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The OpenGL graphics system is a software interface to graphics 

hardware. (“GL” stands for “Graphics Library.”) It allows you to 

create interactive programs that produce color images of moving, three-

dimensional objects. With OpenGL, you can control computer-graphics 

technology to produce realistic pictures, or ones that depart from reality 

in imaginative ways. 

The OpenGL Series from Addison-Wesley Professional comprises 

tutorial and reference books that help programmers gain a practical 

understanding of OpenGL standards, along with the insight needed to 

unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products

OpenGL® Series
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Foreword

During the past few years, heterogeneous computers composed of CPUs 
and GPUs have revolutionized computing. By matching different parts of 
a workload to the most suitable processor, tremendous performance gains 
have been achieved.

Much of this revolution has been driven by the emergence of many-core 
processors such as GPUs. For example, it is now possible to buy a graphics 
card that can execute more than a trillion floating point operations per 
second (teraflops). These GPUs were designed to render beautiful images, 
but for the right workloads, they can also be used as high-performance 
computing engines for applications from scientific computing to aug-
mented reality.

A natural question is why these many-core processors are so fast com-
pared to traditional single core CPUs. The fundamental driving force is 
innovative parallel hardware. Parallel computing is more efficient than 
sequential computing because chips are fundamentally parallel. Modern 
chips contain billions of transistors. Many-core processors organize these 
transistors into many parallel processors consisting of hundreds of float-
ing point units. Another important reason for their speed advantage is 
new parallel software. Utilizing all these computing resources requires 
that we develop parallel programs. The efficiency gains due to software 
and hardware allow us to get more FLOPs per Watt or per dollar than a 
single-core CPU.

Computing systems are a symbiotic combination of hardware and soft-
ware. Hardware is not useful without a good programming model. The 
success of CPUs has been tied to the success of their programming mod-
els, as exemplified by the C language and its successors. C nicely abstracts 
a sequential computer. To fully exploit heterogeneous computers, we need 
new programming models that nicely abstract a modern parallel computer. 
And we can look to techniques established in graphics as a guide to the 
new programming models we need for heterogeneous computing.

I have been interested in programming models for graphics for many 
years. It started in 1988 when I was a software engineer at PIXAR, where 
I developed the RenderMan shading language. A decade later graphics 
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systems became fast enough that we could consider developing shading 
languages for GPUs. With Kekoa Proudfoot and Bill Mark, we developed 
a real-time shading language, RTSL. RTSL ran on graphics hardware by 
compiling shading language programs into pixel shader programs, the 
assembly language for graphics hardware of the day. Bill Mark subse-
quently went to work at NVIDIA, where he developed Cg. More recently, 
I have been working with Tim Foley at Intel, who has developed a new 
shading language called Spark. Spark takes shading languages to the next 
level by abstracting complex graphics pipelines with new capabilities such 
as tesselation.

While developing these languages, I always knew that GPUs could be used 
for much more than graphics. Several other groups had demonstrated that 
graphics hardware could be used for applications beyond graphics. This 
led to the GPGPU (General-Purpose GPU) movement. The demonstra-
tions were hacked together using the graphics library. For GPUs to be used 
more widely, they needed a more general programming environment that 
was not tied to graphics. To meet this need, we started the Brook for GPU 
Project at Stanford. The basic idea behind Brook was to treat the GPU as 
a data-parallel processor. Data-parallel programming has been extremely 
successful for parallel computing, and with Brook we were able to show 
that data-parallel programming primitives could be implemented on a 
GPU. Brook made it possible for a developer to write an application in a 
widely used parallel programming model.

Brook was built as a proof of concept. Ian Buck, a graduate student at 
Stanford, went on to NVIDIA to develop CUDA. CUDA extended Brook in 
important ways. It introduced the concept of cooperating thread arrays, or 
thread blocks. A cooperating thread array captured the locality in a GPU 
core, where a block of threads executing the same program could also 
communicate through local memory and synchronize through barriers. 
More importantly, CUDA created an environment for GPU Computing 
that has enabled a rich ecosystem of application developers, middleware 
providers, and vendors.

OpenCL (Open Computing Language) provides a logical extension of the 
core ideas from GPU Computing—the era of ubiquitous heterogeneous 
parallel computing. OpenCL has been carefully designed by the Khronos 
Group with input from many vendors and software experts. OpenCL 
benefits from the experience gained using CUDA in creating a software 
standard that can be implemented by many vendors. OpenCL implemen-
tations run now on widely used hardware, including CPUs and GPUs from 
NVIDIA, AMD, and Intel, as well as platforms based on DSPs and FPGAs. 
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By standardizing the programming model, developers can count on more 
software tools and hardware platforms.

What is most exciting about OpenCL is that it doesn’t only standardize 
what has been done, but represents the efforts of an active community 
that is pushing the frontier of parallel computing. For example, OpenCL 
provides innovative capabilities for scheduling tasks on the GPU. The 
developers of OpenCL have have combined the best features of task- 
parallel and data-parallel computing. I expect future versions of OpenCL 
to be equally innovative. Like its father, OpenGL, OpenCL will likely grow 
over time with new versions with more and more capability.

This book describes the complete OpenCL Programming Model. One of 
the coauthors, Aaftab, was the key mind behind the system. He has joined 
forces with other key designers of OpenCL to write an accessible authorita-
tive guide. Welcome to the new world of heterogeneous computing.

—Pat Hanrahan
Stanford University
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Preface

Industry pundits love drama. New products don’t build on the status quo 
to make things better. They “revolutionize” or, better yet, define a “new 
paradigm.” And, of course, given the way technology evolves, the results 
rarely are as dramatic as the pundits make it seem.

Over the past decade, however, something revolutionary has happened. 
The drama is real. CPUs with multiple cores have made parallel hardware 
ubiquitous. GPUs are no longer just specialized graphics processors; they 
are heavyweight compute engines. And their combination, the so-called 
heterogeneous platform, truly is redefining the standard building blocks 
of computing.

We appear to be midway through a revolution in computing on a par with 
that seen with the birth of the PC. Or more precisely, we have the potential
for a revolution because the high levels of parallelism provided by hetero-
geneous hardware are meaningless without parallel software; and the fact 
of the matter is that outside of specific niches, parallel software is rare.

To create a parallel software revolution that keeps pace with the ongoing 
(parallel) heterogeneous computing revolution, we need a parallel soft-
ware industry. That industry, however, can flourish only if software can 
move between platforms, both cross-vendor and cross-generational. The 
solution is an industry standard for heterogeneous computing.

OpenCL is that industry standard. Created within the Khronos Group 
(known for OpenGL and other standards), OpenCL emerged from a col-
laboration among software vendors, computer system designers (including 
designers of mobile platforms), and microprocessor (embedded, accelera-
tor, CPU, and GPU) manufacturers. It is an answer to the question “How 
can a person program a heterogeneous platform with the confidence that 
software created today will be relevant tomorrow?”

Born in 2008, OpenCL is now available from multiple sources on a wide 
range of platforms. It is evolving steadily to remain aligned with the latest 
microprocessor developments. In this book we focus on OpenCL 1.1. We 
describe the full scope of the standard with copious examples to explain 
how OpenCL is used in practice. Join us. Vive la révolution.
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Intended Audience
This book is written by programmers for programmers. It is a pragmatic 
guide for people interested in writing code. We assume the reader is 
comfortable with C and, for parts of the book, C++. Finally, we assume 
the reader is familiar with the basic concepts of parallel programming. 
We assume our readers have a computer nearby so they can write software 
and explore ideas as they read. Hence, this book is overflowing with pro-
grams and fragments of code.

We cover the entire OpenCL 1.1 specification and explain how it can be 
used to express a wide range of parallel algorithms. After finishing this 
book, you will be able to write complex parallel programs that decom-
pose a workload across multiple devices in a heterogeneous platform. You 
will understand the basics of performance optimization in OpenCL and 
how to write software that probes the hardware and adapts to maximize 
performance.

Organization of the Book
The OpenCL specification is almost 400 pages. It’s a dense and complex 
document full of tediously specific details. Explaining this specification is 
not easy, but we think that we’ve pulled it off nicely. 

The book is divided into two parts. The first describes the OpenCL speci-
fication. It begins with two chapters to introduce the core ideas behind 
OpenCL and the basics of writing an OpenCL program. We then launch 
into a systematic exploration of the OpenCL 1.1 specification. The tone of 
the book changes as we incorporate reference material with explanatory 
discourse. The second part of the book provides a sequence of case stud-
ies. These range from simple pedagogical examples that provide insights 
into how aspects of OpenCL work to complex applications showing how 
OpenCL is used in serious application projects. The following provides 
more detail to help you navigate through the book: 

Part I: The OpenCL 1.1 Language and API

• Chapter 1, “An Introduction to OpenCL”: This chapter provides a 
high-level overview of OpenCL. It begins by carefully explaining why 
heterogeneous parallel platforms are destined to dominate comput-
ing into the foreseeable future. Then the core models and concepts 
behind OpenCL are described. Along the way, the terminology used 
in OpenCL is presented, making this chapter an important one to read 
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even if your goal is to skim through the book and use it as a reference 
guide to OpenCL. 

• Chapter 2, “HelloWorld: An OpenCL Example”: Real programmers 
learn by writing code. Therefore, we complete our introduction to 
OpenCL with a chapter that explores a working OpenCL program. 
It has become standard to introduce a programming language by 
printing “hello world” to the screen. This makes no sense in OpenCL 
(which doesn’t include a print statement). In the data-parallel pro-
gramming world, the analog to “hello world” is a program to complete 
the element-wise addition of two arrays. That program is the core of 
this chapter. By the end of the chapter, you will understand OpenCL 
well enough to start writing your own simple programs. And we urge 
you to do exactly that. You can’t learn a programming language by 
reading a book alone. Write code.

• Chapter 3, “Platforms, Contexts, and Devices”: With this chapter, 
we begin our systematic exploration of the OpenCL specification. 
Before an OpenCL program can do anything “interesting,” it needs 
to discover available resources and then prepare them to do useful 
work. In other words, a program must discover the platform, define 
the context for the OpenCL program, and decide how to work with 
the devices at its disposal. These important topics are explored in this 
chapter, where the OpenCL Platform API is described in detail.

• Chapter 4, “Programming with OpenCL C”: Code that runs on an 
OpenCL device is in most cases written using the OpenCL C program-
ming language. Based on a subset of C99, the OpenCL C program-
ming language provides what a kernel needs to effectively exploit 
an OpenCL device, including a rich set of vector instructions. This 
chapter explains this programming language in detail.

• Chapter 5, “OpenCL C Built-In Functions”: The OpenCL C program-
ming language API defines a large and complex set of built-in func-
tions. These are described in this chapter.

• Chapter 6, “Programs and Kernels”: Once we have covered the lan-
guages used to write kernels, we move on to the runtime API defined 
by OpenCL. We start with the process of creating programs and 
kernels. Remember, the word program is overloaded by OpenCL. In 
OpenCL, the word program refers specifically to the “dynamic library” 
from which the functions are pulled for the kernels.

• Chapter 7, “Buffers and Sub-Buffers”: In the next chapter we move 
to the buffer memory objects, one-dimensional arrays, including 
a careful discussion of sub-buffers. The latter is a new feature in 
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OpenCL 1.1, so programmers experienced with OpenCL 1.0 will find 
this chapter particularly useful. 

• Chapter 8, “Images and Samplers”: Next we move to the very 
important topic of our other memory object, images. Given the close 
relationship between graphics and OpenCL, these memory objects are 
important for a large fraction of OpenCL programmers.

• Chapter 9, “Events”: This chapter presents a detailed discussion of 
the event model in OpenCL. These objects are used to enforce order-
ing constraints in OpenCL. At a basic level, events let you write con-
current code that generates correct answers regardless of how work is 
scheduled by the runtime. At a more algorithmically profound level, 
however, events support the construction of programs as directed acy-
clic graphs spanning multiple devices. 

• Chapter 10, “Interoperability with OpenGL”: Many applications 
may seek to use graphics APIs to display the results of OpenCL pro-
cessing, or even use OpenCL to postprocess scenes generated by graph-
ics. The OpenCL specification allows interoperation with the OpenGL 
graphics API. This chapter will discuss how to set up OpenGL/OpenCL 
sharing and how data can be shared and synchronized.

• Chapter 11, “Interoperability with Direct3D”: The Microsoft fam-
ily of platforms is a common target for OpenCL applications. When 
applications include graphics, they may need to connect to Microsoft’s 
native graphics API. In OpenCL 1.1, we define how to connect an 
OpenCL application to the DirectX 10 API. This chapter will demon-
strate how to set up OpenCL/Direct3D sharing and how data can be 
shared and synchronized. 

• Chapter 12, “C++ Wrapper API”: We then discuss the OpenCL C++ 
API Wrapper. This greatly simplifies the host programs written in 
C++, addressing automatic reference counting and a unified interface 
for querying OpenCL object information. Once the C++ interface is 
mastered, it’s hard to go back to the regular C interface.

• Chapter 13, “OpenCL Embedded Profile”: OpenCL was created 
for an unusually wide range of devices, with a reach extending from 
cell phones to the nodes in a massively parallel supercomputer. Most 
of the OpenCL specification applies without modification to each 
of these devices. There are a small number of changes to OpenCL, 
however, needed to fit the reduced capabilities of low-power proces-
sors used in embedded devices. This chapter describes these changes, 
referred to in the OpenCL specification as the OpenCL embedded 
profile.
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Part II: OpenCL 1.1 Case Studies

• Chapter 14, “Image Histogram”: A histogram reports the frequency 
of occurrence of values within a data set. For example, in this chapter, 
we compute the histogram for R, G, and B channel values of a color 
image. To generate a histogram in parallel, you compute values over 
local regions of a data set and then sum these local values to generate 
the final result. The goal of this chapter is twofold: (1) we demonstrate 
how to manipulate images in OpenCL, and (2) we explore techniques 
to efficiently carry out a histogram’s global summation within an 
OpenCL program.

• Chapter 15, “Sobel Edge Detection Filter”: The Sobel edge filter is a 
directional edge detector filter that computes image gradients along 
the x- and y-axes. In this chapter, we use a kernel to apply the Sobel 
edge filter as a simple example of how kernels work with images in 
OpenCL.

• Chapter 16, “Parallelizing Dijkstra’s Single-Source Shortest-Path 
Graph Algorithm”: In this chapter, we present an implementation of 
Dijkstra’s Single-Source Shortest-Path graph algorithm implemented 
in OpenCL capable of utilizing both CPU and multiple GPU devices. 
Graph data structures find their way into many problems, from artifi-
cial intelligence to neuroimaging. This particular implementation was 
developed as part of FreeSurfer, a neuroimaging application, in order 
to improve the performance of an algorithm that measures the curva-
ture of a triangle mesh structural reconstruction of the cortical surface 
of the brain. This example is illustrative of how to work with multiple 
OpenCL devices and split workloads across CPUs, multiple GPUs, or 
all devices at once.

• Chapter 17, “Cloth Simulation in the Bullet Physics SDK”: Phys-
ics simulation is a growing addition to modern video games, and in 
this chapter we present an approach to simulating cloth, such as a 
warrior’s clothing, using OpenCL that is part of the Bullet Physics 
SDK. There are many ways of simulating soft bodies; the simulation 
method used in Bullet is similar to a mass/spring model and is opti-
mized for execution on modern GPUs while integrating smoothly 
with other Bullet SDK components that are not written in OpenCL. 
We show an important technique, called batching, that transforms 
the particle meshes for performant execution on wide SIMD archi-
tectures, such as the GPU, while preserving dependences within the 
mass/spring model.
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• Chapter 18, “Simulating the Ocean with Fast Fourier Transform”: 
In this chapter we present the details of AMD’s Ocean simulation. 
Ocean is an OpenCL demonstration that uses an inverse discrete 
Fourier transform to simulate, in real time, the sea. The fast Fou-
rier transform is applied to random noise, generated over time as a 
frequency-dependent phase shift. We describe an implementation 
based on the approach originally developed by Jerry Tessendorf that 
has appeared in a number of feature films, including Waterworld,
Titanic, and Fifth Element. We show the development of an optimized 
2D DFFT, including a number of important optimizations useful when 
programming with OpenCL, and the integration of this algorithm 
into the application itself and using interoperability between OpenCL 
and OpenGL.

• Chapter 19, “Optical Flow”: In this chapter, we present an imple-
mentation of optical flow in OpenCL, which is a fundamental concept 
in computer vision that describes motion in images. Optical flow has 
uses in image stabilization, temporal upsampling, and as an input to 
higher-level algorithms such as object tracking and gesture recogni-
tion. This chapter presents the pyramidal Lucas-Kanade optical flow 
algorithm in OpenCL. The implementation demonstrates how image 
objects can be used to access texture features of GPU hardware. We 
will show how the texture-filtering hardware on the GPU can be used 
to perform linear interpolation of data, achieve the required sub-pixel 
accuracy, and thereby provide significant speedups. Additionally, 
we will discuss how shared memory can be used to cache data that 
is repeatedly accessed and how early kernel exit techniques provide 
additional efficiency.

• Chapter 20, “Using OpenCL with PyOpenCL”: The purpose of this 
chapter is to introduce you to the basics of working with OpenCL in 
Python. The majority of the book focuses on using OpenCL from 
C/C++, but bindings are available for other languages including 
Python. In this chapter, PyOpenCL is introduced by walking through 
the steps required to port the Gaussian image-filtering example from 
Chapter 8 to Python. In addition to covering the changes required to 
port from C++ to Python, the chapter discusses some of the advan-
tages of using OpenCL in a dynamically typed language such as 
Python.

• Chapter 21, “Matrix Multiplication with OpenCL”: In this chapter, 
we discuss a program that multiplies two square matrices. The pro-
gram is very simple, so it is easy to follow the changes made to the 
program as we optimize its performance. These optimizations focus 
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on the OpenCL memory model and how we can work with the model 
to minimize the cost of data movement in an OpenCL program.

• Chapter 22, “Sparse Matrix-Vector Multiplication”: In this chapter, 
we describe an optimized implementation of the Sparse Matrix-Vector 
Multiplication algorithm using OpenCL. Sparse matrices are defined 
as large, two-dimensional matrices in which the vast majority of the 
elements of the matrix are equal to zero. They are used to characterize 
and solve problems in a wide variety of domains such as computa-
tional fluid dynamics, computer graphics/vision, robotics/kinematics, 
financial modeling, acoustics, and quantum chemistry. The imple-
mentation demonstrates OpenCL’s ability to bridge the gap between 
hardware-specific code (fast, but not portable) and single-source 
code (very portable, but slow), yielding a high-performance, efficient 
implementation on a variety of hardware that is almost as fast as a 
hardware-specific implementation. These results are accomplished 
with kernels written in OpenCL C that can be compiled and run on 
any conforming OpenCL platform.

Appendix

• Appendix A, “Summary of OpenCL 1.1”: The OpenCL specification 
defines an overwhelming collection of functions, named constants, 
and types. Even expert OpenCL programmers need to look up these 
details when writing code. To aid in this process, we’ve included an 
appendix where we pull together all these details in one place.

Example Code 
This book is filled with example programs. You can download many of 
the examples from the book’s Web site at www.openclprogrammingguide.
com.

Errata
If you find something in the book that you believe is in error, please send 
us a note at errors@opencl-book.com. The list of errata for the book can 
be found on the book’s Web site at www.openclprogrammingguide.com.

www.openclprogrammingguide.com
www.openclprogrammingguide.com
www.openclprogrammingguide.com
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Chapter 1

An Introduction to OpenCL

When learning a new programming model, it is easy to become lost in a 
sea of details. APIs and strange new terminology seemingly appear from 
nowhere, creating needless complexity and sowing confusion. The key is 
to begin with a clear high-level understanding, to provide a map to fall 
back on when the going gets tough.

The purpose of this chapter is to help you construct that map. We begin 
with a brief overview of the OpenCL 1.1 specification and the heteroge-
neous computing trends that make it such an important programming 
standard. We then describe the conceptual models behind OpenCL and 
use them to explain how OpenCL works. At this point, the theoretical 
foundation of OpenCL is established, and we move on to consider the 
components of OpenCL. A key part of this is how OpenCL works with 
graphics standards. We complete our map of the OpenCL landscape 
by briefly looking at how the OpenCL standard works with embedded 
processors.

What Is OpenCL, or . . . Why You Need This Book
OpenCL is an industry standard framework for programming computers 
composed of a combination of CPUs, GPUs, and other processors. These 
so-called heterogeneous systems have become an important class of plat-
forms, and OpenCL is the first industry standard that directly addresses 
their needs. First released in December of 2008 with early products avail-
able in the fall of 2009, OpenCL is a relatively new technology.

With OpenCL, you can write a single program that can run on a wide 
range of systems, from cell phones, to laptops, to nodes in massive super-
computers. No other parallel programming standard has such a wide 
reach. This is one of the reasons why OpenCL is so important and has the 
potential to transform the software industry. It’s also the source of much 
of the criticism launched at OpenCL.
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OpenCL delivers high levels of portability by exposing the hardware, not 
by hiding it behind elegant abstractions. This means that the OpenCL 
programmer must explicitly define the platform, its context, and how 
work is scheduled onto different devices. Not all programmers need or 
even want the detailed control OpenCL provides. And that’s OK; when 
available, a high-level programming model is often a better approach. 
Even high-level programming models, however, need a solid (and por-
table) foundation to build on, and OpenCL can be that foundation.

This book is a detailed introduction to OpenCL. While anyone can down-
load the specification (www.khronos.org/opencl) and learn the spelling of 
all the constructs within OpenCL, the specification doesn’t describe how 
to use OpenCL to solve problems. That is the point of this book: solving 
problems with the OpenCL framework.

Our Many-Core Future: Heterogeneous Platforms
Computers over the past decade have fundamentally changed. Raw per-
formance used to drive innovation. Starting several years ago, however, 
the focus shifted to performance delivered per watt expended. Semicon-
ductor companies will continue to squeeze more and more transistors 
onto a single die, but these vendors will compete on power efficiency 
instead of raw performance.

This shift has radically changed the computers the industry builds. First, 
the microprocessors inside our computers are built from multiple low-
power cores. The multicore imperative was first laid out by A. P. Chan-
drakasan et al. in the article “Optimizing Power Using Transformations.”1

The gist of their argument can be found in Figure 1.1. The energy 
expended in switching the gates in a CPU is the capacitance (C) times 
the voltage (V) squared. These gates switch over the course of a second a 
number of times equal to the frequency. Hence the power of a micropro-
cessor scales as P = CV2f. If we compare a single-core processor running at 
a frequency of f and a voltage of V to a similar processor with two cores 
each running at f/2, we have increased the number of circuits in the chip. 
Following the models described in “Optimizing Power Using Transforma-
tions,” this nominally increases the capacitance by a factor of 2.2. But the 
voltage drops substantially to 0.6V. So the number of instructions retired 

1 A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W. Brodersen, 
“Optimizing Power Using Transformations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 14, no. 1 (January 1995): 12–31. 

www.khronos.org/opencl
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per second is the same in both cases, but the power in the dual-core case 
is 0.396 of the power for the single-core. This fundamental relationship is 
what is driving the transition to many-core chips. Many cores running at 
lower frequencies are fundamentally more power-efficient.

Input OutputProcessor

Processor

Processor

f

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

Output

f

Input

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396 CV2f

f/2

f/2

Figure 1.1 The rate at which instructions are retired is the same in these two 
cases, but the power is much less with two cores running at half 
the frequency of a single core. 

The next question is “Will these cores be the same (homogeneous) or 
will they be different?” To understand this trend, consider the power 
efficiency of specialized versus general-purpose logic. A general-purpose 
processor by its nature must include a wide range of functional units to 
respond to any computational demand. This is precisely what makes the 
chip a general-purpose processor. Processors specialized to a specific func-
tion, however, have fewer wasted transistors because they include only 
those functional units required by their special function. The result can 
be seen in Figure 1.2, where we compare a general-purpose CPU (Intel 
Core 2 Quad processor model Q6700),2 a GPU (NVIDIA GTX 280),3 and 

2 Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic 
Architecture (April 2008).

3 Technical Brief, NVIDIA GeForce GTX 200 GPU Architectural Overview,
TB-04044-001_v01 (May 2008).
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a highly specialized research processor (Intel 80-core Tera-scale research 
processor, the cores of which are just a simple pair of floating-point 
multiply-accumulate arithmetic units).4 To make the comparisons as fair 
as possible, each of the chips was manufactured with a 65nm process 
technology, and we used the vendor-published peak performance versus 
thermal design point power. As plainly shown in the figure, as long as the 
tasks are well matched to the processor, the more specialized the silicon 
the better the power efficiency.

Hence, there is good reason to believe that in a world where maximizing 
performance per watt is essential, we can expect systems to increasingly 
depend on many cores with specialized silicon wherever practical. This is 
especially important for mobile devices in which conservation of battery 
power is critical. This heterogeneous future, however, is already upon 
us. Consider the schematic representation of a modern PC in Figure 1.3. 
There are two sockets, each potentially holding a different multicore CPU; 
a graphics/memory controller (GMCH) that connects to system memory 
(DRAM); and a graphics processing unit (GPU). This is a heterogeneous 
platform with multiple instruction sets and multiple levels of parallelism 
that must be exploited in order to utilize the full potential of the system. 

4 T. G. Mattson, R. van der Wijngaart, and M. Frumkin, “Programming Intel’s 80 
Core Terascale Processor,” Proceedings of SC08, Austin, TX (November 2008).
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Figure 1.2 A plot of peak performance versus power at the thermal design 
point for three processors produced on a 65nm process 
technology. Note: This is not to say that one processor is better or 
worse than the others. The point is that the more specialized the 
core, the more power-efficient it is.
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The basic platform, both today and in the future, at a high level is clear. A 
host of details and innovations will assuredly surprise us, but the hard-
ware trends are clear. The future belongs to heterogeneous many-core 
platforms. The question facing us is how our software should adapt to 
these platforms.

Software in a Many-Core World
Parallel hardware delivers performance by running multiple operations at 
the same time. To be useful, parallel hardware needs software that exe-
cutes as multiple streams of operations running at the same time; in other 
words, you need parallel software.

To understand parallel software, we must begin with the more general 
concept of concurrency. Concurrency is an old and familiar concept in 
computer science. A software system is concurrent when it consists of 
more than one stream of operations that are active and can make prog-
ress at one time. Concurrency is fundamental in any modern operat-
ing system. It maximizes resource utilization by letting other streams of 
operations (threads) make progress while others are stalled waiting on 
some resource. It gives a user interacting with the system the illusion of 
continuous and near-instantaneous interaction with the system.

GMCHGPU

ICH

CPUCPU

DRAM

Figure 1.3 Block diagram of a modern desktop PC with multiple CPUs 
(potentially different) and a GPU, demonstrating that systems 
today are frequently heterogeneous
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When concurrent software runs on a computer with multiple processing 
elements so that threads actually run simultaneously, we have parallel 
computation. Concurrency enabled by hardware is parallelism.

The challenge for programmers is to find the concurrency in their prob-
lem, express that concurrency in their software, and then run the result-
ing program so that the concurrency delivers the desired performance. 
Finding the concurrency in a problem can be as simple as executing an 
independent stream of operations for each pixel in an image. Or it can 
be incredibly complicated with multiple streams of operations that share 
information and must tightly orchestrate their execution. 

Once the concurrency is found in a problem, programmers must express 
this concurrency in their source code. In particular, the streams of opera-
tions that will execute concurrently must be defined, the data they 
operate on associated with them, and the dependencies between them 
managed so that the correct answer is produced when they run concur-
rently. This is the crux of the parallel programming problem. 

Manipulating the low-level details of a parallel computer is beyond the 
ability of most people. Even expert parallel programmers would be over-
whelmed by the burden of managing every memory conflict or sched-
uling individual threads. Hence, the key to parallel programming is a 
high-level abstraction or model to make the parallel programming prob-
lem more manageable.

There are way too many programming models divided into overlapping 
categories with confusing and often ambiguous names. For our purposes, 
we will worry about two parallel programming models: task parallelism
and data parallelism. At a high level, the ideas behind these two models 
are straightforward.

In a data-parallel programming model, programmers think of their 
problems in terms of collections of data elements that can be updated 
concurrently. The parallelism is expressed by concurrently applying the 
same stream of instructions (a task) to each data element. The parallelism 
is in the data. We provide a simple example of data parallelism in Figure 
1.4. Consider a simple task that just returns the square of an input value 
and a vector of numbers (A_vector). Using the data-parallel program-
ming model, we update the vector in parallel by stipulating that the task 
be applied to each element to produce a new result vector. Of course, this 
example is extremely simple. In practice the number of operations in the 
task must be large in order to amortize the overheads of data movement 
and manage the parallel computation. But the simple example in the fig-
ure captures the key idea behind this programming mode. 
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In a task-parallel programming model, programmers directly define 
and manipulate concurrent tasks. Problems are decomposed into tasks 
that can run concurrently, which are then mapped onto processing ele-
ments (PEs) of a parallel computer for execution. This is easiest when the 
tasks are completely independent, but this programming model is also 
used with tasks that share data. The computation with a set of tasks is 
completed when the last task is done. Because tasks vary widely in their 
computational demands, distributing them so that they all finish at about 
the same time can be difficult. This is the problem of load balancing. 
Consider the example in Figure 1.5, where we have six independent tasks 
to execute concurrently on three PEs. In one case the first PE has extra 
work to do and runs significantly longer than the other PEs. The second 
case with a different distribution of tasks shows a more ideal case where 
each PE finishes at about the same time. This is an example of a key ideal 
in parallel computing called load balancing.

The choice between data parallelism and task parallelism is driven by the 
needs of the problem being solved. Problems organized around updates 
over points on a grid, for example, map immediately onto data-parallel 
models. Problems expressed as traversals over graphs, on the other hand, 
are naturally expressed in terms of task parallelism. Hence, a well-rounded 
parallel programmer needs to be comfortable with both programming 
models. And a general programming framework (such as OpenCL) must 
support both.

Regardless of the programming model, the next step in the paral-
lel programming process is to map the program onto real hardware. 
This is where heterogeneous computers present unique problems. The 

task ( i ) {return i * i ;}

A_vector =

A_result =

Apply task ( i ) to each element of A

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

36 1 1 0 81 4 16 1 1 81 49 36 1 4 4 1 81 64 16 1 81 4 0 0 49 64

Figure 1.4 A simple example of data parallelism where a single task is applied 
concurrently to each element of a vector to produce a new vector



ptg

10 Chapter 1: An Introduction to OpenCL

computational elements in the system may have different instruction sets 
and different memory architectures and may run at different speeds. An 
effective program must understand these differences and appropriately 
map the parallel software onto the most suitable OpenCL devices.

Traditionally, programmers have dealt with this problem by thinking of 
their software as a set of modules implementing distinct portions of their 
problem. The modules are explicitly tied to the components in the hetero-
geneous platform. For example, graphics software runs on the GPU. Other 
software runs on the CPU.

General-purpose GPU (GPGPU) programming broke this model. Algo-
rithms outside of graphics were modified to fit onto the GPU. The CPU 
sets up the computation and manages I/O, but all the “interesting” com-
putation is offloaded to the GPU. In essence, the heterogeneous platform 
is ignored and the focus is placed on one component in the system: 
the GPU. 

OpenCL discourages this approach. In essence, a user “pays for all the 
OpenCL devices” in a system, so an effective program should use them 
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Figure 1.5 Task parallelism showing two ways of mapping six independent 
tasks onto three PEs. A computation is not done until every task is 
complete, so the goal should be a well-balanced load, that is, to 
have the time spent computing by each PE be the same. 
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all. This is exactly what OpenCL encourages a programmer to do and 
what you would expect from a programming environment designed for 
heterogeneous platforms.

Hardware heterogeneity is complicated. Programmers have come to 
depend on high-level abstractions that hide the complexity of the hard-
ware. A heterogeneous programming language exposes heterogeneity and 
is counter to the trend toward increasing abstraction.

And this is OK. One language doesn’t have to address the needs of every 
community of programmers. High-level frameworks that simplify the 
programming problem map onto high-level languages, which in turn map 
to a low-level hardware abstraction layer for portability. OpenCL is that 
hardware abstraction layer.

Conceptual Foundations of OpenCL
As we will see later in this book, OpenCL supports a wide range of applica-
tions. Making sweeping generalizations about these applications is dif-
ficult. In every case, however, an application for a heterogeneous platform 
must carry out the following steps: 

1. Discover the components that make up the heterogeneous system.

2. Probe the characteristics of these components so that the software can 
adapt to the specific features of different hardware elements. 

3. Create the blocks of instructions (kernels) that will run on the 
platform.

4. Set up and manipulate memory objects involved in the computation.

5. Execute the kernels in the right order and on the right components of 
the system.

6. Collect the final results.

These steps are accomplished through a series of APIs inside OpenCL plus 
a programming environment for the kernels. We will explain how all this 
works with a “divide and conquer” strategy. We will break the problem 
down into the following models:

• Platform model: a high-level description of the heterogeneous system

• Execution model: an abstract representation of how streams of 
instructions execute on the heterogeneous platform
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• Memory model: the collection of memory regions within OpenCL 
and how they interact during an OpenCL computation

• Programming models: the high-level abstractions a programmer uses 
when designing algorithms to implement an application

Platform Model

The OpenCL platform model defines a high-level representation of any 
heterogeneous platform used with OpenCL. This model is shown in 
Figure 1.6. An OpenCL platform always includes a single host. The host 
interacts with the environment external to the OpenCL program, includ-
ing I/O or interaction with a program’s user.

Processing
element

OpenCL device 

…
…

…
…

…
…

…
…

…

Host

Compute unit 

...

Figure 1.6 The OpenCL platform model with one host and one or more 
OpenCL devices. Each OpenCL device has one or more compute 
units, each of which has one or more processing elements. 

The host is connected to one or more OpenCL devices. The device is 
where the streams of instructions (or kernels) execute; thus an OpenCL 
device is often referred to as a compute device. A device can be a CPU, a 
GPU, a DSP, or any other processor provided by the hardware and sup-
ported by the OpenCL vendor. 

The OpenCL devices are further divided into compute units which are 
further divided into one or more processing elements (PEs). Computa-
tions on a device occur within the PEs. Later, when we talk about work-
groups and the OpenCL memory model, the reason for dividing an 
OpenCL device into processing elements and compute units will be clear. 
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Execution Model

An OpenCL application consists of two distinct parts: the host program
and a collection of one or more kernels. The host program runs on the 
host. OpenCL does not define the details of how the host program works, 
only how it interacts with objects defined within OpenCL. 

The kernels execute on the OpenCL devices. They do the real work of an 
OpenCL application. Kernels are typically simple functions that transform 
input memory objects into output memory objects. OpenCL defines two 
types of kernels: 

• OpenCL kernels: functions written with the OpenCL C program-
ming language and compiled with the OpenCL compiler. All OpenCL 
implementations must support OpenCL kernels.

• Native kernels: functions created outside of OpenCL and accessed 
within OpenCL through a function pointer. These functions could be, 
for example, functions defined in the host source code or exported 
from a specialized library. Note that the ability to execute native ker-
nels is an optional functionality within OpenCL and the semantics of 
native kernels are implementation-defined. 

The OpenCL execution model defines how the kernels execute. To explain 
this in detail, we break the discussion down into several parts. First we 
explain how an individual kernel runs on an OpenCL device. Because the 
whole point of writing an OpenCL application is to execute kernels, this 
concept is the cornerstone of understanding OpenCL. Then we describe 
how the host defines the context for kernel execution and how the kernels 
are enqueued for execution. 

How a Kernel Executes on an OpenCL Device

A kernel is defined on the host. The host program issues a command that 
submits the kernel for execution on an OpenCL device. When this com-
mand is issued by the host, the OpenCL runtime system creates an inte-
ger index space. An instance of the kernel executes for each point in this 
index space. We call each instance of an executing kernel a work-item,
which is identified by its coordinates in the index space. These coordi-
nates are the global ID for the work-item. 

The command that submits a kernel for execution, therefore, creates a 
collection of work-items, each of which uses the same sequence of instruc-
tions defined by a single kernel. While the sequence of instructions is the 
same, the behavior of each work-item can vary because of branch state-
ments within the code or data selected through the global ID. 
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Work-items are organized into work-groups. The work-groups provide a 
more coarse-grained decomposition of the index space and exactly span 
the global index space. In other words, work-groups are the same size in 
corresponding dimensions, and this size evenly divides the global size 
in each dimension. Work-groups are assigned a unique ID with the same 
dimensionality as the index space used for the work-items. Work-items are 
assigned a unique local ID within a work-group so that a single work-item 
can be uniquely identified by its global ID or by a combination of its local 
ID and work-group ID. 

The work-items in a given work-group execute concurrently on the pro-
cessing elements of a single compute unit. This is a critical point in under-
standing the concurrency in OpenCL. An implementation may serialize 
the execution of kernels. It may even serialize the execution of work-
groups in a single kernel invocation. OpenCL only assures that the work-
items within a work-group execute concurrently (and share processor 
resources on the device). Hence, you can never assume that work-groups 
or kernel invocations execute concurrently. They indeed often do execute 
concurrently, but the algorithm designer cannot depend on this. 

The index space spans an N-dimensioned range of values and thus is 
called an NDRange. Currently, N in this N-dimensional index space can 
be 1, 2, or 3. Inside an OpenCL program, an NDRange is defined by an 
integer array of length N specifying the size of the index space in each 
dimension. Each work-item’s global and local ID is an N-dimensional 
tuple. In the simplest case, the global ID components are values in the 
range from zero to the number of elements in that dimension minus one. 

Work-groups are assigned IDs using a similar approach to that used for 
work-items. An array of length N defines the number of work-groups 
in each dimension. Work-items are assigned to a work-group and given 
a local ID with components in the range from zero to the size of the 
work-group in that dimension minus one. Hence, the combination of a 
work-group ID and the local ID within a work-group uniquely defines a 
work-item.

Let’s carefully work through the different indices implied by this model 
and explore how they are all related. Consider a 2D NDRange. We use the 
lowercase letter g for the global ID of a work-item in each dimension given 
by a subscript x or y. An uppercase letter G indicates the size of the index 
space in each dimension. Hence, each work-item has a coordinate (gx, gy)
in a global NDRange index space of size (Gx, Gy) and takes on the values 
[0 .. (Gx - 1), 0 .. (Gy - 1)].
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We divide the NDRange index space into work-groups. Following the con-
ventions just described, we’ll use a lowercase w for the work-group ID and 
an uppercase W for the number of work-groups in each dimension. The 
dimensions are once again labeled by subscripts x and y.

OpenCL requires that the number of work-groups in each dimension 
evenly divide the size of the NDRange index space in each dimension. 
This way all work-groups are full and the same size. This size in each 
direction (x and y in our 2D example) is used to define a local index space 
for each work-item. We will refer to this index space inside a work-group 
as the local index space. Following our conventions on the use of upper-
case and lowercase letters, the size of our local index space in each dimen-
sion (x and y) is indicated with an uppercase L and the local ID inside a 
work-group uses a lowercase l.

Hence, our NDRange index space of size Gx by Gy is divided into work-
groups indexed over a Wx-by-Wy space with indices (wx, wy). Each work-
group is of size Lx by Ly where we get the following:

Lx = Gx/Wx

Ly = Gy/Wy

We can define a work-item by its global ID (gx, gy) or by the combination 
of its local ID (lx, ly) and work-group ID (wx, wy):

gx = wx * Lx + lx

gy = wy * Ly + ly

Alternatively we can work backward from gx and gy to recover the local ID 
and work-group ID as follows:

wx = gx/Lx

wy = gy/Ly

lx = gx % Lx

ly = gy % Ly

In these equations we used integer division (division with truncation) and 
the modulus or “integer remainder” operation (%).

In all of these equations, we have assumed that the index space starts 
with a zero in each dimension. Indices, however, are often selected to 
match those that are natural for the original problem. Hence, in OpenCL 
1.1 an option was added to define an offset for the starting point of the 
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global index space. The offset is defined for each dimension (x, y in our 
example), and because it modifies a global index we’ll use a lowercase o
for the offset. So for non-zero offset (ox, oy) our final equation connecting 
global and local indices is

gx = wx * Lx + lx + ox

gy = wy * Ly + ly + oy

In Figure 1.7 we provide a concrete example where each small square is 
a work-item. For this example, we use the default offset of zero in each 
dimension. Study this figure and make sure that you understand that the 
shaded square with global index (6, 5) falls in the work-group with ID 
(1, 1) and local index (2, 1). 

(0,0) Ly = 4

Lx = 4

Gx = 12

G y
= 

12

W
y

= 
3

Wx = 3

NDRange index space

Figure 1.7 An example of how the global IDs, local IDs, and work-group 
indices are related for a two-dimensional NDRange. Other 
parameters of the index space are defined in the figure. The 
shaded block has a global ID of (gx, gy) = (6, 5) and a work-group 
plus local ID of (wx, wy) = (1, 1) and (lx, ly) =(2, 1).

If all of these index manipulations seem confusing, don’t worry. In many 
cases OpenCL programmers just work in the global index space. Over 
time, as you work with OpenCL and gain experience working with the 
different types of indices, these sorts of manipulations will become sec-
ond nature to you.
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The OpenCL execution model is quite flexible. This model supports a 
wide range of programming models. In designing OpenCL, however, only 
two models were explicitly considered: data parallelism and task parallel-
ism. We will return to these models and their implications for OpenCL 
later. But first, we need to complete our tour of the OpenCL execution 
model.

Context

The computational work of an OpenCL application takes place on the 
OpenCL devices. The host, however, plays a very important role in the 
OpenCL application. It is on the host where the kernels are defined. The 
host establishes the context for the kernels. The host defines the NDRange 
and the queues that control the details of how and when the kernels 
execute. All of these important functions are contained in the APIs within 
OpenCL’s definition. 

The first task for the host is to define the context for the OpenCL applica-
tion. As the name implies, the context defines the environment within 
which the kernels are defined and execute. To be more precise, we define 
the context in terms of the following resources: 

• Devices: the collection of OpenCL devices to be used by the host

• Kernels: the OpenCL functions that run on OpenCL devices

• Program objects: the program source code and executables that 
implement the kernels

• Memory objects: a set of objects in memory that are visible to 
OpenCL devices and contain values that can be operated on by 
instances of a kernel

The context is created and manipulated by the host using functions from 
the OpenCL API. For example, consider the heterogeneous platform from 
Figure 1.3. This system has two multicore CPUs and a GPU. The host 
program is running on one of the CPUs. The host program will query the 
system to discover these resources and then decide which devices to use 
in the OpenCL application. Depending on the problem and the kernels to 
be run, the host may choose the GPU, the other CPU, other cores on the 
same CPU, or any combination of these. Once made, this choice defines 
the OpenCL devices within the current context.

Also included in the context are one or more program objects that con-
tain the code for the kernels. The choice of the name program object is a bit 
confusing. It is better to think of these as a dynamic library from which 
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the functions used by the kernels are pulled. The program object is built 
at runtime within the host program. This might seem strange to program-
mers from outside the graphics community. Consider for a moment the 
challenge faced by an OpenCL programmer. He or she writes the OpenCL 
application and passes it to the end user, but that user could choose to run 
the application anywhere. The application programmer has no control 
over which GPUs or CPUs or other chips the end user may run the appli-
cation on. All the OpenCL programmer knows is that the target platform 
will be conformant to the OpenCL specification.

The solution to this problem is for the program object to be built from 
source at runtime. The host program defines the devices within the con-
text. Only at that point is it possible to know how to compile the program 
source code to create the code for the kernels. As for the source code itself, 
OpenCL is quite flexible about the form. In many cases, it is a regular 
string either statically defined in the host program, loaded from a file at 
runtime, or dynamically generated inside the host program.

Our context now includes OpenCL devices and a program object from 
which the kernels are pulled for execution. Next we consider how the ker-
nels interact with memory. The detailed memory model used by OpenCL 
will be described later. For the sake of our discussion of the context, we 
need to understand how the OpenCL memory works only at a high level. 
The crux of the matter is that on a heterogeneous platform, there are 
often multiple address spaces to manage. The host has the familiar address 
space expected on a CPU platform, but the devices may have a range 
of different memory architectures. To deal with this situation, OpenCL 
introduces the idea of memory objects. These are explicitly defined on 
the host and explicitly moved between the host and the OpenCL devices. 
This does put an extra burden on the programmer, but it lets us support a 
much wider range of platforms. 

We now understand the context within an OpenCL application. The con-
text is the OpenCL devices, program objects, kernels, and memory objects 
that a kernel uses when it executes. Now we can move on to how the host 
program issues commands to the OpenCL devices.

Command-Queues

The interaction between the host and the OpenCL devices occurs through 
commands posted by the host to the command-queue. These commands 
wait in the command-queue until they execute on the OpenCL device. A 
command-queue is created by the host and attached to a single OpenCL 
device after the context has been defined. The host places commands into 
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the command-queue, and the commands are then scheduled for execu-
tion on the associated device. OpenCL supports three types of commands: 

• Kernel execution commands execute a kernel on the processing ele-
ments of an OpenCL device.

• Memory commands transfer data between the host and different 
memory objects, move data between memory objects, or map and 
unmap memory objects from the host address space.

• Synchronization commands put constraints on the order in which 
commands execute. 

In a typical host program, the programmer defines the context and the 
command-queues, defines memory and program objects, and builds any 
data structures needed on the host to support the application. Then the 
focus shifts to the command-queue. Memory objects are moved from the 
host onto the devices; kernel arguments are attached to memory objects 
and then submitted to the command-queue for execution. When the ker-
nel has completed its work, memory objects produced in the computation 
may be copied back onto the host.

When multiple kernels are submitted to the queue, they may need to 
interact. For example, one set of kernels may generate memory objects 
that a following set of kernels needs to manipulate. In this case, synchro-
nization commands can be used to force the first set of kernels to com-
plete before the following set begins. 

There are many additional subtleties associated with how the commands 
work in OpenCL. We will leave those details for later in the book. Our 
goal now is just to understand the command-queues and hence gain a 
high-level understanding of OpenCL commands.

So far, we have said very little about the order in which commands 
execute or how their execution relates to the execution of the host pro-
gram. The commands always execute asynchronously to the host program. 
The host program submits commands to the command-queue and then 
continues without waiting for commands to finish. If it is necessary for 
the host to wait on a command, this can be explicitly established with a 
synchronization command.

Commands within a single queue execute relative to each other in one of 
two modes:

• In-order execution: Commands are launched in the order in which 
they appear in the command-queue and complete in order. In other 
words, a prior command on the queue completes before the following 
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command begins. This serializes the execution order of commands in 
a queue. 

• Out-of-order execution: Commands are issued in order but do not 
wait to complete before the following commands execute. Any order 
constraints are enforced by the programmer through explicit synchro-
nization mechanisms.

All OpenCL platforms support the in-order mode, but the out-of-order 
mode is optional. Why would you want to use the out-of-order mode? 
Consider Figure 1.5, where we introduced the concept of load balancing. 
An application is not done until all of the kernels complete. Hence, for 
an efficient program that minimizes the runtime, you want all compute 
units to be fully engaged and to run for approximately the same amount 
of time. You can often do this by carefully thinking about the order in 
which you submit commands to the queues so that the in-order execution 
achieves a well-balanced load. But when you have a set of commands that 
take different amounts of time to execute, balancing the load so that all 
compute units stay fully engaged and finish at the same time can be dif-
ficult. An out-of-order queue can take care of this for you. Commands can 
execute in any order, so if a compute unit finishes its work early, it can 
immediately fetch a new command from the command-queue and start 
executing a new kernel. This is called automatic load balancing, and it is 
a well-known technique used in the design of parallel algorithms driven 
by command-queues (see the Master-Worker pattern in T. G. Mattson et 
al., Patterns for Parallel Programming5).

Anytime you have multiple executions occurring inside an application, 
the potential for disaster exists. Data may be accidentally used before it 
has been written, or kernels may execute in an order that leads to wrong 
answers. The programmer needs some way to manage any constraints 
on the commands. We’ve hinted at one, a synchronization command to 
tell a set of kernels to wait until an earlier set finishes. This is often quite 
effective, but there are times when more sophisticated synchronization 
protocols are needed. 

To support custom synchronization protocols, commands submitted to 
the command-queue generate event objects. A command can be told to 
wait until certain conditions on the event objects exist. These events can 
also be used to coordinate execution between the host and the OpenCL 
devices. We’ll say more about these events later.

5 T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel 
Programming, Design Patterns series (Addison-Wesley, 2004).
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Finally, it is possible to associate multiple queues with a single context for 
any of the OpenCL devices within that context. These two queues run 
concurrently and independently with no explicit mechanisms within 
OpenCL to synchronize between them. 

Memory Model

The execution model tells us how the kernels execute, how they interact 
with the host, and how they interact with other kernels. To describe this 
model and the associated command-queue, we made a brief mention of 
memory objects. We did not, however, define the details of these objects, 
neither the types of memory objects nor the rules for how to safely use 
them. These issues are covered by the OpenCL memory model.

OpenCL defines two types of memory objects: buffer objects and image 
objects. A buffer object, as the name implies, is just a contiguous block 
of memory made available to the kernels. A programmer can map data 
structures onto this buffer and access the buffer through pointers. This 
provides flexibility to define just about any data structure the program-
mer wishes (subject to limitations of the OpenCL kernel programming 
language).

Image objects, on the other hand, are restricted to holding images. An 
image storage format may be optimized to the needs of a specific OpenCL 
device. Therefore, it is important that OpenCL give an implementation 
the freedom to customize the image format. The image memory object, 
therefore, is an opaque object. The OpenCL framework provides functions 
to manipulate images, but other than these specific functions, the con-
tents of an image object are hidden from the kernel program.

OpenCL also allows a programmer to specify subregions of memory 
objects as distinct memory objects (added with the OpenCL 1.1 speci-
fication). This makes a subregion of a large memory object a first-class 
object in OpenCL that can be manipulated and coordinated through the 
command-queue. 

Understanding the memory objects themselves is just a first step. We 
also need to understand the specific abstractions that govern their use in 
an OpenCL program. The OpenCL memory model defines five distinct 
memory regions:

• Host memory: This memory region is visible only to the host. As with 
most details concerning the host, OpenCL defines only how the host 
memory interacts with OpenCL objects and constructs. 
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• Global memory: This memory region permits read/write access to all 
work-items in all work-groups. Work-items can read from or write to 
any element of a memory object in global memory. Reads and writes 
to global memory may be cached depending on the capabilities of the 
device. 

• Constant memory: This memory region of global memory remains 
constant during the execution of a kernel. The host allocates and 
initializes memory objects placed into constant memory. Work-items 
have read-only access to these objects.

• Local memory: This memory region is local to a work-group. This 
memory region can be used to allocate variables that are shared by all 
work-items in that work-group. It may be implemented as dedicated 
regions of memory on the OpenCL device. Alternatively, the local 
memory region may be mapped onto sections of the global memory.

• Private memory: This region of memory is private to a work-item. 
Variables defined in one work-item’s private memory are not visible to 
other work-items. 

The memory regions and how they relate to the platform and execu-
tion models are described in Figure 1.8. The work-items run on PEs and 
have their own private memory. A work-group runs on a compute unit 
and shares a local memory region with the work-items in the group. The 
OpenCL device memory works with the host to support global memory.

The host and OpenCL device memory models are, for the most part, inde-
pendent of each other. This is by necessity, given that the host is defined 
outside of OpenCL. They do, however, at times need to interact. This 
interaction occurs in one of two ways: by explicitly copying data or by 
mapping and unmapping regions of a memory object. 

To copy data explicitly, the host enqueues commands to transfer data 
between the memory object and host memory. These memory transfer 
commands may be blocking or non-blocking. The OpenCL function 
call for a blocking memory transfer returns once the associated memory 
resources on the host can be safely reused. For a non-blocking memory 
transfer, the OpenCL function call returns as soon as the command is 
enqueued regardless of whether host memory is safe to use.

The mapping/unmapping method of interaction between the host and 
OpenCL memory objects allows the host to map a region from the mem-
ory object into its own address space. The memory map command (which 
is enqueued on the command-queue like any other OpenCL command) 
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may be blocking or non-blocking. Once a region from the memory object 
has been mapped, the host can read or write to this region. The host 
unmaps the region when accesses (reads and/or writes) to this mapped 
region by the host are complete. 

When concurrent execution is involved, however, the memory model 
needs to carefully define how memory objects interact in time with the 
kernel and host. This is the problem of memory consistency. It is not 
enough to say where the memory values will go. You also must define 
when these values are visible across the platform.

Once again, OpenCL doesn’t stipulate the memory consistency model 
on the host. Let’s start with the memory farthest from the host (private 
memory region) and work toward the host. Private memory is not visible 
to the host. It is visible only to an individual work-item. This memory fol-
lows the load/store memory model familiar to sequential programming. 
In other words, the loads and stores into private memory cannot be reor-
dered to appear in any order other than that defined in the program text.

…PE 1

Private
memory 1

Private
memory M

Local
memory 1

…

Local
memory N

…

Compute unit 1 Compute unit N

Global/constant memory data cache

OpenCL device

Global/constant memory

OpenCL device memory

PE M PE M

Host memory

Host

Private
memory M

Private
memory 1

PE 1

Figure 1.8 A summary of the memory model in OpenCL and how the 
different memory regions interact with the platform model
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For the local memory, the values seen by a set of work-items within a 
work-group are guaranteed to be consistent at work-group synchroniza-
tion points. For example, a work-group barrier requires that all loads and 
stores defined before the barrier complete before any work-items in the 
group proceed past the barrier. In other words, the barrier marks a point 
in the execution of the set of work-items where the memory is guaranteed 
to be in a consistent and known state before the execution continues.

Because local memory is shared only within a work-group, this is suffi-
cient to define the memory consistency for local memory regions. For the 
work-items within a group, the global memory is also made consistent at 
a work-group barrier. Even though this memory is shared between work-
groups, however, there is no way to enforce consistency of global memory 
between the different work-groups executing a kernel.

For the memory objects, OpenCL defines a relaxed consistency model. 
In other words, the values seen in memory by an individual work-item 
are not guaranteed to be consistent across the full set of work-items at all 
times. At any given moment, the loads and stores into OpenCL memory 
objects may appear to occur in a different order for different work-items. 
This is called a relaxed consistency model because it is less strict than the 
load/store model one would expect if the concurrent execution were to 
exactly match the order from a serial execution.

The last step is to define the consistency of memory objects relative to 
the commands on the command-queue. In this case, we use a modified 
version of release consistency. When all the work-items associated with a 
kernel complete, loads and stores for the memory objects released by this 
kernel are completed before the kernel command is signaled as finished. 
For the in-order queue, this is sufficient to define the memory consis-
tency between kernels. For an out-of-order queue there are two options 
(called synchronization points). The first is for consistency to be forced 
at specific synchronization points such as a command-queue barrier. The 
other option is for consistency to be explicitly managed through the event 
mechanisms we’ll describe later. These same options are used to enforce 
consistency between the host and the OpenCL devices; that is, memory is 
consistent only at synchronization points on the command-queue.

Programming Models

The OpenCL execution model defines how an OpenCL application maps 
onto processing elements, memory regions, and the host. It is a “hardware-
centric” model. We now shift gears and describe how we map parallel 
algorithms onto OpenCL using a programming model. Programming 
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models are intimately connected to how programmers reason about their 
algorithms. Hence, the nature of these models is more flexible than that 
of the precisely defined execution model. 

OpenCL was defined with two different programming models in mind: 
task parallelism and data parallelism. As you will see, you can even think 
in terms of a hybrid model: tasks that contain data parallelism. Program-
mers are very creative, and we can expect over time that additional 
programming models will be created that will map onto OpenCL’s basic 
execution model. 

Data-Parallel Programming Model

We described the basic idea of a data-parallel programming model earlier 
(see Figure 1.4). Problems well suited to the data-parallel programming 
model are organized around data structures, the elements of which can 
be updated concurrently. In essence, a single logical sequence of instruc-
tions is applied concurrently to the elements of the data structure. The 
structure of the parallel algorithm is designed as a sequence of concurrent 
updates to the data structures within a problem.

This programming model is a natural fit with OpenCL’s execution model. 
The key is the NDRange defined when a kernel is launched. The algo-
rithm designer aligns the data structures in his or her problem with the 
NDRange index space and maps them onto OpenCL memory objects. The 
kernel defines the sequence of instructions to be applied concurrently as 
the work-items in an OpenCL computation. 

In more complicated data-parallel problems, the work-items in a single 
work-group may need to share data. This is supported through data 
stored in the local memory region. Anytime dependencies are introduced 
between work-items, care must be taken that regardless of the order in 
which the work-items complete, the same results are produced. In other 
words, the work-items may need to synchronize their execution. Work-
items in a single work-group can participate in a work-group barrier. As 
we stated earlier, all the work-items within a work-group must execute the 
barrier before any are allowed to continue execution beyond the barrier. 
Note that the work-group barrier must be encountered by all work-items of 
a work-group executing the kernel or by none at all. 

OpenCL 1.1 doesn’t provide any mechanism for synchronization between 
work-items from different work-groups while executing a kernel. This is an 
important limitation for programmers to keep in mind when designing 
parallel algorithms. 
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As an example of when work-items need to share information, consider a 
set of work-items participating in some sort of reduction. A reduction is 
when a collection of data elements is reduced to a single element by some 
type of associative operation. The most common examples are summa-
tion or finding extreme values (max or min) of a set of data elements. 
In a reduction, the work-items carry out a computation to produce the 
data elements that will be reduced. This must complete on all work-items 
before a subset of the work-items (often a subset of size one) does the 
accumulation for all the work-items.

OpenCL provides hierarchical data parallelism: data parallelism from 
work-items within a work-group plus data parallelism at the level of work-
groups. The OpenCL specification discusses two variants of this form of 
data parallelism. In the explicit model, the programmer takes responsibil-
ity for explicitly defining the sizes of the work-groups. With the second 
model, the implicit model, the programmer just defines the NDRange 
space and leaves it to the system to choose the work-groups. 

If the kernel doesn’t contain any branch statements, each work-item will 
execute identical operations but on a subset of data items selected by its 
global ID. This case defines an important subset of the data-parallel model 
known as Single Instruction Multiple Data or SIMD. Branch statements 
within a kernel, however, can lead each work-item to execute very differ-
ent operations. While each work-item is using the same “program” (i.e., 
the kernel), the actual work it accomplishes can be quite different. This is 
often known as a Single Program Multiple Data or SPMD model (see the 
SPMD pattern in Mattson’s Patterns for Parallel Programming). 

OpenCL supports both SIMD and SPMD models. On platforms with 
restricted bandwidth to instruction memory or if the processing elements 
map onto a vector unit, the SIMD model can be dramatically more effi-
cient. Hence, it is valuable for a programmer to understand both models 
and know when to use one or the other.

There is one case when an OpenCL program is strictly SIMD: the vector 
instructions defined in Chapter 4, “Programming with OpenCL C.” These 
instructions let you explicitly issue instructions for vector units attached 
to a processing element. For example, the following instructions come 
from a numerical integration program (the integrand is 4.0/(1 + x2)). In 
this program, we unroll the integration loop eightfold and compute eight 
steps in the integration at once using the native vector instructions on the 
target platform.
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float8 x, psum_vec; 
float8 ramp= (float8)(0.5, 1.5, 2.5, 3.5,
                      4.5, 5.5, 6.5, 7.5}; 
float8 four= (float8)(4.0);  // fill with 8 4’s
float8 one = (float8)(1.0);  // fill with 8 1’s
float  step_number; // step number from loop index
float  step_size;   // Input integration step size

. . . and later inside a loop body . . .

    x = ((float8)step_number +ramp)*step_size; 
    psum_vec+=four/(one + x*x);

Given the wide range of vector instruction sets on the market, having a 
portable notation for explicit vector instructions is an extremely conve-
nient feature within OpenCL.

In closing, data parallelism is a natural fit to the OpenCL execution model 
items. The model is hierarchical because a data-parallel computation (the 
work-items) may include vector instructions (SIMD) and be part of larger 
block-level data parallelism (work-groups). All of these work together to 
create a rich environment for expressing data-parallel algorithms.

Task-Parallel Programming Model

The OpenCL execution model was clearly designed with data parallelism 
as a primary target. But the model also supports a rich array of task-paral-
lel algorithms.

OpenCL defines a task as a kernel that executes as a single work-item 
regardless of the NDRange used by other kernels in the OpenCL applica-
tion. This is used when the concurrency a programmer wishes to exploit 
is internal to the task. For example, the parallelism may be expressed 
solely in terms of vector operations over vector types. Or perhaps the task 
uses a kernel defined with the native kernel interface and the parallelism 
is expressed using a programming environment outside of OpenCL.

A second version of task parallelism appears when kernels are submitted 
as tasks that execute at the same time with an out-of-order queue. For 
example, consider the collection of independent tasks represented sche-
matically in Figure 1.5. On a quad-core CPU, one core could be the host 
and the other three cores configured as compute units within an OpenCL 
device. The OpenCL application could enqueue all six tasks and leave it to 
the compute units to dynamically schedule the work. When the number 
of tasks is much greater than the number of compute units, this strategy 
can be a very effective way to produce a well-balanced load. This style of 



ptg

28 Chapter 1: An Introduction to OpenCL

task parallelism, however, will not work on all OpenCL platforms because 
the out-of-order mode for a command-queue is an optional feature in 
OpenCL 1.1. 

A third version of task parallelism occurs when the tasks are connected 
into a task graph using OpenCL’s event model. Commands submitted to 
an event queue may optionally generate events. Subsequent commands 
can wait for these events before executing. When combined with a com-
mand-queue that supports the out-of-order execution model, this lets the 
OpenCL programmer define static task graphs in OpenCL, with the nodes 
in the graph being tasks and the edges dependencies between the nodes 
(managed by events). We will discuss this topic in great detail in Chap-
ter 9, “Events.”

Parallel Algorithm Limitations

The OpenCL framework defines a powerful foundation for data-parallel 
and task-parallel programming models. A wide range of parallel algo-
rithms can map onto these models, but there are restrictions. Because of 
the wide range of devices that OpenCL supports, there are limitations to 
the OpenCL execution model. In other words, the extreme portability of 
OpenCL comes at a cost of generality in the algorithms we can support.

The crux of the matter comes down to the assumptions made in the 
execution model. When we submit a command to execute a kernel, we 
can only assume that the work-items in a group will execute concurrently. 
The implementation is free to run individual work-groups in any order—
including serially (i.e., one after the other). This is also the case for kernel 
executions. Even when the out-of-order queue mode is enabled, a con-
forming implementation is free to serialize the execution of the kernels.

These constraints on how concurrency is expressed in OpenCL limit 
the way data can be shared between work-groups and between kernels. 
There are two cases you need to understand. First, consider the collection 
of work-groups associated with a single kernel execution. A conforming 
implementation of OpenCL can order these any way it chooses. Hence, we 
cannot safely construct algorithms that depend on the details of how data 
is shared between the work-groups servicing a single kernel execution. 

Second, consider the order of execution for multiple kernels. They are sub-
mitted for execution in the order in which they are enqueued, but they 
execute serially (in-order command-queue mode) or concurrently (out-of-
order command-queue mode). However, even with the out-of-order queue 
an implementation is free to execute kernels in serial order. Hence, early 
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kernels waiting on events from later kernels can deadlock. Furthermore, 
the task graphs associated with an algorithm can only have edges that are 
unidirectional and point from nodes enqueued earlier in the command-
queue to kernels enqueued later in the command-queue. 

These are serious limitations. They mean that there are parallel design 
patterns that just can’t be expressed in OpenCL. Over time, however, as 
hardware evolves and, in particular, GPUs continue to add features to 
support more general-purpose computing, we will fix these limitations in 
future releases of OpenCL. For now, we just have to live with them. 

Other Programming Models

A programmer is free to combine OpenCL’s programming models to cre-
ate a range of hybrid programming models. We’ve already mentioned 
the case where the work-items in a data-parallel algorithm contain SIMD 
parallelism through the vector instructions.

As OpenCL implementations mature, however, and the out-of-order 
mode on command-queues becomes the norm, we can imagine static task 
graphs where each node is a data-parallel algorithm (multiple work-items) 
that includes SIMD vector instructions.

OpenCL exposes the hardware through a portable platform model and 
a powerful execution model. These work together to define a flexible 
hardware abstraction layer. Computer scientists are free to layer other 
programming models on top of the OpenCL hardware abstraction layer. 
OpenCL is young and we can’t cite any concrete examples of program-
ming models from outside OpenCL’s specification running on OpenCL 
platforms. But stay tuned and watch the literature. It’s only a matter of 
time until this happens.

OpenCL and Graphics
OpenCL was created as a response to GPGPU programming. People had 
GPUs for graphics and started using them for the non-graphics parts of 
their workloads. And with that trend, heterogeneous computing (which 
has been around for a very long time) collided with graphics, and the 
need for an industry standard emerged.

OpenCL has stayed close to its graphics roots. OpenCL is part of the  Khronos 
family of standards, which includes the graphics standards OpenGL 
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(www.khronos.org/opengl/) and OpenGL ES (www.khronos.org/opengles/). 
Given the importance of the operating systems from Microsoft, OpenCL 
also closely tracks developments in DirectX (www.gamesforwindows.com/
en-US/directx/). 

To start our discussion of OpenCL and graphics we return to the image 
memory objects we mentioned earlier. Image memory objects are one-, 
two-, or three-dimensional objects that hold textures, frame buffers, or 
images. An implementation is free to support a range of image formats, 
but at a minimum, it must support the standard RGBA format. The image 
objects are manipulated using a set of functions defined within OpenCL. 
OpenCL also defines sampler objects so that programmers can sample 
and filter images. These features are integrated into the core set of image 
manipulation functions in the OpenCL APIs. 

Once images have been created, they must pass to the graphics pipeline to 
be rendered. Hence including an interface to the standard graphics APIs 
would be useful within OpenCL. Not every vendor working on OpenCL, 
however, is interested in these graphics standards. Therefore, rather than 
include this in the core OpenCL specification, we define these as a num-
ber of optional extensions in the appendices to the OpenCL standard. 
These extensions include the following functionalities:

• Creating an OpenCL context from an OpenGL context

• Sharing memory objects between OpenCL, OpenGL, and OpenGL ES

• Creating OpenCL event objects from OpenGL sync objects

• Sharing memory objects with Direct3D version 10

These will be discussed later in the book.

The Contents of OpenCL
So far we have focused on the ideas behind OpenCL. Now we shift gears 
and talk about how these ideas are supported within the OpenCL frame-
work. The OpenCL framework is divided into the following components:

• OpenCL platform API: The platform API defines functions used by 
the host program to discover OpenCL devices and their capabilities as 
well as to create the context for the OpenCL application. 

• OpenCL runtime API: This API manipulates the context to create 
command-queues and other operations that occur at runtime. For 

www.khronos.org/opengl/
www.khronos.org/opengles/
www.gamesforwindows.com/en-US/directx/
www.gamesforwindows.com/en-US/directx/
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example, the functions to submit commands to the command-queue 
come from the OpenCL runtime API.

• The OpenCL programming language: This is the programming 
language used to write the code for kernels. It is based on an extended 
subset of the ISO C99 standard and hence is often referred to as the 
OpenCL C programming language. 

In the next few subsections we will provide a high-level overview of each 
of these components. Details will be left for later in the book, but it will 
be helpful as you start working with OpenCL to understand what’s hap-
pening at a high level. 

Platform API

The term platform has a very specific meaning in OpenCL. It refers to a 
particular combination of the host, the OpenCL devices, and the OpenCL 
framework. Multiple OpenCL platforms can exist on a single heteroge-
neous computer at one time. For example, the CPU vendor and the GPU 
vendor may define their own OpenCL frameworks on a single system. 
Programmers need a way to query the system about the available OpenCL 
frameworks. They need to find out which OpenCL devices are available 
and what their characteristics are. And they need to control which subset 
of these frameworks and devices will constitute the platform used in any 
given OpenCL application.

This functionality is addressed by the functions within OpenCL’s plat-
form API. As you will see in later chapters when we focus on the code 
OpenCL programmers write for the host program, every OpenCL applica-
tion opens in a similar way, calling functions from the platform API to 
ultimately define the context for the OpenCL computation.

Runtime API

The functions in the platform API ultimately define the context for an 
OpenCL application. The runtime API focuses on functions that use this 
context to service the needs of an application. This is a large and admit-
tedly complex collection of functions. 

The first job of the runtime API is to set up the command-queues. You 
can attach a command-queue to a single device, but multiple command-
queues can be active at one time within a single context.
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With the command-queues in place, the runtime API is used to define 
memory objects and any objects required to manipulate them (such as 
sampler objects for image objects). Managing memory objects is an impor-
tant task. To support garbage collection, OpenCL keeps track of how many 
instances of kernels use these objects (i.e., retain a memory object) and 
when kernels are finished with a memory object (i.e., release a memory 
object). 

Another task managed by the runtime API is to create the program objects 
used to build the dynamic libraries from which kernels are defined. The 
program objects, the compiler to compile them, and the definition of the 
kernels are all handled in the runtime layer. 

Finally, the commands that interact with the command-queue are all 
issued by functions from the runtime layer. Synchronization points for 
managing data sharing and to enforce constraints on the execution of 
kernels are also handled by the runtime API.

As you can see, functions from the runtime API do most of the heavy 
lifting for the host program. To attempt to master the runtime API in one 
stretch, starting from the beginning and working through all the func-
tions, is overwhelming. We have found that it is much better to use a 
pragmatic approach. Master the functions you actually use. Over time you 
will cover and hence master them all, but you will learn them in blocks 
driven by the specific needs of an OpenCL application. 

Kernel Programming Language

The host program is very important, but it is the kernels that do the real 
work in OpenCL. Some OpenCL implementations let you interface to 
native kernels written outside of OpenCL, but in most cases you will need 
to write kernels to carry out the specific work in your application.

The kernel programming language in OpenCL is called the OpenCL C 
programming language because we anticipate over time that we may 
choose to define other languages within the specification. It is derived 
from the ISO C99 language. 

In OpenCL, we take great care to support portability. This forces us to 
standardize around the least common dominator between classes of 
OpenCL devices. Because there are features in C99 that only CPUs can 
support, we had to leave out some of the language features in C99 when 
we defined the OpenCL C programming language. The major language 
features we deleted include
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• Recursive functions

• Pointers to functions

• Bit fields

In addition, we cannot support the full set of standard libraries. The list 
of standard headers not allowed in the OpenCL programming language is 
long, but the ones programmers will probably miss the most are stdio.h
and stdlib.h. Once again, these libraries are hard to support once you 
move away from a general-purpose processor as the OpenCL device.

Other restrictions arise from the need to maintain fidelity to OpenCL’s 
core abstractions. For example, OpenCL defines a range of memory 
address spaces. A union or structure cannot mix these types. Also, there 
are types defined in OpenCL that are opaque, for example, the memory 
objects that support images. The OpenCL C programming language pre-
vents one from doing anything with these types other than passing them 
as arguments to functions.

We restricted the OpenCL C programming language to match the needs 
of the key OpenCL devices used with OpenCL. This same motivation led 
us to extend the languages as well as 

• Vector types and operations on instances of those types

• Address space qualifiers to support control over the multiple address 
spaces in OpenCL

• A large set of built-in functions to support functionality commonly 
needed in OpenCL applications

• Atomic functions for unsigned integer and single-precision scalar vari-
ables in global and local memory 

Most programming languages ignore the specifics of the floating-point 
arithmetic system. They import the arithmetic system from the hardware 
and avoid the topic altogether. Because all major CPUs support the IEEE 
754 and 854 standards, this strategy has worked. In essence, by converg-
ing around these floating-point standards, the hardware vendors took care 
of the floating-point definition for the language vendors.

In the heterogeneous world, however, as you move away from the CPU, 
the support for floating-point arithmetic is more selective. Working 
closely with the hardware vendors, we wanted to create momentum that 
would move them over time to complete support for the IEEE floating-
point standards. At the same time, we didn’t want to be too hard on these 
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vendors, so we gave them flexibility to avoid some of the less used but 
challenging-to-implement features of the IEEE standards. We will discuss 
the details later, but at a high level OpenCL requires the following:

• Full support for the IEEE 754 formats. Double precision is optional, 
but if it is provided, it must follow the IEEE 754 formats as well. 

• The default IEEE 754 rounding mode of “round to nearest.” The other 
rounding modes, while highly encouraged (because numerical ana-
lysts need them), are optional.

• Rounding modes in OpenCL are set statically, even though the IEEE 
specifications require dynamic variation of rounding modes.

• The special values of INF (infinity) and NaN (Not a Number) must be 
supported. The signaling NaN (always a problem in concurrent sys-
tems) is not required.

• Denormalized numbers (numbers smaller than one times the larg-
est supported negative exponent) can be flushed to zero. If you don’t 
understand why this is significant, you are in good company. This is 
another feature that numerical analysts depend on but few program-
mers understand.

There are a few additional rules pertaining to floating-point exceptions, 
but they are too detailed for most people and too obscure to bother with 
at this time. The point is that we tried very hard to require the bulk of 
IEEE 754 while leaving off some of the features that are more rarely used 
and difficult to support (on a heterogeneous platform with vector units).

The OpenCL specification didn’t stop with the IEEE standards. In the 
OpenCL specification, there are tables that carefully define the allowed 
relative errors in math functions. Getting all of these right was an ambi-
tious undertaking, but for the programmers who write detailed numerical 
code, having these defined is essential. 

When you put these floating-point requirements, restrictions, and exten-
sions together, you have a programming language well suited to the capa-
bilities of current heterogeneous platforms. And as the processors used in 
these platforms evolve and become more general, the OpenCL C program-
ming language will evolve as well.

OpenCL Summary

We have now covered the basic components of the core OpenCL frame-
work. It is important to understand them in isolation (as we have largely 
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presented them). To pull this together to create a complete picture of 
OpenCL, we provide a summary of the basic workflow of an application as 
it works through the OpenCL framework, shown in Figure 1.9. 
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Figure 1.9 This block diagram summarizes the components of OpenCL and 
the actions that occur on the host during an OpenCL application.

You start with a host program that defines the context. The context in 
Figure 1.9 contains two OpenCL devices, a CPU and a GPU. Next we 
define the command-queues. In this case we have two queues, an in-order 
command-queue for the GPU and an out-of-order command-queue for the 
CPU. The host program then defines a program object that is compiled to 
generate kernels for both OpenCL devices (the CPU and the GPU). Next 
the host program defines any memory objects required by the program 
and maps them onto the arguments of the kernels. Finally, the host pro-
gram enqueues commands to the command-queues to execute the kernels.

The Embedded Profile
OpenCL programs address the needs of a tremendous range of hardware 
platforms. From HPC Servers to laptops to cell phones, OpenCL has a 
tremendous reach. For most of the standard, this range is not a problem. 
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For a few features, however, the embedded processors just can’t match the 
requirements in the standard.

We had two choices: take the easy route and leave it to each vendor to 
decide how to relax the OpenCL specification to meet their needs, or do 
the hard work ourselves and define exactly how to change OpenCL for 
embedded processors. We chose the harder approach; that is, we defined 
how the OpenCL specification should be changed to fit the needs of 
embedded processors. We describe the embedded profile in Chapter 13, 
“OpenCL Embedded Profile.”

We did not want to create a whole new standard, however. To do so would 
put us in the awkward position of struggling to keep the two standards 
from diverging. Hence, the final section of the OpenCL specification 
defines the “embedded profile,” which we describe later in the book. 
Basically, we relaxed the floating-point standards and some of the larger 
data types because these are not often required in the embedded market. 
Some of the image requirements (such as the 3D image format) were also 
relaxed. Atomic functions are not required, and the relative errors of built-
in math functions were relaxed. Finally, some of the minimum param-
eters for properties of different components of the framework (such as the 
minimum required size of the private memory region) were reduced to 
match the tighter memory size constraints used in the embedded market.

As you can see, for the most part, OpenCL for embedded processors is 
very close to the full OpenCL definition. Most programmers will not even 
notice these differences.

Learning OpenCL
OpenCL is an industry standard for writing parallel programs to execute 
on heterogeneous platforms. These platforms are here today and, as we 
hope we have shown you, will be the dominant architecture for comput-
ing into the foreseeable future. Hence, programmers need to understand 
heterogeneous platforms and become comfortable programming for them. 

In this chapter we have provided a conceptual framework to help you 
understand OpenCL. The platform model defines an abstraction that 
applies to the full diversity of heterogeneous systems. The execution 
model within OpenCL describes whole classes of computations and 
how they map onto the platform model. The framework concludes with 
programming models and a memory model, which together give the 
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programmer the tools required to reason about how software elements in 
an OpenCL program interact to produce correct results. 

Equipped with this largely theoretical knowledge, you can now start to 
learn how to use the contents of OpenCL. We begin with the following 
chapter, where we will write our first OpenCL program. 
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Chapter 2

HelloWorld: An OpenCL Example

In order to introduce you to OpenCL, we begin with a simple example 
program. This chapter demonstrates the code required to set up and exe-
cute a kernel on an OpenCL device. The example executes a simple kernel 
that adds the values stored in two arrays and saves the result in another. 
This chapter introduces the following concepts:

• Choosing an OpenCL platform and creating a context

• Enumerating devices and creating a command-queue

• Creating and building a program object

• Creating a kernel object and memory objects for kernel arguments

• Executing a kernel and reading its result

• Checking for errors in OpenCL

This chapter will go over the basics of each of these steps. Later in the 
book, we will fill in the details of each of these steps and further docu-
ment OpenCL. In addition to these topics, we will also introduce the 
CMake-based build system used for the sample code in the book. Our 
purpose here is to get you running your first simple example so that you 
get an idea of what goes into creating an application with OpenCL.

Downloading the Sample Code
Many chapters in the book include sample code. The sample code can be down-
loaded from the book’s Web site: www.openclprogrammingguide.com/.

Because OpenCL is designed to run on multiple platforms, the sample code was 
designed with the same goal. The code has been tested on Mac OS X, Linux, and 
Windows using various implementations of OpenCL. You are free to use the platform 
and OpenCL implementation that work for you. 

www.openclprogrammingguide.com/
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Building the Examples
All of the sample code was set up to build using CMake (www.cmake.org), 
a cross-platform build tool. CMake has the ability to generate build projects 
for many platforms and development tools including Eclipse, Code::Blocks, 
Microsoft Visual Studio, Xcode, KDevelop, and plain old UNIX make-
files. Some of these development tools are cross-platform (e.g., Eclipse, 
Code::Blocks), and some are specific to a particular OS such as Xcode for 
Mac OS X and Visual Studio for Windows. You are free to use whichever 
development tool and platform work for you. The only requirement is that 
you have some implementation of OpenCL on your platform to build and 
run against. For the purposes of explanation, this section will review how 
to set up your build environment for a few select platforms and tools. If 
your platform is not among the ones covered here, you should be able to 
use these sections as a guide for building in your desired environment.

