Research Division project initiated in early 1995 and done in collaboration with A. 
Califano, S. Colville, and the members of the Exploratory Computer Vision Group at 
the Watson Research Center. A large scale identification system based on Flash 
technology has been deployed in Peru as part of a voter registration and national 
identity program. No inferences about the current state of technology resulting from 
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continued research and development for commercial application should be drawn 
from the work reported here. 
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Abstract A biometric system based solely on one biometrics is 
often not able to meet the desired performance requirements. 
Identification based on multiple biometrics represents an 
emerging trend. We introduce a decision fusion framework which 
integrates two  biometrics (faces and fingerprints) which 
complement each other in terms of identification accuracy and 
identification speed. This framework takes advantage of the 
capabilities of each individual biometrics. Therefore, it can be 
used to overcome, to a certain extent, both the speed and accuracy 
limitations of a single biometrics in making a personal 
identification. We have also implemented a multimodal biometric 
system which integrates information in both faces andfingerprints 
using our decision fusion framework. The system operates in the 
identification mode with an admissible response time. 
Experimental results demonstrate that the identity established by 
the integrated system is more reliable than the identity established 
by a face recognition system as well as by a fingerprint 
verification system. 
Keywords: Multimodal biometrics, fingerprint matching, face 
recognition, integration, fusion. 

1. Introduction1 

Accurate automatic personal identification is critical in a wide range of application 
domains such as national ID card, electronic commerce, and automated banking [14]. 
Biometrics, which refers to automatic identification of a person based on her 
physiological or behavioral characteristics [ 14], is inherently more reliable and more 
capable in differentiating between an authorized person and a fraudulent impostor 
than traditional methods such as passwords and PIN numbers. A biometric system is 
essentially a pattern recognition system which makes a personal identification by 
determining the authenticity of the specific physiological or behavioral characteristic 
possessed by the user. It can be based on either a (or one snapshot of a) single 
biometric characteristic or multiple biometric characteristics (or multiple snapshots of 

 1This chapter is based on our earlier paper based on th is  topic [8]. 
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I 

a single biometric characteristic) to make a personal identification. We define a 
biometric system which uses only a single biometric characteristic as a unimodal 
biometric system and a biometric system which uses multiple biometric characteristics 
as a multimodal biometric system. 

A unimodal biometric system is usually more cost-efficient than a multimodal 
biometric system. However, it may not always be applicable in a given domain 
because of (i) unacceptable performance and (ii) inability to operate on a large user 
population. A multimodal biometric system can overcome, to a certain extent, these 
limitations. First of all, identification using multiple biometrics is essentially a sensor 
fusion problem, which utilizes information from multiple sensors to increase fault- 
tolerance capability, to reduce uncertainty, to reduce noise, and to overcome 
incompleteness of individual sensors [5,17]. A multimodal approach can increase the 
reliability of the decisions made by a biometric system [1,3,6,10]. Although a 
necessary requirement for a biometric characteristic is that each individual possess it, 
it is not necessary that a particular biometric characteristic of a specific individual is 
suitable for an automatic system. By using multiple biometric characteristics, the 
system will be applicable on a larger target population. Finally, a multimodal 
biometric system is generally more robust to fraudulent technologies, because it is 
more difficult to forge multiple biometric characteristics than to forge a single 
biometric characteristic. 

In designing a multimodal biometric system, a number of issues need to be 
considered: ( i )  what is the main purpose of utilizing multiple biometrics? (ii) what is 
the operational mode? (iii) which biometrics should be integrated? and (iv) how many 
biometrics are sufficient? Since the applicable population and system robustness 
depend mainly on the characteristics of the selected biometrics, the main problem in 
designing a multimodal biometric system is the integration of individual biometrics to 
improve the performance in making a personal identification. Typically, performance 
refers to (i) accuracy and (ii) speed. System accuracy indicates how reliable and 
confident a biometric system is in differentiating between a genuine individual and an 
impostor. System speed refers to the time taken by a biometric system in making a 
personal identification, By properly incorporating those biometrics that are relatively 
fast, the overall speed of a biometric system can be improved. 

I LF 
I 
I 

Claimed 
Identity Decision Fusion + 

Claimed Identity Verified 

Biometric 

Biometric 
Subsystem N + -- 

Figure 16.1 A generic multimodal verification system. 
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A biometric system can operate in either a verification mode or an identification 
mode. The integration schemes for these two modes are very different. Since only an 
one-to-one comparison is performed in a verification system, multimodal biometrics 
cannot really improve the verification speed. Therefore, integration of multiple 
biometrics in a verification system is mainly intended to improve the accuracy of the 
system. The block diagram of a generic multimodal verification system is shown in 
Figure 16.1. In a typical identification system, a large number of matchings need to be 
performed to identify an individual. A biometrics that has a large discriminating 
power can improve the identification accuracy, while a biometrics that is 
computationally efficient can improve the identification speed. The block diagram of 
a generic multimodal identification system is shown in Figure 16.2. 

Which biometrics and how many of them should be integrated depend very much 
on the application domain. It is difficult to establish a systematic procedure to 
determine which biometrics should be used. Intuitively, the larger the number of 
integrated biometrics, the higher the system accuracy, but more expensive the system. 
In this paper, we mainly concentrate on improving the system performance by 
integration of two specific biometrics, namely face and fingerprint. 

Multimodal Biometrics for Verification 

Integration of multiple biometrics for a verification system may be performed in the 
following scenario: ( i )  integration of multiple snapshots of a single biometrics, for 
example, a number of fingerprint images of the same finger in fingerprint verification 
(Figure 16.3) and (ii) integration of a number of different biometrics (Figure 16.4). In 
this sense, multimodal biometrics is a conventional decision fusion problem - to 
combine evidence provided by each biometrics to improve the overall decision 
accuracy. Generally, multiple evidences may be integrated at one of the following 
three different levels [2]: (i) Abstract level; the output from each module is only a set 
of possible labels without any confidence value associated with the labels; in this 
case, the simple majority rule may be employed to reach a more reliable decision [20]; 

Verification 
Subsystem 1 

Decision Fusion b 

Established Identity 

Figure 16.2 A generic multimodal identification system. 

(ii) Rank level; the output from each module is a set of possible labels ranked by 
decreasing confidence values, but the confidence values themselves are not specified; 
(iii) Measurement level; the output from each module is a set of possible labels with 
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associated confidence values; in this case, more accurate decisions can be made by 
integrating different confidence values. 

Dieckmann et al. [6]  have proposed an abstract level fusion scheme: “2-from-3 
approach” which integrates face, lip motion, and voice based on the principle that a 
human uses multiple clues to identify a person. This approach uses a simple voting 
algorithm to find whether the decision made by each individual classifier is consistent 
with the other two classifiers. Brunelli and Falavigna [2] have proposed two schemes 
to combine evidence from speaker verification and face recognition. The first scheme 
is a measurement level scheme in which the outputs of two different speech 
classifiersand the outputs of three different face classifiers are normalized and 
combined using geometric average. The second scheme is a hybrid rank/measurement 
level scheme which uses HyperBF network to combine the outputs of these five 
classifiers. The authors have demonstrated that the system accuracy can be improved 
by using these fusion schemes. Kittler et al. [ 10] have demonstrated the efficiency of 
an integration strategy which fuses multiple snapshots of a single biometrics using a 
Bayesian framework. In this scheme, the a posteriori class probabilities for each 
individual are estimated and the decision is made based on the average or max or 
median of the a posteriori class probabilities for a given set of snapshots. Bigun et al. 
[ 1] have proposed a Bayesian integration scheme to combine different evidences 
based on the assumption that the evidences are independent of one another. Their 
scheme results in an improved recognition accuracy by combining voice and face as 
well as voice and lip motion. Maes and Beigi [I2] have proposed to combine 
biometric data (e.g., voice) with non-biometric data (e.g., password). 

Fingerprint Verifica 

Figure 16.3 Integration of multiple snapshots of a single biometric characteristic. 
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Figure 16.4 Integration of different biometric characteristics. 

Multimodal Biometrics for Identification 

All the decision fusion schemes mentioned above can be used to improve the 
identification accuracy in a multimodal identification system. However, since an 
identification system needs to perform one-to-many comparisons to find a match, the 
average computational complexity for each comparison should be as low as possible 
to enable a reasonable response time, especially for a large database. However, the 
integration schemes mentioned above increase the computational complexity for each 
comparison. Therefore, it is not practical to directly apply these schemes to an 
identification system; an integration scheme that is able to improve both the speed and 
the accuracy should be used. In this paper, we introduce a multimodal biometrics 
scheme which integrates two biometrics (in particular, face and fingerprint) which 
complement each other in terms of identification speed and identification accuracy: a 
biometric approach (e.g., face recognition) that is suitable for database retrieval is 
used to index the template database and a biometric approach (e.g., fingerprint 
verification) that is reliable in deterring impostors is used to ensure the overall system 
accuracy. In addition, since each biometric approach provides a certain confidence 
about the identity being established, a decision fusion scheme which exploits all the 
information at the output of each module can be used to make a more reliable 
decision. 

In our multimodal scheme, a biometrics that is efficient in database retrieval is 
used to retrieve the top n matches from the database, where n is a design parameter. 
We define such a biometrics as a retrieval biometrics. Since retrieval biometrics is not 
necessarily very reliable, a large value of n can be used to guarantee that the true 
match is retrieved from the database. After the top n matches have been retrieved, a 
biometrics which has a very high identification accuracy is used to find which of the 
top n retrievals is the correct match. We define this biometrics as a vertification 
biometrics. So far, the above integration has addressed only the identification speed. 
We can also improve the identification accuracy by combining the confidence values 
associated with the decisions made by each individual biometrics. In order to 
implement such a decision fusion scheme, we need to define ( i )  a confidence measure 
for each decision and ( i i )  a decision fusion criterion. Note that the confidence values 
associated with the top n matches obtained using the retrieval biometrics have a 
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different distribution than the confidence values associated with the verification 
biometrics. In this paper, we will give a general framework to derive the distributions 
of these two different confidence values. 

Remainder of the chapter is organized as follows. Section 16.2 formulates the 
decision fusion scheme. A prototype integration system which combines evidence 
provided by face and fingerprint using the proposed fusion scheme is described in 
Section 16.3. Experimental results on the MSU fingerprint databases and public 
domain face database are also reported in Section 16.3. Finally, the summary and 
conclusions are given in Section 16.4. 

2. Decision Fusion 

A biometric system makes a personal identification by comparing the similarity 
between input measurements and stored templates. Due to intraclass variations 
inherent in the biometric characteristics, the decision made by a biometrics has an 
associated confidence value. A decision fusion scheme should utilize all these 
confidence values associated with individual decisions to reach a more reliable 
decision. As we mentioned early, in order to derive a decision fusion scheme, we need 
to define (i) a confidence measure for each individual biometrics and (ii) a decision 
fusion criterion. The confidence of a given biometrics may be characterized by its 

false acceptance rate (FAR), which is defined as the probability of an impostor being 
accepted as a genuine individual. In order to estimate FAR, the impostor distribution 
which is defined as the distribution of similarity between biometric characteristic(s) of 
different individuals needs to be computed. 

Impostor Distribution for Retrieval Biometrics 

Due to the relatively low discrimination capability of the retrieval biometrics, the top 
n matches need to be retrieved from the database to guarantee that the genuine 
individual will be identified if he or she is in the database. In order to retrieve the top 
n matches, N comparisons need to be performed explicitly (in the linear search case) 
or implicitly (in organized search cases such as the tree search), where N is the total 
number of templates in the database. The comparisons of a query against templates 
from different individuals essentially provide an indication of interclass variations, 
which can be used to refine the confidence of a genuine match. 

Let @,, @*, ..., mN be the N templates stored in the database. For simplicity, let us 
assume that each individual has only one template and that a distance measure is used 
to indicate the similarity between a query and a template. So, the smaller the distance 
value, the more likely it is that the match is a correct match. Let Q r l ,  Or2, ..., mrn be 
the top n matches obtained by searching through the entire database using the retrieval 
biometrics. Let us further assume that the top n matches are arranged in the increasing 
order of distance values. Since the relative distances between consecutive matches are 
invariant to the mean shift of the distances, we will use relative distance values to 
characterize the impostor distribution. The probability that a retrieval in the top n 
matches is incorrect is different for different ranks. The probability that the first match 
is incorrect tends to be smaller than the probability that the second match is incorrect, 
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the probability that the second match is incorrect tends to be smaller than the 
probability that the third match is incorrect, and so on. Thus, the impostor distribution 
is a function of both the relative distance values, A, and the rank order, i, which has 
the following form: F',(A)P(,rder (i), where F;(A) represents the probability that the 
relative distance between impostors and their claimed identity at rank i is larger than a 
value A and Porder(i)  represents the probability that the retrieved match at rank i is an 
impostor. In practice, F,(A) and Porder(i)  need to be estimated from empirical data. 

Let I1, I2, ..., IN denote the identity indicators of the N individuals in the template 
database. Let Xa denote the distance between an individual and her own template 
which is a random variable with density function fa(Xa).Let  2,. 9,  ..., $"., denote 

the distances between an individual and the templates of the other individuals in the 
database, which are random variables with density functions, fPI(9J, fP2(2,), ..., 
fPN-I(XPN.I), respectively. Assume, for simplicity of analysis, that x" and 9,. 2 ,  ..., 
J!,., are statistically independent and fPI(2,) = p2(A@,) = ... fPN.I(XPN-I) = fp(XP). 
For an individual, n, which has a template stored in the database,(al, Q2, ..., aN}, the 
rank, R, o f F  among ..., A@,., is a random variable with probability 

where 

P(R = i) = ( N  - l)! p i ( l  - p)'" - 1 - i )  

i! ( N  - 1 - i) ! 
' ( 16.1) 

(1 6.2) 

-m -m 

When p ~1 and N is sufficiently large, P(R) may be approximated by a Poisson 
distribution [ 15], 

(1 6.3) 

where a 
are genuine individuals. Therefore, 

np. Obviously, P(R=i) is exactly the probability that matches at rank R=i 

Although the assumption that A'@,,22.  ..., 2,.1 are i.i.d. may not be true in practice, it 
is still reasonable to use the parametric form in Eq. (16.4) to estimate the probability 
that retrieved matches at rank i are impostors. 

Without any loss of generality, we assume that, for a given individual, n, A@,, 2 ,  
..., Y,, are arranged in increasing order of values. Define the non-negative distance 
between the (i+l)th and ith distance values as the ith relative distance, 

(16.5) 
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The distribution, f j ( A J ,  of the ith relative distance, Ai, is obtained from the joint 
distribution gi(Y,Ai)  of the ith value, 2, and the ith relative distance, Ai, 

m 

J(Ai)  = J g i ( x P , A i ) d Y ,  
-m 

F p ( A i )  = [l - F ' ( Y  + Ai)],  

(16.6) 

(16.7) 

( N  - l)! 
C =  

(i - 1)!(N - 2 -i)!' 
where [7] 

F p ( X P )  = I f P ( X P ) d X P .  

(16.9) 

-m 

With the distribution, fi(Ai), of the ith relative distance defined, the probability that 
the relative distance of the impostor at rank i is larger than a threshold value, A,  is 

m 

Fi(A) = I$(Ai)dA;. 
A 

(16.10) 

Let us assume that 2,. 2 ,  ..., J?,, have a Gaussian distribution with unknown mean 
and variance. Note that F,(A) depends on the number of individuals, N, enrolled in the 
database. However, it does not mean that F, has to be recomputed whenever a new 
individual is enrolled in the database. If N ~ 1 ,  the distributions of Fis for different 
values of N are quite similar to one another. On the other hand, the decision criterion 
still satisfies the FAR specification when N increases, though it may not be able to 
take a full advantage of the information contained in the N comparisons. In practice, 
an update schema which recomputes the decision criteria whenever the number of 
added individuals is larger than a pre-specified value can be used to exploit all the 
available information. 

Impostor Distribution for Verification Biometrics 

Depending on the availability of the statistical models or properties of the verification 
biometrics, i.e. a probability distribution function that precisely characterizes the 
decision making process, the problem of impostor distribution estimation may fall 
into one of the following three situations: ( i )  known model with known parameters, 
(ii) known model with unknown parameters, and (iii) unknown model. In situation 
(i), there exists a statistical model with known parameter values which exactly 
characterizes the verification biometrics. Unfortunately, there is no biometrics which 
can be precisely formulated by a known statistical model. In both situations (ii)  and 
(iii), the impostor distribution of the verification biometrics can not be precisely 
determined. Instead, they can only be approximated by an empirical estimate. 
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However, if it is possible to obtain a general model of the overall impostor 
distribution by making some simplifying assumptions, then the impostor distribution 
can be reliably estimated from a set of test samples. 

Fingerprint matching depends on the comparison of the two most prominent local 
ridge characteristics (minutiae) and their relationships to determine whether two 
fingerprints are from the same finger or not [9]. A model that can precisely 
characterize the impostor distribution of a fingerprint matching algorithm is not easy, 
since (i) the minutiae in a fingerprint are distributed randomly in the region of interest, 
(ii) the region of interest for each input fingerprint may be different, (iii) each input 
fingerprint tends to have a different number of minutiae, (iv) there may be a 
significant number of spurious minutiae and missing minutiae, (v) sensing, sampling, 
and feature extraction may result in errors in minutiae positions, and (vi) sensed 
fingerprints may have different distortions. However, it is possible to obtain a general 
model of the overall impostor distribution by making some simplifying assumptions. 

~ 

- -#--- - - - -  
\ -  
\ -  0 0 @  

\ \  0 0  

' \  y 0  

\ '  
\ '  

Template Minutiae Set Input Minutiae Set 

Figure 16.5 Minutiae matching model. A solid line indicates a match and a dashed 
line indicates a mismatch. 

Let us assume that the input fingerprint and the template have already been 
registered and the region of interest of both the input fingerprint and the template is of 
the same size, a W x W (for example, 500 x 500) region. The W x W region is 
tessellated into small cells of size wx w which is assumed to be sufficiently large (for 
example, 40 x 40) such that possible deformation and transformation errors are within 
the bound specified by the cell size. Therefore, there are a total of (W/w) x (W/w) 
(=Nc) different cells in the region of interest. Further, assume that each fingerprint has 
the same number of minutiae, N, ( I  Nc), which are distributed randomly in different 
cells and each cell contains at most one minutiae. Each minutiae is directed towards 
one of the D (for example, 8) possible orientations with equal probability. Thus, for a 
given cell, the probability, Pempry, that the cell is empty with no minutiae present is 
(N,INc) and the probability, P, that the cell has a minutiae that is directed towards a 
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specific orientation is ( l-Pempty)/D. A pair of corresponding minutiae between a 
template and an input is considered to be identical if and only if they are in the cells at 
the same position and directed in the same direction (Figure 16.5). With the above 
simplifying assumptions, the number of corresponding minutiae pairs between any 
two randomly selected minutiae patterns is a random variable, Y, which has a 
Binomial distribution with parameters Nm and P [ 15]: 

(16.11) 

The probability that the number of corresponding minutiae pairs between any two 
minutiae patterns is less than a given threshold value, y ,  is 

v- l  

(1 6.12) 

The decision made by a minutiae matching algorithm for an input fingerprint and a 
template is generally based on the comparison of the “normalized” number of 
corresponding minutiae pairs against a threshold. Therefore, under the assumption 
that minutiae in the region of interest of fingerprints of different individuals are 
randomly distributed, the probability that an impostor is accepted is (1-G(y)). 

Decision Fusion 

The impostor distribution for retrieval biometrics and the impostor distribution for 
verification biometrics provide confidence measures for each of the top n matches. In 
order to combine these confidence values to generate a more reliable decision about 
the genuine identity of a query, a joint impostor distribution of retrieval biometrics 
and verification biometrics is needed. It is reasonable to assume that the retrieval 
biometrics is statistically independent of the verification biometrics, because the 
similarity of one biometric characteristics between two individuals does not imply the 
similarity of a different biometric characteristics and vice versa. Let Fj(A)Porder(i) and 
G(Y) denote the impostor distributions at rank i for the retrieval biometrics and the 
verification biometrics, respectively. The joint impostor distribution of retrieval 
biometrics and verification biometrics at rank i may be defined as 

Hi(A,Y) = Fi(A)Porder(i)G(Y). ( 16.13) 

A decision criterion can then be derived from the joint impostor distribution. Since 
we are interested in deriving a decision criterion which satisfies the FAR 
specification, the decision criterion must ensure that the FAR of the multimodal 
system should be less than the given value. Without a loss of generality, we assume 
that at most one of the top n identities established by the retrieval biometrics for a 
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given query is the genuine identity of the individual. The final decision by the 
multimodal system either rejects all the n possibilities or accepts only one of them as 
the genuine identity. Let {I1,I2, ..., In} denote the n possible identities established by 
retrieval biometrics, {X1,X2, ..., Xn} denote the corresponding n distances, 
{Y1,Y2, ..., Yn} denote the corresponding n distances for the verification biometrics, 
and FARo denote the specified value of FAR. The identity decision, ID(II), for a 
given individual II can be determined by the following criterion: 

Hk(Ak, Yk) < FARo, and 
Hk(Ak, Yk) = H * (A*,  Y * )  

I k ,  if 

impostor , otherwise. 

ID(TI) = (16.14) 

where 

H (A*, Y , )  = min{Hi(Ai,Yi), ..., Hn(An,Yn)), (16.15) 

and Ai = XI+,-& Since Hj(A,Q defines the probability that an impostor is accepted at 
rank i with relative distance, A, and fingerprint matching score, Y, the above decision 
criterion satisfies the FAR specification. 

3. Experimental Results 

The proposed decision fusion scheme has been used in our prototype multimodal 
biometric system which integrates face recognition and fingerprint verification to 
improve the identification performance [8]. The block diagram of our prototype 
system is shown in Figure 16.6. 

Face Recognition 

In personal identification, face recognition refers to static, controlled full frontal 
portrait recognition [4]. There are two major tasks in face recognition: (i) face 
location and (ii) face recognition. Face location is to find whether there is a face in the 
input image and the location of the face in the image. Since the background is 
controlled or almost controlled in biometric applications, face location is not 
considered to be an extremely difficult problem. Face recognition finds the similarity 
between the located face and the stored templates to determine the identity. A number 
of face recognition approaches have been reported in the literature. The performance 
of some of the proposed face recognition approaches is very impressive. Two of the 
well-known commercial face recognition systems are Faceit [ 19] and Trueface [ 13]. 
Phillips et al. [ 16] concluded that ‘‘face recognition algorithms were developed and 
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were sufficiently mature that they can be ported to real-time 
experimental/demonstration system.” In our system, the eigenface approach [1 8] is 
used for the following reasons: (i)  the background, facial transformations (e.g., scale 
and rotation), and illumination can be controlled, (ii) it has a compact representation, 
(iii) it is feasible to index an eigenface-based template database using different 
indexing techniques such that the retrieval can be conducted efficiently [4], and (iv) 
the eigenface approach is a generalized template matching approach which was 
demonstrated to be more accurate than the attribute-based approach [2]. 

Figure 16.6 Block diagram of the prototype multimodal biometric system. 

Fingerprint Verification 

A fingerprint is the pattern of ridges and furrows on the surface of a fingertip (Figure 
16.7). The uniqueness of a fingerprint is exclusively determined by the local ridge 
characteristics and their relationships. Fingerprint matching generally depends on the 
comparison of local ridge characteristics and their relationships [9,11]. The two most 
prominent ridge characteristics, called minutiae, are (i) ridge ending and (ii) ridge 
bifurcation (Figure 16.7). Automatic fingerprint verification mainly consists of two 
stages [9 ] :  (i) minutiae extraction and (ii) minutiae matching. Minutiae extraction 
module extracts minutiae from input fingerprint images and the matching module 
determines whether two minutiae patterns are from the same finger or not. We have 
developed an automatic fingerprint verification system which has been evaluated on a 
large database [9] .  
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Databases 

The integrated biometric system was tested on the MSU fingerprint database and three 
public domain face databases. The MSU fingerprint database contains a total of 1,500 
fingerprint images (640 x 480) from 150 individuals with 10 images per individual, 
which were captured with an optical scanner manufactured by Digital Biometrics. 
When these fingerprint images were captured, no restrictions on the finger position, 
orientation, and impression pressure were imposed. As a result, the fingerprint images 
vary in quality. Approximately 90% of the fingerprint images in the MSU database 
are of reasonable quality, similar to the images shown in Figures 16.9 (b) and (d). 
Images of poor quality with examples shown in Figures 16.9 (f) and (h) are mainly 
due to large creases, smudges, dryness of the finger, and high impression pressure. 
The face database contains a total of 1,132 gray level images of 86 individuals; 400 
images of 40 individuals with 10 images per individual are from the Olivetti Research 
Laboratory, 300 images of 30 individuals with 10 images per individual are from the 
University of Bern, and 432 images of 16 individuals with 27 images per individual 
are from the MIT Media Lab. The images were re-sampled from the original sizes to a 
fixed size of 92 x 112 and normalized to zero mean. 

Figure 16.7 Fingerprint matching. 

Test Results 

We randomly selected 640 fingerprints of 64 individuals as the training set and the 
remaining as the test set. The mean and variance of the impostor distribution (Figure 
16.10(a)) were estimated to be 0.70 and 0.64, respectively, from the 403,200 (640 x 
630) impostor matching scores of ‘‘all against all” verification test by fitting a 
binomial model [8]. A total of 542 face images were used as training samples. Since 
variations in position, orientation, scale, and illumination exist in the face database, 
the 542 training samples were selected such that all the representative views are 
included. Eigenfaces were estimated from the 542 training samples and the first 64 
eigenfaces associated with the 64 largest eigenvalues were saved. This resulted in 
about 95% of the total variance to be retained. The top n = 5 impostor distributions 
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were approximated. Generally, the larger the value of n, the lower the false reject rate 
of face recognition. However, as n increases, more candidates need to be verified by 
fingerprint verification. This illustrates the trade-off between the accuracy and speed 
of a multimodal biometric system. Figure 16.10(b) shows the impostor distribution for 
face recognition at rank no. 1. We randomly assigned each of the remaining 86 
individuals in the MSU fingerprint database to an individual in the face database (see 
Figure 16.9 for some examples). Since the similarity between two different faces is 
statistically independent of the fingerprint matching scores between the two 
individuals, such a random assignment of a face to a fingerprint is reasonable. One 
fingerprint for each individual is randomly selected as the template for the individual. 
To simulate the practical identification scenario, each of the remaining 590 faces was 
paired with a fingerprint to produce a test pair. In the testing phase, with a pre- 
specified confidence value (FAR), for each of the 590 fingerprint and face pairs, the 
top 5 matches were retrieved using face recognition. Then fingerprint verification was 
applied to each of the resulting top 5 matches and a final decision was made by the 
decision fusion scheme. 

The typical FAR for a biometric system is usually very small (<0.0001). In order to 
demonstrate that a given biometric system does indeed meet such a specification, a 
very large set of representative samples (>100,000) is needed. Unfortunately, 
obtaining such a large number of test samples is both expensive and time consuming. 
To overcome this hurdle, we reuse the individual faces by different assignments - 
each time, a different fingerprint is assigned to a given face to form a face and 
fingerprint probe pair. Obviously, such a reuse schema might result in an unjustified 
performance improvement. In order to diminish the possible gain in performance due 
to such a reuse schema, we multiplied the estimated impostor distribution for face 
recognition by a constant of 1.25, which essentially reduces the contribution of face 
recognition to the final decision by a factor of 1.25. On the other hand, fingerprint 
verification operates in the one-to-one verification mode, so different assignments 
may be deemed as different impostor forgeries. Therefore, the test results using such a 
random assignment schema are able to reasonably estimate the underlying 
performance numbers. In our test, 1,000 different assignments were tried. A total of 
590,000 (590 x 1,000) face and fingerprint test pairs were generated and tested. The 
FRR of our system with respect to different pre-specified FAR values, as well as the 
FRR obtained by “all-to-all” verifications using only fingerprints (2,235,000 = 1500 x 
1490 tests) or faces (342,750 = 350 x (590-5) + 240 x (590-15) tests) are listed in 
Table 16.1. Note that the FRR values in fusion column include the error rate (1.8%) of 
genuine individuals not present in the top 5 matches established by face recognition. 
The receiver operating curves are plotted in Figure 16.1 1, in which the authentic 
acceptance rate (the percentage of genuine individuals being accepted, i.e. 1-FRR) is 
plotted against FAR. We can conclude from these test results that an integration of 
fingerprint and face does result in an improvement of identification accuracy. 
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Figure 16.8 First ten eigenfaces obtained from 542 training images of size 92 x 11 2; 
they are listed, from left to right and top to bottom, in decreasing values of the 
corresponding eigenvalues. 

Figure 16.9 Face and fingerprint pairs; the face images (92 x 11 2) are from the Olivetti 
Research Lab. And the fingerprint images (640 x 480) are captured with a Digital 
Biometrics scanner; without any loss of generality, face and fingerprint pairs were 
randomly formed. 
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Figure 16.10 Impostor distributions; (a) impostor distribution for fingerprint verification; 
the mean and variance of the impostor distribution are estimated to be 0.70 and 0.64, 
respectively; (b) the impostor distribution for face recognition at rank no. 1, where the 
stars (*) represent empirical data and the solid curve represents the fitted distribution; 
the mean sauare error between the empirical distribution and the fitted distribution is 
0.001 4. 

1.000 
0.100 
0.010  
0.001 64.1 14.9 

Table 16.1 False reject rates (FRR) on the test set with different values of FAR. 

Face Recognition Fingerprint Verification Total 
0.9 seconds 1.2 seconds 2.1 seconds 

Table 16.2 Average CPU time per identification on a Sun UltraSPARC 1 workstation. 

In order for the prototype identification system to be acceptable in practice, the 
response time of the system needs to be within a few seconds. Table 16.2 shows that 
our multimodal system does meet the response time requirement. 

10.661.2
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Figure 16.11 Receiver Operating Curves; the horizontal axis is FAR and the vertical 
ais is (1-FRR). 

4. Conclusions 

A biometric system which is based only on a (or one snapshot of a) single biometric 
characteristic may not always be able to achieve the desired performance. A 
multimodal biometrics technique, which combines multiple biometrics in making an 
identification, can be used to overcome the limitations. Integration of multimodal 
biometrics for an identification system has two goals: (i) improve the identification 
accuracy and ( i i )  improve the identification speed (throughput). We have developed a 
decision fusion scheme which integrates two different biometrics (face and 
fingerprint) that complement each other. In this scheme, a biometrics that is suitable 
for database retrieval is used to index the template database and a biometrics that is 
reliable in deterring impostors is used to ensure the overall system accuracy. In 
addition, a decision fusion scheme which exploits all the information in the decisions 
made by each individual biometrics is used to make a more reliable decision. 

In order to demonstrate the efficiency of our decision fusion scheme, we have 
developed a prototype multimodal biometric system which integrates faces and 
fingerprints in making a personal identification. This system overcomes many of the 
limitations of both face recognition systems and fingerprint verification systems. 
Experimental results demonstrate that our system performs very well; it meets the 
response time as well as the accuracy requirements. 
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Abstract Although the technical evaluation of biometric 
identification devices has a history spanning over two decades, it is 
only now that a general consensus on test and reporting measures 
and methodologies is developing in the scientific community. By 
“technical evaluation”, we mean the measurement of the five 

parameters generally of interest to engineers and physical 
scientists: false march and false non-match rates, binning error 
rate, penetration coefficient and transaction times. Additional 
measures, such as "failure to enroll” or “failure to acquire”, 
indicative of the percentage of the general population unable to use 
any particular biometric method, are also important. We have not 
included in this chapter measures of more interest to social 
scientists, such as user perception and acceptability. Most 
researchers now accept the ‘’Receiver Operating Characteristic” 
(ROC) curve as the appropriate measure of the application- 
dependent technical perjormance of any biometric identification 
device. Further, we now agree that the error rates illustrated in the 
ROC must be normalized to be independent of the database size 
and other “accept/reject ” decision parameters of the test. This 
chapter discusses the general approach to application-dependent, 
decision-policy independent testing and reporting of technical 
device perjormance and gives an example of one practical test. 
System performance prediction based on test results is also 
discussed. 
Keywords: Biometric identification. testing, receiver operating 
characteristic curve. 
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1. Introduction 

We can say, somewhat imprecisely, that there are two distinct functions for biometric 
identification devices: 1) to prove you are who you say you are, and 2) to prove you 
are not who you say you are not. In the first function, the user of the system makes a 
“positive” claim of identity. In the second function, the user makes the “negative” 
claim that she is not anyone already known to the system. 

Biometric systems attempt to use measures that are both distinctive between 
members of the population and repeatable over each member. To the extent that 
measures are not distinctive or not repeatable, errors can occur. In discussing system 
errors, the terms ‘‘false acceptance” and ‘‘false rejection” always refer to the claim of 
the user. So a user of a positive identification system, claiming to match an enrolled 
record, is ‘‘falsely accepted” if incorrectly matched to a truly non-matching biometric 
measure, and ‘‘falsely rejected” if incorrectly not matched to a truly matching 
biometric measure. In a negative identification system, the converse is true: ‘‘false 
rejection” occurring if two truly non-matching measures are matched, and ‘‘false 
acceptance” occurring if two truly matching measures are not matched. Most systems 
have a policy allowing use of multiple biometric samples to identify a user. The 
probability that a user is ultimately accepted or rejected depends upon the accuracy of 
the comparisons made and the accept/reject decision policy adopted by the system 
management. This decision policy is determined by the system manager to reflect the 
operational requirements of acceptable error rates and transaction times and, thus, is 
not a function of the biometric device itself. 

Consequently, in this chapter we refer to ‘‘false matches” and ‘‘false non-matches” 
resulting from the comparison of single presented biometric measure to a single 
record previously enrolled. These measures can be translated into ‘‘false accept” and 
“false reject” under a variety of system decision policies. 