Prerequisites

Regardless of your platform, you are going to need a copy of CMake. An 
installable package for Windows, Mac OS X, and various flavors of Linux/
UNIX is available on the CMake Web site (www.cmake.org). On Ubuntu 
Linux, for example, you can also install CMake directly from the package 
manager using sudo apt-get install cmake.

In addition to CMake, you will also need an implementation of OpenCL. 
As of this writing, we are aware of at least the following implementations:

• Mac OS X 10.6+: Starting in Snow Leopard, Mac OS X has shipped 
with an OpenCL implementation. If you download and install the 
Xcode development tool, you will have access to the OpenCL headers 
and libraries.

• Microsoft Windows: AMD provides access to OpenCL on Windows 
through the ATI Stream SDK available from AMD’s developer Web site. 
The ATI Stream SDK contains various OpenCL sample programs along 
with the required headers and libraries. The OpenCL implementa-
tion itself works with the standard ATI Catalyst drivers on supported 
GPUs. The ATI Stream SDK also provides support for multicore CPUs 
(from either AMD or Intel). NVIDIA also provides its own OpenCL 
implementation as part of its GPU Computing SDK, which also con-
tains OpenCL headers and libraries. As of this writing, the NVIDIA 
implementation provides acceleration only for NVIDIA GPUs (no CPU 
devices). Intel provides an implementation of OpenCL as well, but 
currently only for CPUs that support AUX or SSE4.1 (or higher).

www.cmake.org
www.cmake.org
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• Linux: Both AMD and NVIDIA provide their development SDKs on 
many flavors of Linux, including Ubuntu, RedHat, and openSUSE. 
Intel’s Linux SDK supports SUSE Enterprise Server and Red Hat. These 
SDKs are similar to their Windows counterparts in that they con-
tain the OpenCL libraries and headers along with various sample 
programs.

After installing CMake and OpenCL—assuming the necessary compiler 
tools are present—you should be able to build the sample code from the 
book. The sample code relies on FindOpenCL.cmake to find your OpenCL 
implementation. For details on this project, visit the  findopencl page on 
http://gitorious.org/findopencl. This file is included in the sample source 
download from the book’s Web site.

The sample code for the book is structured into the following directories:

• /CMakeLists.txt: the primary CMake input file for a project

• /cmake/: contains the FindOpenCL.cmake file required for finding 
an OpenCL implementation

• /src/Chapter_X: contains the example programs for each chapter 
along with the CMakeLists.txt files required for building the sample 

Mac OS X and Code::Blocks

If you are developing on Mac OS X, you have many choices for develop-
ment tools including Eclipse, Xcode, and Code::Blocks. Here we show you 
how to build and execute the code using the Code::Blocks tool.

First, to generate the Code::Blocks project files, in the root directory of the 
sample code (assuming you unzipped the code to the directory /CL_Book):

CL_Book$ mkdir build
CL_Book$ cd build
CL_Book/build$ cmake ../ -G "CodeBlocks - Unix Makefiles"

If CMake is successful, it will generate Code::Blocks project files for each 
of the samples. Note that if you wish to just build from the command line 
rather than an IDE on the Mac, omitting the (-G) argument to cmake will 
generate makefiles that can be built by just typing make.

The main project file will be named CL_Book.cbp, located at the root of 
the created build folder. If you open this file in Code::Blocks, you should 
see a project in your workspace like the one in Figure 2.1. All of the 
samples can now be built simply by clicking Build from the Code::Blocks 
build menu.

http://gitorious.org/findopencl
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Microsoft Windows and Visual Studio

If you are developing on Microsoft Windows, you can use CMake to 
generate projects for any version of Microsoft Visual Studio. On Windows, 
the CMake installer will install the cmake-gui, which is the most straight-
forward way to generate a project. In addition to installing CMake, you 
will need to install an implementation of OpenCL such as the ATI Stream 
SDK or NVIDIA GPU Computing SDK. In the case of the example in this 
section, the ATI Stream SDK v2.1 was installed using the downloadable 
installer. 

Figure 2.1 CodeBlocks CL_Book project
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After installing CMake, simply open the cmake-gui and point the GUI to 
the location where you have unzipped the source code, as shown in Fig-
ure 2.2. Create a folder to build the binaries underneath that base direc-
tory and set that as the location to build the binaries in the GUI. You can 
then click Configure and choose the version of Microsoft Visual Studio 
you are using. Assuming you installed OpenCL, CMake should automati-
cally find its location. If it is not found, manually adjust the directories in 
the GUI. Finally, click Configure again and then Generate, and the Visual 
Studio projects will be generated.

Figure 2.2 Using cmake-gui to generate Visual Studio projects

After generating the project in cmake-gui, open the ALL_BUILD project 
from within Visual Studio, as shown in Figure 2.3. Building this project 
will build all of the example programs for the book. Each of the indi-
vidual examples will also have its own Visual Studio project, and you can 
build and run the examples directly from within Visual Studio. This also 
allows you to use OpenCL-based profiling/debugging tools for Visual Stu-
dio such as the ATI Stream Profiler when running the example code.
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Linux and Eclipse

Finally, if you are developing on Linux, there are a large number of 
choices for a development environment. Many users will prefer to just 
use command-line make, but for those who wish to use an integrated 
development environment (IDE), CMake can generate projects for Eclipse, 
KDevelop, and Code::Blocks. After installing CMake and Eclipse CDT 
on Linux, the process of generating a project using CMake is much the 
same as on the other platforms. You will need to install an implementa-
tion of OpenCL. As of now, the three choices are the ATI Stream SDK, the 
NVIDIA GPU Computing SDK, or the Intel CPU SDK.

After installing an OpenCL implementation from one of the SDKs, you 
can generate the Eclipse project file using cmake. In order to have access 
to the source code in the generated Eclipse project, it is important that 
you create your CMake build directory outside of the source tree (at a 
level above the highest-level CMakeLists.txt). For example, if you have 
unzipped the code to the directory /devel/CL_Book, you would create 
the project as follows:

Figure 2.3 Microsoft Visual Studio 2008 Project
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/devel$ mkdir build
/devel$ cd build
/devel/build$ cmake ../CL_Book -G "Eclipse CDT4 – Unix Makefiles"

This will generate an Eclipse-compatible project in your build/ folder. In 
order to use this project in Eclipse, select File, Import to import that proj-
ect as a General, Existing project. Provide the full directory path to your 
build/ folder, and Eclipse should automatically detect a CL_Book project 
that can be imported into your workspace. After importing the project, 
you should have a full project in your workspace with the sample code as 
shown in Figure 2.4.

Figure 2.4 Eclipse CL_Book project

HelloWorld Example
The remainder of this chapter will cover the HelloWorld sample located 
in src/Chapter_2/HelloWorld. In Listing 2.1 the main() function 
from the example program is reproduced along with the source code to 
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the kernel. The main() function either implements or calls functions that 
perform the following operations:

• Create an OpenCL context on the first available platform. 

• Create a command-queue on the first available device. 

• Load a kernel file (HelloWorld.cl) and build it into a program 
object. 

• Create a kernel object for the kernel function hello_kernel().

• Create memory objects for the arguments to the kernel (result, a, b). 

• Queue the kernel for execution. 

• Read the results of the kernel back into the result buffer. 

Each of the steps that this program performs will be covered in detail in 
the rest of this section.

Listing 2.1 HelloWorld OpenCL Kernel and Main Function 

HelloWorld.cl:

__kernel void hello_kernel(__global const float *a,
                           __global const float *b,
                           __global float *result)
{
    int gid = get_global_id(0);

    result[gid] = a[gid] + b[gid];
}

HelloWorld.cpp:

int main(int argc, char** argv)
{
    cl_context context = 0;
    cl_command_queue commandQueue = 0;
    cl_program program = 0;
    cl_device_id device = 0;
    cl_kernel kernel = 0;
    cl_mem memObjects[3] = { 0, 0, 0 };
    cl_int errNum;

    // Create an OpenCL context on first available platform
    context = CreateContext();
    if (context == NULL)
    {
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        cerr << "Failed to create OpenCL context." << endl;
        return 1;
    }

    // Create a command-queue on the first device available
    // on the created context
    commandQueue = CreateCommandQueue(context, &device);
    if (commandQueue == NULL)
    {
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Create OpenCL program from HelloWorld.cl kernel source
    program = CreateProgram(context, device, "HelloWorld.cl");
    if (program == NULL)
    {
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Create OpenCL kernel
    kernel = clCreateKernel(program, "hello_kernel", NULL);
    if (kernel == NULL)
    {
        cerr << "Failed to create kernel" << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Create memory objects that will be used as arguments to
    // kernel. First create host memory arrays that will be
    // used to store the arguments to the kernel
    float result[ARRAY_SIZE];
    float a[ARRAY_SIZE];
    float b[ARRAY_SIZE];
    for (int i = 0; i < ARRAY_SIZE; i++)
    {
        a[i] = i;
        b[i] = i * 2;
    }

    if (!CreateMemObjects(context, memObjects, a, b))
    {
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }
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    // Set the kernel arguments (result, a, b)
    errNum = clSetKernelArg(kernel, 0, 
                             sizeof(cl_mem), &memObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), 
                             &memObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), 
                             &memObjects[2]);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Error setting kernel arguments." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    size_t globalWorkSize[1] = { ARRAY_SIZE };
    size_t localWorkSize[1] = { 1 };

    // Queue the kernel up for execution across the array
    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL,
                                    globalWorkSize, localWorkSize,
                                    0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Error queuing kernel for execution." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Read the output buffer back to the Host
    errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], 
                            CL_TRUE, 0, ARRAY_SIZE * sizeof(float), 
                            result, 0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Error reading result buffer." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Output the result buffer
    for (int i = 0; i < ARRAY_SIZE; i++)
    {
        cout << result[i] << " ";
    }
    cout << endl;
    cout << "Executed program successfully." << endl;
    Cleanup(context, commandQueue, program, kernel, memObjects);

    return 0;
}
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Choosing an OpenCL Platform and Creating a Context

The first step required to set up OpenCL is to choose a platform. OpenCL 
uses an installable client driver (ICD) model where multiple implementa-
tions of OpenCL can coexist on a single system. For example, in a system 
with an NVIDIA GPU and an AMD CPU, you might have one implemen-
tation on your system for the CPU and another for the GPU. It is also 
common for a single implementation to support multiple devices such 
as the Mac OS X OpenCL implementation or the ATI Stream SDK (which 
supports ATI GPUs and Intel or AMD CPUs). It is up to the application to 
choose the platform that is most appropriate for it.

The HelloWorld example demonstrates the simplest approach to choos-
ing an OpenCL platform: it selects the first available platform. In the next 
chapter, we will discuss in more detail how to query an OpenCL platform 
for information and choose among the available platforms. In Listing 2.2 
the code from the CreateContext() function of the HelloWorld exam-
ple is provided. First, clGetPlatformIDs() is invoked to retrieve the first 
available platform. After getting the cl_platform_id of the first avail-
able platform, the example then creates a context by calling clCreate-
ContextFromType(). This call to clCreateContextFromType()
attempts to create a context for a GPU device. If this attempt fails, then 
the program makes another attempt, this time at creating a CPU device 
as a fallback.

Listing 2.2 Choosing a Platform and Creating a Context

cl_context CreateContext()
{
    cl_int errNum;
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;
    cl_context context = NULL;

    // First, select an OpenCL platform to run on. 
    // For this example, we simply choose the first available 
    // platform. Normally, you would query for all available 
    // platforms and select the most appropriate one.
    errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
    if (errNum != CL_SUCCESS || numPlatforms <= 0)
    {
        cerr << "Failed to find any OpenCL platforms." << endl;
        return NULL;
    }
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    // Next, create an OpenCL context on the platform. Attempt to
    // create a GPU-based context, and if that fails, try to create
    // a CPU-based context.
    cl_context_properties contextProperties[] =
    {
        CL_CONTEXT_PLATFORM,
        (cl_context_properties)firstPlatformId,
        0
    };
    context = clCreateContextFromType(contextProperties, 
                                      CL_DEVICE_TYPE_GPU,
                                      NULL, NULL, &errNum);
    if (errNum != CL_SUCCESS)
    {
        cout << "Could not create GPU context, trying CPU..." 
             << endl;
        context = clCreateContextFromType(contextProperties,
                                          CL_DEVICE_TYPE_CPU,
                                          NULL, NULL, &errNum);
        if (errNum != CL_SUCCESS)
        {
            cerr << 
               "Failed to create an OpenCL GPU or CPU context.";
            return NULL;
        }
    }

    return context;
}

Choosing a Device and Creating a Command-Queue

After choosing a platform and creating a context, the next step for the 
HelloWorld application is to select a device and create a command-
queue. The device is the underlying compute hardware, such as a single 
GPU or CPU. In order to communicate with the device, the application 
must create a command-queue for it. The command-queue is used to 
queue operations to be performed on the device. Listing 2.3 contains the 
CreateCommandQueue() function that chooses the device and creates 
the command-queue for the HelloWorld application.

The first call to clGetContextInfo() queries the context for the size of 
the buffer required to store all of the device IDs available on the context. 
This size is used to allocate a buffer to store the device IDs, and another 
call is made to clGetContextInfo() that retrieves all of the devices 
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available on the context. Normally, a program would iterate over these 
devices querying for information to choose the best (or multiple) of the 
devices. In the HelloWorld sample, the first device is selected. In Chapter 
3, we cover how to query devices for information so that you can select 
the most appropriate device for your application. After selecting the 
device to use, the application calls clCreateCommandQueue() to create 
a command-queue on the selected device. The command-queue will be 
used later in the program to queue the kernel for execution and read back 
its results.

Listing 2.3 Choosing the First Available Device and Creating a Command-Queue

cl_command_queue CreateCommandQueue(cl_context context, 
                                    cl_device_id *device)
{
    cl_int errNum;
    cl_device_id *devices;
    cl_command_queue commandQueue = NULL;
    size_t deviceBufferSize = -1;

    // First get the size of the devices buffer
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, 
                              &deviceBufferSize);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Failed call to 
                 clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
        return NULL;
    }

    if (deviceBufferSize <= 0)
    {
        cerr << "No devices available.";
        return NULL;
    }

    // Allocate memory for the devices buffer
    devices = new cl_device_id[deviceBufferSize / 
                               sizeof(cl_device_id)];
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 
                              deviceBufferSize, devices, NULL);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Failed to get device IDs";
        return NULL;
    }
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    // In this example, we just choose the first available device.  
    // In a real program, you would likely use all available 
    // devices or choose the highest performance device based on 
    // OpenCL device queries.

    commandQueue = clCreateCommandQueue(context, 
                                        devices[0], 0, NULL);
    if (commandQueue == NULL)
    {
        cerr << "Failed to create commandQueue for device 0";
        return NULL;
    }

    *device = devices[0];
    delete [] devices;
    return commandQueue;
}

Creating and Building a Program Object

The next step in the HelloWorld example is to load the OpenCL C kernel 
source from the file HelloWorld.cl and create a program object from 
it. The program object is loaded with the kernel source code, and then 
the code is compiled for execution on the device attached to the context. 
In general, a program object in OpenCL stores the compiled executable 
code for all of the devices that are attached to the context. In the case of 
HelloWorld, only a single device is created on a context, but it is possible 
to have multiple devices, in which case the program object will hold the 
compiled code for each. 

In Listing 2.4, the HelloWorld.cl file is loaded from disk and stored in a 
string. The program object is then created by calling clCreateProgram-
WithSource(), which creates the program object from the kernel source 
code. After creating the program object, the kernel source code is com-
piled by calling clBuildProgram(). This function compiles the kernel 
for the attached devices and, if successful, stores the compiled code in the 
program object. If there is any failure during compilation, the build log is 
retrieved using clGetProgramBuildInfo(). The build log will contain a 
string with any compiler errors that were produced by the OpenCL kernel 
compilation.
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Listing 2.4 Loading a Kernel Source File from Disk and Creating and Building a 
Program Object

cl_program CreateProgram(cl_context context, cl_device_id device, 
                         const char* fileName)
{
    cl_int errNum;
    cl_program program;

    ifstream kernelFile(fileName, ios::in);
    if (!kernelFile.is_open())
    {
        cerr << "Failed to open file for reading: " << fileName << 
                 endl;
        return NULL;
    }

    ostringstream oss;
    oss << kernelFile.rdbuf();

    string srcStdStr = oss.str(); 
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);
    if (program == NULL)
    {
        cerr << "Failed to create CL program from source." << endl;
        return NULL;
    }

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);

        cerr << "Error in kernel: " << endl;
        cerr << buildLog;
        clReleaseProgram(program);
        return NULL;
    }

    return program;
}
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Creating Kernel and Memory Objects

In order to execute the OpenCL compute kernel, the arguments to the ker-
nel function need to be allocated in memory that is accessible to it on the 
OpenCL device. The kernel for the HelloWorld example was provided in 
Listing 2.1. The kernel in this example is a simple function that computes 
the sum of the values at each element in two arrays (a and b) and stores it 
in another array (result). In Listing 2.5, a kernel object is created for the 
"hello_kernel" that was compiled into the program object. The arrays 
(a, b, and result) are allocated and filled with data. After these arrays 
are created in host memory, CreateMemObjects() is called, which copies 
the arrays into memory objects that will be passed to the kernel.

Listing 2.5 Creating a Kernel

    // Create OpenCL kernel
    kernel = clCreateKernel(program, "hello_kernel", NULL);
    if (kernel == NULL)
    {
        cerr << "Failed to create kernel" << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Create memory objects that will be used as arguments to
    // kernel. First create host memory arrays that will be
    // used to store the arguments to the kernel
    float result[ARRAY_SIZE];
    float a[ARRAY_SIZE];
    float b[ARRAY_SIZE];
    for (int i = 0; i < ARRAY_SIZE; i++)
    {
        a[i] = (float)i;
        b[i] = (float)(i * 2);
    }

    if (!CreateMemObjects(context, memObjects, a, b))
    {
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

The code for the CreateMemObjects() function is provided in Listing 
2.6. For each array, the function calls clCreateBuffer() to create a 
memory object. The memory object is allocated in device memory and 
can be accessed directly by the kernel function. For the input arrays (a
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and b) the buffer is created with memory type CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, which means that the array will be read-only 
by the kernel and copied from host memory to device memory. The arrays 
themselves are passed as an argument to clCreateBuffer(), which 
causes the contents of the arrays to be copied into the storage space allo-
cated for the memory object on the device. The result array is created 
with type CL_MEM_READ_WRITE, which means that the kernel can both 
read and write to the array.

Listing 2.6 Creating Memory Objects

bool CreateMemObjects(cl_context context, cl_mem memObjects[3],
                      float *a, float *b)
{
    memObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 
                                   CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, a, 
                                   NULL);
    memObjects[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | 
                                   CL_MEM_COPY_HOST_PTR,
                                   sizeof(float) * ARRAY_SIZE, b, 
                                   NULL);
    memObjects[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
                                   sizeof(float) * ARRAY_SIZE, 
                                   NULL, NULL);

    if (memObjects[0] == NULL || memObjects[1] == NULL || 
        memObjects[2] == NULL)
    {
        cerr << "Error creating memory objects." << endl;
        return false;
    }

    return true;
}

Executing a Kernel

Now that the kernel and memory objects have been created, the Hello-
World program can finally queue up the kernel for execution. All of the 
arguments to the kernel function need to be set using clSetKernel-
Arg(). The first argument to this function is the index of the argument. 
The hello_kernel() takes three arguments (a, b, and result), which 
correspond to indices 0, 1, and 2. The memory objects that were created 
in CreateMemObjects() are passed to the kernel object in Listing 2.7.
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After setting the kernel arguments, the HelloWorld example finally queues 
the kernel for execution on the device using the command-queue. This 
is done by calling clEnqueueNDRangeKernel(). The globalWorkSize
and localWorkSize determine how the kernel is distributed across pro-
cessing units on the device. The HelloWorld example takes a very simple 
approach of having a global work size equal to the size of the array and 
the local work size equal to 1. Determining how to distribute your kernel 
efficiently over a data set is one of the most challenging aspects of using 
OpenCL. This will be discussed in many examples throughout the book. 

Queuing the kernel for execution does not mean that the kernel executes 
immediately. The kernel execution is put into the command-queue for 
later consumption by the device. In other words, after the call is made to 
clEnqueueNDRangeKernel(), the kernel may not yet have executed on 
the device. It is possible to make a kernel wait for execution until previ-
ous events are finished. This will be discussed in detail in Chapter 9, 
“Events.” In order to read the results back from the kernel, the HelloWorld 
example calls clEnqueueReadBuffer() to read back the result array 
(memObjects[2]). 

The third argument to clEnqueueReadBuffer() is a Boolean 
blocking_read that determines whether the call should wait until the 
results are ready before returning. In this example, blocking_read is 
set to CL_TRUE, which means that it will not return until the kernel read 
is done. It is guaranteed that operations that are put into the command-
queue are executed in order (unless the command-queue is created with 
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, which was not done in 
the HelloWorld example). As such, the read will not occur until execution 
of the kernel is finished, and the read will not return until it is able to 
read the results back from the device. Therefore, once the program returns 
from clEnqueueReadBuffer(), the result array has been read back 
from the device to the host and is ready for reading or writing. Finally, 
at the end of Listing 2.7, the values in the results array are output to the 
standard output.

Listing 2.7 Setting the Kernel Arguments, Executing the Kernel, and Reading 
Back the Results

    // Set the kernel arguments (result, a, b)
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), 
                                       &memObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), 
                             &memObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem),
                             &memObjects[2]);
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    if (errNum != CL_SUCCESS)
    {
        cerr << "Error setting kernel arguments." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    size_t globalWorkSize[1] = { ARRAY_SIZE };
    size_t localWorkSize[1] = { 1 };

    // Queue the kernel up for execution across the array
    errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL,
                                    globalWorkSize, localWorkSize,
                                    0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Error queuing kernel for execution." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Read the output buffer back to the Host
    errNum = clEnqueueReadBuffer(commandQueue, memObjects[2], 
                                 CL_TRUE,0, 
                                 ARRAY_SIZE * sizeof(float), result,
                                 0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        cerr << "Error reading result buffer." << endl;
        Cleanup(context, commandQueue, program, kernel, memObjects);
        return 1;
    }

    // Output the result buffer
    for (int i = 0; i < ARRAY_SIZE; i++)
    {
        cout << result[i] << " ";
    }

Checking for Errors in OpenCL
In the HelloWorld example and throughout the book, the example code 
demonstrates checking for error codes returned by OpenCL functions. 
At this point, we want to mention the mechanism by which OpenCL 
reports errors. In terms of error reporting, there are two types of func-
tions in OpenCL: those that return OpenCL objects and those that don’t. 
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For example, in this chapter we saw that clCreateContextFromType()
returns a cl_context object. However, the function clSetKernel-
Arg() does not return a new object. clSetKernelArg() returns an error 
code to the caller, and clCreateContextFromType() takes a parameter 
as its last argument that is a pointer to the error code generated by the 
function.

These two functions illustrate the simple rule in OpenCL in terms of 
reporting errors:

• OpenCL functions that return cl_xxx objects take a last argument 
that is a pointer to a returned error code.

• OpenCL functions that do not return objects will return an error code.

There are a large number of potential errors in OpenCL. Each API call can 
return a subset of these errors. The list of possible error codes in OpenCL 
is provided in Table 2.1.

Error Description

CL_SUCCESS Command executed successfully without 
error.

CL_DEVICE_NOT_FOUND No OpenCL devices found matching 
criteria.

CL_DEVICE_NOT_AVAILABLE OpenCL device is not currently available.

CL_COMPILER_NOT_AVAILABLE Program created with source, but no 
OpenCL C compiler is available.

CL_MEM_OBJECT_ALLOCATION_FAILURE Failure to allocate memory for a memory or 
image object.

CL_OUT_OF_RESOURCES Insufficient resources to execute command.

CL_OUT_OF_HOST_MEMORY Insufficient memory available on the host 
to execute command.

CL_PROFILING_INFO_NOT_AVAILABLE Profiling information is not available for 
the event or the command-queue does not 
have profiling enabled.

CL_MEM_COPY_OVERLAP Two buffers overlap the same region of 
memory.

Table 2.1 OpenCL Error Codes
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Error Description

CL_IMAGE_FORMAT_MISMATCH Images do not share the same image 
format.

CL_IMAGE_FORMAT_NOT_SUPPORTED Specified image format is not supported.

CL_BUILD_PROGRAM_FAILURE Unable to build executable for program.

CL_MAP_FAILURE Memory region could not be mapped into 
host memory.

CL_INVALID_VALUE An invalid value was specified for one or 
more arguments to the command.

CL_INVALID_DEVICE_TYPE The passed-in device type is not a valid 
value.

CL_INVALID_PLATFORM The passed-in platform is not a valid value.

CL_INVALID_DEVICE The passed-in device is not a valid value.

CL_INVALID_CONTEXT The passed-in context is not a valid value.

CL_INVALID_QUEUE_PROPERTIES The device does not support command-
queue properties.

CL_INVALID_COMMAND_QUEUE The passed-in command-queue is not a 
valid value.

CL_INVALID_HOST_PTR The host pointer is not valid.

CL_INVALID_MEM_OBJECT The passed-in memory object is not a valid 
value.

CL_INVALID_IMAGE_FORMAT_DESCRIPTOR The passed-in image format descriptor is 
not valid.

CL_INVALID_IMAGE_SIZE The device does not support the image 
dimensions.

CL_INVALID_SAMPLER The passed-in sampler is not a valid value.

CL_INVALID_BINARY An invalid program binary was passed in.

CL_INVALID_BUILD_OPTIONS One or more build options are not valid.

CL_INVALID_PROGRAM The passed-in program is not a valid value.

continues

Table 2.1 OpenCL Error Codes (Continued )
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Error Description

CL_INVALID_PROGRAM_EXECUTABLE The program was not successfully built into 
an executable for the devices associated 
with the command-queue.

CL_INVALID_KERNEL_NAME The named kernel does not exist in the 
program.

CL_INVALID_KERNEL_DEFINITION The kernel defined in the program source is 
not valid.

CL_INVALID_KERNEL The passed-in kernel is not a valid value.

CL_INVALID_ARG_INDEX The argument referred to by the argument 
index is not valid for the kernel.

CL_INVALID_ARG_VALUE The kernel argument value is NULL for a 
nonlocal argument or non-NULL for a local 
argument.

CL_INVALID_ARG_SIZE The argument size does not match the 
kernel argument.

CL_INVALID_KERNEL_ARGS One or more kernel arguments have not 
been assigned values.

CL_INVALID_WORK_DIMENSION The value of the work dimension is not a 
value between 1 and 3.

CL_INVALID_WORK_GROUP_SIZE The local or global work size is not valid.

CL_INVALID_WORK_ITEM_SIZE One or more work-item sizes exceed the 
maximum size supported by the device.

CL_INVALID_GLOBAL_OFFSET The global offset exceeds supported 
bounds.

CL_INVALID_EVENT_WAIT_LIST The wait list provided is either an invalid 
size or contains nonevents in it.

CL_INVALID_EVENT The passed-in event is not a valid value.

CL_INVALID_OPERATION Executing the command caused an invalid 
operation to occur.

CL_INVALID_GL_OBJECT There was a problem with the OpenGL-
referenced object.

CL_INVALID_BUFFER_SIZE The buffer size specified was out of bounds.

Table 2.1 OpenCL Error Codes (Continued )
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Error Description

CL_INVALID_MIP_LEVEL The mipmap level specified for an OpenGL 
texture is not valid for the OpenGL object.

CL_INVALID_GLOBAL_WORK_SIZE The global work size passed in is not valid 
because it is either 0 or exceeds the dimen-
sions supported by the device.

Table 2.1 OpenCL Error Codes (Continued )
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Chapter 3

Platforms, Contexts, and Devices

Chapter 2 described an OpenCL program that included the basic API calls 
to create a context, device, program, kernel, and memory buffers; write 
and read the buffers; and finally execute the kernel on the chosen device. 
This chapter looks, in more detail, at OpenCL contexts (i.e., environ-
ments) and devices and covers the following concepts:

• Enumerating and querying OpenCL platforms

• Enumerating and querying OpenCL devices

• Creating contexts, associating devices, and the corresponding syn-
chronization and memory management defined by this implied 
environment

OpenCL Platforms
As discussed in Chapter 2, the first step of an OpenCL application is to 
query the set of OpenCL platforms and choose one or more of them to use 
in the application. Associated with a platform is a profile, which describes 
the capabilities of the particular OpenCL version supported. A profile can 
be either the full profile, which covers functionality defined as part of 
the core specification, or the embedded profile, defined as a subset of the 
full profile which in particular drops some of the requirements of floating 
conformance to the IEEE 754 standard. For the most part this book covers 
the full profile, and Chapter 13 covers the differences with the embedded 
profile in detail. 

The set of platforms can be queried with the command

cl_int clGetPlatformIDs (cl_uint num_entries,
                         cl_platform_id * platforms,
                         cl_uint * num_platforms)
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This command obtains the list of available OpenCL platforms. In the case 
that the argument platforms is NULL, then clGetPlatformIDs returns 
the number of available platforms. The number of platforms returned can 
be limited with num_entries, which can be greater than 0 and less than 
or equal to the number of available platforms. 

You can query the number of available platforms by setting the argu-
ments num_entries and platforms to 0 and NULL, respectively. In the 
case of Apple’s implementation this step is not necessary, and rather than 
passing a queried platform to other API calls, such as clGetDeviceIds(),
the value NULL is passed instead.

As a simple example of how you might query and select a platform, we use 
clGetPlatformIDs() to obtain a list of platform IDs: 

cl_int errNum;
cl_uint numPlatforms;
cl_platform_id * platformIds;
cl_context context = NULL;

errNum = clGetPlatformIDs(0, NULL, &numPlatforms);

platformIds = (cl_platform_id *)alloca(
    sizeof(cl_platform_id) * numPlatforms);

errNum = clGetPlatformIDs(numPlatforms, platformIds, NULL);

Given a platform, you can query a variety of properties with the 
command

cl_int clGetPlatformInfo (cl_platform_id platform,
                          cl_platform_info param_name,
                          size_t param_value_size,
                          void * param_value,
                          size_t * param_value_size_ret)

This command returns specific information about the OpenCL platform. 
The allowable values for param_name are described in Table 3.1.

The set of valid queries is given in Table 3.1, and you can query the size of 
a returned value by setting the values of param_value_size and param_
value to 0 and NULL, respectively. 
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As a simple example of how you might query and select a platform, we 
use clGetPlatformInfo() to obtain the associated platform name and 
vendor strings:

cl_int err;
size_t size;

err = clGetPlatformInfo(id, CL_PLATFORM_NAME, 0, NULL, &size);
char * name = (char *)alloca(sizeof(char) * size);
err = clGetPlatformInfo(id, CL_PLATFORM_NAME, size, info, NULL);

err = clGetPlatformInfo(id, CL_PLATFORM_VENDOR, 0, NULL, &size);
char * vname = (char *)alloca(sizeof(char) * size);
err = clGetPlatformInfo(id, CL_PLATFORM_VENDOR, size, info, NULL);

std::cout << "Platform name: " << name  << std::endl
          << "Vendor name  : " << vname << std::endl;

On ATI Stream SDK this code displays

Platform name: ATI Stream
Vendor name  : Advanced Micro Devices, Inc.

Table 3.1 OpenCL Platform Queries

cl_platform_info Return Type Description

CL_PLATFORM_PROFILE char[] OpenCL profile string. The 
profile can be one of these 
two strings:

FULL_PROFILE: OpenCL 
implementation supports all 
functionality defined as part 
of the core specification.

EMBEDDED_PROFILE: OpenCL 
implementation supports a 
subset of functionality 
defined as part of the core 
specification.

CL_PLATFORM_VERSION char[] OpenCL version string.

CL_PLATFORM_NAME char[] Platform name string.

CL_PLATFORM_VENDOR char[] Platform vendor string.

CL_PLATFORM_EXTENSIONS char[] OpenCL version string.
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Putting this all together, Listing 3.1 enumerates the set of available plat-
forms, and Listing 3.2 queries and outputs the information associated 
with a particular platform. 

Listing 3.1 Enumerating the List of Platforms

void displayInfo(void)
{
  cl_int errNum;
  cl_uint numPlatforms;
  cl_platform_id * platformIds;
  cl_context context = NULL;

  // First, query the total number of platforms
  errNum = clGetPlatformIDs(0, NULL, &numPlatforms);
  if (errNum != CL_SUCCESS || numPlatforms <= 0)
  {
    std::cerr << "Failed to find any OpenCL platform." << std::endl;
    return;
  }

  // Next, allocate memory for the installed platforms, and query 
  // to get the list.
  platformIds = (cl_platform_id *)alloca(
     sizeof(cl_platform_id) * numPlatforms);

  // First, query the total number of platforms
  errNum = clGetPlatformIDs(numPlatforms, platformIds, NULL);
  if (errNum != CL_SUCCESS)
  {
    std::cerr << "Failed to find any OpenCL platforms." 
              << std::endl;
    return;
  }

  std::cout << "Number of platforms: \t" 
            << numPlatforms 
            << std::endl; 
  // Iterate through the list of platforms displaying associated 
  // information
  for (cl_uint i = 0; i < numPlatforms; i++) {
    // First we display information associated with the platform
    DisplayPlatformInfo(
      platformIds[i], CL_PLATFORM_PROFILE, "CL_PLATFORM_PROFILE");
    DisplayPlatformInfo(
      platformIds[i], CL_PLATFORM_VERSION, "CL_PLATFORM_VERSION");
    DisplayPlatformInfo(
      platformIds[i], CL_PLATFORM_VENDOR, "CL_PLATFORM_VENDOR");
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    DisplayPlatformInfo(
      platformIds[i],
      CL_PLATFORM_EXTENSIONS,
      "CL_PLATFORM_EXTENSIONS");
  }
}

Listing 3.2 Querying and Displaying Platform-Specific Information

void DisplayPlatformInfo(
  cl_platform_id id, 
  cl_platform_info name,
  std::string str)
{
  cl_int errNum;
  std::size_t paramValueSize;

  errNum = clGetPlatformInfo(
    id,
    name,
    0,
    NULL,
    &paramValueSize);
  if (errNum != CL_SUCCESS)
  {
    std::cerr << "Failed to find OpenCL platform " 
              << str << "." << std::endl;
    return;
  }

  char * info = (char *)alloca(sizeof(char) * paramValueSize);
  errNum = clGetPlatformInfo(
    id,
    name,
    paramValueSize,
    info,
    NULL);
  if (errNum != CL_SUCCESS)
  {
     std::cerr << "Failed to find OpenCL platform " 
               << str << "." << std::endl;
     return;
  }

  std::cout << "\t" << str << ":\t" << info << std::endl; 
}
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OpenCL Devices
Associated with each platform is a set of compute devices that an applica-
tion uses to execute code. Given a platform, a list of supported devices can 
be queried with the command

cl_int clGetDeviceIDs (cl_platform_id platform,
                       cl_device_type device_type,
                       cl_uint num_entries,
                       cl_device_id *devices,
                       cl_uint *num_devices)

This command obtains the list of available OpenCL devices associated 
with platform. In the case that the argument devices is NULL, then 
clGetDeviceIDs returns the number of devices. The number of devices 
returned can be limited with num_entries, where 0 < num_entries <= 
number of devices. 

The type of compute device is specified by the argument device_type
and can be one of the values given in Table 3.2. Each device shares the 
same execution and memory model as described in Chapter 1 and cap-
tured in Figures 1.6, 1.7, and 1.8. 

The CPU device is a single homogeneous device that maps across the set 
of available cores or some subset thereof. They are often optimized, using 
large caches, for latency hiding; examples include AMD’s Opteron series 
and Intel’s Core i7 family. 

Table 3.2 OpenCL Devices

cl_device_type Description

CL_DEVICE_TYPE_CPU OpenCL device that is the host 
processor.

CL_DEVICE_TYPE_GPU OpenCL device that is a GPU.

CL_DEVICE_TYPE_ACCELERATOR OpenCL accelerator (e.g., IBM Cell 
Broadband).

CL_DEVICE_TYPE_DEFAULT Default device.

CL_DEVICE_TYPE_ALL All OpenCL devices associated with the 
corresponding platform.
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The GPU device corresponds to the class of throughput-optimized devices 
marketed toward both graphics and general-purpose computing. Well-
known examples include ATI’s Radeon family and NVIDIA’s GTX series.

The accelerator device is intended to cover a broad range of devices rang-
ing from IBM’s Cell Broadband architecture to less well-known DSP-style 
devices.

The default device and all device options allow the OpenCL runtime to 
assign a “preferred” device and all the available devices, respectively.

For the CPU, GPU, and accelerator devices there is no limit on the number 
that are exposed by a particular platform, and the application is respon-
sible for querying to determine the actual number. The following example 
shows how you can query and select a single GPU device given a platform, 
using clGetDeviceIDs and first checking that there is at least one such 
device available: 

cl_int errNum;
cl_uint numDevices;
cl_device_id deviceIds[1];
errNum = clGetDeviceIDs(
  platform, 
  CL_DEVICE_TYPE_GPU, 
  0,
  NULL,
  &numDevices);

if (numDevices < 1) 
{
  std::cout << "No GPU device found for platform " 
            << platform << std::endl;
  exit(1);
}
errNum = clGetDeviceIDs(
  platform,
  CL_DEVICE_TYPE_GPU,
  1, 
  &deviceIds[0], 
  NULL);
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Given a device, you can query a variety of properties with the command

cl_int clGetDeviceInfo (cl_device_id device,
                        cl_device_info param_name,
                        size_t param_value_size,
                        void * param_value,
                        size_t * param_value_size_ret)

This command returns specific information about the OpenCL platform. 
The allowable values for param_name are described in Table 3.3. The size 
of a returned value can be queried by setting the values of param_value_
size and param_value to 0 and NULL, respectively.1

Following is a simple example of how you can query a device, using 
clGetDeviceInfo(), to obtain the maximum number of compute units:

cl_int err;
size_t size;

err = clGetDeviceInfo(
  deviceID, 
  CL_DEVICE_MAX_COMPUTE_UNITS, 
  sizeof(cl_uint), 
  &maxComputeUnits, 
  &size);

std::cout << "Device has max compute units: " 
          << maxComputeUnits << std::endl;

On ATI Stream SDK this code displays the following for an Intel i7 CPU 
device:

Device 4098 has max compute units: 8

1 The pattern for querying device information, using clGetDeviceInfo(), is 
the same as that used for platforms and in fact matches that for all OpenCL 
clGetXXInfo() functions. The remainder of this book will not repeat the 
details of how to query the size of a value returned from the clGetXXInfo()
operation.
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Table 3.3 OpenCL Device Queries

cl_device_info Return Type Description

CL_DEVICE_TYPE cl_device_type The OpenCL device type; see Table 3.2 for 
the set of valid types.

CL_DEVICE_VENDOR_ID cl_uint A unique device vendor identifier. 

CL_DEVICE_MAX_COMPUTE_UNITS cl_uint The number of parallel compute cores on the 
OpenCL device. 

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS cl_uint Maximum dimensions that specify the 
global and local work-item IDs used by the 
data-parallel execution model.

CL_DEVICE_MAX_WORK_ITEM_SIZES size_t [] Maximum number of work-items that can be 
specified in each dimension of the work-
group to clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the 
value returned by the query for 
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS.

The minimum value is (1, 1, 1). 

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a 
work-group executing a kernel using the 
data-parallel execution model. 

continues
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cl_device_info Return Type Description

CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR
CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT
CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT
CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE
CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF

cl_uint Preferred native vector width size for built-in 
scalar types that can be put into vectors, 
defined as the number of scalar elements 
that can be stored in the vector.

CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR
CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT
CL_DEVICE_NATIVE_VECTOR_WIDTH_INT
CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG
CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE
CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF

cl_uint Returns the native instruction set architec-
ture (ISA) vector width, where the vector 
width is defined as the number of scalar 
elements that can be stored in the vector.

CL_DEVICE_MAX_CLOCK_FREQUENCY cl_uint Maximum configured clock frequency of the 
device in megahertz.

CL_DEVICE_ADDRESS_BITS cl_uint The default compute device address space 
size specified as an unsigned integer value in 
bits. 

CL_DEVICE_MAX_MEM_ALLOC_SIZE cl_ulong Maximum size of memory object allocation 
in bytes. 

CL_DEVICE_IMAGE_SUPPORT cl_bool Is CL_TRUE if images are supported by the 
OpenCL device and CL_FALSE otherwise.

CL_DEVICE_MAX_READ_IMAGE_ARGS cl_uint Maximum number of simultaneous image 
objects that can be read by a kernel. The 
minimum value is 128 if CL_DEVICE_
IMAGE_SUPPORT is CL_TRUE.

Table 3.3 OpenCL Device Queries (Continued )
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cl_device_info Return Type Description

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Maximum number of simultaneous image 
objects that can be written to by a kernel. 
The minimum value is 8 if CL_DEVICE_
IMAGE_SUPPORT is CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Maximum width of a 2D image in pixels. 

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Maximum height of a 2D image in pixels. 

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Maximum width of a 3D image in pixels. 

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Maximum height of a 3D image in pixels. 

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Maximum depth of a 3D image in pixels. 

CL_DEVICE_MAX_SAMPLERS cl_uint Maximum number of samplers that can be 
used in a kernel. 

CL_DEVICE_MAX_PARAMETER_SIZE size_t Maximum size in bytes of the arguments 
that can be passed to a kernel. 

CL_DEVICE_MEM_BASE_ADDR_ALIGN cl_uint Describes the alignment in bits of the base 
address of any allocated memory object.

CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE cl_uint The smallest alignment in bytes that can be 
used for any data type.

continues
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cl_device_info Return Type Description

CL_DEVICE_SINGLE_FP_CONFIG cl_device_
fp_config

Describes the single-precision floating-point 
capability of the device. This is a bit field 
that describes one or more of the following 
values:

CL_FP_DENORM: Denorms are supported.

CL_FP_INF_NAN: INF and quiet NaNs are 
supported. 

CL_FP_ROUND_TO_NEAREST: Round-to-near-
est-even rounding mode is supported.

CL_FP_ROUND_TO_ZERO: Round-to-zero 
rounding mode is supported.

CL_FP_ROUND_TO_INF: Round-to-+ve and 
–ve infinity rounding modes are supported.

CL_FP_FMA: IEEE 754-2008 fused multiply-
add is supported.

CL_FP_SOFT_FLOAT: Basic floating-point 
operations (such as addition, subtraction, 
multiplication) are implemented in software.

The mandated minimum floating-point 
capability is

CL_FP_ROUND_TO_NEAREST |

CL_FP_INF_NAN.

CL_DEVICE_GLOBAL_MEM_CACHE_TYPE cl_device_mem_
cache_type

Type of global memory cache supported. 
Valid values are CL_NONE, CL_READ_ONLY_
CACHE, and CL_READ_WRITE_CACHE.

CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE cl_uint Size of global memory cache line in bytes.

CL_DEVICE_GLOBAL_MEM_CACHE_SIZE cl_ulong Size of global memory cache in bytes.

Table 3.3 OpenCL Device Queries (Continued )
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cl_device_info Return Type Description

CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in bytes.

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE cl_ulong Maximum size in bytes of a constant buffer 
allocation. 

CL_DEVICE_MAX_CONSTANT_ARGS cl_uint Maximum number of arguments declared 
with the __constant qualifier in a kernel. 

CL_DEVICE_LOCAL_MEM_TYPE cl_device_
local_mem_type

Type of local memory supported. This can 
be set to CL_LOCAL, implying dedicated local 
memory storage such as SRAM, or 
CL_GLOBAL.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory area in bytes. 

CL_DEVICE_ERROR_CORRECTION_SUPPORT cl_bool Is CL_TRUE if the device implements error 
correction for the memories, caches, regis-
ters, etc., in the device. Is CL_FALSE if the 
device does not implement error correction. 
This can be a requirement for certain clients 
of OpenCL.

CL_DEVICE_HOST_UNIFIED_MEMORY cl_bool Is CL_TRUE if the device and the host have a 
unified memory subsystem and is CL_FALSE
otherwise.

CL_DEVICE_PROFILING_TIMER_RESOLUTION size_t Describes the resolution of the device timer 
measured in nanoseconds. 

CL_DEVICE_ENDIAN_LITTLE cl_bool Is CL_TRUE if the OpenCL device is a little 
endian device and CL_FALSE otherwise.

CL_DEVICE_AVAILABLE cl_bool Is CL_TRUE if the device is available and 
CL_FALSE if the device is not available. 

continues
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cl_device_info Return Type Description

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation does not 
have a compiler available to compile the 
program source. Is CL_TRUE if the compiler 
is available. 

CL_DEVICE_EXECUTION_CAPABILITIES cl_device_exec_
capabilities

Describes the execution capabilities of the 
device. This is a bit field that describes one 
or more of the following values:

CL_EXEC_KERNEL: The OpenCL device can 
execute OpenCL kernels.

CL_EXEC_NATIVE_KERNEL: The OpenCL 
device can execute native kernels.

The mandated minimum capability is 

CL_EXEC_KERNEL.

CL_DEVICE_QUEUE_PROPERTIES cl_command_
queue_properties

Describes the command-queue properties 
supported by the device. This is a bit field 
that describes one or more of the following 
values:

CL_QUEUE_OUT_OF_ORDER_EXEC_

MODE_ENABLE

CL_QUEUE_PROFILING_ENABLE

The mandated minimum capability is

CL_QUEUE_PROFILING_ENABLE.

CL_DEVICE_PLATFORM cl_platform_id The platform associated with this device.

Table 3.3 OpenCL Device Queries (Continued )
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cl_device_info Return Type Description

CL_DEVICE_NAME char[] Device name string. 

CL_DEVICE_VENDOR char[] Vendor name string. 

CL_DRIVER_VERSION char[] OpenCL software driver version string in the 
form 

major_number.minor_number.

CL_DEVICE_PROFILE1 char[] OpenCL profile string. Returns the profile 
name supported by the device. The profile 
name returned can be one of the following 
strings:

FULL_PROFILE if the device supports the 
OpenCL specification (functionality defined 
as part of the core specification and does not 
require any extensions to be supported).

EMBEDDED_PROFILE if the device supports 
the OpenCL embedded profile. 

CL_DEVICE_VERSION char[] OpenCL version string. Returns the OpenCL 
version supported by the device. This 
version string has the following format:

OpenCL<space><major_version.minor_
version><space><vendor-specific
information>.

continues
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cl_device_info Return Type Description

CL_DEVICE_EXTENSIONS char[] Returns a space-separated list of extension 
names (the extension names themselves do 
not contain any spaces) supported by the 
device. The list of extension names returned 
can be vendor-supported extension names 
and one or more of the following Khronos-
approved extension names:

cl_khr_fp64
cl_khr_int64_base_atomics
cl_khr_int64_extended_atomics
cl_khr_fp16
cl_khr_gl_sharing

Table 3.3 OpenCL Device Queries (Continued )
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Putting this all together, Listing 3.3 demonstrates a method for wrapping 
the query capabilities of a device in a straightforward, single call interface.2

Listing 3.3 Example of Querying and Displaying Platform-Specific Information

template<typename T>
void appendBitfield(
  T info, T value, std::string name, std::string & str)
{
   if (info & value) 
   {
      if (str.length() > 0)
      {
         str.append(" | ");
      }
      str.append(name);
   }
}

template <typename T>
class InfoDevice
{
public:
  static void display(
    cl_device_id id, cl_device_info name, std::string str)
    {
      cl_int errNum;
      std::size_t paramValueSize;

      errNum = clGetDeviceInfo(id, name, 0, NULL, &paramValueSize);
      if (errNum != CL_SUCCESS)
      {
         std::cerr << "Failed to find OpenCL device info "
                   << str << "." << std::endl;
         return;
      }

      T * info = (T *)alloca(sizeof(T) * paramValueSize);
      errNum = clGetDeviceInfo(id,name,paramValueSize,info,NULL);
      if (errNum != CL_SUCCESS)
      {

2 For simplicity, the example in Listing 3.3 admits the handling of the case 
when clDeviceInfo() returns an array of values. This is easily handled by 
providing a small array template and specializing the template InfoDevice;
the complete implementation is provided as a source with the book’s 
accompanying examples.
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         std::cerr << "Failed to find OpenCL device info " 
                   << str << "." << std::endl;
         return;
      }

      switch (name)
      {
      case CL_DEVICE_TYPE:
      {
         std::string deviceType;

         appendBitfield<cl_device_type>(

         *(reinterpret_cast<cl_device_type*>(info)),
            CL_DEVICE_TYPE_CPU, "CL_DEVICE_TYPE_CPU", deviceType);

         appendBitfield<cl_device_type>(

         *(reinterpret_cast<cl_device_type*>(info)),
            CL_DEVICE_TYPE_GPU, "CL_DEVICE_TYPE_GPU", deviceType);

         appendBitfield<cl_device_type>(
            *(reinterpret_cast<cl_device_type*>(info)),
            CL_DEVICE_TYPE_ACCELERATOR, 
            "CL_DEVICE_TYPE_ACCELERATOR", 
            deviceType);

         appendBitfield<cl_device_type>(
            *(reinterpret_cast<cl_device_type*>(info)),
            CL_DEVICE_TYPE_DEFAULT, 
            "CL_DEVICE_TYPE_DEFAULT", 
            deviceType);

            std::cout << "\t\t" << str << ":\t" 
                      << deviceType << std::endl;
     }
     break;
     case CL_DEVICE_SINGLE_FP_CONFIG:
     {
        std::string fpType;

        appendBitfield<cl_device_fp_config>(
           *(reinterpret_cast<cl_device_fp_config*>(info)),
           CL_FP_DENORM, "CL_FP_DENORM", fpType); 

         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),
            CL_FP_INF_NAN, "CL_FP_INF_NAN", fpType); 
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         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),
            CL_FP_ROUND_TO_NEAREST, 
            "CL_FP_ROUND_TO_NEAREST", 
            fpType); 

         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),        
            CL_FP_ROUND_TO_ZERO, "CL_FP_ROUND_TO_ZERO", fpType); 

         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),
            CL_FP_ROUND_TO_INF, "CL_FP_ROUND_TO_INF", fpType); 

         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),
            CL_FP_FMA, "CL_FP_FMA", fpType); 

         appendBitfield<cl_device_fp_config>(
            *(reinterpret_cast<cl_device_fp_config*>(info)),
            CL_FP_SOFT_FLOAT, "CL_FP_SOFT_FLOAT", fpType); 

         std::cout << "\t\t" << str << ":\t" << fpType << std::endl;
    }
    break;
    case CL_DEVICE_GLOBAL_MEM_CACHE_TYPE:
    {
      std::string memType;

      appendBitfield<cl_device_mem_cache_type>(
         *(reinterpret_cast<cl_device_mem_cache_type*>(info)), 
         CL_NONE, "CL_NONE", memType); 

      appendBitfield<cl_device_mem_cache_type>(
         *(reinterpret_cast<cl_device_mem_cache_type*>(info)), 
         CL_READ_ONLY_CACHE, "CL_READ_ONLY_CACHE", memType); 

       appendBitfield<cl_device_mem_cache_type>(
          *(reinterpret_cast<cl_device_mem_cache_type*>(info)), 
          CL_READ_WRITE_CACHE, "CL_READ_WRITE_CACHE", memType); 

       std::cout << "\t\t" << str << ":\t" << memType << std::endl;
    }
    break;
    case CL_DEVICE_LOCAL_MEM_TYPE:
    {
       std::string memType;
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       appendBitfield<cl_device_local_mem_type>(
          *(reinterpret_cast<cl_device_local_mem_type*>(info)), 
          CL_GLOBAL, "CL_LOCAL", memType);

       appendBitfield<cl_device_local_mem_type>(
          *(reinterpret_cast<cl_device_local_mem_type*>(info)), 
          CL_GLOBAL, "CL_GLOBAL", memType);

      std::cout << "\t\t" << str << ":\t" << memType << std::endl;
    }
    break;
    case CL_DEVICE_EXECUTION_CAPABILITIES:
    {
      std::string memType;

      appendBitfield<cl_device_exec_capabilities>(
         *(reinterpret_cast<cl_device_exec_capabilities*>(info)), 
         CL_EXEC_KERNEL, "CL_EXEC_KERNEL", memType);

      appendBitfield<cl_device_exec_capabilities>(
         *(reinterpret_cast<cl_device_exec_capabilities*>(info)), 
         CL_EXEC_NATIVE_KERNEL, "CL_EXEC_NATIVE_KERNEL", memType);

      std::cout << "\t\t" << str << ":\t" << memType << std::endl;
    }
    break;
    case CL_DEVICE_QUEUE_PROPERTIES:
    {
      std::string memType;

      appendBitfield<cl_device_exec_capabilities>(
         *(reinterpret_cast<cl_device_exec_capabilities*>(info)), 
         CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,
         "CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE", memType);

      appendBitfield<cl_device_exec_capabilities>(
         *(reinterpret_cast<cl_device_exec_capabilities*>(info)), 
         CL_QUEUE_PROFILING_ENABLE, "CL_QUEUE_PROFILING_ENABLE", 
         memType);

      std::cout << "\t\t" << str << ":\t" << memType << std::endl;
    }
    break;
    default:
      std::cout << "\t\t" << str << ":\t" << *info << std::endl;
      break;
    }
  }
};
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The template class InfoDevice does the hard work, proving the single 
public method, display(), to retrieve and display the requested informa-
tion. The earlier example, querying a device’s maximum compute units, 
can be recast as follows:

InfoDevice<cl_uint>::display(
  deviceID, 
  CL_DEVICE_MAX_COMPUTE_UNITS, 
  "DEVICE has max compute units");

OpenCL Contexts
Contexts are the heart of any OpenCL application. Contexts provide 
a container for associated devices, memory objects (e.g., buffers and 
images), and command-queues (providing an interface between the con-
text and an individual device). It is the context that drives communica-
tion with, and between, specific devices, and OpenCL defines its memory 
model in terms of these. For example, a memory object is allocated with 
a context but can be updated by a particular device, and OpenCL’s mem-
ory guarantees that all devices, within the same context, will see these 
updates at well-defined synchronization points.

It is important to realize that while these stages often form the foundation 
of any OpenCL program, there is no reason not to use multiple contexts, 
each created from a different platform, and distribute work across the 
contexts and associated devices. The difference is that OpenCL’s memory 
model is not lifted across devices, and this means that corresponding 
memory objects cannot be shared by different contexts, created either 
from the same or from different platforms. The implication of this is that 
any data that is to be shared across contexts must be manually moved 
between contexts. This concept is captured in Figure 3.1.

Unlike platforms and devices, often queried at the beginning of the 
program or library, a context is something you may want to update as the 
program progresses, allocating or deleting memory objects and so on. In 
general, an application’s OpenCL usage looks similar to this:

1. Query which platforms are present.

2. Query the set of devices supported by each platform:

a.  Choose to select devices, using clGetDeviceInfo(), on specific 
capabilities.
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3. Create contexts from a selection of devices (each context must be cre-
ated with devices from a single platform); then with a context you can

a. Create one or more command-queues

b. Create programs to run on one or more associated devices

c. Create a kernel from those programs

d.  Allocate memory buffers and images, either on the host or on the 
device(s)

e.  Write or copy data to and from a particular device

f.  Submit kernels (setting the appropriate arguments) to a command-
queue for execution

Platform 1 Platform 2

CPU GPU GPU

Context Context

Platform 1

Figure 3.1 Platform, devices, and contexts

Given a platform and a list of associated devices, an OpenCL context is 
created with the command clCreateContext(), and with a platform 
and device type, clCreateContextFromType() can be used. These two 
functions are declared as

cl_context clCreateContext (
   const cl_context_properties *properties,
   cl_uint num_devices,
   const cl_device_id *devices,
   void (CL_CALLBACK *pfn_notify)
      (const char *errinfo,

      const void *private_info,
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      size_t cb,

      void *user_data),
   void *user_data,
   cl_int *errcode_ret)

cl_context
clCreateContextFromType (
   const cl_context_properties *properties,
   cl_device_type device_type,
   void (CL_CALLBACK *pfn_notify)
      (const char *errinfo,

      const void *private_info, 

      size_t cb,

      void *user_data),
   void *user_data,
   cl_int *errcode_ret)

This creates an OpenCL context. The allowable values for the argument 
properties are described in Table 3.4. 

The list of properties is limited to the platform with which the context 
is associated. Other context properties are defined with certain OpenCL 
extensions. See Chapters 10 and 11 on sharing with graphics APIs, for 
examples. The arguments devices and device_type allow the set of 
devices to be specified explicitly or restricted to a certain type of device, 
respectively. The arguments pfn_notify and user_data are used 
together to define a callback that is called to report information on errors 
that occur during the lifetime of the context, with user_data being 
passed as the last argument to the callback. 

The following example shows that given a platform, you can query for 
the set of GPU devices and create a context, if one or more devices are 
available: 

Table 3.4 Properties Supported by clCreateContext

cl_context_properties Property Value Description

CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use
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cl_platform pform;
size_t num;
cl_device_id * devices;
cl_context context;
size_t size;

clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &num);

if (num > 0) 
{
  devices = (cl_device_id *)alloca(num);
  clGetDeviceIDs(
     platform,
     CL_DEVICE_TYPE_GPU, 
     num, 
     &devices[0], 
     NULL);
}

cl_context_properties properties [] =
{
  CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0
};

context = clCreateContext(
  properties, 
  size / sizeof(cl_device_id), 
  devices, 
  NULL, 
  NULL, 
  NULL);

Given a context, you can query a variety of properties with the command

cl_int clGetContextInfo (cl_context context,
                         cl_context_info param_name,
                         size_t param_value_size,
                         void * param_value,
                         size_t * param_value_size_ret)

This command returns specific information about the OpenCL context. 
The allowable values for param_name, defining the set of valid queries, 
are described in Table 3.5.
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Table 3.5 Context Information Queries

cl_context_info Return Type Description

CL_CONTEXT_REFERENCE_
COUNT

cl_uint Returns the context reference count.

CL_CONTEXT_NUM_DEVICES cl_uint Returns the number of devices in context.

CL_CONTEXT_DEVICES cl_device_id[] Returns the list of devices in context.

CL_CONTEXT_PROPERTIES cl_context_properties[] Returns the properties argument specified in 
clCreateContext or clCreateContextFromType.

If the properties argument specified in 
clCreateContext or clCreateContextFrom-
Type used to create context is not NULL, the 
implementation must return the values specified in 
the properties argument.

If the properties argument specified in 
clCreateContext or clCreateContextFrom-
Type used to create context is NULL, the imple-
mentation may return either a param_value_
size_ret of 0 (that is, there is no context property 
value to be returned) or a context property value of 
0 (where 0 is used to terminate the context proper-
ties list) in the memory that param_value
points to. 
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Following is an example of how you can query a context, using 
clGetContextInfo(), to obtain the list of associated devices:

cl_uint numPlatforms;
cl_platform_id * platformIDs;
cl_context context = NULL;
size_t size;

clGetPlatformIDs(0, NULL, &numPlatforms);
platformIDs = (cl_platform_id *)alloca(
sizeof(cl_platform_id) * numPlatforms);

clGetPlatformIDs(numPlatforms, platformIDs, NULL);

cl_context_properties properties[] =
{
  CL_CONTEXT_PLATFORM, (cl_context_properties)platformIDs[0], 0
};

context = clCreateContextFromType(
  properties, CL_DEVICE_TYPE_ALL, NULL, NULL, NULL);

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);

cl_device_id * devices = (cl_device_id*)alloca(
  sizeof(cl_device_id) * size);

clGetContextInfo(context,CL_CONTEXT_DEVICES, size, devices, NULL);

for (size_t i = 0; i < size / sizeof(cl_device_id); i++) 
{
  cl_device_type type;

  clGetDeviceInfo(
    devices[i],CL_DEVICE_TYPE, sizeof(cl_device_type), &type, NULL);

  switch (type)
  {
    case CL_DEVICE_TYPE_GPU:
      std::cout << "CL_DEVICE_TYPE_GPU" << std::endl;
break;
    case CL_DEVICE_TYPE_CPU:
      std::cout << "CL_DEVICE_TYPE_CPU" << std::endl;
break;
    case CL_DEVICE_TYPE_ACCELERATOR:
      std::cout << "CL_DEVICE_TYPE_ACCELERATOR" << std::endl;
break;
  }
}
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On ATI Stream SDK this code displays as follows for a machine with an 
Intel i7 CPU device and ATI Radeon 5780:

CL_DEVICE_TYPE_CPU
CL_DEVICE_TYPE_GPU

Like all OpenCL objects, contexts are reference-counted and the number 
of references can be incremented and decremented with the following 
two commands:3

cl_int clRetainContext (cl_context context)

cl_int clReleaseContext(cl_context context)

These increment and decrement, respectively, a context’s reference count.

To conclude this chapter, we build a simple example that performs a 
convolution of an input signal. Convolution is a common operation that 
appears in many signal-processing applications and in its simplest form 
combines one signal (input signal) with another (mask) to produce a 
final output (output signal). Convolution is an excellent application for 
OpenCL; it shows a good amount of data parallelism for large inputs and 
has good data locality that enables use of OpenCL’s sharing constructs. 

Figure 3.2 shows the process of applying a 3×3 mask to an 8×8 input sig-
nal, resulting in a 6×6 output signal.4 The algorithm is straightforward; 
each sample of the final signal is generated by 

1. Placing the mask over the input signal, centered at the corresponding 
input location

2. Multiplying the input values by the corresponding element in the 
mask

3. Accumulating the results of step 2 into a single sum, which is written 
to the corresponding output location

3 The exception to this rule is for OpenCL platforms that do not have 
corresponding retain/release calls.

4 For simplicity, edge cases are not considered; a more realistic convolution 
example can be found in Chapter 11.
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For each location in the output signal the kernel convolve, given in List-
ing 3.4, performs the preceding steps; that is, each output result can be 
computed in parallel.

Listing 3.4 Using Platform, Devices, and Contexts—Simple Convolution Kernel

Convolution.cl

__kernel void convolve(
    const __global  uint * const input,
    __constant uint * const  mask,
    __global  uint * const output,
    const int inputWidth,
    const int maskWidth)

3 1 1 4 8 2 1 3

4 2 1 1 2 1 2 3

4 4 4 4 3 2 2 2

9 8 3 8 9 0 0 0

9 3 3 9 0 0 0 0

0 9 0 8 0 0 0 0

3 0 8 8 9 4 4 4

5 9 8 1 8 1 1 1

1 1 1

1 0 1

1 1 1

1 1 4 8 2 1 3

1 1 2 1 2 3

4 3 2 2 2

9 8 3 8 9 0 0 0

9 3 3 0 0

0 9 0 0 0

3 0 8 4 4

5 9 8 1 8 1 1 1

1

1 0

1 1 1

1 1 1

1 0 1

1 1 1

22 - -19 - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - 38

Mask

Output signal

Input signal

Figure 3.2 Convolution of an 8×8 signal with a 3×3 filter, resulting in a 6×6 
signal
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{
    const int x = get_global_id(0);
    const int y = get_global_id(1);

    uint sum = 0;
    for (int r = 0; r < maskWidth; r++)
    {
        const int idxIntmp = (y + r) * inputWidth + x;

        for (int c = 0; c < maskWidth; c++)
        {
            sum += mask[(r * maskWidth)  + c] * input[idxIntmp + c];
        }
    } 

    output[y * get_global_size(0) + x] = sum;
}

Listing 3.5 contains the host code for our simple example. The start of 
the main function queries the list of available platforms, then it iterates 
through the list of platforms using clGetDeviceIDs() to request the 
set of CPU device types supported by the platform, and in the case that it 
finds at least one, the loop is terminated. In the case that no CPU device 
is found, the program simply exits; otherwise a context is created with the 
list of devices, and then the kernel source is loaded from disk and com-
piled and a kernel object is created. The input/output buffers are then cre-
ated, and finally the kernel arguments are set and the kernel is executed. 
The program completes by reading the outputted signal and outputting 
the result to stdout.

Listing 3.5 Example of Using Platform, Devices, and Contexts—Simple 
Convolution 

Convolution.cpp

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>

#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
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// Constants
const unsigned int inputSignalWidth  = 8;
const unsigned int inputSignalHeight = 8;

cl_uint inputSignal[inputSignalWidth][inputSignalHeight] =
{
    {3, 1, 1, 4, 8, 2, 1, 3},
    {4, 2, 1, 1, 2, 1, 2, 3},
    {4, 4, 4, 4, 3, 2, 2, 2},
    {9, 8, 3, 8, 9, 0, 0, 0},
    {9, 3, 3, 9, 0, 0, 0, 0},
    {0, 9, 0, 8, 0, 0, 0, 0},
    {3, 0, 8, 8, 9, 4, 4, 4},
    {5, 9, 8, 1, 8, 1, 1, 1}
};

const unsigned int outputSignalWidth  = 6;
const unsigned int outputSignalHeight = 6;

cl_uint outputSignal[outputSignalWidth][outputSignalHeight];

const unsigned int maskWidth  = 3;
const unsigned int maskHeight = 3;

cl_uint mask[maskWidth][maskHeight] =
{
    {1, 1, 1}, {1, 0, 1}, {1, 1, 1},
};

inline void checkErr(cl_int err, const char * name)
{
    if (err != CL_SUCCESS) 
    {
        std::cerr << "ERROR: " << name 
                  << " (" << err << ")" << std::endl;
        exit(EXIT_FAILURE);
    }
}

void CL_CALLBACK contextCallback(
    const char * errInfo,
    const void * private_info,
    size_t cb,
    void * user_data)
{
    std::cout << "Error occurred during context use: " 
              << errInfo << std::endl;
    exit(EXIT_FAILURE);
}
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int main(int argc, char** argv)
{
    cl_int errNum;
    cl_uint numPlatforms;
    cl_uint numDevices;
    cl_platform_id * platformIDs;
    cl_device_id * deviceIDs;
    cl_context context = NULL;
    cl_command_queue queue;
    cl_program program;
    cl_kernel kernel;
    cl_mem inputSignalBuffer;
    cl_mem outputSignalBuffer;
    cl_mem maskBuffer;

    errNum = clGetPlatformIDs(0, NULL, &numPlatforms);
    checkErr( 
       (errNum != CL_SUCCESS) ? errNum : 
             (numPlatforms <= 0 ? -1 : CL_SUCCESS), 
                                  "clGetPlatformIDs"); 

    platformIDs = (cl_platform_id *)alloca(
            sizeof(cl_platform_id) * numPlatforms);

    errNum = clGetPlatformIDs(numPlatforms, platformIDs, NULL);
    checkErr( 
         (errNum != CL_SUCCESS) ? errNum : 
         (numPlatforms <= 0 ? -1 : CL_SUCCESS), "clGetPlatformIDs");

    deviceIDs = NULL;
    cl_uint i;
    for (i = 0; i < numPlatforms; i++)
    {
       errNum = clGetDeviceIDs(
            platformIDs[i], 
            CL_DEVICE_TYPE_CPU, 
            0, 
            NULL, 
            &numDevices);
       if (errNum != CL_SUCCESS && errNum != CL_DEVICE_NOT_FOUND)
       {
          checkErr(errNum, "clGetDeviceIDs");
       }
       else if (numDevices > 0) 
       {
          deviceIDs = (cl_device_id *)alloca(
             sizeof(cl_device_id) * numDevices);
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          errNum = clGetDeviceIDs(
            platformIDs[i], CL_DEVICE_TYPE_CPU, numDevices, 
            &deviceIDs[0], NULL);
          checkErr(errNum, "clGetDeviceIDs");
          break;
       }
    }

    if (deviceIDs == NULL) {
       std::cout << "No CPU device found" << std::endl;
       exit(-1);
    }

    cl_context_properties contextProperties[] =
    {
        CL_CONTEXT_PLATFORM,(cl_context_properties)platformIDs[i], 0
    };
    context = clCreateContext(
       contextProperties, numDevices, deviceIDs, 
       &contextCallback, NULL, &errNum);
    checkErr(errNum, "clCreateContext");

    std::ifstream srcFile("Convolution.cl");
    checkErr(srcFile.is_open() ? CL_SUCCESS : -1, 
             "reading Convolution.cl");

    std::string srcProg(
        std::istreambuf_iterator<char>(srcFile),
        (std::istreambuf_iterator<char>()));

    const char * src = srcProg.c_str();
    size_t length = srcProg.length();

    program = clCreateProgramWithSource(
       context, 1, &src, &length, &errNum);
    checkErr(errNum, "clCreateProgramWithSource");

    errNum = clBuildProgram(
       program, numDevices, deviceIDs, NULL, NULL, NULL);
    checkErr(errNum, "clBuildProgram");

    kernel = clCreateKernel(program, "convolve", &errNum);
    checkErr(errNum, "clCreateKernel");

    inputSignalBuffer = clCreateBuffer(
       context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
       sizeof(cl_uint) * inputSignalHeight * inputSignalWidth,
       static_cast<void *>(inputSignal), &errNum);
    checkErr(errNum, "clCreateBuffer(inputSignal)");
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    maskBuffer = clCreateBuffer(
       context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
       sizeof(cl_uint) * maskHeight * maskWidth,
       static_cast<void *>(mask), &errNum);
    checkErr(errNum, "clCreateBuffer(mask)");

    outputSignalBuffer = clCreateBuffer(
       context, CL_MEM_WRITE_ONLY,
       sizeof(cl_uint) * outputSignalHeight * outputSignalWidth,
       NULL, &errNum);
    checkErr(errNum, "clCreateBuffer(outputSignal)");

    queue = clCreateCommandQueue(
       context, deviceIDs[0], 0, &errNum);
    checkErr(errNum, "clCreateCommandQueue");

    errNum  = clSetKernelArg(
      kernel, 0, sizeof(cl_mem), &inputSignalBuffer);
    errNum |= clSetKernelArg(
       kernel, 1, sizeof(cl_mem), &maskBuffer);
    errNum |= clSetKernelArg(
       kernel, 2, sizeof(cl_mem), &outputSignalBuffer);
    errNum |= clSetKernelArg(
       kernel, 3, sizeof(cl_uint), &inputSignalWidth);
    errNum |= clSetKernelArg(
       kernel, 4, sizeof(cl_uint), &maskWidth);
    checkErr(errNum, "clSetKernelArg");

    const size_t globalWorkSize[1] = 
       { outputSignalWidth * outputSignalHeight };
    const size_t localWorkSize[1]  = { 1 };

    errNum = clEnqueueNDRangeKernel(
       queue,
       kernel,
       1,
       NULL,
       globalWorkSize,
       localWorkSize,
       0, 
       NULL, 
       NULL);
    checkErr(errNum, "clEnqueueNDRangeKernel");

    errNum = clEnqueueReadBuffer(
       queue, outputSignalBuffer, CL_TRUE, 0, 
       sizeof(cl_uint) * outputSignalHeight * outputSignalHeight, 
       outputSignal, 0, NULL, NULL);
    checkErr(errNum, "clEnqueueReadBuffer");
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    for (int y = 0; y < outputSignalHeight; y++)
    {
       for (int x = 0; x < outputSignalWidth; x++)
       {
          std::cout << outputSignal[x][y] << " ";
       }
      std::cout << std::endl;
  }

  return 0;
}
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Chapter 4

Programming with OpenCL C 

The OpenCL C programming language is used to create programs that 
describe data-parallel kernels and tasks that can be executed on one or 
more heterogeneous devices such as CPUs, GPUs, and other processors 
referred to as accelerators such as DSPs and the Cell Broadband Engine 
(B.E.) processor. An OpenCL program is similar to a dynamic library, and 
an OpenCL kernel is similar to an exported function from the dynamic 
library. Applications directly call the functions exported by a dynamic 
library from their code. Applications, however, cannot call an OpenCL 
kernel directly but instead queue the execution of the kernel to a com-
mand-queue created for a device. The kernel is executed asynchronously 
with the application code running on the host CPU.

OpenCL C is based on the ISO/IEC 9899:1999 C language specification 
(referred to in short as C99) with some restrictions and specific extensions 
to the language for parallelism. In this chapter, we describe how to write 
data-parallel kernels using OpenCL C and cover the features supported by 
OpenCL C. 

Writing a Data-Parallel Kernel Using OpenCL C
As described in Chapter 1, data parallelism in OpenCL is expressed as 
an N-dimensional computation domain, where N = 1, 2, or 3. The N-D 
domain defines the total number of work-items that can execute in paral-
lel. Let’s look at how a data-parallel kernel would be written in OpenCL C 
by taking a simple example of summing two arrays of floats. A sequential 
version of this code would perform the sum by summing individual ele-
ments of both arrays inside a for loop: 

void
scalar_add (int n, const float *a, const float *b, float *result)
{
    int i;
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    for (i=0; i<n; i++)
        result[i] = a[i] + b[i];
}

A data-parallel version of the code in OpenCL C would look like this:

kernel void
scalar_add (global const float *a, 

global const float *b, 
global float *result)

{
    int id = get_global_id(0);
    result[id] = a[id] + b[id];
}

The scalar_add function declaration uses the kernel qualifier to indi-
cate that this is an OpenCL C kernel. Note that the scalar_add kernel 
includes only the code to compute the sum of each individual element, 
aka the inner loop. The N-D domain will be a one-dimensional domain 
set to n. The kernel is executed for each of the n work-items to produce the 
sum of arrays a and b. In order for this to work, each executing work-item 
needs to know which individual elements from arrays a and b need to 
be summed. This must be a unique value for each work-item and should 
be derived from the N-D domain specified when queuing the kernel for 
execution. The get_global_id(0) returns the one-dimensional global 
ID for each work-item. Ignore the global qualifiers specified in the kernel 
for now; they will be discussed later in this chapter.

Figure 4.1 shows how get_global_id can be used to identify a unique 
work-item from the list of work-items executing a kernel.

7 9 13 1 31 3 0 76 33 5 23 11 51 77 60 8

+

34 2 0 13 18 22 6 22 47 17 56 41 29 11 9 82

=

41 11 13 14 49 25 6 98 80 22 79 52 80 88 69 90

get_global_id(0) = 7

Figure 4.1 Mapping get_global_id to a work-item
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The OpenCL C language with examples is described in depth in the sec-
tions that follow. The language is derived from C99 with restrictions that 
are described at the end of this chapter. 

OpenCL C also adds the following features to C99:

• Vector data types. A number of OpenCL devices such as Intel SSE, 
AltiVec for POWER and Cell, and ARM NEON support a vector 
instruction set. This vector instruction set is accessed in C/C++ code 
through built-in functions (some of which may be device-specific) or 
device-specific assembly instructions. In OpenCL C, vector data types 
can be used in the same way scalar types are used in C. This makes it 
much easier for developers to write vector code because similar opera-
tors can be used for both vector and scalar data types. It also makes 
it easy to write portable vector code because the OpenCL compiler is 
now responsible for mapping the vector operations in OpenCL C to 
the appropriate vector ISA for a device. Vectorizing code also helps 
improve memory bandwidth because of regular memory accesses and 
better coalescing of these memory accesses.

• Address space qualifiers. OpenCL devices such as GPUs implement a 
memory hierarchy. The address space qualifiers are used to identify a 
specific memory region in the hierarchy.

• Additions to the language for parallelism. These include support for 
work-items, work-groups, and synchronization between work-items in 
a work-group.

• Images. OpenCL C adds image and sampler data types and built-in 
functions to read and write images.

• An extensive set of built-in functions such as math, integer, geo-
metric, and relational functions. These are described in detail in 
Chapter 5.

Scalar Data Types
The C99 scalar data types supported by OpenCL C are described in Table 
4.1. Unlike C, OpenCL C describes the sizes, that is, the exact number of 
bits for the integer and floating-point data types.
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Table 4.1 Built-In Scalar Data Types

Type Description

bool A conditional data type that is either true or false. The value 
true expands to the integer constant 1, and the value false
expands to the integer constant 0.

char A signed two’s complement 8-bit integer.

unsigned char, uchar An unsigned 8-bit integer.

short A signed two’s complement 16-bit integer.

unsigned short, ushort An unsigned 16-bit integer.

int A signed two’s complement 32-bit integer.

unsigned int, uint An unsigned 32-bit integer.

long A signed two’s complement 64-bit integer.

unsigned long, ulong An unsigned 64-bit integer.

float A 32-bit floating-point. The float data type must conform to 
the IEEE 754 single-precision storage format.

double A 64-bit floating-point. The double data type must conform 
to the IEEE 754 double-precision storage format. This is an 
optional format and is available only if the double-precision 
extension (cl_khr_fp64) is supported by the device.

half A 16-bit floating-point. The half data type must conform to 
the IEEE 754-2008 half-precision storage format.

size_t The unsigned integer type of the result of the sizeof opera-
tor. This is a 32-bit unsigned integer if the address space of the 
device is 32 bits and is a 64-bit unsigned integer if the address 
space of the device is 64 bits.

ptrdiff_t A signed integer type that is the result of subtracting two 
pointers. This is a 32-bit signed integer if the address space of 
the device is 32 bits and is a 64-bit signed integer if the 
address space of the device is 64 bits.

intptr_t A signed integer type with the property that any valid pointer 
to void can be converted to this type, then converted back to 
a pointer to void, and the result will compare equal to the 
original pointer.



ptg

Scalar Data Types 101

The half Data Type

The half data type must be IEEE 754-2008-compliant. half numbers 
have 1 sign bit, 5 exponent bits, and 10 mantissa bits. The interpreta-
tion of the sign, exponent, and mantissa is analogous to that of IEEE 754 
floating-point numbers. The exponent bias is 15. The half data type must 
represent finite and normal numbers, denormalized numbers, infinities, 
and NaN. Denormalized numbers for the half data type, which may be 
generated when converting a float to a half using the built-in function 
vstore_half and converting a half to a float using the built-in func-
tion vload_half, cannot be flushed to zero. 

Conversions from float to half correctly round the mantissa to 11 bits 
of precision. Conversions from half to float are lossless; all half num-
bers are exactly representable as float values.