In addition to the decision policy, the system “false rejection” and ‘‘false 
acceptance” rates are a function of five inter-related parameters: single comparison 
false match and false non-match rates, binning error rate, penetration coefficient, and 
transaction speed. In this chapter, we will focus on testing of these basic parameters 
and predicting system performance based on their resulting values and the system 
decision policy. 

Regardless of system function, the system administrator ultimately has three 
questions: What will be the rate of occurrence of false rejections, requiring 
intervention by trained staff?; Will the probability of false acceptance be low enough 
to deter fraud?; Will the throughput rate of the system keep up with demand? The 
first question might further include an estimate of how many customers might be 
unable to enroll in or use the system. The focus of this chapter will be on developing 
predictive tools to allow “real-world” estimates of these numbers from small-scale 
tests. 

2. Classifying Applications 

Technology performance is highly application dependent. Both the repeatability and 
distinctiveness of any biometric measure will depend upon difficulty of the 
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application environment. Consequently, we must test devices with a target application 
in mind. Although each application is clearly different, some striking similarities 
emerge when considered in general. All applications can be partitioned according to 
at least seven categories: 

1. 

2 .  

3. 

4. 

5. 

6. 

7. 

Cooperative versus Non-cooperative: Is the deceptive user attempting to 
cooperate with the system to appear to be someone she is not, or attempting not to 
cooperate to not appear to be someone known to the system? 

Overt versus Covert: Is the user aware that the biometric measure is being taken? 

Habituated versus Non-habituated: Is the user well acquainted with the system? 

Attended versus Non-attended: Is the use of the biometric device observed and 
guided by system management? 

Standard Environment: Is the application indoors or in an outdoor, or 
environmentally stressful, location? 

Public versus Private: Will the users of the system be customers (public) or 
employees (private) of the system management? 

Open versus Closed: Will the system be required, now or in the future, to 
exchange data with other biometric systems run by other management? 

This list is incomplete, meaning that additional partitions might also be 
appropriate. We could also argue that not all possible partition permutations are 
equally likely or even permissible. A cooperative, overt, habituated, attended, private, 
application in a laboratory environment will generally produce lower error rates than 
outdoor applications on a non-habituated, unattended population. 

3. The Generic Biometric System 

Although biometric devices rely on widely different technologies, much can be said 
about them in general. Figure 17.1 shows a generic biometric identification system, 
divided into five sub-systems: data collection, transmission, signal processing, 
decision and data storage. The key subsystems are: 

1. Data collection, which includes the imaging of a biometric pattern presented to 
the sensor. 

Transmission, which may include signal compression and re-expansion and the 
inadvertent addition of noise. 

Signal processing, in which the stable, yet distinctive, “features” are extracted 
from the received signal and compared to those previously stored. 

Storage of “templates” derived from the “features” and possibly the raw signals 
received from the transmission subsystem. 

2. 

3. 

4. 
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5 . Decision, which makes the decision to ‘‘accept’’ or “reject” based upon the system 
policy and the scores received from the signal processing system. 

COLLECTION 

I \ \  I /  

Figure 17.1 General biometrics system. 

4. Application-Dependent Device Testing 

We are now in a position to present a more mathematical development of the above 
ideas and to explain more precisely three major difficulties in biometric testing: the 
dependence of measured error rates on the application classification, the need for a 
large test population which adequately models the target population, and the necessity 
for a time delay between enrollment and testing. This section will present a 
mathematical development of the five basic system parameters: false match rate, false 
non-match rate, binning error rate, penetration coefficient and transaction speed. We 
will also discuss Receiver Operating Characteristic curves [1-5] and confidence 
interval estimations. 

Features 

The features extracted by the signal processing sub-system of Figure 17.1 are 
generally vectors in a real or complex [6]  metric space, with components generally 
taking on integer values over a bounded domain. In some systems [7], the domain of 
each component is restricted to the binary values of {O,l}. Fingerprint systems are 
the primary exception to this rule, using features not in a vector space. In this chapter, 
we will suppose that the components are any real number. 

If each feature vector, X, has J components, xj, we can write 
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X = ( x i )  ,J=1,2 ,..., J. 
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(17.1) 

where 

x . = p j + & .  J (17.2) 

The components of the feature vector, X, consist of a fundamental biometric measure, 
p j  , and an error term, E ,  both assumed to be time-invariant and independent over all 

J. The error term, E ,  has some distribution, <(0,o2), not presumed to be normal. 
To simplify the development, we will assume that the distribution of the errors is 
identical for all components of X. We can say, therefore, that the components of X 
come from a distribution 

(17.3) 

Errors arise from the data collection sub-system of Figure 17.1, perhaps owing to 
random variations in the biometric pattern, pattern presentation or the sensor. Errors 
owing to the transmission or compression processes of the transmission sub-system of 
Figure 17.1 may also be important. Assuming the errors to be uncorrelated, we can 
write 

(17.4) 2 2  2 2 2 
cT = Obiometric Opresentation + cTsensor + Otransmission 7 

where subscripted terms on the right hand side are the error variances associated with 
changes in the biometric pattern, the presentation and the sensor, accordingly, along 
with the transmission error variance. In reality, compression errors, included in the 
transmission error term, may be a function of the sensor error, adding correlations to 
the error process. 

We note the first major problem with error testing of biometric devices: the error 
variance of each of the terms in Eq. (17.4) is highly application dependent. There is 
currently no way to predict the error terms for all applications from measurements 
made in any one test environment. Consequently, test results are always dependent 
upon the test environment and will not reflect errors in dissimilar application 
environments of the ‘‘real world”. Testing of the individual error variances as noted in 
Eq. (17.4) has not been done, so we will consider in this chapter only the composite 
variance c2. 

Templates 

At the time of enrollment, the user presents M 2 1 samples of the biometric measure 
for the creation of a “template”, X , from the M feature vectors, X’. The superscript, 
i=1,2,. . .,M, has been added to the feature vector, X, to indicate multiple samples from 

- 
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the same user. The template, x , may be computed as the average of the M feature 
vectors, Xi ,  in which case we can write, 

x = (xi), (17.5) 

where 

(17.6) 

When computing the weighted sum of uncorrelated random variables, the following 
relationships hold [8]: 

and 

(17.7) 

(17.8) 
i=O 

where c, i=1,2,. . .,M is the weighting vector. 
Under some weighting vectors, such as uniform ci, the distribution of the weighted 

sum of uncorrelated random variables will, by the Central Limit Theorem, tend 
toward normality as M increases. 

Applying Eqs. (17.7) and (17.8) to Eq. (17.6), the components of the templatex 
are seen to be distributed as 

(17.9) 

where 4 indicates a distribution tending toward normality. In many systems, 

- CrL 
however, M may be one or three, meaning that <(p. -)cannot generally be 

J ’  M 
considered normal. 

“Genuine” Distances 

The feature vectors, X, vary across users, which we will express by adding a 
subscript, h=1,2,..N, to our notation, where N is the number of enrolled users. Our 
original assumption, that the components of the feature vector, X, are independently 
distributed random variables, is now expanded to include independence over users, as 
well. The sample data across the entire population of users is “non-stationary”, 
meaning that multiple measures from a single user cannot be used to approximate the 
distribution for the entire population. This adds a second major complication to 
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biometric testing, the requirement for a large test population that adequately 
represents the target population of the application. 

For every user, a template is created from M samples of the biometric measure. 
Then for each user, the biometric feature vector is re-sampled and a distance measure, 
d h h ,  is computed between the additional sample and the user’s template. 

(17.10) 

where the double brackets indicate a general distance measure and 

A X h h  =(xh, - X h ,  M+l ) for j=1,2 . . .J. 

Applying equation (1 7.6), the components of AXh h become 

Referring to equation (17.2), 

where, by equation (1 7.8) ,  the error term, E, is distributed as 

(17.11) 

(17.12) 

(17.13) 

(17.14) 

Consequently, the distribution of the component, f k h  h j ,  used to compute the genuine 
distance dh h , does not tend toward normality with increasing M, but rather to 
~ ( O , O ; )  , the original distribution of the error terms for user h. 

One of the tasks in testing will be to develop the probability distribution of these 
distance measures over the entire user population. We will call this density function 
F'G'EN (d) , where “GEN" indicates “genuine”, indicating that samples are being 
compared to each user’s own (genuine) template. 

We have assumed, for simplicity, that both , u h j  and 02 are time-invariant. In 

reality, however, both may drift over time. The measurement means, p h  , , may move 
as a ‘‘random walk”. In general, biometric system identification errors increase with 
the passage of time after enrollment. This phenomenon is generally attributed to 
changes in the underlying biometric measures, p h ,  , and, consequently, is referred to 
as ‘‘template aging”. Sensor and presentation changes over time may also be 
contributing factors. This represents a thud major problem in the error testing of 
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biometric devices: performance estimation may depend upon the time difference 
between enrollment and test samples. 

Consider Ph = f(t), where t is time. Then the p h of Eq. (17.13) are also functions 
of time, and can be given by 

where, again, 

(17.16) 

and tl  and t2 are the times at enrollment and later sampling, respectively. To 
understand the effects of a time-varying mean, we compare the time invariant case of 
of Eq. (17.13) to the time varying case of Eq. (17.15). If our distance measure is 
Euclidean, then any variation over time in the Ph causes an increase in the expected 
distance values, E(dh h), over the population, because 

E 

if Ph j(t1) and , u h  j ( t 2 )  are not always equal and the E and p terms are uncorrelated, 
as originally assumed. 

Ideally, the time interval between enrollment and sampling in any test should be 
similar to the interval expected in the application. This is usually not possible to 
estimate or attain so, as a “rule of thumb”, we would like the time interval to be at 
least on the order of the healing time of the body part involved. This would allow any 
temporary variations in the biometric measures to be considered in the computation of 
the template-to-sample distances. This requirement, of course, greatly increases test 
time and expense. 

It has been commonly noted in practice [9] that users can be roughly divided into 
two groups depending upon distance measurements, dhh: a large group, {N1} with 
small distance measures, called “sheep”, and a smaller group, {N2}, with high 
distance measures, called “goats” [10], where the total population N =N1+ N2. The 
preceding development leads us to believe that “sheep” and “goats” may be 
distinguished either by the value of O2h, with users in {N1} having smaller error 
variance o2 then users in {N2}, or by the time-variability of their fundamental 
measures, p,, . 
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More precisely, the terms “goats” and “sheep” have generally been applied to 
indicate the chronic classification of individuals, “goats” being users who consistently 
return large distance measures when samples are compared to stored templates. 
Multiple test samples over time from the same user do not return additional 
independent data for population estimates and may result in the mixing of 
“habituated” and “non-habituated” user interaction with the system. Consequently, 
previous tests have not followed users in time. From any single set of test distance 
samples, the large distances will represent both chronic “goats” and a few “sheep”, 
who simply happen to return a large distance score at the tail of the “sheep” error 
distribution. 

Histograms of “genuine” distances are noted in practice to be bi-modal, the 
distance measures from the ‘‘sheep’’ contributing to the primary mode, and the 
distance measures from the “goats” contributing to the secondary mode. 

“Impostor” Distances 

Using the same metric as used for establishing the ‘‘genuine’’ distances, a set of 
samples X  could be compared to non-matching templates ?Th , h f k , to arrive at 
a non-matching distance, dhk .  We can rewrite Eqs. (17.10), (17.1 1) and (17.12) to get 

( 1 7.18) 

By Eq. (17.2), these components of the difference vector AXhk can be written 

where, by Eqs. (17.7) and (17.8) 

(17.20) 

The distribution of the error term, E ,  does not tend to normal with increasing M, but 
rather to the original, unspecified distribution {(O, 0:) . 

Over the entire population, these distance measures, dh k , for h f k , have a density 
function F'IMP (d) where “IMP” means “impostor”, so named because the density is of 
measures from an “impostor” sample to a non-matching template. Some researchers 
[ 1 1 ] have suggested the use of additional templates not matched by samples for the 
calculation of “impostor” distributions. This is sometimes called a “background” 
database. In our notation, this would create two groups of templates, ?I,, h E {H,} , 
those matched by test samples, and ?Th,h e{H2},  those not matched. The genuine 
distance distribution, based on distances whose components are distributed as Eq. 
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(1 7.14), considers only the 6; for the users, h E { H1} , with matching samples. By 
Eq. (17.20), however, the impostor distribution is impacted by the distribution of 
variances 62 for users in both matched and unmatched groups. Unless we are certain 
that the populations are the same, such that the distribution of the terms (ph j - pk j )  

does not depend upon the group {H1} or {H2} from which the members come, and 
that the application environment is the same, such that 6: is also group independent, 
“background” databases only add uncertainty to the measurements. 

“Inter- Template” Distances 

Between each pair of templates, -iT, and ?Tk , h f k , a distance, 6 h  k , can be computed 
using the same metric as was used to compute the genuine and impostor distances: 

(17.21) 

We use the Greek symbol, 6, to differentiate this “inter-template” distance from the 
“impostor” distance of the preceding section. 

Because we are working in a metric space, the distances are symmetric such that 
6,, k = 6 k  h , and the distance of any vector from itself is zero, so 6 k  k = 0. Therefore, 
N(N- 1)/2 non-independent distances can be computed between all templates. From 
Eq. (17.6), we have for the components of AXh k,

M 1 
M .  

M 1 
M .  AZ,, k j = - X h - - X h for h f k . 

1=1 I = I  

(1 7.22) 

By Eq. (1 7.2), 

where, by Eqs. (17.7) and (17.8), 

(1 7.24) 

For the inter-template distance, the error term is from a distribution tending toward 
normality as M increases. Further, in the limit, the variance of the error term goes to 
zero with increasing M. This indicates that the inter-template terms are not impacted 
by the measurement error for large M. 

We denote the density function of 6 h  k over the population as F;,(b), where “IT” 
indicates “inter-template”. Comparing Eq. 17.20 to Eq. 17.24, the distributions of the 
terms composing the “impostor” and “inter-template” distributions are equivalent only 
when M= 1 . For M> 1,
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2 2 2  
2 Oh’Ok >- 

M M ’  
(17.25) 

indicating that the variance in the error terms of components comprising the impostor 
distance vector will be larger than that of the terms comprising the inter-template 
distance vector. For uncorrelated means and errors, as assumed, and Euclidean 
distances, the expected values of the impostor distances will be greater than for the 
inter-template distances. Consequently, the impostor and inter-template distributions 
will only be equivalent for M=l. The inter-template distribution makes an 
increasingly poor proxy for the impostor distribution as M increases. 

The three distributions, “genuine”, “impostor” and “inter-template”, are shown in 
Figure 17.2. Both the impostor and inter-template distributions lie generally to the 
right of the genuine distribution, which shows the second mode noted in all 
experimental data. 

Decreasing the difficulty of the application category (changing from non- 
habituated, non-attended to habituated, attended, for instance) will effect the genuine 
distribution by making it easier for users to give repeatable samples, decreasing the 
value of o:, and thus moving the genuine curve to the left. Decreasing the 

measurement errors, O: and at, also causes movement in the impostor distribution 
to the left, but causes movement in the “inter-template” distribution only for small M. 

Operational systems store templates and transaction distance measures, but rarely 
store the samples acquired during operations. Consequently, under the assumption 
that all users are “genuine”, the genuine distribution can be constructed directly from 
the transaction distance measures. The “inter-template” distribution can be 
constructed by “off-line” comparison of the distances between templates. The 
“impostor” distribution, however, cannot be reconstructed without operational 
samples. Methods for convolving F'GEN(d) and F;,(6) to determine F'IMP(d), under 
some simplifying assumptions, have been discussed in [ 12] and [ 13]. 
A decision policy commonly accepts as genuine any distance measure less than some 
threshold, r. In non-cooperative applications, it is the goal of the deceptive user 
(”wolf’) not to be identified. This can be accomplished by willful behavior to 
increase his/her personal a:, moving a personal genuine distribution to the right and 
increasing the probability of a score greater than the decision policy threshold, r. We 
do not know for any non-cooperative system the extent to which “wolves” can 
willfully increase their error variances. 

ROC Curves 

Even though there is unit area under each of the three distributions, the curves 
themselves are not dimensionless, owing to their expression in terms of the 
dimensional distance. We will need a non-dimensional measure, if we are to compare 
two unrelated biometric systems using a common and basic technical performance 
measure. 
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Figure 17.2 Distance distributions.
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( 1 7.29) 

(1 7.30) 

By this last equation, we can see that if the inter-template distribution, F,,T(6)l;, is 
used to replace the impostor distribution under these conditions, the false match rate 
will be overestimated. 

We note that the ROC curve is non-dimensional. Other non-dimensional measures 
have been suggested for use in biometric testing [14], such as “D-prime”[l,2] and 
"Kullback-Leibler" [ 15] values. These are single, scalar measures, however, and are 
not translatable to error rate prediction. The ‘‘equal error rate” (EER) is defined as the 
point on the ROC where the false match and false non-match rates are equivalent. 
The EER is non-dimensional, but not all biometric systems have meaningful EERs 
owing to the tendency of the genuine distribution to be bimodal. False match and false 
non-match error rates, as displayed in the ROC curve, are the only appropriate test 
measures for system error performance prediction. 

Penetration Rate  

In systems holding a large number, N, of templates in the database, search efficiencies 
can be achieved by partitioning them into smaller groups based both upon information 
contained within (endogenous to) the templates themselves and upon additional 
(exogenous) information, such as the customer’s name, obtained at the time of 
enrollment. During operation, submitted samples are compared only to templates in 
appropriate partitions, limiting the required number of template-to-sample 
comparisons. Generally, a single template may be placed into multiple partitions if 
there is uncertainty regarding its classification. Some templates of extreme uncertainty 
are classified as “unknown” and placed in all of the partitions. In operation, samples 
are classified according to the same system as the templates, then compared to only 
those templates from the database which are in communicating partitions. The 
percentage of the total database to be scanned, on average, for each search is called 
the ‘‘penetration coefficient”, P, which can be defined as 

E(number of comparisons) 
N 

P =  3 (17.3 1) 

where E(number of comparisons) is the expected number of comparisons required for 
a single input sample. In estimating the penetration coefficient, it is assumed that the 
search does not stop when a “match” is encountered, but continues through the entire 
partition. Of course, the smaller the penetration coefficient, the more efficient the 
system. Calculation of the penetration coefficient from the partition probabilities is 
discussed in [ 16,17]. 
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The general procedure in testing is to calculate the penetration coefficient 
empirically from the partition assignments of both samples and templates. Suppose 
there are K partitions, Ci, for i=1,2,. . .,K and there are L sets, SI, l=1,2,. . .,L, indicating 
which partitions communicate. For instance, an “unknown” partition communicates 
with every other partition individually. 

There are Ns samples, X h  , h=1,2.. .,Ns , and NT templates, x k  , k=1,2.. .,NT. Each 
sample, x h ,  can be given multiple partitions, C h  i, the precise number of which, I,,, will 
depend upon the sample. Similarly, each template, T ? k ,  can have multiple partitions 
c k  j ,  j=1,2, ..., Ik. For any sample-template pair, if any of the partitions are in a 
communicating set, the sample and template must be compared. However, they need 
to be compared at most only once, even if they each have been given multiple 
partitions in multiple communicating sets. 

We define the “indicator” function, 

- 

(17.32) 

so that the function equals unity if the partitions Ch and C, are both elements of the 
set S/ and zero otherwise. For each of the samples, h, and each of the templates, k, 
we must search all partitions, i=1,2 ,..., I h ,  and J=1,2 ,..., Jk, against all L sets to 
determine if any C h  and C k  communicate. However, a single sample and single 
template never need be compared more than once. The penetration coefficient will be 

(1 7.33) 

where H(.) is the Heavyside unity function, defined as unity if the argument is greater 
than zero and zero otherwise. 

There may be multiple, say B, independent, filtering and binning methods, Pi, 
i=1,2, ..., B, used in any system. If the methods are truly independent, the total 
penetration coefficient for the system, PsYs, using all B methods, can be written 

(17.34) 
i = l  

If correlations exist between any of the partitioning schemes, Eq. (17.34) will under- 
estimate the true penetration coefficient. 
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Bin Error Rate 

The bin error rate reflects the percentage of samples falsely not matched against their 
templates because of inconsistencies in the partitioning process. This error rate is 
determined by the percentage of samples not placed in a partition which 
communicates with its matching template. For each partitioning method employed, a 
single test can be designed to determine the bin error rate, e. Consider N matched 
sample-template pairs, Xh and%, . The percentage of the pairs for which each 
member is placed in a communicating partition is an estimate of the complement of 
the bin error rate. This percentage can be computed by 

1 - e =  
N 

(1 7.35) 

The bin error rate for the system, however, will increase as the number, B, of 
independent binning methods increase. If any one of the methods is inconsistent, a 
system binning error, E ~ ~ ~ ,  will result. Therefore, the probability of no system 
binning error over B binning methods is 

(17.36) 
i=l 

Transaction Speed 

The time required for a single transaction, Transaction, is the sum of the data collection 
time, Tcollect, and the computational time, Tcompute. 

(17.37) 

For positive identification systems, only a very few comparisons between templates 
and submitted samples are required and generally Tcollect > Tcompute. The collection 
times are highly application dependent, varying from a very few seconds [18] to a 
couple of minutes [ 19]. Transaction times are best estimated by direct measurement 
of the system throughput, S, as given by 

1 
S =  

'transaction 
(17.38) 

For large-scale, negative identification systems, the computational time can be much 
greater than the collection time. The challenge is to reduce the computational time so 
that the throughput is not limited by the computer hardware. The computational time 
can be estimated from the hardware processing rate, C, and the number of 
comparisons required for each transaction. If m is the number of biometric records 
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collected and searched from each user during a transaction and N is the total number 
of records in the database, then 

(17.39) 

where Psvs is again the system penetration coefficient. 
hardware processing speeds are given in texts such as [20]. 

Methods for estimating 

Confidence Intervals 

The concept of ‘‘confidence intervals” refers to the inherent uncertainty in test results 
owing to small sample size. These intervals are a posteriri estimates on the 
uncertainty in the results on the test population in the test environment. They do not 
include the uncertainties caused by errors (mislabeled data, for example) in the test 
process. Future tests can be expected to fall within these intervals only to the extent 
that the distributions of ,uh and a;, and the errors in the testing process, do not 
change. The confidence intervals do not represent a priori estimates of performance 
in different environments or with different populations. Because of the inherent 
differences between test and application populations and environments, confidence 
intervals have not been widely used in reported test results and are of limited value. 

The method of establishing confidence intervals on the ROC is not well 
understood. Traditionally, as in [ 14], they have been found through a summation of 
the binomial distribution. The confidence, p, given probability p, of K distances, or 
fewer, out of N independent distances being on one side or the other of some 
threshold, t, would be 

N! K 

1 - /3 = Pr{i 2 K} = c( y )  , p’ (1 - p y - i  . 
i = O  i!(N - i)! 

(17.40) 

When computing the confidence interval on the false non-match rate, for instance, 
K would be the number of the N independent, genuine distance measures greater than 
the threshold t. The best ‘‘point estimate” of the false non-match rate would be K/N. 

The probability, p, calculated by inverting Eq. (17.40), would be the upper bound 
on the confidence interval. The lower bound could be calculated from the related 
equation for Pr{i 2 K} . In practice, values of N and K are too large to allow equation 
(17.40) to be computed directly and p may be too small to allow use of normal 
distribution approximations. The general procedure is to use the ‘‘incomplete Beta 
function” [21,22] 

(17.41) N !  . 
N 

I , ( K + l , N - K ) =  c (Y), pl(1- p ) N - i  = p 
i=K+, z ! ( N - i ) !  

and numerically invert to find p for a given N, K, and p. 
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One interesting question to ask is ‘‘What is the lowest error rate that can be 
statistically established with a given number of independent comparisons?”. We want 
to find the value of p such that the probability of no errors in N trials, purely by 
chance, is less than 5%. This gives us the 95% confidence level, p. We apply Eq. 
(1 7.40) using K=0, 

N‘ 0.05 >Pr(K=O) = x r  pi ( l - ~ ) ~ - ~  = ( 1 - ~ ) ~ .  
1!(1- N)! 

0 

i = O  

(17.42) 

This reduces to 

ln(0.05) > N ln(1- p) . (17.43) 

For small p, In (1-p) = -p and, further, In (0.05) = -3. Therefore, we can write 

N >3 /p .  (17.44) 

Recent work indicates that while this approach is satisfactory for error bounds on 
the false non-match rate, where distance measures are generally calculated over N 
independent template-sample pairs, it cannot be applied for computing confidence 
intervals on false match results where cross-comparisons are used. Bickel [23] has 
given the confidence intervals for the false match rate when cross-comparisons are 
used and the templates are created from a single sample, such that M=1 . For N 
samples, there are N(N- 1) non-independent cross-comparisons. We will denote a 
cross-comparison distance less than or equal to the threshold, z, by 

where 1(.) is again the indicator function. So the best estimate of the probability, 
FMR(z), of a cross-comparison being z, or less, would be the number of such cross- 
comparisons divided by the total number available, 

The (1- a)% confidence bounds are 

where 

(1 7.46) 

(17.47) 

(17.48) 
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and 2 indicates the number of standard deviations from the origin required to 
[I-;) 

encompass 1 - - % of the area under the standard normal distribution. For a=5%, ( 4) 
this value is 1.96. The explicit dependency on z of all quantities in Eq. (17.48) has 
been dropped for notational simplicity. 

In practice, time and financial budgets, not desired confidence intervals, always 
control the amount of data that is collected for the test. From the test results, we can 
calculate the upper bound on the confidence interval, “guess-timate” the potential 
effect of differences between test and operational populations and environments, then 
over-design our system decision policy to account for the uncertainty. 

5. Testing Protocols 

The general test protocol is to collect one template from each of N users in an 
environment that closely approximates that of the proposed application, ideally within 
the same application partitions as described in Section 17.2. The value of N should be 
as large as time and financial budget allow and the sample population should 
approximate the target population as closely as practicable. Some time later, on the 
order of weeks or months if possible, one sample from each of the same N users is 
collected. Then, in “off-line” processing, the N samples are compared to the N 
previously stored templates to establish N2 non-independent distance measures. For 
all distance thresholds, z, point estimates of the false match and false non-match error 
rates are given by 

N N  

and 
N 

(17.49) 

(17.50) 

where 1(.) is the indicator function, equal to unity if the argument is true and zero 
otherwise, and the hat indicates the estimation. When testing from operational data, 
substitution of the inter-template distances, 6h k, for the impostor distances, dh k, in Eq. 
(17.49) will generally result in overestimation of the false match rate. 

For systems employing binning, estimates of penetration coefficient and binning 
error rate are estimated from Eqs. (17.33) and (17.35) by comparing partition 
assignments of the templates to those of the samples. Results from one test [24] on 



Technical Testing & Evaluation 363

four Automatic Fingerprint Identification System (APIS) vendors are given in Figures
17.3 and 17.4.

FALSE MATCH RATE

Figure 17.3 ROC curve.

Figure 17.4 Binning error and penetration rates.
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6. System Performance Prediction from Test Results 

The five basic system performance parameters, false match rate, false non-match rate, 
penetration coefficient, bin error rate and transaction speed, can be used to predict 
system ‘‘false accept/false reject” rates and throughput under a wide variety of system 
decision policies [ 16]. Recall that the concern of every system manager is three-fold: 
the number of false rejections requiring human intervention, including the percentage 
of the population who are unable to enroll; the deterrence value of the false 
acceptance rate; and the ability of the system throughput rate to meet the input 
demand. In this section, we will consider the single example of a negative 
identification system using two independent biometric measures and a system policy 
that declares a “rejection” if both of the measures are found to match both measures of 
any previously enrolled individual. All calculations will assume statistical 
independence. 

If the penetration coefficient is found to be 0.5 on each measure, then by Eq. 
(17.34), the system penetration coefficient will be PSys = 0.5*0.5=0.25. If the bin 
error rate is 0.0 1 for each measure, by Eq. (1 7.36) the system bin error rate will be 
eSYS =1-( 1 -0.0 1)*( 1-0.0 1)=0.02. 

A false rejection occurs if both submitted samples from a single user are found to 
falsely match both templates of one of the previously enrolled N individuals. 
Assuming statistical independence of error rates, if the first sample pair is compared 
to the two stored templates from just one enrolled user, the chance of a false rejection, 
FRR, occurring is 

FRR = F M R ~ .  (17.51) 

For notational simplicity, we have not indicated the dependence of FMR on the 
threshold, T. The probability of not getting a false rejection over of Psus*N searched 
template pairs is given by 

1- FRR = (1 - F M R * ) ~ * ~ S Y S  . (17.52) 

Suppose that our working estimate of the false match rate, based on testing, is and 
that the system will be designed for N=4x106 users. The 
expected number of users falsely rejected during enrollment of the entire population 
will be N* FRR < 4 , thereby requiring limited human intervention for exception 
handling over the course of enrollment of the population. 

Assuming that the database is “clean”, meaning only one template set for any 
single user, a false acceptance will not occur if both samples are matched to the 
enrolled templates and no binning error occurs. Therefore, the complement of the 
false acceptance rate, FAR, can be given as 

Then, FRR x 

I - FAR = (1 - eSYS )(1 - F N M R ) ~  . (17.53) 

If our working estimate of the false non-match rate is 7%, then FAR=15%. The 
number of fraudsters, F, in the system will be 
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F = N*FR*FAR, (17.54) 

where FR is the fraud rate, or percentage of the population that is attempting to 
defraud the system. The fraud rate depends not only on the inherent honesty of the 
population, but also on the perceived chance of getting caught. The true chance of 
getting caught, of course, is 1-FAR, or 85% in this example, but the perceived rate 
may be different. Consequently, estimation of the fraud rate is best left to social 
scientists. We hypothesize that a FAR of 15% is more than adequate for most real 
systems. 

Usually, in large-scale systems, a throughput rate is specified as a system 
requirement and the throughput equations (17.38) and (17.39) are used to determine 
the necessary hardware processing speed. If our system is designed for 4x106 users, 
we may want to enroll them over a four-year period, about 1,000 days. We might 
design the system for a maximum capacity of 6,000 enrollments per day when the last 
of the users are being enrolled. We assume transaction time is controlled by the 
hardware processing rate. In our system, the number of samples, m, used for each 
individual is 2. Therefore, the processing rate, as calculated using Eqs. (17.38) and 
(17.39), must be 1 .2~10’~ computations per day, if no daily backlog is acceptable. 
Assuming 20 hour per day availability of the processing system, the required rate will 
be about 170,000 comparisons per second. 

7. Available Test Results 

Results of some excellent tests are publicly available. The most sophisticated work 
has been done on speaker verification systems. Much of this work is extremely 
mature, focusing on both the repeatability of sounds from a single speaker and the 
variation between speakers [25-3 13. The scientific community has adopted general 
standards for speech algorithm testing and reporting using pre-recorded data from a 
standardized “corpus” (set of recorded speech sounds), although no satisfactory 
corpus for speaker verification systems currently exists. Development of a 
standardized database is possible for speaker recognition because of the existence of 
general standards regarding speech sampling rates and dynamic range. The testing 
done on speech-based algorithms and devices has served as a prototype for scientific 
testing and reporting of biometric devices in general. 

In 1991, the Sandia National Laboratories released an excellent and widely 
available comparative study on voice, signature, fingerprint, retinal and hand 
geometry systems [32]. This study was of data acquired in a laboratory setting from 
professional people well-acquainted with the devices. Error rates as a function of a 
variable threshold were reported, as were results of a user acceptability survey. In 
April, 1996, Sandia released an evaluation of the IriScan prototype [33] in an access- 
control environment. 

A major study of both fingerprinting and retinal scanning, using people 
unacquainted with the devices and in a non-laboratory setting, was conducted by the 
California Department of Motor Vehicles and the Orkand Corporation in 1990 [19]. 
This report measured the percentage of acceptance and rejection errors against a 
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database of fixed size, using device-specific decision policies, data collection times, 
and system response times. Error results cannot be generalized beyond this test. The 
report includes a survey of user and management acceptance of the biometric methods 
and systems. 

In 1996, an excellent comparative study on facial recognition systems was 
published by the U.S. Army Research Laboratory [34]. This study used as data facial 
images collected in a laboratory setting and compared the performance of four 
different algorithms using this data. Both test and enrollment images were collected 
in the same session and false match and false non-match rates are reported as a type of 
“rank order” statistic, meaning that the results are dependent on the size of the test 
database and cannot be used for general performance prediction. Earlier reports from 
this same project included a look at infrared imagery as well [35]. 

In 1998, San Jose State University released the final report to the Federal Highway 
Administration [24] on the development of biometric standards for the identification 
of commercial drivers. This report includes the results of an international automatic 
fingerprint identification benchmark test. 

The existence of a dozen annual industry conferences, including the U.S. 
Biometric Consortium and the European Association for Biometrics meetings and the 
CardTech/SecurTech conferences, in addition to other factors such as the general 
growth of the industry, has encouraged increased informal reporting of test results 

8. Conclusions 

The science of biometric device analysis and testing is progressing extremely rapidly. 
Just as aeronautical engineering took decades to catch up with the Wright brothers, we 
hope to eventually catch up with the thousands of system users who are successfully 
using these devices in a wide variety of applications. The goal of the scientific 
community is to provide tools and test results to aid current and prospective users in 
selecting and employing biometric technologies in a secure, user-friendly, and cost- 
effective manner. 
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Abstract In the modern electronic world, authentication of a 
person is an important task in many areas of day-to-day life. 
Using a biornetrics to authenticate a person's identity has several 
advantages over the present practices of passwords and/or 
authentication cards using magnetic stripes or bar codes. 
However, with the use of a biometrics there is an open issue of
misuse of the biometrics for purposes that the owner of the 
biometrics may not be aware of.In this chapter, wepropose a new 
method of remote authentication that combines the security of a 
smartcard with the accuracy and convenience of biornetrics to 
authenticate the identity of a person. With this approach, the need 
to access a large biornetrics database is eliminated. The proposed 
method can be used in many application areas including system 
security. electronic commerce and access control. 
Keywords: authentication, smartcard, encryption, biometrics. 