The half data type can be used only to declare a pointer to a buffer that 
contains half values. A few valid examples are given here:

void
bar(global half *p)
{
    ...
}

void
foo(global half *pg, local half *pl)
{
    global half *ptr;
    int offset;

    ptr = pg + offset;
    bar(ptr);
}

Type Description

uintptr_t An unsigned integer type with the property that any valid 
pointer to void can be converted to this type, then converted 
back to a pointer to void, and the result will compare equal to 
the original pointer.

void The void type constitutes an empty set of values; it is an 
incomplete type that cannot be completed.

Table 4.1 Built-In Scalar Data Types (Continued )
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Following is an example that is not a valid usage of the half type:

half a;
half a[100];

half *p;
a = *p;    // not allowed. must use vload_half function

Loads from a pointer to a half and stores to a pointer to a half can be 
performed using the vload_half, vload_halfn, vloada_halfn and 
vstore_half, vstore_halfn, and vstorea_halfn functions, respec-
tively. The load functions read scalar or vector half values from memory 
and convert them to a scalar or vector float value. The store functions 
take a scalar or vector float value as input, convert it to a half scalar or 
vector value (with appropriate rounding mode), and write the half scalar 
or vector value to memory.

Vector Data Types
For the scalar integer and floating-point data types described in Table 
4.1, OpenCL C adds support for vector data types. The vector data type is 
defined with the type name, that is, char, uchar, short, ushort, int,
uint, float, long, or ulong followed by a literal value n that defines the 
number of elements in the vector. Supported values of n are 2, 3, 4, 8, and 
16 for all vector data types. Optionally, vector data types are also defined 
for double and half. These are available only if the device supports the 
double-precision and half-precision extensions. The supported vector data 
types are described in Table 4.2.

Variables declared to be a scalar or vector data type are always aligned to 
the size of the data type used in bytes. Built-in data types must be aligned 
to a power of 2 bytes in size. A built-in data type that is not a power of 2 
bytes in size must be aligned to the next-larger power of 2. This rule does 
not apply to structs or unions. 

For example, a float4 variable will be aligned to a 16-byte boundary and 
a char2 variable will be aligned to a 2-byte boundary. For 3-component 
vector data types, the size of the data type is 4 × sizeof(component). 
This means that a 3-component vector data type will be aligned to a 4 ×
sizeof(component) boundary. 

The OpenCL compiler is responsible for aligning data items appropriately 
as required by the data type. The only exception is for an argument to a 
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kernel function that is declared to be a pointer to a data type. For such 
functions, the compiler can assume that the pointee is always appropri-
ately aligned as required by the data type. 

For application convenience and to ensure that the data store is appropri-
ately aligned, the data types listed in Table 4.3 are made available to the 
application.

Table 4.2 Built-In Vector Data Types

Type Description

charn A vector of n 8-bit signed integer values

ucharn A vector of n 8-bit unsigned integer values

shortn A vector of n 16-bit signed integer values

ushortn A vector of n 16-bit unsigned integer values

intn A vector of n 32-bit signed integer values

uintn A vector of n 32-bit unsigned integer values

longn A vector of n 64-bit signed integer values

ulongn A vector of n 64-bit unsigned integer values

floatn A vector of n 32-bit floating-point values

doublen A vector of n 64-bit floating-point values

halfn A vector of n 16-bit floating-point values

Table 4.3 Application Data Types

Type in OpenCL Language API Type for Application

char cl_char

uchar cl_uchar

short cl_short

ushort cl_ushort

int cl_int

continues
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Vector Literals

Vector literals can be used to create vectors from a list of scalars, vectors, 
or a combination of scalar and vectors. A vector literal can be used either 
as a vector initializer or as a primary expression. A vector literal cannot be 
used as an l-value. 

A vector literal is written as a parenthesized vector type followed by a 
parenthesized comma-delimited list of parameters. A vector literal oper-
ates as an overloaded function. The forms of the function that are avail-
able are the set of possible argument lists for which all arguments have 

Type in OpenCL Language API Type for Application

uint cl_uint

long cl_long

ulong cl_ulong

float cl_float

double cl_double

half cl_half

charn cl_charn

ucharn cl_ucharn

shortn cl_shortn

ushortn cl_ushortn

intn cl_intn

uintn cl_uintn

longn cl_longn

ulongn cl_ulongn

floatn cl_floatn

doublen cl_doublen

halfn cl_halfn

Table 4.3 Application Data Types (Continued )
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the same element type as the result vector, and the total number of 
elements is equal to the number of elements in the result vector. In addi-
tion, a form with a single scalar of the same type as the element type of 
the vector is available. For example, the following forms are available for 
float4:

(float4)( float, float, float, float )
(float4)( float2, float, float )
(float4)( float, float2, float )
(float4)( float, float, float2 )
(float4)( float2, float2 )
(float4)( float3, float )
(float4)( float, float3 )
(float4)( float )

Operands are evaluated by standard rules for function evaluation, except 
that no implicit scalar widening occurs. The operands are assigned to 
their respective positions in the result vector as they appear in mem-
ory order. That is, the first element of the first operand is assigned to 
result.x, the second element of the first operand (or the first element 
of the second operand if the first operand was a scalar) is assigned to 
result.y, and so on. If the operand is a scalar, the operand is replicated 
across all lanes of the result vector.

The following example shows a vector float4 created from a list of 
scalars:

float4  f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

The following example shows a vector uint4 created from a scalar, which 
is replicated across the components of the vector:

uint4   u = (uint4)(1); // u will be (1, 1, 1, 1)

The following examples show more complex combinations of a vector 
being created using a scalar and smaller vector types:

float4  f = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
float4  f = (float4)(1.0f, (float2)(2.0f, 3.0f), 4.0f);

The following examples describe how not to create vector literals. All of 
these examples should result in a compilation error.

float4  f = (float4)(1.0f, 2.0f);
float4  f = (float2)(1.0f, 2.0f);
float4  f = (float4)(1.0f, (float2)(2.0f, 3.0f));
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Vector Components

The components of vector data types with 1 to 4 components (aka ele-
ments) can be addressed as <vector>.xyzw. Table 4.4 lists the compo-
nents that can be accessed for various vector types.

Table 4.4 Accessing Vector Components

Vector Data Types Accessible Components 

char2, uchar2, short2, ushort2, int2, uint2, long2,
ulong2, float2

.xy

char3, uchar3, short3, ushort3, int3, uint3, long3,
ulong3, float3

.xyz

char4, uchar4, short4, ushort4, int4, uint4, long4,
ulong4, float4

.xyzw

double2, half2 .xy

double3, half3 .xyz

double4, half4 .xyzw

Accessing components beyond those declared for the vector type is an 
error. The following describes legal and illegal examples of accessing vec-
tor components:

float2 pos;
pos.x = 1.0f; // is legal
pos.z = 1.0f; // is illegal

float3 pos;
pos.z = 1.0f; // is legal
pos.w = 1.0f; // is illegal

The component selection syntax allows multiple components to be 
selected by appending their names after the period (.). A few examples 
that show how to use the component selection syntax are given here:

float4 c;

c.xyzw = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
c.z = 1.0f;
c.xy = (float2)(3.0f, 4.0f);
c.xyz = (float3)(3.0f, 4.0f, 5.0f);
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The component selection syntax also allows components to be permuted 
or replicated as shown in the following examples:

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)
float4 dup = pox.xxyy;  // dup = (1.0f, 1.0f, 2.0f, 2.0f)

Vector components can also be accessed using a numeric index to refer to 
the appropriate elements in the vector. The numeric indices that can be 
used are listed in Table 4.5.

Table 4.5 Numeric Indices for Built-In Vector Data Types

Vector Components Usable Numeric Indices 

2-component 0, 1

3-component 0, 1, 2

4-component 0, 1, 2, 3

8-component 0, 1, 2, 3, 4, 5, 6, 7

16-component 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9,

a, A , b, B, c, C, d, D, e, E, f, F

All numeric indices must be preceded by the letter s or S. In the follow-
ing example f.s0 refers to the first element of the float8 variable f and 
f.s7 refers to the eighth element of the float8 variable f:

float8 f

In the following example x.sa (or x.sA) refers to the eleventh element of 
the float16 variable x and x.sf (or x.sF) refers to the sixteenth element 
of the float16 variable x:

float16 x

The numeric indices cannot be intermixed with the .xyzw notation. For 
example:

float4 f;
float4 v_A = f.xs123;  // is illegal
float4 v_B = f.s012w;  // is illegal

Vector data types can use the .lo (or .odd) and .hi (or .even) suffixes 
to get smaller vector types or to combine smaller vector types into a larger 
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vector type. Multiple levels of .lo (or .odd) and .hi (or .even) suffixes 
can be used until they refer to a scalar type.

The .lo suffix refers to the lower half of a given vector. The .hi suffix 
refers to the upper half of a given vector. The .odd suffix refers to the odd 
elements of a given vector. The .even suffix refers to the even elements of 
a given vector. Some examples to illustrate this concept are given here:

float4 vf;

float2 low = vf.lo;    // returns vf.xy
float2 high = vf.hi;   // returns vf.zw
float x = low.low;     // returns low.x
float y = low.hi;      // returns low.y

float2 odd = vf.odd;   // returns vf.yw
float2 even = vf.even; // returns vf.xz

For a 3-component vector, the suffixes .lo (or .odd) and .hi (or .even)
operate as if the 3-component vector were a 4-component vector with the 
value in the w component undefined.

Other Data Types
The other data types supported by OpenCL C are described in Table 4.6.

Table 4.6 Other Built-In Data Types

Type Description

image2d_t A 2D image type.

image3d_t A 3D image type.

sampler_t An image sampler type.

event_t An event type. These are used by built-in functions 
that perform async copies from global to local memory 
and vice versa. Each async copy operation returns an 
event and takes an event to wait for that identifies a 
previous async copy operation.
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There are a few restrictions on the use of image and sampler types:

• The image and samplers types are defined only if the device supports 
images.

• Image and sampler types cannot be declared as arrays. Here are a 
couple of examples that show these illegal use cases:

kernel void
foo(image2d_t imgA[10]) // error. images cannot be declared 
                        //        as arrays
{
    image2d_t imgB[4];  // error. images cannot be declared 
                        //        as arrays
    ...
}

kernel void
foo(sampler_t smpA[10]) // error. samplers cannot be declared 
                        //        as arrays
{
    sampler_t smpB[4];  // error. samplers cannot be declared 
                        //        as arrays
    ...
}

• The image2d_t, image3d_t, and sampler_t data types cannot be 
declared in a struct.

• Variables cannot be declared to be pointers of image2d_t,
image3d_t, and sampler_t data types.

Derived Types
The C99 derived types (arrays, structs, unions, and pointers) constructed 
from the built-in data types described in Tables 4.1 and 4.2 are supported. 
There are a few restrictions on the use of derived types:

• The struct type cannot contain any pointers if the struct or pointer to 
a struct is used as an argument type to a kernel function. For example, 
the following use case is invalid: 

typedef struct {
    int  x;
    global float *f;
} mystruct_t;
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kernel void
foo(global mystruct_t *p) // error. mystruct_t contains 
                          //        a pointer
{
    ...
}

• The struct type can contain pointers only if the struct or pointer 
to a struct is used as an argument type to a non-kernel function or 
declared as a variable inside a kernel or non-kernel function. For 
example, the following use case is valid:

void
my_func(mystruct_t *p)
{
    ...
}

kernel void
foo(global int *p1, global float *p2)
{
    mystruct_t s;

    s.x = p1[get_global_id(0)];
    s.f = p2;
    my_func(&s);
}

Implicit Type Conversions
Implicit type conversion is an automatic type conversion done by the 
compiler whenever data from different types is intermixed. Implicit 
conversions of scalar built-in types defined in Table 4.1 (except void,
double,1 and half2) are supported. When an implicit conversion is done, 
it is not just a reinterpretation of the expression’s value but a conversion 
of that value to an equivalent value in the new type.

Consider the following example:

float f = 3;      // implicit conversion to float value 3.0
int   i = 5.23f;  // implicit conversion to integer value 5

1 Unless the double-precision extension (cl_khr_fp64) is supported by the 
device.

2 Unless the half-precision extension (cl_khr_fp16) is supported by the device.
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In this example, the value 3 is converted to a float value 3.0f and then 
assigned to f. The value 5.23f is converted to an int value 5 and then 
assigned to i. In the second example, the fractional part of the float
value is dropped because integers cannot support fractional values; this is 
an example of an unsafe type conversion.

Warning  Note that some type conversions are inherently unsafe, and 
if the compiler can detect that an unsafe conversion is being 
implicitly requested, it will issue a warning. 

Implicit conversions for pointer types follow the rules described in the 
C99 specification. Implicit conversions between built-in vector data types 
are disallowed. For example:

float4 f;
int4   i;

f = i;  // illegal implicit conversion between vector data types

There are graphics shading languages such as OpenGL Shading Language 
(GLSL) and the DirectX Shading Language (HLSL) that do allow implicit 
conversions between vector types. However, prior art for vector casts in C 
doesn’t support conversion casts. The AltiVec Technology Programming Inter-
face Manual (www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.
pdf?fsrch=1), Section 2.4.6, describes the function of casts between vector 
types. The casts are conversion-free. Thus, any conforming AltiVec com-
piler has this behavior. Examples include XL C, GCC, MrC, Metrowerks, 
and Green Hills. IBM’s Cell SPE C language extension (C/C++ Language 
Extensions for Cell Broadband Engine Architecture; see Section 1.4.5) has 
the same behavior. GCC and ICC have adopted the conversion-free 
cast model for SSE (http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector- 
Extensions.html#Vector-Extensions). The following code example shows 
the behavior of these compilers:

#include <stdio.h>

// Declare some vector types. This should work on most compilers 
// that try to be GCC compatible. Alternatives are provided 
// for those that don't conform to GCC behavior in vector 
// type declaration.
// Here a vFloat is a vector of four floats, and 
// a vInt is a vector of four 32-bit ints.
#if 1
    // This should work on most compilers that try 
    // to be GCC compatible
    // cc main.c -Wall -pedantic
    typedef float vFloat __attribute__ ((__vector_size__(16)));

www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf?fsrch=1
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Vector-Extensions.html#Vector-Extensions
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    typedef int   vInt   __attribute__ ((__vector_size__(16)));
    #define init_vFloat(a, b, c, d)    (const vFloat) {a, b, c, d}
#else
    //Not GCC compatible
    #if defined( __SSE2__ )
        // depending on compiler you might need to pass 
        // something like -msse2 to turn on SSE2
        #include <emmintrin.h>
        typedef __m128  vFloat;
        typedef __m128i vInt;
        static inline vFloat init_vFloat(float a, float b, 
                                         float c, float d);
        static inline vFloat init_vFloat(float a, float b, 
                                         float c, float d)
        { union{ vFloat v; float f[4];}u; 
          u.f[0] = a; u.f[1] = b; 
          u.f[2] = c; u.f[3] = d; 
          return u.v; 
        }
    #elif defined( __VEC__ )
        // depending on compiler you might need to pass 
        // something like -faltivec or -maltivec or 
        // "Enable AltiVec Extensions" to turn this part on
        #include <altivec.h>
        typedef vector float vFloat;
        typedef vector int   vInt;

        #if 1
            // for compliant compilers
            #define init_vFloat(a, b, c, d) \
                     (const vFloat) (a, b, c, d)
        #else 
            // for FSF GCC
            #define init_vFloat(a, b, c, d) \
                     (const vFloat) {a, b, c, d}
        #endif
    #endif
#endif

void
print_vInt(vInt v)
{
    union{ vInt v; int i[4]; }u;
    u.v = v;

    printf("vInt: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 
                        u.i[0], u.i[1], u.i[2], u.i[3]);
}
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void
print_vFloat(vFloat v)
{
    union{ vFloat v; float i[4]; }u;
    u.v = v;

    printf("vFloat: %f %f %f %f\n", u.i[0], u.i[1], u.i[2], u.i[3]);
}

int
main(void)
{
    vFloat  f = init_vFloat(1.0f, 2.0f, 3.0f, 4.0f);
    vInt    i;

    print_vFloat(f);

    printf("assign with cast:  vInt i = (vInt) f;\n" );
    i = (vInt) f;

    print_vInt(i);

    return 0;
}

The output of this code example demonstrates that conversions between 
vector data types implemented by some C compilers3 such as GCC are 
cast-free.

vFloat: 1.000000 2.000000 3.000000 4.000000
assign with cast:  vInt i = (vInt) f;
vInt: 0x3f800000 0x40000000 0x40400000 0x40800000

So we have prior art in C where casts between vector data types do not 
perform conversions as opposed to graphics shading languages that do 
perform conversions. The OpenCL working group decided it was best to 
make implicit conversions between vector data types illegal. It turns out 
that this was the right thing to do for other reasons, as discussed in the 
section “Explicit Conversions” later in this chapter.

3 Some fiddling with compiler flags to get the vector extensions turned on may 
be required, for example, -msse2 or -faltivec. You might need to play with 
the #ifs. The problem is that there is no portable way to declare a vector type. 
Getting rid of the sort of portability headaches at the top of the code example 
is one of the major value-adds of OpenCL.
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Usual Arithmetic Conversions

Many operators that expect operands of arithmetic types (integer or 
floating-point types) cause conversions and yield result types in a similar 
way. The purpose is to determine a common real type for the operands 
and result. For the specified operands, each operand is converted, without 
change of type domain, to a type whose corresponding real type is the 
common real type. For this purpose, all vector types are considered to 
have a higher conversion rank than scalars. Unless explicitly stated oth-
erwise, the common real type is also the corresponding real type of the 
result, whose type domain is the type domain of the operands if they are 
the same, and complex otherwise. This pattern is called the usual arith-
metic conversions.

If the operands are of more than one vector type, then a compile-time 
error will occur. Implicit conversions between vector types are not 
permitted. 

Otherwise, if there is only a single vector type, and all other operands are 
scalar types, the scalar types are converted to the type of the vector ele-
ment, and then widened into a new vector containing the same number of 
elements as the vector, by duplication of the scalar value across the width 
of the new vector. A compile-time error will occur if any scalar operand 
has greater rank than the type of the vector element. For this purpose, the 
rank order is defined as follows:

1. The rank of a floating-point type is greater than the rank of another 
floating-point type if the floating-point type can exactly represent all 
numeric values in the second floating-point type. (For this purpose, 
the encoding of the floating-point value is used, rather than the sub-
set of the encoding usable by the device.)

2. The rank of any floating-point type is greater than the rank of any 
integer type.

3. The rank of an integer type is greater than the rank of an integer type 
with less precision.

4. The rank of an unsigned integer type is greater than the rank of a 
signed integer type with the same precision.

5. bool has a rank less than any other type.

6. The rank of an enumerated type is equal to the rank of the compatible 
integer type.
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7. For all types T1, T2, and T3, if T1 has greater rank than T2, and T2 has 
greater rank than T3, then T1 has greater rank than T3.

Otherwise, if all operands are scalar, the usual arithmetic conversions 
apply as defined by Section 6.3.1.8 of the C99 specification.

Following are a few examples of legal usual arithmetic conversions with 
vectors and vector and scalar operands:

short a;
int4  b;
int4  c = b + a; 

In this example, the variable a, which is of type short, is converted to an 
int4 and the vector addition is then performed.

int    a;
float4 b;
float4 c = b + a; 

In the preceding example, the variable a, which is of type int, is con-
verted to a float4 and the vector addition is then performed.

float4 a;
float4 b;
float4 c = b + a;

In this example, no conversions need to be performed because a, b, and c
are all the same type.

Here are a few examples of illegal usual arithmetic conversions with vec-
tors and vector and scalar operands:

int    a;
short4 b;
short4 c = b + a; // cannot convert & widen int to short4 

double a;
float4 b;
float4 c = b + a; // cannot convert & widen double to float4

int4   a;
float4 b;
float4 c = b + a; // cannot cast between different vector types
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Explicit Casts
Standard type casts for the built-in scalar data types defined in Table 4.1 
will perform appropriate conversion (except void and half4). In the next 
example, f stores 0x3F800000 and i stores 0x1, which is the floating-
point value 1.0f in f converted to an integer value:

float f = 1.0f;
int   i = (int)f;

Explicit casts between vector types are not legal. The following examples 
will generate a compilation error:

int4   i;
uint4  u = (uint4)i;   // compile error

float4 f;
int4   i = (int4)f;    // compile error

float4 f;
int8   i = (int8)f;    // compile error

Scalar to vector conversions are performed by casting the scalar to the 
desired vector data type. Type casting will also perform the appropriate 
arithmetic conversion. Conversions to built-in integer vector types are 
performed with the round-toward-zero rounding mode. Conversions to 
built-in floating-point vector types are performed with the round-to-near-
est rounding mode. When casting a bool to a vector integer data type, 
the vector components will be set to -1 (that is, all bits are set) if the bool
value is true and 0 otherwise.

Here are some examples of explicit casts:

float4 f = 1.0f;
float4 va = (float4)f;  // va is a float4 vector 
                        // with elements ( f, f, f, f )

uchar u = 0xFF;
float4 vb = (float4)u;  // vb is a float4 vector with elements
                        // ( (float)u, (float)u, 
                        //   (float)u, (float)u )

float f = 2.0f;
int2 vc = (int2)f;      // vc is an int2 vector with elements
                        // ( (int)f, (int)f )

4 Unless the half-precision extension (cl_khr_fp16) is supported.
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uchar4 vtrue =(uchar4)true;  // vtrue is a uchar4 vector with 
                             // elements(0xFF, 0xFF, 0xFF, 0xFF)

Explicit Conversions
In the preceding sections we learned that implicit conversions and explicit 
casts do not allow conversions between vector types. However, there are 
many cases where we need to convert a vector type to another type. In 
addition, it may be necessary to specify the rounding mode that should be 
used to perform the conversion and whether the results of the conversion 
are to be saturated. This is useful for both scalar and vector data types. 

Consider the following example:

float x;
int   i = (int)x;

In this example the value in x is truncated to an integer value and stored 
in i; that is, the cast performs round-toward-zero rounding when convert-
ing the floating-point value to an integer value. 

Sometimes we need to round the floating-point value to the nearest inte-
ger. The following example shows how this is typically done:

float x;
int   i = (int)(x + 0.5f);

This works correctly for most values of x except when x is 0.5f – 1 ulp5

or if x is a negative number. When x is 0.5f – 1 ulp, (int)(x + 0.5f)
returns 1; that is, it rounds up instead of rounding down. When x is a 
negative number, (int)(x + 0.5f) rounds down instead of rounding up.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>

int
main(void)
{
    float a = 0.5f;
    float b = a – nextafterf(a, (float)-INFINITY); // a – 1 ulp

5 ulp(x) is the gap between two finite floating-point numbers. A detailed 
description of ulp(x) is given in Chapter 5 in the section “Math Functions,” 
subsection “Relative Error as ulps.”
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    printf("a = %8x, b = %8x\n", 
                    *(unsigned int *)&a, *(unsigned int *)&b);
    printf("(int)(a + 0.5f) = %d \n", (int)(a + 0.5f));
    printf("(int)(b + 0.5f) = %d \n", (int)(b + 0.5f));
}

The printed values are:

a = 3f000000, b = 3effffff  // where b = a – 1 ulp.
(int)(a + 0.5f) = 1, 
(int)(b + 0.5f) = 1

We could fix these issues by adding appropriate checks to see what value 
x is and then perform the correct conversion, but there is hardware to 
do these conversions with rounding and saturation on most devices. It is 
important from a performance perspective that OpenCL C allows devel-
opers to perform these conversions using the appropriate hardware ISA as 
opposed to emulating in software. This is why OpenCL implements built-
in functions that perform conversions from one type to another with 
options that select saturation and one of four rounding modes.

Explicit conversions may be performed using either of the following:

destType convert_destType<_sat><_roundingMode> (sourceType) 
destType convert_destTypen<_sat><_roundingMode> (sourceTypen)

These provide a full set of type conversions for the following scalar types: 
char, uchar, short, ushort, int, uint, long, ulong, float, double,6

half,7 and the built-in vector types derived therefrom. The operand and 
result type must have the same number of elements. The operand and 
result type may be the same type, in which case the conversion has no 
effect on the type or value.

In the following example, convert_int4 converts a uchar4 vector u to 
an int4 vector c:

uchar4 u;
int4   c = convert_int4(u);

In the next example, convert_int converts a float scalar f to an int
scalar i:

float f;
int   i = convert_int(f);

6 Unless the double-precision extension (cl_khr_fp64) is supported.
7 Unless the half-precision extension (cl_khr_fp16) is supported.
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The optional rounding mode modifier can be set to one of the values 
described in Table 4.7.

The optional saturation modifier (_sat) can be used to specify that the 
results of the conversion must be saturated to the result type. When 
the conversion operand is either greater than the greatest representable 
destination value or less than the least representable destination value, 
it is said to be out of range. When converting between integer types, the 
resulting value for out-of-range inputs will be equal to the set of least sig-
nificant bits in the source operand element that fits in the corresponding 
destination element. When converting from a floating-point type to an 
integer type, the behavior is implementation-defined. 

Conversions to integer type may opt to convert using the optional satu-
rated mode by appending the _sat modifier to the conversion function 
name. When in saturated mode, values that are outside the representable 
range clamp to the nearest representable value in the destination format. 
(NaN should be converted to 0.)

Conversions to a floating-point type conform to IEEE 754 rounding rules. 
The _sat modifier may not be used for conversions to floating-point 
formats. 

Following are a few examples of using explicit conversion functions.

The next example shows a conversion of a float4 to a ushort4 with 
round-to-nearest rounding mode and saturation. Figure 4.2 describes the 
values in f and the result of conversion in c.

float4  f = (float4)(-5.0f, 254.5f, 254.6f, 1.2e9f);

ushort4 c = convert_uchar4_sat_rte(f);

Table 4.7 Rounding Modes for Conversions

Rounding Mode Modifier Rounding Mode Description

_rte Round to nearest even.

_rtz Round toward zero.

_rtp Round toward positive infinity.

_rtn Round toward negative infinity.

No modifier specified Use the default rounding mode for this destination 
type: _rtz for conversion to integers or _rte for 
conversion to floating-point types.
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The next example describes the behavior of the saturation modifier when 
converting a signed value to an unsigned value or performing a down-
conversion with integer types:

short4 s;

// negative values clamped to 0
ushort4 u = convert_ushort4_sat(s); 

// values > CHAR_MAX converted to CHAR_MAX
// values < CHAR_MIN converted to CHAR_MIN
char4 c = convert_char4_sat(s);

The following example illustrates conversion from a floating-point to an 
integer with saturation and rounding mode modifiers:

float4 f;

// values implementation-defined for f > INT_MAX, f < INT_MAX, or 
NaN
int4 i = convert_int4(f);

// values > INT_MAX clamp to INT_MAX, 
// values < INT_MIN clamp to INT_MIN
// NaN should produce 0.
// The _rtz rounding mode is used to produce the integer values.
int4 i2 = convert_int4_sat(f);

// similar to convert_int4 except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i3 = convert_int4_rte(f);

// similar to convert_int4_sat except that floating-point values
// are rounded to the nearest integer instead of truncated
int4 i4 = convert_int4_sat_rte(f);

f −5.0f 254.5f 254.6f

c 0 254 255 255

1.2E9f

Figure 4.2 Converting a float4 to a ushort4 with round-to-nearest 
rounding and saturation
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The final conversion example given here shows conversions from an 
integer to a floating-point value with and without the optional rounding 
mode modifier:

int4 i;

// convert ints to floats using the round-to-nearest rounding mode
float4 f = convert_float4(i);

// convert ints to floats; integer values that cannot be 
// exactly represented as floats should round up to the next 
// representable float
float4 f = convert_float4_rtp(i);

Reinterpreting Data as Another Type
Consider the case where you want to mask off the sign bit of a floating-
point type. There are multiple ways to solve this in C—using pointer 
aliasing, unions, or memcpy. Of these, only memcpy is strictly correct in 
C99. Because OpenCL C does not support memcpy, we need a different 
method to perform this masking-off operation. The general capability we 
need is the ability to reinterpret bits in a data type as another data type. 
In the example where we want to mask off the sign bit of a floating-point 
type, we want to reinterpret these bits as an unsigned integer type and 
then mask off the sign bit. Other examples include using the result of a 
vector relational operator and extracting the exponent or mantissa bits of 
a floating-point type.

The as_type and as_typen built-in functions allow you to reinterpret 
bits of a data type as another data type of the same size. The as_type
is used for scalar data types (except bool and void) and as_typen for 
vector data types. double and half are supported only if the appropriate 
extensions are supported by the implementation.

The following example describes how you would mask off the sign bit of a 
floating-point type using the as_type built-in function:

float f;
uint  u;

u = as_uint(f);
f = as_float(u & ~(1 << 31));

If the operand and result type contain the same number of elements, the 
bits in the operand are returned directly without modification as the new 
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type. If the operand and result type contain a different number of ele-
ments, two cases arise:

• The operand is a 4-component vector and the result is a 3-component 
vector. In this case, the xyz components of the operand and the result 
will have the same bits. The w component of the result is considered to 
be undefined.

• For all other cases, the behavior is implementation-defined.

We next describe a few examples that show how to use as_type and 
as_typen. The following example shows how to reinterpret an int as a 
float:

uint  u = 0x3f800000;
float f = as_float(u);

The variable u, which is declared as an unsigned integer, contains the 
value 0x3f800000. This represents the single-precision floating-point 
value 1.0. The variable f now contains the floating-point value 1.0.

In the next example, we reinterpret a float4 as an int4:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
int4 i = as_int4(f); 

The variable i, defined to be of type int4, will have the following val-
ues in its xyzw components: 0x3f800000, 0x40000000, 0x40400000,
0x40800000.

The next example shows how we can perform the ternary selection opera-
tor (?:) for floating-point vector types using as_typen:

// Perform the operation f = f < g ? f : 0 for components of a
// vector
float4 f, g;
int4 is_less = f < g;

// Each component of the is_less vector will be 0 if result of < 
// operation is false and will be -1 (i.e., all bits set) if 
// the result of < operation is true.

f = as_float4(as_int4(f) & is_less);
// This basically selects f or 0 depending on the values in is_less.

The following example describes cases where the operand and result have 
a different number of results, in which case the behavior of as_type and 
as_typen is implementation-defined:
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int i;
short2 j = as_short2(i); // Legal. Result is implementation-defined

int4 i;
short8 j = as_short8(i); // Legal. Result is implementation-defined

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as 
                         // f.xyz. g.w is undefined

This example describes reinterpreting a 4-component vector as a 3-com-
ponent vector:

float4 f;
float3 g = as_float3(f); // Legal. g.xyz will have same values as 
                         // f.xyz. g.w is undefined

The next example shows invalid ways of using as_type and as_typen,
which should result in compilation errors:

float4 f;
double4 g = as_double4(f); // Error. Result and operand have
                           // different sizes.

float3 f;
float4 g = as_float4(f); // Error. Result and operand have 
                         // different sizes

Vector Operators
Table 4.8 describes the list of operators that can be used with vector data 
types or a combination of vector and scalar data types.

Table 4.8 Operators That Can Be Used with Vector Data Types

Operator Category Operator Symbols

Arithmetic operators Add (+)

Subtract (-)

Multiply (*)

Divide (/)

Remainder (%)

continues
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The behavior of these operators for scalar data types is as described by the 
C99 specification. The following sections discuss how each operator works 
with operands that are vector data types or vector and scalar data types. 

Arithmetic Operators

The arithmetic operators—add (+), subtract (-), multiply (*), and divide 
(/)—operate on built-in integer and floating-point scalar and vector data 
types. The remainder operator (%) operates on built-in integer scalar and 
vector data types only. The following cases arise:

Operator Category Operator Symbols

Relational operators Greater than (>)

Less than (<)

Greater than or equal (>=)

Less than or equal (<=)

Equality operators Equal (==)

Not equal (!=)

Bitwise operators And (&)

Or (|)

Exclusive or (^), not (~)

Logical operators And (&&)

Or (||)

Conditional operator Ternary selection operator (?:)

Shift operators Right shift (>>)

Left shift (<<)

Unary operators Arithmetic (+ or -)

Post- and pre-increment (++)

Post- and pre-decrement (--)

sizeof, not (!)

Comma operator (,)

Address and indirection operators (&, *)

Assignment operators =, *= , /= , += , -= , <<= , >>= , &= , ^= , |=

Table 4.8 Operators That Can Be Used with Vector Data Types (Continued )
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• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

For integer types, a divide by zero or a division that results in a value 
that is outside the range will not cause an exception but will result in an 
unspecified value. Division by zero for floating-point types will result in 
±infinity or NaN as prescribed by the IEEE 754 standard.

A few examples will illustrate how the arithmetic operators work when 
one operand is a scalar and the other a vector, or when both operands are 
vectors.

The first example in Figure 4.3 shows two vectors being added:

int4 v_iA = (int4)(7, -3, -2, 5);
int4 v_iB = (int4)(1, 2, 3, 4);
int4 v_iC = v_iA + v_iB;

7 −3 −2 5

1 2 3 4

8 −1 1 9

+

=

Figure 4.3 Adding two vectors

The result of the addition stored in vector v_iC is (8, -1, 1, 9).

The next example in Figure 4.4 shows a multiplication operation where 
operands are a vector and a scalar. In this example, the scalar is just 
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widened to the size of the vector and the components of each vector are 
multiplied:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2.5f; 

*

=

2.5f
Widen

7.5f −2.5f 2.5f −5.0f

2.5f 2.5f 2.5f 2.5f

3.0f −1.0f 1.0f −2.0f

Figure 4.4 Multiplying a vector and a scalar with widening

The result of the multiplication stored in vector result is (7.5f,
-2.5f, 2.5f, -5.0f).

The next example in Figure 4.5 shows how we can multiply a vector and a 
scalar where the scalar is implicitly converted and widened:

float4 vf = (float4)(3.0f, -1.0f, 1.0f, -2.0f);
float4 result = vf * 2;

−2.0f−1.0f

*

=

3.0f 1.0f

2.0f 2.0f
Widen Convert

22.0f2.0f 2.0f

−4.0f−2.0f6.0f 2.0f

Figure 4.5 Multiplying a vector and a scalar with conversion and widening

The result of the multiplication stored in the vector result is (6.0f,
-2.0f, 2.0f, -4.0f).
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Relational and Equality Operators

The relational operators—greater than (>), less than (<), greater than or 
equal (>=), and less than or equal (<=)—and equality operators—equal 
(==) and not equal (!=)—operate on built-in integer and floating-point 
scalar and vector data types. The result is an integer scalar or vector type. 
The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The result is a scalar signed integer of type int if both source operands 
are scalar and a vector signed integer type of the same size as the vector 
source operand. The result is of type charn if the source operands are 
charn or ucharn; shortn if the source operands are shortn, shortn, or 
halfn; intn if the source operands are intn, uintn, or floatn; longn if 
the source operands are longn, ulongn, or doublen.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true. The relational operators always return 0 if one or 
both arguments are not a number (NaN). The equality operator equal (==)
returns 0 if one or both arguments are not a number (NaN), and the equal-
ity operator not equal (!=) returns 1 (for scalar source operands) or -1 (for 
vector source operands) if one or both arguments are not a number (NaN). 

Bitwise Operators

The bitwise operators—and (&), or (|), exclusive or (^), and not (~)—oper-
ate on built-in integer scalar and vector data types. The result is an integer 
scalar or vector type. The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.
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• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

Logical Operators

The logical operators—and (&&), or (||)—operate on built-in integer scalar 
and vector data types. The result is an integer scalar or vector type. The 
following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand 
may be subject to the usual arithmetic conversion to the element type 
used by the vector operand and is then widened to a vector that has 
the same number of elements as the vector operand. The operation is 
applied component-wise, resulting in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

If both source operands are scalar, the logical operator and (&&) will 
evaluate the right-hand operand only if the left-hand operand compares 
unequal to 0, and the logical operator or (||) will evaluate the right-hand 
operand only if the left-hand operand compares equal to 0. If one or both 
source operands are vector types, both operands are evaluated.

The result is a scalar signed integer of type int if both source operands 
are scalar and a vector signed integer type of the same size as the vector 
source operand. The result is of type charn if the source operands are 
charn or ucharn; shortn if the source operands are shortn or ushortn;
intn if the source operands are intn or uintn; or longn if the source 
operands are longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true.

The logical exclusive operator (^^) is reserved for future use.
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Conditional Operator

The ternary selection operator (?:) operates on three expressions (expr1 ? 
expr2 : expr3). This operator evaluates the first expression, expr1,
which can be a scalar or vector type except the built-in floating-point 
types. If the result is a scalar value, the second expression, expr2, is 
evaluated if the result compares equal to 0; otherwise the third expres-
sion, expr3, is evaluated. If the result is a vector value, then (expr1 ? 
expr2 : expr3) is applied component-wise and is equivalent to calling 
the built-in function select(expr3, expr2, expr1). The second and 
third expressions can be any type as long as their types match or if an 
implicit conversion can be applied to one of the expressions to make their 
types match, or if one is a vector and the other is a scalar, in which case 
the usual arithmetic conversion followed by widening is applied to the 
scalar to match the vector operand type. This resulting matching type is 
the type of the entire expression. 

A few examples will show how the ternary selection operator works with 
scalar and vector types:

int4   va, vb, vc, vd;
int    a, b, c, d;
float4 vf;

vc = d ? va : vb;  // vc = va if d is true, = vb if d is false

vc = vd ? va : vb; // vc.x = vd.x ? va.x : vb.x
                   // vc.y = vd.y ? va.y : vb.y
                   // vc.z = vd.z ? va.z : vb.z
                   // vc.w = vd.w ? va.w : vb.w

vc = vd ? a : vb;  // a is widened to an int4 first 
                   // vc.x = vd.x ? va.x : vb.x
                   // vc.y = vd.y ? va.y : vb.y
                   // vc.z = vd.z ? va.z : vb.z
                   // vc.w = vd.w ? va.w : vb.w

vc = vd ? va : vf; // error – vector types va & vf do not match

Shift Operators

The shift operators—right shift (>>) and left shift (<<)—operate on built-
in integer scalar and vector data types. The result is an integer scalar or 
vector type. The rightmost operand must be a scalar if the first operand is 
a scalar. For example:
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uint  a, b, c;
uint2 r0, r1;

c = a << b;   // legal – both operands are scalars
r1 = a << r0; // illegal – first operand is a scalar and 
              // therefore second operand (r0) must also be scalar.
c = b << r0;  // illegal – first operand is a scalar and 
              // therefore second operand (r0) must also be scalar.

The rightmost operand can be a vector or scalar if the first operand is a 
vector. For vector types, the operators are applied component-wise.

If operands are scalar, the result of E1 << E2 is E1 left-shifted by 
log2(N) least significant bits in E2. The vacated bits are filled with zeros. 
If E2 is negative or has a value that is greater than or equal to the width 
of E1, the C99 specification states that the behavior is undefined. Most 
implementations typically return 0.

Consider the following example:

char x = 1;
char y = -2;
x = x << y;

When compiled using a C compiler such as GCC on an Intel x86 pro-
cessor, (x << y) will return 0. However, with OpenCL C, (x << y) is 
implemented as (x << (y & 0x7)), which returns 0x40.

For vector types, N is the number of bits that can represent the type of ele-
ments in a vector type for E1 used to perform the left shift. For example:

char2 x = (uchar2)(1, 2);
char  y = -9;

x = x << y;

Because components of vector x are an unsigned char, the vector shift 
operation is performed as ( (1 << (y & 0x7)), (2 << (y & 0x7)) ).

Similarly, if operands are scalar, the result of E1 >> E2 is E1 right-shifted 
by log2(N) least significant bits in E2. If E2 is negative or has a value 
that is greater than or equal to the width of E1, the C99 specification 
states that the behavior is undefined. For vector types, N is the number of 
bits that can represent the type of elements in a vector type for E1 used 
to perform the right shift. The vacated bits are filled with zeros if E1 is 
an unsigned type or is a signed type but is not a negative value. If E1 is a 
signed type and a negative value, the vacated bits are filled with ones.
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Unary Operators

The arithmetic unary operators (+ and -) operate on built-in scalar and 
vector types. 

The arithmetic post- and pre- increment (++) and decrement (--) opera-
tors operate on built-in scalar and vector data types except the built-in 
scalar and vector floating-point data types. These operators work compo-
nent-wise on their operands and result in the same type they operated on.

The logical unary operator not (!) operates on built-in scalar and vector 
data types except the built-in scalar and vector floating-point data types. 
These operators work component-wise on their operands. The result is a 
scalar signed integer of type int if both source operands are scalar and a 
vector signed integer type of the same size as the vector source operand. 
The result is of type charn if the source operands are charn or ucharn;
shortn if the source operands are shortn or ushortn ; intn if the 
source operands are intn or uintn; or longn if the source operands are 
longn or ulongn.

For scalar types, these operators return 0 if the specified relation is false 
and 1 if the specified relation is true. For vector types, these operators 
return 0 if the specified relation is false and -1 (i.e., all bits set) if the 
specified relation is true.

The comma operator (,) operates on expressions by returning the type 
and value of the rightmost expression in a comma-separated list of 
expressions. All expressions are evaluated, in order, from left to right. For 
example:

// comma acts as a separator not an operator.
int a = 1, b = 2, c = 3, x;

// comma acts as an operator
x = a += 2, a + b;      // a = 3, x = 5
x = (a, b, c);          // x = 3

The sizeof operator yields the size (in bytes) of its operand. The result is 
an integer value. The result is 1 if the operand is of type char or uchar;
2 if the operand is of type short, ushort, or half; 4 if the operand is of 
type int, uint, or float; and 8 if the operand is of type long, ulong,
or double. The result is number of components in vector * size 
of each scalar component if the operand is a vector type except for 
3-component vectors, which return 4 * size of each scalar com-
ponent. If the operand is an array type, the result is the total number 
of bytes in the array, and if the operand is a structure or union type, the 
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result is the total number of bytes in such an object, including any inter-
nal or trailing padding.

The behavior of applying the sizeof operator to the image2d_t,
image3d_t, sampler_t, and event_t types is implementation-defined. 
For some implementations, sizeof(sampler_t) = 4 and on some 
implementation this may result in a compile-time error. For portabil-
ity across OpenCL implementations, it is recommended not to use the 
sizeof operator for these types.

The unary operator (*) denotes indirection. If the operand points to an 
object, the result is an l-value designating the object. If the operand has 
type “pointer to type,” the result has type type. If an invalid value has 
been assigned to the pointer, the behavior of the indirection operator is 
undefined.

The unary operator (&) returns the address of its operand.

Assignment Operator

Assignments of values to variables names are done with the assignment 
operator (=), such as

lvalue = expression

The assignment operator stores the value of expression into lvalue.
The following cases arise:

• The two operands are scalars. In this case, the operation is applied 
according to C99 rules.

• One operand is a scalar and the other is a vector. The scalar operand is 
explicitly converted to the element type used by the vector operand and 
is then widened to a vector that has the same number of elements as 
the vector operand. The operation is applied component-wise, result-
ing in the same size vector. 

• The two operands are vectors of the same type. In this case, the opera-
tion is applied component-wise, resulting in the same size vector.

The following expressions are equivalent:

lvalue op= expression
lvalue = lvalue op expression

The lvalue and expression must satisfy the requirements for both 
operator op and assignment (=).
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Qualifiers
OpenCL C supports four types of qualifiers: function qualifiers, address 
space qualifiers, access qualifiers, and type qualifiers.

Function Qualifiers

OpenCL C adds the kernel (or __kernel) function qualifier. This quali-
fier is used to specify that a function in the program source is a kernel 
function. The following example demonstrates the use of the kernel 
qualifier:

kernel void
parallel_add(global float *a, global float *b, global float *result)
{
    ...
}

// The following example is an example of an illegal kernel 
// declaration and will result in a compile-time error.
// The kernel function has a return type of int instead of void.
kernel int
parallel_add(global float *a, global float *b, global float *result)
{
    ...
}

The following rules apply to kernel functions:

• The return type must be void. If the return type is not void, it will 
result in a compilation error.

• The function can be executed on a device by enqueuing a command 
to execute the kernel from the host.

• The function behaves as a regular function if it is called from a kernel 
function. The only restriction is that a kernel function with variables 
declared inside the function with the local qualifier cannot be called 
from another kernel function.

The following example shows a kernel function calling another kernel 
function that has variables declared with the local qualifier. The behav-
ior is implementation-defined so it is not portable across implementations 
and should therefore be avoided.

kernel void
my_func_a(global float *src, global float *dst)
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{
    local float l_var[32];

    ...
}

kernel void
my_func_b(global float * src, global float *dst)
{
    my_func_a(src, dst); // implementation-defined behavior
}

A better way to implement this example that is also portable is to pass the 
local variable as an argument to the kernel:

kernel void
my_func_a(global float *src, global float *dst, local float *l_var)
{

    ...
}

kernel void
my_func_b(global float * src, global float *dst, local float *l_var)
{
    my_func_a(src, dst, l_var); 
}

Kernel Attribute Qualifiers

The kernel qualifier can be used with the keyword __attribute__ to 
declare the following additional information about the kernel:

• __attribute__((work_group_size_hint(X, Y, Z))) is a hint to 
the compiler and is intended to specify the work-group size that will 
most likely be used, that is, the value specified in the local_work_
size argument to clEnqueueNDRangeKernel.

• __attribute__((reqd_work_group_size(X, Y, Z))) is 
intended to specify the work-group size that will be used, that is, the 
value specified in the local_work_size argument to clEnqueueN-
DRangeKernel. This provides an opportunity for the compiler to 
perform specific optimizations that depend on knowing what the 
work-group size is.

• __attribute__((vec_type_hint(<type>))) is a hint to the 
compiler on the computational width of the kernel, that is, the size 
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of the data type the kernel is operating on. This serves as a hint to an 
auto-vectorizing compiler. The default value of <type> is int, indi-
cating that the kernel is scalar in nature and the auto-vectorizer can 
therefore vectorize the code across the SIMD lanes of the vector unit 
for multiple work-items.

Address Space Qualifiers

Work-items executing a kernel have access to four distinct memory 
regions. These memory regions can be specified as a type qualifier. The 
type qualifier can be global (or __global), local (or __local), con-
stant (or __constant), or private (or __private).

If the type of an object is qualified by an address space name, the object 
is allocated in the specified address space. If the address space name is not 
specified, then the object is allocated in the generic address space. The 
generic address space name (for arguments to functions in a program, or 
local variables in a function) is private.

A few examples that describe how to specify address space names follow:

// declares a pointer p in the private address space that points to 
// a float object in address space global
global float *p;

// declares an array of integers in the private address space
int   f[4];

// for my_func_a function we have the following arguments:
//
//   src - declares a pointer in the private address space that
//         points to a float object in address space constant
//
//   v   - allocate in the private address space
//
int
my_func_a(constant float *src, int4 v)
{
    float temp;  // temp is allocated in the private address space.
}

Arguments to a kernel function that are declared to be a pointer of a type 
must point to one of the following address spaces only: global, local, or 
constant. Not specifying an address space name for such arguments will 
result in a compilation error. This limitation does not apply to non-kernel 
functions in a program.
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A few examples of legal and illegal use cases are shown here:

kernel void my_func(int *p) // illegal because generic address space 
                            // name for p is private.

kernel void 
my_func(private int *p) // illegal because memory pointed to by 
                        // p is allocated in private.

void
my_func(int *p) // generic address space name for p is private.
                // legal as my_func is not a kernel function

void
my_func(private int *p) // legal as my_func is not a kernel function

Global Address Space

This address space name is used to refer to memory objects (buffers and 
images) allocated from the global memory region. This memory region 
allows read/write access to all work-items in all work-groups executing a 
kernel. This address space is identified by the global qualifier.

A buffer object can be declared as a pointer to a scalar, vector, or user-
defined struct. Some examples are:

global float4 *color;    // an array of float4 elements

typedef struct {
    float3 a;
    int2   b[2];
} foo_t;
global foo_t *my_info;    // an array of foo_t elements

The global address qualifier should not be used for image types. 

Pointers to the global address space are allowed as arguments to functions 
(including kernel functions) and variables declared inside functions. Vari-
ables declared inside a function cannot be allocated in the global address 
space. 

A few examples of legal and illegal use cases are shown here:

void
my_func(global float4 *vA, global float4 *vB)
{
    global float4 *p;   // legal
    global float4 a;    // illegal
}
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Constant Address Space

This address space name is used to describe variables allocated in global 
memory that are accessed inside a kernel(s) as read-only variables. This 
memory region allows read-only access to all work-items in all work-
groups executing a kernel. This address space is identified by the con-
stant qualifier.

Image types cannot be allocated in the constant address space. The fol-
lowing example shows imgA allocated in the constant address space, 
which is illegal and will result in a compilation error:

kernel void
my_func(constant image2d_t imgA)
{
    ...
}

Pointers to the constant address space are allowed as arguments to func-
tions (including kernel functions) and variables declared inside functions. 

Variables in kernel function scope (i.e., the outermost scope of a kernel 
function) can be allocated in the constant address space. Variables in 
program scope (i.e., global variables in a program) can be allocated only in 
the constant address space. All such variables are required to be initial-
ized, and the values used to initialize these variables must be compile-time 
constants. Writing to such a variable will result in a compile-time error.

Also, storage for all string literals declared in a program will be in the 
constant address space.

A few examples of legal and illegal use cases follow:

// legal - program scope variables can be allocated only
// in the constant address space 
constant float wtsA[] = { 0, 1, 2, . . . };  // program scope

// illegal - program scope variables can be allocated only
// in the constant address space 
global float wtsB[] = { 0, 1, 2, . . . }; 

kernel void
my_func(constant float4 *vA, constant float4 *vB)
{
    constant float4 *p = vA;  // legal
    constant float a;         // illegal – not initialized
    constant float b = 2.0f;  // legal – initialized with a compile- 
                              //         time constant
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    p[0] = (float4)(1.0f);    // illegal – p cannot be modified

    // the string "opencl version" is allocated in the 
    // constant address space
    char *c = "opencl version";

}

Note  The number of variables declared in the constant address space 
that can be used by a kernel is limited to CL_DEVICE_MAX_
CONSTANT_ARGS. OpenCL 1.1 describes that the minimum value 
all implementations must support is eight. So up to eight variables 
declared in the constant address space can be used by a kernel and 
are guaranteed to work portably across all implementations. The 
size of these eight constant arguments is given by CL_DEVICE_
MAX_CONSTANT_BUFFER_SIZE and is set to 64KB. It is therefore 
possible that multiple constant declarations (especially those 
defined in the program scope) can be merged into one constant 
buffer as long as their total size is less than CL_DEVICE_MAX_
CONSTANT_BUFFER_SIZE. This aggregation of multiple variables 
declared to be in the constant address space is not a required 
behavior and so may not be implemented by all OpenCL imple-
mentations. For portable code, the developer should assume that 
these variables do not get aggregated into a single constant buffer.

Local Address Space

This address space name is used to describe variables that need to be allo-
cated in local memory and are shared by all work-items of a work-group 
but not across work-groups executing a kernel. This memory region allows 
read/write access to all work-items in a work-group. This address space is 
identified by the local qualifier.

A good analogy for local memory is a user-managed cache. Local memory 
can significantly improve performance if a work-item or multiple work-
items in a work-group are reading from the same location in global mem-
ory. For example, when applying a Gaussian filter to an image, multiple 
work-items read overlapping regions of the image. The overlap region size 
is determined by the width of the filter. Instead of reading multiple times 
from global memory (which is an order of magnitude slower), it is prefera-
ble to read the required data from global memory once into local memory 
and then have the work-items read multiple times from local memory.

Pointers to the local address space are allowed as arguments to functions 
(including kernel functions) and variables declared inside functions. 
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Variables declared inside a kernel function can be allocated in the local 
address space but with a few restrictions: 

• These variable declarations must occur at kernel function scope.

• These variables cannot be initialized.

Note that variables in the local address space that are passed as pointer 
arguments to or declared inside a kernel function exist only for the life-
time of the work-group executing the kernel.

A few examples of legal and illegal use cases are shown here:

kernel void
my_func(global float4 *vA, local float4 *l)
{
    local  float4 *p;   // legal
    local  float4 a;    // legal
    a = 1;
    local  float4 b = (float4)(0); // illegal – b cannot be 
                                   //           initialized

    if (...)
    {
        local float c;  // illegal – must be allocated at 
                        // kernel function scope
        ...
    }
}

Private Address Space

This address space name is used to describe variables that are private to 
a work-item and cannot be shared between work-items in a work-group 
or across work-groups. This address space is identified by the private
qualifier.

Variables inside a kernel function not declared with an address space 
qualifier, all variables declared inside non-kernel functions, and all func-
tion arguments are in the private address space.

Casting between Address Spaces

A pointer in an address space can be assigned to another pointer only in 
the same address space. Casting a pointer in one address space to a pointer 
in a different address space is illegal. For example:
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kernel void
my_func(global float4 *particles)
{
    // legal – particle_ptr & particles are in the 
    //         same address space
    global float *particle_ptr = (global float *)particles;

    // illegal – private_ptr and particle_ptr are in different 
    //           address spaces
    float *private_ptr = (float *)particle_ptr;
}

Access Qualifiers

The access qualifiers can be specified with arguments that are an image 
type. These qualifiers specify whether the image is a read-only (read_
only or __read_only) or write-only (write_only or __write_only)
image. This is because of a limitation of current GPUs that do not allow 
reading and writing to the same image in a kernel. The reason for this is 
that image reads are cached in a texture cache, but writes to an image do 
not update the texture cache. 

In the following example imageA is a read-only 2D image object and 
imageB is a write-only 2D image object:

kernel void
my_func(read_only image2d_t imageA, write_only image2d_t imageB)
{
    ...
}

Images declared with the read_only qualifier can be used with the 
built-in functions that read from an image. However, these images cannot 
be used with built-in functions that write to an image. Similarly, images 
declared with the write_only qualifier can be used only to write to an 
image and cannot be used to read from an image. The following examples 
demonstrate this:

kernel void
my_func(read_only image2d_t imageA, 
        write_only image2d_t imageB,
        sampler_t sampler)
{
    float4 clr;
    float2 coords; 

    clr = read_imagef(imageA, sampler, coords); // legal
    clr = read_imagef(imageB, sampler, coords); // illegal
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    write_imagef(imageA, coords, &clr);         // illegal
    write_imagef(imageB, coords, &clr);         // legal
}

imageA is declared to be a read_only image so it cannot be passed as an 
argument to write_imagef. Similarly, imageB is declared to be a write_
only image so it cannot be passed as an argument to read_imagef.

The read-write qualifier (read_write or __read_write) is reserved. 
Using this qualifier will result in a compile-time error.

Type Qualifiers

The type qualifiers const, restrict, and volatile as defined by the 
C99 specification are supported. These qualifiers cannot be used with the 
image2d_t and image3d_t type. Types other than pointer types cannot 
use the restrict qualifier.

Keywords
The following names are reserved for use as keywords in OpenCL C and 
cannot be used otherwise:

• Names already reserved as keywords by C99

• OpenCL C data types (defined in Tables 4.1, 4.2, and 4.6)

• Address space qualifiers: __global, global, __local, local,
__constant, constant, __private, and private

• Function qualifiers: __kernel and kernel

• Access qualifiers: __read_only, read_only, __write_only,
write_only, __read_write, and read_write

Preprocessor Directives and Macros
The preprocessing directives defined by the C99 specification are sup-
ported. These include

# non-directive
#if
#ifdef
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#ifndef
#elif
#else
#endif
#include
#define
#undef
#line
#error
#pragma

The defined operator is also included.

The following example demonstrates the use of #if, #elif, #else, and 
#endif preprocessor macros. In this example, we use the preprocessor 
macros to determine which arithmetic operation to apply in the kernel. 
The kernel source is described here:

#define OP_ADD          1
#define OP_SUBTRACT     2
#define OP_MULTIPLY     3
#define OP_DIVIDE       4

kernel void
foo(global float *dst, global float *srcA, global float *srcB)
{
    size_t id = get_global_id(0);
#if OP_TYPE == OP_ADD
    dst[id] = srcA[id] + srcB[id];
#elif OP_TYPE == OP_SUBTRACT
    dst[id] = srcA[id] – srcB[id];
#elif OP_TYPE == OP_MULTIPLY
    dst[id] = srcA[id] * srcB[id];
#elif OP_TYPE == OP_DIVIDE
    dst[id] = srcA[id] / srcB[id];
#else
    dst[id] = NAN;
#endif
}

To build the program executable with the appropriate value for OP_TYPE,
the application calls clBuildProgram as follows:

// build program so that kernel foo does an add operation
err = clBuildProgram(program, 0, NULL, 
                                "-DOP_TYPE=1", NULL, NULL); 
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Pragma Directives

The #pragma directive is described as

#pragma pp-tokensopt new-line

A #pragma directive where the preprocessing token OPENCL (used instead 
of STDC) does not immediately follow pragma in the directive (prior 
to any macro replacement) causes the implementation to behave in an 
implementation-defined manner. The behavior might cause translation 
to fail or cause the translator or the resulting program to behave in a 
nonconforming manner. Any such pragma that is not recognized by the 
implementation is ignored. If the preprocessing token OPENCL does imme-
diately follow pragma in the directive (prior to any macro replacement), 
then no macro replacement is performed on the directive.

The following standard pragma directives are available.

Floating-Point Pragma

The FP_CONTRACT floating-point pragma can be used to allow (if the 
state is on) or disallow (if the state is off) the implementation to contract 
expressions. The FP_CONTRACT pragma definition is 

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: one of ON OFF DEFAULT

A detailed description of #pragma OPENCL FP_CONTRACT is found in 
Chapter 5 in the section “Floating-Point Pragmas.”

Compiler Directives for Optional Extensions

The #pragma OPENCL EXTENSION directive controls the behavior of 
the OpenCL compiler with respect to language extensions. The #pragma
OPENCL EXTENSION directive is defined as follows, where extension_
name is the name of the extension:

#pragma OPENCL EXTENSION extension_name: behavior
#pragma OPENCL EXTENSION all : behavior

behavior: enable or disable

The extension_name will have names of the form cl_khr_<name> for 
an extension (such as cl_khr_fp64) approved by the OpenCL working 
group and will have names of the form cl_<vendor_name>_<name> for 
vendor extensions. The token all means that the behavior applies to all 
extensions supported by the compiler. The behavior can be set to one of 
the values given in Table 4.9.
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The #pragma OPENCL EXTENSION directive is a simple, low-level mecha-
nism to set the behavior for each language extension. It does not define 
policies such as which combinations are appropriate; these are defined 
elsewhere. The order of directives matters in setting the behavior for each 
extension. Directives that occur later override those seen earlier. The 
all variant sets the behavior for all extensions, overriding all previously 
issued extension directives, but only if the behavior is set to disable.

An extension needs to be enabled before any language feature (such as 
preprocessor macros, data types, or built-in functions) of this extension is 
used in the OpenCL program source. The following example shows how 
to enable the double-precision floating-point extension:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
double x = 2.0;

If this extension is not supported, then a compilation error will be 
reported for double x = 2.0. If this extension is supported, this enables 
the use of double-precision floating-point extensions in the program 
source following this directive.

Similarly, the cl_khr_3d_image_writes extension adds new built-in 
functions that support writing to a 3D image: 

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
kernel void my_func(write_only image3d_t img, ...)

{
    float4 coord, clr;
    ...
    write_imagef(img, coord, clr);
}

Table 4.9 Optional Extension Behavior Description

Behavior Description

enable Enable the extension extension_name. Report an error on the 
#pragma OpenCL EXTENSION if the extension_name is not 
supported, or if all is specified.

disable Behave (including issuing errors and warnings) as if the extension 
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the 
nonextended core version of the language being compiled to.

Warn on the #pragma OPENCL EXTENSION if the extension 
extension_name is not supported.
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The built-in functions such as write_imagef with image3d_t in the pre-
ceding example can be called only if this extension is enabled; otherwise 
a compilation error will occur.

The initial state of the compiler is as if the following directive were issued, 
telling the compiler that all error and warning reporting must be done 
according to this specification, ignoring any extensions:

#pragma OPENCL EXTENSION all : disable

Every extension that affects the OpenCL language semantics or syntax 
or adds built-in functions to the language must also create a preprocessor 
#define that matches the extension name string. This #define would 
be available in the language if and only if the extension is supported on 
a given implementation. For example, an extension that adds the exten-
sion string cl_khr_fp64 should also add a preprocessor #define called 
cl_khr_fp64. A kernel can now use this preprocessor #define to do 
something like this:

#ifdef cl_khr_fp64
    // do something using this extension
#else
    // do something else or #error
#endif

Macros

The following predefined macro names are available:

• __FILE__ is the presumed name of the current source file (a character 
string literal).

• __LINE__ is the presumed line number (within the current source 
file) of the current source line (an integer constant).

• CL_VERSION_1_0 substitutes the integer 100, reflecting the OpenCL 
1.0 version.

• CL_VERSION_1_1 substitutes the integer 110, reflecting the OpenCL 
1.1 version.

• __OPENCL_VERSION__ substitutes an integer reflecting the version 
number of the OpenCL supported by the OpenCL device. This reflects 
both the language version supported and the device capabilities as 
given in Table 4.3 of the OpenCL 1.1 specification. The version of 
OpenCL described in this book will have __OPENCL_VERSION__ sub-
stitute the integer 110.
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• __ENDIAN_LITTLE__ is used to determine if the OpenCL device is a 
little endian architecture or a big endian architecture (an integer con-
stant of 1 if the device is little endian and is undefined otherwise).

• __kernel_exec(X, typen) (and kernel_exec(X, typen)) is 
defined as
__kernel __attribute__((work_group_size_hint(X, 1, 1))) \
    __attribute__((vec_type_hint(typen))).

• __IMAGE_SUPPORT__ is used to determine if the OpenCL device sup-
ports images. This is an integer constant of 1 if images are supported 
and is undefined otherwise. 

• __FAST_RELAXED_MATH__ is used to determine if the –cl-fast-
relaxed-math optimization option is specified in build options 
given to clBuildProgram. This is an integer constant of 1 if the –
cl-fast-relaxed-math build option is specified and is undefined 
otherwise.

The macro names defined by the C99 specification but not currently sup-
ported by OpenCL are reserved for future use.

Restrictions
OpenCL C implements the following restrictions. Some of these restric-
tions have already been described in this chapter but are also included 
here to provide a single place where the language restrictions are 
described.

• Kernel functions have the following restrictions:

• Arguments to kernel functions that are pointers must use the 
global, constant, or local qualifier.

• An argument to a kernel function cannot be declared as a pointer 
to a pointer(s).

• Arguments to kernel functions cannot be declared with the 
following built-in types: bool, half, size_t, ptrdiff_t,
intptr_t, uintptr_t, or event_t.

• The return type for a kernel function must be void.

• Arguments to kernel functions that are declared to be a struct can-
not pass OpenCL objects (such as buffers, images) as elements of 
the struct.
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• Bit field struct members are not supported.

• Variable-length arrays and structures with flexible (or unsized) arrays 
are not supported.

• Variadic macros and functions are not supported.

• The extern, static, auto, and register storage class specifiers are 
not supported.

• Predefined identifiers such as __func__ are not supported.

• Recursion is not supported.

• The library functions defined in the C99 standard headers—
assert.h, ctype.h, complex.h, errno.h, fenv.h, float.h,
inttypes.h, limits.h, locale.h, setjmp.h, signal.h,
stdarg.h, stdio.h, stdlib.h, string.h, tgmath.h, time.h,
wchar.h, and wctype.h—are not available and cannot be included 
by a program.

• The image types image2d_t and image3d_t can be specified only as 
the types of a function argument. They cannot be declared as local 
variables inside a function or as the return types of a function. An 
image function argument cannot be modified. An image type can-
not be used with the private, local, and constant address space 
qualifiers. An image type cannot be used with the read_write access 
qualifier, which is reserved for future use. An image type cannot 
be used to declare a variable, a structure or union field, an array of 
images, a pointer to an image, or the return type of a function.

• The sampler type sampler_t can be specified only as the type of a 
function argument or a variable declared in the program scope or 
the outermost scope of a kernel function. The behavior of a sampler 
variable declared in a non-outermost scope of a kernel function is 
implementation-defined. A sampler argument or a variable cannot be 
modified. The sampler type cannot be used to declare a structure or 
union field, an array of samplers, a pointer to a sampler, or the return 
type of a function. The sampler type cannot be used with the local
and global address space qualifiers.

• The event type event_t can be used as the type of a function argu-
ment except for kernel functions or a variable declared inside a func-
tion. The event type can be used to declare an array of events. The 
event type can be used to declare a pointer to an event, for example, 
event_t *event_ptr. An event argument or variable cannot be 
modified. The event type cannot be used to declare a structure or 
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union field, or for variables declared in the program scope. The event 
type cannot be used with the local, constant, and global address 
space qualifiers.

• The behavior of irreducible control flow in a kernel is implementa-
tion-defined. Irreducible control flow is typically encountered in code 
that uses gotos. An example of irreducible control flow is a goto
jumping inside a nested loop or a Duff’s device.
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Chapter 5

OpenCL C Built-In Functions

The OpenCL C programming language provides a rich set of built-in func-
tions for scalar and vector argument types. These can be categorized as

• Work-item functions

• Math functions

• Integer functions

• Common functions

• Geometric functions

• Relational functions

• Synchronization functions

• Async copy and prefetch functions

• Vector data load and store functions

• Atomic functions

• Miscellaneous vector functions

• Image functions

Many of these built-in functions are similar to the functions available 
in common C libraries (such as the functions defined in math.h). The 
OpenCL C functions support scalar and vector argument types. It is rec-
ommended that you use these functions for your applications instead of 
writing your own.

In this chapter, we describe these built-in functions with examples that 
show how to use them. Additional information that provides special 
insight into these functions, wherever applicable and helpful, is also 
provided.
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Work-Item Functions
Applications queue data-parallel and task-parallel kernels in OpenCL 
using the clEnqueueNDRangeKernel and clEnqueueTask APIs. For 
a data-parallel kernel that is queued for execution using clEnqueue-
NDRangeKernel, an application specifies the global work size—the total 
number of work-items that can execute this kernel in parallel—and local 
work size—the number of work-items to be grouped together in a work-
group. Table 5.1 describes the built-in functions that can be called by an 
OpenCL kernel to obtain information about work-items and work-groups 
such as the work-item’s global and local ID or the global and local work 
size.

Figure 5.1 gives an example of how the global and local work sizes speci-
fied in clEnqueueNDRangeKernel can be accessed by a kernel executing 
on the device. In this example, a kernel is executed over a global work size 
of 16 items and a work-group size of 8 items per group.

OpenCL does not describe how the global and local IDs map to work-
items and work-groups. An application, for example, cannot assume that 
a work-group whose group ID is 0 will contain work-items with global IDs 
0 ... get_local_size(0) - 1. This mapping is determined by the 
OpenCL implementation and the device on which the kernel is executing. 

get_work_dim = 1
get_global_size = 16

get_global_id = 11

get_local_id = 3

get_num_groups = 2

get_group_id = 0 get_local_size = 8

Input 6 1 1 0 9 2 4 1 1 9 7 6 8 2 2 5

Figure 5.1 Example of the work-item functions
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Table 5.1 Built-In Work-Item Functions

Function Description

uint get_work_dim() Returns the number of dimensions in use. This is the value given to 
the work_dim argument specified in clEnqueueNDRangeKernel.

For clEnqueueTask, this function returns 1.

size_t get_global_size(uint dimindx) Returns the number of global work-items specified for the dimension 
identified by dimindx. This value is given by the global_work_size
argument to clEnqueueNDRangeKernel. Valid values of dimindx
are 0 to get_work_dim() – 1. For other values of dimindx, get_
global_size() returns 1.

For clEnqueueTask, this function always returns 1.

size_t get_global_id(uint dimindx) Returns the unique global work-item ID value for the dimension 
identified by dimindx. The global work-item ID specifies the work-
item ID based on the number of global work-items specified to 
execute the kernel. Valid values of dimindx are 0 to get_work_
dim() – 1. For other values of dimindx, get_global_id()
returns 0.

For clEnqueueTask, this function always returns 0.

size_t get_local_size(uint dimindx) Returns the number of local work-items specified for the dimension 
identified by dimindx. This value is given by the local_work_size
argument to clEnqueueNDRangeKernel if local_work_size is not 
NULL; otherwise the OpenCL implementation chooses an appropriate 
local_work_size value. Valid values of dimindx are 0 to get_
work_dim() – 1. For other values of dimindx, get_local_size()
returns 1.

For clEnqueueTask, this function always returns 1.

continues
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Function Description

size_t get_local_id(uint dimindx) Returns the unique local work-item ID value, i.e., a work-item within 
a specific work-group for the dimension identified by dimindx. Valid 
values of dimindx are 0 to get_work_dim() – 1. For other values of 
dimindx, get_local_id() returns 0.

For clEnqueueTask, this function always returns 0.

size_t get_num_groups(uint dimindx) Returns the number of work-groups that will execute a kernel for the 
dimension identified by dimindx. Valid values of dimindx are 0 to 
get_work_dim() – 1. For other values of dimindx, get_num_
groups() returns 1.

For clEnqueueTask, this function always returns 1.

size_t get_group_id(uint dimindx) Returns the work-group ID, which is a number from 0 to get_num_
groups(dimindx) – 1. Valid values of dimindx are 0 to get_work_
dim() – 1. For other values of dimindx, get_group_id() returns 
0.

For clEnqueueTask, this function always returns 0.

size_t get_global_offset(uint dimindx) Returns the offset values specified in the global_work_offset
argument to clEnqueueNDRangeKernel. Valid values of  dimindx
are 0 to get_work_dim() – 1. For other values of dimindx, get_
global_offset() returns 0.

For clEnqueueTask, this function always returns 0.

Table 5.1 Built-In Work-Item Functions (Continued )
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Math Functions
OpenCL C implements the math functions described in the C99 speci-
fication. Applications that want to use these math functions include the 
math.h header in their codes. These math functions are available as built-
ins to OpenCL kernels.1

We use the generic type name gentype to indicate that the math func-
tions in Tables 5.2 and 5.3 take float, float2, float3, float4, float8,
float16, and, if the double-precision extension is supported, double,
double2, double3, double4, double8, or double16 as the type for the 
arguments. The generic type name gentypei refers to the int, int2,
int3, int4, int8, or int16 data types. The generic type name gentypef
refers to the float, float2, float3, float4, float8, or float16 data 
types. The generic type name gentyped refers to the double, double2,
double3, double4, double8, or double16 data types.

In addition to the math functions listed in Table 5.2, OpenCL C also 
implements two additional variants of the most commonly used math 
functions for single-precision floating-point scalar and vector data types. 
These additional math functions (described in Table 5.3) trade accuracy 
for performance and provide developers with options to make appropriate 
choices. These math functions can be categorized as 

• A subset of functions from Table 5.2 defined with the half_ prefix. 
These functions are implemented with a minimum of 10 bits of accu-
racy, that is, a ulp value <= 8192 ulp.

• A subset of functions from Table 5.2 defined with the native_ prefix. 
These functions typically have the best performance compared to 
the corresponding functions without the native_ prefix or with the 
half_ prefix. The accuracy (and in some cases the input ranges) of 
these functions is implementation-defined.

• half_ and native_ functions for the following basic operations: 
divide and reciprocal.

1 The math.h header does not need to be included in the OpenCL kernel.
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Table 5.2 Built-In Math Functions

Function Description

gentype acos(gentype x) Compute the arc cosine of x.

gentype acosh(gentype x) Compute the inverse hyperbolic cosine of x.

gentype acospi(gentype x) Compute acos(x)/p.

gentype asin(gentype x) Compute the arc sine of x.

gentype asinh(gentype x) Compute the inverse hyperbolic sine of x.

gentype asinpi(gentype x) Compute asin(x)/p.

gentype atan(gentype y_over_x) Compute the arc tangent of y_over_x.

gentype atan2(gentype y, gentype x) Compute the arc tangent of y/x.

gentype atanh(gentype x) Compute the hyperbolic arc tangent of x.

gentype atanpi(gentype x) Compute atan(x)/p.

gentype atan2pi(gentype y, 
                gentype x)

Compute atan2(y, c)/p.

gentype cbrt(gentype x) Compute the cube root of x.

gentype ceil(gentype x) Round to an integral value using the round-to-positive-infinity 
rounding mode.

gentype copysign(gentype x,
                 gentype y)

Returns x with its sign changed to match the sign of y.

gentype cos(gentype x) Compute the cosine of x.

gentype cosh(gentype x) Compute the hyperbolic cosine of x.

gentype cospi(gentype x) Compute cos(px).
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Function Description

gentype erfc(gentype x) Compute the complementary error function 1.0 – erf(x).

gentype erf(gentype x) Compute the error function. For argument x this is defined as

2

π
e −t

2

0

x

∫ dt

gentype exp(gentype x) Compute the base-e exponential of x.

gentype exp2(gentype x) Compute the base-2 exponential of x.

gentype exp10(gentype x) Compute the base-10 exponential of x.

gentype expm1(gentype x) Compute ex – 1.0.

gentype fabs(gentype x) Compute the absolute value of a floating-point number.

gentype fdim(gentype x,gentype y) Returns x – y if x > y, +0 if x is less than or equal to y.

gentype floor(gentype x) Round to an integral value using the round-to-negative-infinity 
rounding mode.

gentype fma(gentype a,
            gentype b, gentype c)

Returns the correctly rounded floating-point representation of the 
sum of c with the infinitely precise product of a and b. Rounding of 
intermediate products does not occur. Edge case behavior is per the 
IEEE 754-2008 standard.

gentype fmax(gentype x,gentype y)
gentypef fmax(gentypef x, float y)
gentyped fmax(gentyped x, double y)

Returns y if x < y; otherwise it returns x. If one argument is a NaN, 
fmax() returns the other argument. If both arguments are NaNs, 
fmax() returns a NaN.

continues
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Function Description

gentype fmin(gentype x,gentype y)
gentypef fmin(gentypef x, float y)
gentyped fmin(gentyped x, double y)

Returns y if y < x; otherwise it returns x. If one argument is a NaN, 
fmin() returns the other argument. If both arguments are NaNs, 
fmin() returns a NaN.

gentype fmod(gentype x,gentype y) Returns x – y * trunc(x/y).

gentype fract(gentype x,
             global gentype *iptr)
gentype fract (gentype x,
             local gentype *iptr)
gentype fract (gentype x,
             private gentype *iptr)

Returns fmin(x – floor(x), 0x1.fffffep-1f).

floor(x) is returned in iptr.

gentype frexp(gentype x,
             global intn *exp)
gentype frexp (gentype x,
             local intn *exp)
gentype frexp (gentype x,
             private intn *exp)

Extract mantissa and exponent from x. For each component the 
mantissa returned is a float with magnitude in the interval [1/2, 1)
or 0. Each component of x equals mantissa returned * 2exp.

gentype hypot(gentype x, gentype y) Compute the value of the square root of x2 + y2 without undue 
overflow or underflow.

intn ilogb(gentype x) Returns the exponent of x as an integer value.

gentype ldexp gentype x, intn exp)
gentype ldexp gentype x, int exp)

Returns x * 2exp.

gentype lgamma(gentype x)
gentype lgamma_r(gentype x,
              global intn *signp)
gentype lgamma_r(gentype x,
              local intn *signp)
gentype lgamma_r(gentype x,
              private intn *signp)

Compute the log gamma function given by

loge
t xx where x isdefined as e t dtΓ Γ( ) ( ) − −

∞

∫ 1

0

The sign of the gamma function is returned in the signp argument 
of lgamma_r.

Table 5.2 Built-In Math Functions (Continued )
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Function Description

gentype log(gentype x) Compute the natural logarithm of x.

gentype log2(gentype x) Compute the base-2 logarithm of x.

gentype log10(gentype x) Compute the base-10 logarithm of x.

gentype log1p(gentype x) Compute loge(1.0 + x).

gentype logb(gentype x) Compute the exponent of x, which is the integral part of logr|x|.

gentype mad(gentype a,
            gentype b, gentype c)

mad approximates a * b + c. Whether or how the product of a * b
is rounded and how supernormal or subnormal intermediate prod-
ucts are handled are not defined. mad is intended to be used where 
speed is preferred over accuracy.

gentype maxmag(gentype x, gentype y) Returns x if |x| > |y|, y if |y| > |x|, otherwise fmax(x, y).

gentype minmag(gentype x, gentype y) Returns x if |x| < |y|, y if |y| < |x|, otherwise fmin(x, y).

gentype modf(gentype x,
            global gentype *iptr)
gentype modf(gentype x,
            local gentype *iptr)
gentype modf(gentype x,
            private gentype *iptr)

Decompose a floating-point number. The modf function breaks the 
argument x into integral and fractional parts, each of which has the 
same sign as the argument. It stores the integral part in the object 
pointed to by iptr and returns the fractional part.

float nan(uint nancode);
floatn nan(uintn nancode);
double nan(uint nancode);
doublen nan(uintn nancode);

Returns a quiet NaN. The nancode may be placed in the significand 
of the resulting NaN.

gentype nextafter(gentype x,
                  gentype y);

Compute the next representable single- or double-precision floating-
point value following x in the direction of y. Thus, if y is less than x,
nextafter returns the largest representable floating-point number 
less than x.

continues
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Function Description

gentype pow(gentype x, gentype y) Compute x to the power y.

gentype pown(gentype x, intn y) Compute x to the power y, where y is an integer.

gentype powr(gentype x, gentype y) Compute x to the power y, where x >= 0.

gentype remainder(gentype x,
                  gentype y)

Compute the value r such that r = x – n * y, where n is the 
integer nearest the exact value of x/y. If there are two integers closest 
to x/y, n will be the even one. If r is zero, it is given the same sign 
as x.

gentype remquo(gentype x, gentype y,
              global gentypei *quo)
gentype remquo(gentype x, gentype y,
              local gentypei *quo)
gentype remquo(gentype x, gentype y,
             private gentypei *quo)

Compute the value r such that r = x – n * y, where n is the 
integer nearest the exact value of x/y. If there are two integers closest 
to x/y, n will be the even one. If r is zero, it is given the same sign 
as x.