1. Introduction 

Identification of a person is a basic task in day-to-day life. We identify our friends, 
family members and business associates effortlessly. In a small village or in a small 
community, in olden days business was run on personal identification methods 
without computers. For example, a village banker approved a loan application based 
on the personal knowledge of the background of the applicant. There were no credit 
checks or credit rating bureaus either. With the growth in transportation and 
communication, now the concept of a village or community where every one knew 
one another is becoming extinct. Often, business needs demand that a person moves 
to a new location for a brief period. To cater to such needs in a cashless society, 
automatic methods of identification are required moving beyond the old methods of 
family and personal trust. 

In a complex and fast-moving world, one has to prove several times a day who 
they claim to be. Examples range from need for identification in a child care facility 
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to identification at a port of entry in a country. Currently, several methods are in 
vogue depending on the seriousness of the task. In order to get money from a bank 
ATM, an ATM card and knowledge of the PIN is required. For entry into a bar in the 
US, proof of age is required by way of a driver's license or a government agency 
issued identity card. Many countries require possession of a citizen card to avail some 
facilities. Most of these methods have been known to have problems defeating the 
whole purpose of identification. ATM related fraud runs into billions of dollars every 
year. Similarly, production of fake ID cards is a common practice. There are more 
than 12 million point-of-sale terminals and close to half a million ATM machines [I].  
The most common method of identification based on a magnetic stripe card with a 
signature can be easily fooled, leading to billions of dollars of fraud all over the 
world. Yet another example of identification needs arise in providing access to 
computing systems. In large organizations, it is common to have several user accounts 
for different purposes. Though the systems require a password and user ID, often the 
passwords are easily accessible to colleagues and even occasional visitors as the 
passwords are prominently on display on the machines. Though we have described 
these scenarios as identification scenarios, technically speaking these are 
authentication scenarios. By authentication, we mean methods to validate claims by 
persons who they claim to be. The system either agrees with the claim or rejects the 
claim. The need for a secure method of identification has always been a challenge to 
system designers. In a highly connected networked electronic world, a secure and 
automatic method of identification can change the way the businesses run by saving 
billions of dollars of fraud. With the unbounded growth of Internet-based electronic 
commerce, the need to securely and accurately authenticate a person has become very 
important to facilitate remote transactions. 

0 

0 

In summary, the following observations can be made. 
Today's societies are highly networked and mobile. 

Prevailing methods of identification and authentication are insufficient. 

New ways of electronic economy require different secure authentication methods. 

In this chapter, we present integration of two technologies, namely biometrics and 
smartcard to meet some of the technical challenges posed in a network-based 
authentication system. Biometrics provide the accuracy needed by these systems and 
smartcards provide the security far beyond the magnetic stripe cards. By combining 
the two, the overall system requirements are better met than each of them 
individually. 

The chapter is organized as follows. A quick review of online transaction 
processing in a credit card-based system is provided in the next section to motivate 
the need for a remote authentication paradigm. Smartcards are introduced in Section 
3. Programming a smartcard needs understanding of the smartcard interface and the 
security features available on a smartcard. Details about how to program smartcards 
and the security facilities are also described in Section 3. Two solution paradigms 
covering integration of biometrics and smartcard are presented in Section 4. Several 
applications are described in Section 5 with emphasis on fingerprints as the 
biometrics. 



Smart Card Based Authentication                                            371

Consumer >. 
r 

Merchant 

A 

Authorization 
System 

Submit 
approved 
transactions 

Card Issuing 
Bank 

Merchant's 

bank 
< acquirer 

Settlement system 

2. Online Credit Card Transaction Processing 

In order to describe the importance of our model of network-based authentication and 
its benefits, we chose the credit card transaction processing as an example. The model 
can be extended to other applications. Several events take place from the time a 
consumer presents a credit card to the time the transaction gets approved and the 
merchant gets the money transferred to his account. A model presented in [2] is 
described here. Similar models have been explained in [3]. In order to provide 
immediate gratification of consumer needs, credit cards allow the purchase of goods 
and services on credit wherein the credit card along with the signature is used as a 
token of authentication. Let's look at the various steps that a transaction initiated at a 
retail store point of sale terminal goes through as shown in Figure 18.1. The merchant 
obtains an authorization from the card-issuing bank's authorization system. This 
authorization assures the merchants their payments. The authorization system verifies 
the credit limit and authenticity of the card before granting the authorization to the 
merchant. Periodically, the merchant submits a collection of authorized transactions to 
the card clearing center. In this model, the merchant validates the payer's identity by 
matching the signature on the back of the card against the one on the charge slip. 
Integrity of the transaction is protected by handing over a copy of the transaction to 
the card owner. The credit card number is used to identify the account of the 
consumer. A transaction authorization and communication between the merchant and 
the authorization center as well as the card clearing/acquiring center takes place over a 
private network. Often, these messages are coded using encryption techniques. 

Presents Card 

Figure 18.1 Steps in online transaction processing.
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Presents Card 

Authenticates card 
Consumer 

This model is prone to various sources of fraud, including frauds that may be 
caused by orders received by merchants over telephone or mail where the card 
owner’s signature is not available to them. The first source is the manual verification 
of a signature which is quite often ignored. High-tech snoopers on the public network 
might break into the communication channel to “steal” card numbers. The main 
problem with this model is that it requires an online communication facility to obtain 
a real-time authorization for every transaction. Often, there are direct and indirect 
charges associated with every transaction authorization. 

In contrast to this model, if the credit card possessed intelligence and security to 
approve transactions and debit money from consumer’s bank while verifying the 
identity of the owner of the card, many potential problems that lead to fraud can be 
prevented. Such a model adapted from [4] is shown in Figure 18.2. Smartcards 
provide support for such a model. 
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bank - 
Figure 18.2 Steps in online transaction processing with an intelligent card. 

3. Smartcards 

A smartcard resembles a credit card in terms of physical look and size with one or 
more semiconductor devices attached to a module embedded in the card. More 
specifically, the smartcard is a portable, very secure, low cost, intelligent device, 
capable of manipulating and storing data. Its intelligence is due to a microprocessor 
that is suitable for use in a wide range of applications. Smartcards manufactured by 
different vendors differ significantly from each other even though they follow a 
standard specification such as ISO 7816 or CEN 726. An ISO 7816 based IBM 
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smartcard is shown in Figure 18.3. Conventional smartcards are based on an invention 
made in 1974 by Roland Moreno in 1974 [5]. Over the last 25 years, smartcards have 
gone through several phases of development resulting in today's credit-card-sized 
cards with embedded processor and memory to store and process data. A taxonomy of 
smartcards is shown in Figure 18.4. Memory cards are primarily information storage 
cards that can store information about the amount of money as in vending machine or 
cash cards and phone time units as in phone cards. These cards typically provide more 
storage than a magnetic stripe card and are more secure than a magnetic stripe card. 
The smartcards with a processor and memory are more interesting for their 
intelligence. The intelligent smartcards can be either powered through contacts or by a 
RF coil as in contactless smartcards. There are different standards available for 
contactless smartcards [6] .  The hybrid cards are combinations of both contact and 
contactless technologies. For example, a corporate smartcard can be used for 
contactless access to the buildings while sign on for the corporate computer system 
can be through the contact card, available on the hybrid card. The contact-based 
smartcards are more commonly used in many applications. Contact cards can also be 
further classified on the basis of presence or absence of a crypto coprocessor. The 
need for a special coprocessor to support cryptography is explained later in this 
section. 

Figure 18.3 An IBM smartcard. 

Physical Components in a Smartcard 

For wide acceptance and usage of smartcards in many applications such as telephony, 
travel, health care and retail industries, standards provide interoperability on different 
smartcard readers. A contact type smartcard has to meet physical sizes specified in 
ISO 7816 standards. In addition to the ISO 7816 standard, there are several other 
standards for smartcards. 
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Contact Contactless Hybrid 

Figure 18.4 A taxonomy of smartcards. 

ISO 78 16: The International Standards Organization (ISO) began standardization 
of chip cards since early 1983. The physical characteristics of identification cards 
described in ISO 7810, ISO 7811, ISO 7812, and ISO 7813 form the basis. All 
smartcards today follow ISO 78 16 specifications for physical, electrical 
characteristics of smartcard interface, formats and protocols for information 
exchange with smartcards. A smartcard with its mechanical dimensions as 
specified in ISO 7816 is shown in Figure 18.5. More details about the ISO 7816 
standards are available in [6]. 

CEN 726 in Europe: Smartcards had an early start in Europe, consequently, 
Europians are leaders in this industry. For interoperability of smartcards in 
different telecommunication organizations in Europe, CEN 726 standard was 
developed. The ISO 7816 standard has been influenced by several features from 
the CEN 726. 

EMV: In addition to the above two standards, there are industry-based standards 
emerging. Europay, Mastercard and Visa (EMV) have cooperated to create 
global specifications for the payment industry. The application of smartcards in 
financial industry depends on this standard. 

In addition to these standards, Microsoft's PC/SC standard [7], OpenCard standard 
from a consortium of vendors [8] and JavaCard [9] are the other standards. 

Smartcard Architecture 

There are three basic components in a smartcard as described below. 
1. 

2. Memory 

3. Input/Output handler 

A processor to manipulate and interpret data 
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Figure 18.5 Physical dimensions of an ISO 7816 smartcard.  

Architectural components of a typical smartcard are shown in Figure 18.6. The 
smartcard processor is usually a 8-bit microcontroller-based, though, there are several 
efforts to upgrade it to a 16- or 32-bit processor in more recent smartcards. The 
memory in a smartcard consists of three different memory types: (i) ROM, (ii) RAM 
and (iii) EEPROM. The ROM is used for the smartcard operating system and is 
usually embedded during manufacture. The RAM memory is used by the operating 
system as temporary storage area. The user available data segments are allocated in 
the EEPROM memory segments. The first two types of memory are not available for 
user access. Several levels of access security are supported in the EEPROM. The 
methods of assigning access security can be controlled through use of a password or a 
biometrics or using cryptography. The security features on a smartcard are described 
later in this section. 

Software for Smartcard 

From the time of smartcard manufacture to the end of loading application and usage 
by consumers, different kinds of software are used to handle smartcards. The software 
components can be classified into three categories, namely 

1. Operating system; 

2. Initialization and personalization; 

3. Application interface. 

The operating system is a vendor dependent component of the software. The operating 
system supports a file system on the EEPROM storage, command interpretation and 
security options for the data stored on the smartcard. During initialization and 
personalization, application specific data structures are loaded. During the usage of 
the smartcard, the smartcard interacts with the application through the application 
interface component. 
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Figure 18.6 Architecture of a smartcard. 

File System on Smartcard 
In this subsection, we describe the file system supported on IBM smartcards. The file 
system on an IBM smartcard has a hierarchical structure as in a hard disk 
drive. The file system is characterized by 
0 

0 

a Master file or root of the directory (MF), 

Dedicated files (DF) also known as application directories containing data and 
executables for an application, 

Elementary file (EF) also known as data files containing actual data structures 
and data elements of an application. 

0 

The file system is shown in Figure 18.7. There are five types of elementary files as 
shown in Figure 18.8. 

Transparent 

Application specific command files 

Linear files with fixed length records 

Formatted files with variable length records 

Formatted cyclic fixed length files 
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Figure 18.7 File system on an IBM smartcard. 

At the time of file creation, access conditions can also be defined. Following access 
conditions are allowed. 

Read: read and seek on the records of the file allowed. 

Update: Updating a record such as decrementing a value or modifying a field 
allowed. 

Administer: create, delete, validate and rehabilitate files. 

A file on the smartcard can have one or more of the following protection modes. 
always: not protected and available always. 

secret password based: A password (set during the file creation) is required to 
access the file. 

a second password based: A second password-based access in case the first one is 
lost. 

external authentication: access is allowed if an external cryptographic 
authentication is successful. 

protected: The file is protected using a message authentication code. 

encrypted: update of sensitive files requiring encryption. 

never: Data never accessible 
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Figure 18.8 Supported elementary file types on a smartcard. 

Commands to Smartcard 

The commands to which a smartcard responds can be classified into five classes. 
application data commands 

security commands 

card management functions 

0 electronic purse commands 

miscellaneous commands 

Additional commands can be developed and loaded during the initialization phase 
of the card. 

Application Interface 
Different software components in the IBM smartcard are shown in Figure 18.9. The 
designer of a smartcard application describes the file structure on a smartcard in a 
high-level language. This description is compiled using a layout compiler that 
produces an initialization and personalization bit stream for the card. After the card is 
initialized, the application program can access the files through the smartcard agents 
defined in the IBM smartcard toolkit [10] or through the Java interface supported by 
Opencard forum [ 11]. 
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Figure 18.9 Software components of IBM smartcard. 

Security Issues in a Smartcard 

The most attractive feature of a smartcard is the variety of security features that it can 
support. At the card level, it can be protected by several passwords. At the file level, 
we described different kinds of access protection methods in the previous section. The 
data contents in the card get reset in case of possible hardware attacks on the card. In 
addition to these, cryptographic authentication can also be supported on many 
smartcards. In this method, access to data on the smartcard is permitted if a challenge 
presented by the smartcard is decoded correctly by the external world. Often, it is also 
desired to verify the authenticity of the card. For this purpose, the external world 
poses a challenge to the card. The processor in the card decodes the message in the 
challenge and presents it to the external world. The card is considered genuine if the 
decoded message matches with the original message. Before we describe other 
encryption methods, we present a short analysis of encryption methods. Detailed 
accounts of encryption are available in [7, 11]. 

Encryption Methods 
Cryptographic algorithms are used to encode and decode messages. There are two 
kinds of cryptographic algorithms. 
0 symmetric secret key algorithms 

0 asymmetric secret key algorithms 

In the symmetric algorithms the same secret key is used in encryption and decryption. 
Hence, it is required that the secret key be known to both sender and receiver. In the 



3 80 Ratha and Bolle 

Messasb Encryption Cipher text > using Public Key 

asymmetric method, the message is encoded using public key and decrypted using a 
private key. The public key is different from the private key. As the name indicates, 
the public key can be known to many parties. The private key is only known to the 
decryption module which can decrypt the message. Figure 10 shows the two methods. 
Public key algorithms are based on corresponding key pairs consisting of a secret 
private key and a public key. The private secret key is managed by the owner whereas 
the publick key is known to everyone. This feature of public key algorithms enables 
them to work with digital signatures. Cryptographic information created with the 
secret key of the sender is called a ‘‘digital Signature”. The public key can be used to 
verify the signature associated with the message without the need to know the secret 
key. Furthermore, as the secret key is unique, any message with the signature 
generated by the key uniquely refers back to the owner. 

Message Decryption 
c 

using Private key 

~ 

Encryption Message 
c > using secret Key 

I I I 1 

Message Decryption Cipher text 

using secret key 
- 

Public key # Private key 

(a) 

I I I I 

Public key = Private key 
(b) 

Figure 18.10 Encryption methods. (a) Asymmetric; (b)  Symmetric. 

Crypto Options in a Smartcard 
Public key algorithms based on asymmetric key crypto algorithms are used in special 
smartcards to protect data. These smartcards require larger RAM memory and more 
powerful processors. Hence, there are special smartcards with crypto coprocessors. 
Data integrity during communication between smartcard and external world is 
ensured by associating access conditions described earlier. Message authentication 
methods are also used. A message authentication code is computed based on a secret 
key, a random number and the data which is to be exchanged. The code is appended 
to the message and transmitted. The authentication code is regenerated at the 
receiving end from the message and the key and compared with original code with the 
message. A digital signature can also be used to ensure data integrity. 

4. Biometrics and Smartcard 

Biometrics can play an important role in making smartcards more secure and 
smartcards can make biometrics more pervasive and useful. By biometrics, we refer to 
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the science of identifying and authenticating by using personal characteristics [ 12]. 
An automated biometrics-based system can be used to authenticate a person. Adding a 
smartcard option in the system can provide many advantages. In this section, we 
present two generic solution models where biometrics and smartcard can be 
integrated. 

Crypto Key Management with Biometrics 

In the previous section, it was stated that the secret key management is the owner's 
responsibility. Often, the keys are long strings of numbers which can not be 
remembered easily, resulting in the key being kept in a file. This can be a potential 
source of insecurity. One way to avoid the problem is to release the secret key to the 
software subsystem after verifying the owner by a biometrics. This is very important 
in case the card contains a large amount of electronic cash or an important document. 
Our proposed model is shown in Figure 18.1 1. 

Smartcard 

Stored biornetrics 

Live biornetrics Biornetrics Release key 
ternplate Authenticator i . 

Figure 18.1 1 Biometrics in smartcard security. 