This is the same value that is returned by the remainder function. 
remquo also calculates the lower seven bits of the integral quotient 
x/y and gives that value the same sign as x/y. It stores this signed 
value in the object pointed to by quo.

gentype rint(gentype x) Round to integral value (using round-to-nearest rounding mode) in 
floating-point format.

gentype rootn(gentype x, intn y) Compute x to the power 1/y.

gentype round(gentype x) Return the integral value nearest to x, rounding halfway cases away 
from zero, regardless of the current rounding direction.

gentype rsqrt(gentype x) Compute the inverse square root of x.

gentype sin(gentype x) Compute the sine of x.

Table 5.2 Built-In Math Functions (Continued )
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Function Description

gentype sincos(gentype x,
          global gentype *cosval);
gentype sincos(gentype x,
          local gentype *cosval);
gentype sincos(gentype x,
          private gentype *cosval);

Compute the sine and cosine of x. The computed sine is the return 
value and the computed cosine is returned in cosval.

gentype sinh(gentype x) Compute the hyperbolic sine of x.

gentype sinpi(gentype x) Compute sin(px).

gentype sqrt(gentype x) Compute the square root of x.

gentype tan(gentype x) Compute the tangent of x.

gentype tanh(gentype x) Compute the hyperbolic tangent of x.

gentype tanpi(gentype x) Compute tan(px).

gentype tgamma(gentype x) Compute the gamma function.

gentype trunc(gentype x) Round to integral value using the round-to-zero rounding mode.
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Table 5.3 Built-In half_ and native_ Math Functions

Function Description

gentypef half_cos(gentypef x) Compute the cosine of x. x must be in the range -216… +216.

gentypef half_divide(gentypef x,
                     gentypef y)

Compute x/y.

gentypef half_exp(gentypef x) Compute the base-e exponential of x.

gentypef half_exp2(gentypef x) Compute the base-2 exponential of x.

gentypef half_exp10(gentypef x) Compute the base-10 exponential of x.

gentypef half_log(gentypef x) Compute the natural logarithm of x.

gentypef half_log2(gentypef x) Compute the base-2 logarithm of x.

gentypef half_log10(gentypef x) Compute the base-10 logarithm of x.

gentypef half_powr(gentypef x,
                   gentypef y)

Compute x to the power y, where x >= 0.

gentypef half_recip(gentypef x) Compute the reciprocal of x.

gentypef half_rsqrt(gentypef x) Compute the inverse square root of x.

gentypef half_sin(gentypef x) Compute the sine of x. x must be in the range -216… +216.

gentypef half_sqrt(gentypef x) Compute the square root of x.

gentypef half_tan(gentypef x) Compute the tangent of x. x must be in the range -216… +216.

gentypef native_cos(gentypef x) Compute the cosine of x over an implementation-defined range. The 
maximum error is implementation-defined.

gentypef native_divide(gentypef x,
                       gentypef y)

Compute x/y over an implementation-defined range. The maximum 
error is implementation-defined.
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Function Description

gentypef native_exp(gentypef x) Compute the base-e exponential of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_exp2(gentypef x) Compute the base-2 exponential of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_exp10(gentypef x) Compute the base-10 exponential of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_log(gentypef x) Compute the natural logarithm of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_log2(gentypef x) Compute the base-2 logarithm of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_log10(gentypef x) Compute the base-10 logarithm of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_recip(gentypef x) Compute the reciprocal of x over an implementation-defined range. 
The maximum error is implementation-defined.

gentypef native_rsqrt(gentypef x) Compute the inverse square root of x over an implementation-defined 
range. The maximum error is implementation-defined.

gentypef native_sin(gentypef x) Compute the sine of x over an implementation-defined range. The 
maximum error is implementation-defined.

gentypef native_sqrt(gentypef x) Compute the square root of x over an implementation-defined range. 
The maximum error is implementation-defined.

gentypef native_tan(gentypef x) Compute the tangent of x over an implementation-defined range. The 
maximum error is implementation-defined.
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Floating-Point Pragmas

The only pragma supported by OpenCL C is the FP_CONTRACT pragma. 
The FP_CONTRACT pragma provides a way to disallow contracted expres-
sions and is defined to be

#pragma OPENCL FP_CONTRACT on-off-switch

on-off-switch is ON, OFF, or DEFAULT. The DEFAULT value is ON.

The FP_CONTRACT pragma can be used to allow (if the state is ON) or dis-
allow (if the state is OFF) the implementation to contract expressions. If 
FP_CONTRACT is ON, a floating-point expression may be contracted, that is, 
evaluated as though it were an atomic operation. For example, the expression 
a * b + c can be replaced with an FMA (fused multiply-add) instruction.

Each FP_CONTRACT pragma can occur either outside external declarations 
or preceding all explicit declarations and statements inside a compound 
statement. When outside external declarations, the pragma takes effect 
from its occurrence until another FP_CONTRACT pragma is encountered, 
or until the end of the translation unit. When inside a compound state-
ment, the pragma takes effect from its occurrence until another FP_
CONTRACT pragma is encountered (including within a nested compound 
statement), or until the end of the compound statement; at the end of a 
compound statement the state for the pragma is restored to its condition 
just before the compound statement. If this pragma is used in any other 
context, the behavior is undefined.

Floating-Point Constants

The constants described in Table 5.4 are available. The constants with 
the _F suffix are of type float and are accurate within the precision of 
the float type. The constants without the _F suffix are of type double,
are accurate within the precision of the double type, and are avail-
able only if the double-precision extension is supported by the OpenCL 
implementation.

Table 5.4 Single- and Double-Precision Floating-Point Constants

Constant Description

M_E_F
M_E

Value of e

M_LOG2E_F
M_LOG2E

Value of log2e
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Constant Description

M_LOG10E_F
M_LOG10E

Value of log10e

M_LN2_F
M_LN2

Value of loge2

M_LN10_F
M_LN10

Value of loge10

M_PI_F
M_PI

Value of 

M_PI_2_F
M_PI_2

Value of /2

M_PI_4_F
M_PI_4

Value of /4

M_1_PI_F
M_1_PI

Value of 1/

M_2_PI_F
M_2_PI

Value of 2/

M_2_SQRTPI_F M_2_SQRTPI Value of 2/sqrt( )

M_SQRT2_F
M_SQRT2

Value of sqrt( )

M_SQRT1_2_F
M_SQRT1_2

Value of 1/sqrt( )

Relative Error as ulps

Table 5.5 describes the maximum relative error defined as ulp (units in 
the last place) for single-precision and double-precision floating-point 
basic operations and functions. The ulp2 is defined thus:

If x is a real number that lies between two finite consecutive floating-
point numbers a and b, without being equal to one of them, then ulp(x) = 
|b − a|, otherwise ulp(x) is the distance between the two non-equal finite 
floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.

2 This definition of ulp was taken with consent from Jean-Michel Muller with 
slight clarification for the behavior of zero. Refer to ftp://ftp.inria.fr/INRIA/
publication/publi-pdf/RR/RR-5504.pdf.

Table 5.4 Single- and Double-Precision Floating-Point Constants (Continued )
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The following list provides additional clarification of ulp values and 
rounding mode behavior:

• The round-to-nearest rounding mode is the default rounding mode for 
the full profile. For the embedded profile, the default rounding mode 
can be either round to zero or round to nearest. If CL_FP_ROUND_TO_
NEAREST is supported in CL_DEVICE_SINGLE_FP_CONFIG (refer to 
Table 4.3 of the OpenCL 1.1 specification), then the embedded profile 
supports round to nearest as the default rounding mode; otherwise 
the default rounding mode is round to zero.

• 0 ulp is used for math functions that do not require rounding.

• The ulp values for the built-in math functions lgamma and lgamma_r
are currently undefined.

Table 5.5 ulp Values for Basic Operations and Built-In Math Functions

Function

Single-Precision 
Minimum Accuracy—
ulp Value

Double-Precision 
Minimum Accuracy—
ulp Value

x + y Correctly rounded Correctly rounded

x – y Correctly rounded Correctly rounded

x * y Correctly rounded Correctly rounded

1.0f/x <= 2.5 ulp Correctly rounded

x/y <= 2.5 ulp Correctly rounded

acos <= 4 ulp <= 4 ulp

acospi <= 5 ulp <= 5 ulp

asin <= 4 ulp <= 4 ulp

asinpi <= 5 ulp <= 5 ulp

atan <= 5 ulp <= 5 ulp

atan2 <= 6 ulp <= 6 ulp

atanpi <= 5 ulp <= 5 ulp

atan2pi <= 6 ulp <= 6 ulp

acosh <= 4 ulp <= 4 ulp

asinh <= 4 ulp <= 4 ulp
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Function

Single-Precision 
Minimum Accuracy—
ulp Value

Double-Precision 
Minimum Accuracy—
ulp Value

atanh <= 5 ulp <= 5 ulp

cbrt <= 2 ulp <= 2 ulp

ceil Correctly rounded Correctly rounded

copysign 0 ulp 0 ulp

cos <= 4 ulp <= 4 ulp

cosh <= 4 ulp <= 4 ulp

cospi <= 4 ulp <= 4 ulp

erfc <= 16 ulp <= 16 ulp

erf <= 16 ulp <= 16 ulp

exp <= 3 ulp <= 3 ulp

exp2 <= 3 ulp <= 3 ulp

exp10 <= 3 ulp <= 3 ulp

expm1 <= 3 ulp <= 3 ulp

fabs 0 ulp 0 ulp

fdim Correctly rounded Correctly rounded

floor Correctly rounded Correctly rounded

fma Correctly rounded Correctly rounded

fmax 0 ulp 0 ulp

fmin 0 ulp 0 ulp

fmod 0 ulp 0 ulp

fract Correctly rounded Correctly rounded

frexp 0 ulp 0 ulp

hypot <= 4 ulp <= 4 ulp

ilogb 0 ulp 0 ulp

continues

Table 5.5 ulp Values for Basic Operations and Built-In Math Functions (Continued)
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Function

Single-Precision 
Minimum Accuracy—
ulp Value

Double-Precision 
Minimum Accuracy—
ulp Value

ldexp Correctly rounded Correctly rounded

log <= 3 ulp <= 3 ulp

log2 <= 3 ulp <= 3 ulp

log10 <= 3 ulp <= 3 ulp

log1p <= 2 ulp <= 2 ulp

logb 0 ulp 0 ulp

mad Any value allowed 
(infinite ulp)

Any value allowed 
(infinite ulp)

maxmag 0 ulp 0 ulp

minmag 0 ulp 0 ulp

modf 0 ulp 0 ulp

nan 0 ulp 0 ulp

nextafter 0 ulp 0 ulp

pow <= 16 ulp <= 16 ulp

pown <= 16 ulp <= 16 ulp

powr <= 16 ulp <= 16 ulp

remainder 0 ulp 0 ulp

remquo 0 ulp 0 ulp

rint Correctly rounded Correctly rounded

rootn <= 16 ulp <= 16 ulp

round Correctly rounded Correctly rounded

rsqrt <= 2 ulp <= 2 ulp

sin <= 4 ulp <= 4 ulp

sincos <= 4 ulp for sine and cosine 
values

<= 4 ulp for sine and cosine 
values

Table 5.5 ulp Values for Basic Operations and Built-In Math Functions (Continued)
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Table 5.5 ulp Values for Basic Operations and Built-In Math Functions (Continued)

Function

Single-Precision 
Minimum Accuracy—
ulp Value

Double-Precision 
Minimum Accuracy—
ulp Value

sinh <= 4 ulp <= 4 ulp

sinpi <= 4 ulp <= 4 ulp

sqrt <= 3 ulp Correctly rounded

tan <= 5 ulp <= 5 ulp

tanh <= 5 ulp <= 5 ulp

tanpi <= 6 ulp <= 6 ulp

tgamma <= 16 ulp <= 16 ulp

trunc Correctly rounded Correctly rounded

half_cos <= 8192 ulp N/a

half_divide <= 8192 ulp N/a

half_exp <= 8192 ulp N/a

half_exp2 <= 8192 ulp N/a

half_exp10 <= 8192 ulp N/a

half_log <= 8192 ulp N/a

half_log2 <= 8192 ulp N/a

half_log10 <= 8192 ulp N/a

half_power <= 8192 ulp N/a

half_recip <= 8192 ulp N/a

half_rsqrt <= 8192 ulp N/a

half_sin <= 8192 ulp N/a

half_sqrt <= 8192 ulp N/a

half_tan <= 8192 ulp N/a

native_cos Implementation-defined N/a

native_divide Implementation-defined N/a

continues
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Integer Functions
Table 5.6 describes the built-in integer functions available in OpenCL 
C. These functions all operate component-wise. The description is per 
component. 

We use the generic type name gentype to indicate that the function 
can take char, char2, char3, char4, char8, char16, uchar, uchar2,
uchar3, uchar4, uchar8, uchar16, short, short2, short3, short4,
short8, short16, ushort, ushort2, ushort3, ushort4, ushort8,
ushort16, int, int2, int3, int4, int8, int16, uint, uint2, uint3,
uint4, uint8, uint16, long, long2, long3, long4, long8, long16,
ulong, ulong2, ulong3, ulong4, ulong8, or ulong16 as the type for the 
arguments.

We use the generic type name ugentype to refer to unsigned versions of 
gentype. For example, if gentype is char4, ugentype is uchar4.

Table 5.5 ulp Values for Basic Operations and Built-In Math Functions (Continued)

Function

Single-Precision 
Minimum Accuracy—
ulp Value

Double-Precision 
Minimum Accuracy—
ulp Value

native_exp Implementation-defined N/a

native_exp2 Implementation-defined N/a

native_exp10 Implementation-defined N/a

native_log Implementation-defined N/a

native_log2 Implementation-defined N/a

native_log10 Implementation-defined N/a

native_powr Implementation-defined N/a

native_recip Implementation-defined N/a

native_rsqrt Implementation-defined N/a

native_sin Implementation-defined N/a

native_sqrt Implementation-defined N/a

native_tan Implementation-defined N/a
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Table 5.6 Built-In Integer Functions

Function Description

ugentype abs(gentype x) Returns |x|.

ugentype abs_diff(gentype x, gentype y) Returns |x – y| without modulo overflow.

gentype add_sat(gentype x, gentype y) Returns x + y and saturates the result.

gentype hadd(gentype x, gentype y) Returns (x + y) >> 1. The intermediate sum does not 
modulo overflow.

gentype rhadd(gentype x, gentype y) Returns (x + y + 1) >> 1. The intermediate sum does not 
modulo overflow.

gentype clamp(gentype x,
             gentype minval,
             gentype maxval)
gentype clamp(gentype x,
             sgentype minval,
             sgentype maxval)

Returns min(max(x, minval), maxval).

Results are undefined if minval > maxval.

gentype clz(gentype x) Returns the number of leading 0 bits in x, starting at the most 
significant bit position.

gentype mad_hi(gentype a,
               gentype b, gentype c)

Returns mul_hi(a, b) + c.

gentype mad_sat(gentype a,
                gentype b, gentype c)

Returns a * b + c and saturates the result.

gentype max(gentype x, gentype y)
gentype max (gentype x, sgentype y)

Returns y if x < y; otherwise it returns x.

gentype max (gentype x, gentype y)
gentype max (gentype x, sgentype y)

Returns y if y < x; otherwise it returns x.

continues
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Function Description

gentype mul_hi(gentype x, gentype y) Computes x * y and returns the high half of the product of x
and y.

gentype rotate(gentype v, gentype i) For each element in v, the bits are shifted left by the number of 
bits given by the corresponding element in i (subject to the 
usual shift modulo rules described in the “Shift Operators” 
subsection of “Vector Operators” in Chapter 4). Bits shifted off 
the left side of the element are shifted back in from the right.

gentype sub_sat(gentype x, gentype y) Returns x - y and saturates the result.

short upsample(char hi, uchar lo)
ushort upsample (uchar hi, uchar lo)
shortn upsample (charn hi, ucharn lo)
ushortn upsample (ucharn hi, ucharn lo)

int upsample (short hi, ushort lo)
uint upsample (ushort hi, ushort lo)
intn upsample (shortn hi, ushortn lo)
uintn upsample (ushortn hi, ushortn lo)

long upsample (int hi, uint lo)
ulong upsample (uint hi, uint lo)
longn upsample (intn hi, uintn lo)
ulongn upsample (uintn hi, uintn lo)

If hi and lo are scalar:

result = ((short)hi << 8) | lo
   result = ((ushort) hi << 8) | lo

   result = ((int)hi << 16) | lo
   result = ((uint) hi << 16) | lo

   result = ((long)hi << 32) | lo
   result = ((ulong) hi << 32) | lo

If hi and lo are scalar, then for each element of the vector: 

   result[i] = ((short)hi[i] << 8) | lo[i]
   result[i] = ((ushort)hi[i] << 8) | lo[i]

   result[i] = ((int)hi[i] << 16) | lo[i]
   result[i] = ((uint)hi[i] << 16) | lo[i]

   result[i] = ((long)hi[i] << 32) | lo[i]
   result[i] = ((ulong)hi[i] << 32) | lo[i]

Table 5.6 Built-In Integer Functions (Continued )
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Function Description

gentype mad24(gentype x,
              gentype y, gentype z)

Multiply two 24-bit integer values x and y using mul24 and add 
the 32-bit integer result to the 32-bit integer z.

gentype mul24(gentype x, gentype y) Multiply two 24-bit integer values x and y. x and y are 32-bit 
integers but only the low 24 bits are used to perform the 
multiplication. mul24 should be used only when values in x
and y are in the range [-223, 223 - 1] if x and y are signed 
integers and in the range [0, 224-1] if x and y are unsigned 
integers. If x and y are not in this range, the multiplication 
result is implementation-defined.
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We use the generic type name sgentype to indicate that the function can 
take a scalar data type, that is, char, uchar, short, ushort, int, uint,
long, or ulong, as the argument type. For built-in integer functions that 
take gentype and sgentype arguments, the gentype argument must be 
a vector or scalar of the sgentype argument. For example, if sgentype
is uchar, gentype must be uchar, uchar2, uchar3, uchar4, uchar8, or 
uchar16.

The following macro names are available. The values are constant expres-
sions suitable for use in #if processing directives.

#define CHAR_BIT 8

#define CHAR_MAX SCHAR_MAX

#define CHAR_MIN SCHAR_MIN

#define INT_MAX 2147483647

#define INT_MIN (-2147483647 – 1)

#define LONG_MAX 0x7fffffffffffffffL

#define LONG_MIN (-0x7fffffffffffffffL – 1)

#define SCHAR_MAX 127

#define SCHAR_MIN (-127 – 1)

#define SHRT_MAX 32767

#define SHRT_MIN (-32767 – 1)

#define UCHAR_MAX 255

#define USHRT_MAX 65535

#define UINT_MAX 0xffffffff

#define ULONG_MAX 0xffffffffffffffffUL

Common Functions
Table 5.7 describes the built-in common functions available in OpenCL 
C. These functions all operate component-wise. The description is per 
component. 
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Table 5.7 Built-In Common Functions

Function Description

gentype clamp(gentype x,
              gentype minval,
              gentype maxval)
gentypef clamp(gentypef x,
               float minval,
               float maxval)
gentyped clamp(gentyped x,
               double minval,
               double maxval)

Returns fmin(fmax(x, minval), maxval).

Results are undefined if minval > maxval.

gentype degrees(gentype radians) Converts radians to degrees; i.e., (180/p) * radians.

gentype max(gentype x, gentype y)
gentypef max (gentypef x, float y)
gentyped max (gentyped x, double y)

Returns y if x < y; otherwise it returns x. This is similar to fmax
described in Table 5.2 except that if x or y is infinite or NaN, the 
return values are undefined.

gentype min(gentype x, gentype y)
gentypef min(gentypef x, float y)
gentyped min(gentyped x, double y)

Returns y if y < x; otherwise it returns x. This is similar to fmin
described in Table 5.2 except that if x or y is infinite or NaN, the 
return values are undefined.

gentype mix(gentype x,
            gentype y, gentype a)
gentypef mix(gentypef x,
             float y, gentype a)
gentyped mix(gentyped x,
             double y, gentype a)

Returns the linear blend of x and y implemented as

x + (y – x) * a

a must be a value in the range 0.0 … 1.0. If a is not in this range, 
the return values are undefined.

gentype radians(gentype degrees) Converts degrees to radians; i.e., (p/180) * degrees.

continues
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Function Description

gentype step(gentype edge, gentype x)
gentypef step(float edge, gentypef x)
gentyped step(double edge, gentyped x)

Returns 0.0 if x < edge; otherwise it returns 1.0. The step
function can be used to create a discontinuous jump at an arbitrary 
point.

gentype smoothstep(gentype edge0,
                   gentype edge1,
                   gentype x)
gentypef smoothstep(float edge0,
                    float edge1,
                    gentypef x)
gentyped smoothstep(double edge0,
                    double edge1,
                    gentyped x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs a 
smooth hermite interpolation between 0 and 1 when edge0 < x < 
edge1. This is useful in cases where a threshold function with a 
smooth transition is needed.

This is equivalent to the following where t is the same type as x:

t = clamp((x – edge0)/(edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t)

The results are undefined if edge0 >= edge1 or if x, edge0, or 
edge1 is a NaN.

gentype sign(gentype x) Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x = +0.0, or -1.0
if x < 0. Returns 0.0 if x is a NaN.

Table 5.7 Built-In Common Functions (Continued )



ptg

Relational Functions 175

We use the generic type name gentype to indicate that the function can 
take float, float2, float3, float4, float8, or float16 and, if the 
double-precision extension is supported, double, double2, double3,
double4, double8, or double16 as the type for the arguments.

We use the generic type name gentypef to indicate that the function can 
take float, float2, float3, float4, float8, or float16 as the type 
for the arguments and the generic type name gentyped to indicate that 
the function can take double, double2, double3, double4, double8, or 
double16 as the type for the arguments.

Geometric Functions
Table 5.8 describes the built-in geometric functions available in OpenCL C. 
These functions all operate component-wise. The description is per 
component. 

We use the generic type name gentypef to indicate that the function can 
take float, float2, float3, float4, float8, or float16 arguments. If 
the double-precision extension is supported, the generic type name gen-
typed indicates that the function can take double, double2, double3,
double4, double8, or double16 as the type for the arguments.

Information on how these geometric functions may be implemented and 
additional clarification of the behavior of some of the geometric functions 
is given here:

• The geometric functions can be implemented using contractions such 
as mad or fma.

• The fast_ variants provide developers with an option to choose per-
formance over accuracy.

• The distance, length, and normalize functions compute the 
results without overflow or extraordinary precision loss due to 
underflow.

Relational Functions
Table 5.9 describes the built-in relational functions available in OpenCL 
C. These functions all operate component-wise. The description is per 
component. 



ptg

176 
C

hapter 5: O
penC

L C
 B

uilt-In Functions

Table 5.8 Built-In Geometric Functions

Function Description

float4 cross(float4 p0, float4 p1)
float3 cross(float3 p0, float3 p1)
double4 cross(double4 p0, double4 p1)
double3 cross(double3 p0, double3 p1)

Returns the cross-product of p0.xyz and p1.xyz. The w compo-
nent of a 4-component vector result returned will be 0.

The cross-product is specified only for a 3- or 4-component 
vector.

float dot(gentypef p0, gentypef p1)
double dot(gentyped p0, gentyped p1)

Returns the dot product of p0 and p1.

float distance(gentypef p0, gentypef p1)
double distance(gentyped p0, gentyped p1)

Returns the distance between p0 and p1. This is calculated as 
length(p0 – p1).

float length(gentypef p)
double length(gentyped p)

Returns the length of vector p, i.e., 

p.x2 + p.y2 + …

The length is calculated without overflow or extraordinary 
precision loss due to underflow.

gentypef normalize(gentypef p)
gentyped normalize(gentyped p)

Returns a vector in the same direction as p but with a length of 
1.

normalize(p) function returns p if all elements of p are zero. 

normalize(p) returns a vector full of NaNs if any element is a 
NaN.

normalize(p) for which any element in p is infinite proceeds as 
if the elements in p were replaced as follows:

for(i=0;i<sizeof(p)/sizeof(p[0]);i++)
p[i] = isinf(p[i])

                                  ?
 copysign(1.0, p[i])
                  : 0.0 * p[i];

float fast_distance(gentypef p0,
                    gentypef p1)

Returns fast_length(p0 – p1).
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Function Description

float fast_length(gentypef p) Returns the length of vector p computed as 

half_sqrt(p.x2 + p.y2 + …)

gentypef fast_normalize(gentypef p) Returns a vector in the same direction as p but with a length 
of 1.

fast_normalize is computed as

p * half_sqrt(p.x2 + p.y2 + …)

The result will be within 8192 ulps error from the infinitely 
precise result of

    if (all(p == 0.0f))

result = p;

    else

result = p / sqrt(p.x2 + p.y2 + …)

It has the following exceptions:

• If the sum of squares is greater than FLT_MAX, then the value 
of the floating-point values in the result vector is undefined.

• If the sum of squares is less than FLT_MIN, then the imple-
mentation may return back p.

• If the device is in “denorms are flushed to zero” mode, 
individual operand elements with magnitude less than 
sqrt(FLT_MIN) may be flushed to zero before proceeding 
with the calculation.
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Table 5.9 Built-In Relational Functions

Function Description

int isequal(float x, float y)
int isequal(double x, double y)
intn isequal(floatn x, floatn y)
longn isequal(doublen x, doublen y)

Returns the component-wise compare of x == y.

int isnotequal(float x, float y)
int isnotequal(double x, double y)
intn isnotequal(floatn x, floatn y)
longn isnotequal(doublen x, doublen y)

Returns the component-wise compare of x! = y.

int isgreater(float x, float y)
int isgreater(double x, double y)
intn isgreater(floatn x, floatn y)
longn isgreater(doublen x, doublen y)

Returns the component-wise compare of x > y.

int isgreaterequal(float x, float y)
int isgreaterequal(double x, double y)
intn isgreaterequal(floatn x, floatn y)
longn isgreaterequal(doublen x, doublen y)

Returns the component-wise compare of x >= y.

int isless(float x, float y)
int isless(double x, double y)
intn isless(floatn x, floatn y)
longn isless(doublen x, doublen y)

Returns the component-wise compare of x < y.

int islessequal(float x, float y)
int islessequal(double x, double y)
intn islessequal(floatn x, floatn y)
longn islessequal(doublen x, doublen y)

Returns the component-wise compare of x <= y.

int islessgreater(float x, float y)
int islessgreater(double x, double y)
intn islessgreater(floatn x, floatn y)
longn islessgreater(doublen x, doublen y)

Returns the component-wise compare of (x < y) || (x > y).
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Function Description

int isfinite(float x)
int isfinite(double x)
intn isfinite(floatn x)
longn isfinite(doublen x)

Tests for the finite value of x.

int isinf(float x)
int isinf(double x)
intn isinf(floatn x)
longn isinf(doublen x)

Tests for the infinite value (positive or negative) of x.

int isnan(float x)
int isnan(double x)
intn isnan(floatn x)
longn isnan(doublen x)

Tests for a NaN.

int isnormal(float x)
int isnormal(double x)
intn isnormal(floatn x)
longn isnormal(doublen x)

Tests for a normal value (i.e., x is neither zero, denormal,
infinite, nor NaN).

int isordered(float x, float y)
int isordered(double x, double y)
intn isordered(floatn x, floatn y)
longn isordered(doublen x, doublen y)

Tests if arguments are ordered. isordered takes arguments x
and y and returns the result 

isequal(x, x) && isequal(y, y)

int isunordered(float x, float y)
int isunordered(double x, double y)
intn isunordered(floatn x, floatn y)
longn isunordered(doublen x, doublen y)

Tests if arguments are unordered. isunordered takes arguments 
x and y, returning non-zero if x or y is NaN, and zero otherwise.

int signbit(float x)
int signbit(double x)
intn signbit(floatn x)
longn signbit(doublen x)

Tests for sign bit. The scalar version of the function returns a 1 if 
the sign bit in the floating-point value of x is set, else it returns 
0. The vector version of the function returns the following for 
each component: a -1 if the sign bit in the floating-point value is 
set, else 0.
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The functions isequal, isnotequal, isgreater, isgreaterequal,
isless, islessequal, islessgreater, isfinite, isinf, isnan,
isnormal, isordered, isunordered, and signbit in Table 5.9 return a 
0 if the specified relation is false and a 1 if the specified relation is true
for scalar argument types. These functions return a 0 if the specified rela-
tion is false and a -1 (i.e., all bits set) if the specified relation is true for 
vector argument types.

The functions isequal, isgreater, isgreaterequal, isless,
islessequal, and islessgreater return 0 if either argument is not a 
number (NaN). isnotequal returns 1 if one or both arguments are NaN
and the argument type is a scalar and returns -1 if one or both arguments 
are NaN and the argument type is a vector.

Table 5.10 describes additional relational functions supported by OpenCL 
C. We use the generic type name gentype to indicate that the func-
tion can take char, char2, char3, char4, char8, char16, uchar,
uchar2, uchar3, uchar4, uchar8, uchar16, short, short2, short3,
short4, short8, short16, ushort, ushort2, ushort3, ushort4, ush-
ort8, ushort16, int, int2, int3, int4, int8, int16, uint, uint2,
uint3, uint4, uint8, uint16, long, long2, long3, long4, long8,
long16, ulong, ulong2, ulong3, ulong4, ulong8, ulong16, float,
float2, float3, float4, float8, float16, and, if the double-precision 

Table 5.10 Additional Built-In Relational Functions

Function Description

int any(sgentype x) Returns 1 if the most significant bit in any compo-
nent of x is set; otherwise returns 0.

int all(sgentype x) Returns 1 if the most significant bit in all compo-
nents of x is set; otherwise returns 0.

gentype bitselect(gentype a,
                 gentype b,
                 gentype c)

Each bit of the result is the corresponding bit of a if 
the corresponding bit of c is 0. Otherwise it is the 
corresponding bit of b.

gentype select(gentype a,
              gentype b,
              sgentype c)
gentype select(gentype a,
              gentype b,
              ugentype c)

For each component of a vector type

result[i] = if MSB of c[i] is set ? 
b[i] : a[i]

For a scalar type

result = c ? b : a

sgentype and ugentype must have the same 
number of elements and bits as gentype.
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extension is supported, double, double2, double3, double4, double8,
or double16 as the type for the arguments.

We use the generic type name sgentype to refer to the signed integer 
types char, char2, char3, char4, char8, char16, short, short2,
short3, short4, short8, short16, int, int2, int3, int4, int8,
int16, long, long2, long3, long4, long8, or long16.

We use the generic type name ugentype to refer to the signed integer 
types uchar, uchar2, uchar3, uchar4, uchar8, uchar16, ushort,
ushort2, ushort3, ushort4, ushort8, ushort16, uint, uint2, uint3,
uint4, uint8, uint16, ulong, ulong2, ulong3, ulong4, ulong8, or 
ulong16.

Vector Data Load and Store Functions
Table 5.11 describes the built-in functions that allow you to read and write 
vector types from a pointer to memory. We use the generic type name 
gentype to indicate the scalar built-in data types char, uchar, short,
ushort, int, uint, long, ulong, float, or double. We use the generic 
type name gentypen to indicate the n-element vectors of gentype ele-
ments. We use the type name floatn, doublen, and halfn to represent 
n-element vectors of float, double, and half elements, respectively. The 
suffix n is also used in the function names (such as vloadn, vstoren), 
where n = 2, 3, 4, 8, or 16.

Table 5.11 Built-In Vector Data Load and Store Functions

Function Description

gentypen vloadn(size_t offset,
           const global gentype *p)
gentypen vloadn(size_t offset,
           const local gentype *p)
gentypen vloadn(size_t offset,
           const constant gentype *p)
gentypen vloadn(size_t offset,
           const private gentype *p)

Returns sizeof(gentypen) bytes of data 
read from address (p + (offset * n)).

The address computed as (p + (offset
* n)) must be 8-bit aligned if gentype is 
char or uchar; 16-bit aligned if gentype
is short or ushort; 32-bit aligned if 
gentype is int, uint, or float; 64-bit 
aligned if gentype is long, ulong, or 
double.

vloadn is used to do an unaligned vector 
load.

continues
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Function Description

gentypen vstoren(gentypen data,
                size_t offset,
                global gentype *p)
gentypen vstoren(gentypen data,
                size_t offset,
                local gentype *p)
gentypen vstoren(gentypen data,
                size_t offset,
                private gentype *p)

Write sizeof(gentypen) bytes given by 
data to address (p + (offset * n)).

The address computed as (p + (offset
* n)) must be 8-bit aligned if gentype is 
char or uchar; 16-bit aligned if gentype
is short or ushort; 32-bit aligned if 
gentype is int, uint, or float; 64-bit 
aligned if gentype is long, ulong, or 
double.

vstoren is used to do an unaligned 
vector store.

float vload_half(size_t offset,
           const global half *p)
float vload_half(size_t offset,
           const local half *p)
float vload_half(size_t offset,
           const constant half *p)
float vload_half(size_t offset,
           const private half *p)

Returns sizeof(half) bytes of data read 
from address (p + offset).

The data read is interpreted as a half
value. The half value is converted to a 
float value and the float value is 
returned. The read address, which is 
computed as (p + offset), must be 
16-bit aligned.

floatn vload_halfn(size_t offset,
           const global half *p)
floatn vload_halfn(size_t offset,
           const local half *p)
floatn vload_halfn(size_t offset,
           const constant half *p)
floatn vload_halfn(size_t offset,
           const private half *p)

Returns sizeof(halfn) bytes of data 
read from address (p + (offset * n)).

The data read is interpreted as a halfn
value. The halfn value is converted to a 
floatn value and the floatn value is 
returned. The address computed as (p + 
(offset * n)) must be 16-bit aligned.

vload_halfn is used to do an unaligned 
vector load and return a vector float.

Table 5.11 Built-In Vector Data Load and Store Functions (Continued )
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Function Description

void vstore_half(float data,
                size_t offset,
                global half *p)
void vstore_half_rte(float data,
                    size_t offset,
                    global half *p)
void vstore_half_rtz(float data,
                    size_t offset,
                    global half *p)
void vstore_half_rtp(float data,
                    size_t offset,
                    global half *p)
void vstore_half_rtn(float data,
                    size_t offset,
                    global half *p)
void vstore_half(float data,
                size_t offset,
                local half *p)
void vstore_half_rte(float data,
                    size_t offset,
                    local half *p)
void vstore_half_rtz(float data,
                    size_t offset,
                    local half *p)
void vstore_half_rtp(float data,
                    size_t offset,
                    local half *p)
void vstore_half_rtn(float data,
                    size_t offset,
                    local half *p)
void vstore_half(float data,
                size_t offset,
                private half *p)
void vstore_half_rte(float data,
                    size_t offset,
                    private half *p)
void vstore_half_rtz(float data,
                    size_t offset,
                    private half *p)
void vstore_half_rtp(float data,
                    size_t offset,
                    private half *p)
void vstore_half_rtn(float data,
                    size_t offset,
                    private half *p)

The float value given by data is first 
converted to a half value using the 
appropriate rounding mode. The half
value is then written to the address 
computed as (p + offset). The address 
computed as (p + offset) must be 
16-bit aligned.

vstore_half uses the current rounding 
mode. The default current rounding mode 
for the full profile is round to nearest 
even (denoted by the _rte suffix).

continues
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Function Description

void vstore_halfn(floatn data,
                size_t offset,
                global half *p)
void vstore_halfn_rte(floatn data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtz(floatn data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtp(floatn data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtn(floatn data,
                    size_t offset,
                    global half *p)
void vstore_halfn(floatn data,
                size_t offset,
                local half *p)
void vstore_halfn_rte(floatn data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtz(floatn data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtp(floatn data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtn(floatn data,
                    size_t offset,
                    local half *p)
void vstore_halfn(floatn data,
                size_t offset,
                private half *p)
void vstore_halfn_rte(floatn data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtz(floatn data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtp(floatn data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtn(floatn data,
                    size_t offset,
                    private half *p)

The floatn value given by data is first 
converted to a halfn value using the 
appropriate rounding mode. The halfn
value is then written to the address 
computed as (p + (offset * n)). The 
address computed as (p + (offset * 
n)) must be 16-bit aligned.

vstore_halfn uses the current rounding 
mode. The default current rounding mode 
for the full profile is round to nearest 
even (denoted by the _rte suffix).

vstore_halfn converts the float vector 
to a half vector and then does an 
unaligned vector store of the half vector.

Table 5.11 Built-In Vector Data Load and Store Functions (Continued )
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Function Description

floatn vloada_halfn(size_t offset,
           const global half *p)
floatn vloada_halfn(size_t offset,
           const local half *p)
floatn vloada_halfn(size_t offset,
           const constant half *p)
floatn vloada_halfn(size_t offset,
           const private half *p)

For n = 1, 2, 4, 8, and 16, read 
sizeof(halfn) bytes of data from 
address (p + (offset * n)). This 
address must be aligned to 
sizeof(halfn) bytes.

For n = 3, read a half3 value from 
address (p + (offset * 4)). This 
address must be aligned to sizeof(half)
* 4 bytes.

The data read is interpreted as a halfn
value. The halfn value read is converted 
to a floatn value and the floatn value 
is returned.

vloada_halfn is used to do an aligned 
vector load and return a vector float.

continues
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Function Description

void vstorea_halfn(floatn data,
                  size_t offset,
                  global half *p)
void vstorea_halfn_rte(floatn data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtz(floatn data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtp(floatn data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtn(floatn data,
                      size_t offset,
                      global half *p)
void vstorea_halfn(floatn data,
                  size_t offset,
                  local half *p)
void vstorea_halfn_rte(floatn data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtz(floatn data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtp(floatn data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtn(floatn data,
                      size_t offset,
                      local half *p)
void vstorea_halfn(floatn data,
                  size_t offset,
                  private half *p)
void vstorea_halfn_rte(floatn data,
                     size_t offset,
                     private half *p)
void vstorea_halfn_rtz(floatn data,
                    size_t offset,
                    private half *p)
void vstorea_halfn_rtp(floatn data,
                    size_t offset,
                    private half *p)
void vstorea_halfn_rtn(floatn data,
                    size_t offset,
                    private half *p)

The floatn value given by data is first 
converted to a halfn value using the 
appropriate rounding mode. 

For n = 1, 2, 4, 8, and 16, the halfn
value is written to the address computed 
as (p + (offset * n)). This address 
must be aligned to sizeof(halfn) bytes.

For n = 3, the halfn value is written to 
the address computed as (p + (offset
* 4)). This address must be aligned to 
sizeof(half) * 4 bytes.

vstorea_halfn uses the current round-
ing mode. The default current rounding 
mode for the full profile is round to 
nearest even (denoted by the _rte suffix).

Table 5.11 Built-In Vector Data Load and Store Functions (Continued )



ptg

Relational Functions 187

Function Description

void vstore_half(double data,
                size_t offset,
                global half *p)
void vstore_half_rte(double data,
                    size_t offset,
                    global half *p)
void vstore_half_rtz(double data,
                    size_t offset,
                    global half *p)
void vstore_half_rtp(double data,
                    size_t offset,
                    global half *p)
void vstore_half_rtn(double data,
                    size_t offset,
                    global half *p)
void vstore_half(double data,
                size_t offset,
                local half *p)
void vstore_half_rte(double data,
                    size_t offset,
                    local half *p)
void vstore_half_rtz(double data,
                    size_t offset,
                    local half *p)
void vstore_half_rtp(double data,
                    size_t offset,
                    local half *p)
void vstore_half_rtn(double data,
                    size_t offset,
                    local half *p)
void vstore_half(double data,
                size_t offset,
                private half *p)
void vstore_half_rte(double data,
                    size_t offset,
                    private half *p)
void vstore_half_rtz(double data,
                    size_t offset,
                    private half *p)
void vstore_half_rtp(double data,
                    size_t offset,
                    private half *p)
void vstore_half_rtn(double data,
                    size_t offset,
                    private half *p)

The double value given by data is first 
converted to a half value using the 
appropriate rounding mode. The half
value is then written to the address 
computed as (p + offset). The address 
computed as (p + offset) must be 
16-bit aligned.

vstore_half uses the current rounding 
mode. The default current rounding mode 
for the full profile is round to nearest 
even (denoted by the _rte suffix).

continues
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Function Description

void vstore_halfn(doublen data,
                size_t offset,
                global half *p)
void vstore_halfn_rte(doublen data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtz(doublen data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtp(doublen data,
                    size_t offset,
                    global half *p)
void vstore_halfn_rtn(doublen data,
                    size_t offset,
                    global half *p)
void vstore_halfn(doublen data,
                size_t offset,
                local half *p)
void vstore_halfn_rte(doublen data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtz(doublen data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtp(doublen data,
                    size_t offset,
                    local half *p)
void vstore_halfn_rtn(doublen data,
                    size_t offset,
                    local half *p)
void vstore_halfn(doublen data,
                size_t offset,
                private half *p)
void vstore_halfn_rte(doublen data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtz(doublen data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtp(doublen data,
                    size_t offset,
                    private half *p)
void vstore_halfn_rtn(doublen data,
                    size_t offset,
                    private half *p)

The doublen value given by data is first 
converted to a halfn value using the 
appropriate rounding mode. The halfn
value is then written to the address 
computed as (p + (offset * n)). The 
address computed as (p + (offset * 
n)) must be 16-bit aligned.

vstore_halfn uses the current rounding 
mode. The default current rounding mode 
for the full profile is round to nearest 
even (denoted by the _rte suffix).

vstorea_halfn converts the float vector 
to a half vector and then does an aligned 
vector store of the half vector.

Table 5.11 Built-In Vector Data Load and Store Functions (Continued )
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Function Description

void vstorea_halfn(doublen data,
                  size_t offset,
                  global half *p)
void vstorea_halfn_rte(doublen data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtz(doublen data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtp(doublen data,
                      size_t offset,
                      global half *p)
void vstorea_halfn_rtn(doublen data,
                      size_t offset,
                      global half *p)
void vstorea_halfn(doublen data,
                  size_t offset,
                  local half *p)
void vstorea_halfn_rte(doublen data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtz(doublen data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtp(doublen data,
                      size_t offset,
                      local half *p)
void vstorea_halfn_rtn(doublen data,
                      size_t offset,
                      local half *p)
void vstorea_halfn(doublen data,
                  size_t offset,
                  private half *p)
void vstorea_halfn_rte(doublen data,
                     size_t offset,
                     private half *p)
void vstorea_halfn_rtz(doublen data,
                    size_t offset,
                    private half *p)
void vstorea_halfn_rtp(doublen data,
                    size_t offset,
                    private half *p)
void vstorea_halfn_rtn(doublen data,
                    size_t offset,
                    private half *p)

The doublen value given by data is first 
converted to a halfn value using the 
appropriate rounding mode. 

For n = 1, 2, 4, 8, and 16, the halfn
value is written to the address computed 
as (p + (offset * n)). This address 
must be aligned to sizeof(halfn) bytes.

For n = 3, the halfn value is written to 
the address computed as (p + (offset
* 4)). This address must be aligned to 
sizeof(half) * 4 bytes.

vstorea_halfn uses the current round-
ing mode. The default current rounding 
mode for the full profile is round to 
nearest even (denoted by the _rte suffix).

Table 5.11 Built-In Vector Data Load and Store Functions (Continued )
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Synchronization Functions
OpenCL C implements a synchronization function called barrier. The 
barrier synchronization function is used to enforce memory consis-
tency between work-items in a work-group. This is described in Table 5.12. 

Table 5.12 Built-In Synchronization Functions

Function Description

void barrier(cl_mem_fence_flags
flags)

All work-items in a work-group executing the 
kernel on a compute unit must execute this 
function before any are allowed to continue 
execution beyond the barrier. This function must 
be encountered by all work-items in a work-group 
executing the kernel.

If a barrier is inside a conditional statement, then 
all work-items must enter the conditional if any 
work-item enters the conditional statement and 
executes the barrier.

If a barrier is inside a loop, all work-items must 
execute the barrier for each iteration of the loop 
before any are allowed to continue execution 
beyond the barrier.

The barrier function also queues a memory 
fence (reads and writes) to ensure correct ordering 
of memory operations to local and/or global 
memory.

The flags argument specifies the memory address 
space and can be set to a combination of the 
following literal values:

• CLK_LOCAL_MEM_FENCE: The barrier function 
will either flush any variables stored in local 
memory or queue a memory fence to ensure 
correct ordering of memory operations to local 
memory.

• CLK_GLOBAL_MEM_FENCE: The barrier function 
will either flush any variables stored in global 
memory or queue a memory fence to ensure 
correct ordering of memory operations to 
global memory. This is needed when work-
items in a work-group, for example, write to a 
buffer object in global memory and then read 
the updated data.
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If all work-items in a work-group do not encounter the barrier, then the 
behavior is undefined. On some devices, especially GPUs, this will most 
likely result in a deadlock in hardware. The following is an example that 
shows this incorrect usage of the barrier function: 

kernel void
read(global int *g, local int *shared)
{
    if (get_global_id(0) < 5)
        barrier(CLK_GLOBAL_MEM_FENCE);  ← illegal since not all work-
                                           items encounter barrier.
    else
        k = array[0];
}

Note that the memory consistency is enforced only between work-items 
in a work-group, not across work-groups. Here is an example that demon-
strates this:

kernel void
smooth(global float *io)
{
    float temp;
    int id = get_global_id(0);
    temp = (io[id – 1] + id[id] + id[id + 1]) / 3.0f;
    barrier(CLK_GLOBAL_MEM_FENCE);
    io[id] = temp;
}

If kernel smooth is executed over a global work size of 16 items with 2 
work-groups of 8 work-items each, then the value that will get stored in 
id[7] and/or id[8] is undetermined. This is because work-items in both 
work-groups use id[7] and id[8] to compute temp. Work-group 0 uses 
it to calculate temp for id[7], and work-group 1 uses it to calculate temp
for id[8]. Because there are no guarantees when work-groups execute or 
which compute units they execute on, and because barrier only enforces 
memory consistency for work-items in a work-group, we are unable to say 
what values will be computed and stored in id[7] and id[8].

Async Copy and Prefetch Functions
Table 5.13 describes the built-in functions in OpenCL C that provide a 
portable and performant method for copying between global and local 
memory and do a prefetch from global memory. The functions that copy 
between global and local memory are defined to be an asynchronous copy.
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Table 5.13 Built-In Async Copy and Prefetch Functions

Function Description

event_t
async_work_group_copy(local gentype *dst,
               const global gentype *src,
                     size_t num_gentypes,
                           event_t event)
event_t
async_work_group_copy(global gentype *dst,
                 const local gentype *src,
                     size_t num_gentypes,
                           event_t event)

Perform an async copy of num_gentypes gentype elements 
from src to dst.

The async copy is performed by all work-items in a work-group, 
and this built-in function must therefore be encountered by all 
work-items in a work-group executing the kernel with the same 
argument values; otherwise the results are undefined.

Returns an event object that can be used by wait_group_
events to wait for the async copy to finish. event can also be 
used to associate the async_work_group_copy with a previ-
ous async copy, allowing an event to be shared by multiple 
async copies; otherwise event should be zero.

If event is non-zero, the event object supplied in event will 
be returned.

event_t
async_work_group_strided_copy(
                      local gentype *dst,
               const global gentype *src,
                     size_t num_gentypes,
                       size_t src_stride,
                           event_t event)
event_t
async_work_group_strided_copy(
                     global gentype *dst,
                const local gentype *src,
                     size_t num_gentypes,
                       size_t dst_stride,
                           event_t event)

Performs an async gather or scatter copy of num_gentypes
gentype elements from src to dst. The src_stride is the 
stride in elements for each gentype element read from src.
The dst_stride is the stride in elements for each gentype 
element written to dst.

The async copy is performed by all work-items in a work- 
group, and this built-in function must therefore be encoun-
tered by all work-items in a work-group executing the kernel 
with the same argument values; otherwise the results are 
undefined.

Returns an event object that can be used by wait_group_
events to wait for the async copy to finish. event can also be 
used to associate the async_work_group_strided_copy with 
a previous async copy, allowing an event to be shared by 
multiple async copies; otherwise event should be zero.

If event is non-zero, the event object supplied in event will 
be returned.
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Function Description

void wait_group_events(int num_events, 
                    event_t *event_list)

Wait for events that identify the copy operations associated 
with async_work_group_copy and async_work_group_
strided_copy functions to complete. The event objects 
specified in event_list will be released after the wait is 
performed.

This function must be encountered by all work-items in a 
work-group executing the kernel within the same num_events
and event objects specified in event_list; otherwise the 
results are undefined.

void prefetch(const global gentype *p,
                   size_t num_gentypes)

Prefetch num_gentypes * sizeof(gentype) bytes into the 
global cache. The prefetch function is applied to a work-item 
in a work-group and does not affect the functional behavior of 
the kernel.
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We use the generic type name gentype to indicate that the function 
can take char, char2, char3, char4, char8, char16, uchar, uchar2,
uchar3, uchar4, uchar8, uchar16, short, short2, short3, short4,
short8, short16, ushort, ushort2, ushort3, ushort4, ushort8,
ushort16, int, int2, int3, int4, int8, int16, uint, uint2, uint3,
uint4, uint8, uint16, long, long2, long3, long4, long8, long16,
ulong, ulong2, ulong3, ulong4, ulong8, ulong16, float, float2,
float3, float4, float8, float16, and, if the double-precision exten-
sion is supported, double, double2, double3, double4, double8, or 
double16 as the type for the arguments.

The following example shows how async_work_group_strided_copy
can be used to do a strided copy from global to local memory and back. 
Consider a buffer of elements where each element represents a vertex of 
a 3D geometric object. Each vertex is a structure that stores the position, 
normal, texture coordinates, and other information about the vertex. An 
OpenCL kernel may want to read the vertex position, apply some com-
putations, and store the updated position values. This requires a strided 
copy to move the vertex position data from global to local memory, apply 
computations, and then move the update vertex position data by doing a 
strided copy from local to global memory.

typedef struct {
    float4 position;
    float3 normal;
    float2 texcoord;
    ...
} vertex_t;

kernel void
update_position_kernel(global vertex_t *vertices, 
                           local float4 *pos_array)
{
    event_t evt = async_work_group_strided_copy(
                             (local float *)pos_array, 
                             (global float *)vertices, 
                             4, sizeof(vertex_t)/sizeof(float), 
                             NULL);
    wait_group_events(evt);

    // do computations
    . . . 
    evt = async_work_group_strided_copy((global float *)vertices,
                              (local float *)pos_array,
                              4, sizeof(vertex_t)/sizeof(float), 
                              NULL);
    wait_group_events(evt);
}
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The kernel must wait for the completion of all async copies using the 
wait_group_events built-in function before exiting; otherwise the 
behavior is undefined.

Atomic Functions
Table 5.14 describes the built-in functions in OpenCL C that provide 
atomic operations on 32-bit signed and unsigned integers and single- 
precision floating-point to locations in global or local memory.

Note  atom_xchg is the only atomic function that takes floating-point 
argument types.

Table 5.14 Built-In Atomic Functions

Function Description

int
atomic_add(volatile global int *p, int val)
unsigned int 
atomic_add(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_add(volatile local int *p, int val)
unsigned int 
atomic_add(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred to 
as old) stored at the location 
pointed by p. Compute (old + 
val) and store the result at the 
location pointed by p. The 
function returns old.

int
atomic_sub(volatile global int *p, int val)
unsigned int 
atomic_sub(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_sub(volatile local int *p, int val)
unsigned int 
atomic_sub(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred to 
as old) stored at the location 
pointed by p. Compute (old - 
val) and store the result at the 
location pointed by p. The 
function returns old.

continues
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Function Description

int
atomic_xchg(volatile global int *p, int val)
unsigned int 
atomic_xchg(volatile global unsigned int *p,
                            unsigned int val)
float
atomic_xchg(volatile global int *p,
                            float val)

int
atomic_xchg(volatile local int *p, int val)
unsigned int 
atomic_xchg(volatile local unsigned int *p,
                           unsigned int val)
float
atomic_xchg(volatile local int *p,
                            float val)

Swap the old stored at location 
p with new value given by val.
The function returns old.

int
atomic_inc(volatile global int *p)
unsigned int 
atomic_inc(volatile global unsigned int *p)

int
atomic_inc(volatile local int *p)
unsigned int 
atomic_inc(volatile local unsigned int *p)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old + 1)
and store the result at location 
pointed by p. The function 
returns old.

int
atomic_dec(volatile global int *p)
unsigned int 
atomic_dec(volatile global unsigned int *p)

int
atomic_dec(volatile local int *p)
unsigned int 
atomic_dec(volatile local unsigned int *p)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old - 1)
and store the result at location 
pointed by p. The function 
returns old.

Table 5.14 Built-In Atomic Functions (Continued )
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Function Description

int
atomic_cmpxchg(volatile global int *p,
                      int cmp, int val)
unsigned int 
atomic_cmpxchg(
       volatile global unsigned int *p,
       unsigned int cmp, unsigned int val)

int
atomic_cmpxchg(volatile local int *p,
                      int cmp, int val)
unsigned int 
atomic_cmpxchg(
       volatile local unsigned int *p,
       unsigned int cmp, unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old == 
cmp) ? val : old and store 
the result at the location pointed 
by p. The function returns old.

int
atomic_min(volatile global int *p, int val)
unsigned int 
atomic_min(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_min(volatile local int *p, int val)
unsigned int 
atomic_min(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred to 
as old) stored at the location 
pointed by p. Compute 
min(old, val) and store the 
result at the location pointed by 
p. The function returns old.

int
atomic_max(volatile global int *p, int val)
unsigned int 
atomic_max(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_max(volatile local int *p, int val)
unsigned int 
atomic_max(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute 
max(old, val) and store the 
result at the location pointed by 
p. The function returns old.

continues

Table 5.14 Built-In Atomic Functions (Continued )
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Function Description

int
atomic_min(volatile global int *p, int val)
unsigned int 
atomic_min(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_min(volatile local int *p, int val)
unsigned int 
atomic_min(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute 
min(old, val) and store the 
result at the location pointed by 
p. The function returns old.

int
atomic_and(volatile global int *p, int val)
unsigned int 
atomic_and(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_and(volatile local int *p, int val)
unsigned int 
atomic_and(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old & 
val) and store the result at the 
location pointed by p. The 
function returns old.

int
atomic_or(volatile global int *p, int val)
unsigned int 
atomic_or(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_or(volatile local int *p, int val)
unsigned int 
atomic_or(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old | 
val) and store the result at the 
location pointed by p. The 
function returns old.

int
atomic_xor(volatile global int *p, int val)
unsigned int 
atomic_xor(volatile global unsigned int *p,
                            unsigned int val)

int
atomic_xor(volatile local int *p, int val)
unsigned int 
atomic_xor(volatile local unsigned int *p,
                           unsigned int val)

Read the 32-bit value (referred 
to as old) stored at the location 
pointed by p. Compute (old ^ 
val) and store the result at the 
location pointed by p. The 
function returns old.

Table 5.14 Built-In Atomic Functions (Continued )
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Miscellaneous Vector Functions
OpenCL C implements the additional built-in vector functions described 
in Table 5.15. We use the generic type name gentype to indicate that the 
function can take char, uchar, short, ushort, int, uint, long, ulong,
float, and, if the double-precision extension is supported, double as the 
type for the arguments.

We use the generic type name gentypen (or gentypem) to indicate that 
the function can take char2, char3, char4, char8, char16, uchar2,
uchar3, uchar4, uchar8, uchar16, short2, short3, short4, short8,
short16, ushort2, ushort3, ushort4, ushort8, ushort16, int2,
int3, int4, int8, int16, uint2, uint3, uint4, uint8, uint16, long2,
long3, long4, long8, long16, ulong2, ulong3, ulong4, ulong8,
ulong16, float2, float3, float4, float8, float16, and, if the 
double-precision extension is supported, double2, double3, double4,
double8, or double16 as the type for the arguments.

We use the generic type ugentypen to refer to the built-in unsigned inte-
ger vector data types.

Here are a couple of examples showing how shuffle and shuffle2 can 
be used:

uint mask = (uint4)(3, 2, 1, 0);
float4 a;
float4 r = shuffle(a, mask); // r.s0123 = a.wzyx

uint8 mask = (uint8)(0, 1, 2, 3, 4, 5, 6, 7);
float4 a, b;
float8 r = shuffle2(a, b, mask); // r.s0123 = a.xyzw, 
                                 // r.s4567 = b.xyzw

A few examples showing illegal usage of shuffle and shuffle2 follow. 
These should result in a compilation error.

uint8 mask;
short16 a;
short8  b;
b = shuffle(a, mask); // not valid

We recommend using shuffle and shuffle2 to do permute operations 
instead of rolling your own code as the compiler can very easily map 
these built-in functions to the appropriate underlying hardware ISA.
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Table 5.15 Built-In Miscellaneous Vector Functions

Function Description

int vec_step(gentype a)
int vec_step(gentypen a)

int vec_step(char3 a)
int vec_step(uchar3 a)
int vec_step(short3 a)
int vec_step(ushort3 a)
int vec_step(half3 a)
int vec_step(int3 a)
int vec_step(uint3 a)
int vec_step(long3 a)
int vec_step(ulong3 a)
int vec_step(float3 a)
int vec_step(double3 a)

int vec_step(type)

The vec_step built-in function takes a built-in scalar or vector data type 
argument and returns an integer value representing the number of elements 
in the scalar or vector.

For all scalar types, vec_step returns 1.

The vec_step built-in functions that take a 3-component vector return 4.

vec_step may also take a pure type as an argument, e.g., 
vec_step(float2).

gentypen shuffle(gentypem x,
                ugentypen mask)
gentypen shuffle2(gentypem x,
                 gentypem y,
                 ugentypen mask)

The shuffle and shuffle2 built-in functions construct a permutation of 
elements from one or two input vectors respectively that are of the same 
type, returning a vector with the same element type as the input and length 
that is the same as the shuffle mask.

The size of each element in the mask must match the size of each element 
in the result. For shuffle, only the ilogb(2m – 1) least significant bits of 
each mask element are considered. For shuffle2, only the ilogb(2m - 1) 
+ 1 significant bits of each mask element are considered. Other bits in mask
are ignored.

The elements of the input vectors are numbered from left to right across one 
or both of the vectors. For this purpose, the number of elements in a vector 
is given by vec_step(gentypem). The shuffle mask operand specifies, for 
each element of the result vector, which element of the one or two input 
vectors the result element gets.
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Image Read and Write Functions
In this section, we describe the built-in functions that allow you to read 
from an image, write to an image, and query image information such as 
dimensions and format. 

OpenCL GPU devices have dedicated hardware for reading from and 
writing to images. The OpenCL C image read and write functions allow 
developers to take advantage of this dedicated hardware. Image support 
in OpenCL is optional. To find out if a device supports images, query the 
CL_DEVICE_IMAGE_SUPPORT property using the clGetDeviceInfo API.

Reading from an Image

Tables 5.16 and 5.17 describe built-in functions that read from a 2D and 
3D image, respectively.

Note that read_imagef, read_imagei, and read_imageui return a 
float4, int4, or uint4 color value, respectively. This is because the color 
value can have up to four components. Table 5.18 lists the values used for 
the components that are not in the image.
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Table 5.16 Built-In Image 2D Read Functions

Function Description

float4 read_imagef(image2d_t image,
                  sampler_t sampler,
                  float2 coord)

Use coord.xy to do an element lookup in the 2D image object 
specified by image.

read_imagef returns floating-point values in the range [0.0 … 
1.0] for image objects created with image_channel_data_type
set to one of the predefined packed formats, CL_UNORM_INT8 or 
CL_UNORM_INT16.

read_imagef returns floating-point values in the range [-1.0 … 
1.0] for image objects created with image_channel_data_type
set to CL_SNORM_INT8 or CL_SNORM_INT16.

read_imagef returns floating-point values for image objects created 
with image_channel_data_type set to CL_HALF_FLOAT or 
CL_FLOAT.

For image_channel_data_type values not specified above, the 
float4 value returned by read_imagef is undefined.

float4 read_imagef(image2d_t image,
                  sampler_t sampler,
                  int2 coord)

Behaves similarly to the read_imagef function that takes a float2
coord except for the additional requirements that

• The sampler filter mode must be CLK_FILTER_NEAREST

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.

int4 read_imagei(image2d_t image,
                sampler_t sampler,
                float2 coord)

Use coord.xy to do an element lookup in the 2D image object 
specified by image.

read_imagei returns unnormalized signed integer values for image 
objects created with image_channel_data_type set to CL_
SIGNED_INT8 or CL_SIGNED_INT16.

For image_channel_data_type values not specified above, the 
int4 value returned by read_imagei is undefined.

The filter mode specified in sampler must be set to CLK_FIL-
TER_NEAREST. Otherwise the color value returned is undefined.
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Function Description

int4 read_imagei(image2d_t image,
                sampler_t sampler,
                int2 coord)

Behaves similarly to the read_imagei function that takes a float2
coord except for the additional requirements that

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.

uint4 read_imageui(image2d_t image,
                  sampler_t sampler,
                  float2 coord)

Use coord.xy to do an element lookup in the 2D image object 
specified by image.

read_imageui returns unnormalized unsigned integer values for 
image objects created with image_channel_data_type set to 
CL_UNSIGNED_INT8 or CL_UNSIGNED_INT16.

For image_channel_data_type values not specified above, the 
uint4 value returned by read_imageui is undefined.

The filter mode specified in sampler must be set to CLK_FIL-
TER_NEAREST. Otherwise the color value returned is undefined.

uint4 read_imageui(image2d_t image,
                  sampler_t sampler,
                  int2 coord)

Behaves similarly to the read_imageui function that takes a 
float2 coord except for the additional requirements that 

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE.

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.
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Table 5.17 Built-In Image 3D Read Functions

Function Description

float4 read_imagef(image3d_t image,
                  sampler_t sampler,
                  float4 coord)

Use coord.xyz to do an element lookup in the 3D image object 
specified by image.

read_imagef returns floating-point values in the range [0.0 … 1.0]
for image objects created with image_channel_data_type set to one 
of the predefined packed formats, CL_UNORM_INT8 or 
CL_UNORM_INT16.

read_imagef returns floating-point values in the range [-1.0 … 
1.0] for image objects created with image_channel_data_type set to 
CL_SNORM_INT8 or CL_SNORM_INT16.

read_imagef returns floating-point values for image objects created 
with image_channel_data_type set to CL_HALF_FLOAT or CL_FLOAT.

For image_channel_data_type values not specified above, the 
float4 value returned by read_imagef is undefined.

float4 read_imagef(image3d_t image,
                  sampler_t sampler,
                  int4 coord)

Behaves similarly to the read_imagef function that takes a float2
coord except for the additional requirements that

• The sampler filter mode must be CLK_FILTER_NEAREST.

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE.

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.

int4 read_imagei(image3d_t image,
                sampler_t sampler,
                float4 coord)

Use coord.xyz to do an element lookup in the 3D image object 
specified by image.

read_imagei returns unnormalized signed integer values for image 
objects created with image_channel_data_type set to CL_SIGNED_
INT8 or CL_SIGNED_INT16.

For image_channel_data_type values not specified above, the int4
value returned by read_imagei is undefined.

The filter mode specified in sampler must be set to CLK_FILTER_
NEAREST. Otherwise the color value returned is undefined.
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Function Description

int4 read_imagei(image3d_t image,
                sampler_t sampler,
                int4 coord)

Behaves similarly to the read_imagei function that takes a float2
coord except for the additional requirements that

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE.

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.

uint4 read_imageui(image3d_t image,
                  sampler_t sampler,
                  float4 coord)

Use coord.xyz to do an element lookup in the 3D image object 
specified by image.

read_imageui returns unnormalized unsigned integer values for 
image objects created with image_channel_data_type set to 
CL_UNSIGNED_INT8 or CL_UNSIGNED_INT16.

For image_channel_data_type values not specified above, the 
uint4 value returned by read_imageui is undefined.

The filter mode specified in sampler must be set to CLK_FILTER_
NEAREST. Otherwise the color value returned is undefined.

uint4 read_imageui(image3d_t image,
                  sampler_t sampler,
                  int4 coord)

Behaves similarly to the read_imageui function that takes a float2
coord except for the additional requirements that

• The sampler normalized coordinates must be 
CLK_NORMALIZED_COORDS_FALSE.

• The sampler addressing mode must be one of CLK_ADDRESS_
CLAMP_TO_EDGE, CLK_ADDRESS_CLAMP, or CLK_ADDRESS_NONE.
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Table 5.18 Image Channel Order and Values for Missing Components

Image Channel Order float4, int4, or uint4 Color Value Returned

CL_R, CL_Rx (r, 0.0, 0.0, 1.0)

CL_A (0.0, 0.0, 0.0, a) 

CL_RG, CL_RGx (r, g, 0,0, 1.0)

CL_RA (r, 0.0, 0.0, a)

CL_RGB, CL_RGBx (r, g, b, 1.0)

CL_RGBA, CL_BGRA, CL_ARGB (r, g, b, a)

CL_INTENSITY (I, I, I, I)

CL_LUMINANCE (L, L, L, 1.0)

Samplers

The image read functions take a sampler as an argument. The sampler 
specifies how to sample pixels from the image. A sampler can be passed 
as an argument to a kernel using the clSetKernelArg API, or it can be 
a constant variable of type sampler_t that is declared in the program 
source.

Sampler variables passed as arguments or declared in the program source 
must be of type sampler_t. The sampler_t type is a 32-bit unsigned 
integer constant and is interpreted as a bit field. The sampler describes the 
following information:

• Normalized coordinates: Specifies whether the coord.xy or 
coord.xyz values are normalized or unnormalized values. This can 
be set to CLK_NORMALIZED_COORDS_TRUE or CLK_NORMALIZED_
COORDS_FALSE.

• Addressing mode: This specifies how the coord.xy or coord.xyz
image coordinates get mapped to appropriate pixel locations inside the 
image and how out-of-range image coordinates are handled. Table 5.19 
describes the supported addressing modes.

• Filter mode: This specifies the filtering mode to use. This can be set 
to CLK_FILTER_NEAREST (i.e., the nearest filter) or CLK_FILTER_
LINEAR (i.e., a bilinear filter).
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The following is an example of a sampler passed as an argument to a 
kernel:

kernel void
my_kernel(read_only image2d_t imgA, sampler_t sampler, 
                                write_only image2d imgB)
{
    int2 coord = (int2)(get_global_id(0), get_global_id(1));

    float4 clr = read_imagef(imgA, sampler, coord);
    write_imagef(imgB, coord, color);
}

The following is an example of samplers declared inside a program source:

const sampler_t samplerA = CLK_NORMALIZED_COORDS_FALSE |
                           CLK_ADDRESS_CLAMP |
                           CLK_FILTER_LINEAR;

Table 5.19 Sampler Addressing Mode

Addressing Mode Description

CLK_ADDRESS_MIRRORED_REPEAT Flip the image coordinate at every integer 
junction. This addressing mode can be 
used only with normalized coordinates.

CLK_ADDRESS_REPEAT Out-of-range image coordinates are 
wrapped to the valid range. This address-
ing mode can be used only with normal-
ized coordinates.

CLK_ADDRESS_CLAMP_TO_EDGE Out-of-range image coordinates are 
clamped to the extent of the image.

CLK_ADDRESS_CLAMP Out-of-range image coordinates return a 
border color.

CLK_ADDRESS_NONE The programmer guarantees that the 
image coordinates used to sample 
elements of the image always refer to a 
location inside the image. This can also 
act as a performance hint on some 
devices. We recommend using this 
addressing mode instead of CLK_
ADDRESS_CLAMP_TO_EDGE if you know 
for sure that the image coordinates will 
always be inside the extent of the image.
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kernel void
my_kernel(read_only image2d_t imgA, read_only image2d_t imgB,
                                    write_only image2d imgB)
{
    int2 coord = (int2)(get_global_id(0), get_global_id(1));

    float4 clr = read_imagef(imgA, samplerA, coord);
    clr *= read_imagef(imgA, 
                       (CLK_NORMALIZED_COORDS_FALSE |
                        CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST), 
                           imgB);
}

The maximum number of samplers that can be used in a kernel can be 
obtained by querying the CL_DEVICE_MAX_SAMPLERS property using the 
clGetDeviceInfo API.

Limitations

The samplers specified to read_imagef, read_imagei, or read_imageui
must use the same value for normalized coordinates when reading from 
the same image. The following example illustrates this (different normal-
ized coordinate values used by samplers are highlighted). This will result in 
undefined behavior; that is, the color values returned may not be correct.

const sampler_t samplerA = CLK_NORMALIZED_COORDS_FALSE |
                           CLK_ADDRESS_CLAMP |
                           CLK_FILTER_LINEAR;
kernel void
my_kernel(read_only image2d_t imgA, write_only image2d imgB)
{
    float4  clr;
    int2    coord = (int2)(get_global_id(0), get_global_id(1));
    float2  normalized_coords;
    float   w = get_image_width(imgA);
    float   h = get_image_height(imgA);

    clr = read_imagef(imgA, samplerA, coord);
    normalized_coords = convert_float2(coord) * 
                        (float2)(1.0f / w, 1.0f / h);
    clr *= read_imagef(imgA, 
                          (CLK_NORMALIZED_COORDS_TRUE | 
                           CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST), 
                           normalized_coords);
}

Also, samplers cannot be declared as arrays or pointers or be used as 
the type for local variables inside a function or as the return value of a 
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function defined in a program. Sampler arguments to a function cannot 
be modified. The invalid cases shown in the following example will result 
in a compile-time error:

sampler_t ← error.  return type cannot be sampler_t
internal_proc(read_only image2d_t imgA, write_only image2d imgB)
{
    ...
}

kernel void
my_kernel(read_only image2d_t imgA, sampler_t sampler,
                                write_only image2d imgB)
{
    sampler_t *ptr_sampler; ← error. pointer to sampler not allowed

    my_func(imgA, &sampler); ← error passing a pointer to a sampler
        ...
}

Determining the Border Color

If the sampler addressing mode is CLK_ADDRESS_CLAMP, out-of-range 
image coordinates return the border color. The border color returned 
depends on the image channel order and is described in Table 5.20.

Table 5.20 Image Channel Order and Corresponding Border Color Value 

Image Channel Order Border Color

CL_A (0.0f, 0.0f, 0.0f, 0.0f)

CL_R (0.0f, 0.0f, 0.0f, 1.0f)

CL_Rx (0.0f, 0.0f, 0.0f, 0.0f)

CL_INTENSITY (0.0f, 0.0f, 0.0f, 0.0f)

CL_LUMINANCE (0.0f, 0.0f, 0.0f, 1.0f)

CL_RG (0.0f, 0.0f, 0.0f, 1.0f)

CL_RGx (0.0f, 0.0f, 0.0f, 0.0f)

CL_RA (0.0f, 0.0f, 0.0f, 0.0f)

CL_RGB (0.0f, 0.0f, 0.0f, 1.0f)

continues
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Image Channel Order Border Color

CL_RGBx (0.0f, 0.0f, 0.0f, 0.0f)

CL_ARGB (0.0f, 0.0f, 0.0f, 0.0f)

CL_BGRA (0.0f, 0.0f, 0.0f, 0.0f)

CL_RGBA (0.0f, 0.0f, 0.0f, 0.0f)

Writing to an Image

Tables 5.21 and 5.22 describe built-in functions that write to a 2D and 3D 
image, respectively.

If the x coordinate is not in the range (0 … image width – 1), or the y
coordinate is not in the range (0 … image height – 1), the behavior 
of write_imagef, write_imagei, or write_imageui for a 2D image is 
considered to be undefined.

If the x coordinate is not in the range (0 … image width – 1), or the 
y coordinate is not in the range (0 … image height – 1), or the z
coordinate is not in the range (0 … image depth – 1), the behavior 
of write_imagef, write_imagei, or write_imageui for a 3D image is 
considered to be undefined.

Table 5.20 Image Channel Order and Corresponding Border Color Value 
(Continued )
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Table 5.21 Built-In Image 2D Write Functions

Function Description

void write_imagef(image2d_t image,
                 int2 coord,
                 float4 color)

Write the color value to the location specified by coord.xy in the 2D 
image object specified by image. The appropriate data format conversion 
to convert the channel data from a floating-point value and saturation 
of the value to the actual data format in which the channels are stored 
in image is done before writing the color value.

coord.xy are unnormalized coordinates and must be in the range 0 … 
image width – 1 and 0 … image height – 1.

write_imagef can be used only with image objects created with 
image_channel_data_type set to one of the predefined packed 
formats or CL_SNORM_INT8, CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16, CL_HALF_FLOAT, or CL_FLOAT.

void write_imagei(image2d_t image,
                 int2 coord,
                 int4 color)

Write the color value to the location specified by coord.xy in the 2D 
image object specified by image. The channel color values are saturated 
to the appropriate data format in which the channels are stored in 
image before writing the color value.

coord.xy are unnormalized coordinates and must be in the range 0 … 
image width – 1 and 0 … image height – 1.

write_imagei can be used only with image objects created with 
image_channel_data_type set to one of CL_SIGNED_INT8,
CL_SIGNED_INT16,  or CL_SIGNED_INT32.

void write_imageui(image2d_t image,
                  int2 coord,
                  uint4 color)

Write the color value to the location specified by coord.xy in the 2D 
image object specified by image. The channel color values are saturated 
to the appropriate data format in which the channels are stored in 
image before writing the color value.

coord.xy are unnormalized coordinates and must be in the range 0 … 
image width – 1 and 0 … image height – 1.

write_imageui can be used only with image objects created with 
image_channel_data_type set to one of CL_UNSIGNED_INT8, CL_
UNSIGNED_INT16, or CL_UNSIGNED_INT32.
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Table 5.22 Built-In Image 3D Write Functions

Function Description

void write_imagef(image3d_t image,
                 int4 coord,
                 float4 color)

Write the color value to the location specified by coord.xyz in the 3D 
image object specified by image. The appropriate data format conver-
sion to convert the channel data from a floating-point value and 
saturation of the value to the actual data format in which the channels 
are stored in image is done before writing the color value.

coord.xyz are unnormalized coordinates and must be in the range 0 
… image width – 1, 0 … image height – 1, and 0 … image 
depth - 1.

write_imagef can be used only with image objects created with 
image_channel_data_type set to one of the predefined packed 
formats or CL_SNORM_INT8, CL_UNORM_INT8, CL_SNORM_INT16,
CL_UNORM_INT16, CL_HALF_FLOAT, or CL_FLOAT.

void write_imagei(image3d_t image,
                 int4 coord,
                 int4 color)

Write the color value to the location specified by coord.xyz in the 3D 
image object specified by image. The channel color values are saturated 
to the appropriate data format in which the channels are stored in 
image before writing the color value.

coord.xyz are unnormalized coordinates and must be in the range 0
… image width – 1, 0 … image height – 1, and 0 … image 
depth - 1.

write_imagei can be used only with image objects created with 
image_channel_data_type set to one of CL_SIGNED_INT8, CL_
SIGNED_INT16, or CL_SIGNED_INT32.
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Function Description

void write_imageui(image3d_t image,
                  int4 coord,
                  uint4 color)

Write the color value to the location specified by coord.xyz in the 2D 
image object specified by image. The channel color values are saturated 
to the appropriate data format in which the channels are stored in 
image before writing the color value.

coord.xyz are unnormalized coordinates and must be in the range 0
… image width – 1, 0 … image height – 1, and 0 … image 
depth - 1.

write_imageui can be used only with image objects created with 
image_channel_data_type set to one of CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16, or CL_UNSIGNED_INT32.
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Querying Image Information

Table 5.23 describes the image query functions.

The values returned by get_image_channel_data_type and get_
image_channel_order use a CLK_ prefix. There is a one-to-one mapping 
of the values with the CLK_ prefix to the corresponding CL_ prefixes 
specified in the image_channel_order and image_channel_data_
type fields of the cl_image_format argument to clCreateImage2D
and clCreateImage3D.

Table 5.23 Built-In Image Query Functions

Function Description

int get_image_width(image2d_t image)
int get_image_width(image3d_t image)

 Returns the image width in pixels.

int get_image_height(image2d_t image)
int get_image_height(image3d_t image)

 Returns the image height in pixels.

int get_image_depth(image3d_t image) Returns the image depth in pixels.

int2 get_image_dim(image2d_t image) Returns the 2D image dimensions in an 
int2. The width is returned in the x
component and the height in the y
component.

int4 get_image_dim(image3d_t image) Returns the 3D image dimensions in an 
int4. The width is returned in the x
component, the height in the y compo-
nent, and the depth in the z component.
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Function Description

int get_image_channel_data_type(
                    image2d_t image)
int get_image_channel_data_type(
                    image3d_t image)

Returns the channel data type of the 
image. Valid values are

CLK_SNORM_INT8
CLK_SNORM_INT16
CLK_UNORM_INT8
CLK_UNORM_INT16
CLK_UNORM_SHORT_565
CLK_UNORM_SHORT_555
CLK_UNORM_SHORT_101010
CLK_SIGNED_INT8
CLK_SIGNED_INT16
CLK_SIGNED_INT32
CLK_UNSIGNED_INT8
CLK_UNSIGNED_INT16
CLK_UNSIGNED_INT32
CLK_HALF_FLOAT
CLK_FLOAT

int get_image_channel_data_order(
                    image2d_t image)
int get_image_channel_data_order(
                    image3d_t image)

Returns the image channel order. Valid 
values are

CLK_A
CLK_R
CLK_Rx
CLK_RG
CLK_RGx
CLK_RGB
CLK_RGBx
CLK_RGBA
CLK_ARGB
CLK_BGRA
CLK_INTENSITY
CLK_LUMINANCE

Table 5.23 Built-In Image Query Functions (Continued )
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Chapter 6

Programs and Kernels

In Chapter 2, we created a simple example that executed a trivial parallel 
OpenCL kernel on a device. In that example, a kernel object and a program 
object were created in order to facilitate execution on the device. Program 
and kernel objects are fundamental in working with OpenCL, and in this 
chapter we cover these objects in more detail. Specifically, this chapter covers

• Program and kernel object overview

• Creating program objects and building programs

• Program build options

• Creating kernel objects and setting kernel arguments

• Source versus binary program creation

• Querying kernel and program objects

Program and Kernel Object Overview
Two of the most important objects in OpenCL are kernel objects and 
program objects. OpenCL applications express the functions that will 
execute in parallel on a device as kernels. Kernels are written in the 
OpenCL C language (as described in Chapter 4) and are delineated with 
the __kernel qualifier. In order to be able to pass arguments to a kernel 
function, an application must create a kernel object. Kernel objects can be 
operated on using API functions that allow for setting the kernel argu-
ments and querying the kernel for information.