Remote Authentication with Smartcard and Biornetrics 

Smartcards can play an important role in biometrics too. In an identification system, 
the biometrics templates are often stored in a central database. With the central 
storage of a biometrics, there is an open issue of misuse of the same for purposes that 
the owner of the biometrics may not be aware of. Large collection of biometrics data 
can be sold or given away to unsolicited parties who can misuse the information. We 
can decentralize the database storage part into millions of smartcards and give it to the 
owners. The system does not store the biometrics on its central database anymore. 
The biometrics data can be stored along with other information such as message 
authentication code to maintain its integrity. Other textual information can also be a 
part of the data. This model is more attractive in contrast to storing the whole database 
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on a central system. For authentication of the user, the smartcard and the live 
biometrics are presented to the system. The system generates the matching template 
from the biometrics and decodes the stored template from the smartcard and examines 
the similarity between the two templates. The two steps in this proposed method are 
shown in Figure 18.12. The owner must be enrolled into the system. During the 
enrollment, the user's biometrics is collected and the features are extracted from the 
biometrics signal after ensuring the quality of the input signal. The template is then 
stored in the smartcard along with other information such as user ID and other user 
dependent parameters. For example, in a fingerprint-based system [ 18], the fingerprint 
features along with, say, the threshold to be used during matching can be stored. 
Similarly, in a face recognition-based system [19], the face template and the 
parameters used in the face matching system can be stored. For speech-based systems 
[20], this method can provide extra benefit, the parameters used in speech modeling 
can also be stored on the smartcard. These parameters can be restored during the 
matching stage and used by the matcher, thus resulting in better performance. 

Quality Check 

Enroll 

Quality Check Y H  Feature 
Extraction Matcher 

YesINo I- 
L I I I I I 

Figure 18.12 System architecture using biometrics and smartcard. 

5. Applications 

In this section, we describe a few example applications that can benefit from the 
combination of biometrics and smartcard. 

0 Network Computer secure login: Network computers are intelligent terminals 
with no local storage. They connect to a remote server. The server must 
authenticate the users every time during login. We have implemented a secure 
login scheme using fingerprint and smartcard for an IBM Network computer. The 
NCs are equipped with smartcard readers. A registered user of the system is 
issued a smartcard that contains his fingerprint template and user ID and access 
rights on the server. Other personalization information can also be stored on the 
smartcard. The NC locally matches the fingerprint of the user against the 
template stored on the smartcard and grants access to the server only if the two 
templates match. This reduces network traffic and load on the sever to validate 
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users and it becomes a local function on each NC. This model can be extended 
further to single sign on cards. The smartcard can contain details of other systems 
or network passwords. Once the user has been authenticated at the NC by 
matching the fingerprint, the NC can release the appropriate password from the 
smartcard. 

NT Secure 1ogon/Screen saver: An extension of the above scheme is to provide a 
smartcard and fingerprint based secure logon for NT. Even screen savers can be 
designed with a biometrics. 

Home banking: With the growth of Internet and availability of PCs at home, 
banks are already providing many banking functions on home PCs. Most of these 
functions are limited to accessing the account information or transferring money 
between accounts. With smartcards acting as ‘cash cards’, the banks can soon 
provide functionsto download money from their accounts at home. By use of a 
biometrics to authenticate the person, it is a simple extension from our model. 
The card can be loaded with extra money if the biometrics is successfully 
matched . 
Internet commerce: Over the last couple of years, commerce on the Internet is 
growing exponentially. Coupled with a web browser, many purchases are made 
from home. However, the security of the credit card information being exchanged 
is always in question. Often a smartcard is used to enhance the security in these 
applications. By adding a biometrics, the system security is further enhanced. 

Automotive: Future cars and automobiles are aiming at more personalization and 
security with more compute power being made available in a vehicle. Concept 
cars with voice recognition and keyless ignition facilities are being demonstrated. 
A personalized security system can be achieved with the combination of 
smartcard and biometrics. 

Health care: Privacy of health care information is very important. Often health 
care information is handled with a minimal care and can be easily bought from 
health care providers. This information can be easily protected by use of a 
smartcard and biometrics. The biometrics authenticates the rightful owner of the 
information and can be presented to the health care providers depending on their 
access level. For example, a doctor can have access to all the test results whereas 
an accounting personnel should have access to only the billing information and 
insurance information. 

Conclusions 

Smartcards are a model of very secure storage and biometrics is the ultimate 
technology for authentication. The two can be combined in many applications to 
enhance both the security and authentication. With the cost of biometrics sensors, in 
particular, fingerprint sensors on the decline, the day isn’t far off when every person 
will have his personal smartcard with a built-in fingerprint sensor as the 
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authentication tool. That will be the most secure way of carrying out authentication in 
remote applications such as home banking, access control and electronic commerce. 
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1 9 BIOMETRICS: IDENTIFYING LAW 
& POLICY CONCERNS 

John D. Woodward, Jr. 

Abstract Today‘s “new technological realities” force us to 
examine, from the law and policy perspectives, what is required to 
safeguard the public interest and to ensure optimal results for 
society. Biometrics is one such new technology reality. While not 
enjoying the media stature and public controversy associated with 
high tech issues like genetic cloning and cyberspace, biometrics -- 
which seeks a fast, foolproof answer to the questions. “Who are 
you? " or “Are you the person whom you claim to be?” -- will 
cause the law to take notice as it becomes more extensively used 
in the pub lic and private sectors. Businesses, numerous 
government agencies, law enforcement and other private and 
public concerns are making increasing use of biometric scanning 
systems. As computer technology continues to advance and 
economies of scale reduce costs. biometries will become an even 
more effective and efficient means for  identification and 
verification. After briefly discussing biometric technologies and 
biometric applications, this chapter defines privacy in the context 
of biometrics and discusses which specific privacy concerns 
biometrics implicates. This chapter concludes that biomeirics is 
privacy’s friend because it can be used to help protect information 
integrity. The author also contends that any legitimate privacy 
concerns posed by biometrics. such as the possibility of a 
secondary market in individual biomeiric identification 
information. can be best handled by the existing law and policy 
framework. The author next considers the fuiure of biometrics. 
and contends that “biometric balkanization,” or the use of 
multiple biometric technologies deployed for multiple 
applications. provides greater privacy protections than does 
biometric centralization. or the use of one dominant biometric 
technology for multiple applications. 

Keywords: Privacy, biometric law. public policy, government, 
information policy, constitutional law. 
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1. Introduction’ 

On May 18, 1997, in his commencement address at Morgan State University, 
President William J. Clinton stated: 

The right to privacy is one of our most cherished freedoms. As society has grown more 
complex and people have become more interconnected in every way, we have had to work 
even harder to respect privacy, the dignity, the autonomy of each individual . . . [w]e must 
develop new protections for privacy in the face of new technological reality [ I ] .  

While it is doubtful that President Clinton had biometrics in mind during that 
Sunday speech, biometrics is clearly emerging as one such ‘‘new technological 
reality.” From activities as diverse as the Winter Olympics in Nagano, Japan to the 
prisons of Cook County, Illinois, both the public and private sectors are making 
extensive use of biometrics. This new technological reality relies on ‘‘the body as 
password” for human recognition purposes to provide better security, increased 
efficiency and improved service [2,3,53,54]. As the technology becomes more 
economically viable, technically perfected and widely deployed, biometrics could 
become the passwords and PINs of the twenty-first century. In the process, 
biometrics could refocus the way Americans look at the brave new world of personal 
information [4]. 

Understanding biometrics is thus essential for elected officials and policymakers 
charged with determining how this new technology will be used and what role, if any, 
government should play in its regulation. Familiarity with biometrics is also 
important for the legal, business and policy advocacy communities so that they can 
meaningfully participate in the public debate related to biometrics. 

Similarly, understanding the law and policy concerns of biometrics is necessary for 
the engineers and scientists who have brought about this new technological reality. 
History teaches us that new technologies, created by engineers and scientists, spark 
new law and cause old legal doctrines to be rethought, rekindled and reapplied by the 
nation’s law and policy makers.2 

New technology can cause a creative reshaping of existing legal doctrine when, for 
example, the judiciary has embraced a technology more quickly than the legislature, 
the executive branch or even the actual marketplace for the technology. To consider a 
well-known example from the legal casebooks, in 1928, there was no law or 
regulation requiring coastwise seagoing carriers to equip their tugboats with radio 
receiver sets. Moreover, no such custom or practice existed in the maritime industry, 
despite the fact that such sets could easily be used by tugs at sea to receive storm 
weather warnings. In a landmark legal case, Federal Circuit Judge Learned Hand, one 
of the great American jurists of this century, deemed that tugboats without radio 
receiver sets were unseaworthy because ‘‘a whole calling may have unduly lagged in 
the adoption of new and available devices” [6]. By accepting a new technology -- in 
this case, wireless communications -- more quickly than the legislative and executive 
branches or even the affected industry, Judge Hand, in effect, creatively reshaped the 
law. No longer would strict adherence to local custom and industry practice offer a 

’ This chapter is largely based on a previously-published article by the same author: John D. Woodward, 
“Biornetrics: Privacy’s Foe or Privacy’s Friend?” in Proceedings of the IEEE, Sept. 1997. ’ For an excellent examination of the intersection of science and technology with law and policy, see [5]. 
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guaranteed defense against charges of negligence when a readily-available technology 
could result in greater utility to society. 

Similarly, today’s new technological reality of biometrics should force us to 
explore from the law and policy perspectives what is required to safeguard the public 
interest and to ensure optimal results for society. Engineers and scientists should not 
be excluded from this law and policy examination. Indeed, the law and policy 
concerns raised by biometrics are far too important to be left solely to politicians and 
lawyers. 

In examining these law and policy concerns, this chapter focuses on privacy. After 
briefly discussing biometric technologies in sections 2 and 3 ,  the author, in section 4, 
defines privacy in the context of biometrics and examines which specific privacy 
concerns biometrics implicates. The author then analyzes the various arguments often 
made that biometrics poses a threat to privacy. The author concludes that, to the 
contrary, biometrics is privacy’s friend. Biometrics is privacy’s friend because it can 
be used to help protect information integrity and to deter identity theft. Nonetheless, 
the author suggests that government can play a positive role in regulating and thereby 
promoting public acceptance of this new technology. Section 5 examines the 
biometric future, and contends that “biometric balkanization,” or the use of multiple 
biometric technologies deployed for multiple applications, provides greater privacy 
protections than does biometric centralization, or the use of one dominant biometric 
technology for multiple applications. 

2. What is Biometrics? 

Definition of Biornetrics & Biometric Scanning 

While the word, “biometrics,” sounds very new and ‘‘high tech,” it stands for a very 
old and simple concept -- human recognition. In technical terms, biometrics is the 
automated technique of measuring a physical characteristic or personal trait of an 
individual and comparing that characteristic or trait to a database for purposes of 
recognizing that individual [7,56]. 

Biornetrics uses physical characteristics, defined as the things we are, and 
personal traits, defined as the things we do, to include: 

Physical Characteristics 
Chemical composition of body odor 
Facial features & thermal emissions 
Features of the eye: retina & iris 
Fingerprints 
Hand geometry 
Skin pores 
Wrist/hand veins 
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Personal Traits 
Handwritten signature 
Keystrokes or typing 
Voiceprint 

Of these, only three of the physical characteristics and personal traits currently 
used for biometrics are considered truly consistent and unique: the retina, the iris and 
fingerprints [8,55]. As such, these three physical characteristics provide the greatest 
reliability and accuracy for biometrics. 

Biometric scanning is the process whereby biometric measurements are collected 
and integrated into a computer system, which can then be used to automatically 
recognize a person. Biometric scanning is used for two major purposes: 
Identification and verification. Identification is defined as the ability to identify a 
person from among all those enrolled, i.e., all those whose biometric measurements 
have been collected in the database. Identification seeks to answer the question: “Do I 
know who you are?” and involves a one-compared-to-many match (or what is referred 
to as a ‘‘cold search”). 

Second, biometric scanning is used for verification, which involves the 
authentication of a person’s claimed identity from his previously enrolled pattern. 
Verification seeks to answer the question: “Are you who you claim to be?“ and 
involves a one-to-one match. 

Advantages of a Biometric Scanning System 

Biometric scanning can be used for almost any situation calling for a quick, correct 
answer to the question, “Who are you?” The great advantage of biometric scanning is 
that it bases recognition on an intrinsic aspect of a human being. Recognition systems 
that are based on something other than an intrinsic aspect of a human being are not 
always secure. For example, keys, badges, tokens and access cards (or things that you 
must physically possess) can be lost, duplicated, stolen or forgotten at home. 
Passwords, secret codes and personal identification numbers (PINs) (or things that 
you must know) can be easily forgotten, compromised, shared or observed [9 ] .  

Biometric technologies, on the other hand, are not susceptible to these particular 
problems because biometrics relies on things that you are. For example, one industry 
representative has summed up the inherent strengths of the biometric his company 
promotes in the following humorous way: ‘‘Your iris: You can’t leave home without 
it.” 

Depending on the exact use for which the technology is envisioned, an ideal 
biometric technology would include a system based on: (i) a consistent and unique 
biometric characteristic, (ii) non-intrusive data collection, (iii) no or minimal contact 
between the person being scanned and the equipment doing the scanning, (iv) an 
automated system, i.e., no human decision maker in the decision loop, (v) very high 
accuracy, and (vi) high speed. 

According to Dr. Joseph P. Campbell, Jr., a National Security Agency (NSA) 
researcher and the former Chairman of the Biometric Consortium (BC), the U.S. 
Government’s focal point for biometric research; no one technology has emerged as 
the “’perfect biometric,’ suitable for any application” [10]. While there is no ‘‘perfect 
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biometric,” a good biometric scanning system is fast, accurate, dependable, user- 
friendly and low-cost. 

3. How are Biometrics Used? 

Biometric applications are increasingly broad-based, expanding and international; as 
one industry expert has stated, ‘‘The influence of biometric technology has spread to 
all continents on the globe” [ 11]. In concrete terms, this influence translates into 
about $1 billion worth of computer systems that include biometric devices which were 
estimated to be installed worldwide during 1997 [ 12]. 

While biometric devices are deployed in many computer systems, the overall size 
of the biometric industry remains relatively small though rapidly growing. For 
example, in 1992, revenue from biometric devices was estimated at $8.3 million with 
1,998 units being sold. By 1999, revenue is projected at $50 million with 50,000 
units being sold. Accordingly, biometric scanning is likely to have a substantial 
impact on the way we interact and conduct our affairs in the foreseeable future. 

While a detailed discussion of biometric applications is beyond the scope of this 
chapter, the following three major categories of biometric applications -- High 
Government Use, Lesser Government Use, and Private Sector Use -- highlight how 
biometric scanning is beginning to touch our lives: 

High Government Use 
Law Enforcement 
Prison Management 
Military & National Security Community 

Lesser Government Use 
Border Control & Immigration Checks 
Entitlement Programs 
Licensing 
National Identity Card & Voter Registration 

Private Sector Use 
Banking and Financial Services 
Personnel Management 
Access Control 
Information System Management 

4. What is Privacy in the Context of Biometrics? 

Working Definition 

The issue of privacy is central to biometrics. Critics complain that the use of 
biometrics poses a substantial risk to privacy rights. Evaluating this argument 
requires, in the first instance, an understanding of what privacy rights entail. The 
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word “privacy” (like the word “biometrics”) is nowhere to be found in the text of the 
United States Constitution, America’s highest law. Perhaps the absence of any 
explicit textual reference to privacy or right of privacy, combined with the word’s 
apparent flexibility of meaning, make it all the more difficult to define what privacy is 
and to explain what the right of privacy should be. 

Most importantly from the standpoint of biometrics, privacy includes an aspect of 
autonomy - ‘‘control we have over information about ourselves” [ 12], “[c]ontrol over 
who can sense us” [ 13], ‘‘...control over the intimacies of personal identity” [ 14], or as 
a federal appeals court has phrased it, ‘‘control over knowledge about oneself. But it 
is not simply control over the quantity of information abroad; there are modulations in 
the quality of knowledge as well” [ 15]. 

In the context of biometrics, this control over information about ourselves, or 
information privacy, lies at the very heart of the privacy concerns raised by this new 
technology. Individuals have an interest in determining how, when, why and to 
whom information about themselves, in the form of a biometric identifier, would be 
disclosed. 

In the American legal experience, privacy protections have followed two 
traditional pathways depending on whether the source of the privacy intrusion is a 
governmental or private sector activity. While privacy is not explicitly cited in its 
text, the Constitution, through the Bill of Rights, protects the individual from 
government’s intrusion into the individual’s privacy. For example, the Bill of Rights 
contains privacy protections in the First Amendment rights of freedom of speech, 
press and association; the Third Amendment prohibition against the quartering of 
soldier‘s in one‘s home; the Fourth Amendment right to be free from unreasonable 
searches and seizures; the Fifth Amendment right against self-incrimination; and the 
Ninth Amendment’s provision that “[tlhe enumeration in the Constitution, of certain 
rights, shall not be construed to deny or disparage others retained by the people” [ 16]. 

With respect to private sector actions, the Constitution traditionally embodies what 
is essentially a laissez-faire spirit. As constitutional law scholar Laurence Tribe has 
noted, “[T]he Constitution, with the sole exception of the Thirteenth Amendment 
prohibiting slavery, regulates action by the government rather than the conduct of 
private individuals and groups [66].” With respect to the conduct of private 
individuals, the Supreme Court has been reluctant to find a privacy right in personal 
information given voluntarily by an individual to private parties [ 17,571. 

For private sector intrusions into privacy, the common-law, through its doctrines of 
contract, tort and property, has, in varying degrees, attempted to provide certain 
protections for the individual (e.g., [18])19. However, the law has not used these 
doctrines to protect individual information in private sector databases. Generally, as a 
matter of law, an individual in possession of information has the right to disclose it. 