Kernel objects are created from program objects. Program objects contain 
collections of kernel functions that are defined in the source code of a 
program. One of the primary purposes of the program object is to facili-
tate the compilation of the kernels for the devices to which the program is 
attached. Additionally, the program object provides facilities for determin-
ing build errors and querying the program for information.
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An analogy that may be helpful in understanding the distinction between 
kernel objects and program objects is that the program object is like a 
dynamic library in that it holds a collection of kernel functions. The ker-
nel object is like a handle to a function within the dynamic library. The 
program object is created from either source code (OpenCL C) or a com-
piled program binary (more on this later). The program gets built for any 
of the devices to which the program object is attached. The kernel object 
is then used to access properties of the compiled kernel function, enqueue 
calls to it, and set its arguments.

Program Objects 
The first step in working with kernels and programs in OpenCL is to 
create and build a program object. The next sections will introduce the 
mechanisms available for creating program objects and how to build pro-
grams. Further, we detail the options available for building programs and 
how to query the program objects for information. Finally, we discuss the 
functions available for managing the resources used by program objects.

Creating and Building Programs

Program objects can be created either by passing in OpenCL C source 
code text or with a program binary. Creating program objects from 
OpenCL C source code is typically how a developer would create pro-
gram objects. The source code to the OpenCL C program would be in 
an external file (for example, a .cl file as in our example code), and 
the application would create the program object from the source code 
using the clCreateProgramWithSource() function. Another alter-
native is to create the program object from a binary that has been pre-
compiled for the devices. This method is discussed later in the chapter; 
for now we show how to create a program object from source using 
clCreateProgramWithSource():

cl_program clCreateProgramWithSource(cl_context context,
                                     cl_uint count,
                                     const char **strings,
                                     const size_t *lengths,
                                     cl_int *errcode_ret)
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Calling clCreateProgramWithSource() will cause a new program 
object to be created using the source code passed in. The return value is a 
new program object attached to the context. Typically, the next step after 
calling clCreateProgramWithSource() would be to build the program 
object using clBuildProgram():

cl_int clBuildProgram(cl_program program,
                           cl_uint num_devices,
                           const cl_device_id *device_list,
                           const char *options,
                           void (CL_CALLBACK *pfn_notify)
                                    (cl_program program,
                                    void *user_data),
                           void *user_data)

program A valid program object.

num_devices The number of devices for which to build the program object.

device_list An array containing device IDs for all num_devices for which 
the program will be built. If device_list is NULL, then the 
program object will be built for all devices that were created on 
the context from which the program object was created.

options A string containing the build options for the program. These 
options are described later in this chapter in the section “Pro-
gram Build Options.”

pfn_notify It is possible to do asynchronous builds by using the pfn_notify
argument. If pfn_notify is NULL, then clBuildProgram will 
not return to the caller until completing the build. However, 

context The context from which to create a program object.

count A count of the number of string pointers in the strings
argument.

strings Holds count number of pointers to strings. The combination 
of all of the strings held in this argument constitutes the full 
source code from which the program object will be created.

lengths An array of size count holding the number of characters in each 
of the elements of strings. This parameter can be NULL, in 
which case the strings are assumed to be null-terminated.

errcode_ret If non-NULL, the error code returned by the function will be 
returned in this parameter.
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Invoking clBuildProgram()will cause the program object to be built for 
the list of devices that it was called with (or all devices attached to the 
context if no list is specified). This step is essentially equivalent to 
invoking a compiler/linker on a C program. The options parameter 
contains a string of build options, including preprocessor defines and 
various optimization and code generation options (e.g., -DUSE_
FEATURE=1 -cl-mad-enable). These options are described at the end of 
this section in the “Program Build Options” subsection. The executable 
code gets stored internally to the program object for all devices for which 
it was compiled. The clBuildProgram() function will return CL_
SUCCESS if the program was successfully built for all devices; otherwise 
an error code will be returned. If there was a build error, the detailed 
build log can be checked for by calling clGetProgramBuildInfo() with 
a param_name of CL_PROGRAM_BUILD_LOG.

if the user passes in pfn_notify, then clBuildProgram can 
return before completing the build and will call pfn_notify
when the program is done building. One possible use of this 
would be to queue up all of the building to happen asynchro-
nously while the application does other work. Note, though, that 
even being passed pfn_notify, an OpenCL implementation 
could still choose to return in a synchronous manner (and some 
do). If you truly require asynchronous builds for your applica-
tion, executing builds in a separate application thread is the 
most reliable way to guarantee asynchronous execution.

user_data Arbitrary data that will be passed as an argument to pfn_notify
if it was non-NULL.

cl_int clGetProgramBuildInfo(cl_program program,
                                  cl_device_id device,
                                  cl_program_build_info param_name,
                                  size_t param_value_size,
                                  void *param_value,
                                  size_t *param_value_size_ret)

program A valid program object.

device The device for which the build information should 
be retrieved. This must be one of the devices for 
which the program was built. The program will 
be built for the devices requested, and there can 
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Putting it all together, the code in Listing 6.1 (from the HelloWorld 
example in Chapter 2) demonstrates how to create a program object from 
source, build it for all attached devices, and query the build results for a 
single device.

Listing 6.1 Creating and Building a Program Object

cl_program CreateProgram(cl_context context, cl_device_id device, 
                         const char* fileName)
{
    cl_int errNum;
    cl_program program;

    ifstream kernelFile(fileName, ios::in);
    if (!kernelFile.is_open())

be different errors for different devices, so the logs 
must be queried independently.

param_name The parameter to query for. The following param-
eters are accepted:

CL_PROGRAM_BUILD_STATUS (cl_build_status)
returns the status of the build, which can be any of 
the following:

CL_BUILD_NONE: No build has been done.

CL_BUILD_ERROR: The last build had an error.

CL_BUILD_SUCCESS: The last build succeeded.

CL_BUILD_IN_PROGRESS: An asynchronous build 
is still running. This can occur only if a function 
pointer was provided to clBuildProgram.

CL_PROGRAM_BUILD_OPTIONS (char[]): Returns a 
string containing the options argument passed to 
clBuildProgram.

CL_PROGRAM_BUILD_LOG (char[]): Returns a 
string containing the build log for the last build for 
the device.

param_value_size The size in bytes of param_value which must 
be sufficiently large to store the results for the 
requested query.

param_value A pointer to the memory location in which to store 
the query results.

param_value_size_ret The number of bytes actually copied to 
param_value.
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    {
        cerr << "Failed to open file for reading: " << fileName << 
                 endl;
        return NULL;
    }

    ostringstream oss;
    oss << kernelFile.rdbuf();

    string srcStdStr = oss.str(); 
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);
    if (program == NULL)
    {
        cerr << "Failed to create CL program from source." << endl;
        return NULL;
    }

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);

        cerr << "Error in kernel: " << endl;
        cerr << buildLog;
        clReleaseProgram(program);
        return NULL;
    }

    return program;
}

Program Build Options

As described earlier in this section, clBuildProgram() takes as an argu-
ment a string (const char *options) that controls several types of 
build options:

• Preprocessor options

• Floating-point options (math intrinsics)
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• Optimization options

• Miscellaneous options

Much like a C or C++ compiler, OpenCL has a wide range of options that 
control the behavior of program compilation. The OpenCL program com-
piler has a preprocessor, and it is possible to define options to the prepro-
cessor within the options argument to clBuildProgram(). Table 6.1 
lists the options that can be specified to the preprocessor.

Table 6.1 Preprocessor Build Options

Option Description Example

-D name Defines the macro 
name with a value of 1.

-D FAST_ALGORITHM

-D name=definition Defines the macro 
name to be defined as 
definition.

-D MAX_ITERATIONS=20

-I dir Includes the directory 
in the search path for 
header files.

-I /mydir/

One note about defining preprocessor variables is that the kernel function 
signatures for a program object must be the same for all of the devices 
for which the program is built. Take, for example, the following kernel 
source:

#ifdef SOME_MACRO
__kernel void my_kernel(__global const float* p) {
      // ...
}

#else // !SOME_MACRO

__kernel void my_kernel(__global const int* p) {
      // ...
}

#endif // !SOME_MACRO

In this example, the my_kernel() function signature differs based 
on the value of SOME_MACRO (its argument is either a __global const 
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float* or a __global const int float*). This, in and of itself, is 
not a problem. However, if we choose to invoke clBuildProgram()
separately for each device on the same program object, once when we pass 
in –D SOME_MACRO for one device and once when we do not define SOME_
MACRO for another device, we will get a kernel that has different func-
tion signatures within the program, and this will fail. That is, the kernel 
function signatures must be the same for all devices for which a program 
object is built. It is acceptable to send in different preprocessor directives 
that impact the building of the program in different ways for each device, 
but not in a way that changes the kernel function signatures. The kernel 
function signatures must be the same for each device for which a single 
program object is built.

The OpenCL program compiler also has options that control the behavior 
of floating-point math. These options are described in Table 6.2 and, like 
the preprocessor options, can be specified in the options argument to 
clBuildProgram().

Table 6.2 Floating-Point Options (Math Intrinsics)

Option Description Example/Details

-cl-single-
precision-
constant

If a constant is defined 
as a double, treat it 
instead as a float.

With this option enabled, the 
following line of code will treat 
the constant (0.0) as a float
rather than a double:

if (local_DBL_MIN <= 0.0)
     ...

-cl-denorms-
are-zero

For single- and double-
precision numbers, this 
option specifies that 
denormalized numbers 
can be flushed to zero. 

This option can be used as a 
performance hint regarding the 
behavior of denormalized 
numbers. Note that the option 
does not apply to reading/
writing from images.

It is possible to also control the optimizations that the OpenCL C com-
piler is allowed to make. These options are listed in Table 6.3.
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Table 6.3 Optimization Options

Option Description Example/Details

-cl-opt-
disable

Disables all 
optimizations.

Disabling optimizations may be 
useful either for debugging or 
for making sure that the com-
piler is making valid 
optimizations.

-cl-strict-
aliasing

Enables strict aliasing, 
which refers to the 
ability to access the 
same memory from 
different symbols in the 
program. If this option 
is turned on, then 
pointers of different 
types will be assumed 
by the compiler to not 
access the same mem-
ory location.

With this option turned on, the 
compiler may be able to achieve 
better optimization. However, 
strict aliasing can also result in 
breaking correct code, so be 
careful with enabling this 
optimization. As an example, 
the compiler will assume that 
the following pointers could not 
alias because they are different 
types:

short* ptr1;

int* ptr2;

-cl-mad-
enable

Enables multiply-add 
operations to be 
executed with a mad
instruction that does 
the computation at 
reduced accuracy.

a * b + c would normally 
have to execute with a multiply 
followed by an add. With this 
optimization enabled, the 
implementation can use the mad
instruction, which may do the 
operation faster but with 
reduced accuracy.

-cl-no-
signed-zeros

Allows the compiler to 
assume that the sign of 
zero does not matter 
(e.g., that +0.0 and 
-0.0 are the same 
thing).

The compiler may be able to 
optimize statements that 
otherwise could not be opti-
mized if this assumption was 
not made. For example, 0.0*x
can be assumed to be 0.0
because the sign of x does not 
matter.

continues
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Finally, Table 6.4 lists the last set of miscellaneous options accepted by the 
OpenCL C compiler.

Option Description Example/Details

-cl-unsafe-
math-
optimizations

Allows for further 
optimizations that 
assume arguments are 
valid and may violate 
the precision standards 
of IEEE 754 and OpenCL 
numerical compliance. 
Includes -cl-no-
signed-zeros and 
-cl-mad-enable.

This is an aggressive math 
optimization that should be 
used with caution if the preci-
sion of your results is important.

-cl-finite-
math-only

Allows the compiler to 
assume that floating-
point arguments and 
results are not NaN or 
positive/negative 
infinity.

While this option may violate 
parts of OpenCL numerical 
compliance and should be used 
with caution, it may achieve 
better performance. 

-cl-finite-
math-only

Sets -cl-finite-
math-only and 
-cl-unsafe-math-
optimizations.

Also will define the preprocessor 
directive __FAST_RELAXED_
MATH__, which can be used in 
the OpenCL C code.

Table 6.3 Optimization Options (Continued )

Table 6.4 Miscellaneous Options

Option Description Example/Details

-w Disables the display of 
warning messages.

This turns off all warning 
messages from being listed in 
the build log.

-Werror Treats warnings as 
errors.

With this turned on, any warning 
encountered in the program will 
cause clBuildProgram() to 
fail.
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Creating Programs from Binaries

An alternative to creating program objects from source is to create a program 
object from binaries. A program binary is a compiled version of the source 
code for a specific device. The data format of a program binary is opaque. 
That is, there is no standardized format for the contents of the binary. An 
OpenCL implementation could choose to store an executable version of the 
program in the binary, or it might choose to store an intermediate represen-
tation that can be converted into the executable at runtime. 

Because program binaries have already been compiled (either partially to 
intermediate representation or fully to an executable), loading them will 
be faster and require less memory, thus reducing the load time of your 
application. Another advantage to using program binaries is protection 
of intellectual property: you can generate the program binaries at instal-
lation time and never store the original OpenCL C source code on disk. 
A typical application scenario would be to generate program binaries at 
either install time or first run and store the binaries on disk for later load-
ing. The way program binaries are generated is by building the program 
from source using OpenCL and then querying back for the program 
binary. To get a program binary back from a built program, you would use 
clGetProgramInfo():

Option Description Example/Details

-cl-std=
version

Sets the version of 
OpenCL C that the 
compiler will compile 
to. The only valid 
current setting is CL1.1
(-cl-std=CL1.1).

If this option is not specified, 
the OpenCL C will be compiled 
with the highest version of 
OpenCL C that is supported by 
the implementation. Using this 
option will require that the 
implementation support the 
specified version; otherwise 
clBuildProgram() will fail.

Table 6.4 Miscellaneous Options (Continued )

cl_int clGetProgramInfo(cl_program program,
                             cl_program_info param_name,
                             size_t param_value_size,
                             void *param_value,
                             size_t *param_value_size_ret)
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After querying the program object for its binaries, the binaries can then 
be stored on disk for future runs. The next time the program is run, the 
program object can be created using clCreateProgramWithBinary():

program A valid program object.

param_name The parameter about which to query the program for 
information. The following parameters are accepted:

CL_PROGRAM_REFERENCE_COUNT (cl_uint): the 
number of references to the program. This can be 
used to identify whether there is a resource leak.

CL_PROGRAM_CONTEXT (cl_context): the context to 
which the program is attached.

CL_PROGRAM_NUM_DEVICES (cl_uint): the number 
of devices to which the program is attached.

CL_PROGRAM_DEVICES (cl_device_id[]): returns 
an array of cl_device_id containing the IDs of the 
devices to which the program is attached.

CL_PROGRAM_SOURCE (char[]): returns all of the 
source strings that were used to create the program 
in one concatenated string. If the object was created 
from a binary, no characters will be returned.

CL_PROGRAM_BINARY_SIZES (size_t[]): returns 
an array of size_t, the size of the number of devices 
attached to the program. Each element is the size of 
the binary for that device.

CL_PROGRAM_BINARIES (unsigned char*[]): 
returns an array of unsigned char* where each ele-
ment contains the program binary for the device. 
The size of each array can be determined by the 
result of the CL_PROGRAM_BINARY_SIZES query.

param_value_size The size in bytes of param_value.

param_value A pointer to the location in which to store results. 
This location must be allocated with enough bytes to 
store the requested result.

param_value_size_ret The actual number of bytes written to param_value.

cl_program clCreateProgramWithBinary(cl_context context,
                                     cl_uint num_devices,
                                     const cl_device_id *
                                         device_list,
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The example HelloBinaryWorld demonstrates how to create a program 
from binaries. This is a modification of the HelloWorld example from 
Chapter 2. The difference is that the HelloBinaryWorld example for this 
chapter will attempt to retrieve the program binary the first time the 
application is run and store it to HelloWorld.cl.bin. On future execu-
tions, the application will load the program from this generated binary. 
The main logic that performs this caching is provided in Listing 6.2 from 
the main() function of HelloBinaryWorld. 

Listing 6.2 Caching the Program Binary on First Run

    program = CreateProgramFromBinary(context, device, 
                                      "HelloWorld.cl.bin");
    if (program == NULL)
    {

        program = CreateProgram(context, device, 
                                "HelloWorld.cl");

                                      const size_t *lengths,
                                      const unsigned char 
                                          **binaries,
                                      cl_int *binary_status,
                                      cl_int *errcode_ret)

context Context from which to create the program object.

num_devices The number of devices for which to build the program 
object.

device_list An array containing device IDs for all num_devices for 
which the program will be built. If device_list is NULL,
then the program object will be built for all devices that 
were created on the context from which the program object 
was created.

lengths An array of size count holding the number of bytes in each 
of the elements of binaries.

binaries An array of pointers to the bytes holding each of the pro-
gram binaries for each device. The size of each binary must 
be the size passed in for the associated element of lengths.

binary_status An array holding the result for whether each device binary 
was loaded successfully. On success, each element will be set 
to CL_SUCCESS. On failure, an error code will be reported.

errcode_ret If non-NULL, the error code returned by the function will be 
returned in this parameter.
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        if (program == NULL)
        {
            Cleanup(context, commandQueue, program, 
                    kernel, memObjects);
            return 1;
        }

        if (SaveProgramBinary(program, device, "HelloWorld.cl.bin") 
                              == false)
        {
            std::cerr << "Failed to write program binary" 
                      << std::endl;
            Cleanup(context, commandQueue, program, 
                    kernel, memObjects);
            return 1;
        }
    }
    else
    {
        std::cout << "Read program from binary." << std::endl;
    }

First let’s take a look at SaveProgramBinary(), which is the function 
that queries for and stores the program binary. This function assumes that 
the program object was already created and built from source. The code 
for SaveProgramBinary() is provided in Listing 6.3. The function first 
calls clGetProgramInfo() to query for the number of devices attached 
to the program. Next it retrieves the device IDs associated with each of 
the devices. After getting the list of devices, the function then retrieves 
the size of each of the program binaries for every device along with the 
program binaries themselves. After retrieving all of the program binaries, 
the function loops over the devices and finds the one that was passed as 
an argument to SaveProgramBinary(). This program binary is finally 
written to disk using fwrite() to the file HelloWorld.cl.bin.

Listing 6.3 Querying for and Storing the Program Binary

bool SaveProgramBinary(cl_program program, cl_device_id device, 
                       const char* fileName)
{
    cl_uint numDevices = 0;
    cl_int errNum;

    // 1 - Query for number of devices attached to program
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    errNum = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES, 
                              sizeof(cl_uint),
                              &numDevices, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error querying for number of devices." 
                  << std::endl;
        return false;
    }

    // 2 - Get all of the Device IDs
    cl_device_id *devices = new cl_device_id[numDevices];
    errNum = clGetProgramInfo(program, CL_PROGRAM_DEVICES,
                              sizeof(cl_device_id) * numDevices,
                              devices, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error querying for devices." << std::endl;
        delete [] devices;
        return false;
    }

    // 3 - Determine the size of each program binary
    size_t *programBinarySizes = new size_t [numDevices];
    errNum = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
                              sizeof(size_t) * numDevices,
                              programBinarySizes, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error querying for program binary sizes." 
                  << std::endl;
        delete [] devices;
        delete [] programBinarySizes;
        return false;
    }

    unsigned char **programBinaries = 
        new unsigned char*[numDevices];
    for (cl_uint i = 0; i < numDevices; i++)
    {
        programBinaries[i] = 
            new unsigned char[programBinarySizes[i]];
    }

    // 4 - Get all of the program binaries
    errNum = clGetProgramInfo(program, CL_PROGRAM_BINARIES, 
                              sizeof(unsigned char*) * numDevices,
                              programBinaries, NULL);
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    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error querying for program binaries" 
                  << std::endl;

        delete [] devices;
        delete [] programBinarySizes;
        for (cl_uint i = 0; i < numDevices; i++)
        {
            delete [] programBinaries[i];
        }
        delete [] programBinaries;
        return false;
    }

    // 5 - Finally store the binaries for the device requested 
    //     out to disk for future reading.
    for (cl_uint i = 0; i < numDevices; i++)
    {
        // Store the binary just for the device requested.
        // In a scenario where multiple devices were being used 
        // you would save all of the binaries out here.
        if (devices[i] == device)
        {
            FILE *fp = fopen(fileName, "wb");
            fwrite(programBinaries[i], 1,
                   programBinarySizes[i], fp);
            fclose(fp);
            break;
        }
    }

    // Cleanup
    delete [] devices;
    delete [] programBinarySizes;
    for (cl_uint i = 0; i < numDevices; i++)
    {
        delete [] programBinaries[i];
    }
    delete [] programBinaries;
    return true;
}

There are several important factors that a developer needs to understand 
about program binaries. The first is that a program binary is valid only 
for the device with which it was created. The OpenCL implementation 
itself might choose to store in its binary format either an intermediate 
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representation of the program or the executable code. It is a choice made 
by the implementation that the application has no way of knowing. It is 
not safe to assume that a binary will work across other devices unless an 
OpenCL vendor specifically gives this guarantee. Generally, it is impor-
tant to recompile the binaries for new devices to be sure of compatibility. 

An example of the program binary that is produced by the NVIDIA 
OpenCL implementation is provided in Listing 6.4. This listing may look 
familiar to those developers familiar with CUDA. The NVIDIA binary 
format is stored in the proprietary PTX format. Apple and AMD also store 
binaries in their own formats. None of these binaries should be expected 
to be compatible across multiple vendors. The PTX format happens to be 
readable text, but it is perfectly valid for the program binary to be binary 
bits that are not human-readable.

Listing 6.4 Example Program Binary for HelloWorld.cl (NVIDIA)

//
// Generated by NVIDIA NVPTX Backend for LLVM
//

.version 2.0

.target sm_13, texmode_independent

// Global Launch Offsets 
.const[0] .s32 %_global_num_groups[3];
.const[0] .s32 %_global_size[3];
.const[0] .u32 %_work_dim;
.const[0] .s32 %_global_block_offset[3];
.const[0] .s32 %_global_launch_offset[3];

.const .align 8 .b8 def___internal_i2opi_d[144] = {  0x08, 0x5D,
0x8D, 0x1F, 0xB1, 0x5F, 0xFB, 0x6B, 0xEA, 0x92, 0x52, 0x8A, 0xF7, 
0x39, 0x07, 0x3D, 0x7B, 0xF1, 0xE5, 0xEB, 0xC7, 0xBA, 0x27, 0x75, 
0x2D, 0xEA, 0x5F, 0x9E, 0x66, 0x3F, 0x46, 0x4F, 0xB7, 0x09, 0xCB, 
0x27, 0xCF, 0x7E, 0x36, 0x6D, 0x1F, 0x6D, 0x0A, 0x5A, 0x8B, 0x11, 
0x2F, 0xEF, 0x0F, 0x98, 0x05, 0xDE, 0xFF, 0x97, 0xF8, 0x1F, 0x3B, 
0x28, 0xF9, 0xBD, 0x8B, 0x5F, 0x84, 0x9C, 0xF4, 0x39, 0x53, 0x83, 
0x39, 0xD6, 0x91, 0x39, 0x41, 0x7E, 0x5F, 0xB4, 0x26, 0x70, 0x9C, 
0xE9, 0x84, 0x44, 0xBB, 0x2E, 0xF5, 0x35, 0x82, 0xE8, 0x3E, 0xA7, 
0x29, 0xB1, 0x1C, 0xEB, 0x1D, 0xFE, 0x1C, 0x92, 0xD1, 0x09, 0xEA, 
0x2E, 0x49, 0x06, 0xE0, 0xD2, 0x4D, 0x42, 0x3A, 0x6E, 0x24, 0xB7, 
0x61, 0xC5, 0xBB, 0xDE, 0xAB, 0x63, 0x51, 0xFE, 0x41, 0x90, 0x43, 
0x3C, 0x99, 0x95, 0x62, 0xDB, 0xC0, 0xDD, 0x34, 0xF5, 0xD1, 0x57, 
0x27, 0xFC, 0x29, 0x15, 0x44, 0x4E, 0x6E, 0x83, 0xF9, 0xA2 };
.const .align 4 .b8 def___GPU_i2opi_f[24] = {  0x41, 0x90, 0x43, 
0x3C, 0x99, 0x95, 0x62, 0xDB, 0xC0, 0xDD, 0x34, 0xF5, 0xD1, 0x57, 
0x27, 0xFC, 0x29, 0x15, 0x44, 0x4E, 0x6E, 0x83, 0xF9, 0xA2 };
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.entry hello_kernel
(
      .param .b32 hello_kernel_param_0,
      .param .b32 hello_kernel_param_1,
      .param .b32 hello_kernel_param_2
)
{
      .reg .f32  %f<4>;
      .reg .s32  %r<9>;

_hello_kernel:
      { 
      // get_global_id(0) 
      .reg .u32   %vntidx; 
      .reg .u32   %vctaidx; 
      .reg .u32   %vtidx; 
      mov.u32     %vntidx, %ntid.x; 
      mov.u32     %vctaidx, %ctaid.x; 
      mov.u32     %vtidx, %tid.x; 
      mad.lo.s32  %r1, %vntidx, %vctaidx, %vtidx; 
      .reg .u32   %temp; 
      ld.const.u32 %temp, [%_global_launch_offset+0]; 
      add.u32     %r1, %r1, %temp; 
      } 

      shl.b32     %r2, %r1, 2;
      ld.param.u32   %r3, [hello_kernel_param_1];
      ld.param.u32   %r4, [hello_kernel_param_0];
      add.s32     %r5, %r4, %r2;
      add.s32     %r6, %r3, %r2;
      ld.param.u32   %r7, [hello_kernel_param_2];
      ld.global.f32  %f1, [%r5];
      ld.global.f32  %f2, [%r6];
      add.rn.f32  %f3, %f1, %f2;
      add.s32     %r8, %r7, %r2;
      st.global.f32  [%r8], %f3;
      ret;
}

On subsequent runs of the application, a binary version of the program 
will be stored on disk (in HelloWorld.cl.bin). The HelloBinaryWorld 
application loads this program from binary as shown in Listing 6.5. At 
the beginning of CreateProgramFromBinary(), the program binary is 
loaded from disk. The program object is created from the program binary 
for the passed-in device. Finally, after checking for errors, the program 
binary is built by calling clBuildProgram() just as would be done for a 
program that was created from source.
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The last step of calling clBuildProgram() may at first seem strange. 
The program is already in binary format, so why does it need to be 
rebuilt? The answer stems from the fact that the program binary may or 
may not contain executable code. If it is an intermediate representation, 
then OpenCL will still need to compile it into the final executable. Thus, 
whether a program is created from source or binary, it must always be 
built before it can be used.

Listing 6.5 Creating a Program from Binary

cl_program CreateProgramFromBinary(cl_context context, 
                                   cl_device_id device, 
                                   const char* fileName)
{
    FILE *fp = fopen(fileName, "rb");
    if (fp == NULL)
    {
        return NULL;
    }

    // Determine the size of the binary
    size_t binarySize;
    fseek(fp, 0, SEEK_END);
    binarySize = ftell(fp);
    rewind(fp);

    // Load binary from disk
    unsigned char *programBinary = new unsigned char[binarySize];
    fread(programBinary, 1, binarySize, fp);
    fclose(fp);

    cl_int errNum = 0;
    cl_program program;
    cl_int binaryStatus;

    program = clCreateProgramWithBinary(context,
                    1,
                    &device,
                    &binarySize,
                    (const unsigned char**)&programBinary,
                    &binaryStatus,
                    &errNum);

    delete [] programBinary;
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error loading program binary." << std::endl;
        return NULL;
    }
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    if (binaryStatus != CL_SUCCESS)
    {
        std::cerr << "Invalid binary for device" << std::endl;
        return NULL;
    }

    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);

        std::cerr << "Error in program: " << std::endl;
        std::cerr << buildLog << std::endl;
        clReleaseProgram(program);
        return NULL;
    }

    return program;
}

Managing and Querying Programs

To clean up a program after it has been used, the program can be deleted 
by calling clReleaseProgram(). Internally, OpenCL stores a reference 
count with each program object. The functions that create objects in 
OpenCL return the object with an initial reference count of 1. The act 
of calling clReleaseProgram() will reduce the reference count. If the 
reference count reaches 0, the program will be deleted.

cl_int clReleaseProgram(cl_program program)
program     A valid program object

If the user wishes to manually increase the reference count of the OpenCL 
program, this can be done using clRetainProgram():

cl_int clRetainProgram(cl_program program)
program    A valid program object
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Further, when an application is finished building programs, it can choose to 
instruct the OpenCL implementation that it is finished with the compiler 
by calling clUnloadCompiler(). An OpenCL implementation can choose 
to use this notification to unload any resources consumed by the compiler. 
Doing so may free up some memory use by the OpenCL implementation. 
If an application calls clBuildProgram() again after calling clUnload-
Compiler(), this will cause the compiler to be reloaded automatically.

cl_int clUnloadCompiler(void)

Informs the OpenCL implementation that the application is done building 
programs.

Kernel Objects
So far we have been concerned with the creation and management of 
program objects. As discussed in the previous section, the program object 
is a container that stores the compiled executable code for each kernel on 
each device attached to it. In order to actually be able to execute a ker-
nel, we must be able to pass arguments to the kernel function. This is the 
primary purpose of kernel objects. Kernel objects are containers that can 
be used to pass arguments to a kernel function that is contained within a 
program object. The kernel object can also be used to query for informa-
tion about an individual kernel function.

Creating Kernel Objects and Setting Kernel Arguments

The way in which a kernel object can be created is by passing the name of 
the kernel function to clCreateKernel():

cl_kernel clCreateKernel(cl_program program,
                          const char *kernel_name,
                          cl_int *errcode_ret)

program A valid program object that has been built.

kernel_name The name of the kernel function for which to create the kernel 
object. This is the function name of the kernel following the 
__kernel keyword in the program source.
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Once created, arguments can be passed in to the kernel function con-
tained in the kernel object by calling clSetKernelArg():

cl_int clSetKernelArg(cl_kernel kernel,
                           cl_uint arg_index,
                           size_t *arg_size,
                           const void *arg_value)

kernel A valid kernel object.

arg_index The index of the argument to the kernel function. The first argu-
ment has index 0, the second argument has index 1, and so on 
from there.

arg_size The size of the argument. This size is determined by how the argu-
ment is declared in the kernel function:

__local qualified: The size will be the number of bytes 
required for the buffer used to store the argument.

object: For memory objects, the size is the size of the object type 
(e.g., sizeof(cl_mem)).

sampler: For sampler objects, size will be sizeof(cl_sampler).

regular type: the size of the argument type. For example, for a 
cl_int argument it will be sizeof(cl_int).

arg_value A pointer to the argument to be passed to the kernel function. 
This argument will also depend on the way the argument is 
declared in the kernel:

__local qualified: arg_value must be NULL.

object: a pointer to the memory object.

sampler: a pointer to the sampler object.

regular type: a pointer to the argument value.

Each parameter in the kernel function has an index associated with it. 
The first argument has index 0, the second argument has index 1, and so 
on. For example, given the hello_kernel() in the HelloBinaryWorld 
example, argument a has index 0, argument b has index 1, and argument 
result has index 2.

__kernel void hello_kernel(__global const float *a,
                               __global const float *b,
                               __global float *result)

errcode_ret If non-NULL, the error code returned by the function will be 
returned in this parameter.
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   {
       int gid = get_global_id(0);

       result[gid] = a[gid] + b[gid];
   }

Each of the parameters to hello_kernel() is a global pointer, and 
thus the arguments are provided using memory objects (allocated with 
clCreateBuffer()). The following block of code demonstrates how the 
kernel arguments are passed for hello_kernel:

  kernel = clCreateKernel(program, "hello_kernel", NULL);
    if (kernel == NULL)
  {
      std::cerr << "Failed to create kernel" << std::endl;
      Cleanup(context, commandQueue, program, kernel, memObjects);
      return 1;
  }

  // Set the kernel arguments (result, a, b)
  errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), 
                           &memObjects[0]);
  errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), 
                           &memObjects[1]);
  errNum |= clSetKernelArg(kernel, 2, sizeof(cl_mem), 
                           &memObjects[2]);
  if (errNum != CL_SUCCESS)
  {
      std::cerr << "Error setting kernel arguments." << std::endl;
      Cleanup(context, commandQueue, program, kernel, memObjects);
      return 1;
   }

When clSetKernelArg() is called, the pointer passed in holding the 
argument value will be internally copied by the OpenCL implementation. 
This means that after calling clSetKernelArg(), it is safe to reuse the 
pointer for other purposes. The type of the argument sent in to the kernel 
is dependent on how the kernel is declared. For example, the follow-
ing kernel takes a pointer, an integer, a floating-point value, and a local 
floating-point buffer:

__kernel void arg_example(global int *vertexArray,
                          int vertexCount,
                          float weight,
                          local float* localArray)
{
    ...
}
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In this case, the first argument has index 0 and is passed a pointer to a 
cl_mem object because it is a global pointer. The second argument has 
index 1 and is passed a cl_int variable because it is an int argument, 
and likewise the third argument has index 2 and is passed a cl_float.
The last argument has index 3 and is a bit trickier as it is qualified with 
local. Because it is a local argument, its contents are available only 
within a work-group and are not available outside of a work-group. As 
such, the call to clSetKernelArg() only specifies the size of the argu-
ment (in this case tied to the local work size so that there is one element 
per thread) and the arg_value is NULL. The arguments would be set 
using the following calls to clSetKernelArg():

  kernel = clCreateKernel(program, "arg_example", NULL);
  cl_int vertexCount;
  cl_float weight;
  cl_mem vertexArray;
  cl_int localWorkSize[1] = { 32 };

  // Create vertexArray with clCreateBuffer, assign values
  // to vertexCount and weight
  ...

  errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &vertexArray);
  errNum |= clSetKernelArg(kernel, 1, sizeof(cl_int), &vertexCount);
  errNum |= clSetKernelArg(kernel, 2, sizeof(cl_float), &weight);
  errNum |= clSetKernelArg(kernel, 3, 
                           sizeof(cl_float) * localWorkSize[0], 
                           NULL);

The arguments that are set on a kernel object are persistent until changed. 
That is, even after invoking calls that queue the kernel for execution, the 
arguments will remain persistent. 

An alternative to using clCreateKernel() to create kernel objects one 
kernel function at a time is to use clCreateKernelsInProgram() to 
create objects for all kernel functions in a program: 

cl_int clCreateKernelsInProgram(cl_program program,
                                     cl_uint num_kernels,
                                     cl_kernel *kernels,
                                     cl_uint *num_kernels_ret)

program A valid program object that has been built.

num_kernels The number of kernels in the program object. This can 
be determined by first calling this function with the 
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The use of clCreateKernelsInProgram() requires calling the function 
twice: first to determine the number of kernels in the program and next 
to create the kernel objects. The following block of code demonstrates its 
use:

  cl_uint numKernels;
  errNum = clCreateKernelsInProgram(program, NULL, 
                                    NULL, &numKernels);

  cl_kernel *kernels = new cl_kernel[numKernels];
  errNum = clCreateKernelsInProgram(program, numKernels, kernels, 
                                    &numKernels);

Thread Safety

The entire OpenCL API is specified to be thread-safe with one exception: 
clSetKernelArg(). The fact that the entire API except for a single 
function is defined to be thread-safe is likely to be an area of confusion 
for developers. First, let’s define what we mean by “thread-safe” and then 
examine why it is that clSetKernelArg() is the one exception.

In the realm of OpenCL, what it means for a function to be thread-safe is 
that an application can have multiple host threads simultaneously call the 
same function without having to provide mutual exclusion. That is, with 
the exception of clSetKernelArg(), an application may call the same 
OpenCL function from multiple threads on the host and the OpenCL 
implementation guarantees that its internal state will remain consistent. 

You may be asking yourself what makes clSetKernelArg() special. It 
does not on the surface appear to be any different from other OpenCL 
function calls. The reason that the specification chose to make clSet-
KernelArg() not thread-safe is twofold:

• clSetKernelArg()is the most frequently called function in the 
OpenCL API. The specification authors took care to make sure that 

kernels argument set to NULL and getting the value of 
num_kernels_ret.

kernels A pointer to an array that will have a kernel object created 
for each kernel function in the program.

num_kernels_ret The number of kernels created. If kernels is NULL, this 
value can be used to query the number of kernels in a 
program object.
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this function would be as lightweight as possible. Because providing 
thread safety implies some inherent overhead, it was defined not to be 
thread-safe to make it as fast as possible.

• In addition to the performance justification, it is hard to construct a 
reason that an application would need to set kernel arguments for the 
same kernel object in different threads on the host. 

Pay special attention to the emphasis on “for the same kernel object” in 
the second item. One misinterpretation of saying that clSetKernelArg()
is not thread-safe would be that it cannot be called from multiple host 
threads simultaneously. This is not the case. You can call clSetKernel-
Arg() on multiple host threads simultaneously, just not on the same 
kernel object. As long as your application does not attempt to call 
clSetKernelArg() from different threads on the same kernel object, 
everything should work as expected. 

Managing and Querying Kernels

In addition to setting kernel arguments, it is also possible to query the 
kernel object to find out additional information. The function clGetKer-
nelInfo() allows querying the kernel for basic information including 
the kernel function name, the number of arguments to the kernel func-
tion, the context, and the associated program object:

cl_int clGetKernelInfo(cl_kernel kernel,
                            cl_kernel_info param_name,
                            size_t param_value_size,
                            void *param_value,
                            size_t *param_value_size_ret)

kernel A valid kernel object.

param_name The parameter on which to query the program for 
information. The following parameters are accepted:

CL_KERNEL_REFERENCE_COUNT (cl_uint): the 
number of references to the program. This can be 
used to identify whether there is a resource leak.

CL_KERNEL_FUNCTION_NAME (char[]): the name of 
the kernel function as declared in the kernel source.

CL_KERNEL_NUM_ARGS (cl_uint): the number of 
arguments to the kernel function.
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Another important query function available for kernel objects is clGet-
KernelWorkGroupInfo(). This function allows the application to query 
the kernel object for information particular to a device. This can be very 
useful in trying to determine how to break up a parallel workload across 
different devices on which a kernel will be executed. The CL_KERNEL_
WORK_GROUP_SIZE query can be used to determine the maximum work-
group size that can be used on the device. Further, the application can 
achieve optimal performance by adhering to using a work-group size that 
is a multiple of CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE.
Additional queries are also available for determining the resource utiliza-
tion of the kernel on the device.

CL_KERNEL_CONTEXT (cl_context): the kernel 
from which the kernel object is created.

CL_KERNEL_PROGRAM (cl_program): the program 
from which the kernel object is created.

param_value_size The size in bytes of param_value.

param_value A pointer to the location in which to store results. 
This location must be allocated with enough bytes 
to store the requested result.

param_value_size_ret The actual number of bytes written to. 

cl_int clGetKernelWorkGroupInfo (cl_kernel kernel,
                          cl_device_id device,
                          cl_kernel_work_group_info param_name,
                          size_t param_value_size,
                          void *param_value,
                          size_t *param_value_size_ret)

kernel A valid kernel object.

device The ID of the device on which the kernel object was 
created.

param_name The parameter on which to query the kernel for 
work-group information. The following parameters 
are accepted:

CL_KERNEL_WORK_GROUP_SIZE (size_t): gives 
the maximum work-group size that can be used to 
execute the kernel on the specific device. This query 
can be very useful in determining the appropriate 
way to partition kernel execution across the global/
local work sizes.
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Kernel objects can be released and retained in the same manner as pro-
gram objects. The object reference count will be decremented by the func-
tion clReleaseKernel() and will be released when this reference count 
reaches 0:

cl_int clReleaseKernel(cl_kernel kernel)

kernel     A valid kernel object.

One important consideration regarding the release of kernel objects is that 
a program object cannot be rebuilt until all of the kernel objects associ-
ated with it have been released. Consider this example block of pseudo 
code:

CL_KERNEL_COMPILE_WORK_GROUP_SIZE
(size_t[3]): As described in Chapter 5, this query 
returns the value specified for the kernel using the 
optional __attribute__((reqd_work_group_
size(X, Y, Z)). The purpose of this attribute is to 
allow the compiler to make optimizations assuming 
the local work-group size, which is otherwise not 
known until execution time.

CL_KERNEL_LOCAL_MEM_SIZE (cl_ulong): gives 
the amount of local memory that is used by the 
kernel.

CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_ 
MULTIPLE (size_t): gives an optimal work-group 
size multiple. The application may get better per-
formance by adhering to a work-group size that is a 
multiple of this value.

CL_KERNEL_PRIVATE_MEM_SIZE (cl_ulong): the 
amount of private memory (minimum) used by each 
work-group.

param_value_size The size in bytes of param_value.

param_value A pointer to the location in which to store results. 
This location must be allocated with enough bytes 
to store the requested result.

param_value_size_ret The actual number of bytes written to. 
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cl_program program = clCreateProgramWithSource(...);
clBuildProgram(program, ...);
cl_kernel k = clCreateKernel(program, "foo");

// .. CL API calls to enqueue kernels and other commands ..

clBuildProgram(program, ...); // This call will fail 
                              // because the kernel 
                              // object "k" above has 
                              // not been released.

The second call to clBuildProgram() in this example would fail with 
a CL_INVALID_OPERATION error because there is still a kernel object 
associated with the program. In order to be able to build the program 
again, that kernel object (and any other ones associated with the program 
object) must be released using clReleaseKernel().

Finally, the reference count can be incremented by one by calling the 
function clRetainKernel():

cl_int clRetainKernel(cl_kernel kernel)

kernel     A valid kernel object.
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Chapter 7

Buffers and Sub-Buffers

In Chapter 2, we created a simple example that executed a trivial parallel 
OpenCL kernel on a device, and in Chapter 3, we developed a simple con-
volution example. In both of these examples, memory objects, in these 
cases buffer objects, were created in order to facilitate the movement of 
data in and out of the compute device’s memory, from the host’s memory. 
Memory objects are fundamental in working with OpenCL and include 
the following types:

• Buffers: one-dimensional arrays of bytes

• Sub-buffers: one-dimensional views into buffers

• Images: two-dimensional or three-dimensional data structured arrays, 
which have limited access operators and a selection of different for-
mats, sampling, and clamping features

In this chapter we cover buffer and sub-buffer objects in more detail. Spe-
cifically, this chapter covers

• Buffer and sub-buffer objects overview

• Creating buffer and sub-buffer objects

• Reading and writing buffers and sub-buffer objects

• Mapping buffer and sub-buffer objects

• Querying buffer and sub-buffer objects

Memory Objects, Buffers, and Sub-Buffers  
Overview
Memory objects are a fundamental concept in OpenCL. As mentioned 
previously, buffers and sub-buffers are instances of OpenCL memory 
objects, and this is also true for image objects, described in Chapter 8. 
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In general, the operations on buffers and sub-buffers are disjoint from 
those of images, but there are some cases where generalized operations on 
memory objects are enough. For completeness we describe these opera-
tions here, too.

As introduced in Chapter 1, OpenCL memory objects are allocated against 
a context, which may have one or more associated devices. Memory 
objects are globally visible to all devices within the context. However, as 
OpenCL defines a relaxed memory model, it is not the case that all writes 
to a memory object are visible to all following reads of the same buffer. 
This is highlighted by the observation that, like other device commands, 
memory objects are read and written by enqueuing commands to a partic-
ular device. Memory object read/writes can be marked as blocking, caus-
ing the command-to-host thread to block until the enqueued command 
has completed and memory written to a particular device is visible by all 
devices associated with the particular context, or the memory read has 
been completely read back into host memory. If the read/write command 
is not blocking, then the host thread may return before the enqueued 
command has completed, and the application cannot assume that the 
memory being written or read is ready to consume from. In this case the 
host application must use one of the following OpenCL synchronization 
primitives to ensure that the command has completed:

• cl_int clFinish(cl_command_queue queue), where queue is 
the particular command-queue for which the read/write command 
was enqueued. clFinish will block until all pending commands, for 
queue, have completed.

• cl_int clWaitForEvents(cl_uint num_events, const cl_
event * event_list), where event_list will contain at least the 
event returned from the enqueue command associated with the par-
ticular read/write. clWaitForEvents will block until all commands 
associated with corresponding events in event_list have completed.

OpenCL memory objects associated with different contexts must be used 
only with other objects created within the same context. For example, it 
is not possible to perform read/write operations with command-queues 
created with a different context. Because a context is created with respect 
to a particular platform, it is not possible to create memory objects that 
are shared across different platform devices. In the case that an applica-
tion will use all OpenCL devices within the system, in general, data will 
need to be managed via the host memory space to copy data in and out of 
a given context and across contexts.
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Creating Buffers and Sub-Buffers
Buffer objects are a one-dimensional memory resource that can hold 
scalar, vector, or user-defined data types. They are created using the fol-
lowing function:

cl_mem clCreateBuffer(cl_context context,
                           cl_mem_flags flags,
                           size_t size,
                           void * host_ptr,
                           cl_int *errcode_ref)

context A valid context object against which the buffer is allocated.

flags A bit field used to specify allocations and usage information for 
the buffer creation. The set of valid values for flags, defined by 
the enumeration cl_mem_flags, is described in Table 7.1.

size The size of the buffer being allocated, in bytes.

host_ptr A pointer to data, allocated by the application; its use in a call 
to clCreateBuffer is determined by the flags parameter. 
The size of the data pointed to by host_ptr must be at least 
that of the requested allocation, that is, >= size bytes.

errcode_ret If non-NULL, the error code returned by the function will be 
returned in this parameter.

Table 7.1 Supported Values for cl_mem_flags

cl_mem_flags Description

CL_MEM_READ_WRITE Specifies that the memory object will be read and 
written by a kernel. If no other modifier is given, 
then this mode is assumed to be the default.

CL_MEM_WRITE_ONLY Specifies that the memory object will be written 
but not read by a kernel.

Reading from a buffer or other memory object, 
such as an image, created with CL_MEM_WRITE_
ONLY inside a kernel is undefined.

CL_MEM_READ_ONLY Specifies that the memory object is read-only 
when used inside a kernel.

Writing to a buffer or other memory object 
created with CL_MEM_READ_ONLY inside a kernel 
is undefined.

continues
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Like other kernel parameters, buffers are passed as arguments to kernels 
using the function clSetKernelArg and are defined in the kernel itself 
by defining a pointer to the expected data type, in the global address 
space. The following code shows simple examples of how you might create 
a buffer and use it to set an argument to a kernel:

#define NUM_BUFFER_ELEMENTS 100
cl_int errNum;
cl_context;
cl_kernel kernel;
cl_command_queue queue;
float inputOutput[NUM_BUFFER_ELEMENTS];
cl_mem buffer;

// place code to create context, kernel, and command-queue here

// initialize inputOutput;

Table 7.1 Supported Values for cl_mem_flags (Continued )

cl_mem_flags Description

CL_MEM_USE_HOST_PTR This flag is valid only if host_ptr is not NULL.
If specified, it indicates that the application 
wants the OpenCL implementation to use 
memory referenced by host_ptr as the storage 
bits for the memory object.

CL_MEM_ALLOC_HOST_PTR Specifies that the buffer should be allocated in 
from host-accessible memory.

The use of CL_MEM_ALLOC_HOST_PTR and 
CL_MEM_USE_HOST_PTR is not valid.

CL_MEM_COPY_HOST_PTR If specified, then it indicates that the application 
wants the OpenCL implementation to allocate 
memory for the memory object and copy the 
data from memory referenced by host_ptr.

CL_MEM_COPY_HOST_PTR and CL_MEM_USE_
HOST_PTR cannot be used together.

CL_MEM_COPY_HOST_PTR can be used with 
CL_MEM_ALLOC_HOST_PTR to initialize the 
contents of a memory object allocated using 
host-accessible (e.g., PCIe) memory. Its use is 
valid only if host_ptr is not NULL.
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buffer = clCreateBuffer(
      context, 
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 
      sizeof(float) * NUM_BUFFER_ELEMENTS,
      &errNum);

// check for errors

errNum = setKernelArg(kernel, 0, sizeof(buffer), &buffer);

The following kernel definition shows a simple example of how you might 
specify it to take, as an argument, the buffer defined in the preceding 
example: 

__kernel void square(__global float * buffer)
{
      size_t id = get_global_id(0);
      buffer[id] = buffer[id] * buffer[id];
}

Generalizing this to divide the work performed by the kernel square to 
all the devices associated with a particular context, the offset argument 
to clEnqueueNDRangeKernel can be used to calculate the offset into the 
buffers. The following code shows how this might be performed:

#define NUM_BUFFER_ELEMENTS 100
cl_int errNum;
cl_uint numDevices;
cl_device_id * deviceIDs;
cl_context;
cl_kernel kernel;
std::vector<cl_command_queue> queues;
float * inputOutput;
cl_mem buffer;

// place code to create context, kernel, and command-queue here

// initialize inputOutput;

buffer = clCreateBuffer(
      context, 
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 
      sizeof(float) * NUM_BUFFER_ELEMENTS,
      inputOutput,
      &errNum);

// check for errors

errNum = setKernelArg(kernel, 0, sizeof(buffer), &buffer);
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// Create a command-queue for each device
for (int i = 0; i < numDevices; i++)
{
       cl_command_queue queue = 
       clCreateCommandQueue(
           context,
           deviceIDs[i],
           0,
           &errNum);

       queues.push_back(queue);
}

// Submit kernel enqueue to each queue
for (int i = 0; i < queues.size(); i++)
{
       cl_event event;

       size_t gWI    = NUM_BUFFER_ELEMENTS;
       size_t offset = i * NUM_BUFFER_ELEMENTS * sizeof(int);

       errNum = clEnqueueNDRangeKernel(
       queues[i], 
       kernel, 
       1, 
       (const size_t*)&offset,
       (const size_t*)&gWI, 
       (const size_t*)NULL, 
       0, 
       0, 
       &event);

       events.push_back(event);
 }
 // wait for commands to complete

 clWaitForEvents(events.size(), events.data());

An alternative, more general approach to subdividing the work performed 
on buffers is to use sub-buffers. Sub-buffers provide a view into a particu-
lar buffer, for example, enabling the developer to divide a single buffer 
into chunks that can be worked on independently. Sub-buffers are purely 
a software abstraction; anything that can be done with a sub-buffer can 
be done using buffers, explicit offsets, and so on. Sub-buffers provide a 
layer of additional modality not easily expressed using just buffers. The 
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advantage of sub-buffers over the approach demonstrated previously is 
that they work with interfaces that expect buffers and require no addi-
tional knowledge such as offset values. Consider a library interface, for 
example, that is designed to expect an OpenCL buffer object but always 
assumes the first element is an offset zero. In this case it is not possible 
to use the previous approach without modifying the library source. Sub-
buffers provide a solution to this problem.

Sub-buffers cannot be built from other sub-buffers.1 They are created 
using the following function:

cl_mem clCreateSubBuffer(
   cl_mem buffer,
   cl_mem_flags flags,
   cl_buffer_create_type buffer_create_type,
   const void * buffer_create_info,
   cl_int *errcode_ref)

buffer A valid buffer object, which cannot be a previously 
allocated sub-buffer. 

flags A bit field used to specify allocations and usage infor-
mation for the buffer creation. The set of valid values 
for flags, defined by the enumeration cl_mem_flags,
is described in Table 7.1.

buffer_create_type Combined with buffer_create_info, describes the 
type of buffer object to be created. The set of valid val-
ues for buffer_create_type, defined by the enumera-
tion cl_buffer_create_type, is described in Table 
7.2.

buffer_create_info Combined with buffer_create_info, describes the 
type of buffer object to be created.

errcode_ret If non-NULL, the error code returned by the function 
will be returned in this parameter.

1 While it is technically feasible to define sub-buffers of sub-buffers, the OpenCL 
specification does not allow this because of concerns that implementations 
would have to be constructive with respect to optimizations due to potential 
aliasing of a buffer.
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Returning to our previous example of dividing a buffer across multiple 
devices, the following code shows how this might be performed:

#define NUM_BUFFER_ELEMENTS 100
cl_int errNum;
cl_uint numDevices;
cl_device_id * deviceIDs;
cl_context;
cl_kernel kernel;
std::vector<cl_command_queue> queues;
std::vector<cl_mem> buffers;
float * inputOutput;
cl_mem buffer;

// place code to create context, kernel, and command-queue here

Table 7.2 Supported Names and Values for clCreateSubBuffer

cl_buffer_create_type Description

CL_BUFFER_CREATE_
TYPE_REGION

Create a buffer object that represents a specific 
region in buffer.

buffer_create_info is a pointer to the following 
structure:

typedef struct _cl_buffer_region {
size_t origin;
size_t size;
} cl_buffer_region;

(origin, size) defines the offset and size in bytes 
in buffer.

If buffer is created with CL_MEM_USE_HOST_PTR,
the host_ptr associated with the buffer object 
returned is host_ptr + origin.

The buffer object returned references the data store 
allocated for buffer and points to a specific region 
given by (origin, size) in this data store.

CL_INVALID_VALUE is returned in errcode_ret if 
the region specified by (origin, size) is out of 
bounds in buffer.

CL_INVALID_BUFFER_SIZE is returned if size is 0.

CL_MISALIGNED_SUB_BUFFER_OFFSET is returned 
in errcode_ret if there are no devices in the 
context associated with buffer for which the 
origin value is aligned to the CL_DEVICE_MEM_
BASE_ADDR_ALIGN value.
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// initialize inputOutput;

buffer = clCreate(
      context, 
      CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 
      sizeof(float) * NUM_BUFFER_ELEMENTS,
      inputOutput,
      &errNum);

buffers.push_back(buffer);

// Create command-queues
for (int i = 0; i < numDevices; i++)
{
      cl_command_queue queue = 
      clCreateCommandQueue(
            context,
            deviceIDs[i],
            0,
            &errNum);

      queues.push_back(queue);

      cl_kernel kernel = clCreateKernel(
            program,
            "square",
            &errNum);

      errNum = clSetKernelArg(
            kernel, 
            0, 
            sizeof(cl_mem), 
            (void *)&buffers[i]);

      kernels.push_back(kernel);
  }

  std::vector<cl_event> events;
  // call kernel for each device
  for (int i = 0; i < queues.size(); i++)
  {
      cl_event event;

      size_t gWI = NUM_BUFFER_ELEMENTS;

      errNum = clEnqueueNDRangeKernel(
             queues[i], 
             kernels[i], 
             1, 
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             NULL,
             (const size_t*)&gWI, 
             (const size_t*)NULL, 
             0, 
             0, 
             &event);

      events.push_back(event);
  }

  // Wait for commands submitted to complete
  clWaitForEvents(events.size(), events.data());

As is the case with other OpenCL objects, buffers and sub-buffer objects 
are reference-counted and the following two operations increment and 
decrement the reference count.

The following example increments the reference count for a buffer:

cl_int clRetainMemObject(cl_mem buffer)

buffer    A valid buffer object. 

The next example decrements the reference count for a buffer:

cl_int clReleaseMemObject(cl_mem buffer)

buffer     A valid buffer object.

When the reference count reaches 0, the OpenCL implementation is 
expected to release any associated memory with the buffer or sub-buffer. 
Once an implementation has freed resources for a buffer or sub-buffer, the 
object should not be referenced again in the program. 

For example, to correctly release the OpenCL buffer resources in the previ-
ous sub-buffer example the following code could be used:

for (int i = 0; i < buffers.size(); i++)
{
      buffers.clReleaseMemObject(buffers[i]);
}
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Querying Buffers and Sub-Buffers
Like other OpenCL objects, buffers and sub-buffers can be queried to 
return information regarding how they were constructed, current status 
(e.g., reference count), and so on. The following command is used for buf-
fer and sub-buffer queries:

cl_int clGetMemObjectInfo(cl_mem buffer,
                               cl_mem_info param_name,
                               size_t param_value_size,
                               void * param_value,
                               size_t *param_value_size_ret)

buffer  A valid buffer object, which will be read from. 

param_name  An enumeration used to specify what information 
to query. The set of valid values for param_name,
defined by the enumeration cl_mem_info, is 
described in Table 7.3.

param_value_size The size in bytes of the memory pointed to by 
param_value. This size must be >= size of the 
return type in Table 7.3.

param_value A pointer to memory where the appropriate value 
being queried will be returned. If the value is NULL,
it is ignored.

param_value_size_ret Total number of bytes written to param_value for 
the query.

Table 7.3 OpenCL Buffer and Sub-Buffer Queries

cl_mem_info Return Type Description

CL_MEM_TYPE cl_mem_
object_type

For buffer and sub-buffer objects 
returns*

CL_MEM_OBJECT_BUFFER.

CL_MEM_FLAGS cl_mem_flags Returns the value of the flags field 
specified during buffer creation.

CL_MEM_SIZE size_t Returns the size of the data store 
associated with the buffer, in bytes.

continues
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The following code is a simple example of how you might query a mem-
ory object to determine if it is a buffer or some other kind of OpenCL 
memory object type:

cl_int errNum;
cl_mem memory;
cl_mem_object_type type;

// initialize memory object and so on
errNum = clGetMemObjectInfo(
      memory,
      CL_MEM_TYPE,
      sizeof(cl_mem_object_type),
      &type,
      NULL);
switch(type)
{
      case CL_MEM_OBJECT_BUFFER:
      {
            // handle case when object is buffer or sub-buffer
            break;
      } 

cl_mem_info Return Type Description

CL_MEM_HOST_PTR void * Returns the host_ptr argument speci-
fied when the buffer was created and if 
a sub-buffer, then host_ptr + origin.

CL_MEM_MAP_COUNT cl_uint Returns an integer representing the 
number of times the buffer is currently 
mapped.

CL_MEM_REFERENCE_COUNT cl_uint Returns an integer representing the 
current reference count for the buffer.

CL_MEM_CONTEXT cl_context Returns the OpenCL context object 
with which the buffer was created.

CL_MEM_ASSOCIATED_
MEMOBJECT

cl_mem If a sub-buffer, then the buffer from 
which it was created is returned; 
otherwise the result is NULL.

CL_MEM_OFFSET size_t If a sub-buffer, then returns the offset; 
otherwise the result is 0.

* The complete set of values returned for CL_MEM_TYPE covers images, too; further discussion of 
these is deferred until Chapter 8.

Table 7.3 OpenCL Buffer and Sub-Buffer Queries (Continued )
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      case CL_MEM_OBJECT_IMAGE2D:
      case CL_MEM_OBJECT_IMAGE3D:
      {
           // handle case when object is a 2D or 3D image
           break;
      }
      default
      // something very bad has happened
      break;
}

Reading, Writing, and Copying Buffers and 
Sub-Buffers
Buffers and sub-buffers can be read and written by the host applica-
tion, moving data to and from host memory. The following command 
enqueues a write command, to copy the contents of host memory into a 
buffer region:

cl_int clEnqueueWriteBuffer(cl_command_queue command_queue,
                             cl_mem buffer,
                             cl_bool blocking_write,
                             size_t offset,
                             size_t cb,
                             void * ptr,
                             cl_uint num_events_in_wait_list,
                             const cl_event * event_wait_list,
                             cl_event *event)

command_queue The command-queue in which the write com-
mand will be queued.

buffer A valid buffer object, which will be read from. 

blocking_write If set to CL_TRUE, then clEnqueueWriteBuffer
blocks until the data is written from ptr; other-
wise it returns directly and the user must query 
event to check the command’s status.

offset The offset, in bytes, into the buffer object to 
begin writing to.

cb The number of bytes to be read from the buffer.

ptr  A pointer into host memory where the data to be 
written is read from.
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Continuing with our previous buffer example, instead of copying the data 
in from the host pointer at buffer creation, the following code achieves 
the same behavior:

cl_mem buffer = clCreateBuffer(
       context,
        CL_MEM_READ_WRITE,
        sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
        NULL,
        &errNum);

  // code to create sub-buffers, command-queues, and so on

  // write data to buffer zero using command-queue zero
  clEnqueueWriteBuffer(
        queues[0],
        buffers[0],
        CL_TRUE,
        0,
        sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
        (void*)inputOutput,
        0,
        NULL,
        NULL);

The following command enqueues a read command, to copy the contents 
of a buffer object into host memory:

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_list
is NULL; otherwise must be greater than zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the write will begin 
execution.

event If non-NULL, the event corresponding to the 
write command returned by the function will be 
returned in this parameter.

cl_int clEnqueueReadBuffer(cl_command_queue command_queue,
                              cl_mem buffer,
                              cl_bool blocking_read,
                              size_t offset,



ptg

Reading, Writing, and Copying Buffers and Sub-Buffers 261

Again continuing with our buffer example, the following example code 
reads back and displays the results of running the square kernel:

  // Read back computed dat
    clEnqueueReadBuffer(
        queues[0],
        buffers[0],
        CL_TRUE,
        0,
        sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
        (void*)inputOutput,
        0,

                              size_t cb,
                              void * ptr,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,
                              cl_event *event)

command_queue The command-queue in which the read com-
mand will be queued.

buffer A valid buffer object, which will be read from. 

blocking_read If set to CL_TRUE, then clEnqueueReadBuffer
blocks until the data is read into ptr; otherwise 
it returns directly and the user must query event
to check the command’s status.

offset The offset, in bytes, into the buffer object to 
begin reading from.

cb The number of bytes to be read from the buffer.

ptr A pointer into host memory where the read data 
is to written to.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned in this parameter.
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        NULL,
        NULL);

    // Display output in rows
    for (unsigned i = 0; i < numDevices; i++)
    {
        for (unsigned elems = i * NUM_BUFFER_ELEMENTS; 
             elems < ((i+1) * NUM_BUFFER_ELEMENTS); 
             elems++)
        {
            std::cout << " " << inputOutput[elems];
        }

        std::cout << std::endl;
    }

Listings 7.1 and 7.2 put this all together, demonstrating creating, writing, 
and reading buffers to square an input vector.

Listing 7.1 Creating, Writing, and Reading Buffers and Sub-Buffers Example 
Kernel Code

simple.cl

__kernel void square(
    __global  int * buffer)
{
    const size_t id = get_global_id(0);

    buffer[id] = buffer[id] * buffer[id];
}

Listing 7.2 Creating, Writing, and Reading Buffers and Sub-Buffers Example 
Host Code

simple.cpp

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>

#include "info.hpp"
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// If more than one platform installed then set this to pick which 
// one to use
#define PLATFORM_INDEX 0

#define NUM_BUFFER_ELEMENTS 10

// Function to check and handle OpenCL errors inline void 
checkErr(cl_int err, const char * name)
{
    if (err != CL_SUCCESS) {
        std::cerr << "ERROR: " 
                  <<  name << " (" << err << ")" << std::endl;
        exit(EXIT_FAILURE);
    }
}

///
// main() for simple buffer and sub-buffer example
//
int main(int argc, char** argv)
{
    cl_int errNum;
    cl_uint numPlatforms;
    cl_uint numDevices;
    cl_platform_id * platformIDs;
    cl_device_id * deviceIDs;
    cl_context context;
    cl_program program;
    std::vector<cl_kernel> kernels;
    std::vector<cl_command_queue> queues;
    std::vector<cl_mem> buffers;
    int * inputOutput;

    std::cout << "Simple buffer and sub-buffer Example" 
              << std::endl;

    // First, select an OpenCL platform to run on.
    errNum = clGetPlatformIDs(0, NULL, &numPlatforms);
    checkErr( 
       (errNum != CL_SUCCESS) ? 
        errNum : (numPlatforms <= 0 ? -1 : CL_SUCCESS), 
       "clGetPlatformIDs"); 

    platformIDs = (cl_platform_id *)alloca(
                   sizeof(cl_platform_id) * numPlatforms);

    std::cout << "Number of platforms: \t" 
              << numPlatforms 
              << std::endl; 
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     errNum = clGetPlatformIDs(numPlatforms, platformIDs, NULL);
    checkErr( 
       (errNum != CL_SUCCESS) ? 
        errNum : (numPlatforms <= 0 ? -1 : CL_SUCCESS), 
       "clGetPlatformIDs");

    std::ifstream srcFile("simple.cl");
    checkErr(srcFile.is_open() ? 
                CL_SUCCESS : -1, 
                "reading simple.cl");

    std::string srcProg(
        std::istreambuf_iterator<char>(srcFile),
        (std::istreambuf_iterator<char>()));

    const char * src = srcProg.c_str();
    size_t length = srcProg.length();

    deviceIDs = NULL;
    DisplayPlatformInfo(
        platformIDs[PLATFORM_INDEX], 
        CL_PLATFORM_VENDOR, 
        "CL_PLATFORM_VENDOR");

    errNum = clGetDeviceIDs(
        platformIDs[PLATFORM_INDEX], 
        CL_DEVICE_TYPE_ALL, 
        0,
        NULL,
        &numDevices);
    if (errNum != CL_SUCCESS && errNum != CL_DEVICE_NOT_FOUND)
    {
        checkErr(errNum, "clGetDeviceIDs");
    }

    deviceIDs = (cl_device_id *)alloca(
       sizeof(cl_device_id) * numDevices);
    errNum = clGetDeviceIDs(
        platformIDs[PLATFORM_INDEX],
        CL_DEVICE_TYPE_ALL,
        numDevices, 
        &deviceIDs[0], 
        NULL);
    checkErr(errNum, "clGetDeviceIDs");

    cl_context_properties contextProperties[] =
    {
        CL_CONTEXT_PLATFORM,
        (cl_context_properties)platformIDs[PLATFORM_INDEX],
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        0
    };

    context = clCreateContext(
        contextProperties, 
        numDevices,
        deviceIDs, 
        NULL,
        NULL, 
        &errNum);
    checkErr(errNum, "clCreateContext");

    // Create program from source
    program = clCreateProgramWithSource(
        context, 
        1, 
        &src, 
        &length, 
        &errNum);
    checkErr(errNum, "clCreateProgramWithSource");

    // Build program
    errNum = clBuildProgram(
        program,
        numDevices,
        deviceIDs,
        "-I.",
        NULL,
        NULL);
    if (errNum != CL_SUCCESS) 
    {
        // Determine the reason for the error
        char buildLog[16384];
        clGetProgramBuildInfo(
            program, 
            deviceIDs[0], 
            CL_PROGRAM_BUILD_LOG,
            sizeof(buildLog), 
            buildLog, 
            NULL);

            std::cerr << "Error in OpenCL C source: " << std::endl;
            std::cerr << buildLog;
            checkErr(errNum, "clBuildProgram");
    }

    // create buffers and sub-buffers
    inputOutput = new int[NUM_BUFFER_ELEMENTS * numDevices];
    for (unsigned int i = 0; 
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         i < NUM_BUFFER_ELEMENTS * numDevices; 
         i++)
    {
        inputOutput[i] = i;
    }

    // create a single buffer to cover all the input data
    cl_mem buffer = clCreateBuffer(
        context,
        CL_MEM_READ_WRITE,
        sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
        NULL,
        &errNum);
    checkErr(errNum, "clCreateBuffer");
    buffers.push_back(buffer);

    // now for all devices other than the first create a sub-buffer
    for (unsigned int i = 1; i < numDevices; i++)
    {
        cl_buffer_region region = 
            {
                NUM_BUFFER_ELEMENTS * i * sizeof(int), 
                NUM_BUFFER_ELEMENTS * sizeof(int)
            };
        buffer = clCreateSubBuffer(
            buffers[0],
            CL_MEM_READ_WRITE,
            CL_BUFFER_CREATE_TYPE_REGION,
            &region,
            &errNum);
        checkErr(errNum, "clCreateSubBuffer");

        buffers.push_back(buffer);
    }

    // Create command-queues
    for (int i = 0; i < numDevices; i++)
    {
        InfoDevice<cl_device_type>::display(
            deviceIDs[i], 
            CL_DEVICE_TYPE, 
            "CL_DEVICE_TYPE");

        cl_command_queue queue = 
            clCreateCommandQueue(
                context,
                deviceIDs[i],
                0,
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                &errNum);
        checkErr(errNum, "clCreateCommandQueue");

        queues.push_back(queue);

        cl_kernel kernel = clCreateKernel(
            program,
            "square",
            &errNum);
        checkErr(errNum, "clCreateKernel(square)");

        errNum = clSetKernelArg(
      kernel, 
      0, 
      sizeof(cl_mem), (void *)&buffers[i]);
  checkErr(errNum, "clSetKernelArg(square)");

        kernels.push_back(kernel);
}

// Write input data
clEnqueueWriteBuffer(
    queues[0],
    buffers[0],
    CL_TRUE,
    0,
    sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
    (void*)inputOutput,
    0,
    NULL,
    NULL);

std::vector<cl_event> events;
// call kernel for each device
for (int i = 0; i < queues.size(); i++)
{
    cl_event event;

    size_t gWI = NUM_BUFFER_ELEMENTS;

    errNum = clEnqueueNDRangeKernel(
         queues[i], 
         kernels[i], 
         1, 
         NULL,
         (const size_t*)&gWI, 
         (const size_t*)NULL, 
         0, 
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         0, 
         &event);
         events.push_back(event);
}

// Technically don't need this as we are doing a blocking read
// with in-order queue.
clWaitForEvents(events.size(), events.data());

// Read back computed data
clEnqueueReadBuffer(
        queues[0],
        buffers[0],
        CL_TRUE,
        0,
        sizeof(int) * NUM_BUFFER_ELEMENTS * numDevices,
        (void*)inputOutput,
        0,
        NULL,
        NULL);

// Display output in rows
for (unsigned i = 0; i < numDevices; i++)
{
    for (unsigned elems = i * NUM_BUFFER_ELEMENTS; 
         elems < ((i+1) * NUM_BUFFER_ELEMENTS); 
         elems++)
    {
        std::cout << " " << inputOutput[elems];
    }

    std::cout << std::endl;
}

std::cout << "Program completed successfully" << std::endl;

    return 0;
}

OpenCL 1.1 introduced the ability to read and write rectangular seg-
ments of a buffer in two or three dimensions. This can be particularly 
useful when working on data that, conceptually at least, is of a dimen-
sion greater than 1, which is how OpenCL sees all buffer objects. A simple 
example showing a two-dimensional array is given in Figure 7.1(a) and a 
corresponding segment, often referred to as a slice, in Figure 7.1(b).
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Segments are limited to contiguous regions of memory within the buffer, 
although they can have a row and slice pitch to handle corner cases such 
as alignment constraints. These can be different for the host memory 
being addressed as well as the buffer being read or written. 

A two-dimensional or three-dimensional region of a buffer can be read 
into host memory with the following function:

(a) (b)

Figure 7.1 (a) 2D array represented as an OpenCL buffer; (b) 2D slice into the 
same buffer

cl_int clEnqueueReadBufferRect(

                              cl_command_queue command_queue,
                              cl_mem buffer,
                              cl_bool blocking_read,
                              const size_t buffer_origin[3],
                              const size_t host_origin[3],
                              const size_t region[3],
                              size_t buffer_row_pitch,
                              size_t buffer_slice_pitch,
                              size_t host_row_pitch,
                              size_t host_slice_pitch,
                              void * ptr,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,
                              cl_event * event)
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command_queue The command-queue in which the read com-
mand will be queued.

buffer A valid buffer object, which will be read from. 

blocking_read If set to CL_TRUE, then clEnqueueReadBuffer-
Rect blocks until the data is read from buffer
and written to ptr; otherwise it returns directly 
and the user must query event to check the 
command’s status.

buffer_origin Defines the (x, y, z) offset in the memory region 
associated with the buffer being read.

host_origin Defines the (x, y, z) offset in the memory region 
pointed to by ptr.

region  Defines the (width, height, depth) in bytes of 
the 2D or 3D rectangle being read. In the case 
of a 2D rectangle region, then region[2] must 
be 1.

buffer_row_pitch The length of each row in bytes to be used for 
the memory region associated with buffer. In 
the case that buffer_row_pitch is 0, then it is 
computed as region[0].

buffer_slice_pitch The length of each 2D slice in bytes to be 
used for the memory region associated with 
buffer. In the case that buffer_slice_pitch
is 0, then it is computed as region[1] * 
buffer_row_pitch.

host_row_pitch The length of each row in bytes to be used for 
the memory region pointed to by ptr. In the 
case that host_row_pitch is 0, then it is com-
puted as region[0].

host_slice_pitch The length of each 2D slice in bytes to be used 
for the memory region pointed to by ptr. In 
the case that host_slice_pitch is 0, then it is 
computed as region[1] * host_row_pitch.

ptr A pointer into host memory where the data read 
is written to.

num_events_in_wait_list The number of entries in the array event_
wait_list. Must be zero in the case event_
wait_list is NULL; otherwise must be greater 
than zero.

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
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There are rules that an implementation of clEnqueueReadBufferRect
will use to calculate the region into the buffer and the region into the 
host memory, which are summarized as follows:

• The offset into the memory region associated with the buffer is calcu-
lated by
buffer_origin[2] * buffer_slice_pitch + 
buffer_origin[1] * buffer_row_pitch +
buffer_origin[0]

In the case of a 2D rectangle region, buffer_origin[2] must be 0.

• The offset into the memory region associated with the host memory is 
calculated by
host_origin[2] * host_slice_pitch + 
host_origin[1] * host_row_pitch +
host_origin[0]

In the case of a 2D rectangle region, buffer_origin[2] must be 0.

As a simple example, like that shown in Figure 7.1, the following code 
demonstrates how one might read a 2×2 region from a buffer into host 
memory, displaying the result:

#define NUM_BUFFER_ELEMENTS 16
cl_int errNum;
cl_command_queue queue;
cl_context context;
cl_mem buffer;

// initialize context, queue, and so on

cl_int hostBuffer[NUM_BUFFER_ELEMENTS] = 
{
      0, 1, 2,  3,  4,  5,  6,  7,
      8, 9, 10, 11, 12, 13, 14, 15
};

buffer = clCreateBuffer(
      context,
      CL_MEM_READ | CL_MEM_COPY_HOST_PTR,

state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
write command returned by the function will 
be returned in this parameter.
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      sizeof(int) * NUM_BUFFER_ELEMENTS,
      hostBuffer,
      &errNum);

int ptr[4] = {-1, -1, -1, -1};
size_t buffer_origin[3] = {1*sizeof(int), 1, 0};
size_t host_origin[3]   = {0,0, 0};
size_t region[3]        = {2* sizeof(int), 2,1};

errNum = clEnqueueReadBufferRect(
      queue,
      buffer,
      CL_TRUE,
      buffer_origin,
      host_origin,
      region,
      (NUM_BUFFER_ELEMENTS / 4) * sizeof(int),
      0,
      0,
      2*sizeof(int),
      static_cast<void*>(ptr),
      0,
      NULL,
      NULL);

std::cout << " " << ptr[0];
std::cout << " " << ptr[1] << std::endl;
std::cout << " " << ptr[2];
std::cout << " " << ptr[3] << std::endl;

Placing this code in a full program and running it results in the following 
output, as shown in Figure 7.1:

      5 6 
      9 10

A two- or three-dimensional region of a buffer can be written into a buf-
fer from host memory with the following function:

cl_int clEnqueueWriteBufferRect(
                              cl_command_queue command_queue,
                              cl_mem buffer,
                              cl_bool blocking_write,
                              const size_t buffer_origin[3],
                              const size_t host_origin[3],
                              const size_t region[3],
                              size_t buffer_row_pitch,
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                              size_t buffer_slice_pitch,
                              size_t host_row_pitch,
                              size_t host_slice_pitch,
                              void * ptr,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,
                              cl_event * event)

command_queue The command-queue in which the write com-
mand will be queued.

buffer A valid buffer object, which will be read from. 

blocking_write If set to CL_TRUE, then clEnqueueWrite-
BufferRect blocks until the data is written 
from ptr; otherwise it returns directly and the 
user must query event to check the command’s 
status.

buffer_origin  Defines the (x, y, z) offset in the memory region 
associated with the buffer being written.

host_origin  Defines the (x, y, z) offset in the memory region 
pointed to by ptr.

region Defines the (width, height, depth) in bytes of 
the 2D or 3D rectangle being written.

buffer_row_pitch The length of each row in bytes to be used for 
the memory region associated with buffer.

buffer_slice_pitch The length of each 2D slice in bytes to be used 
for the memory region associated with buffer.

host_row_pitch  The length of each row in bytes to be used for 
the memory region pointed to by ptr.

host_slice_pitch The length of each 2D slice in bytes to be used 
for the memory region pointed to by ptr.

ptr  A pointer into host memory where the data to be 
written is read from.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than zero.

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the write will begin 
execution.

event If non-NULL, the event corresponding to the 
write command returned by the function will be 
returned in this parameter.
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There are often times when an application needs to copy data between 
two buffers; OpenCL provides the following command for this: 

cl_int clEnqueueCopyBuffer(
                              cl_command_queue command_queue,
                              cl_mem src_buffer,
                              cl_mem dst_buffer,
                              size_t src_offset,
                              size_t dst_offset,
                              size_t cb,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,
                              cl_event *event)

command_queue The command-queue in which the write com-
mand will be queued.

src_buffer A valid buffer object, which will be used as the 
source.

dst_buffer A valid buffer object, which will be used as the 
destination. 

src_offset The offset where to begin copying data from 
src_buffer.

dst_offset  The offset where to begin writing data to 
dst_buffer.

cb The size in bytes to copy.

num_events_in_wait_list The number of entries in the array event_
wait_list. Must be zero in the case event_
wait_list is NULL; otherwise must be greater 
than zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the write will begin 
execution.

event If non-NULL, the event corresponding to the 
write command returned by the function will be 
returned in this parameter.