Accordingly, the private sector enjoys great leeway as far as what it can do with an 
individual’s information. ‘‘Except in isolated categories of data, an individual has 
nothing to say about the use of information that he has given about himself or that has 

’As early as 1879, Judge Thomas M. Cooley, in his treatise on torts, included ”the right to be let alone” as a 
class of tort rights, contending that “the right to one’s person may be said to be a right of complete 
immunity.” Echoing and popularizing Cooky’s phrase, Warren and Brandeis, in their classic article written 
over one hundred years ago, articulated their view of privacy as a “right to be let alone” which would 
enable society to ‘‘achieve control of press invasions of privacy” [58,59]. 



Biometrics: Identifying Law & Policy Concerns 391 

been collected about him. In particular, an organization can acquire information for 
one purpose and use it for another . . . generally the private sector is not legislatively- 
constrained” [ 19]. 

While the Supreme Court has never explicitly recognized a constitutional right to 
privacy (and has never dealt with biometrics), America’s highest court has grappled 
with information privacy issues. In Whalen v. Roe, an influential case decided 
twenty-one years ago, the Court decided the constitutional issue of whether the State 
of New York could record, in a centralized database, the names and addresses of all 
individuals who obtained certain drugs, pursuant to a doctor’s prescription. Rejecting 
the information privacy claim, the Court ruled that a government database, containing 
massive amounts of sensitive medical information, passed constitutional muster 
because of the security safeguards in place. The Court‘s opinion, however, concluded 
with a cautionary note that still echoes loudly today: ‘‘We are not unaware of the 
threat to privacy implicit in the accumulation of vast amounts of personal information 
in computerized data banks or other massive government files” [20]. 

What Privacy Concerns Are Implicated? 

The Individual Gives Up a Biometric Identifier 
To determine the specific privacy concerns implicated by biometrics, we must first 
focus on what exactly is disclosed when biometric scanning is used. Regardless of 
whether an individual voluntarily provides a biometric identifier or is forced to 
surrender it as part of a state action or government-required scheme, he is giving up 
information about himself. When biometrics like finger imaging, iris recognition or 
retinal scanning are used, he discloses consistent and unique information about his 
identity. When the other biometrics are used, at a minimum, he discloses accurate 
information about who he is. 

Invasive Aspects of the Information 
Beyond this fundamental disclosure, there also might be invasive implications related 
to privacy concerns which stem from the biometric identification information 
disclosed. These invasive implications for privacy are essentially two-fold: 1) the 
invasive effects of a secondary market defined as disclosure of the biometric 
identification information to third parties and 2) any invasive information which 
might be additionally obtained as part of the biometric identifier. 

Invasive Secondary Market Effects 
Once a biometric identifier is captured from an individual in the primary market, and 
even if it is captured only once, the biometric identifier could easily be replicated, 
copied and otherwise shared among countless public and private sector databases. 
This sharing in a secondary market could conceivably take place without the 
individual’s knowledge or consent. Indeed, biometric identifiers could be bought and 
sold in a secondary market much the way names and addresses on mailing lists are 
currently bought and sold by data merchants. 

Particularly with respect to the private sphere, where the conduct of private actors 
has traditionally been given a degree of freedom of action from government 
interference, there are few current legal limits on the use of biometric information 
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held by private actors. This observation is not meant to suggest that the federal or 
state governments would not be able to regulate the use of biometric information held 
by private actors; rather, it emphasizes what the present regulatory baseline is with 
respect to the regulation of biometric information: Until affirmative action has been 
taken by government, the use of biometrics is left to the market. 

In other similar contexts where an individual has surrendered personal information 
to private actors, the Supreme Court has not found a right to privacy in the 
information surrendered. For example, in Smith v. Maryland,  the defendant claimed 
that information in the form of telephone numbers he dialed from his home telephone 
(what is known as a pen register), could not be turned over to the police absent a 
search warrant [21]. Rejecting this argument, the Court noted that it ‘‘consistently has 
held that a person has no legitimate expectation of privacy in information he 
voluntarily turns over to third parties” [22]. 

In United States v. Miller, a case involving a bootlegger’s private financial records 
which were turned over to U.S. Treasury agents pursuant to a grand jury subpoena, 
the bootlegger’s attempt to have the evidence excluded was unsuccessful [23]. The 
Court found that Miller had no expectation of privacy in the records, reasoning that: 
‘‘The depositor takes the risk, in revealing his affairs to another, that the information 
will be conveyed by that person to the Government.” Moreover, these records could 
not therefore be considered confidential communications because they had been 
voluntarily conveyed to the bank in the ‘‘ordinary course of business” [24]. 

Technology is fast and the law is slow [25]. Thus, biometrics is still relatively too 
new for the Congress or the various state legislatures to have acted from the 
standpoint of adopting privacy protections aimed specifically at this technology. In an 
impressive first step toward understanding private sector applications of biometrics, 
on May 20, 1998, Congress held hearings on the topic of “Biometrics and the Future 
of Money.” These hearings, before the Subcommittee on Domestic and International 
Monetary Policy of the Committee on Banking and Financial Services of the U.S. 
House of Representatives, chaired by Michael N. Castle, featured panels of leading 
technologists as well as policy experts. In terms of activities in the state legislatures, 
California has been the most pro-active. There, the legislature has been considering 
biometric privacy legislation as part of its identity theft reforms. 

Currently, private actors possessing biometric identification information generally 
follow a nondisclosure policy -- they do not disclose this information to third parties - 
- as part of a strategy of building public acceptance for the technology. However, 
such nondisclosure policies are completely voluntary. Critics contend that biometric 
identifiers, like other personal information such as names and addresses for mailing 
lists, might eventually be ‘‘considered to be in the public domain” [26]. The fear is 
that the individual will lose ultimate control over all aspects of her biometric 
identifier. 

Invasive Information Is Obtained 
In addition to the identification information associated with the biometric, invasive 
information threatening privacy could conceivably include three other types of 
concerns. First, biometric identifiers could be used extensively for law enforcement 
purposes. Fingerprints have long been used by law enforcement and finger images -- 
or what are in effect the next generation of fingerprints -- are presently being used by 
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various law enforcement agencies as part of their databases. For example, the Federal 
Bureau of Investigation (FBI) has embarked on a bold finger imaging project for its 
Integrated Automated Fingerprint Identification System (IAFIS). IAFIS would 
replace the present paper and ink based system with electronic finger images. 

Secondly, it is possible (and the point needs to be stressed, only possible) that 
some biometrics might capture more than just mere identification information. 
Information about a person’s health and medical history might also be incidentally 
obtained. Recent scientific research suggests that fingerprints and finger imaging 
might disclose medical information about a person [27,28]. For example, Dr. Howard 
Chen, in his work on dermatoglyphics, or the study of the patterns of the ridges of the 
skin on parts of the hands and feet, notes that “[c]ertain chromosomal disorders are 
known to be associated with characteristic dermatoglyphic abnormalities,” 
specifically citing Down syndrome, Turner syndrome and Klinefelter syndrome as 
chromosomal disorders which cause unusual fingerprint patterns in a person [28]. 
Certain non-chromosomal disorders, such as chronic, intestinal pseudo-obstruction 
(CIP) (described below), leukemia, breast cancer and Rubella syndrome, have also 
been implicated by certain unusual fingerprint patterns. 

For example, Dr. Marvin M. Schuster, director of the division of digestive diseases 
at Johns Hopkins Bayview Medical Center, has discovered a ‘‘mysterious 
relationship” between an uncommon fingerprint pattern, known as a digital arch, and 
a medical disorder called CIP which affects 50,000 people nationwide. Based on the 
results of a seven year study, Dr. Schuster found that 54 percent of CIP patients have 
this rare digital arch fingerprint pattern. Schuster’s discovery suggests a genetic basis 
to the disease in that the more digital arches in the fingerprint, the stronger the 
correlation to CIP [29] . 

While still controversial within the scientific communities, several researchers 
report a link between fingerprints and homosexuality [30,60,61,62]. For example, 
psychologists at the University of Western Ontario report that homosexual males are 
more likely than their heterosexual counterparts to show asymmetry in their 
fingerprints. While this research is far from conclusive, the availability of such 
information with its possible links to medical information and lifestyle preferences 
again raises concern about the need to protect the privacy of the information. 

From examining the retina or iris, an expert can determine that a patient may be 
suffering from common afflictions like diabetes, arteriosclerosis and hypertension; 
furthermore, unique diseases of the iris and the retina can also be detected by a 
medical professional [3 1,631. While both the iris and retina contain medical 
information, it is by no means obvious that biometric scanning of the iris or retina 
automatically implicates privacy concerns related to the disclosure of medical 
information. A necessary area of further technical inquiry is whether the 
computerized byte code taken of the iris or retina actually contains this medical 
information or if the information captured is sufficient to be used for any type of 
diagnostic purpose. 

While much research remains to be done, the availability of such information with 
its possible links to medical information raises important questions about the privacy 
aspects of the information disclosed as well as public perception concerns. 
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Biometrics as Privacy’s Foe: Criticisms of Biometrics 

The Loss of Anonymity; the Loss of Autonomy 
A basic criticism of biometrics from the standpoint of privacy is that we, as 
individuals, lose our anonymity whenever biometric scanning systems are deployed. 
Part of controlling information about ourselves includes our ability to keep other 
parties from knowing who we are. While we all know that at some level, a 
determined party -- whether the state or a private actor -- can learn our identity (and 
much more about us), biometric scanning makes it plain that our identity is now fully 
established within seconds. As Professor Clarke explains, ‘‘The need to identify 
oneself may be intrinsically distasteful to some people ... they may regard it as 
demeaning, or implicit recognition that the organisation [sic.] with whom they are 
dealing exercises power over them” [32]. Privacy advocate Robert Ellis Smith agrees, 
noting that, “In most cases, biometric technology is impersonal.” At the same time, if 
the technology meets with widespread success, individuals may find that they are 
required to provide a biometric identifier in unexpected, unwelcome or unforeseen 
future circumstances. Moreover, you cannot make up a biometric as easily as you can 
an address and phone number. In this sense, perhaps, the loss of anonymity leads to 
an inevitable loss of individual autonomy. 

To the extent there is less individual anonymity today than in decades or centuries 
past, biometrics is not to blame. Rather, far larger economic, political and 
technological forces were at work. America’s transformation from an agrarian to 
industrial to post-industrial, service economy combined with the massive growth of 
government since the New Deal of the 1930s have put a greater premium on the need 
for information about individuals and organizations. At the same time, technical 
advances have made it much easier and more convenient to keep extensive 
information on individuals. Summarizing this trend, one scholar has noted, “[I]n the 
present service economy, information has become an increasingly valuable 
commodity . . . The computer has exacerbated this problem through its capacity to 
disclose a large amount of personal information to a large number of unrelated 
individuals in a very short amount of time [18].” 

While a biometric identifier is a very accurate identifier, it is not the first nor is it 
the only identifier used to match or locate information about a person. Names and 
numerical identifiers such as social security numbers, account numbers and military 
service numbers have long been used to access files with personal information. 
Moreover, the impressive search capabilities of computer systems with their abilities 
to search, for example, the full text of stored documents, make identifiers far less 
important for locating information about an individual. 

Moreover, there is usually a good reason why recognition in the form of 
identification or verification is needed. Balancing the equities involved and 
depending on the case, the benefits of establishng a person‘s identity generally 
outweigh the costs of losing anonymity. For example, given the massive problem of 
missing and abused children, we eagerly support the idea of day care providers using 
biometrics to make certain that our children get released at the end of the day to a 
parent or guardian whose identity has been verified. 

Similarly, to consider a “pocketbook” example, the world’s financial community 
has long been concerned about growing problems of ATM fraud and unauthorized 
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account access, estimated to cost $400 million a year [33,64]. Credit card fraud is 
estimated at $2 billion per year. The financial services industry believes that a 
significant percentage of these losses could be eliminated by biometric scanning. 

Critics give too much credit to biometrics’ alleged ability to erode anonymity 
without giving enough attention to the market’s ability to protect privacy in response. 
It is not obvious that more anonymity will be lost when biometrics are used. Public 
and private sector organizations already have the ability to gather substantial amounts 
of information about individuals by tracking, for example, credit card use, consumer 
spending and demographic factors. 

Drawing a parallel to the financial services industry, despite the existence of many 
comprehensive payment systems, like credit cards, which combine ease of service 
with extensive record-keeping, many Americans still prefer to use cash for 
transactions -- a form of payment that leaves virtually no record. An individual who 
wants anonymity might have to go to greater lengths to get it in the biometric world 
but the ability of the marketplace to accommodate a person’s desire for anonymity 
should not be so readily dismissed. Moreover, as explained below, the ability of 
biometrics to serve as privacy enhancing technologies should not be discounted. 

The Biometric-Based Big Brother Scenario 
Aside from the alliterative qualities the phrase possesses, critics of biometrics seem to 
inevitably link the technology to Big Brother. Biometrics, in combination with 
impressive advancements in computer and related technologies, would, its critics 
argue, enable the State to monitor the actions and behavior of its citizenry. In this 
vein, concern has been expressed that biometric identifiers will be used routinely 
against citizens by law enforcement agencies. As Marc Rotenberg of the Electronic 
Privacy Information Center has succinctly explained, ‘‘Take someone‘s fingerprint and 
you have the ability to determine if you have a match for forensic purposes” [34]. 

This Big Brother concern, however, goes beyond normal police work. Every time 
an individual used her biometric identifier to conduct a transaction, a record would be 
made in a database which the government, using computer technology, could then 
match and use against the citizen -- even in ways that are not authorized or meet with 
our disapproval. To borrow the reasoning of a 1973 report on national identity card 
proposals, the biometric identifier, in ways far more effective than a numerical 
identifier, “could serve as the skeleton for a national dossier system to maintain 
information on every citizen from cradle to grave” [35]. Professor Clarke has perhaps 
offered the best worst-case 1984-like scenario: 

Any high-integrity identifier [such as biometric scanning] represents a threat to civil 
liberties, because it represents the basis for a ubiquitous identification scheme, and such a 
scheme provides enormous power over the populace. All human behavior would become 
transparent to the State, and the scope for non-conformism and dissent would be muted to 
the point envisaged by the anti-utopian novelists. 

There is at least one example from United States history where supposedly 
confidential records were used in ways never likely intended. In November 1941, 
almost two weeks before the Japanese attack on Pearl Harbor, President Franklin D. 
Roosevelt ordered a comprehensive list made, to include the names and addresses, of 
all foreign-born and American-born Japanese living in the United States. To compile 
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the list, staffers used 1930 and 1940 census data. Working without the benefit of 
computers, staffers compiled the list in one week [36] .  By the Spring of 1942, the 
United States Government forced persons of Japanese descent, including United 
States citizens, to relocate from their homes on the West Coast and report to 
‘‘Relocation Centers” [37]. 

Function Creep 
The biometric-based Big Brother scenario would not happen instantly. Rather, when 
first deployed, biometrics would be used for very limited, clearly specified, sensible 
purposes -- to combat fraud, to improve airport security, to protect our children, etc. 
But as Justice Brandeis warned in his famous Olmstead dissent: 

Experience should teach us to be most on our guard to protect liberty when the 
Government’s purposes are beneficent. Men born to freedom are naturally alert to repel 
invasion of their liberty by evil-minded rulers. The greatest dangers to liberty lurk in 
insidious encroachment by men of zeal, well-meaning but without understanding [38]. 

What would inevitably happen over time, according to civil libertarians, is a 
phenomenon known as “function creep”: identification systems incorporating 
biometric scanning would gradually spread to additional purposes not announced or 
not even intended when the identification systems were originally implemented. 

The classic example of function creep is the use of the Social Security Number 
(SSN) in the United States. Originated in 1936, the SSN’s sole purpose was to 
facilitate recordkeeping for determining the amount of Social Security taxes to credit 
to each contributor’s account [39]. In fact, the original Social Security cards 
containing the SSN bore the legend, ‘‘Not for Identification.” By 1961, the Internal 
Revenue Service (IRS) began using the SSN for tax identification purposes. By 1997, 
“[e]verything from credit to employment to insurance to many states’ drivers licenses 
requires a Social Security Number.” From ‘‘Not for Identification,” the SSN has 
become virtual mandatory identification. 

Moreover, given the consequences of function creep, the size, power and scope of 
government will expand as all citizens get their biometric identifiers thrown into 
massive government databases by the ‘‘men [and women] of zeal, well-meaning but 
without understanding” about whom Justice Brandeis warned. In effect, a Russian 
proverb aptly identifies the danger of biometrics for freedom-loving Americans, ‘‘If 
you are a mushroom, into the basket you must go.” 

By Using Biometries, Government Reduces the Individual’s Reasonable Expectation 
of Privacy 
Just as function creep implies that biometrics will gradually (and innocently) grow to 
be used by zealous, well-meaning bureaucrats in numerous, creative ways in multiple 
fora, function creep will also enable the Government to use the new technology of 
biometrics to reduce further over time the citizenry’s reasonable expectations of their 
privacy. 