While not required, as this functionality can easily be emulated by read-
ing the data back to the host and then writing to the destination buffer, 
it is recommended that an application call clEnqueueCopyBuffer as 
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it allows the OpenCL implementation to manage placement of data and 
transfers. As with reading and writing a buffer, it is possible to copy a 2D 
or 3D region of a buffer to another buffer using the following command:

cl_int clEnqueueCopyBufferRect(
                              cl_command_queue command_queue,
                              cl_mem src_buffer,
                              cl_mem dst_buffer,
                              const size_t src_origin[3],
                              const size_t dst_origin[3],
                              const size_t region[3],
                              size_t src_row_pitch,
                              size_t src_slice_pitch,
                              size_t dst_row_pitch,
                              size_t dst_slice_pitch,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,

cl_event * event)

command_queue The command-queue in which the read com-
mand will be queued.

src_buffer A valid buffer object, which will be read from. 

dst_buffer A valid buffer object, which will be written to. 

src_origin  Defines the (x, y, z) offset in the memory region 
associated with src_buffer.

dst_origin Defines the (x, y, z) offset in the memory region 
associated with dst_buffer.

region Defines the (width, height, depth) in bytes of 
the 2D or 3D rectangle being read.

src_row_pitch  The length of each row in bytes to be used for the 
memory region associated with src_buffer.

src_slice_pitch The length of each 2D slice in bytes to be 
used for the memory region associated with 
src_buffer.

dst_row_pitch The length of each row in bytes to be used 
for the memory region associated with 
dst_buffer.

dst_slice_pitch The length of each 2D slice in bytes to be 
used for the memory region associated with 
dst_buffer.

num_events_in_wait_list The number of entries in the array event_
wait_list. Must be zero in the case 
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Mapping Buffers and Sub-Buffers
OpenCL provides the ability to map a region of a buffer directly into host 
memory, allowing the memory to be copied in and out using standard C/
C++ code. Mapping buffers and sub-buffers has the advantage that the 
returned host pointer can be passed into libraries and other function 
abstractions that may be unaware that the memory being accessed is man-
aged and used by OpenCL. The following function enqueues a command 
to map a region of a particular buffer object into the host address space, 
returning a pointer to this mapped region:

event_wait_list is NULL; otherwise must be 
greater than zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the copy will begin 
execution.

event If non-NULL, the event corresponding to the 
write command returned by the function will be 
returned in this parameter.

void * clEnqueueMapBuffer(cl_command_queue command_queue,
                              cl_mem buffer,
                              cl_bool blocking_map,
                              cl_map_flags map_flags,
                              size_t offset,
                              size_t cb,
                              cl_uint num_events_in_wait_list,
                              const cl_event * event_wait_list,
                              cl_event *event,
                              cl_int *errcode_ref)

command_queue The command-queue in which the read com-
mand will be queued.

buffer A valid buffer object, which will be read from. 

blocking_map  If set to CL_TRUE, then  clEnqueueMapBuffer
blocks until the data is mapped into host 
memory; otherwise it returns directly and the 
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Table 7.4 Supported Values for cl_map_flags

cl_map_flags Description

CL_MAP_READ Mapped for reading.

CL_MAP_WRITE Mapped for writing.

To release any additional resources and to tell the OpenCL runtime that 
buffer mapping is no longer required, the following command can be 
used:

user must query event to check the command’s 
status.

map_flags A bit field used to indicate how the region 
specified by (offset, cb) in the buffer object is 
mapped. The set of valid values for map_flags,
defined by the enumeration cl_map_flags, is 
described in Table 7.4.

offset The offset, in bytes, into the buffer object to 
begin reading from.

cb The number of bytes to be read from buffer.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_list
is NULL; otherwise must be greater than zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned in this parameter.

errcode_ret If non-NULL, the error code returned by the 
function will be returned in this parameter.

cl_in clEnqueueUnmapMemObject(cl_command_queue command_queue,
                             cl_mem buffer,
                             void * mapped_pointer,
                             cl_uint num_events_in_wait_list,
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We now return to the example given in Listings 7.1 and 7.2. The follow-
ing code shows how clEnqueueMapBuffer and clEnqueueUnmapMem-
Object could have been used to move data to and from the buffer being 
processed rather than clEnqueueReadBuffer and clEnqueueWrite-
Buffer. The following code initializes the buffer:

cl_int * mapPtr = (cl_int*) clEnqueueMapBuffer(
     queues[0],
     buffers[0],
     CL_TRUE,
     CL_MAP_WRITE,
     0,
     sizeof(cl_int) * NUM_BUFFER_ELEMENTS * numDevices,
     0,
     NULL,
     NULL,
     &errNum);
checkErr(errNum, "clEnqueueMapBuffer(..)");

for (unsigned int i = 0; 
     i < NUM_BUFFER_ELEMENTS * numDevices; 
     i++)

                              const cl_event * event_wait_list,
                              cl_event *event)

command_queue The command-queue in which the read com-
mand will be queued.

buffer A valid buffer object that was previously mapped 
to mapped_pointer.

mapped_pointer The host address returned by the previous call to 
clEnqueueMapBuffer for buffer.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned in this parameter.
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{
     mapPtr[i] = inputOutput[i];
}

errNum = clEnqueueUnmapMemObject(
     queues[0],
     buffers[0],
     mapPtr,
     0,
     NULL,
     NULL);
clFinish(queues[0]);

The following reads the final data back:

cl_int * mapPtr = (cl_int*) clEnqueueMapBuffer(
     queues[0],
     buffers[0],
     CL_TRUE,
     CL_MAP_READ,
     0,
     sizeof(cl_int) * NUM_BUFFER_ELEMENTS * numDevices,
     0,
     NULL,
      NULL,
      &errNum);
checkErr(errNum, "clEnqueueMapBuffer(..)");

for (unsigned int i = 0; 
     i < NUM_BUFFER_ELEMENTS * numDevices; 
     i++)
{
     inputOutput[i] = mapPtr[i];
}

errNum = clEnqueueUnmapMemObject(
     queues[0],
     buffers[0],
     mapPtr,
     0,
     NULL,
     NULL);
     clFinish(queues[0]);
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Chapter 8

Images and Samplers

In the previous chapter, we introduced memory objects that are used to 
read, write, and copy memory to and from an OpenCL device. In this 
chapter, we introduce the image object, a specialized type of memory 
object that is used for accessing 2D and 3D image data. This chapter walks 
through an example of using image and sampler objects and introduces 
the following concepts:

• Overview of image and sampler objects

• Creating image and sampler objects

• Specifying and querying for image formats

• OpenCL C functions for working with images

• Transferring image object data

Image and Sampler Object Overview
GPUs were originally designed for rendering high-performance 3D graph-
ics. One of the most important features of the 3D graphics pipeline is 
the application of texture images to polygonal surfaces. As such, GPUs 
evolved to provide extremely high-performance access to and filtering of 
texture images. While most image operations can be emulated using the 
generic memory objects introduced in the previous chapter, it will be at a 
potentially significant performance loss compared to working with image 
objects. Additionally, image objects make some operations such as clamp-
ing at the edge of texture borders and filtering extremely easy to do. 

Thus, the first thing to understand is that the primary reason why image 
objects exist in OpenCL is to allow programs to fully utilize the high-
performance texturing hardware that exists in GPUs. Some advantage 
may be gained on other hardware as well, and therefore image objects 
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represent the best method for working with two-dimensional and three-
dimensional image data in OpenCL.

Image objects encapsulate several pieces of information about an image:

• Image dimensions: the width and height of a 2D image (along with 
the depth of a 3D image)

• Image format: the bit depth and layout of the image pixels in mem-
ory (more on this later)

• Memory access flags: for example, whether the image will be for 
reading, writing, or both

Samplers are required when fetching from an image object in a kernel. 
Samplers tell the image-reading functions how to access the image: 

• Coordinate mode: whether the texture coordinates used to fetch 
from the image are normalized in the range [0..1] or in the range 
[0..image_dim - 1]

• Addressing mode: the behavior when fetching from an image with 
coordinates that are outside the range of the image boundaries 

• Filter mode: when fetching from the image, whether to take a single 
sample or filter using multiple samples (for example, bilinear filtering)

One thing that may be a bit confusing at first about samplers is that you 
have two options for how to create them. Samplers can either be directly 
declared in the kernel code (using sampler_t) or created as a sampler 
object in the C/C++ program. The reason you might want to create the 
sampler as an object rather than statically declaring it in the code is that 
it allows the kernel to be used with different filtering and addressing 
options. We will go over this in more detail later in the chapter.

Gaussian Filter Kernel Example
Throughout the chapter we will reference the ImageFilter2D example in the Chapter 
8 directory to help explain the use of images in OpenCL. The ImageFilter2D example 
program loads a 2D image from a file (e.g., .png, .bmp, etc.) and stores the image 
bits in a 2D image object. The program also creates a second 2D image object that 
will store the result of running a Gaussian blur filter on the input image. The program 
queues up the kernel for execution and then reads the image back from the OpenCL 
device into a host memory buffer. Finally, the contents of this host memory buffer are 
written to a file. 
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In order to build the example in Chapter 8, you will need to have the open-source 
FreeImage library available from http://freeimage.sourceforge.net/. FreeImage is a 
cross-platform library that provides many easy-to-use functions for loading and saving 
images. The CMake configuration for this example will attempt to detect the Free-
Image library in a number of standard locations and will use the first copy that it finds. 

Creating Image Objects 
Creating an image object is done using clCreateImage2D() or 
clCreateImage3D():

cl_mem clCreateImage2D (cl_context context, 
                             cl_mem_flags flags,
                             const cl_image_format *image_format,
                             size_t image_width,
                             size_t image_height,
                             size_t image_row_pitch,
                             void *host_ptr, 
                             cl_int *errcode_ret)
cl_mem clCreateImage3D (cl_context context, 
                             cl_mem_flags flags,
                             const cl_image_format *image_format,
                             size_t image_width,
                             size_t image_height,
                             size_t image_depth,
                             size_t image_row_pitch,
                             size_t image_slice_pitch,
                             void *host_ptr,
                             cl_int *errcode_ret)

context The context from which to create the image object.

flags A bit field used to specify allocations and usage informa-
tion for the image creation. The set of valid values for 
flags, defined by the enumeration cl_mem_flags, is 
described in Table 7.1 of the previous chapter.

image_format Describes the channel order and the type of the image 
channel data. This is described in the next section, 
“Image Formats.”

image_width The width of the image in pixels.

image_height The height of the image in pixels.

image_depth (3D only) For 3D images, gives the number of slices of 
the image.

http://freeimage.sourceforge.net/
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Listing 8.1 from the ImageFilter2D example demonstrates loading an 
image from a file using the FreeImage library and then creating a 2D 
image object from its contents. The image is first loaded from disk and 
then stored in a 32-bit RGBA buffer where each channel is 1 byte (8 bits). 
Next, the cl_image_format structure is set up with channel order 
CL_RGBA and channel data type CL_UNORM_INT8. The image is then 
finally created using clCreateImage2D(). The 32-bit image buffer is 
loaded to the host_ptr and copied to the OpenCL device. The mem_
flags are set to CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, which 
copies the data from the host pointer and stores it in a 2D image object 
that can be read only from in a kernel.

An important point to note is that clCreateImage2D() and clCreate-
Image3D() return a cl_mem object. There is no special object type for 
image objects, which means that you must use the standard memory 
object functions such as clReleaseMemObject() for releasing them.

Listing 8.1 Creating a 2D Image Object from a File

cl_mem LoadImage(cl_context context, char *fileName, int &width, 
              int &height)
{
 FREE_IMAGE_FORMAT format = FreeImage_GetFileType(fileName, 0);
 FIBITMAP* image = FreeImage_Load(format, fileName);

 // Convert to 32-bit image
 FIBITMAP* temp = image;
 image = FreeImage_ConvertTo32Bits(image);
 FreeImage_Unload(temp);

image_row_pitch If the host_ptr is not NULL, this value specifies the 
number of bytes in each row of an image. If its value 
is 0, the pitch is assumed to be the image_width *
(bytes_per_pixel).

image_slice_pitch (3D only) If the host_ptr is not NULL, this value speci-
fies the number of bytes in each slice of a 3D image. 
If it is 0, the pitch is assumed to be image_height * 
image_row_pitch.

host_ptr A pointer to the image buffer laid out linearly in mem-
ory. For 2D images, the buffer is linear by scan lines. For 
3D images, it is a linear array of 2D image slices. Each 
2D slice is laid out the same as a 2D image.

errcode_ret If non-NULL, the error code returned by the function 
will be returned in this parameter.
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 width = FreeImage_GetWidth(image);
 height = FreeImage_GetHeight(image);

 char *buffer = new char[width * height * 4];
 memcpy(buffer, FreeImage_GetBits(image), width * height * 4);

 FreeImage_Unload(image);

 // Create OpenCL image
 cl_image_format clImageFormat;
 clImageFormat.image_channel_order = CL_RGBA;
 clImageFormat.image_channel_data_type = CL_UNORM_INT8;

 cl_int errNum;
 cl_mem clImage;
 clImage = clCreateImage2D(context,
                            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                            &clImageFormat,
                            width,
                            height,
                            0,
                            buffer,
                            &errNum);

 if (errNum != CL_SUCCESS)
 {
    std::cerr << "Error creating CL image object" << std::endl;
    return 0;
 }

 return clImage;
}

In addition to creating the input 2D image object, the example program 
also creates an output 2D image object that will store the result of per-
forming Gaussian filtering on the input image. The output object is cre-
ated with the code shown in Listing 8.2. Note that this object is created 
without a host_ptr because it will be filled with data in the kernel. Also, 
the mem_flags are set to CL_MEM_WRITE_ONLY because the image will 
only be written in the kernel, but not read.

Listing 8.2 Creating a 2D Image Object for Output

// Create output image object
cl_image_format clImageFormat;
clImageFormat.image_channel_order = CL_RGBA;
clImageFormat.image_channel_data_type = CL_UNORM_INT8;
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imageObjects[1] = clCreateImage2D(context,
                                  CL_MEM_WRITE_ONLY,
                                  &clImageFormat,
                                  width,
                                  height,
                                  0,
                                  NULL,
                                  &errNum); 

After creating an image object, it is possible to query the object for 
information using the generic memory object function clGetMemOb-
jectInfo() described in Chapter 7. Additional information specific to 
the image object can also be queried for by using clGetImageInfo():

cl_int clGetImageInfo (cl_mem image,
                            cl_image_info param_name,
                            size_t param_value_size,
                            void *param_value,
                            size_t *param_value_size_ret)

image  A valid image object that will be queried. 

param_name The parameter to query for information; must be 
one of

CL_IMAGE_FORMAT (cl_image_format): the format 
with which the image was created

CL_IMAGE_ELEMENT_SIZE (size_t): the size in 
bytes of a single pixel element of the image

CL_IMAGE_ROW_PITCH (size_t): the number of 
bytes in each row of an image

CL_IMAGE_SLICE_PITCH (size_t): the number of 
bytes in each 2D slice for 3D images; for 2D images, 
this will be 0

CL_IMAGE_WIDTH (size_t): width of image in pixels

CL_IMAGE_HEIGHT (size_t): height of image in 
pixels

CL_IMAGE_DEPTH (size_t): depth of image in pix-
els for a 3D image; for 2D, this will be 0

param_value_size The size in bytes of param_value.

param_value A pointer to the location in which to store results. 
This location must be allocated with enough bytes 
to store the requested result.

param_value_size_ret The actual number of bytes written to param_value.
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Image Formats

As shown in Listing 8.1, the cl_image_format parameter passed to 
clCreateImage2D() and clCreateImage3D() specifies how the indi-
vidual pixels of the image are laid out in memory. The cl_image_for-
mat structure details both the channel order and bit representation and is 
defined as follows:

   typedef struct _cl_image_format
   { 
      cl_channel_order image_channel_order; 
      cl_channel_type image_channel_data_type;
   } cl_image_format;

The valid values for image_channel_order and image_channel_data_
type are given in Tables 8.1 and 8.2. In addition to providing the layout 
of how the bits of the image are stored in memory, the cl_image_format
also determines how the results will be interpreted when read inside of 
a kernel. The details of fetching from images in a kernel will be covered 
in a later section in this chapter, “OpenCL C Functions for Working with 
Images.” The choice of channel data type influences which is the appro-
priate OpenCL C function with which to read/write the image (e.g., read_
imagef, read_imagei, or read_imageui). The last column in Table 8.1 
shows how the image channel order impacts how the fetch results will be 
interpreted in the kernel.

Table 8.1 Image Channel Order

Channel Order Description Read Results in Kernel

CL_R, CL_Rx One channel of image data that 
will be read into the R component 
in the kernel. 

CL_Rx contains two channels, but 
only the first channel will be 
available when read in the kernel.

(R, 0.0, 0.0, 1.0)

CL_A One channel of image data that 
will be read into the A component 
in the kernel. 

(0.0, 0.0, 0.0, A)

continues
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Channel Order Description Read Results in Kernel

CL_INTENSITY One channel of image data that 
will be read into all color compo-
nents in the kernel.

This format can be used only with 
channel data types of CL_UNORM_
INT8, CL_UNORM_INT16, CL_
SNORM_INT8, CL_SNORM_INT16,
CL_HALF_FLOAT, or CL_FLOAT.

(I, I, I, I)

CL_RG, CL_RGx Two channels of image data that 
will be read into the R, G compo-
nents in the kernel. 

CL_RGx contains three channels, 
but the third channel of data is 
ignored.

(R, G, 0.0, 1.0)

CL_RA Two channels of image data that 
will be read into the R, A compo-
nents in the kernel.

(R, 0.0, 0.0, A)

CL_RGB,
CL_RGBx

Three channels of image data that 
will be read into the R, G, B 
components in the kernel.

These formats can be used only 
with channel data types of 
CL_UNORM_SHORT_565, CL_
UNORM_SHORT_555, or 
CL_UNORM_INT_101010.

(R, G, B, 1.0)

CL_RGBA,
CL_BGRA,
CL_ARGB

Four channels of image data that 
will be read into the R, G, B, A 
components in the kernel.

CL_BGRA and CL_ARGB can be used 
only with channel data types of 
CL_UNORM_INT8, CL_SNORM_INT8,
CL_SIGNED_INT8, or 
CL_UNSIGNED_INT8.

(R, G, B, A)

Table 8.1 Image Channel Order (Continued )
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Table 8.2 Image Channel Data Type

Channel Data Type Description

CL_SNORM_INT8 Each 8-bit integer value will be mapped to the range 
[-1.0, 1.0].

CL_SNORM_INT16 Each 16-bit integer value will be mapped to the 
range [-1,0, 1.0].

CL_UNORM_INT8 Each 8-bit integer value will be mapped to the range 
[0.0, 1.0].

CL_UNORM_INT16 Each 16-bit integer value will be mapped to the 
range [0.0, 1.0].

CL_SIGNED_INT8 Each 8-bit integer value will be read to the integer 
range [-128, 127].

CL_SIGNED_INT16 Each 16-bit integer value will be read to the integer 
range [-32768, 32767].

CL_SIGNED_INT32 Each 32-bit integer value will be read to the integer 
range [-2,147,483,648, 2,147,483,647].

CL_UNSIGNED_INT8 Each 8-bit unsigned integer value will be read to the 
unsigned integer range [0, 255].

CL_UNSIGNED_INT16 Each 16-bit unsigned integer value will be read to 
the unsigned integer range [0, 65535].

CL_UNSIGNED_INT32 Each 32-bit unsigned integer value will be read to 
the unsigned integer range [0, 4,294,967,295].

continues

Channel Order Description Read Results in Kernel

CL_LUMINANCE One channel of image data that 
will be duplicated to all four 
components in the kernel.

This format can be used only with 
channel data types of CL_UNORM_
INT8, CL_UNORM_INT16, CL_
SNORM_INT8, CL_SNORM_INT16,
CL_HALF_FLOAT, or CL_FLOAT.

(L, L, L, 1.0)

Table 8.1 Image Channel Order (Continued )
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All of the image formats given in Tables 8.1 and 8.2 may be supported by 
an OpenCL implementation, but only a subset of these formats is required.
Table 8.3 shows the formats that every OpenCL implementation must
support if it supports images. It is possible for an implementation not to 
support images at all, which you can determine by querying the OpenCL 
device using clGetDeviceInfo() for the Boolean CL_DEVICE_IMAGE_
SUPPORT. If images are supported, you can use the formats in Table 8.3 
without querying OpenCL for which formats are available.

Table 8.3 Mandatory Supported Image Formats

Channel Order Channel Data Type

CL_RGBA CL_UNORM_INT8 
CL_UNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_FLOAT

CL_BGRA CL_UNORM_INT8

If you use any formats not listed in Table 8.3, you must query 
OpenCL to determine if your desired image format is supported using 
clGetSupportedImageFormats():

Channel Data Type Description

CL_HALF_FLOAT Each 16-bit component will be treated as a half-float 
value.

CL_FLOAT Each 32-bit component will be treated as a single-
precision float value.

CL_UNORM_SHORT_565 A 5:6:5 16-bit value where each component (R, G, B) 
will be normalized to the [0.0, 1.0] range.

CL_UNORM_SHORT_555 An x:5:5:5 16-bit value where each component (R, 
G, B) will be normalized to the [0.0, 1.0] range.

CL_UNORM_INT_101010 An x:10:10:10 32-bit value where each component 
(R,G, B) will be normalized to the [0.0, 1.0] range.

Table 8.2 Image Channel Data Type (Continued )
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Querying for Image Support

The ImageFilter2D example uses only a mandatory format so it simply 
checks for whether images are supported, as shown in Listing 8.3. If the 
program used any of the non-mandatory formats, it would also need to 
call clGetSupportedImageFormats() to make sure the image formats 
were supported.

Listing 8.3 Query for Device Image Support

// Make sure the device supports images, otherwise exit
cl_bool imageSupport = CL_FALSE;
clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool),
                    &imageSupport, NULL);
if (imageSupport != CL_TRUE)
{
      std::cerr << "OpenCL device does not support images." 
                << std::endl;
       Cleanup(context, commandQueue, program, kernel, imageObjects, 
               sampler);
       return 1;
}

cl_int clGetSupportedImageFormats (cl_context context, 
                                 cl_mem_flags flags,
                                 cl_mem_object_type image_type,
                                 cl_uint num_entries,
                                 cl_image_format *image_formats,
                                 cl_uint *num_image_formats)

context The context to query for supported image formats.

flags A bit field used to specify allocations and usage informa-
tion for the image creation. The set of valid values for 
flags, defined by the enumeration cl_mem_flags, is 
described in Table 7.1 of the previous chapter. Set this 
flag to the flags you plan to use for creating the image.

image_type The type of the image must be either CL_MEM_OBJECT_
IMAGE2D or CL_MEM_OBJECT_IMAGE3D.

num_entries The number of entries that can be returned.

image_formats A pointer to the location that will store the list of sup-
ported image formats. Set this to NULL to first query for 
the number of image formats supported.

num_image_formats A pointer to a cl_uint that will store the number of 
image formats.
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Creating Sampler Objects 
At this point, we have shown how the ImageFilter2D example creates 
image objects for both the input and output image. We are almost ready 
to execute the kernel. There is one more object that we need to create, 
which is a sampler object. The sampler object specifies the filtering, 
addressing, and coordinate modes that will be used to fetch from the 
image. All of these options correspond to GPU hardware capabilities for 
fetching textures.

The filtering mode specifies whether to fetch using nearest sampling 
or linear sampling. For nearest sampling, the value will be read from 
the image at the location nearest to the coordinate. For linear sampling, 
several values close to the coordinate will be averaged together. For 2D 
images, the linear filter will take the four closest samples and perform 
an average of them. This is known as bilinear sampling. For 3D images, 
the linear filter will take four samples from each of the closest slices and 
then linearly interpolate between these averages. This is known as trilin-
ear sampling. The cost of filtering varies by GPU hardware, but generally 
speaking it is very efficient and much more efficient than doing the filter-
ing manually.

The coordinate mode specifies whether the coordinates used to read from 
the image are normalized (floating-point values in the range [0.0, 1.0])
or non-normalized (integer values in the range [0, image_dimension 
– 1]). Using normalized coordinates means that the coordinate values 
do not take into account the image dimensions. Using non-normalized 
coordinates means that the coordinates are within the image dimension 
range.

The addressing mode specifies what to do when the coordinate falls 
outside the range of [0.0, 1.0] (for normalized coordinates) or [0,
dimension - 1] (for non-normalized coordinates). These modes are 
described in the description of clCreateSampler():

cl_sampler clCreateSampler (cl_context context,
                            cl_bool normalized_coords,
                            cl_addressing_mode addressing_mode,
                            cl_filter_mode filter_mode,
                            cl_int *errcode_ret)

context The context from which to create the sampler object.
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In the ImageFilter2D example a sampler is created that performs nearest 
sampling and that clamps coordinates to the edge of the image as shown 
in Listing 8.4. The coordinates are specified to be non-normalized, mean-
ing that the x-coordinate will be an integer in the range [0, width – 1] and 
the y-coordinate will be an integer in the range [0, height – 1].

Listing 8.4 Creating a Sampler Object

// Create sampler for sampling image object
sampler = clCreateSampler(context,
                       CL_FALSE, // Non-normalized coordinates
                       CL_ADDRESS_CLAMP_TO_EDGE,
                       CL_FILTER_NEAREST,
                       &errNum);

normalized_coords Whether coordinates are normalized floating-point 
values or integer values in the range of the image 
dimensions.

addressing_mode The addressing mode specifies what happens when the 
image is fetched with a coordinate that is outside the 
range of the image:

CL_ADDRESS_CLAMP: Coordinates outside the range of 
the image will return the border color. For CL_A, CL_
INTENSITY, CL_Rx, CL_RA, CL_RGx, CL_RGBx,
CL_ARGB, CL_BGRA, and CL_RGBA this color will be 
(0.0, 0.0, 0.0, 0.0). For CL_R, CL_RG, CL_RGB, and CL_
LUMINANCE this color will be (0.0, 0.0, 0.0, 1.0).

CL_ADDRESS_CLAMP_TO_EDGE: Coordinates will clamp 
to the edge of the image.

CL_ADDRESS_REPEAT: Coordinates outside the range of 
the image will repeat.

CL_ADDRESS_MIRRORED_REPEAT: Coordinates outside 
the range of the image will mirror and repeat.

filter_mode The filter mode specifies how to sample the image:

CL_FILTER_NEAREST: Take the sample nearest the 
coordinate.

CL_FILTER_LINEAR: Take an average of the samples 
closest to the coordinate. In the case of a 2D image this 
will perform bilinear filtering and in the case of a 3D 
image it will perform trilinear filtering.

errcode_ret If non-NULL, the error code returned by the function 
will be returned in this parameter.
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if (errNum != CL_SUCCESS)
{
    std::cerr << "Error creating CL sampler object." << std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}

As was mentioned in the “Image and Sampler Object” section of this 
chapter, sampler objects do not need to be created in the C program. In 
the case of the ImageFilter2D example, the sampler object created in List-
ing 8.4 is passed as an argument to the kernel function. The advantage 
of creating a sampler object this way is that its properties can be changed 
without having to modify the kernel. However, it is also possible to create 
a sampler directly in the kernel code. For example, this sampler could 
have been created in the kernel code and it would behave the same:

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | 
                          CLK_ADDRESS_CLAMP_TO_EDGE   |
                          CLK_FILTER_NEAREST;

It is really up to you whether you need the flexibility of a sampler object 
created using the clCreateSampler() or one declared directly in the 
kernel. In the case of the ImageFilter2D example, it really was not neces-
sary to create the sampler external from the kernel. Rather, it was done 
for demonstration purposes. However, in general, doing so provides more 
flexibility.

When an application is finished with a sampler object, it can be released 
using clReleaseSampler():

cl_int clReleaseSampler (cl_sampler sampler)

sampler    The sampler object to release.

Additionally, sampler objects can be queried for their settings using 
clGetSamplerInfo():

cl_int clGetSamplerInfo (cl_sampler sampler,
                              cl_sampler_info param_name,
                              size_t param_value_size,
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OpenCL C Functions for Working with Images
We have now explained how the ImageFilter2D example creates image 
objects and a sampler object. We can now explain the Gaussian filter 
kernel itself, shown in Listing 8.5. A Gaussian filter is a kernel that is typi-
cally used to smooth or blur an image. It does so by reducing the high-
frequency noise in the image.

Listing 8.5 Gaussian Filter Kernel

__kernel void gaussian_filter(__read_only image2d_t srcImg,
                              __write_only image2d_t dstImg,
                              sampler_t sampler,
                              int width, int height)
{
    // Gaussian Kernel is:
    // 1  2  1
    // 2  4  2

                              void *param_value,
                              size_t *param_value_size_ret)

sampler A valid sampler object to query for information.

param_name  The parameter to query for; must be one of:

CL_SAMPLER_REFERENCE_COUNT (cl_uint): the 
reference count of the sampler object

CL_SAMPLER_CONTEXT (cl_context): the context 
to which the sampler is attached

CL_SAMPLER_NORMALIZED_COORDS (cl_bool): 
whether normalized or non-normalized coordinates

CL_SAMPLER_ADDRESSING_MODE (cl_address-
ing_mode): the addressing mode of the sampler

CL_SAMPLER_FILTER_MODE (cl_filter_mode): the 
filter mode of the sampler

param_value_size The size in bytes of memory pointed to by 
param_value.

param_value A pointer to the location in which to store results. 
This location must be allocated with enough bytes 
to store the requested result.

param_value_size_ret The actual number of bytes written to 
param_value.
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    // 1  2  1
    float kernelWeights[9] = { 1.0f, 2.0f, 1.0f,
                               2.0f, 4.0f, 2.0f,
                               1.0f, 2.0f, 1.0f };

    int2 startImageCoord = (int2) (get_global_id(0) - 1, 
                                   get_global_id(1) - 1);
    int2 endImageCoord   = (int2) (get_global_id(0) + 1, 
                                   get_global_id(1) + 1);
    int2 outImageCoord = (int2) (get_global_id(0), 
                                 get_global_id(1));

    if (outImageCoord.x < width && outImageCoord.y < height)
    {
        int weight = 0;
        float4 outColor = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
        for(int y = startImageCoord.y; y <= endImageCoord.y; y++)
        {
            for(int x= startImageCoord.x; x <= endImageCoord.x; x++)
            {
                outColor += 
                     (read_imagef(srcImg, sampler, (int2)(x, y)) * 
                     (kernelWeights[weight] / 16.0f));
                weight += 1;
            }
        }

        // Write the output value to image
        write_imagef(dstImg, outImageCoord, outColor);
    }
}
}

The gaussian_kernel() takes five arguments:

• __read_only image2d_t srcImg: the source image object to be 
filtered

• __write_only image2d_t dstImg: the destination image object 
where the filtered results will be written 

• sampler_t sampler: the sampler object specifying the addressing, 
coordinate, and filter mode used by read_imagef()

• int width, int height: the width and height of the image to filter 
in pixels; note that both the source and destination image objects are 
created to be the same size
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The ImageFilter2D program sets the kernel arguments, and the kernel is 
queued for execution, as shown in Listing 8.6. The kernel arguments are 
set by calling clSetKernelArg() for each argument. After setting the 
arguments, the kernel is queued for execution. The localWorkSize is set 
to a hard-coded value of 16 × 16 (this could potentially be adapted for the 
optimal size for the device but was set to a hard-coded value for demon-
stration purposes). The global work size rounds the width and height up 
to the closest multiple of the localWorkSize. This is required because 
the globalWorkSize must be a multiple of the localWorkSize. This 
setup allows the kernel to work with arbitrary image sizes (not just those 
with multiple-of-16 image widths and heights).

Back in Listing 8.5 for the Gaussian kernel, the image coordinates are 
tested to see if they are inside the image width and height. This is neces-
sary because of the rounding that was done for the global work size. If we 
knew our images would always be multiples of a certain value, we could 
avoid this test, but this example was written to work with arbitrary image 
dimensions, so we do this test in the kernel to make sure reads/writes are 
inside the image dimensions.

Listing 8.6 Queue Gaussian Kernel for Execution

// Set the kernel arguments
errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem),
                        &imageObjects[0]);
errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), 
                         &imageObjects[1]);
errNum |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
errNum |= clSetKernelArg(kernel, 3, sizeof(cl_int), &width);
errNum |= clSetKernelArg(kernel, 4, sizeof(cl_int), &height);
if (errNum != CL_SUCCESS)
{
    std::cerr << "Error setting kernel arguments." << std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}

size_t localWorkSize[2] = { 16, 16 };
size_t globalWorkSize[2] =  { RoundUp(localWorkSize[0], width),
                           RoundUp(localWorkSize[1], height) };

// Queue the kernel up for execution
errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL,
                             globalWorkSize, localWorkSize,
                             0, NULL, NULL);
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if (errNum != CL_SUCCESS)
{
   std::cerr << "Error queuing kernel for execution." << std::endl;
   Cleanup(context, commandQueue, program, kernel, imageObjects, 
      sampler);
   return 1;
}

The main loop for gaussian_filter() reads nine values in a 3 × 3 
region in the nested for loop of Listing 8.5. Each of the values read from 
the image is multiplied by a weighting factor that is specified in the 
Gaussian convolution kernel. The result of this operation is to blur the 
input image. Each value that is read from the image is read using the 
OpenCL C function read_imagef():

read_imagef(srcImg, sampler, (int2)(x, y))

The first argument is the image object, the second is the sampler, and the 
third is the image coordinate to use. In this case, the sampler was speci-
fied with non-normalized coordinates; therefore, the (x, y) values are 
integers in the range [0, width – 1] and [0, height – 1]. If the sampler were 
using normalized coordinates, the function call would be the same but 
the last argument would be a float2 with normalized coordinates. The 
read_imagef() function returns a float4 color. The range of values of 
the color depends on the format with which the image was specified. In 
this case, our image was specified as CL_UNORM_INT8, so the color val-
ues returned will be in the floating-point range [0.0, 1.0]. Additionally, 
because the image was specified with channel order as CL_RGBA, the color 
return will be read to (R, G, B, A) in the resulting color.

The full set of 2D and 3D read image functions is provided in Chapter 5 in 
Tables 5.16 and 5.17. The choice of which image function to use depends 
on what channel data type you use to specify your image. The tables in 
Chapter 5 detail which function is appropriate to use depending on the 
format of your image. The choice of coordinate (integer non-normalized 
or floating-point normalized) depends on the setting of the sampler used 
to call the read_image[f|ui|i]() function. 

Finally, the result of the filtered Gaussian kernel is written into the desti-
nation image at the end of Listing 8.5:

write_imagef(dstImg, outImageCoord, outColor);

When writing to an image, the coordinates must always be integers in 
the range of the image dimensions. There is no sampler for image writes 
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because there is no filtering and no addressing modes (coordinates must 
be in range), and coordinates are always non-normalized. The choice of 
which write_image[f|ui|i]() again depends on the channel format 
that was chosen for the destination image. The full listing of image writ-
ing functions for 2D and 3D images is provided in Tables 5.21 and 5.22.

Transferring Image Objects
We have now covered all of the operations on image objects except 
for how to move them around. OpenCL provides functions for doing 
the following transfer operations on images that can be placed in the 
command-queue:

• clEnqueueReadImage() reads images from device  host memory.

• clEnqueueWriteImage() writes images from host  device memory.

• clEnqueueCopyImage() copies one image to another.

• clEnqueueCopyImageToBuffer() copies an image object (or por-
tions of it) into a generic memory buffer.

• clEnqueueCopyBufferToImage() copies a generic memory buffer 
into an image object (or portions of it).

• clEnqueueMapImage() maps an image (or portions of it) to a host 
memory pointer.

An image is queued for reading from device to host memory by using 
clEnqueueReadImage():

cl_int clEnqueueReadImage (cl_command_queue command_queue,
                                cl_mem image,
                                cl_bool blocking_read,
                                const size_t origin[3],
                                const size_t region[3],
                                size_t row_pitch,
                                size_t slice_pitch,
                                void *ptr,
                                cl_uint num_events_in_wait_list,
                                const cl_event *event_wait_list,
                                cl_event *event)

command_queue The command-queue in which the read com-
mand will be queued.
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In the ImageFilter2D example, clEnqueueReadImage() is used with a 
blocking read to read the Gaussian-filtered image back into a host memory 
buffer. This buffer is then written out to disk as an image file using Free-
Image, as shown in Listing 8.7.

Listing 8.7 Read Image Back to Host Memory

bool SaveImage(char *fileName, char *buffer, int width, int height)
{
    FREE_IMAGE_FORMAT format = 
        FreeImage_GetFIFFromFilename(fileName);
    FIBITMAP *image = FreeImage_ConvertFromRawBits((BYTE*)buffer, 
                        width,

image A valid image object, which will be read from.

blocking_read If set to CL_TRUE, then clEnqueueReadImage
blocks until the data is read into ptr; otherwise it 
returns directly and the user must query event to 
check the command’s status.

origin The (x, y, z) integer coordinates of the image 
origin to begin reading from. For 2D images, the 
z-coordinate must be 0.

region The (width, height, depth) of the region to read. 
For 2D images, the depth should be 1.

row_pitch The number of bytes in each row of an image. 
If its value is 0, the pitch is assumed to be the 
image_width * (bytes_per_pixel).

slice_pitch  The number of bytes in each slice of a 3D image. 
If it is 0, the pitch is assumed to be image_
height * image_row_pitch.

ptr A pointer into host memory where the read data 
is written to.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_list
is NULL; otherwise must be greater than zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event  If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned in this parameter.
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                        height, width * 4, 32,
                        0xFF000000, 0x00FF0000, 0x0000FF00);
    return FreeImage_Save(format, image, fileName);
}
...

// Read the output buffer back to the Host
char *buffer = new char [width * height * 4];
size_t origin[3] = { 0, 0, 0 };
size_t region[3] = { width, height, 1};
errNum = clEnqueueReadImage(commandQueue, imageObjects[1],
                            CL_TRUE,
                            origin, region, 0, 0, buffer,
                            0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
    std::cerr << "Error reading result buffer." 
              << std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}

Images can also be written from host memory to destination memory 
using clEnqueueWriteImage():

cl_int clEnqueueWriteImage (cl_command_queue command_queue,
                                 cl_mem image,
                                 cl_bool blocking_write,
                                 const size_t origin[3],
                                 const size_t region[3],
                                 size_t input_row_pitch,
                                 size_t input_slice_pitch,
                                 const void *ptr,

cl_uint num_events_in_wait_list,
                                 const cl_event *event_wait_list,
                                 cl_event *event)

command_queue The command-queue in which the write com-
mand will be queued.

image A valid image object, which will be written to.

blocking_write If set to CL_TRUE, then clEnqueueWriteImage
blocks until the data is written from ptr; other-
wise it returns directly and the user must query 
event to check the command’s status.
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Images can also be copied from one image object to another without 
requiring the use of host memory. This is the fastest way to copy the 
contents of an image object to another one. This type of copy can be done 
using clEnqueueCopyImage():

origin The (x, y, z) integer coordinates of the image 
origin to begin writing to. For 2D images, the 
z-coordinate must be 0.

region The (width, height, depth) of the region to write. 
For 2D images, the depth should be 1.

input_row_pitch The number of bytes in each row of the input 
image. 

input_slice_pitch The number of bytes in each slice of the input 3D 
image. Should be 0 for 2D images.

ptr A pointer into host memory where the memory 
to write from is located. This pointer must be 
allocated with enough storage to hold the image 
bytes specified by the region.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned.

cl_int clEnqueueCopyImage (cl_command_queue command_queue,
                                cl_mem src_image,
                                cl_mem dst_image,
                                const size_t src_origin[3],
                                const size_t dst_origin[3],
                                const size_t region[3],
                                cl_uint num_events_in_wait_list,
                                const cl_event *event_wait_list,
                                cl_event *event)
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Additionally, because image objects are specialized memory buffers, it 
is also possible to copy the contents of an image into a generic memory 
buffer. The memory buffer will be treated as a linear area of memory in 
which to store the copied data and must be allocated with the appropri-
ate amount of storage. Copying from an image to a buffer is done using 
clEnqueueCopyImageToBuffer():

command_queue The command-queue in which the copy com-
mand will be queued.

src_image A valid image object, which will be read from.

dst_image A valid image object, which will be written to.

src_origin The (x, y, z) integer coordinates of the origin of 
the source image to read from. For 2D images, 
the z-coordinate must be 0.

dst_origin  The (x, y, z) integer coordinates of the origin of 
the destination image to start writing to. For 2D 
images, the z-coordinate must be 0.

region The (width, height, depth) of the region to read/
write. For 2D images, the depth should be 1.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event  If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned.

cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue,
                                  cl_mem src_image,
                                  cl_mem dst_buffer,
                                  const size_t src_origin[3],
                                  const size_t region[3],
                                  size_t dst_offset,
                                  cl_uint num_events_in_wait_list,
                                  const cl_event *event_wait_list,
                                  cl_event *event)
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Likewise, it is possible to do the reverse: copy a generic memory buf-
fer into an image. The memory buffer region will be laid out lin-
early the same as one would allocate a host memory buffer to 
store an image. Copying from a buffer to an image is done using 
clEnqueueCopyBufferToImage():

command_queue The command-queue in which the copy-image-
to-buffer command will be queued.

src_image A valid image object, which will be read from.

dst_buffer A valid buffer object, which will be written to.

src_origin  The (x, y, z) integer coordinates of the origin of 
the source image to read from. For 2D images, 
the z-coordinate must be 0.

region The (width, height, depth) of the region to read 
from. For 2D images, the depth should be 1.

dst_offset The offset in bytes in the destination memory 
buffer to begin writing to.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned.

cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue,
                                  cl_mem src_buffer,
                                  cl_mem dst_image,
                                  size_t src_offset,
                                  const size_t dst_origin[3],
                                  const size_t region[3],
                                  cl_uint num_events_in_wait_list,
                                  const cl_event *event_wait_list,
                                  cl_event *event)
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Finally, there is one additional way to access the memory of an image 
object. Just as with regular buffers, image objects can be mapped directly 
into host memory (as described for buffers in “Mapping Buffers and 
Sub-Buffers” in Chapter 7). Mapping can be done using the function 
clEnqueueMapImage(). Images can be unmapped using the generic buf-
fer function clEnqueueUnmapMemObject(), which was also described in 
the same section of Chapter 7.

command_queue The command-queue in which the copy-buffer-
to-image command will be queued.

src_buffer A valid buffer object, which will be read from.

dst_image A valid image object, which will be written to.

src_offset  The offset in bytes in the source memory buffer 
to begin reading from.

dst_origin  The (x, y, z) integer coordinates of the origin of 
the destination image to write to. For 2D images, 
the z-coordinate must be 0.

region  The (width, height, depth) of the region to write 
to. For 2D images, the depth should be 1.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned.

void* clEnqueueMapImage (cl_command_queue command_queue,
                               cl_mem image,

cl_bool blocking_map,
                               cl_map_flags map_flags,
                               const size_t origin[3],
                               const size_t region[3],
                               size_t *image_row_pitch,
                               size_t *image_slice_pitch,
                               cl_uint num_events_in_wait_list,
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                               const cl_event *event_wait_list,
                               cl_event *event,

void *errcode_ret)

command_queue The command-queue in which the read com-
mand will be queued.

image A valid image object, which will be read from. 

blocking_map If set to CL_TRUE, then  clEnqueueMapImage
blocks until the data is mapped into host 
memory; otherwise it returns directly and the 
user must query event to check the command’s 
status.

map_flags A bit field used to indicate how the region speci-
fied by (origin, region) in the image object is 
mapped. The set of valid values for map_flags,
defined by the enumeration cl_map_flags, is 
described in Table 7.3.

origin  The (x, y, z) integer coordinates of the origin of 
the image to begin reading from. For 2D images, 
the z-coordinate must be 0.

region  The (width, height, depth) of the region to read. 
For 2D images, the depth should be 1.

image_row_pitch If not NULL, will be set with the row pitch of the 
read image.

image_slice_pitch If not NULL, will be set with the slice pitch of the 
read 3D image. For a 2D image, this value will be 
set to 0.

num_events_in_wait_list The number of entries in the array event_wait_
list. Must be zero in the case event_wait_
list is NULL; otherwise must be greater than 
zero. 

event_wait_list If not NULL, then event_wait_list is an array 
of events, associated with OpenCL commands, 
that must have completed, that is, be in the 
state CL_COMPLETE, before the read will begin 
execution.

event If non-NULL, the event corresponding to the 
read command returned by the function will be 
returned in this parameter.

errcode_ret If non-NULL, the error code returned by the func-
tion will be returned in this parameter.
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The ImageFilter2D example from this chapter can be modified to use 
clEnqueueMapImage() to read the results back to the host rather than 
using clEnqueueReadImage(). The code in Listing 8.8 shows the 
changes necessary to modify the example program to read its results using 
clEnqueueMapImage().

Listing 8.8 Mapping Image Results to a Host Memory Pointer

// Create the image object. Needs to be
// created with CL_MEM_READ_WRITE rather than
// CL_MEM_WRITE_ONLY since it will need to
// be mapped to the host
imageObjects[1] = clCreateImage2D(context,
                                  CL_MEM_READ_WRITE,
                                  &clImageFormat,
                                  width,
                                  height,
                                  0,
                                  NULL,
                                  &errNum);

// ... Execute the kernel ...

// Map the results back to a host buffer 
size_t rowPitch = 0;
char *buffer =
        (char*) clEnqueueMapImage(commandQueue, imageObjects[1],
                                  CL_TRUE,
                                  CL_MAP_READ, origin,
                                  region, &rowPitch,
                                  NULL, 0, NULL, NULL, &errNum);
if (errNum != CL_SUCCESS)
{
    std::cerr << "Error mapping result buffer." << std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}
// Save the image out to disk
if (!SaveImage(argv[2], buffer, width, height, rowPitch))
{
    std::cerr << "Error writing output image: " << argv[2] << 
                  std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}



ptg

308 Chapter 8: Images and Samplers

// Unmap the image buffer
errNum = clEnqueueUnmapMemObject(commandQueue, imageObjects[1], 
                                 buffer, 0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
    std::cerr << "Error unmapping result buffer." << std::endl;
    Cleanup(context, commandQueue, program, kernel, imageObjects, 
            sampler);
    return 1;
}

The image object created for the results is this time created with memory 
flags of CL_MEM_READ_WRITE (rather than CL_MEM_WRITE_ONLY as it was 
originally). This must be done because when we call clEnqueueMap-
Image(), we pass it CL_MAP_READ as a map flag, which allows us to read 
its contents in the host buffer returned. Another change is that the row 
pitch must be explicitly read back rather than assumed to be equal to the 
width * bytesPerPixel. Further, the host pointer buffer must be 
unmapped using clEnqueueUnmapMemObject() in order to release its 
resources. 

One important performance consideration to be aware of about copy-
ing and mapping image data is that the OpenCL specification does not 
mandate the internal storage layout of images. That is, while the images 
may appear to be linear buffers on the host, an OpenCL implementation 
might store images in nonlinear formats internally. Most commonly, an 
OpenCL implementation will tile image data for optimized access for the 
hardware. The tiling format is opaque (and likely proprietary), and the 
user of the OpenCL implementation does not see or have access to the 
tiled buffers. However, what this means from a performance perspec-
tive is that when reading/writing/mapping buffers from/to the host, the 
OpenCL implementation may need to retile the data for its own optimum 
internal format. While the performance implications of this are likely to 
be entirely dependent on the underlying OpenCL hardware device, it is 
worth understanding from a user perspective in order to limit such tiling/
detiling operations to where they are strictly necessary.
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Chapter 9

Events

OpenCL commands move through queues executing kernels, manipulat-
ing memory objects, and moving them between devices and the host. 
A particularly simple style of OpenCL programming is to consider the pro-
gram as a single queue of commands executing in order, with one com-
mand finishing before the next begins.

Often, however, a problem is best solved in terms of multiple queues. Or 
individual commands need to run concurrently, either to expose more 
concurrency or to overlap communication and computation. Or you just 
need to keep track of the timing of how the commands execute to under-
stand the performance of your program. In each of these cases, a more 
detailed way to interact with OpenCL is needed. We address this issue 
within OpenCL through event objects. 

In this chapter, we will explain OpenCL events and how to use them. We 
will discuss

• The basic event model in OpenCL

• The APIs to work with events

• User-defined events

• Profiling commands with events

• Events inside kernels

Commands, Queues, and Events Overview
Command-queues are the core of OpenCL. A platform defines a context 
that contains one or more compute devices. For each compute device 
there is one or more command-queues. Commands submitted to these 
queues carry out the work of an OpenCL program.
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In simple OpenCL programs, the commands submitted to a command-
queue execute in order. One command completes before the next one 
begins, and the program unfolds as a strictly ordered sequence of com-
mands. When individual commands contain large amounts of concur-
rency, this in-order approach delivers the performance an application 
requires.

Realistic applications, however, are usually not that simple. In most cases, 
applications do not require strict in-order execution of commands. Mem-
ory objects can move between a device and the host while other com-
mands execute. Commands operating on disjoint memory objects can 
execute concurrently. In a typical application there is ample concurrency 
present from running commands at the same time. This concurrency can 
be exploited by the runtime system to increase the amount of parallelism 
that can be realized, resulting in significant performance improvements.

Another common situation is when the dependencies between commands 
can be expressed as a directed acyclic graph (DAG). Such graphs may 
include branches that are independent and can safely run concurrently. 
Forcing these commands to run in a serial order overconstrains the sys-
tem. An out-of-order command-queue lets a system exploit concurrency 
between such commands, but there is much more concurrency that can 
be exploited. By running independent branches of the DAG on different 
command-queues potentially associated with different compute devices, 
large amounts of additional concurrency can be exploited. 

The common theme in these examples is that the application has more 
opportunities for concurrency than the command-queues can expose. 
Relaxing these ordering constraints has potentially large performance 
advantages. These advantages, however, come at a cost. If the ordering 
semantics of the command-queue are not used to ensure a safe order of 
execution for commands, then the programmer must take on this respon-
sibility. This is done with events in OpenCL.

An event is an object that communicates the status of commands in 
OpenCL. Commands in a command-queue generate events, and other 
commands can wait on these events before they execute. Users can create 
custom events to provide additional levels of control between the host 
and the compute devices. The event mechanism can be used to control 
the interaction between OpenCL and graphics standards such as OpenGL. 
And finally, inside kernels, events can be used to let programmers overlap 
data movement with operations on that data. 



ptg

Events and Command-Queues 311

Events and Command-Queues
An OpenCL event is an object that conveys information about a com-
mand in OpenCL. The state of an event describes the status of the associ-
ated command. It can take one of the following values: 

• CL_QUEUED: The command has been enqueued in the 
command-queue.

• CL_SUBMITTED: The enqueued command has been submitted by the 
host to the device associated with the command-queue.

• CL_RUNNING: The compute device is executing the command.

• CL_COMPLETE: The command has completed.

• ERROR_CODE: A negative value that indicates that some error condi-
tion has occurred. The actual values are the ones returned by the 
platform or runtime API that generated the event.

There are a number of ways to create events. The most common source 
of events is the commands themselves. Any command enqueued to a 
command-queue generates or waits for events. They appear in the API in 
the same way from one command to the next; hence we can use a single 
example to explain how events work. Consider the command to enqueue 
kernels for execution on a compute device:

cl_int clEnqueueNDRangeKernel (
     cl_command_queue command_queue,
     cl_kernel kernel,
     cl_uint work_dim,
     const size_t *global_work_offset,
     const size_t *global_work_size,
     const size_t *local_work_size,
     cl_uint num_events_in_wait_list,
     const cl_event *event_wait_list,
     cl_event *event)

This should look familiar from earlier chapters in the book. For now, we 
are interested in only the last three arguments to this function: 

• cl_uint num_events_in_wait_list: the number of events this 
command is waiting to complete before executing.

• const cl_event *event_wait_list: an array of pointers defining 
the list of num_events_in_wait_list events this command is wait-
ing on. The context associated with events in event_wait_list and 
the command_queue must be the same.
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• cl_event *event: a pointer to an event object generated by this 
command. This can be used by subsequent commands or the host to 
follow the status of this command.

When legitimate values are provided by the arguments num_events_in_
wait_list and *event_wait_list, the command will not run until 
every event in the list has either a status of CL_COMPLETE or a negative 
value indicating an error condition. 

The event is used to define a sequence point where two commands are 
brought to a known state within a program and hence serves as a syn-
chronization point within OpenCL. As with any synchronization point in 
OpenCL, memory objects are brought to a well-defined state with respect 
to the execution of multiple kernels according to the OpenCL memory 
model. Memory objects are associated with a context, so this holds even 
when multiple command-queues within a single context are involved in a 
computation. 

For example, consider the following simple example:

cl_event    k_events[2];

// enqueue two kernels exposing events 

err = clEnqueueNDRangeKernel(commands, kernel1, 1, 
         NULL, &global, &local, 0, NULL, &k_events[0]);

err = clEnqueueNDRangeKernel(commands, kernel2, 1, 
         NULL, &global, &local, 0, NULL, &k_events[1]);

// enqueue the next kernel .. which waits for two prior
// events before launching the kernel
err = clEnqueueNDRangeKernel(commands, kernel3, 1,
         NULL, &global, &local, 2, k_events, NULL);

Three kernels are enqueued for execution. The first two clEnqueue-
NDRangeKernel commands enqueue kernel1 and kernel2. The final 
arguments for these commands generate events that are placed in the 
corresponding elements of the array k_events[]. The third clEnqueue-
NDRangeKernel command enqueues kernel3. As shown in the seventh 
and eighth arguments to clEnqueueNDRangeKernel, kernel3 will wait 
until both of the events in the array k_events[] have completed before 
the kernel will run. Note, however, that the final argument to enqueue 
kernel3 is NULL. This indicates that we don’t wish to generate an event 
for later commands to access. 
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When detailed control over the order in which commands execute is 
needed, events are critical. When such control is not needed, however, 
it is convenient for commands to ignore events (both use of events and 
generation of events). We can tell a command to ignore events using the 
following procedure:

1. Set the number of events the command is waiting for (num_events_
in_wait_list) to 0.

2. Set the pointer to the array of events (*event_wait_list) to NULL.
Note that if this is done, num_events_in_wait_list must be 0.

3. Set the pointer to the generated event (*event) to NULL.

This procedure ensures that no events will be waited on, and that no 
event will be generated, which of course means that it will not be pos-
sible for the application to query or queue a wait for this particular kernel 
execution instance.

When enqueuing commands, you often need to indicate a synchroniza-
tion point where all commands prior to that point complete before any 
of the following commands start. You can do this for commands within a 
single queue using the clBarrier() function: 

cl_int clEnqueueBarrier (
          cl_command_queue command_queue)

The single argument defines the queue to which the barrier applies. The 
command returns CL_SUCCESS if the function was executed successfully; 
otherwise it returns one of the following error conditions:

• CL_INVALID_COMMAND_QUEUE: The command-queue is not a valid 
command-queue. 

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

The clEnqueueBarrier command defines a synchronization point. This 
is important for understanding ordering constraints between commands. 
But more important, in the OpenCL memory model described in Chapter 
1, consistency of memory objects is defined with respect to synchroniza-
tion points. In particular, at a synchronization point, updates to memory 
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objects visible across commands must be complete so that subsequent 
commands see the new values. 

To define more general synchronization points, OpenCL uses events and 
markers. A marker is set with the following command: 

cl_int clEnqueueMarker (
     cl_command_queue command_queue, 
     cl_event *event)

cl_command_queue command_queue: The command-queue to which the 
marker is applied

cl_event *event: A pointer to an event object used to 
communicate the status of the marker

The marker command is not completed until all commands enqueued 
before it have completed. For a single in-order queue, the effect of the 
clEnqueueMarker command is similar to a barrier. Unlike the barrier, 
however, the marker command returns an event. The host or other 
commands can wait on this event to ensure that all commands queued 
before the marker command have completed. clEnqueueMarker returns 
CL_SUCCESS if the function is successfully executed. Otherwise, it returns 
one of the following errors:

• CL_INVALID_COMMAND_QUEUE: The command_queue is not a valid 
command-queue.

• CL_INVALID_VALUE: The event is a NULL value.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

The following function enqueues a wait for a specific event or a list of 
events to complete before any future commands queued in the command-
queue are executed:

cl_int clEnqueueWaitForEvents( 
     cl_command_queue command_queue, 
     cl_uint num_events, 
     const cl_event *event_list)
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These events define synchronization points. This means that when the 
clEnqueueWaitForEvents completes, updates to memory objects as 
defined in the memory model must complete, and subsequent commands 
can depend on a consistent state for the memory objects. The context 
associated with events in event_list and command_queue must be the 
same.

clEnqueueWaitForEvents returns CL_SUCCESS if the function was suc-
cessfully executed. Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE: The command_queue is not a valid 
command-queue.

• CL_INVALID_CONTEXT: The context associated with command_queue
and the events in event_list are not the same.

• CL_INVALID_VALUE: num_events is 0 or event_list is NULL.

• CL_INVALID_EVENT: The event objects specified in event_list are 
not valid events.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the command.

The three commands clEnqueueBarrier, clEnqueueMarker, and 
clEnqueueWaitForEvents impose order constraints on commands in 
a queue and synchronization points that impact the consistency of the 
OpenCL memory. Together they provide essential building blocks for syn-
chronization protocols in OpenCL. 

For example, consider a pair of queues that share a context but direct 
commands to different compute devices. Memory objects can be shared 
between these two devices (because they share a context), but with 
OpenCL’s relaxed consistency memory model, at any given point shared 

cl_command_queue command_queue: The command-queue to which the 
events apply

cl_uint num_events_in_wait_list: The number of events this command 
is waiting to complete 

const cl_event *event_wait_list: An array of pointers defining the list 
of num_events_in_wait_list events 
this command is waiting on 
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memory objects may be in an ambiguous state relative to commands 
in one queue or the other. A barrier placed at a strategic point would 
address this problem and a programmer might attempt to do so with the 
clEnqueueBarrier() command, as shown in Figure 9.1. 
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clEnqueueReadBuffer()
clEnqueueReadBuffer()
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clEnqueueBarrier() clEnqueueBarrier()

First command-queue Second command-queue

Figure 9.1 A failed attempt to use the clEnqueueBarrier() command to 
establish a barrier between two command-queues. This doesn’t 
work because the barrier command in OpenCL applies only to the 
queue within which it is placed.

The barrier command in OpenCL, however, constrains the order of com-
mands only for the command-queue to which it was enqueued. How does 
a programmer define a barrier that stretches across two command-queues? 
This is shown in Figure 9.2. 

In one of the queues, a clEnqueueMarker() command is enqueued, 
returning a valid event object. The marker acts as a barrier to its own 
queue, but it also returns an event that can be waited on by other com-
mands. In the second queue, we place a barrier in the desired location 
and follow the barrier with a call to clEnqueueWaitForEvents. The 
clEnqueueBarrier command will cause the desired behavior within its 
queue; that is, all commands prior to clEnqueueBarrier() must finish 
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before any subsequent commands execute. The call to clEnqueueWait-
ForEvents() defines the connection to the marker from the other queue. 
The end result is a synchronization protocol that defines barrier function-
ality between a pair of queues.

Event Objects
Let’s take a closer look at the events themselves. Events are objects. As 
with any other objects in OpenCL, we define three functions to manage 
them: 

• clGetEventInfo

• clRetainEvent

• clReleaseEvent
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Figure 9.2 Creating a barrier between queues using clEnqueueMarker() to 
post the barrier in one queue with its exported event to connect 
to a clEnqueueWaitForEvent() function in the other queue. 
Because clEnqueueWaitForEvents() does not imply a barrier, it 
must be preceded by an explicit clEnqueueBarrier().
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The following function increments the reference count for the indicated 
event object:

cl_int clRetainEvent (cl_event event)

Note that any OpenCL command that returns an event implicitly invokes 
a retain function on the event. 

clRetainEvent() returns CL_SUCCESS if the function is executed suc-
cessfully. Otherwise, it returns one of the following errors:

• CL_INVALID_EVENT: The event is not a valid event object.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

To release an event, use the following function:

cl_int clReleaseEvent (cl_event event)

This function decrements the event reference count. clReleaseEvent
returns CL_SUCCESS if the function is executed successfully. Otherwise, it 
returns one of the following errors:

• CL_INVALID_EVENT: The event is not a valid event object.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

Information about an event can be queried using the following function:
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The clGetEventInfo function does not define a synchronization point. 
In other words, even if the function determines that a command iden-
tified by an event has finished execution (i.e., CL_EVENT_COMMAND_
EXECUTION_STATUS returns CL_COMPLETE), there are no guarantees that 
memory objects modified by a command associated with the event will be 
visible to other enqueued commands.

cl_int clGetEventInfo (
      cl_event event,
      cl_event_info param_name,
      size_t param_value_size,
      void *param_value,
      size_t *param_value_size_ret)

cl_event event Specifies the event object being queried.

cl_event_info param_name Specifies the information to query. The 
list of supported param_name types and 
the information returned in param_
value by clGetEventInfo is described 
in Table 9.1.

size_t param_value_size Specifies the size in bytes of memory 
pointed to by param_value. This size 
must be greater than or equal to the size 
of the return type as described in Table 9.1.

void *param_value A pointer to memory where the appropri-
ate result being queried is returned. If 
param_value is NULL, it is ignored.

size_t *param_value_size_ret Returns the actual size in bytes of data 
copied to param_value. If param_value_
size_ret is NULL, it is ignored.

Table 9.1 Queries on Events Supported in clGetEventInfo()

cl_event Information Return Type Information Returned in param_value

CL_EVENT_COMMAND_QUEUE cl_command_
queue

Returns the command-queue associated 
with the event. For user event objects, a 
NULL value is returned.

CL_EVENT_CONTEXT cl_context Returns the context associated with the 
event.

continues
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cl_event Information Return Type Information Returned in param_value

CL_EVENT_COMMAND_TYPE cl_command_
type

Returns the command associated with the 
event. Can be one of the following values:

CL_COMMAND_NDRANGE_KERNEL
CL_COMMAND_TASK
CL_COMMAND_NATIVE_KERNEL
CL_COMMAND_READ_BUFFER
CL_COMMAND_WRITE_BUFFER
CL_COMMAND_COPY_BUFFER
CL_COMMAND_READ_IMAGE
CL_COMMAND_WRITE_IMAGE
CL_COMMAND_COPY_IMAGE
CL_COMMAND_COPY_BUFFER_TO_IMAGE
CL_COMMAND_COPY_IMAGE_TO_BUFFER
CL_COMMAND_MAP_BUFFER
CL_COMMAND_MAP_IMAGE
CL_COMMAND_UNMAP_MEM_OBJECT
CL_COMMAND_MARKER
CL_COMMAND_ACQUIRE_GL_OBJECTS
CL_COMMAND_RELEASE_GL_OBJECTS
CL_COMMAND_READ_BUFFER_RECT
CL_COMMAND_WRITE_BUFFER_RECT
CL_COMMAND_COPY_BUFFER_RECT
CL_COMMAND_USER

CL_EVENT_COMMAND_
EXECUTION_STATUS

cl_int Returns the execution status of the 
command identified by the event. Valid 
values are

• CL_QUEUED: The command has been 
enqueued in the command-queue.

• CL_SUBMITTED: The enqueued com-
mand has been submitted by the host 
to the device associated with the 
command-queue.

• CL_RUNNING: The device is currently 
executing this command.

• CL_COMPLETE: The command has 
completed. 

• A negative integer indicating the 
command terminated abnormally. The 
value is given by the errcode_ret values 
defined by the API function call 
associated with this event. 

CL_EVENT_REFERENCE_
COUNT

cl_uint Returns the event reference count.

Table 9.1 Queries on Events Supported in clGetEventInfo() (Continued )
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Generating Events on the Host
Up to this point, events were generated by commands on a queue to 
influence other commands on queues within the same context. We can 
also use events to coordinate the interaction between commands running 
within an event queue and functions executing on the host. We begin 
by considering how events can be generated on the host. This is done by 
creating user events on the host: 

cl_event clCreateUserEvent (
     cl_context context, 
     cl_int *errcode_ret)

cl_context context Specifies the context within which the event may 
exist

cl_int *errcode_ret Points to a variable of type cl_int, which holds an 
error code associated with the function

The returned object is an event object with a value of CL_SUBMITTED. It is 
the same as the events generated by OpenCL commands, the only differ-
ence being that the user event is generated by and manipulated on the 
host. 

The errcode_ret variable is set to CL_SUCCESS if the function com-
pletes and creates the user event without encountering an error. When 
an error is encountered, one of the following values is returned within 
errcode_ret:

• CL_INVALID_CONTEXT: The context is not a valid context.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

If clCreateUserEvent is called with the value of the variable errcode_
ret set to NULL, error code information will not be returned. 

With events generated on the command-queue, the status of the events 
is controlled by the command-queue. In the case of user events, however, 
the status of the events must be explicitly controlled through functions 
called on the host. This is done using the following function: 
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cl_int clSetUserEventStatus (
        cl_event event, 
        cl_int execution_status)

cl_event event A user event object created using 
clCreateUserEvent

cl_int execution_status Specifies the new execution status for the user 
event 

clSetUserEventStatus can be called only once to change the execu-
tion status of a user event to either CL_COMPLETE or to a negative integer 
value to indicate an error. A negative integer value causes all enqueued 
commands that wait on this user event to be terminated.

The function clSetUserEventStatus returns CL_SUCCESS if the func-
tion was executed successfully. Otherwise, it returns one of the following 
errors:

• CL_INVALID_EVENT: The event is not a valid user event object.

• CL_INVALID_VALUE: The execution_status is not CL_COMPLETE or 
a negative integer value.

• CL_INVALID_OPERATION: The execution_status for the event has 
already been changed by a previous call to clSetUserEventStatus.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

An example of how to use the clCreateUserEvent and clSetUser-
EventStatus functions will be provided later in this chapter, after a few 
additional concepts are introduced.

Events Impacting Execution on the Host
In the previous section, we discussed how the host can interact with 
the execution of commands through user-generated events. The con-
verse is also needed, that is, execution on the host constrained by events 
generated by commands on the queue. This is done with the following 
function:
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cl_int clWaitForEvents (
     cl_uint num_events, 
     const cl_event *event_list)

cl_uint num_events The number of events in the event list to 
wait on.

const cl_event *event_list A pointer to a list of events. There must be at 
least num_events events in the list.

The function clWaitForEvents() does not return until the num_events
event objects in event_list complete. By “complete” we mean each 
event has an execution status of CL_COMPLETE or an error occurred, 
in which case the execution status would have a negative value. Note 
that with respect to the OpenCL memory model, the events specified in 
event_list define synchronization points. This means that the status of 
memory objects relative to these synchronization points is well defined.

clWaitForEvents() returns CL_SUCCESS if the execution status of all 
events in event_list is CL_COMPLETE. Otherwise, it returns one of the 
following errors:

• CL_INVALID_VALUE: num_events is 0 or the event_list is NULL.

• CL_INVALID_CONTEXT: Events specified in event_list do not 
belong to the same context.

• CL_INVALID_EVENT: Event objects specified in event_list are not 
valid event objects.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST: The execution 
status of any of the events in event_list is a negative integer value.

• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

Following is an excerpt from a program that demonstrates how to use the 
clWaitForEvents(), clCreateUserEvent(), and clSetUserEvent-
Status() functions: 

   cl_event k_events[2]; 

// Set up platform(s), two contexts, devices and two command-queues.
  Comm1 = clCreateCommandQueue(context1, device_id1, 
                   CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
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  Comm2 = clCreateCommandQueue(context2, device_id2, 
                   CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);

// Set up user event to be used as an execution trigger 
  cl_event uevent = clCreateUserEvent(context2, &err);

// Set up memory objs, programs, kernels and enqueue a DAG spanning 
// two command-queues (only the last few "enqueues" are shown).
    err = clEnqueueNDRangeKernel(Comm1, kernel1, 1, NULL, &global, 
                 &local,0, NULL, &k_events[1]);

    err = clEnqueueNDRangeKernel(Comm1, kernel2, 1, NULL, &global,
                 &local, 0, NULL, &k_events[2]);

// this command depends on commands in a different context so 
// the host must mitigate between queues with a user event 
    err = clEnqueueNDRangeKernel(Comm2, kernel3, 1, NULL, &global, 
                 &local, 1, uevent, NULL);

// Host waits for commands to complete from Comm1 before triggering
// the command in queue Comm2

    err = clWaitForEvents(2, &k_events);
    err = clSetUserEventStatus(uevent, CL_SUCCESS);

Events are the mechanism in OpenCL to specify explicit order constraints 
on commands. Events, however, cannot cross between contexts. When 
crossing context boundaries, the only option is for the host program 
to wait on events from one context and then use a user event to trigger 
the execution of commands in the second context. This is the situation 
found in this example code excerpt. The host program enqueues com-
mands to two queues, each of which resides in a different context. For 
the command in the second context (context2) the host sets up a user 
event as a trigger; that is, the command will wait on the user event before 
it will execute. The host waits on events from the first context (in queue 
Comm1) using clWaitForEvents(). Once those events have completed, 
the host uses a call to the function clSetUserEventStatus() to set the 
user event status to CL_COMPLETE and the command in Comm2 executes. 
In other words, because events cannot cross between contexts, the host 
must manage events between the two contexts on behalf of the two 
command-queues.

Events can also interact with functions on the host through the callback 
mechanism defined in OpenCL 1.1. Callbacks are functions invoked 
asynchronously on behalf of the application. A programmer can associate 
a callback with an arbitrary event using this function:
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cl_int clSetEventCallback (
       cl_event event,
       cl_int command_exec_callback_type,
       void (CL_CALLBACK *pfn_event_notify)
            (cl_event event,
             cl_int event_command_exec_status, 
             void *user_data),
       void *user_data)

cl_event event A valid event object.

cl_int command_exec_callback_type: The command execution status for 
which the callback is registered. 
Currently, the only case supported 
is CL_COMPLETE. Note that an 
implementation is free to execute 
the callbacks in any order once the 
events with a registered callback 
switch their status to CL_COMPLETE.

pfn_event_notify: The event callback function that 
can be registered by the application. 
The parameters to this callback 
function are

event: the event object for which 
the callback function is invoked.

event_command_exec_status: the 
execution status of the command 
for which this callback function is 
invoked. Valid values for the event 
command execution status are 
given in Table 9.1. If the callback 
is called as the result of the com-
mand associated with the event 
being abnormally terminated, an 
appropriate error code for the error 
that caused the termination will be 
passed to  event_command_
exec_status instead.

user_data: a pointer to user- 
supplied data.

user_data The user data passed as the user_
data argument when the callback 
function executes. Note that it is 
legal to set user_data to NULL.
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The clSetEventCallback function registers a user callback func-
tion that will be called when a specific event switches to the event state 
defined by command_exec_callback_type (currently restricted to CL_
COMPLETE). It is important to understand that the order of callback func-
tion execution is not defined. In other words, if multiple callbacks have 
been registered for a single event, once the event switches its status to 
CL_COMPLETE, the registered callback functions can execute in any order. 

clSetEventCallback returns CL_SUCCESS if the function is executed 
successfully. Otherwise, it returns one of the following errors:

• CL_INVALID_EVENT: The event is not a valid event object.

• CL_INVALID_VALUE: The pfn_event_notify is NULL or the com-
mand_exec_callback_type is not CL_COMPLETE.

• CL_OUT_OF_RESOURCES: The system is unable to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: The system is unable to allocate resources 
required by the OpenCL implementation on the host.

A programmer must be careful when designing the functions used with 
the callback mechanism. The OpenCL specification asserts that all call-
backs registered for an event object must be called before an event object 
can be destroyed. The ideal callback function should return promptly 
and must not call any functions that could cause a blocking condition. 
The behavior of calling expensive system routines, calling OpenCL API to 
create contexts or command-queues, or blocking OpenCL operations from 
the following list is undefined in a callback:

• clFinish

• clWaitForEvents

• Blocking calls to 

• clEnqueueReadBuffer

• clEnqueueReadBufferRect

• clEnqueueWriteBuffer

• clEnqueueWriteBufferRect

• clEnqueueReadImage

• clEnqueueWriteImage

• clEnqueueMapBuffer
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• clEnqueueMapImage

• clBuildProgram

Rather than calling these functions inside a callback, an application 
should use the non-blocking forms of the function and assign a comple-
tion callback to it to do the remainder of the work. Note that when a 
callback (or other code) enqueues commands to a command-queue, the 
commands are not required to begin execution until the queue is flushed. 
In standard usage, blocking enqueue calls serve this role by implicitly 
flushing the queue. Because blocking calls are not permitted in callbacks, 
those callbacks that enqueue commands on a command-queue should 
either call clFlush on the queue before returning or arrange for clFlush
to be called later on another thread.

An example of using callbacks with events will be provided later in this 
chapter, after the event profiling interface has been described. 

Using Events for Profiling 
Performance analysis is part of any serious programming effort. This is 
a challenge when a wide range of platforms are supported by a body of 
software. Each system is likely to have its own performance analysis tools 
or, worse, may lack them all together. Hence, the OpenCL specification 
defines a mechanism to use events to collect profiling data on commands 
as they move through a command-queue. The specific functions that can 
be profiled are

• clEnqueue{Read|Write|Map}Buffer

• clEnqueue{Read|Write}BufferRect

• clEnqueue{Read|Write|Map}Image

• clEnqueueUnmapMemObject

• clEnqueueCopyBuffer

• clEnqueueCopyBufferRect

• clEnqueueCopyImage

• clEnqueueCopyImageToBuffer

• clEnqueueCopyBufferToImage

• clEnqueueNDRangeKernel
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• clEnqueueTask

• clEnqueueNativeKernel

• clEnqueueAcquireGLObjects

• clEnqueueReleaseGLObjects

Profiling turns the event into an opaque object to hold timing data. This 
functionality is enabled when a queue is created when the CL_QUEUE_
PROFILING_ENABLE flag is set. If profiling is enabled, the following func-
tion is used to extract the timing data:

cl_int clGetEventProfilingInfo (
    cl_event event,
    cl_profiling_info param_name,
    size_t param_value_size,
    void *param_value,
    size_t *param_value_size_ret)

cl_event event The event object.

cl_profiling_info param_name The profiling data to query. See Table 9.2. 

size_t param_value_size Specifies the size in bytes of memory 
pointed to by param_value. This size 
must be greater than or equal to the size 
of the return type defined for the indi-
cated param_name. See Table 9.2.

cl_profiling_info param_name A pointer to memory where the appropri-
ate result being queried is returned. If 
param_value is NULL, it is ignored.

size_t param_value_size_ret The actual size in bytes of data copied to 
param_value. If param_value_size_
ret is NULL, it is ignored.

The profiling data (as unsigned 64-bit values) provides time in nanosec-
onds since some fixed point (relative to the execution of a single applica-
tion). By comparing differences between ordered events, elapsed times 
can be measured. The timers essentially expose incremental counters 
on compute devices. These are converted to nanoseconds by an OpenCL 
implementation that is required to correctly account for changes in device 
frequency. The resolution of a timer can be found as the value of the 
constant CL_DEVICE_PROFILING_TIMER_RESOLUTION, which essen-
tially defines how many nanoseconds elapse between updates to a device 
counter. 
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The clGetEventProfilingInfo() function returns CL_SUCCESS if the 
function is executed successfully and the profiling information has been 
recorded. Otherwise, it returns one of the following errors:

• CL_PROFILING_INFO_NOT_AVAILABLE: This value indicates one of 
three conditions: the CL_QUEUE_PROFILING_ENABLE flag is not set 
for the command-queue, the execution status of the command iden-
tified by the event is not CL_COMPLETE, or the event is a user event 
object and hence not enabled for profiling. 

• CL_INVALID_VALUE: The param_name is not valid, or the size in 
bytes specified by param_value_size is less than the size of the 
return type as described in Table 9.2 and param_value is not NULL.

• CL_INVALID_EVENT: The event is a not a valid event object.

Table 9.2 Profiling Information and Return Types

cl_profiling Information Return Type Information Returned in param_value

CL_PROFILING_COMMAND_QUEUED cl_ulong A 64-bit value that describes the 
current device time counter in 
nanoseconds when the command 
identified by the event is enqueued 
in a command-queue by the host.

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit value that describes the 
current device time counter in 
nanoseconds when the command 
identified by the event that has 
been enqueued is submitted by the 
host to the device associated with 
the command-queue.

CL_PROFILING_COMMAND_START cl_ulong A 64-bit value that describes the 
current device time counter in 
nanoseconds when the command 
identified by the event starts 
execution on the device.

CL_PROFILING_COMMAND_END cl_ulong A 64-bit value that describes the 
current device time counter in 
nanoseconds when the command 
identified by the event has finished 
execution on the device.
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• CL_OUT_OF_RESOURCES: There is a failure to allocate resources 
required by the OpenCL implementation on the device.

• CL_OUT_OF_HOST_MEMORY: There is a failure to allocate resources 
required by the OpenCL implementation on the host.

An example of the profiling interface is shown here: 

// set up platform, context, and devices (not shown)
// Create a command-queue with profiling enabled
cl_command_queue commands = clCreateCommandQueue(context, 
        device_id, CL_QUEUE_PROFILING_ENABLE, &err);

// set up program, kernel, memory objects (not shown)
cl_event prof_event;

err = clEnqueueNDRangeKernel(commands, kernel, nd,
        NULL, global, NULL, 0, NULL, prof_event);

clFinish(commands);
err = clWaitForEvents(1, &prof_event );

cl_ulong ev_start_time=(cl_ulong)0;
cl_ulong ev_end_time=(cl_ulong)0;
size_t return_bytes;

err = clGetEventProfilingInfo(prof_event,
         CL_PROFILING_COMMAND_QUEUED,sizeof(cl_ulong),
         &ev_start_time, &return_bytes);

err = clGetEventProfilingInfo(prof_event,
         CL_PROFILING_COMMAND_END, sizeof(cl_ulong), 
         &ev_end_time, &return_bytes);

run_time =(double)(ev_end_time - ev_start_time);
printf("\n profile data %f secs\n",run_time*1.0e-9);

We have omitted the details of setting up the platform, context, 
devices, memory objects, and other parts of the program other than 
code associated with the profiling interface. First, note how we created 
the  command-queue with the profiling interface enabled. No changes 
were made to how the kernel was run. After the kernel was finished (as 
verified with the call to clFinish()), we waited for the event to com-
plete before  probing the events for profiling data. We made two calls to 
clGetEventProfilingInfo(): the first to note the time the kernel was 
enqueued, and the second to note the time the kernel completed execu-
tion. The difference between these two values defined the time for the 
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kernel’s execution in nanoseconds, which for convenience we converted 
to seconds before printing.

When multiple kernels are profiled, the host code can become seriously 
cluttered with the calls to the profiling functions. One way to reduce the 
clutter and create cleaner code is to place the profiling functions inside 
a callback function. This approach is shown here in a host program 
fragment: 

#include "mult.h"
#include "kernels.h"

void CL_CALLBACK eventCallback(cl_event ev, cl_int event_status,
         void * user_data)
{
   int err, evID = (int)user_data;
   cl_ulong ev_start_time=(cl_ulong)0;
   cl_ulong ev_end_time=(cl_ulong)0;
   size_t return_bytes;  double run_time;

   printf(" Event callback %d %d ",(int)event_status, evID);
   err = clGetEventProfilingInfo( ev, CL_PROFILING_COMMAND_QUEUED,
             sizeof(cl_ulong),  &ev_start_time, &return_bytes);

   err = clGetEventProfilingInfo( ev, CL_PROFILING_COMMAND_END,
             sizeof(cl_ulong),  &ev_end_time,   &return_bytes);

   run_time = (double)(ev_end_time - ev_start_time);
   printf("\n kernel runtime %f secs\n",run_time*1.0e-9);
}
//------------------------------------------------------------------
int main(int argc, char **argv)
{
// Declarations and platform definitions that are not shown.

   commands = clCreateCommandQueue(context, device_id, 
                CL_QUEUE_PROFILING_ENABLE, &err);
   cl_event prof_event;

//event to trigger the DAG
   cl_event uevent = clCreateUserEvent(context, &err);

// Set up the DAG of commands and profiling callbacks

  err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global,
            NULL, 1, &uevent, &prof_event);
  int ID=0;
  err =  clSetEventCallback (prof_event, CL_COMPLETE, 
            &eventCallback,(void *)ID);
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// Once the DAG of commands is set up (we showed only one) 
// trigger the DAG using prof_event to profile execution
// of the DAG 

  err = clSetUserEventStatus(uevent, CL_SUCCESS);

The first argument to the callback function is the associated event. 
Assuming the command-queue is created with profiling enabled (by 
using CL_PROFILING_COMMAND_QUEUED in the call to clGetEvent-
ProfilingInfo()), the events can be queried to generate profiling data. 
The user data argument provides an integer tag that can be used to match 
profiling output to the associated kernels.

Events Inside Kernels
Up to this point, events were associated with commands on a command-
queue. They synchronize commands and help provide fine-grained 
control over the interaction between commands and the host. Events also 
appear inside a kernel. As described in Chapter 5, events are used inside 
kernels to support asynchronous copying of data between global and local 
memory. The functions that support this functionality are listed here:

• event_t async_work_group_copy()

• event_t async_work_group_strided_copy()

• void wait_group_events()

The details of these functions are left to Chapter 5. Here we are interested 
in how they interact with events inside a kernel. 

To understand this functionality, consider the following example: 

event_t ev_cp  = async_work_group_copy( 
(__local float*) Bwrk, (__global float*) B,
(size_t) Pdim, (event_t) 0); 

for(k=0;k<Pdim;k++)
 Awrk[k] = A[i*Ndim+k];

wait_group_events(1, &ev_cp);

for(k=0, tmp= 0.0;k<Pdim;k++) 
 tmp  += Awrk[k] *  Bwrk[k]; 
C[i*Ndim+j] = tmp; 
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This code is taken from a kernel that multiplies two matrices, A and B, to 
produce a third matrix, C. Each work-item generates a full row of the C
matrix. To minimize data movement between global memory and local 
or private memory, we copy rows and columns of B out of global memory 
before proceeding. It might be possible for some systems to carry out these 
data movement operations concurrently. So we post an asynchronous 
copy of a column of B from global into local memory (so all work times 
can use the same column) followed by a copy of a row of A into private 
memory (where a single work-item will use it over and over again as each 
element of the product matrix C is computed). 

For this approach to work, the for loop that multiplies rows of A with col-
umns of B must wait until the asynchronous copy has completed. This is 
accomplished through events. The async_work_group_copy() function 
returns an event. The kernel then waits until that event is complete, using 
the call to wait_group_events() before proceeding with the multiplica-
tion itself. 

Events from Outside OpenCL
As we have seen in this chapter, OpenCL supports detailed control of how 
commands execute through events. OpenCL events let a programmer 
define custom synchronization protocols that go beyond global synchro-
nization operations (such as barriers). Therefore, anything that can be 
represented as commands in a queue should ideally expose an events 
interface.

The OpenCL specification includes an interface between OpenCL and 
OpenGL. A programmer can construct a system with OpenCL and then 
turn it over to OpenGL to create and display the final image. Synchroniza-
tion between the two APIs is typically handled implicitly. In other words, 
the commands that connect OpenCL and OpenGL are defined so that in 
the most common situations where synchronization is needed, it happens 
automatically.

There are cases, however, when more detailed control over synchroniza-
tion between OpenGL and OpenCL is needed. This is handled through 
an optional extension to OpenCL that defines ways to connect OpenCL 
events to OpenGL synchronization objects. This extension is discussed in 
detail in Chapter 10.
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Chapter 10

Interoperability with OpenGL

This chapter explores how to achieve interoperation between OpenCL 
and OpenGL (known as OpenGL interop). OpenGL interop is a powerful 
feature that allows programs to share data between OpenGL and OpenCL. 
Some possible applications for OpenGL include using OpenCL to postpro-
cess images generated by OpenGL, or using OpenCL to compute effects 
displayed by OpenGL. This chapter covers the following concepts: 

• Querying the OpenCL platform for GL sharing capabilities

• Creating contexts and associating devices for OpenGL sharing

• Creating buffers from GL memory and the corresponding syn-
chronization and memory management defined by this implied 
environment

OpenCL/OpenGL Sharing Overview
We begin this chapter with a brief overview of OpenCL/OpenGL shar-
ing. At a high level, OpenGL interoperability is achieved by creating 
an OpenGL context, then finding an OpenCL platform that supports 
OpenGL buffer sharing. The program then creates a context for that 
platform. Buffers are allocated in the OpenGL context and can be accessed 
in OpenCL by a few special OpenCL calls implemented in the OpenCL/
OpenGL Sharing API. 

When GL sharing is present, applications can use OpenGL buffer, tex-
ture, and renderbuffer objects as OpenCL memory objects. OpenCL 
memory objects can be created from OpenGL objects using the 
clCreateFromGL*() functions. This chapter will discuss these sharing 
functions as well as function calls that allow for acquiring, releasing, and 
synchronizing objects. Each step will be described in detail, and a full 
OpenCL/OpenGL interop example is included in the code for this chapter. 
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Getting Started
This chapter assumes a working knowledge of OpenGL programming. Additionally, 
the discussions and examples use the GLUT toolkit, which provides functions for 
creating and controlling GL display windows. Finally, the GLEW toolkit will be used to 
access the GL extensions used. The necessary headers and libraries for GLUT and 
GLEW are available in various ways and assumed to be present in the system. For 
those targeting NVIDIA GPU platforms, the NVIDIA GPU Computing Toolkit and SDK 
provide all of the dependencies from GLUT and GLEW.

Before starting, note that you’ll need to include the cl_gl.h header file:

#include <CL/cl_gl.h>

Querying for the OpenGL Sharing Extension
A device can be queried to determine if it supports OpenGL sharing 
via the presence of the cl_khr_gl_sharing extension name in the 
string for the CL_DEVICE_EXTENSIONS property returned by querying 
clGetDeviceInfo().

Recall from Table 3.3 that clGetDeviceInfo() can return the following 
information: 

CL_DEVICE_EXTENSIONS char[] Returns a space-separated list of 
extension names (the extension 
names themselves do not contain any 
spaces) supported by the device. The 
list of extension names returned can 
be vendor-supported extension names 
and one or more of the following 
Khronos-approved extension names:

cl_khr_fp64
cl_khr_int64_base_atomics
cl_khr_int64_extended_atomics
cl_khr_fp16
cl_khr_gl_sharing
cl_khr_gl_event
cl_khr_d3d10_sharing

The string we are interested in seeing is cl_khr_gl_sharing. The query 
will return a string upon which we can do some basic string handling to 
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detect the presence of cl_khr_gl_sharing. For some valid device 
cdDevices[i], we first query the size of the string that is to be returned: 

size_t extensionSize;
ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS, 0, 
    NULL, &extensionSize );

Assuming this call succeeds, we can query again to get the actual exten-
sions string:

char* extensions = (char*)malloc(extensionSize);
ciErrNum = clGetDeviceInfo(cdDevices[i], CL_DEVICE_EXTENSIONS,
    extensionSize, extensions, &extensionSize);

Here we have simply allocated the character array extensions of the 
appropriate length to hold the returned string. We then repeated the 
query, giving it this time the pointer to the allocated memory that is filled 
with the extensions string when clGetDeviceInfo() returns.

Any familiar method of string comparsion that checks for the presence 
of the cl_khr_gl_sharing string inside the extensions character 
array will work. Note that the strings are delimited by spaces. One way 
of parsing the string and searching for cl_khr_gl_sharing using the 
std::string object is as follows: 

#define GL_SHARING_EXTENSION "cl_khr_gl_sharing"
std::string stdDevString(extensions);
free(extensions);

size_t szOldPos = 0;
size_t szSpacePos = stdDevString.find(' ', szOldPos); 
// extensions string is space delimited
while (szSpacePos != stdDevString.npos)
{
    if( strcmp(GL_SHARING_EXTENSION, stdDevString.substr(szOldPos, 
szSpacePos - szOldPos).c_str()) == 0 ) 
    {
        // Device supports context sharing with OpenGL
        uiDeviceUsed = i;
        bSharingSupported = true;
        break;
    }
    do {
        szOldPos = szSpacePos + 1;
        szSpacePos = stdDevString.find(' ', szOldPos);
    } 
    while (szSpacePos == szOldPos);
}
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Initializing an OpenCL Context for OpenGL 
Interoperability
Once a platform that will support OpenGL interoperability has been iden-
tified and confirmed, the OpenCL context can be created. The OpenGL 
context that is to be shared should be initialized and current. When 
creating the contexts, the cl_context_properties fields need to be set 
according to the GL context to be shared with. While the exact calls vary 
between operating systems, the concept remains the same. 

On the Apple platform, the properties can be set as follows: 

cl_context_properties props[] = 
{
    CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE, 
    (cl_context_properties)kCGLShareGroup,
    0
};
cxGPUContext = clCreateContext(props, 0,0, NULL, NULL, &ciErrNum);

On Linux platforms, the properties can be set as follows: 

cl_context_properties props[] = 
{
    CL_GL_CONTEXT_KHR, 
    (cl_context_properties)glXGetCurrentContext(),
    CL_GLX_DISPLAY_KHR,
    (cl_context_properties)glXGetCurrentDisplay(), 
    CL_CONTEXT_PLATFORM, 
    (cl_context_properties)cpPlatform, 
    0
};
cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], 
    NULL, NULL, &ciErrNum);

On the Windows platform, the properties can be set as follows: 

cl_context_properties props[] = 
{
    CL_GL_CONTEXT_KHR,
    (cl_context_properties)wglGetCurrentContext(), 
    CL_WGL_HDC_KHR, 
    (cl_context_properties)wglGetCurrentDC(), 
    CL_CONTEXT_PLATFORM, 
     (cl_context_properties)cpPlatform, 
    0
};
cxGPUContext = clCreateContext(props, 1, &cdDevices[uiDeviceUsed], 
    NULL, NULL, &ciErrNum);
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In these examples both Linux and Windows have used operating-system-
specific calls to retrieve the current display and contexts. To include these 
calls in your application you’ll need to include system-specific header files 
such as windows.h on the Windows platform. In all cases, the appropri-
ately constructed cl_context_properties structure is passed to the 
clCreateContext(), which creates a context that is capable of sharing 
with the GL context. 

The remaining tasks for creating an OpenCL program, such as creating 
the command-queue, loading and creating the program from source, 
and creating kernels, remain unchanged from previous chapters. How-
ever, now that we have a context that can share with OpenGL, instead of 
creating buffers in OpenCL, we can use buffers that have been created in 
OpenGL. 

Creating OpenCL Buffers from OpenGL Buffers
Properly initialized, an OpenCL context can share memory with OpenGL. 
For example, instead of the memory being created by clCreateBuffer
inside OpenCL, an OpenCL buffer object can be created from an existing 
OpenGL object. In this case, the OpenCL buffer can be initialized from an 
existing OpenGL buffer with the following command: 

cl_mem clCreateFromGLBuffer(cl_context cl_context,
                           cl_mem_flags cl_flags,
                           GLuint bufobj,
                           cl_int *errcode_ret)

This command creates an OpenCL buffer object from an OpenGL buffer 
object.

The size of the GL buffer object data store at the time clCreateFromGL-
Buffer() is called will be used as the size of the buffer object returned by 
clCreateFromGLBuffer(). If the state of a GL buffer object is modified 
through the GL API (e.g., glBufferData()) while there exists a cor-
responding CL buffer object, subsequent use of the CL buffer object will 
result in undefined behavior.

The clRetainMemObject() and clReleaseMemObject() functions can 
be used to retain and release the buffer object.
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To demonstrate how you might initialize a buffer in OpenGL and bind it 
in OpenCL using clCreateFromGLBuffer(), the following code creates 
a vertex buffer in OpenGL. A vertex buffer object (VBO) is a buffer of data 
that is designated to hold vertex data. 

GLuint initVBO( int vbolen )
{
    GLint bsize;
    GLuint vbo_buffer; 
    glGenBuffers(1, &vbo_buffer);

    glBindBuffer(GL_ARRAY_BUFFER, vbo_buffer); 

    // create the buffer; this basically sets/allocates the size
    glBufferData(GL_ARRAY_BUFFER, vbolen *sizeof(float)*4,
        NULL, GL_STREAM_DRAW);

    // recheck the size of the created buffer to make sure 
    //it's what we requested
    glGetBufferParameteriv(GL_ARRAY_BUFFER, 
        GL_BUFFER_SIZE, &bsize); 
    if ((GLuint)bsize != (vbolen*sizeof(float)*4)) {
        printf(
        "Vertex Buffer object (%d) has incorrect size (%d).\n", 
        (unsigned)vbo_buffer, (unsigned)bsize);
    }

    // we're done, so unbind the buffers
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    return vbo_buffer;
}

Then, we can simply call this function to create a vertex buffer object and 
get its GLuint handle as follows:

GLuint vbo = initVBO( 640, 480 );

This handle, vbo, can then be used in the clCreateFromGLBuffer()
call: 

cl_vbo_mem = clCreateFromGLBuffer(context,CL_MEM_READ_WRITE, 
             vbo,&err );

The resulting OpenCL memory object, vbo_cl_mem, is a memory object 
that references the memory allocated in the GL vertex buffer. In the pre-
ceding example call, we have marked that vbo_cl_mem is both readable 
and writable, giving read and write access to the OpenGL vertex buffer. 
OpenCL kernels that operate on vbo_cl_mem will be operating on the 
contents of the vertex buffer. Note that creating OpenCL memory objects 
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from OpenGL objects using the functions clCreateFromGLBuffer(),
clCreateFromGLTexture2D(), clCreateFromGLTexture3D(), or 
clCreateFromGLRenderbuffer() ensures that the underlying storage of 
that OpenGL object will not be deleted while the corresponding OpenCL 
memory object still exists. 

Objects created from OpenGL objects need to be acquired before they can 
be used by OpenCL commands. They must be acquired by an OpenCL 
context and can then be used by all command-queues associated with 
that OpenCL context. The OpenCL command clEnqueueAcquireGLOb-
jects() is used for this purpose: 

cl_int clEnqueueAcquireGLObjects(cl_command_queue command_queue,
                                cl_uint num_objects,,
                                const cl_mem * mem_objects,
                                cl_uint num_events_in_wait_list,
                                const cl_event *event_wait_list,
                                cl_event *event)

These objects need to be acquired before they can be used by any OpenCL 
commands queued to a command-queue. The OpenGL objects are 
acquired by the OpenCL context associated with command_queue and can 
therefore be used by all command-queues associated with the OpenCL 
context.

A similar function, clEnqueueReleaseGLObjects(), exists for releasing 
objects acquired by OpenCL: 

cl_int clEnqueueReleaseGLObjects(cl_command_queue command_queue,
                                cl_uint num_objects,
                                const cl_mem * mem_objects,
                                cl_uint num_events_in_wait_list,
                                const cl_event *event_wait_list,
                                cl_event *event)

These objects need to be acquired before they can be used by any OpenCL 
commands queued to a command-queue. The OpenGL objects are 
acquired by the OpenCL context associated with command_queue and can 
therefore be used by all command-queues associated with the OpenCL 
context.
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Note that before acquiring an OpenGL object, the program should ensure 
that any OpenGL commands that might affect the VBO have com-
pleted. One way of achieving this manually is to call glFinish() before 
clEnqueueAcquireGLObjects(). Similarly, when releasing the GL 
object, the program should ensure that all OpenCL commands that might 
affect the GL object are completed before it is used by OpenGL. This can 
be achieved by calling clFinish() on the command-queue associated 
with the acquire/process/release of the object, after the clEnqueue-
ReleaseGLObjects() call. 

In the case that the cl_khr_gl_event extension is enabled in OpenCL, 
then both clEnqueueAcquireGLObjects() and clEnqueueRelease-
GLObjects() will perform implicit synchronization. More details on this 
and other synchronization methods are given in the “Synchronization 
between OpenGL and OpenCL” section later in this chapter. 

Continuing our vertex buffer example, we can draw a sine wave by 
filling the vertex array with line endpoints. If we consider the array as 
holding start and end vertex positions, such as those used when drawing 
GL_LINES, then we can fill the array with this simple kernel: 

__kernel void init_vbo_kernel(__global float4 *vbo, 
    int w, int h, int seq)
{
    int gid = get_global_id(0);
    float4 linepts;
    float f = 1.0f;
    float a = (float)h/4.0f;
    float b = w/2.0f;

    linepts.x = gid;
    linepts.y = b + a*sin(3.14*2.0*((float)gid/(float)w*f +
         (float)seq/(float)w));
    linepts.z = gid+1.0f;
    linepts.w = b + a*sin(3.14*2.0*((float)(gid+1.0f)/(float)w*f + 
         (float)seq/(float)w));

    vbo[gid] = linepts;
}

Here we have taken into account the width and height of the viewing 
area given by w and h and filled in the buffer with coordinates that agree 
with a typical raster coordinate system within the window. Of course, 
with OpenGL we could work in another coordinate system (say, a nor-
malized coordinate system) inside our kernel and set the viewing geom-
etry appropriately as another option. Here we simply work within a 2D 
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orthogonal pixel-based viewing system to simplify the projection matrices 
for the sake of discussion. The final parameter, seq, is a sequence number 
updated every frame that shifts the phase of the sine wave generated in 
order to create an animation effect. 

The OpenCL buffer object returned by clCreateFromGLBuffer() is 
passed to the kernel as a typical OpenCL memory object:

clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_vbo_mem);

Note that we have chosen to index the buffer using a float4 type. In 
this case each work-item is responsible for processing a start/end pair of 
vertices and writing those to the OpenCL memory object associated with 
the VBO. With an appropriate work-group size this will result in efficient 
parallel writes of a segment of data into the VBO on a GPU. After setting 
the kernel arguments appropriately, we first finish the GL commands, 
then have OpenCL acquire the VBO. The kernel is then launched. We call 
clFinish() to ensure that it completes and finally releases the buffer for 
OpenGL to use as shown here:

glFinish();
errNum = clEnqueueAcquireGLObjects(commandQueue, 1, &cl_tex_mem, 
    0,NULL,NULL );
errNum = clEnqueueNDRangeKernel(commandQueue, tex_kernel, 2, NULL,
    tex_globalWorkSize, 
    tex_localWorkSize,
    0, NULL, NULL);
clFinish(commandQueue);
errNum = clEnqueueReleaseGLObjects(commandQueue, 1, &cl_tex_mem, 0,
    NULL, NULL );

After this kernel completes, the vertex buffer object is filled with  vertex 
positions for drawing our sine wave. The typical OpenGL rendering 
commands for a vertex buffer can then be used to draw the sine wave on 
screen: 

glBindBufferARB(GL_ARRAY_BUFFER_ARB, vbo);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer( 2, GL_FLOAT, 0, 0 );
glDrawArrays(GL_LINES, 0, vbolen*2);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); 

The example code performs these operations and the result is shown in 
Figure 10.1. The sine wave has been generated by OpenCL and rendered 
in OpenGL. Every frame, the seq kernel parameter shifts the sine wave to 
create an animation.
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Creating OpenCL Image Objects from OpenGL 
Textures
In addition to sharing OpenGL buffers, OpenGL textures and renderbuf-
fers can also be shared by similar mechanisms. In Figure 10.1, the back-
ground is a programmatically generated and animated texture computed 
in OpenCL. Sharing textures can be achieved using the glCreate-
FromGLTexture2D() and glCreateFromGLTexture3D() functions:

cl_mem clCreateFromGLTexture2D(cl_context cl_context,
                              cl_mem_flags cl_flags,
                              GLenum texture_target,
                              GLint miplevel,
                              GLuint texture,
                              cl_int *errcode_ret)

This creates an OpenCL 2D image object from an OpenGL 2D texture 
object, or a single face of an OpenGL cube map texture object. 

The following creates an OpenCL 3D image object from an OpenGL 3D 
texture object: 

Figure 10.1 A program demonstrating OpenCL/OpenGL interop. The 
positions of the vertices in the sine wave and the background 
texture color values are computed by kernels in OpenCL and 
displayed using Direct3D.
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cl_mem clCreateFromGLTexture3D(cl_context cl_context,
                              cl_mem_flags cl_flags,
                              GLenum texture_target,
                              GLint miplevel,
                              GLuint texture,
                              cl_int *errcode_ret)

For example, to share a four-element floating-point RGBA texture between 
OpenGL and OpenCL, a texture can be created with the following 
OpenGL commands: 

glGenTextures(1, &tex);
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,  GL_REPLACE );
glBindTexture(GL_TEXTURE_RECTANGLE_ARB, tex);
glTexImage2D(GL_TEXTURE_RECTANGLE_ARB, 0, GL_RGBA32F_ARB, width,
             height, 0, GL_LUMINANCE, GL_FLOAT, NULL );

Note that when creating the texture, the code specifies GL_RGBA32F_ARB
as the internal texture format to create the four-element RGBA floating-
point texture, a functionality provided by the ARB_texture_float
extension in OpenGL. Additionally, the texture created uses a non-
power-of-2 width and height and uses the GL_TEXTURE_RECTANGLE_ARB
argument supported by the GL_ARB_texture_rectangle extension. 
Alternatively, GL_TEXTURE_RECTANGLE may be used on platforms that 
support OpenGL 3.1. This allows natural indexing of integer pixel coordi-
nates in the OpenCL kernel. 

An OpenCL texture memory object can be created from the preceding 
OpenGL texture by passing it as an argument to clCreateFromGL-
Texture2D():

*p_cl_tex_mem = clCreateFromGLTexture2D(context,
                    CL_MEM_READ_WRITE, GL_TEXTURE_RECTANGLE_ARB, 
                    0, tex, &errNum );

Again we have specified the texture target of GL_TEXTURE_RECTANGLE_
ARB. The OpenCL memory object pointed to by p_cl_tex_mem can now 
be accessed as an image object in a kernel using functions such as read_
image*() or write_image*() to read or write data. CL_MEM_READ_
WRITE was specified so that the object can be passed as a read or write 
image memory object. For 3D textures, clCreateFromGLTexture3D()
provides similar functionality.

Note that only OpenGL textures that have an internal format that maps 
to an appropriate image channel order and data type in OpenCL may be 
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used to create a 2D OpenCL image object. The list of supported OpenCL 
channel orders and data formats is given in the specification and is as 
shown in Table 10.1. Because the OpenCL image format is implicitly set 
from its corresponding OpenGL internal format, it is important to check 
what OpenCL image format is created in order to ensure that the correct 
read_image*() function in OpenCL is used when sampling from the 
texture. Implementations may have mappings for other OpenGL inter-
nal formats. In these cases the OpenCL image format preserves all color 
components, data types, and at least the number of bits per component 
allocated by OpenGL for that format.

Table 10.1 OpenGL Texture Format Mappings to OpenCL Image Formats

GL Internal Format
CL Image Format
(Channel Order, Channel Data Type)

GL_RGBA8 CL_RGBA, CL_UNORM_INT8 or CL_BGRA,
CL_UNORM_INT8

GL_RGBA16 CL_RGBA, CL_UNORM_INT16

GL_RGBA8I, GL_RGBA8I_EXT CL_RGBA, CL_SIGNED_INT8

GL_RGBA16I, GL_RGBA16I_EXT CL_RGBA, CL_SIGNED_INT16

GL_RGBA32I, GL_RGBA32I_EXT CL_RGBA, CL_SIGNED_INT32

GL_RGBA8UI, GL_RGBA8UI_EXT CL_RGBA, CL_UNSIGNED_INT8

GL_RGBA16UI, GL_RGBA16UI_EXT CL_RGBA, CL_UNSIGNED_INT16

GL_RGBA32UI, GL_RGBA32UI_EXT CL_RGBA, CL_UNSIGNED_INT32

GL_RGBA16F, GL_RGBA16F_ARB CL_RGBA, CL_HALF_FLOAT

GL_RGBA32F, GL_RGBA32F_ARB CL_RGBA, CL_FLOAT

GL renderbuffers can also be shared with OpenCL via the clCreate-
FromGLRenderbuffer() call:

cl_mem clCreateFromGLRenderbuffer(cl_context context,
                                 cl_mem_flags flags,
                                 GLuint renderbuffer,
                                 cl_int *errcode_ret )
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This creates an OpenCL 2D image object from an OpenGL renderbuffer 
object. 

Attaching a renderbuffer to an OpenGL frame buffer object (FBO) opens 
up the possibility of computing postprocessing effects in OpenCL through 
this sharing function. For example, a scene can be rendered in OpenGL to 
a frame buffer object, and that data can be made available via the render-
buffer to OpenCL, which can postprocess the rendered image.

Querying Information about OpenGL Objects
OpenCL memory objects that were created from OpenGL memory objects 
can be queried to return information about their underlying OpenGL 
object type. This is done using the clGetGLObjectInfo() function: 

cl_int clGetGLObjectInfo(cl_mem memobj,
                        cl_gl_object_type *gl_object_type,
                        GLuint *gl_object_name)

The OpenGL object used to create the OpenCL memory object and infor-
mation about the object type—whether it is a texture, renderbuffer, or 
buffer object—can be queried using this function.

After the function runs, the parameter gl_object_type will be set to an 
enumerated type for that object. The GL object name used to create the 
memobj is also returned, in gl_object_name. This corresponds to the 
object name given in OpenGL when the object was created, such as with a 
glGenBuffers() call in the case of an OpenGL buffer object.

For texture objects, the corresponding call is clGetTextureObjectInfo():

cl_int clGetGLTextureInfo(cl_mem memobj,
                         cl_gl_texture_info param_name,
                         size_t param_value_size,
                         void *param_value,
                         size_t *param_value_size_ret)

This returns additional information about the GL texture object associ-
ated with a memory object.
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When the function returns, the parameters param_value and param_
value_size_ret will have been set by the function. param_value_size_
ret is the size of the returned data, which is determined by the type of 
query requested, as set by the param_name parameter according to Table 10.2.

Table 10.2 Supported param_name Types and Information Returned

cl_gl_texture_info
Return 
Type Information Returned in param_value

CL_GL_TEXTURE_TARGET GLenum The texture_target argument 
specified in clCreateGLTexture2D
or clCreateGLTexture3D.

CL_GL_MIPMAP_LEVEL GLint The miplevel argument specified 
in clCreateGLTexture2D or 
clCreateGLTexture3D.

Synchronization between OpenGL and OpenCL
Thus far we have discussed the mechanics of creating and sharing an 
OpenGL object in OpenCL. In the preceding discussion we only briefly 
mentioned that when OpenGL objects are acquired and released, it is the 
program’s responsibility to ensure that all preceding OpenCL or OpenGL 
commands that affect the shared object (which of OpenCL or OpenGL 
is dependent on whether the object is being acquired or released) have 
completed beforehand. glFinish() and clFinish() are two commands 
that can be used for this purpose. glFinish(), however, requires that 
all pending commands be sent to the GPU and waits for their comple-
tion, which can take a long time, and empties the pipeline of commands. 
In this section, we’ll present a more fine-grained approach based on the 
sharing of event objects between OpenGL and OpenCL.

The cl_khr_gl_event OpenCL extension provides event-based syn-
chronization and additional functionality to the clEnqueueAcquireGL-
Objects() and clEnqueueReleaseGLObjects() functions. The 
following pragma enables it: 

#pragma OPENCL EXTENSION cl_khr_gl_event : enable

When enabled, this provides what is known as implicit synchroniza-
tion whereby the clEnqueueAcquireGLObjects() and clEnqueue-
ReleaseGLObjects() functions implicitly guarantee synchronization 
with an OpenGL context bound in the same thread as the OpenCL 
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context. In this case, any OpenGL commands that affect or access the 
contents of a memory object listed in the mem_objects_list argument 
of clEnqueueAcquireGLObjects() and were issued on that context 
prior to the call to clEnqueueAcquireGLObjects() will complete before 
execution of any OpenCL commands following the clEnqueueAcquire-
GLObjects() call. 

Another option for synchronization is explicit synchronization. When 
the cl_khr_gl_event extension is supported, and the OpenGL con-
text supports fence sync objects, the completion of OpenGL commands 
can be determined by using an OpenGL fence sync object by creating a 
OpenCL event from it, by way of the clCreateEventFromGLsyncKHR()
function:

cl_event clCreateEventFromGLsyncKHR(cl_context context,
                                   GLsync sync,
                                   cl_int *errcode_ret)

An event object may be created by linking to an OpenGL sync object. 
Completion of such an event object is equivalent to waiting for comple-
tion of the fence command associated with the linked GL sync object.

In explicit synchronization, completion of OpenCL commands can be 
determined by a glFenceSync command placed after the OpenGL com-
mands. An OpenCL thread can then use the OpenCL event associated 
with the OpenGL fence by passing the OpenCL event to clEnqueue-
AcquireGLObjects() in its event_wait_list argument. Note that 
the event returned by clCreateEventFromGLsyncKHR() may be used 
only by clEnqueueAcquireGLObjects() and returns an error if passed 
to other OpenCL functions. Explicit synchronization is useful when an 
OpenGL thread separate from the OpenCL thread is accessing the same 
underlying memory object. 

Thus far we have presented OpenCL functions that create objects from 
OpenGL objects. In OpenGL there is also a function that allows the cre-
ation of OpenGL sync objects from existing OpenCL event objects. This is 
enabled by the OpenGL extension ARB_cl_event. Similar to the explicit 
synchronization method discussed previously, this allows OpenGL 
to reflect the status of an OpenCL event object. Waiting on this sync 
object in OpenGL is equivalent to waiting on the linked OpenCL sync 
object. When the ARB_cl_event extension is supported by OpenGL, the 
glCreateSyncFromCLeventARB() function creates a GLsync linked to 
an OpenCL event object: 



ptg

350 Chapter 10: Interoperability with OpenGL

GLsync glCreateSyncFromCLeventARB(cl_context context,
                                 cl_event event,
                                 bitfield flags)

An OpenGL sync object created with this function can also be deleted 
with the glDeleteSync() function:

void glDeleteSync(GLsync sync)

Once created, this GLsync object is linked to the state of the OpenCL 
event object, and the OpenGL sync object functions, such as glWait-
Sync(), glClientWaitSync(), and glFenceSync(), can be applied.
Full details on the interactions of these calls with OpenGL can be found 
in the OpenGL ARB specification. 

The following code fragment demonstrates how this can be applied to 
synchronize OpenGL with an OpenCL kernel call: 

cl_event release_event;

GLsync sync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
gl_event = clCreateEventFromGLsyncKHR(context, sync, NULL );
errNum = clEnqueueAcquireGLObjects(commandQueue, 1,
    &cl_tex_mem, 0, &gl_event, NULL );
errNum = clEnqueueNDRangeKernel(commandQueue, tex_kernel, 2, NULL,
    tex_globalWorkSize, tex_localWorkSize,
    0, NULL, 0);
errNum = clEnqueueReleaseGLObjects(commandQueue, 1, 
    &cl_tex_mem, 0, NULL, &release_event);
GLsync cl_sync = glCreateSyncFromCLeventARB(context, 
    release_event, 0);
glWaitSync( cl_sync, 0, GL_TIMEOUT_IGNORED );

This code uses fine-grained synchronization and proceeds as follows: 

1. First, an OpenGL fence object is created. This creates and inserts a 
fence sync into the OpenGL command stream. 

2. Then, clCreateEventFromGLsyncKHR() is called. This creates an 
OpenCL event linked to the fence. This OpenCL event is then used in 
the event list for clEnqueueAcquireGLObjects(), ensuring that the 
acquire call will proceed only after the fence has completed. 
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3. The OpenCL kernel is then queued for execution, followed by the 
clEnqueueReleaseGLObjects() call. The clEnqueueRelease-
GLObjects() call returns an event, release_event, that can be 
used to sync upon its completion. 

4. The glCreateSyncFromCLeventARB() call then creates an OpenGL 
sync object linked to the release_event.

5. A wait is then inserted into the OpenGL command stream with 
glWaitSync(), which will wait upon the completion of the 
release_event associated with clEnqueueReleaseGLObjects().

Using a method like this allows synchronization between OpenGL and 
OpenCL without the need for gl/clFinish() functions.
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Chapter 11

Interoperability with Direct3D

Similarly to the discussion of sharing functions in the previous chapter, 
this chapter explores how to achieve interoperation between OpenCL and 
Direct3D 10 (known as D3D interop). D3D interop is a powerful feature 
that allows programs to share data between Direct3D and OpenCL. Some 
possible applications for D3D interop include the ability to render in D3D 
and postprocess with OpenCL, or to use OpenCL to compute effects for 
display in D3D. This chapter covers the following concepts: 

• Querying the Direct3D platform for sharing capabilities

• Creating buffers from D3D memory

• Creating contexts, associating devices, and the corresponding syn-
chronization and memory management defined by this implied 
environment

Direct3D/OpenCL Sharing Overview
At a high level, Direct3D interoperability operates similarly to OpenGL 
interop as described in the previous chapter. Buffers and textures that 
are allocated in a Direct3D context can be accessed in OpenCL by a few 
special OpenCL calls implemented in the Direct3D/OpenGL Sharing API. 
When D3D sharing is present, applications can use D3D buffer, texture, 
and renderbuffer objects as OpenCL memory objects. 

Note  This chapter assumes a familiarity with setup and initialization of 
a Direct3D application as well as basic Direct3D graphics program-
ming. This chapter will instead focus on how D3D and OpenCL 
interoperate. 

When using Direct3D interop, the program must first initialize the 
Direct3D environment using the Direct3D API. The program should 
create a window, find an appropriate D3D10 adapter, and get a handle 
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to an appropriate D3D10 device and swap chain. These are handled by 
their respective Direct3D calls. The CreateDXGIFactory() call allows 
you to create a factory object that will enumerate the adapters on the 
system by way of the EnumAdapters() function. For a capable adapter, 
the adapter handle is then used to get a device and swap chain handle 
with the D3D10CreateDeviceAndSwapChain() call. This call returns an 
ID3D10Device handle, which is then used in subsequent calls to interop 
with OpenCL. At this point the program has created working Direct3D 
handles, which are then used by OpenCL to facilitate sharing. 

Initializing an OpenCL Context for Direct3D 
Interoperability
OpenCL sharing is enabled by the pragma cl_khr_d3d10_sharing:

#pragma OPENCL EXTENSION cl_khr_d3d10_sharing : enable

When D3D sharing is enabled, a number of the OpenCL functions are 
extended to accept parameter types and values that deal with D3D10 
sharing. 

D3D interop properties can be used to create OpenCL contexts: 

• CL_CONTEXT_D3D10_DEVICE_KHR is accepted as a property 
name in the properties parameter of clCreateContext and 
clCreateContextFromType.

Functions may query D3D-interop-specific object parameters:

• CL_CONTEXT_D3D10_PREFER_SHARED_RESOURCES_KHR is accepted as 
a value in the param_name parameter of clGetContextInfo.

• CL_MEM_D3D10_RESOURCE_KHR is accepted as a value in the param_
name parameter of clGetMemObjectInf.

• CL_IMAGE_D3D10_SUBRESOURCE_KHR is accepted as a value in the 
param_name parameter of clGetImageInfo.

• CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR and CL_COM-
MAND_RELEASE_D3D10_OBJECTS_KHR are returned in the param_
value parameter of clGetEventInfo when param_name is 
CL_EVENT_COMMAND_TYPE.
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Functions that use D3D interop may return interop-specific error codes: 

• CL_INVALID_D3D10_DEVICE_KHR is returned by clCreateContext
and clCreateContextFromType if the Direct3D 10 device specified 
for interoperability is not compatible with the devices against which 
the context is to be created. 

• CL_INVALID_D3D10_RESOURCE_KHR is returned by clCreateFrom-
D3D10BufferKHR when the resource is not a Direct3D 10 buffer 
object, and by clCreateFromD3D10Texture2DKHR and clCreate-
FromD3D10Texture3DKHR when the resource is not a Direct3D 10 
texture object. 

• CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR is returned by 
clEnqueueAcquireD3D10ObjectsKHR when any of the mem_
objects are currently acquired by OpenCL. 

• CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR is returned by 
clEnqueueReleaseD3D10ObjectsKHR when any of the mem_
objects are not currently acquired by OpenCL. 

OpenCL D3D10 interop functions are available from the header 
cl_d3d10.h. Note that the Khronos extensions for D3D10 are available 
on the Khronos Web site. On some distributions you may need to down-
load this file. The sample code included on the book’s Web site for this 
chapter assumes that this is found in the OpenCL include path. Addition-
ally, as shown in the code, the extension functions may need to be initial-
ized using the clGetExtensionFunctionAddress() call.

The ID3D10Device handle returned by D3D10CreateDeviceAndSwap-
Chain() can be used to get an OpenCL device ID, which can later be used 
to create an OpenCL context. 

Initializing OpenCL proceeds as usual with a few differences. The plat-
forms can first be enumerated using the clGetPlatformIDs function. 
Because we are searching for a platform that supports Direct3D sharing, 
the clGetPlatformInfo() call is used on each of the platforms to query 
the extensions it supports. If cl_khr_d3d_sharing is present in the 
extensions string, then that platform can be selected for D3D sharing. 

Given a cl_platform_id that supports D3D sharing, we can query for 
corresponding OpenCL device IDs on that platform using clGetDevice-
IDsFromD3D10KHR ():
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cl_int clGetDeviceIDsFromD3D10KHR (cl_platform_id platform,
                       cl_d3d10_device_source_khr 

d3d_device_source,
                       void *d3d_object,
                       cl_d3d10_device_set_khr d3d_device_set,
                       cl_uint num_entries,
                       cl_device_id *devices,
                       cl_uint *num_devices)

The OpenCL devices corresponding to a Direct3D 10 device and the 
OpenCL devices corresponding to a DXGI adapter may be queried. The 
OpenCL devices corresponding to a Direct3D 10 device will be a subset of 
the OpenCL devices corresponding to the DXGI adapter against which the 
Direct3D 10 device was created.

For example, the following code gets an OpenCL device ID (cdDevice)
for the chosen OpenCL platform (cpPlatform). The constant CL_D3D10_
DEVICE_KHR indicates that the D3D10 object we are sending (g_pD3D-
Device) is a D3D10 device, and we choose the preferred device for that 
platform with the CL_PREFERRED_DEVICES_FOR_D3D10_KHR constant. 
This will return the preferred OpenCL device associated with the platform 
and D3D10 device. The code also checks for the return value and possible 
errors resulting from the function. 

errNum = clGetDeviceIDsFromD3D10KHR(
    cpPlatform,
    CL_D3D10_DEVICE_KHR,
    g_pD3DDevice,
    CL_PREFERRED_DEVICES_FOR_D3D10_KHR,
    1,
    &cdDevice,
    &num_devices);

    if (errNum == CL_INVALID_PLATFORM) {
        printf("Invalid Platform: ",
               "Specified platform is not valid\n");
    } else if( errNum == CL_INVALID_VALUE) {
        printf("Invalid Value: ",
               "d3d_device_source, d3d_device_set is not valid ",
               "or num_entries = 0 and devices != NULL ",
               "or num_devices == devices == NULL\n");
    } else if( errNum == CL_DEVICE_NOT_FOUND) {
        printf("No OpenCL devices corresponding to the ",
               "d3d_object were found\n");
    }
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The device ID returned by this function can then be used to create a con-
text that supports D3D sharing. When creating the OpenCL context, the 
cl_context_properties field in the clCreateContext*() call should 
include the pointer to the D3D10 device to be shared with. The following 
code sets up the context properties for D3D sharing and then uses them to 
create a context:

cl_context_properties contextProperties[] =
{
    CL_CONTEXT_D3D10_DEVICE_KHR, 
    (cl_context_properties)g_pD3DDevice,
    CL_CONTEXT_PLATFORM, 
    (cl_context_properties)*pFirstPlatformId,
    0
};
context = clCreateContextFromType(contextProperties, 
    CL_DEVICE_TYPE_GPU,
    NULL, NULL, &errNum); 

In the example code the pointer to the D3D10 device, g_pD3DDevice, is 
as returned from the D3D10CreateDeviceAndSwapChain() call.

Creating OpenCL Memory Objects from Direct3D 
Buffers and Textures
OpenCL buffer and image objects can be created from existing D3D buf-
fer objects and textures using the clCreateFromD3D10*KHR() OpenCL 
functions. This makes D3D objects accessible in OpenCL.

An OpenCL memory object can be created from an existing D3D buffer 
using the clCreateFromD3D10BufferKHR() function:

cl_mem clCreateFromD3D10BufferKHR (cl_context context
                                  cl_mem_flags flags,
                                  ID3D10Buffer *resource,
                                  cl_int *errcode_ret )

The size of the returned OpenCL buffer object is the same as the size of 
resource. This call will increment the internal Direct3D reference count 
on resource. The internal Direct3D reference count on resource will be 
decremented when the OpenCL reference count on the returned OpenCL 
memory object drops to zero.
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Both buffers and textures can be shared with OpenCL. Our first example 
will begin with processing of a texture in OpenCL for display in D3D10, 
and we will see an example of processing a buffer of vertex data later in 
this chapter.

In D3D10, a texture can be created as follows: 

int g_WindowWidth = 256;
int g_WindowHeight = 256;
...
ZeroMemory( &desc, sizeof(D3D10_TEXTURE2D_DESC) );
desc.Width = g_WindowWidth;
desc.Height = g_WindowHeight;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
desc.SampleDesc.Count = 1;
desc.Usage = D3D10_USAGE_DEFAULT;
desc.BindFlags = D3D10_BIND_SHADER_RESOURCE;
if (FAILED(g_pD3DDevice->CreateTexture2D( 
    &desc, NULL, &g_pTexture2D)))
return E_FAIL;

The format of the texture data to be shared is specified at this time and is 
set to DXGI_FORMAT_R8G8B8A8_UNORM in the preceding code. After this 
texture is created, an OpenCL image object may be created from it using 
clCreateFromD3D10Texture2DKHR():

cl_mem clCreateFromD3D10Texture2DKHR(cl_context context
                                     cl_mem_flags flags,
                                     ID3D10Texture2D *resource,
                                     uint subresource,

cl_int *errcode_ret )

The width, height, and depth of the returned OpenCL image object 
are determined by the width, height, and depth of subresource sub-
resource of resource. The channel type and order of the returned 
OpenCL image object are determined by the format of resource as 
shown in Direct3D 10 and corresponding OpenCL image formats for 
clCreateFromD3D10Texture2DKHR.

This call will increment the internal Direct3D reference count on 
resource. The internal Direct3D reference count on resource will be 
decremented when the OpenCL reference count on the returned OpenCL 
memory object drops to zero. 
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Now, to create an OpenCL texture object from the newly created D3D 
texture object, g_pTexture2D, clCreateFromD3D10Texture2DKHR()
can be called as follows:

g_clTexture2D = clCreateFromD3D10Texture2DKHR(
    context,
    CL_MEM_READ_WRITE,
    g_pTexture2D,
    0,
    &errNum);

The flags parameter determines the usage information. It accepts the val-
ues CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, or CL_MEM_READ_WRITE.
Here the texture has been created to be both readable and writable from a 
kernel. The OpenCL object g_clTexture2D can now be used by OpenCL 
kernels to access the D3D texture object. In our simple case, the texture 
resource has only a single subresource, identified by passing the 0 resource 
ID parameter. 

To create an OpenCL 3D image object from a Direct3D 10 3D texture, use 
the following call: 

cl_mem clCreateFromD3D10Texture3DKHR(cl_context context
                                    cl_mem_flags flags,
                                    ID3D10Texture3D *resource,
                                    uint subresource,
                                    cl_int *errcode_ret )

The width, height, and depth of the returned OpenCL 3D image 
object are determined by the width, height, and depth of subresource 
subresource of resource. The channel type and order of the returned 
OpenCL 3D image object are determined by the format of resource as 
shown in Table 11.1. 

This call will increment the internal Direct3D reference count on 
resource. The internal Direct3D reference count on resource will be 
decremented when the OpenCL reference count on the returned OpenCL 
memory object drops to zero. 

Note that the OpenCL kernel call to read from or write to an image 
(read_image*() and write_image*(), respectively) must correspond 
to the channel type and order of the OpenCL image. The channel type 
and order of the OpenCL 2D or 3D image object that is being shared is 
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dependent upon the format of the Direct3D 10 resource that is passed into 
clCreateFromD3D10Texture2DKHR/clCreateFromD3D10Texture3D-
KHR. Following the previous example, the DXGI_FORMAT_R8G8B8A8_
UNORM format creates an OpenCL image with a CL_RGBA image format 
and a CL_SNORM_INT8 channel data type. The specification contains a list 
of mappings from DXGI formats to OpenCL image formats (channel order 
and channel data type), shown in Table 11.1.

Table 11.1 Direct3D Texture Format Mappings to OpenCL Image Formats

DXGI Format
CL Image Format 
(Channel Order, Channel Data Type)

DXGI_FORMAT_R32G32B32A32_FLOAT CL_RGBA, CL_FLOAT

DXGI_FORMAT_R32G32B32A32_UINT CL_RGBA, CL_UNSIGNED_INT32

DXGI_FORMAT_R32G32B32A32_SINT CL_RGBA, CL_SIGNED_INT32

DXGI_FORMAT_R16G16B16A16_FLOAT CL_RGBA, CL_HALF_FLOAT

DXGI_FORMAT_R16G16B16A16_UNORM CL_RGBA, CL_UNORM_INT16

DXGI_FORMAT_R16G16B16A16_UINT CL_RGBA, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16B16A16_SNORM CL_RGBA, CL_SNORM_INT16

DXGI_FORMAT_R16G16B16A16_SINT CL_RGBA, CL_SIGNED_INT16

DXGI_FORMAT_R8G8B8A8_UNORM CL_RGBA, CL_UNORM_INT8

DXGI_FORMAT_R8G8B8A8_UINT CL_RGBA, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8B8A8_SNORM CL_RGBA, CL_SNORM_INT8

DXGI_FORMAT_R8G8B8A8_SINT CL_RGBA, CL_SIGNED_INT8

DXGI_FORMAT_R32G32_FLOAT CL_RG, CL_FLOAT

DXGI_FORMAT_R32G32_UINT CL_RG, CL_UNSIGNED_INT32

DXGI_FORMAT_R32G32_SINT CL_RG, CL_SIGNED_INT32

DXGI_FORMAT_R16G16_FLOAT CL_RG, CL_HALF_FLOAT

DXGI_FORMAT_R16G16_UNORM CL_RG, CL_UNORM_INT16

DXGI_FORMAT_R16G16_UINT CL_RG, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16_SNORM CL_RG, CL_SNORM_INT16
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DXGI Format
CL Image Format 
(Channel Order, Channel Data Type)

DXGI_FORMAT_R16G16_SINT CL_RG, CL_SIGNED_INT16

DXGI_FORMAT_R8G8_UNORM CL_RG, CL_UNORM_INT8

DXGI_FORMAT_R8G8_UINT CL_RG, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8_SNORM CL_RG, CL_SNORM_INT8

DXGI_FORMAT_R8G8_SINT CL_RG, CL_SIGNED_INT8

DXGI_FORMAT_R32_FLOAT CL_R, CL_FLOAT

DXGI_FORMAT_R32_UINT CL_R, CL_UNSIGNED_INT32

DXGI_FORMAT_R32_SINT CL_R, CL_SIGNED_INT32

DXGI_FORMAT_R16_FLOAT CL_R, CL_HALF_FLOAT

DXGI_FORMAT_R16_UNORM CL_R, CL_UNORM_INT16

DXGI_FORMAT_R16_UINT CL_R, CL_UNSIGNED_INT16

DXGI_FORMAT_R16_SNORM CL_R, CL_SNORM_INT16

DXGI_FORMAT_R16_SINT CL_R, CL_SIGNED_INT16

DXGI_FORMAT_R8_UNORM CL_R, CL_UNORM_INT8

DXGI_FORMAT_R8_UINT CL_R, CL_UNSIGNED_INT8

DXGI_FORMAT_R8_SNORM CL_R, CL_SNORM_INT8

DXGI_FORMAT_R8_SINT CL_R, CL_SIGNED_INT8

Acquiring and Releasing Direct3D Objects 
in OpenCL
Direct3D objects must be acquired before being processed in OpenCL and 
released before they are used by Direct3D. D3D10 objects can be acquired 
and released with the following function: 

Table 11.1 Direct3D Texture Format Mappings to OpenCL Image Formats 
(Continued )



ptg

362 Chapter 11: Interoperability with Direct3D

cl_int clEnqueueAcquireD3D10ObjectsKHR(
                               cl_command_queue command_queue,
                               cl_uint num_objects,
                               const cl_mem *mem_objects,
                               cl_uint num_events_in_wait_list,
                               const cl_event *event_wait_list,
                               cl_event *event)

This acquires OpenCL memory objects that have been created from 
Direct3D 10 resources.

The Direct3D 10 objects are acquired by the OpenCL context associated 
with command_queue and can therefore be used by all command-queues 
associated with the OpenCL context. 

OpenCL memory objects created from Direct3D 10 resources must be 
acquired before they can be used by any OpenCL commands queued 
to a command-queue. If an OpenCL memory object created from a 
Direct3D 10 resource is used while it is not currently acquired by OpenCL, 
the call attempting to use that OpenCL memory object will return 
CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR.

clEnqueueAcquireD3D10ObjectsKHR() provides the synchronization 
guarantee that any Direct3D 10 calls made before clEnqueueAcquire-
D3D10ObjectsKHR() is called will complete executing before event
reports completion and before the execution of any subsequent OpenCL 
work issued in command_queue begins. 

The similar release function is

cl_int clEnqueueReleaseD3D10ObjectsKHR
                      cl_command_queue command_queue,
                      cl_uint num_objects,
                      const cl_mem *mem_objects,
                      cl_uint num_events_in_wait_list,
                      const cl_event *event_wait_list ,
                      cl_event *event)

This releases OpenCL memory objects that have been created from 
Direct3D 10 resources.
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The Direct3D 10 objects are released by the OpenCL context associated 
with command_queue.

OpenCL memory objects created from Direct3D 10 resources that have 
been acquired by OpenCL must be released by OpenCL before they may 
be accessed by Direct3D 10. Accessing a Direct3D 10 resource while 
its corresponding OpenCL memory object is acquired is in error and 
will result in undefined behavior, including but not limited to possible 
OpenCL errors, data corruption, and program termination. 

clEnqueueReleaseD3D10ObjectsKHR() provides the synchroniza-
tion guarantee that any calls to Direct3D 10 made after the call to 
clEnqueueReleaseD3D10ObjectsKHR() will not start executing until 
after all events in event_wait_list are complete and all work already 
submitted to command_queue completes execution. 

Note that in contrast to the OpenGL acquire function, which does not 
provide synchronization guarantees, the D3D10 acquire function does. 
Also, when acquiring and releasing textures, it is most efficient to acquire 
and release all textures and resources that are being shared at the same 
time. Additionally, when processing it is best to process all of the OpenCL 
kernels before switching back to Direct3D processing. By following this, 
all the acquire and release calls can be used to form the boundary of 
OpenCL and Direct3D processing.

Processing a Direct3D Texture in OpenCL
So far we have described how to obtain an OpenCL image from a D3D 
texture. In this section we will discuss how to process the texture’s data 
in OpenCL and display the result in Direct3D. In the following example 
code we will use an OpenCL kernel to alter a texture’s contents in each 
frame. We begin by showing a fragment of code for the rendering loop of 
a program: 

void Render()
{
    // Clear the back buffer
    // to values red, green, blue, alpha
    float ClearColor[4] = { 0.0f, 0.125f, 0.1f, 1.0f }; 
    g_pD3DDevice->ClearRenderTargetView( 
        g_pRenderTargetView, ClearColor);

    computeTexture();
    // Render the quadrilateral
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    D3D10_TECHNIQUE_DESC techDesc;
    g_pTechnique->GetDesc( &techDesc );
    for( UINT p = 0; p < techDesc.Passes; ++p )
    {
        g_pTechnique->GetPassByIndex( p )->Apply( 0 );
        g_pD3DDevice->Draw( 4, 0 );
    }

    // Present the information rendered to the 
    // back buffer to the front buffer (the screen)
    g_pSwapChain->Present( 0, 0 );
}

The code simply clears the window to a predefined color, then calls OpenCL 
to update the texture contents in the computeTexture() function. 
Finally, the texture is displayed on the screen. The computeTexture()
function used in the preceding code launches an OpenCL kernel to 
modify the contents of the texture as shown in the next code fragment. 
The function acquires the D3D object, launches the kernel to modify the 
texture, and then releases the D3D object. The g_clTexture2D OpenCL 
image object that was created from the D3D object is passed to the kernel 
as a parameter. Additionally, a simple animation is created by the host 
maintaining a counter, seq, that is incremented each time this function 
is called and passed as a parameter to the kernel. Here is the full code for 
the computeTexture() function:

// Use OpenCL to compute the colors on the texture background
cl_int computeTexture()
{
    cl_int errNum;

    static cl_int seq =0;
    seq = (seq+1)%(g_WindowWidth*2);

    errNum = clSetKernelArg(tex_kernel, 0, sizeof(cl_mem), 
        &g_clTexture2D);
    errNum = clSetKernelArg(tex_kernel, 1, sizeof(cl_int), 
        &g_WindowWidth);
    errNum = clSetKernelArg(tex_kernel, 2, sizeof(cl_int), 
        &g_WindowHeight);
    errNum = clSetKernelArg(tex_kernel, 3, sizeof(cl_int), 
        &seq);
    size_t tex_globalWorkSize[2] = { 
        g_WindowWidth, 
        g_WindowHeight };
    size_t tex_localWorkSize[2] = { 32, 4 };
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    errNum = clEnqueueAcquireD3D10ObjectsKHR(commandQueue, 1, 
        &g_clTexture2D, 0, NULL, NULL );

    errNum = clEnqueueNDRangeKernel(commandQueue, tex_kernel, 2, 
        NULL,
        tex_globalWorkSize, tex_localWorkSize,
        0, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
      std::cerr << "Error queuing kernel for execution." <<
      std::endl;
    }
    errNum = clEnqueueReleaseD3D10ObjectsKHR(commandQueue, 1,
        &g_clTexture2D, 0, NULL, NULL );
    clFinish(commandQueue);
    return 0;
}

As in the previous chapter on OpenGL interop, we will again use an 
OpenCL kernel to computationally generate the contents of a D3D tex-
ture object. The texture was declared with the format DXGI_FORMAT_
R8G8B8A8_UNORM, which corresponds to an OpenCL texture with 
channel order CL_RGBA and channel data CL_UNORM_INT8. This texture 
can be written to using the write_imagef() function in a kernel:

__kernel void init_texture_kernel(__write_only image2d_t im, 
    int w, int h, int seq )
{
    int2 coord = { get_global_id(0), get_global_id(1) };
    float4 color =  { 
        (float)coord.x/(float)w,
        (float)coord.y/(float)h,
        (float)abs(seq-w)/(float)w,
        1.0f};
    write_imagef( im, coord, color );
}

Here, seq is a sequence number variable that is circularly incremented in 
each frame on the host and sent to the kernel. In the kernel, the seq vari-
able is used to generate texture color values. As seq is incremented, the 
colors change to animate the texture. 

In the full source code example included in the book reference mate-
rial for this chapter, a rendering technique, g_pTechnique, is used. It is 
a basic processing pipeline, involving a simple vertex shader that passes 
vertex and texture coordinates to a pixel shader:
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//
// Vertex Shader
//
PS_INPUT VS( VS_INPUT input )
{
    PS_INPUT output = (PS_INPUT)0;
    output.Pos = input.Pos;
    output.Tex = input.Tex;

    return output;
}
technique10 Render
{
    pass P0
    {
        SetVertexShader( CompileShader( vs_4_0, VS() ) );
        SetGeometryShader( NULL );
        SetPixelShader( CompileShader( ps_4_0, PS() ) );
    }
}

This technique is loaded using the usual D3D10 calls. The pixel shader 
then performs the texture lookup on the texture that has been modified 
by the OpenCL kernel and displays it:

SamplerState samLinear
{
    Filter = MIN_MAG_MIP_LINEAR;
    AddressU = Wrap;
    AddressV = Wrap;
};

float4 PS( PS_INPUT input) : SV_Target
{
    return txDiffuse.Sample( samLinear, input.Tex );
}

In this pixel shader, samLinear is a linear sampler for the input texture. 
For each iteration of the rendering loop, OpenCL updates the texture con-
tents in computeTexture() and D3D10 displays the updated texture. 

Processing D3D Vertex Data in OpenCL
As mentioned previously, buffers can also be shared from Direct3D. We 
will now consider the case where a D3D buffer holding vertex data is used 
to draw a sine wave on screen. We can begin by defining a simple struc-
ture for the vertex buffer in Direct3D:
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struct SimpleSineVertex
{
    D3DXVECTOR4 Pos;
};

A D3D10 buffer can be created for this structure, in this case holding 256 
elements: 

bd.Usage = D3D10_USAGE_DEFAULT;
bd.ByteWidth = sizeof( SimpleSineVertex ) * 256;
bd.BindFlags = D3D10_BIND_VERTEX_BUFFER;
bd.CPUAccessFlags = 0;
bd.MiscFlags = 0;
hr = g_pD3DDevice->CreateBuffer( &bd, NULL, 
    &g_pSineVertexBuffer );

Because we will use OpenCL to set the data in the buffer, we pass NULL as 
the second parameter, pInitialData, to allocate space only.

Once the D3D buffer g_pSineVertexBuffer is created, an OpenCL buf-
fer, g_clBuffer, can be created from g_pSineVertexBuffer using the 
clCreateFromD3D10BufferKHR() function: 

g_clBuffer = clCreateFromD3D10BufferKHR( context, 
    CL_MEM_READ_WRITE, g_pSineVertexBuffer, &errNum );

As in the previous example, g_clBuffer can be sent as a kernel 
parameter to an OpenCL kernel that generates data. As in the texture 
example, the D3D object is acquired with clEnqueueAcquireD3D10Ob-
jectsKHR() before the kernel launch and released with clEnqueueRe-
leaseD3D10ObjectsKHR() after the kernel completes. In the sample 
code, the vertex positions for a sine wave are generated in a kernel: 

__kernel void init_vbo_kernel(__global float4 *vbo, 
    int w, int h, int seq)
{
    int gid = get_global_id(0);
    float4 linepts;
    float f = 1.0f;
    float a = 0.4f;
    float b = 0.0f;

    linepts.x = gid/(w/2.0f)-1.0f;
    linepts.y = b + a*sin(3.14*2.0*((float)gid/(float)w*f + 
         (float)seq/(float)w));
    linepts.z = 0.5f;
    linepts.w = 0.0f;

    vbo[gid] = linepts;
}
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Similarly to the texturing example, the variable seq is used as a counter 
to animate the sine wave on the screen. 

When rendering, we set the layout and the buffer and specify a line strip. 
Then, computeBuffer() calls the preceding kernel to update the buffer. 
A simple rendering pipeline, set up as pass 1 in the technique, is activated, 
and the 256 data points are drawn: 

// Set the input layout
g_pD3DDevice->IASetInputLayout( g_pSineVertexLayout );
// Set vertex buffer
stride = sizeof( SimpleSineVertex );
offset = 0;
g_pD3DDevice->IASetVertexBuffers( 0, 1, &g_pSineVertexBuffer, 
    &stride, &offset );
// Set primitive topology
g_pD3DDevice->IASetPrimitiveTopology(
    D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP );
computeBuffer();
g_pTechnique->GetPassByIndex( 1 )->Apply( 0 );
g_pD3DDevice->Draw( 256, 0 );

When run, the program will apply the kernel to generate the texture con-
tents, then run the D3D pipeline to sample the texture and display it on 
the screen. The vertex buffer is then also drawn, resulting in a sine wave 
on screen. The resulting program is shown in Figure 11.1. 

Figure 11.1 A program demonstrating OpenCL/D3D interop. The sine 
positions of the vertices in the sine wave and the texture color 
values are programmatically set by kernels in OpenCL and 
displayed using Direct3D.
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Chapter 12

C++ Wrapper API

Although many of the example applications described throughout this 
book have been developed using the programming language C++, we have 
focused exclusively on the OpenCL C API for controlling the OpenCL 
component. This chapter changes this by introducing the OpenCL 
C++ Wrapper API, a thin layer built on top of the OpenCL C API that is 
designed to reduce effort for some tasks, such as reference counting an 
OpenCL object, using C++.

The C++ Wrapper API was designed to be distributed in a single header 
file, and because it is built on top of the OpenCL C API, it can make no 
additional requirements on an OpenCL implementation. The interface 
is contained within a single C++ header, cl.hpp, and all definitions 
are contained within a single namespace, cl. There is no additional 
requirement to include cl.h. The specification can be downloaded 
from the Khronos Web site: www.khronos.org/registry/cl/specs/
opencl-cplusplus-1.1.pdf.

To use the C++ Wrapper API (or just the OpenCL C API, for that matter), 
the application should include the line

#include <cl.hpp>

C++ Wrapper API Overview
The C++ API is divided into a number of classes that have a corresponding 
mapping to an OpenCL C type; for example, there is a cl::Memory class 
that maps to cl_mem in OpenCL C. However, when possible the C++ API 
uses inheritance to provide an extra level of type abstraction; for example, 
the class cl::Buffer derives from the base class cl::Memory and repre-
sents the 1D memory subclass of all possible OpenCL memory objects, as 
described in Chapter 7. The class hierarchy is shown in Figure 12.1. 

www.khronos.org/registry/cl/specs/opencl-cplusplus-1.1.pdf
www.khronos.org/registry/cl/specs/opencl-cplusplus-1.1.pdf
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In general, there is a straightforward mapping from the C++ class type to 
the underlying OpenCL C type, and in these cases the underlying C type 
can be accessed through the operator (). For example, the following code 
gets the first OpenCL platform and queries the underlying OpenCL C 
type, cl_platform, assigning it to the variable platform:

cl::Device

cl::Context

cl::Memory

cl::Buffer

cl::Image

cl::BufferRenderGL

cl::BufferGL

cl::Image2D

cl::Image3D

cl::Image2DGL

cl::Image3DGL

cl::ImageFormat

cl::Sampler

cl::Program

cl::Kernel

cl::Event

cl::NDRange

cl::string

cl::vector<::size_t, N>

cl::vector<T, N>::iterator

cl::size_t<N>

cl::Platform

cl::CommandQueue

Figure 12.1 C++ Wrapper API class hierarchy
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std::vector<cl::Platform> platformList;
cl::Platform::get(&platformList);
cl_platform platform = platformList[0]();

In practice it should be possible to stay completely within the C++ Wrap-
per API, but sometimes an application can work only with the C API—for 
example, to call a third-party library—and in this case the () operator 
can be used. It is important to note that the C++ API will track the assign-
ment of OpenCL objects defined via the class API and as such perform 
any required reference counting, but this breaks down with the application 
of the () operator. In this case the application must ensure that necessary 
calls to clRetainXX()/clReleaseXX() are peformed to guarantee the 
correctness of the program. This is demostrated in the following code:

extern void someFunction(cl_program);

cl_platform platform;
{
  std::vector<cl::Platform> platformList;
  cl::Platform::get(&platformList);
  platform = platformList[0]();

  someFunction(platform); // safe call
}

someFunction(platform); // not safe

The final line of this example is not safe because the vector platform-
List has been destroyed on exiting the basic block and thus an implicit 
call to clReleasePlatform for each platform in platformList hap-
pened, allowing the underlying OpenCL implementation to release any 
associated memory.

C++ Wrapper API Exceptions
Finally, before diving into a detailed example, we introduce OpenCL C++ 
exceptions. To track errors in an application that were raised because of an 
error in an OpenCL operation, the C API uses error values of type cl_int.
These are returned as the result of an API function, or, in the case that 
the API function returns an OpenCL object, the error code is returned as 
the very last argument to the function. The C++ API supports this form of 
tracking errors, but it can also use C++ exceptions. By default exceptions 
are not enabled, and the OpenCL error code is returned, or set, according 
to the underlying C API.
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To use exceptions they must be explicitly enabled by defining the follow-
ing preprocessor macro before including cl.hpp:

    __CL_ENABLE_EXCEPTIONS

Once enabled, an error value other than CL_SUCCESS reported by an 
OpenCL C call will throw the exception class cl::Error. By default the 
method cl::Error::what() will return a const pointer to a string 
naming the particular C API call that reported the error, for example, 
clGetDeviceInfo. It is possible to override the default behavior for 
cl::Error::what() by defining the following preprocessor macro 
before including cl.hpp:

   __CL_USER_OVERRIDE_ERROR_STRINGS

You would also provide string constants for each of the preprocessor mac-
ros defined in Table 12.1.

Table 12.1 Preprocessor Error Macros and Their Defaults

Preprocessor Macro Name Default Value

__GET_DEVICE_INFO_ERR clGetDeviceInfo

__GET_PLATFORM_INFO_ERR clGetPlatformInfo

__GET_DEVICE_IDS_ERR clGetDeviceIds

__GET_CONTEXT_INFO_ERR clGetContextInfo

__GET_EVENT_INFO_ERR clGetEventInfo

__GET_EVENT_PROFILE_INFO_ERR clGetEventProfileInfo

__GET_MEM_OBJECT_INFO_ERR clGetMemObjectInfo

__GET_IMAGE_INFO_ERR clGetImageInfo

__GET_SAMPLER_INFO_ERR clGetSampleInfo

__GET_KERNEL_INFO_ERR clGetKernelInfo

__GET_KERNEL_WORK_GROUP_INFO_ERR clGetKernelWorkGroupInfo

__GET_PROGRAM_INFO_ERR clGetProgramInfo

__GET_PROGRAM_BUILD_INFO_ERR clGetProgramBuildInfo

__GET_COMMAND_QUEUE_INFO_ERR clGetCommandQueueInfo

__CREATE_CONTEXT_FROM_TYPE_ERR clCreateContextFromType
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Preprocessor Macro Name Default Value

__GET_SUPPORTED_IMAGE_FORMATS_ERR clGetSupportedImageFormats

__CREATE_BUFFER_ERR clCreateBuffer

__CREATE_SUBBUFFER_ERR clCreateSubBuffer

__CREATE_GL_BUFFER_ERR clCreateGLBuffer

__CREATE_IMAGE2D_ERR clCreateImage2D

__CREATE_IMAGE3D_ERR clCreateImage3D

__SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR clSetMemObjectDestructorCallback

__CREATE_USER_EVENT_ERR clCreateUserEvent

__SET_USER_EVENT_STATUS_ERR clSetUserEventStatus

__SET_EVENT_CALLBACK_ERR clSetEventCallback

__WAIT_FOR_EVENTS_ERR clWaitForEvents

__CREATE_KERNEL_ERR clCreateKernel

__SET_KERNEL_ARGS_ERR clSetKernelArgs

__CREATE_PROGRAM_WITH_SOURCE_ERR clCreateProgramWithSource

__CREATE_PROGRAM_WITH_BINARY_ERR clCreateProgramWithBinary

__BUILD_PROGRAM_ERR clBuildProgram

__CREATE_KERNELS_IN_PROGRAM_ERR clCreateKernelsInProgram

__CREATE_COMMAND_QUEUE_ERR clCreateCommandQueue

__SET_COMMAND_QUEUE_PROPERTY_ERR clSetCommandQueueProperty

__ENQUEUE_READ_BUFFER_ERR clEnqueueReadBuffer

__ENQUEUE_READ_BUFFER_RECT_ERR clEnqueueReadBufferRect

__ENQUEUE_WRITE_BUFFER_ERR clEnqueueWriteBuffer

__ENQUEUE_WRITE_BUFFER_RECT_ERR clEnqueueWriteBufferRect

__ENQEUE_COPY_BUFFER_ERR clEnqueueCopyBuffer

__ENQEUE_COPY_BUFFER_RECT_ERR clEnqueueCopyBufferRect

continues

Table 12.1 Preprocessor Error Macros and Their Defaults (Continued )
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Vector Add Example Using the C++ Wrapper API
In Chapter 3, we outlined the structure of an application’s OpenCL usage 
to look something similar to this:

1. Query which platforms are present.

2. Query the set of devices supported by each platform.

a.  Choose to select devices, using clGetDeviceInfo(), on specific 
capabilities.

Preprocessor Macro Name Default Value

__ENQUEUE_READ_IMAGE_ERR clEnqueueReadImage

__ENQUEUE_WRITE_IMAGE_ERR clEnqueueWriteImage

__ENQUEUE_COPY_IMAGE_ERR clEnqueueCopyImage

__ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR clEnqueueCopyImageToBuffer

__ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR clEnqueueCopyBufferToImage

__ENQUEUE_MAP_BUFFER_ERR clEnqueueMapBuffer

__ENQUEUE_MAP_IMAGE_ERR clEnqueueMapImage

__ENQUEUE_UNMAP_MEM_OBJECT_ERR clEnqueueUnmapMemObject

__ENQUEUE_NDRANGE_KERNEL_ERR clEnqueueNDRangeKernel

__ENQUEUE_TASK_ERR clEnqueueTask

__ENQUEUE_NATIVE_KERNEL clEnqueueNativeKernel

__ENQUEUE_MARKER_ERR clEnqueueMarker

__ENQUEUE_WAIT_FOR_EVENTS_ERR clEnqueueWaitForEvents

__ENQUEUE_BARRIER_ERR clEnqueueBarriers

__UNLOAD_COMPILER_ERR clUnloadCompiler

__FLUSH_ERR clFlush

__FINISH_ERR clFinish

Table 12.1 Preprocessor Error Macros and Their Defaults (Continued )
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3. Create contexts from a selection of devices (each context must be cre-
ated with devices from a single platform); then with a context you can

a. Create one or more command-queues

b. Create programs to run on one or more associated devices

c. Create a kernel from those programs

d.  Allocate memory buffers and images, either on the host or on the 
device(s)

e. Write or copy data to and from a particular device

f.  Submit kernels (setting the appropriate arguments) to a command-
queue for execution

In the remainder of this chapter we describe a simple application that uses 
OpenCL to add two input arrays in parallel, using the C++ Wrapper API, 
following this list.

Choosing an OpenCL Platform and Creating a Context

The first step in the OpenCL setup is to select a platform. As described 
in Chapter 2, OpenCL uses an ICD model where multiple implementa-
tions of OpenCL can coexist on a single system. As with the HelloWorld 
example of Chapter 2, the Vector Add program demonstrates the simplest 
approach to choosing an OpenCL platform: it selects the first available 
platform. 

First cl::Platform::get() is invoked to retrieve the list of platforms: 

std::vector<cl::Platform> platformList; 
cl::Platform::get(&platformList);

After getting the list of platforms, the example then creates a context by 
calling cl::Context(). This call to cl::Context() attempts to create 
a context from a GPU device. If this attempt fails, then the program will 
raise an exception, as our program uses the OpenCL C++ Wrapper excep-
tion feature, and the program terminates with an error message. The code 
for creating the context is

cl_context_properties cprops[] = {
   CL_CONTEXT_PLATFORM, 
   (cl_context_properties)(platformList[0])(), 
   0};

cl::Context context(CL_DEVICE_TYPE_GPU, cprops);
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Choosing a Device and Creating a Command-Queue

After choosing a platform and creating a context, the next step for the 
Vector Add application is to select a device and create a command-queue. 
The first task is to query the set of devices associated with the context 
previously created. This is achieved with a call to cl::Context::get-
Info<CL_CONTEXT_DEVICES>(), which returns the std::vector of 
devices attached to the context. 

Before continuing, let’s examine this getInfo() method, as it follows a 
pattern used throughout the C++ Wrapper API. In general, any C++ Wrap-
per API object that represents a C API object supporting a query interface, 
for example, clGetXXInfo() where XX is the name of the C API object 
being queried, has a corresponding interface of the form

template <cl_int> typename
detail::param_traits<detail::cl_XX_info, name>::param_type
cl::Object::getInfo(void);

At first reading this may seem a little overwhelming because of the use of 
a C++ template technique called traits (used here to associate the shared 
functionality provided by the clGetXXInfo()), but because programs 
that use these getInfo() functions never need to refer to the trait 
components in practice, it does not have an effect on code written by the 
developer. It is important to note that all C++ Wrapper API objects that 
correspond to an underlying C API object have a template method called 
getInfo() that takes as its template argument the value of the cl_XX_
info enumeration value being queried. This has the effect of statically 
checking that the requested value is valid; that is, a particular getInfo()
method will only accept values defined in the corresponding cl_XX_info
enumeration. By using the traits technique, the getInfo() function can 
automatically derive the result type. 

Returning to the Vector Add example where we query a context for the 
set of associated devices, the corresponding cl::Context::getInfo()
method can be specialized with CL_CONTEXT_DEVICES to return a 
std::vector<cl::Device>. This is highlighted in the following code:

// Query the set of devices attached to the context
std::vector<cl::Device> devices = 
   context.getInfo<CL_CONTEXT_DEVICES>();

Note that with the C++ Wrapper API query methods there is no need to 
first query the context to find out how much space is required to store the 
list of devices and then provide another call to get the devices. This is all 
hidden behind a simple generic interface in the C++ Wrapper API.
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After selecting the set of devices, we create a command-queue, with 
cl::CommandQueue(), selecting the first device for simplicity:

// Create command-queue
cl::CommandQueue queue(context, devices[0], 0);

Creating and Building a Program Object

The next step in the Vector Add example is to create a program object, 
using cl::Program(), from the OpenCL C kernel source. (The kernel 
source code for the Vector Add example is given in Listing 12.1 at the end 
of the chapter and is not reproduced here.) The program object is loaded 
with the kernel source code, and then the code is compiled for execution 
on the device attached to the context, using cl::Program::build().
The code to achieve this follows:

cl::Program::Sources sources(
   1, 
   std::make_pair(kernelSourceCode, 
   0));
cl::Program program(context, sources);

program.build(devices);

As with the other C++ Wrapper API calls, if an error occurs, then an 
exception occurs and the program exits. 

Creating Kernel and Memory Objects

In order to execute the OpenCL compute kernel, the arguments to the 
kernel function need to be allocated in memory that is accessible on 
the OpenCL device, in this case buffer objects. These are created using 
cl::Buffer(). For the input buffers we use CL_MEM_COPY_FROM_HOST_
PTR to avoid additional calls to move the input data. For the output buffer 
(i.e., the result of the vector addition) we use CL_MEM_USE_HOST_PTR,
which requires the resulting buffer to be mapped into host memory to 
access the result. The following code allocates the buffers:

cl::Buffer aBuffer = cl::Buffer(
   context, 
   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
   BUFFER_SIZE * sizeof(int), 
   (void *) &A[0]);

cl::Buffer bBuffer = cl::Buffer(
   context, 
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   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
   BUFFER_SIZE * sizeof(int), 
   (void *) &B[0]);

cl::Buffer cBuffer = cl::Buffer(
   context, 
   CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, 
   BUFFER_SIZE * sizeof(int), 
   (void *) &C[0]);

The kernel object is created with a call to cl::Kernel():

cl::Kernel kernel(program, "vadd");

Putting this all together, Listing 12.1 at the end of the chapter gives the 
complete program for Vector Add using the C++ Wrapper API. 

Executing the Vector Add Kernel

Now that the kernel and memory objects have been created, the Vec-
tor Add program can finally queue up the kernel for execution. All 
of the arguments to the kernel function need to be set using the 
cl::Kernel:setArg() method. The first argument to this function is 
the index of the argument, according to clSetKernelArg() in the C 
API. The vadd() kernel takes three arguments (a, b, and c), which corre-
spond to indices 0, 1, and 2. The memory objects that were created previ-
ously are passed to the kernel object:

kernel.setArg(0, aBuffer);
kernel.setArg(1, bBuffer);
kernel.setArg(2, cBuffer);

As is normal after setting the kernel arguments, the Vector Add example 
queues the kernel for execution on the device using the command-queue. 
This is done by calling cl::CommandQueue::enqueueNDRangeKer
nel(). The global and local work sizes are passed using cl::Range().
For the local work size a special instance of the cl::Range() object is 
used, cl::NullRange, which, as is implied by the name, corresponds to 
passing NULL in the C API, allowing the runtime to determine the best 
work-group size for the device and the global work size being requested. 
The code is as follows:

queue.enqueueNDRangeKernel(
   kernel, 
   cl::NullRange, 
   cl::NDRange(BUFFER_SIZE), 
   cl::NullRange);
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As discussed in Chapter 9, queuing the kernel for execution does not 
mean that the kernel executes immediately. We could use cl::Command-
Queue::flush() or cl::CommandQueue::finish() to force the execu-
tion to be submitted to the device for execution. But as the Vector Add 
example simply wants to display the results, it uses a blocking variant of 
cl::CommandQueue::enqueueMapBuffer() to map the output buffer to 
a host pointer:

int * output = (int *) queue.enqueueMapBuffer(
   cBuffer,
   CL_TRUE, // block 
   CL_MAP_READ,
   0,
   BUFFER_SIZE * sizeof(int));

The host application can then process the data pointed to by output, and 
once completed, it must release the mapped memory with a call to cl::C
ommandQueue::enqueueUnmapMemObj ():

err = queue.enqueueUnmapMemObject(
   cBuffer,
   (void *) output);

Putting this all together, Listing 12.1 gives the complete program for 
Vector Add.

This concludes the introduction to the OpenCL C++ Wrapper API. Chap-
ter 18 covers AMD’s Ocean simulation with OpenCL, which uses the C++ 
API.