Analogies can be drawn from previous cases where the Government has used 
cutting-edge technology to intrude in an area where the private actor had manifested a 
subjective expectation of privacy. For example, the Environmental Protection 
Agency (EPA), in an effort to investigate industrial pollution, used ‘‘the finest 
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precision aerial camera available” mounted in an airplane flying in lawful airspace to 
take photographs of Dow Chemical Company’s 2,000 acre Midland, Michigan 
facilities [40,65]. Fearful that industrial competitors might try to steal its trade 
secrets, Dow took elaborate precautions at its facility. Despite the elaborate 
precautions the company took to ensure its privacy, the Supreme Court, in a 5-4 vote, 
found that Dow had no reasonable, legitimate and objective expectation of privacy in 
the area photographed. The dissent noted that, by basing its decision on the method 
of surveillance used by the Government, as opposed to the company’s reasonable 
expectation of privacy, the Court ensured that ‘‘privacy rights would be seriously at 
risk as technological advances become generally disseminated and available to 
society” [41]. 

Biometrics is the kind of technological advance the Dow dissenters warned about. 
Citizens no longer would have a reasonable expectation of privacy any time they use a 
biometric identifier because the Government’s use of biometrics and computer 
matching would be merely utilizing commercially available technologies. 

The Case for Biornetrics 
While biometrics is an important technological achievement, its use should be kept in 
a law and policy perspective: Big Brother concerns implicate far more than 
biometrics. The broader underlying issue is not controlling biometrics but rather the 
challenge of how law and policy should control contemporary information systems. 
Computers and the matching they perform permit ‘‘various fragments of information 
about an individual to be combined and compiled to form a much more complete 
profile. These profiles can be collected, maintained and disclosed to organizations 
with which the individual has no direct contact or to which the individual would 
prefer to prevent disclosure[ 18].” Biometrics should be viewed as an appendage to 
this enormous challenge. 

Critics also overlook the many legitimate reasons why the government needs to use 
biometric applications. Biometric applications related to national security and prison 
management are easy to grasp; all of us want solid guarantees that only the correct 
military personnel can access nuclear materials and that serial killers do not slip out of 
prison by masquerading as someone else. These same concerns related to the use of 
false identity really apply across the board; for example, the government has a 
legitimate purpose in preventing fraud in the programs it administers. 

Fraud is a significant issue in public sector programs. A persistent problem of 
state welfare entitlement programs is fraud perpetrated by double-dippers -- 
individuals who illegally register more than one time for benefits using an alias or 
otherwise false information about themselves. Many experts believe that fraud in 
entitlement programs, like welfare, can be as high as ten percent, which translates in 
dollar terms to over $40 billion a year in potential savings. 

Biometrics is being used to help stop this fraud. Bob Rasor, a senior U.S. Secret 
Service official, commented that, “Biometrics would put a sudden and complete stop 
to as much as 80% of all fraud activity.” In Connecticut, which has embarked on a 
robust biometric identification program for welfare recipients known as the Digital 
Imaging System (DIS), the state’s Department of Social Services (DSS) 
‘‘conservatively estimates that in the first year of operation [1996], savings in the 
range of $5, 512,994 to $9,406,396 have been achieved” [42]. 
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In these tight budgetary times when welfare programs are being curtailed and 
resources are overextended, anyone who is illegally receiving an entitlement payment 
is, at the bottom line, depriving an honest, needy person of her entitlement because 
there is simply less money to go around. 

To the extent critics have concerns about function creep, two points need to be 
made: First, as explained above, the critical and key function creep issue is 
controlling information systems, not controlling a nine digit number or an x-byte 
numerical template used as a biometric identifier. Secondly, issues specifically 
related to biometrics can be best addressed within our present legal and policy 
framework. We do not need a new ‘‘Law of Biometrics” paradigm; the old bottles of 
the law will hold the new wine of biometrics quite well. In this regard, legislative 
proposals, particularly at the federal level, should be considered and studied, 
particularly if the threat of function creep or the emergence of an undisciplined 
secondary market is real. With respect to private sector use of biometrics, viable 
options exist for our nation’s policymakers. For a more detailed analysis of this 
biometric blueprint proposal, refer to [4 1,431. 

Cultural, Religious, Philosophical Objections 

Cultural: Stigma &Dignity 
Simon Davies of Privacy International notes that it is no accident that biometric 
systems are being tried out most aggressively with welfare recipients; he contends that 
they are in no position to resist the State-mandated intrusion [44]. Interestingly, in the 
1995 GAO Report on the use of biometrics to deter fraud in the nationwide 
Electronics Benefit Transfer (EBT) program, the US .  Department of the Treasury 
expressed concern over how finger imaging “would impact on the dignity of the 
recipients” and called for more ‘‘testing and study [67].” 

While stigma and dignity arguments tied to the less fortunate elements of society 
have a strong emotional appeal, the available empirical data suggest that the majority 
of entitlement recipients actually support the use of biometrics. For example, a survey 
of 2,378 entitlements recipients in San Antonio, Texas, who participated in a 
biometric pilot program found that “90% think finger imaging is a good idea and 88% 
think finger imaging will help make people more honest when applying for benefits” 
[45]. Survey data in Connecticut and other states suggests similar results [46]. 

Religious Objections 
Several religious groups criticize biometrics on the ground that individuals are forced 
to sacrifice a part of themselves to a Godless monolith in the form of the State. For 
example, observing that ‘‘the Bible says the time is going to come when you cannot 
buy or sell except when a mark is placed on your head or forehead,” fundamentalist 
Christian Pat Robertson expresses doubts about biometrics and notes how the 
technology is proceeding according to Scripture [47]. And at least one religious 
group has complained that the hand geometry devices used by California were making 
‘‘the mark of the beast” on enrollees’ hands. 

Recently, in one of the first legal challenges to government use of biometrics, New 
York courts upheld a decision of the New York State Department of Social Services 
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to discontinue public assistance payments where a recipient refused to provide her 
biometric on religous grounds [68]. Similar objections have also been made in the 
context of the Government's mandated provision of social security numbers. In 
Bowen v. Ray, a leading Supreme Court case dealing with this issue, a Native 
American objected to the provision of a SSN for his minor daughter's application for 
welfare assistance as a violation of the family's Native American religious beliefs. 
The Court refused to sustain this challenge [48]. 

As these cases demonstrate, the courts are experienced in dealing with similar 
objections involving the State's mandatory provision of identifiers. The judiciary has 
an adequate framework to deal with biometrics-related religious concerns if they 
should arise in this context. 

Philosophical: Biometric-Based Branding 
Biometrics merits criticism on the grounds that a biometric identifier is nothing more 
than biometric-based branding or high-tech tattooing. There is an understandably 
odious stigma associated with the forced branding and tattooing of human beings, 
particularly since branding was used as a recognition system to denote property rights 
in human slaves in the eighteenth and nineteenth centuries and tattooing was used by 
the Nazis to identify concentration camp victims in this century. More than just the 
physical pain of the brand or tattoo accounts for society's revulsion. Analogizing 
from these experiences, biometric identifiers are merely a physically painless 
equivalent of a brand or tattoo that the State will impose on its citizens. While 
biometrics may lack the performance of a microchip monitor which could be 
implanted in humans, the biometric identifier will similarly serve the interests of the 
State [49]. Biornetrics are another example of the State taking technology to reduce 
individuality. 

Comparisons of biometrics to brands and tattoos again appeal to the emotions. 
Essentially these arguments are the ultimate form of the Big Brother concerns 
outlined above. Slave owners and Nazis forced branding and tattooing on victims 
who had absolutely no choice. In the private sector realm, citizens are making 
voluntary choices to use or not to use biometrics. When biometrics is used in the 
public sector, the use will be for legitimate purposes and will be overseen by 
democratic institutions. 

Actual Physical Harm; Physical Invasiveness 
To the author's knowledge, there are no actual documented cases of biometrics 
causing physical harm to a user. Anecdotally, some users of biometrics have 
complained that hand geometry systems dry their hands while military aviators 
participating in an experimental program voiced concern that retinal scanning would 
damage their 20/20 vision with extended use over time. 

Any liability resulting from any proven actual physical harm caused by biometric 
systems would be addressed by the individual states' tort liability regimes. 
Eventually, the judiciary will have the opportunity to decide the admissibility of 
biometric identification as scientific evidence using prevailing legal standards [50] . 
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Biometrics as Privacy's Friend: Support for Biometrics 

Biometrics Protects Privacy by Safeguarding Identity and Integrity 
While critics of biometrics contend that this new technology is privacy's foe, the 
opposite is, in fact, true. Biornetrics is a friend of privacy whether used in the private 
or public sectors. Biornetrics proves itself as privacy's friend when it is deployed as a 
security safeguard to prevent fraud. 

To consider a specific example drawn from the financial services industry but 
applicable to almost any fraud prevention scenario, criminals eagerly exploit 
weaknesses with the present access systems which tend to be based on passwords and 
PINS by clandestinely obtaining these codes. They then surreptitiously access a 
legitimate customer's account or ATM. The honest citizen effectively loses control 
over her personal account information. Her financial integrity is compromised and 
her finances are gone because a criminal has gained unauthorized access to the 
information. In effect, she has suffered an invasion of her privacy related to her 
financial integrity. With biometric-based systems, identity theft, while never 
completely defeated, becomes more difficult for the criminal element to perpetuate. 
Biometrics means less consumer fraud which means greater protection of consumers' 
financial integrity. 

Biometrics Used to Limit Access to Information 
Biometrics becomes a staunch friend of privacy when the technology is used for 
access control purposes, thereby restricting unauthorized personnel from gaining 
access to sensitive personal information. For example, biometrics can be effectively 
used to limit access to a patient's medical information stored on a computer database. 
Instead of relying on easily compromised passwords and PINS,  a biometric identifier 
is required at the computer workstation to determine database access. The same 
biometric systems can be used for almost any information database (including 
databases containing biometric identifiers) to restrict or compartment information 
based on the ''Need to Know" principle. 

Biornetrics also protects information privacy to the extent that it can be used, 
through the use of a biometric log-on explained above, to keep a precise record of 
who accesses what personal information within a computer network. For example, 
individual tax records would be much better protected if an Internal Revenue Service 
official had to use her biometric identifier to access them, knowing that an audit trail 
was kept detailing who accessed which records. Far less snooping by curious 
bureaucrats would result. 

Biometrics as Privacy Enhancing Technology 
Beyond protecting privacy, biometrics can be seen as enhancing privacy. There are 
several newly-developed biometric technologies which use the individual's physical 
characteristic to construct a digital code for the individual without storing the actual 
physical characteristics in a database [5 1,22,24]. 

The applications of this type of anonymous verification system are extensive. 
Most notably, such a biometric-based system would seem to provide a ready 
commercial encryption capability. Moreover, rather than technological advances 
eroding privacy expectations as we saw, for example, with the EPA's use of a special 
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aerial camera in Dow, biometrics, as used to create an anonymous encryption system, 
would provide for privacy enhancement. 

Many of the criticisms of biometrics discussed above are either off the mark in that 
they should really be aimed at contemporary information systems which are the result 
of economic, political and technological change or the criticisms fail to acknowledge 
why knowing an individual‘s identity is necessary. As the next section explains, the 
use of biometrics might provide for even further individual privacy protections 
through a phenomenon known as biometric balkanization. 

5. Biometric Centralization vs. Biometric Balkanization: 
Which Protects Privacy Better? 

It is important to address whether a specific biometric technology will come to 
dominate biometric scanning systems. In other words, will the biometric future 
feature biometric centralization whereby one biometric would dominate multiple 
applications, or will we see biometric balkanization where multiple biometrics are 
used for multiple applications? At present, finger imaging has an early lead in terms 
of industry presence and received an important seal of governmental approval when it 
was endorsed by the GAO. The popularity of finger imaging is explained primarily 
by its consistency and uniqueness, the fingerprint‘s long acceptance by the public, and 
extensive competition in the finger imaging market leading to rapidly decreasing user 
costs, among other factors. 

For example, with regard to public acceptance of finger imaging, a survey of 1,000 
adults revealed that 75 percent of those polled would be comfortable having a finger 
image of themselves made available to the government or the private sector for 
identification purposes. This high acceptance is arguably underscored by over half of 
those surveyed saying they had been fingerprinted at some point in their lives. Only 
twenty percent thought that fingerprinting stigmatizes a person as a criminal [52].  

Despite this early lead, however, it is not clear that finger imaging will emerge as 
the biometric of choice. It is tempting to predict that finger imaging will dominate or 
that another biometrics will come to monopolize the market because of its perceived 
advantages. However, this view overlooks one of the great strengths of the current 
biometric market: It offers many robust technologies which allow maximum choice 
for users. A more likely outcome is that “biometric balkanization” will result: 
Multiple biometrics will be deployed not only by various public and private sector 
actors but multiple biometrics will be deployed by the same actor depending on the 
specific mission. 

Arguably, biometric balkanization, like its Eastern European namesake, can take 
on a sinister spin. Individuals will be forced to give up various identifying “pieces” of 
themselves to countless governmental and corporate bureaucracies. In an Orwellian 
twist, the retina, the iris, the fingerprints, the voice, the signature, the hand, the vein, 
the tongue and presumably even the body odor will all be extracted by the State and 
stored in databases. 

Yet, biometric balkanization offers at least two key advantages for the protection 
of privacy. First, biometric balkanization offers maximum flexibility to the private or 
public actor that will use the technology. The actor can tailor a specific biometric 
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program to meets its own unique mission within its resource constraints. Depending 
on the situation and the degree of accuracy in identification required, the optimal 
biometric for that use can be selected. For example, the best biometric used to verify 
access to a government entitlements program might differ from the best biometric 
used by a university to ferret out undergraduate examination fraud, which in turn 
might differ from the best biometric needed in a prison environment where hostile 
users will go to extreme lengths to foil identification efforts. Similarly, voice 
verification might be ideal for determining account access over the telephone while 
signature dynamics might be better suited for the tax authorities monitoring returns. 

Secondly, biometric balkanization might actually mean a synergy of the actors’ 
interest and the individual’s concerns. Consider, for example, the public sector use of 
biometrics: Government agencies basically want dependable, workable biometrics to 
achieve their primary purpose -- verifying The 
individual essentially wants the same thing, plus protection of private information. If 
different technologies are used for different situations, citizens will not face the 
necessity of reporting to the government’s “biometric central” for enrollment. By 
allowing the agencies maximum choice of biometric technologies, the individual 
gains greater protection for private information. 

Biometric balkanization could also lead to the safeguard of biometric 
compartmentation which would be achieved through the use of different biometric 
identifiers. For example, an iris pattern used for ATM access would be of little use to 
the Connecticut Department of Social Services which uses finger imaging just as a 
finger geometry pattern captured at Disney World would be of little value to tax 
authorities investigating phony signatures on fraudulent tax returns from the Sunshine 
State. 

From the privacy enhancement perspective, biometric balkanization is the 
equivalent of being issued multiple identification numbers or PINS or passwords with 
the important difference that biometric-based systems provide better security and 
greater convenience. 

On balance, however, the greater threat to privacy will likely not arise from the use 
of advanced technology to monitor but rather from sloppiness in database 
management. The potential for a breach in database security increases greatly as 
shortcuts are taken, budgets are slashed, trained personnel are few and leaders do not 
draft and implement a biometric blueprint, or plan to safeguard biometric 
identification information for which they are responsible. Accordingly, limited 
government regulation should be viewed as biometric technology-promoting and not 
biometric technology-opposing. 

or identifying an individual. 

6. Conclusions 

Biometrics is a new technology which is being deployed in a variety of creative public 
and private sector applications. As biometrics gains in popularity and grows in uses, 
the law, or at least a modem-day equivalent of Judge Learned Hand, will likely take 
notice. As this paper has suggested, while biometrics is a new technology, it does not 
require a striking new legal vision to regulate it. Rather the situation is more akin to 
new wine in old bottles in that existing legal doctrines can deal with the challenges 
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biometrics present. The situation is compounded in that the American approach to 
privacy matters has tended to be ad hoc and piecemeal. While the question of 
whether America needs a comprehensive approach to privacy concerns is beyond the 
scope of this paper, the legal and policy challenges posed by biometrics are not so 
novel and extraordinary that they cannot be dealt with under existing processes. 

Before succumbing to the criticisms of biometrics as privacy’s foe, the countercase 
needs to be made: Biometrics is privacy’s friend. Critics of biometrics are too quick 
to kill the biometric identifier when it is really the ‘‘information society” and the 
technical underpinning of computer matching that should be the focus of their aim. 
To the extent biometrics raises important legal and policy issues, the existing 
institutional framework can address these concerns. 

Biometrics protects information integrity in both the private and public sector 
context. By restricting access to personal information, biometrics provides effective 
privacy protection. Biometric balkanization further safeguards privacy by allowing 
maximum choice for the organization using biometrics which also makes biometric 
compartmentation viable. 

We are eyeball to eyeball with a new technology reality that promises greater 
security and efficiency for both its public and private sector users. Biometrics can be 
used in worthwhile ways and, at the same time, safeguard legitimate privacy concerns. 
Now is not the time to blink. 
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