Listing 12.1 Vector Add Example Program Using the C++ Wrapper API

// Enable OpenCL C++ exceptions
#define __CL_ENABLE_EXCEPTIONS

#if defined(__APPLE__) || defined(__MACOSX)
#include <OpenCL/cl.hpp>
#else
#include <CL/cl.hpp>
#endif

#include <cstdio>
#include <cstdlib>
#include <iostream>

#define BUFFER_SIZE 20
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int A[BUFFER_SIZE];
int B[BUFFER_SIZE];
int C[BUFFER_SIZE];

static char
kernelSourceCode[] = 
"__kernel void                                                \n"
"vadd(__global int * a, __global int * b, __global int * c)   \n"
"{                                                            \n"
"    size_t i =  get_global_id(0);                            \n"
"                                                             \n"
"    c[i] = a[i] + b[i];                                      \n"
"}                                                            \n"
;

int
main(void)
{
    cl_int err;

    // Initialize A, B, C
    for (int i = 0; i < BUFFER_SIZE; i++) {
        A[i] = i;
        B[i] = i * 2;
        C[i] = 0;
    }

    try {
        std::vector<cl::Platform> platformList;

        // Pick platform
        cl::Platform::get(&platformList);

        // Pick first platform
        cl_context_properties cprops[] = {
            CL_CONTEXT_PLATFORM, 
            (cl_context_properties)(platformList[0])(), 0};
        cl::Context context(CL_DEVICE_TYPE_GPU, cprops);

        // Query the set of devices attached to the context
        std::vector<cl::Device> devices = 
           context.getInfo<CL_CONTEXT_DEVICES>();

        // Create command-queue
        cl::CommandQueue queue(context, devices[0], 0);

        // Create the program from source
        cl::Program::Sources sources(
           1, 
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           std::make_pair(kernelSourceCode, 
           0));
        cl::Program program(context, sources);

        // Build program
        program.build(devices);

        // Create buffer for A and copy host contents
        cl::Buffer aBuffer = cl::Buffer(
            context, 
            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
            BUFFER_SIZE * sizeof(int), 
            (void *) &A[0]);

        // Create buffer for B and copy host contents
        cl::Buffer bBuffer = cl::Buffer(
            context, 
            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
            BUFFER_SIZE * sizeof(int), 
            (void *) &B[0]);

        // Create buffer that uses the host ptr C
        cl::Buffer cBuffer = cl::Buffer(
            context, 
            CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, 
            BUFFER_SIZE * sizeof(int), 
            (void *) &C[0]);

        // Create kernel object
        cl::Kernel kernel(program, "vadd");

        // Set kernel args
        kernel.setArg(0, aBuffer);
        kernel.setArg(1, bBuffer);
        kernel.setArg(2, cBuffer);

        // Do the work
        queue.enqueueNDRangeKernel(
            kernel, 
            cl::NullRange, 
            cl::NDRange(BUFFER_SIZE), 
            cl::NullRange);

        // Map cBuffer to host pointer. This enforces a sync with 
        // the host backing space; remember we chose a GPU device.
        int * output = (int *) queue.enqueueMapBuffer(
            cBuffer,



ptg

382 Chapter 12: C++ Wrapper API

            CL_TRUE, // block 
            CL_MAP_READ,
            0,
            BUFFER_SIZE * sizeof(int));

        for (int i = 0; i < BUFFER_SIZE; i++) {
            std::cout << C[i] << " ";
        }
        std::cout << std::endl;

        // Finally release our hold on accessing the memory
        err = queue.enqueueUnmapMemObject(
            cBuffer,
            (void *) output);

        // There is no need to perform a finish on the final unmap
        // or release any objects as this all happens implicitly 
        // with the C++ Wrapper API.
    } 
    catch (cl::Error err) {
         std::cerr
             << "ERROR: "
             << err.what()
             << "("
             << err.err()
             << ")"
             << std::endl;

         return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}
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Chapter 13

OpenCL Embedded Profile 

The OpenCL specification defines two profiles: a profile for desktop 
devices (the full profile) and a profile for hand-held and embedded 
devices (the embedded profile). Hand-held and embedded devices have 
significant area and power constraints that require a relaxation in the 
requirements defined by the full profile. The embedded profile targets a 
strict subset of the OpenCL 1.1 specification required for the full profile. 
An embedded profile that is a strict subset of the full profile has the fol-
lowing benefits: 

• It provides a single specification for both profiles as opposed to having 
separate specifications. 

• OpenCL programs written for the embedded profile should also run 
on devices that implement the full profile.

• It allows the OpenCL working group to consider requirements of both 
desktop and hand-held devices in defining requirements for future 
revisions of OpenCL. 

In this chapter, we describe the embedded profile. We discuss core fea-
tures that are optional for the embedded profile and the relaxation in 
device and floating-point precision requirements.

OpenCL Profile Overview
The profile is associated with the platform and a device(s). The platform 
implements the OpenCL platform and runtime APIs (described in Chap-
ters 4 and 5 of the OpenCL 1.1 specification). The platform supports one 
or more devices, and each device supports a specific profile. Listing 13.1 
describes how to query the profiles supported by the platform and each 
device supported by that platform.
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Listing 13.1 Querying Platform and Device Profiles

void
query_profile(cl_platform_id platform)
{
    char          platform_profile[100];
    char          device_profile[100];
    int           num_devices;
    cl_device_id *devices;
    int           i;

    // query the platform profile.
    clGetPlatformInfo(platform,
                      CL_PLATFORM_PROFILE,
                      sizeof(platform_profile),
                      platform_profile, 
                      NULL);
    printf("Platform profile is %s\n", platform_profile);

    // get all devices supported by platform.
    clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 
                             0, NULL, &num_devices);
    devices = malloc(num_devices * sizeof(cl_device_id);
    clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL,
                        num_devices * sizeof(cl_device_id),
                        devices, NULL);

    // query device profile for each device supported by platform.
    for (i=0; i<num_devices; i++)
    {
        clGetDeviceInfo(devices[i], 
                        CL_DEVICE_PROFILE, 
                        sizeof(device_profile),
                        device_profile, 
                        NULL);

        printf("Device profile for device index %d is %s\n", 
                                          i, device_profile);
    }

    free(devices);
}

The clGetPlatformInfo and clGetDeviceInfo APIs are described in 
detail in Chapter 3. 
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The embedded profile is a strict subset of the full profile. The embedded 
profile has several restrictions not present in the full profile. These restric-
tions are discussed throughout the rest of this chapter.

64-Bit Integers
In the embedded profile 64-bit integers are optional. This means that the 
long, ulong scalar and longn, ulongn vector data types in an OpenCL 
program may not be supported by a device that implements the embed-
ded profile. If an embedded profile implementation supports 64-bit 
integers, then the cles_khr_int64 extension string will be in the list of 
extension strings supported by the device. If this extension string is not in 
the list of extension strings supported by the device, using 64-bit integer 
data types in an OpenCL C program will result in a build failure when 
building the program executable for that device.

The following code shows how to query whether a device supports the 
cles_khr_int64 extension string. Note that this extension string is not 
reported by devices that implement the full profile.

bool
query_extension(const char *extension_name, cl_device_id device)
{
    size_t    size;
    char      *extensions;
    char      delims[] = " "; // space-separated list of names
    char      *result = NULL;
    cl_int    err;
    bool      extension_found;

    err = clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 
                                         0, NULL, &size);
    if (err)
        return false;

    extensions = malloc(size);
    clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 
                            size, extensions, NULL);

    extension_found = false;
    result = strtok( extensions, delims );
    while (result != NULL)
    {
        // extension_name is "cles_khr_int64"
        if (strcmp(result, extension_name) == 0)
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        {
            extension_found = true;
            break;
        }
        result = strtok(NULL, delims);
    }

    free(extensions);
    return extension_found;
}

Images
Image support is optional for both profiles. To find out if a device sup-
ports images, query the CL_DEVICE_IMAGE_SUPPORT property using the 
clGetDeviceInfo API. If the embedded profile device supports images, 
then the following additional restrictions apply:

• Support for 3D images is optional. For a full profile device that sup-
ports images, reading from a 3D image in an OpenCL C program 
is required but writing to a 3D image in an OpenCL C program is 
optional. An embedded profile device may not support 3D images at 
all (reads and writes). To find out if the device supports 3D images 
(i.e., reading a 3D image in an OpenCL C program), query the CL_
DEVICE_IMAGE3D_MAX_WIDTH property using the clGetDeviceInfo
API. This will have a value of zero if the device does not support 3D 
images and a non-zero value otherwise.

OpenCL C programs that use the image3d_t type will fail to build 
the program executable for an embedded profile device that does not 
support 3D images.

• Bilinear filtering for half-float and float images is not supported. Any 
2D and 3D images with an image channel data type of CL_HALF_
FLOAT or CL_FLOAT must use a sampler of CL_FILTER_NEAREST.
Otherwise the results returned by read_imagef and read_imageh
are undefined.

• Precision of conversion rules when converting a normalized integer 
channel data type value to a single-precision floating-point value is dif-
ferent for the embedded and full profiles. The precision of conversions 
from CL_UNORM_INT8, CL_UNORM_INT16, CL_UNORM_INT_101010,
CL_SNORM_INT8, and CL_SNORM_INT16 to float is <= 1.5 ulp for the 
full profile and <= 2.0 ulp for the embedded profile. Conversion of 
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specific values, such as 0 0.0f, 255 1.0f, -127 and -128
-1.0f, 127 1.0f are guaranteed to be the same for both profiles.

The required list of image formats (for reading and writing) that must be 
supported by an embedded profile device is given in Table 13.1.

Table 13.1 Required Image Formats for Embedded Profile

image_channel_order image_channel_data_type

CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16

CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32

CL_HALF_FLOAT
CL_FLOAT

Built-In Atomic Functions
The full profile supports built-in functions that perform atomic operations 
on 32-bit integers to global and local memory. These built-in functions 
are optional for the embedded profile. Check for the cl_khr_global_
int32_base_atomics, cl_khr_global_int32_extended_atomics,
cl_khr_local_int32_base_atomics, and cl_khr_local_int32_
extended_atomics extensions in the list of extension strings reported 
by a device to see which functions, if any, are supported by the embedded 
profile device.

Mandated Minimum Single-Precision Floating-
Point Capabilities
The mandated minimum single-precision floating-point capability for 
the full profile is CL_FP_ROUND_TO_NEAREST | CL_FP_INF_NAN. For the 
embedded profile, the mandated minimum capability is CL_FP_ROUND_
TO_NEAREST or CL_FP_ROUND_TO_ZERO. Support for positive or negative 
infinity and NaN is not required. 
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If CL_FP_NAN is not set, and one of the operands or the correctly rounded 
result of addition, subtraction, multiplication, or division is INF or NaN,
the value of the result is implementation-defined. Likewise, single- precision 
comparison operators (<, > , <= , >= , == ,!=) return implementation-
defined values when one or more operands is a NaN.

Conversions between different types (implicit and explicit) for the embed-
ded profile are correctly rounded as described for the full profile, includ-
ing those that consume or produce an INF or NaN.

Denormalized numbers for the half data type, which may be generated 
when converting a float to a half (for example, using vstore_half), or 
when converting from a half to a float (for example, using vload_half),
may be flushed to zero by an embedded profile device. A full profile 
device, however, cannot flush these denorm values to zero.

The built-in math functions behave as described for the full profile, includ-
ing edge case behavior (described in Section 7.5.1 of the OpenCL 1.1 speci-
fication). Table 13.2 describes the built-in math functions that differ in the 
minimum required accuracy between the full and embedded profiles. 

Table 13.2 Accuracy of Math Functions for Embedded Profile versus Full Profile

Function
Minimum Accuracy—
Full Profile

Minimum Accuracy—
Embedded Profile

x/y <= 2.5 ulp <= 3.0 ulp

cbrt <= 2 ulp <= 4 ulp

exp <= 3 ulp <= 4 ulp

exp2 <= 3 ulp <= 4 ulp

exp10 <= 3 ulp <= 4 ulp

expm1 <= 3 ulp <= 4 ulp

log <= 3 ulp <= 4 ulp

log2 <= 3 ulp <= 4 ulp

log10 <= 3 ulp <= 4 ulp

log1p <= 2 ulp <= 4 ulp

rsqrt <= 2 ulp <= 4 ulp

sqrt <= 3 ulp <= 4 ulp
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This relaxation of the requirement to adhere to IEEE 754 requirements 
for basic floating-point operations, though extremely undesirable, is to 
provide flexibility for embedded and hand-held devices that have much 
stricter requirements on hardware area budgets.

Table 13.3 describes the differences in the mandated minimum maximum 
values for device properties (described in Table 4.3 of the OpenCL 1.1 
specification).

Table 13.3 Device Properties: Minimum Maximum Values for Full Profile versus 
Embedded Profile

cl_device_info
Min. Max. Value—
Full Profile

Min. Max. Value—
Embedded Profile

CL_DEVICE_MAX_READ_
IMAGE_ARGS

128 8

CL_DEVICE_MAX_WRITE_
IMAGE_ARGS

8 1

CL_DEVICE_IMAGE2D_
MAX_WIDTH

8192 2048

CL_DEVICE_IMAGE2D_
MAX_HEIGHT

8192 2048

CL_DEVICE_MAX_
PARAMETER_SIZE

1024 256

CL_DEVICE_SINGLE_FP_
CONFIG

CL_FP_ROUND_TO_
NEAREST | 
CL_FP_INF_NAN

CL_FP_ROUND_TO_
NEAREST or 
CL_FP_ROUND_TO_ZERO

CL_DEVICE_LOCAL_MEM_
SIZE

32 KB 1 KB

CL_DEVICE_COMPILER_
AVAILABLE

CL_TRUE CL_FALSE

CL_DEVICE_PROFILE FULL_PROFILE EMBEDDED_PROFILE

The minimum maximum values for device properties related to images 
described in Table 13.3 apply only if the device supports images.
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Determining the Profile Supported by a Device in 
an OpenCL C Program
The embedded profile is a strict subset of the full profile. An OpenCL C 
program written for the embedded profile will work on any device that 
supports the full profile. There may be cases where the application may 
want to have separate code paths depending on which profile is supported 
by the device executing a kernel(s).

The __EMBEDDED_PROFILE__ macro is added to the OpenCL C language 
to determine whether a kernel is executing on an embedded profile or a 
full profile device. It is the integer constant 1 for devices that implement 
the embedded profile and is undefined otherwise.
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Chapter 14

Image Histogram

A histogram is a statistic that shows the frequency of a certain occur-
rence within a data set. The histogram of an image provides a frequency 
distribution of pixel values in the image. If the image is a color image, the 
pixel value can be the luminosity value of each pixel or the individual R, 
G, and B color channels. We have either a single histogram if the lumi-
nosity is used as the pixel value or three individual histograms, one for 
each channel, if the R, G, and B color channel values are used. Both types 
of histograms are useful; the luminosity histogram is more accurate at 
describing the perceived brightness distribution in an image, whereas the 
R, G, B color histogram can be a better choice in determining if individual 
colors are clipped. 

In this chapter, we look at how to implement a histogram for color images 
with OpenCL.

Computing an Image Histogram
We look at how to compute the histogram for R, G, and B channel values 
of a color image. For an RGB or RGBA image with 8 bits per channel, the 
R, G, and B color channels can have values from 0 to 255. 

Listing 14.1 shows how to compute the histogram of R, G, and B channels 
of an image. This code implements a sequential algorithm; that is, the 
algorithm loops through the pixels of the image serially to generate the 
histogram results.

Listing 14.1 Sequential Implementation of RGB Histogram

// This function computes the histogram for R, G, and B.
//
// image_data is a pointer to an RGBA image with 8 bits per channel
// w is the width of the image in pixels
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// h is the height of the image in pixels
//
// The histogram is an array of 256 bins for R, G, and B.
// Each bin entry is a 32-bit unsigned integer value.
//

unsigned int *
histogram_rgba_unorm8(void *image_data, int w, int h)
{
    unsigned char *img = (unsigned char *)image_data;
    unsigned int *ref_histogram_results; 
    unsigned int *ptr;
    int i;

    // clear the histogram results buffer to zeros.
    //
    // the histogram buffer stores the histogram values for R 
    // followed by the histogram values for G and then B. 
    // Since there are 256 bins for an 8-bit color channel, 
    // the histogram buffer is 256 * 3 entries in size. 
    // Each entry is a 32-bit unsigned integer value.
    //
    ref_histogram_results = (unsigned int *)malloc(256 * 3 * 
                                       sizeof(unsigned int));
    ptr = ref_histogram_results;
    memset(ref_histogram_results, 0x0, 256 * 3 * 
                                       sizeof(unsigned int));

    // compute histogram for R
    for (i=0; i<w*h*4; i+=4)
    {
        int indx = img[i];
        ptr[indx]++;
    }

    ptr += 256;
    // compute histogram for G
    for (i=1; i<w*h*4; i+=4)
    {
        int indx = img[i];
        ptr[indx]++;
    }

    ptr += 256;
    // compute histogram for B
    for (i=2; i<w*h*4; i+=4)
    {
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        int indx = img[i];
        ptr[indx]++;
    }

    return ref_histogram_results;
}

Parallelizing the Image Histogram
Let us now look at how to write a parallel implementation of the histo-
gram algorithm. An obvious approach to parallelizing the histogram com-
putation is to break the image into tiles, compute the histogram for each 
tile, and then combine the partial histograms computed for each tile into 
the final histogram of the image. Listing 14.2 describes the OpenCL ker-
nels that compute the partial histogram for a tile. The partial histogram 
computed per tile is stored in local memory for performance reasons. The 
kernel uses the built-in atomic functions as described by the OpenCL 1.1 
specification to update the per-tile histogram values. This kernel requires 
either an OpenCL 1.1 device or an OpenCL 1.0 device that implements 
the cl_khr_local_int32_base_atomics extension.

Listing 14.2 A Parallel Version of the RGB Histogram—Compute Partial 
Histograms

//******************************************************************
// This kernel takes an RGBA 8-bit-per-channel input image and 
// produces a partial histogram for R, G, and B. Each work-group
// represents an image tile and computes the histogram for that 
// tile.
//
// partial_histogram is an array of num_groups * (256 * 3) entries. 
// Each entry is a 32-bit unsigned integer value.
//
// We store 256 R bins, followed by 256 G bins, and then the 256
// B bins.
//******************************************************************

kernel void 
histogram_partial_image_rgba_unorm8(image2d_t img, 
                                    global uint *histogram)
{
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    int     local_size = (int)get_local_size(0) * 
                         (int)get_local_size(1);
    int     image_width = get_image_width(img);
    int     image_height = get_image_height(img);
    int     group_indx = (get_group_id(1) * get_num_groups(0)
                                + get_group_id(0)) * 256 * 3;
    int     x = get_global_id(0);
    int     y = get_global_id(1);

    local uint  tmp_histogram[256 * 3];

    int     tid = get_local_id(1) * get_local_size(0)
                                  + get_local_id(0));
    int     j = 256 * 3;
    int     indx = 0;

    // clear the local buffer that will generate the partial
    // histogram
    do
    {
        if (tid < j)
            tmp_histogram[indx+tid] = 0;

        j -= local_size;
        indx += local_size;
    } while (j > 0);

    barrier(CLK_LOCAL_MEM_FENCE);

    if ((x < image_width) && (y < image_height))
    {
        float4 clr = read_imagef(img, 
                         CLK_NORMALIZED_COORDS_FALSE |
                         CLK_ADDRESS_CLAMP_TO_EDGE | 
                         CLK_FILTER_NEAREST, 
                         (float2)(x, y));

        uchar   indx_x, indx_y, indx_z;
        indx_x = convert_uchar_sat(clr.x * 255.0f);
        indx_y = convert_uchar_sat(clr.y * 255.0f);
        indx_z = convert_uchar_sat(clr.z * 255.0f);
        atomic_inc(&tmp_histogram[indx_x]);
        atomic_inc(&tmp_histogram[256+(uint)indx_y]);
        atomic_inc(&tmp_histogram[512+(uint)indx_z]);
    }

    barrier(CLK_LOCAL_MEM_FENCE);
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    // copy the partial histogram to appropriate location in 
    // histogram given by group_indx
    if (local_size >= (256 * 3))
    {
        if (tid < (256 * 3))
            histogram[group_indx + tid] = tmp_histogram[tid];
    }
    else
    {
        j = 256 * 3;
        indx = 0;
        do 
        {
            if (tid < j)
                histogram[group_indx + indx + tid] = 
                                       tmp_histogram[indx + tid];

            j -= local_size;
            indx += local_size;
        } while (j > 0);
    }
}

histogram_partial_image_rgba_unorm8 produces num_groups par-
tial histograms. We now need to sum these partial histograms to gener-
ate the final histogram for the image. Listing 14.3 describes the OpenCL 
kernel that is used to sum the partial histogram results into the final 
histogram of the image.

Listing 14.3 A Parallel Version of the RGB Histogram—Sum Partial Histograms

//******************************************************************
// This kernel sums partial histogram results into a final 
// histogram result.
//
// num_groups is the number of work-groups used to compute partial 
// histograms.
//
// partial_histogram is an array of num_groups * (256 * 3) entries.
// we store 256 R bins, followed by 256 G bins, and then the 256 B 
// bins.
//
// The final summed results are returned in histogram.
//******************************************************************
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kernel void 
histogram_sum_partial_results_unorm8(
                        global uint *partial_histogram, 
                        int num_groups, 
                        global uint *histogram)
{
    int     tid = (int)get_global_id(0);
    int     group_indx;
    int     n = num_groups;
    local uint  tmp_histogram[256 * 3];

    tmp_histogram[tid] = partial_histogram[tid];

    group_indx = 256*3;
    while (--n > 0)
    {
        tmp_histogram[tid] += partial_histogram[group_indx + tid];
        group_indx += 256*3;
    }

    histogram[tid] = tmp_histogram[tid];
}

The host side code that describes the OpenCL API calls used to enqueue 
the two kernels in Listings 14.2 and 14.3 is provided in Listing 14.4.

Listing 14.4 Host Code of CL API Calls to Enqueue Histogram Kernels 

int       image_width = 1920;
int       image_height = 1080;
size_t    global_work_size[2];
size_t    local_work_size[2];
size_t    partial_global_work_size[2];
size_t    partial_local_work_size[2];
size_t    workgroup_size;
size_t    num_groups;
cl_kernel histogram_rgba_unorm8;
cl_kernel histogram_sum_partial_results_unorm8;
size_t    gsize[2];

// create kernels
histogram_rgba_unorm8 = clCreateKernel(program,
                                "histogram_image_rgba_unorm8", 
                                &err);
histogram_sum_partial_results_unorm8 = clCreateKernel(program, 
                          "histogram_sum_partial_results_unorm8", 
                          &err);
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// get max. work-group size that can be used for 
// histogram_image_rgba_unorm8 kernel
clGetKernelWorkGroupInfo(histogram_rgba_unorm8, device,
                         CL_KERNEL_WORK_GROUP_SIZE, 
                         sizeof(size_t), &workgroup_size, NULL);

if (workgroup_size <= 256)
{
    gsize[0] = 16;
    gsize[1] = workgroup_size / 16;
}
else if (workgroup_size <= 1024)
{
    gsize[0] = workgroup_size / 16;
    gsize[1] = 16;
}
else
{
    gsize[0] = workgroup_size / 32;
    gsize[1] = 32;
}

local_work_size[0] = gsize[0];
local_work_size[1] = gsize[1];

global_work_size[0] = ((image_width + gsize[0] - 1) / gsize[0]);
global_work_size[1] = ((image_height + gsize[1] - 1) / gsize[1]);

num_groups = global_work_size[0] * global_work_size[1];
global_work_size[0] *= gsize[0];
global_work_size[1] *= gsize[1];

err = clEnqueueNDRangeKernel(queue, 
                        histogram_rgba_unorm8, 
                        2, NULL, global_work_size, local_work_size, 
                        0, NULL, NULL);

// get max. work-group size that can be used for 
// histogram_sum_partial_results_unorm8 kernel
clGetKernelWorkGroupInfo(histogram_sum_partial_results_unorm8,
                         device, CL_KERNEL_WORK_GROUP_SIZE, 
                         sizeof(size_t), &workgroup_size, NULL);

if (workgroup_size < 256)
{
    printf("A min. of 256 work-items in work-group is needed for 
            histogram_sum_partial_results_unorm8 kernel. (%d)\n", 
          (int)workgroup_size);
    return EXIT_FAILURE;
}
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partial_global_work_size[0] = 256*3;
partial_local_work_size[0] = 
        (workgroup_size > 256) ? 256 : workgroup_size;
err = clEnqueueNDRangeKernel(queue,
            histogram_sum_partial_results_unorm8, 
            1, NULL, partial_global_work_size, 
            partial_local_work_size,0, NULL, NULL);
if (err)
{
    printf("clEnqueueNDRangeKernel() failed for 
            histogram_sum_partial_results_unorm8 kernel. 
            (%d)\n", err);
    return EXIT_FAILURE;
}

Additional Optimizations to the Parallel Image 
Histogram
Let’s see if additional optimizations are possible with the kernels. One 
thing we notice is that the histogram_sum_partial_results_unorm8
kernel is bound by memory operations. GPUs hide memory latency 
by switching to other work-items or work-groups to perform compute 
operations. In this case, there is not much compute as the total num-
ber of work-items (i.e., global_work_size) specified to clEnqueueN-
DRangeKernel is (256*3, 1, 1), so it may be hard to hide memory 
latency. One thing we can do is reduce the amount of data we have to 
fetch from memory to sum partial histograms. 

We can do this by reducing the number of partial histograms and per-
forming more work per work-item in the histogram_partial_image_
rgba_unorm8 kernel. It turns out that reducing the number of partial 
histograms makes the overall histogram computation significantly faster. 
This optimized version of histogram_partial_results_rgba_unorm8
is described in Listing 14.5.

Listing 14.5 A Parallel Version of the RGB Histogram—Optimized Version

//
// This kernel takes an RGBA 8-bit-per-channel input image and 
// produces a partial histogram for R, G, and B. Each work-group 
// represents an image tile and computes the histogram for that 
// tile.
//
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// num_pixels_per_workitem is the number of pixels for which the 
// histogram is computed by each work-item. In the implementation 
// described in Listing 14.3, num_pixels_per_workitem = 1.
//
// partial_histogram is an array of 
//         num_groups * (256 * 3) entries.
// Each entry is a 32-bit unsigned integer value.
//    num_groups is affected by value of num_pixels_per_workitem.
//
// We store 256 R bins, followed by 256 G bins, and then the 256 
// B bins. 
//

kernel void
histogram_partial_rgba_unorm8(image2d_t img, 
                              int num_pixels_per_workitem,
                              global uint *partial_histogram)
{
    int local_size = (int)get_local_size(0) * 
                     (int)get_local_size(1);
    int image_width = get_image_width(img);
    int image_height = get_image_height(img);
    int group_indx = (get_group_id(1) * get_num_groups(0) + 
                                        get_group_id(0)) * 256 * 3;
    int x = get_global_id(0);
    int y = get_global_id(1);

    local uint  tmp_histogram[256 * 3];

    int tid = get_local_id(1) * get_local_size(0) + get_local_id(0);
    int j = 256 * 3;
    int indx = 0;

    // clear the local buffer that will generate the partial 
    // histogram
    do
    {
        if (tid < j)
            tmp_histogram[indx+tid] = 0;

        j -= local_size;
        indx += local_size;
    } while (j > 0);

    barrier(CLK_LOCAL_MEM_FENCE);

    int i, idx;
    for (i=0, idx=x; i<num_pixels_per_workitem; 
                              i++, idx+=get_global_size(0))
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    {
        if ((idx < image_width) && (y < image_height))
        {
            float4 clr = read_imagef(img, 
                                     (CLK_NORMALIZED_COORDS_FALSE | 
                                      CLK_ADDRESS_CLAMP_TO_EDGE |
                                      CLK_FILTER_NEAREST),
                                     (float2)(idx, y));

            uchar indx_x = convert_uchar_sat(clr.x * 255.0f);
            uchar indx_y = convert_uchar_sat(clr.y * 255.0f);
            uchar indx_z = convert_uchar_sat(clr.z * 255.0f);
            atomic_inc(&tmp_histogram[indx_x]);
            atomic_inc(&tmp_histogram[256+(uint)indx_y]);
            atomic_inc(&tmp_histogram[512+(uint)indx_z]);
        }
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    // copy the partial histogram to appropriate location in 
    // histogram given by group_indx
    if (local_size >= (256 * 3))
    {
        if (tid < (256 * 3))
            partial_histogram[group_indx + tid] = 
                                       tmp_histogram[tid];
    }
    else
    {
        j = 256 * 3;
        indx = 0;
        do 
        {
            if (tid < j)
                partial_histogram[group_indx + indx + tid] = 
                                    tmp_histogram[indx + tid];

            j -= local_size;
            indx += local_size;
        } while (j > 0);
    }
}

The histogram_sum_partial_results_unorm8 kernel requires no 
changes and is as described in Listing 14.3. 
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Computing Histograms with Half-Float or Float 
Values for Each Channel
Listing 14.6 describes how to compute the histogram for an RGBA image 
with a half-float or float channel. The major difference between comput-
ing a histogram for an image with 8 bits per channel versus a half-float or 
float channel is that the number of bins for a half-float or float channel is 
257 instead of 256. This is because floating-point pixel values go from 0.0 
to 1.0 inclusive. 

Listing 14.6 A Parallel Version of the RGB Histogram for Half-Float and Float 
Channels

//******************************************************************
// This kernel takes an RGBA 32-bit or 16-bit FP-per-channel input 
// image and produces a partial histogram for R, G, and B. Each 
// work-group represents an image tile and computes the histogram for
// that tile. 
//
// partial_histogram is an array of num_groups * (257 * 3) entries. 
// Each entry is a 32-bit unsigned integer value.
//
// We store 257 R bins, followed by 257 G bins, and then the 257 B 
// bins.
//
//******************************************************************

kernel void
histogram_image_rgba_fp(image2d_t img, 
                        int num_pixels_per_workitem, 
                        global uint *histogram)
{
    int     local_size = (int)get_local_size(0) * 
                         (int)get_local_size(1);
    int     image_width = get_image_width(img);
    int     image_height = get_image_height(img);
    int     group_indx = (get_group_id(1) * get_num_groups(0)
                                  + get_group_id(0)) * 257 * 3;
    int     x = get_global_id(0);
    int     y = get_global_id(1);

    local uint  tmp_histogram[257 * 3];

    int     tid = get_local_id(1) * get_local_size(0)
                                  + get_local_id(0);
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    int     j = 257 * 3;
    int     indx = 0;

    // clear the local buffer that will generate the partial 
    // histogram
    do
    {
        if (tid < j)
            tmp_histogram[indx+tid] = 0;

        j -= local_size;
        indx += local_size;
    } while (j > 0);

    barrier(CLK_LOCAL_MEM_FENCE);

    int     i, idx;
    for (i=0, idx=x; i<num_pixels_per_workitem; 
                     i++, idx+=get_global_size(0))
    {
        if ((idx < image_width) && (y < image_height))
        {
            float4 clr = read_imagef(img, 
                              CLK_NORMALIZED_COORDS_FALSE | 
                              CLK_ADDRESS_CLAMP_TO_EDGE | 
                              CLK_FILTER_NEAREST, 
                              (float2)(idx, y));

            ushort   indx;
            indx = convert_ushort_sat(min(clr.x, 1.0f) * 256.0f);
            atomic_inc(&tmp_histogram[indx]);

            indx = convert_ushort_sat(min(clr.y, 1.0f) * 256.0f);
            atomic_inc(&tmp_histogram[257+indx]);

            indx = convert_ushort_sat(min(clr.z, 1.0f) * 256.0f);
            atomic_inc(&tmp_histogram[514+indx]);
        }
    }

    barrier(CLK_LOCAL_MEM_FENCE);

    // copy the partial histogram to appropriate location in 
    // histogram given by group_indx
    if (local_size >= (257 * 3))
    {
        if (tid < (257 * 3))
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            histogram[group_indx + tid] = tmp_histogram[tid];
    }
    else
    {
        j = 257 * 3;
        indx = 0;
        do 
        {
            if (tid < j)
                histogram[group_indx + indx + tid] = 
                                  tmp_histogram[indx + tid];

            j -= local_size;
            indx += local_size;
        } while (j > 0);
    }
}

//******************************************************************
// This kernel sums partial histogram results into a final histogram 
// result.
//
// num_groups is the number of work-groups used to compute partial 
// histograms.
//
// partial_histogram is an array of num_groups * (257 * 3) entries.
// we store 257 R bins, followed by 257 G bins, and then the 257 B 
// bins.
//
// The final summed results are returned in histogram.
//******************************************************************

kernel void 
histogram_sum_partial_results_fp(global uint *partial_histogram, 
                                 int num_groups, 
                                 global uint *histogram)
{
    int     tid = (int)get_global_id(0);
    int     group_id = (int)get_group_id(0);
    int     group_indx;
    int     n = num_groups;
    uint    tmp_histogram, tmp_histogram_first;

    int     first_workitem_not_in_first_group = 
                  ((get_local_id(0) == 0) && group_id);

    tid += group_id;
    int     tid_first = tid - 1;
    if (first_workitem_not_in_first_group)
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        tmp_histogram_first = partial_histogram[tid_first];

    tmp_histogram = partial_histogram[tid];

    group_indx = 257*3;
    while (--n > 0)
    {
        if (first_workitem_not_in_first_group)
            tmp_histogram_first += partial_histogram[tid_first];

        tmp_histogram += partial_histogram[group_indx+tid];
        group_indx += 257*3;
    }

    if (first_workitem_not_in_first_group)
        histogram[tid_first] = tmp_histogram_first;

    histogram[tid] = tmp_histogram;
}

The full source (kernels and host source code) for the histogram is pro-
vided in the Chapter_14/histogram directory of the book’s source code 
examples.
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Chapter 15

Sobel Edge Detection Filter 

In this chapter, we use an OpenCL kernel to implement the Sobel edge 
detection filter as a simple example of how kernels work with images in 
OpenCL.

What Is a Sobel Edge Detection Filter?
The Sobel edge filter is a directional edge detector filter because it com-
putes the image gradients along the x- and y-axes. These image gradients 
along the x- and y-axes (described as Gx and Gy) are computed by convolv-
ing the source image with the following convolution kernels:

− +⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥− +⎣ ⎦

1 0 1

2 0 2

1 0 1
xG

− − −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

1 2 1

0 0 0

1 2 1
yG

The gradient magnitude is computed as

G = sqrt(Gx
2 + Gy

2).

Implementing the Sobel Filter as an 
OpenCL Kernel
Listing 15.1 describes the OpenCL Sobel kernel. We use images because we 
can write a single kernel that can support different source image formats. 
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In addition, images benefit from the presence of a texture cache and dedi-
cated texture addressing hardware on GPUs.

Listing 15.1 An OpenCL Sobel Filter

//******************************************************************
//
// The operator uses two 3 x 3 kernels which are convolved with the 
// original image to compute derivatives, one for horizontal changes
// & another for vertical.
//
// Gx, the horizontal derivative, is computed using the following 
// 3 x 3 kernel:
//
//         [  -1     0    +1 ]
//  Gx =   [  -2     0    +2 ]
//         [  -1     0    +1 ]
//
// Gy, the vertical derivative, is computed using the following 
// 3 x 3 kernel:
//
//         [  -1    -2    -1 ]
//  Gy =   [   0     0     0 ]
//         [  +1    +2    +1 ]
//
//
//******************************************************************

const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE | 
                          CLK_FILTER_NEAREST;

kernel void
sobel_rgb(read_only image2d_t src, write_only image2d_t dst)
{
    int x = (int)get_global_id(0);
    int y = (int)get_global_id(1);

    if (x >= get_image_width(src) || y >= get_image_height(src))
        return;

    float4 p00 = read_imagef(src, sampler, (int2)(x - 1, y - 1));
    float4 p10 = read_imagef(src, sampler, (int2)(x,     y - 1));
    float4 p20 = read_imagef(src, sampler, (int2)(x + 1, y - 1));

    float4 p01 = read_imagef(src, sampler, (int2)(x - 1, y));
    float4 p21 = read_imagef(src, sampler, (int2)(x + 1, y));

    float4 p02 = read_imagef(src, sampler, (int2)(x - 1, y + 1));
    float4 p12 = read_imagef(src, sampler, (int2)(x,     y + 1));
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    float4 p22 = read_imagef(src, sampler, (int2)(x + 1, y + 1));

    float3 gx = -p00.xyz + p20.xyz + 
                 2.0f * (p21.xyz - p01.xyz) 
                -p02.xyz + p22.xyz;

    float3 gy = -p00.xyz - p20.xyz + 
                 2.0f * (p12.xyz - p10.xyz) + 
                 p02.xyz + p22.xyz;

    float3  g = native_sqrt(gx * gx + gy * gy);

    // we could also approximate this as g = fabs(gx) + fabs(gy)
    write_imagef(dst, (int2)(x, y), (float4)(g.x, g.y, g.z, 1.0f));
}

Figure 15.1 shows the input image passed to the Sobel filter on the left 
and the result of the OpenCL Sobel filter applied to this image on the 
right. 

Figure 15.1 OpenCL Sobel kernel: input image and output image after 
applying the Sobel filter 

The Sobel OpenCL kernel in Listing 15.1 produces an RGB image. We can 
also apply the Sobel filter and produce a grayscale image. Listing 15.2 
describes the Sobel OpenCL kernel that produces a grayscale image.
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Listing 15.2 An OpenCL Sobel Filter Producing a Grayscale Image

const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE | 
                          CLK_FILTER_NEAREST;

kernel void
sobel_grayscale(read_only image2d_t src, write_only image2d_t dst)
{
    int x = (int)get_global_id(0);
    int y = (int)get_global_id(1);

    if (x >= get_image_width(src) || y >= get_image_height(src))
        return;

    float4 p00 = read_imagef(src, sampler, (int2)(x - 1, y - 1));
    float4 p10 = read_imagef(src, sampler, (int2)(x,     y - 1));
    float4 p20 = read_imagef(src, sampler, (int2)(x + 1, y - 1));

    float4 p01 = read_imagef(src, sampler, (int2)(x - 1, y));
    float4 p21 = read_imagef(src, sampler, (int2)(x + 1, y));

    float4 p02 = read_imagef(src, sampler, (int2)(x - 1, y + 1));
    float4 p12 = read_imagef(src, sampler, (int2)(x,     y + 1));
    float4 p22 = read_imagef(src, sampler, (int2)(x + 1, y + 1));

    float3 gx = -p00.xyz + p20.xyz + 
                 2.0f * (p21.xyz - p01.xyz) 
                -p02.xyz + p22.xyz;

    float3 gy = -p00.xyz - p20.xyz + 
                 2.0f * (p12.xyz - p10.xyz) + 
                 p02.xyz + p22.xyz;

    float gs_x = 0.3333f * (gx.x + gx.y + gx.z);
    float gs_y = 0.3333f * (gy.x + gy.y + gy.z);

    float g = native_sqrt(gs_x * gs_x + gs_y * gs_y);
    write_imagef(dst, (int2)(x, y), (float4)(g, g, g, 1.0f));
}
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Chapter 16

Parallelizing Dijkstra’s Single-Source 
Shortest-Path Graph Algorithm 

By Dan Ginsburg, P. Ellen Grant, and Rudolph Pienaar

FreeSurfer is a neuroimaging tool developed by the Martinos Center for 
Biomedical Imaging at Massachusetts General Hospital. The tool is capable 
of creating triangular-mesh structural reconstructions of the cortical 
surface of the brain from MRI images. As part of a research study into the 
curvature of the cortical surface of the human brain, a set of curvature 
measures was stored at each edge of this mesh.1 In order to assess the 
quality of the curvature measures and understand the underlying curva-
ture of the brain surface, it was necessary to search along the mesh to find 
the shortest curvature values from various starting points on the brain 
to all other vertices along the rest of the surface. The performance of the 
existing Dijkstra’s algorithm on the CPU was proving too slow and mak-
ing it difficult to study this curvature across many subjects and curvature 
measurement types. As a consequence, we created an OpenCL-based par-
allel implementation of Dijkstra’s algorithm.

This chapter presents this implementation of Dijkstra’s algorithm using 
OpenCL, which can leverage any of the available compute hardware on 
the host based on the algorithm in “Accelerating Large Graph Algorithms 
on the GPU Using CUDA” by Pawan Harish and P. J. Narayanan.2 It covers 
how to map the graph into data structures that can be easily accessed by 
parallel hardware and describes the implementation of the kernels that 
compute Dijkstra’s algorithm in parallel. Finally, it covers the details of 

1 R. Pienaar, B. Fischl, V. Caviness, N. Makris, and P. E. Grant, “Methodology for 
Analyzing Curvature in the Developing Brain from Preterm to Adult,” Interna-
tional Journal of Imaging Systems and Technology 18, no. 1 (June 1, 2008): 42–68. 
PMID: 19936261. PMCID: PMC2779548.

2 Pawan Harish and P. J. Narayanan, “Accelerating Large Graph Algorithms on 
the GPU Using CUDA,” IEEE High Performance Computing (2007).
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how to partition the workload to run on multiple compute devices. Our 
implementation of Dijkstra’s algorithm is provided in the Chapter_16/
Dijkstra directory of the book’s source code examples.

Graph Data Structures 
The first step in getting Dijkstra’s algorithm onto the GPU is to create a 
graph data structure that is efficiently accessible by the GPU. The graph is 
composed of vertices and edges that connect vertices together. Each edge 
has a weight value associated with it that typically measures some cost in 
traveling across that edge. In our case, the edge weights were determined 
by the curvature function as we were interested in minimizing curvature 
values in traveling across the mesh. In a mapping application, the edge 
weights would usually be the physical distance between nodes. The data 
structures used in our implementation are the same as those described 
in “Accelerating Large Graph Algorithms on the GPU Using CUDA.” The 
graph is represented as a collection of arrays:

• int *vertexArray: Each entry contains an index into the first ele-
ment of edgeArray to be used as an edge for that vertex. The edges 
are stored sequentially in the edge array, and the number of edges for 
vertexArray[N] is the sequence of vertices up to the index stored in 
vertexArray[N+1] (or the size of edgeArray if N is the last element 
of vertexArray).

• int *edgeArray: Each element is an index to the vertex that is con-
nected by edge to the current vertex. Note that edges are assumed to 
be one-directional from the source to the destination vertex. For edges 
that are bidirectional, an entry must be placed in the table for each 
direction.

• int *weightArray: For each edge in edgeArray, this array stores 
the weight value of the edge. There is one weight value for each edge. 

These three arrays form the totality of graph data that an application 
needs to set up in order to run Dijkstra’s algorithm using our implementa-
tion. The implementation itself requires three more arrays that are used 
by the kernels during the computation:

• int *maskArray: This array stores a value of 0 or 1 for each vertex, 
which determines whether the algorithm needs to continue process-
ing for that node. The reason integer type was chosen over a byte rep-
resentation is that certain implementations of OpenCL do not support 
accessing byte-aligned arrays.
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• float *updatingCostArray: This is a buffer used during the algo-
rithm to store the current cost computed to the vertex.

• float *costArray: This stores the final computed minimum cost 
for each vertex.

The only other piece of information the algorithm needs is which source 
vertices to run the algorithm for and a host-allocated array to store the 
results. Each execution of Dijkstra will output an array the size of the 
number of vertices in the graph with the total cost of the shortest distance 
from the source vertex to each vertex in the graph. An example of the C 
structure and function used to execute Dijkstra’s algorithm using OpenCL 
on a single GPU is provided in Listing 16.1.

Listing 16.1 Data Structure and Interface for Dijkstra’s Algorithm 

typedef struct
{
    // (V) This contains a pointer to the edge list for each vertex
    int *vertexArray;

    // Vertex count
    int vertexCount;

    // (E) This contains pointers to the vertices that each edge 
    // is attached to
    int *edgeArray;

    // Edge count
    int edgeCount;

    // (W) Weight array
    float *weightArray;
} GraphData;

/// Run Dijkstra's shortest path on the GraphData provided to this 
/// function. This function will compute the shortest-path distance 
/// from sourceVertices[n] -> endVertices[n] and store the cost in 
/// outResultCosts[n]. The number of results it will compute is 
/// given by numResults.
///
/// This function will run the algorithm on a single GPU.
///
/// \param gpuContext Current GPU context, must be created by 
///                   caller
/// \param deviceId The device ID on which to run the kernel. 
///                 This can be determined externally by the 
///                 caller or the multi-GPU version will 
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///                 automatically split the work across 
///                 devices
/// \param graph Structure containing the vertex, edge, and 
///              weight array for the input graph
/// \param startVertices Indices into the vertex array from 
///                      which to start the search
/// \param outResultsCosts A pre-allocated array where the 
///                        results for each shortest-path 
///                        search will be written.  This 
///                        must be sized numResults * 
///                        graph->numVertices.
/// \param numResults Should be the size of all three passed 
///                   in arrays
void runDijkstra( cl_context gpuContext, cl_device_id deviceId, 
                  GraphData* graph,
                  int *sourceVertices, float *outResultCosts, 
                  int numResults );

Kernels
The high-level loop that executes the algorithm using OpenCL is provided 
in pseudo code in Listing 16.2.

Listing 16.2 Pseudo Code for High-Level Loop That Executes Dijkstra’s Algorithm

foreach sourceVertex to search from

    // Initialize all of maskArray[] to 0
    // Initialize all of costArray[] to MAX
    // Initialize all of updatingCostArray[] to MAX
    // Initialize maskArray[sourceVertex] to 1
    // Initialize costArray[sourceVertex], 
    //  updatingCostArray[sourceVertex] to 0
    initializeMaskAndCostArraysKernel()

    // While any element of maskArray[] != 0
    while ( ! maskArrayEmpty() )
        // Enqueue phase 1 of the Dijkstra kernel for all vertices
        enqueueKernelPhase1()

        // Enqueue phase 2 of the Dijkstra kernel for all vertices
        enqueueKernelPhase2()

        // Read the mask array back from the device
        readMaskArrayFromDeviceToHost()
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        // Read final cost array for sourceVertex to the device and 
        // store it on the host
        readCostArrayFromDeviceToHost()

The first kernel that is queued to OpenCL for each source vertex is sim-
ply responsible for initialization of buffers. This was done using a kernel 
rather than on the CPU to reduce the amount of data transferred between 
the CPU and GPU. The initialization kernel is provided in Listing 16.3 and 
is executed during the initializeMaskAndCostArraysKernel() from 
the pseudo code in Listing 16.2.

Listing 16.3 Kernel to Initialize Buffers before Each Run of Dijkstra’s Algorithm

__kernel void initializeBuffers( __global int *maskArray, __global 
                              float *costArray, 
                              __global float *updatingCostArray,
                              int sourceVertex, int vertexCount )
{
    int tid = get_global_id(0);

    if (sourceVertex == tid)
    {
        maskArray[tid] = 1;
        costArray[tid] = 0.0;
        updatingCostArray[tid] = 0.0;
    }
    else
    {
        maskArray[tid] = 0;
        costArray[tid] = FLT_MAX;
        updatingCostArray[tid] = FLT_MAX;
    }
}

The algorithm itself is broken into two phases. This is necessary because 
there is no synchronization possible outside of local work-groups in 
OpenCL, and this would be required to execute the kernel algorithm 
in a single phase. The first phase of the algorithm visits all vertices that 
have been marked in the maskArray and determines the cost to each 
neighbor. If the current cost plus the new edge weight is less than what 
is currently stored in updatingCostArray, then that new cost is stored 
for the vertex. The second phase of the algorithm checks to see if a 
smaller cost has been found for each vertex and, if so, marks it as need-
ing visitation and updates the costArray. At the end of kernel phase 2, 
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the updatingCostArray is synchronized with the costArray. The two 
phases of the algorithm are provided in Listing 16.4. 

Listing 16.4 Two Kernel Phases That Compute Dijkstra’s Algorithm

__kernel  void DijkstraKernel1(__global int *vertexArray, 
                               __global int *edgeArray, 
                               __global float *weightArray,
                               __global int *maskArray, 
                               __global float *costArray, 
                               __global float *updatingCostArray,
                               int vertexCount, int edgeCount )
{
    int tid = get_global_id(0);

    if ( maskArray[tid] != 0 )
    {
        maskArray[tid] = 0;

        int edgeStart = vertexArray[tid];
        int edgeEnd;
        if (tid + 1 < (vertexCount))
        {
            edgeEnd = vertexArray[tid + 1];
        }
        else
        {
            edgeEnd = edgeCount;
        }

        for(int edge = edgeStart; edge < edgeEnd; edge++)
        {
            int nid = edgeArray[edge];

            if (updatingCostArray[nid] > (costArray[tid] + 
                weightArray[edge]))
            {
                  updatingCostArray[nid] = (costArray[tid] + 
                                             weightArray[edge]);
            }
        }
    }
}

__kernel  void DijkstraKernel2(__global int *vertexArray, 
                               __global int *edgeArray, 
                               __global float *weightArray,
                               __global int *maskArray, 
                               __global float *costArray, 
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                               __global float *updatingCostArray,
                               int vertexCount)
{
    // access thread id
    int tid = get_global_id(0);

    if (costArray[tid] > updatingCostArray[tid])
    {
        costArray[tid] = updatingCostArray[tid];
        maskArray[tid] = 1;
    }

    updatingCostArray[tid] = costArray[tid];
}

Leveraging Multiple Compute Devices
In order to leverage multiple compute devices, the workload needs to 
be partitioned. The approach taken in our implementation is to parti-
tion the number of searches across the available compute hardware. The 
application detects the number of GPU and CPU devices and splits the 
workload across the devices. The way the vertices are allocated to threads 
is by dynamically determining a work size based on the result of querying 
OpenCL for the value of GL_DEVICE_MAX_WORKGROUP_SIZE.

As can be seen in Listing 16.4, each of the kernels is written to process 
one vertex at a time. The implementation sets the OpenCL local work 
size to the value of querying GL_DEVICE_MAX_WORKGROUP_SIZE for the 
device. The global work-group size is equal to the vertex count rounded 
up to the closest maximum work-group size. The maskArray, costArray,
and updatingCostArray are padded to this size so that the kernels 
do not need to check whether thread IDs are outside the bounds of the 
array. This workload portioning essentially means that each thread on 
the device will process a single vertex. In the case of a CPU device, the 
OpenCL implementation will multithread the implementation across the 
available cores.

In the case of mixing multiple devices, each device is allocated its own 
CPU thread for communicating with OpenCL. The reason this is done in 
multiple threads rather than a single thread is that the algorithm requires 
reads back from host to device on each iteration of the inner loop of the 
algorithm (Listing 16.2). In general, a more favorable approach would be 
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to queue all of the kernel executions from a single thread to all devices. 
One additional consideration is that typically there is a performance dif-
ference between the ability of the CPU and GPU to process kernels. As 
such, rather than choosing a fixed allocation of searches to each device, a 
future extension would be to examine OpenCL performance-related que-
ries (or run a dynamic benchmark at start-up) and allocate the searches 
across the devices based on some performance characteristics. This would 
likely yield better performance as the current implementation must wait 
until the slowest device finishes execution.

The implementation of Dijkstra’s algorithm was tested on an x86_64 
Linux PC with an Intel Core i7 960 CPU @ 3.20GHz with an NVIDIA 
GTX 295 GPU running the NVIDIA 260.19.21 driver. In summary, the 
performance speedup using the GPU was dependent on the size of the 
graph (number of vertices) and the degree of the graph (number of edges 
per vertex). As the number of vertices in the graph increases, the GPU 
tends to outperform the CPU by a wider margin. In the best case mea-
sured, the dual-GPU implementation was 11.1 times faster than the CPU 
implementation.

The data in Table 16.1 was collected from randomly generated graphs con-
taining a degree (edges per vertex) of 5. These graphs were run through 
the OpenCL-based GPU and multi-GPU implementations of Dijkstra’s 
algorithm selecting 100 starting vertices. Additionally, the data sets were 
run through a single-threaded CPU reference implementation of Dijkstra’s 
algorithm. The timings for each run are provided in seconds, and the data 
is summarized in Figures 16.1 and 16.2.

Table 16.1 Comparison of Data at Vertex Degree 5

Vertices Degree Searches
GTX295—
1GPU (s)

GTX295—
2GPU (s)

Intel Core i7 960 
@ 3.2 GHz (s)

100000 5 100 1.051 1.008 5.429

200000 5 100 1.776 1.53 11.207

300000 5 100 2.494 2.064 18.292

400000 5 100 3.309 2.805 24.481

500000 5 100 4.064 3.428 32.013

600000 5 100 4.894 4.061 40.645

700000 5 100 5.667 4.698 48.131
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Vertices Degree Searches
GTX295—
1GPU (s)

GTX295—
2GPU (s)

Intel Core i7 960 
@ 3.2 GHz (s)

800000 5 100 6.501 5.512 56.806

900000 5 100 7.291 6.332 66.543

1000000 5 100 8.084 6.94 76.938

Table 16.1 Comparison of Data at Vertex Degree 5 (Continued )
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Figure 16.1 Summary of data in Table 16.1: NV GTX 295 (1 GPU, 2 GPU) and 
Intel Core i7 performance

The data in Table 16.2 was collected using the same test setup as for Table 
16.1; the only difference was that the degree of the graph was set at 10 
instead of 5. Increasing the degree of the graph reduced the advantage of 
the GPU implementation over the CPU (from 9.18 times on average down 
to 6.89 times), but the GPU version still has a significant advantage. The 
results from Table 16.2 are shown in Figure 16.3.
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Table 16.2 Comparison of Data at Vertex Degree 10

Vertices Degree Searches
GTX295—
1GPU (s)

GTX295—
2GPU (s)

Intel Core i7 960 
@ 3.2 GHz (s)

100000 10 100 1.728 1.527 7.679

200000 10 100 3.259 2.721 17.739

300000 10 100 4.972 4.229 27.41

400000 10 100 6.695 5.694 38.012

500000 10 100 8.527 6.936 48.466

600000 10 100 10.393 8.62 63.32

700000 10 100 12.224 10.474 75.555

800000 10 100 14.156 12.934 88.17

900000 10 100 15.929 13.15 102.502

1000000 10 100 17.85 14.99 120.682
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Figure 16.2  Using one GPU versus two GPUs: NV GTX 295 (1 GPU, 2 GPU) 
and Intel Core i7 performance
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As can be seen from the collected performance data, regardless of the 
number of edges, the performance advantage the GPU implementation 
has over the CPU in terms of absolute seconds grows with the size of 
the graph. The setup costs associated with transferring data to the GPU 
and submitting/waiting for the kernels are better masked the more data 
is present. Some amount of GPU-to-CPU communication is necessary 
because the algorithm is by nature dynamic and the runtime length and 
iterations are not known before execution of the algorithm. 

The only platform available to us to test the hybrid CPU-GPU implemen-
tation of Dijkstra was a MacPro with dual Quad-Core Intel Xeon CPUs 
@ 2.26GHz and dual NVIDIA GeForce GT 120 GPUs (note that these are 
rather low-end GPUs with only four compute units). The testing compared 
running on a single core of the CPU, running on all eight cores of the 
CPU using OpenCL, running on both GPUs, and combining both GPUs 
with the use of all eight CPU cores. 
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Figure 16.3  Summary of data in Table 16.2: NV GTX 295 (1 GPU, 2 GPU) and 
Intel Core i7 performance—10 edges per vertex
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The performance results are detailed in Table 16.3 and Figure 16.4. In all 
tests, the best performance was attained by running the multicore CPU-
only version using OpenCL. The next-best performance was combining 
the Dual NV GT 120 GPUs and the multicore CPU. It was initally rather 
surprising that the dual GPU+CPU implementation was bested by the 
CPU-only version. However, this was likely because the GPUs have only 
four compute units and the algorithm has a lot of CPU/GPU traffic. As 
such, the cost of switching threads and CPU/GPU communication offset 
the gains of running purely on the CPU. 

Beyond that, the results were as expected: the reference single-core CPU 
performance fared the poorest and the Dual NV GT 120 GPU lagged 
behind combining the Dual NV GT 120 GPU + multicore CPU. Because 
Dijkstra’s algorithm requires a significant number of calls to the OpenCL 
runtime and high traffic between the CPU and GPU, the performance 
gain was not as significant as one would expect from a different algo-
rithm that requires less overhead between the host and device. However, 
the approach taken in the sample code should provide a useful example 
for how in general one can combine multiple GPUs and the CPU using 
OpenCL. 

Table 16.3 Comparison of Dual GPU, Dual GPU + Multicore CPU, Multicore 
CPU, and CPU at Vertex Degree 10

Vertices Degree Searches
Dual NV 
GT 120

Dual NV GT 
120 + Xeon 
(8 Cores)

Xeon @ 
2.26GHz 
(8 Cores)

Xeon @ 
2.26GHz 
(1 Core)

100000 10 100 9.21 4.042 2.507 12.157

200000 10 100 19.429 8.33 4.754 26.679

300000 10 100 31.413 12.245 7.623 41.226

400000 10 100 44.852 17.367 9.914 58.379

500000 10 100 56.664 23.18 12.606 76.805

600000 10 100 68.141 28.089 15.242 100.512

700000 10 100 81.031 34.819 17.905 128.311

800000 10 100 92.611 36.826 20.43 157.329

900000 10 100 102.851 42.905 22.847 190.804

1000000 10 100 115.842 48.379 26.634 226.0319
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Figure 16.4  Summary of data in Table 16.3: comparison of dual GPU, dual 
GPU + multicore CPU, multicore CPU, and CPU at vertex degree 1
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Chapter 17

Cloth Simulation in the Bullet Physics SDK

By Lee Howes and Benedict R. Gaster

The Bullet Physics SDK is a widely used, open-source, collision detection, 
rigid-body and soft-body dynamics library available for free, for a wide 
range of platforms, under the zlib License. It supports discrete and con-
tinuous collision detection on concave and convex meshes as well as basic 
primitives. Bullet has a fast and stable rigid-body dynamics constraint 
solver, vehicle dynamics, character controller, and a range of constraint 
types. More interestingly for our purposes, Bullet includes soft-body 
dynamics supporting cloth, rope, and deformable volumes with two-way 
interaction with rigid bodies.

In this chapter, we describe an implementation of some of the basic fea-
tures of soft-body dynamics into an OpenCL accelerated framework. This 
OpenCL code is released in the 2.77 version of the Bullet SDK and is avail-
able for download from http://bulletphysics.org. Figure 17.1 shows flags 
simulated using the Bullet SDK’s cloth implementation in AMD’s Samari 
demo.1

An Introduction to Cloth Simulation
There are many ways of simulating soft bodies. Finite element methods 
offer a physically accurate approach by breaking down the soft body into 
elements, often tetrahedra, over which partial differential equations are 
solved for the stresses in each element. Shape matching applies a penalty 
to parts of a model based on their distance from some optimal position, 
with the effect of driving the object toward its original shape. Mass/spring 
models construct the soft body from a set of masses connected by weight-
less springs that apply forces to the masses based on their compression or 
extension from rest length; that is, they obey a variant of Hooke’s law.

1 Figure 17.1 appears in full color in the online version of this chapter. 

http://bulletphysics.org
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The simulation method used in Bullet is similar to a mass/spring model 
(see Figures 17.2 and 17.3), but rather than applying forces to the masses, 
it applies position and velocity corrections based on the work of Thomas 
Jakobsen, presented at GDC 2001 in a talk entitled “Advanced Character 
Physics.”

Figure 17.1 AMD’s Samari demo, courtesy of Jason Yang

Connecting link

Mass Mass

Figure 17.2 Masses and connecting links, similar to a 
mass/spring model for soft bodies

The input to the simulation is a mesh representing the body to simulate. 
In general, this is a clothlike structure: two-dimensional in concept, 
mapped to three-dimensional space. From this mesh we create simulation 
masses at each vertex and simulation links for the connecting mesh links. 
The initial length of the links based on the positions of vertices in the 
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mesh gives the rest length. The structure offered by the rest length defines 
the shape that, independent of external forces such as gravity, the cloth 
will maintain. These links have a relatively high strength for most cloth 
as such material does not stretch significantly under the application of 
day-to-day forces.

Triangle mesh Simulation structure

Link at rest lengthMass

Figure 17.3 Creating a simulation structure from a cloth mesh

The astute reader may notice that while the mesh links alone may be 
enough to maintain a rigid structure for a three-dimensional body if 
constructed from a tetrahedral mesh, for a surface there is insufficient 
structure. Without any form of angle constraint on a vertex there is no 
resistance to folding over a vertex: two vertices linked from a central 
vertex are free to move relative to each other as long as their individual 
distances from the central vertex do not change. This motivates the need 
for an additional type of link in the structure that is usually given a lower 
resistance to displacement from its rest length (see Figure 17.4).

An additional link spanning a central vertex is necessary to maintain the 
relationship between nodes that are not directly connected. This allows us 
to maintain three-dimensional structure in the cloth and resist bending.

At this core of the simulation these types of links are treated no differ-
ently; however, from the point of view of creation of the input we cannot 
create the bend links directly from the mesh. Instead we can infer a link 
across every triangle boundary and add this to the simulation data struc-
ture. The result is that our original simulation mesh becomes something 
like what is shown in Figure 17.5.

In two dimensions repeatedly solving this mesh gives us clothlike behav-
ior, controlled by strengths assigned to links and masses assigned to 
nodes. In three dimensions, and without the need for bend links, more 
varied soft-body structures can be constructed.
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Basic link structure

Motion resisted by structure

Motion not resisted by structure

No change in length

Original rest length

Extension of link

Additional resistance needed

Figure 17.4 Cloth link structure

Figure 17.5 Cloth mesh with both structural links that stop stretching and 
bend links that resist folding of the material
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Simulating the Soft Body 
Simulating the mesh involves performing an iterative relaxation solver 
over each of the links. Each time step performs an iterative solve first of 
velocities of nodes in the mesh, obtaining velocity corrections for each 
node. It then updates estimated positions from the velocities and itera-
tively computes position corrections. In both the velocity and position 
updates the solver computes new values for the particles at either end of 
a given link based on the masses of the particles, the strength of the link, 
and its extension or compression.

We can picture this solver’s application to simulation in a simple one-
dimensional ropelike structure as shown in Figure 17.6(a). In the figure we 
see a series of masses connected by springlike links. If we apply a force such 
as gravity, a motion resulting from some sort of collision, or some user input 
to the rope, we may move one of the vertices from rest as in Figure 17.6(b).

As we move to Figure 17.6(c), we apply the first iteration of the solver. 
This applies the motion resulting from the distortion of the mesh seen in 
the extended links in Figure 17.6(b) such that the neighboring vertices’ 

Original rest length

(a)

Applied motion has
moved vertex

(b)
Links are extended

(c) Neighboring
vertices

update positions

Position correction
propagates

(d)

Link extension
propagates

Figure 17.6 Solving the mesh of a rope. Note how the motion applied between 
(a) and (b) propagates during solver iterations (c) and (d) until, 
eventually, the entire rope has been affected. 
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positions are updated. In Figure 17.6(d) a similar process propagates the 
motion through to another vertex. We see this distortion propagate 
through a complex mesh in complicated patterns as the motion of one 
vertex affects multiple other vertices; eventually, if we iterate for long 
enough, we should reach a stable state.

Roughly the algorithm follows the following structure where k is a con-
stant link stretch factor and linkLengthRatio is the reciprocal of the 
square of the link length times the sum of the masses on the link:

for each time step
  Prepare links
  for each velocity iteration
    for each link in mesh 
      (velocity0, inverseMass0) = linkStart
      (velocity1, inverseMass1) = linkEnd
      float3 velocityDifference = velocity1 – velocity0;
      float velAlongLink = dot( linkVector, velocityDifference );
      float correction = -velAlongLink*linkLengthRatio*k;
      velocity0 -= linkVector*k*inverseMass0;
      velocity1 += linkVector*k*inverseMass1;

  Estimate position corrections from velocities

  for each position iteration
    for each link in mesh 
      (position0, inverseMass0) = linkStart
      (position1, inverseMass1) = linkEnd
      float3 vectorLength = position1 - position0;
      float length  = dot(vectorLength, vectorLength);
      float k    = ( (restLengthSquared - len) /
                     (massLSC*(restLengthSquared+len)))*kst;
      position0 -= vectorLength * (k*inverseMass0);
      position1 += vectorLength * (k*inverseMass1);

The idea of these repeated iterations is to converge on a stable solution of 
the system of equations comprising the mesh structure. If we were aiming 
for a stable solution, we would iterate both the velocity and the position 
solver until the system converged completely.

For the purposes of real-time physics simulation, however, two other fac-
tors come into play:

• Performance predictability is more stable than achieving a fully stable 
situation.

• The time-step iteration loop also affects convergence. To an extent the 
convergence carries over from one time step to the next if the change 
created at a given time step is not too significant.
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To this end a simulation used in practice will usually set a fixed number 
of iterations, chosen both to achieve a reasonable level of convergence and 
to support the required frame rate.

Executing the Simulation on the CPU
As is often the case, performing the simulation on the CPU is a relatively 
simple process. A high degree of code structure can be maintained to 
ensure good readability and flexibility. For each individual soft body we 
can run the solver code across all the links in the soft body.

The following code represents the position solver for a single soft-body 
object. m_c0 and m_c1 are per-link constants that are precomputed. The 
velocity solver code is similar; we shall ignore that and the simple per-
vertex update loops for the rest of this discussion.

void btSoftBody::PSolve_Links(
   btSoftBody* psb, 
   btScalar kst, 
   btScalar ti)
{
   for(int i=0, ni = psb->m_links.size(); i < ni; ++i)
   {
      Link &l=psb->m_links[i];
      if(l.m_c0>0) {
         Node &a = *l.m_normal[0];
         Node &b = *l.m_normal [1];
         const btVector3 del = b.m_position - a.m_position;
         const btScalar len = del.length2();
         const btScalar k = 
           ((l.m_c1 - len)/(l.m_c0 * (l.m_c1 + len)))*
                                         simulationConstant;
         a.m_x -= del*(k*a.m_inverseMass);
         b.m_x += del*(k*b.m_inverseMass);
      }
   }
}

For each soft body we can tweak the set of solver stages we wish to exe-
cute, the number of stages, and so on. For example, we might want to 
execute five velocity iterations and ten position iterations for a very large 
soft body where propagation of forces through the mesh would be slow.

Note that this loop executes over data in place. By updating in place 
the result of computing the effect on a vertex of a single link is used to 
compute the effect of a second link on both that same vertex and its 
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connected neighbor. This approach is often known as Gauss-Seidel itera-
tion. This has important behavioral characteristics that apply when 
we look at the GPU implementation of the solver. We can see how this 
behaves in Figure 17.7.

One aspect that should be clear from this loop, and indeed from the 
Gauss-Seidel iteration it uses, is that it is not trivially parallelizable by 
a compiler. There is an inter-iteration dependence, and as such a trivial 
parallelization of this loop will lead to subtle differences in behavior, and 
possibly incorrect results.

Push

(a) (b) (c)

Pull

Figure 17.7 The stages of Gauss-Seidel iteration on a set of soft-body links and 
vertices. In (a) we see the mesh at the start of the solver iteration. 
In (b) we apply the effects of the first link on its vertices. In (c) we 
apply those of another link, noting that we work from the 
positions computed in (b).

Changes Necessary for Basic GPU Execution
The first thing to note is that the large amount of parallelism in the 
OpenCL programming model means that unless soft bodies are very large, 
solving soft bodies individually is inefficient because each soft body has 
too little parallelism during an iteration of any of its solvers to fully use 
the device. As a result, the first thing we want to do is solve multiple soft 
bodies simultaneously, allowing their combined computation needs to 
fill the entire device. In the Bullet solver this means that soft-body data is 
moved into single large arrays, indexed by values in the individual soft-
body objects. These entire arrays are moved onto the GPU, operated on, 
and if necessary moved back to the host memory.

Unfortunately, performing the original CPU calculation in parallel over 
all links in all soft bodies in this fashion produces incorrect results. Look-
ing back at Figure 17.5, we can see that as each link is solved, the positions 
or velocities of the vertices at either end are updated. If we perform the 
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computations in parallel, they attempt to produce a result along the lines 
of what is shown in Figure 17.8, but applied to every mass rather than 
only the one shown.

Push

(a) (b)

Push

Figure 17.8 The same mesh as in Figure 17.7 is shown in (a). In (b) the update 
shown in Figure 17.7(c) has occurred as well as a second update 
represented by the dark mass and dotted lines.

We can solve this in various ways. Many simulations choose to use a 
Jacobi-style loop, which would run for each vertex and update that ver-
tex based on the position updates the surrounding links would apply, or, 
more commonly in such simulations, based on the sum of forces applied 
by the surrounding links. This type of simulation is easier to implement 
because it can double-buffer the computation, but the cost is that propaga-
tion of updates through the soft body tends to be slower, and in a posi-
tion- and velocity-based simulation such as that used here, momentum 
is not conserved; that is, the updates introduce error. This error can be 
reduced through damping but at a cost for the simulation.

The alternative approach that we use here is to perform a graph coloring 
of the mesh. That is, we choose a batch number for each link such that 
any two links in the mesh that share a vertex will not be in the same 
batch. This requires a large number of batches that will be based on the 
complexity of the interconnections in the mesh; indeed it will be equal 
to the valence of maximum note in the mesh. In the mesh seen in Figure 
17.5 that would be 5. The vertex in the center of each row is connected 
to all five other vertices. In the mesh seen in Figure 17.9 we can see an 
example of a minimum coloring that requires 12 colors.2 For a more com-
plicated mesh this would be a substantially higher number.

2 The colors are shown as different shades of gray in the printed version and 
appear in full color in the online version of this chapter.
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To implement this on the GPU we first sort the link data into batches. The 
simplest approach is the following:

for each link:
  color = 0

Here, color is used by any other link connected to either vertex con-
nected to this link:

  color = next color
  linkBatch = color

This batching operation need only be performed once unless the mesh 
changes. In a simple implementation the mesh need not change, and 
adapting for tearing is more efficiently dealt with by disabling links than 
by rebatching.

To execute we iterate over the batches, performing one parallel OpenCL 
dispatch for each, knowing that each batch is entirely parallel. Where 

Figure 17.9 A mesh with structural links taken from the input triangle mesh 
and bend links created across triangle boundaries with one 
possible coloring into independent batches
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before we called solveConstraints and then inside that PSolve_Links
on a single soft body, now we call solveConstraints over an entire set 
of soft bodies with the following loop:

for(int iteration = 0; 
    iteration < m_numberOfPositionIterations; 
    ++iteration ) {
   for( int i = 0; 
        i < m_linkData.m_batchStartLengths.size(); 
        ++i ) {
      int startLink = m_linkData.m_batchStartLengths[i].start;
      int numLinks = m_linkData.m_batchStartLengths[i].length;

      solveLinksForPosition( startLink, numLinks, kst, ti );
   }
}

Note that solveLinksForPosition is being called to act on a range of 
links within a given precomputed batch. This set of batches is computed 
using the algorithm discussed previously. The kernel is called using the 
following code that sets up the OpenCL launch and executes:

void btOpenCLSoftBodySolver::solveLinksForPosition( 
   int startLink, 
   int numLinks, 
   float kst, 
   float ti)
{
   cl_int ciErrNum;
   ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      0, 
      sizeof(int), 
      &startLink);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      1, 
      sizeof(int), 
      &numLinks);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      2, 
      sizeof(float), 
      &kst);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      3, 
      sizeof(float), 
      &ti);
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  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      4, 
      sizeof(cl_mem), 
      &m_linkData.m_clLinks.m_buffer);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      5,
      sizeof(cl_mem),
      &m_linkData.m_clLinksMassLSC.m_buffer);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      6, 
      sizeof(cl_mem),
      &m_linkData.m_clLinksRestLengthSquared.m_buffer);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      7, 
      sizeof(cl_mem), 
      &m_vertexData.m_clVertexInverseMass.m_buffer);
  ciErrNum = clSetKernelArg(
      solvePositionsFromLinksKernel,
      8, 
      sizeof(cl_mem), 
      &m_vertexData.m_clVertexPosition.m_buffer);

  size_t  numWorkItems = workGroupSize*
     ((numLinks + (workGroupSize-1)) / workGroupSize);
  ciErrNum = clEnqueueNDRangeKernel(
      m_cqCommandQue,
      solvePositionsFromLinksKernel,
      1,
      NULL, 
      &numWorkItems,
      &workGroupSize,0,0,0);
  if( ciErrNum!= CL_SUCCESS ) {
    btAssert( 0 &&
    "enqueueNDRangeKernel(solvePositionsFromLinksKernel)");
  }
} // solveLinksForPosition

The GPU executes an OpenCL kernel compiled from the following code:

__kernel void 
SolvePositionsFromLinksKernel(
   const int startLink,
   const int numLinks,
   const float kst,
   const float ti,
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   __global int2 * g_linksVertexIndices,
   __global float * g_linksMassLSC,
   __global float * g_linksRestLengthSquared,
   __global float * g_verticesInverseMass,
   __global float4 * g_vertexPositions)
{
   int linkID = get_global_id(0) + startLink;
   if( get_global_id(0) < numLinks ) {
      float massLSC = g_linksMassLSC[linkID];
      float restLengthSquared = g_linksRestLengthSquared[linkID];

      if( massLSC > 0.0f ) {
         int2 nodeIndices = g_linksVertexIndices[linkID];
         int node0 = nodeIndices.x;
         int node1 = nodeIndices.y;

         float3 position0 = g_vertexPositions[node0].xyz;
         float3 position1 = g_vertexPositions[node1].xyz;

         float inverseMass0 = g_verticesInverseMass[node0];
         float inverseMass1 = g_verticesInverseMass[node1]; 

         float3 del = position1 - position0;
         float len  = dot(del, del);
         float k    = ((restLengthSquared -
                        len)/(massLSC*(restLengthSquared+len)))*kst;
         position0 = position0 - del*(k*inverseMass0);
         position1 = position1 + del*(k*inverseMass1);

         g_vertexPositions[node0] = (float4)(position0, 0.f);
         g_vertexPositions[node1] = (float4)(position1, 0.f);

      }
   }
}

In this version of the code, for each batch we are enqueuing an OpenCL 
kernel that will have to wait for completion of the previously enqueued 
instance before it can execute. Each kernel dispatch takes some amount 
of time to prepare for execution: the GPU must be set up, register values 
passed, bus transactions enacted, and so on. We can infer from this that 
as we increase the number of kernel dispatches, we increase the amount 
of time it takes to execute not only in GPU time but also in CPU time to 
manage that GPU execution. 

In addition to CPU overhead, as we increase the number of dispatches 
without increasing the amount of work, it should be clear that the work 
per dispatch becomes smaller. There will always be a point at which the 
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work per dispatch is low enough to not fully occupy the GPU, or at least 
not occupy the GPU for long enough to overlap with any of the CPU over-
head that could be overlapped.

Given that small enough workloads and large enough numbers of dis-
patches increase CPU overhead, it is possible for an algorithm to eventu-
ally become dispatch-bound. The next section discusses one approach 
that we can use to deal with this. In addition, we take into account the 
SIMD nature of GPU hardware to increase efficiency further.

Two-Layered Batching
The first thing to look at is why we need so many batches. In Figure 17.9 
we saw a coloring of the graph that shows that the number required was 
at least equal to the highest vertex valence in the graph. Clearly in hav-
ing connections to neighboring vertices and to distant vertices with the 
addition of bend links (the structure of which depends on the required 
behavior of the body) the number of links connecting a vertex with a set 
of other vertices will be relatively high.

The question that arises from this is “How can we reduce the maximum 
valence of the mesh?” Obviously we cannot simply change the mesh 
structure; we want the same behavior as the artist expects from adding 
the links to the mesh. However, what we can manage is changing the 
interpretation of the mesh. 

If, instead of coloring the graph by links where multiple links touch a 
single vertex and hence depend on each other, we color the graph in 
larger chunks, we reduce the number of colors we need. The number of 
neighboring chunks, and hence colors, touched by the links emanating 
from a given chunk will be reduced thanks to the lower density at which 
the coloring is applied. We can see an example of this chunking in Figure 
17.10.3 Thanks to the coloring of the chunks themselves, we know that 
any two chunks of a given color and hence in a given batch are indepen-
dent. The result of this is that each chunk within a given batch can be 
executed by a different OpenCL work-group with no further intergroup 
synchronization requirements.

3 Again the colors are shown as different shades of gray in the printed version 
and appear in full color in the online version of this chapter.
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The benefit of reducing the number of colors is that we reduce the num-
ber of levels of global synchronization required. Each global synchroniza-
tion in OpenCL requires a kernel dispatch and completion event; reducing 
the total number of dispatches significantly reduces the overhead of 
simulation.

These chunks of the graph are grown out from a single vertex in a 
breadth-first fashion. From a starting vertex we add all of the connected 
links and enqueue all of the vertices at the far ends of those links. From 
those vertices we perform the same addition of all connected links not 
already added and add their vertices to the queue. Eventually we build a 

Figure 17.10 Dividing the mesh into larger chunks and applying a coloring to 
those. Note that fewer colors are needed than in the direct link 
coloring approach. This pattern can repeat infinitely with the 
same four colors.
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chunk to our desired size. The size can be parameterized; 256 has been a 
good number in experiments.

Of course, while we have independent chunks within a batch, links 
within a chunk are still interdependent as in the naïve coloring. Within 
any given batch, represented by a single color of the graph, we perform a 
second level of coloring. This coloring is linkwise and identical in prin-
ciple to the previously discussed single-level batching except that only 
links within a given batch need be considered. We can iterate through the 
local colors of links using an in-kernel for loop. Of course, depending on 
the size of each chunk, we may have more or fewer links in a given local 
batch than work-items in a group. We can rectify this by arranging the 
local batches so that there are more than what is absolutely necessary: 
rather than simply creating arbitrarily sized batches of links, we pack links 
into work-group-size batches and move on to another when either there is 
a dependence or a batch is full. Using this two-layer batching, we move to 
code like the following:

__kernel void 
SolvePositionsFromLinksKernel(
   const int startLink,
   const int numLinks,
   const float kst,
   const float ti,
   __global int2 * g_linksVertexIndices,
   __global float * g_linksMassLSC,
   __global float * g_linksRestLengthSquared,
   __global float * g_verticesInverseMass,
   __global float4 * g_vertexPositions)

{
   for( batch = 0; batch < numLocalBatches; ++batch )
   {
      // Assume that links are sorted in memory in order of
      // local batches within groups
      int linkID = get_global_id(0)*batch;

      float massLSC = g_linksMassLSC[linkID];
      float restLengthSquared = g_linksRestLengthSquared[linkID];

      if( massLSC > 0.0f ) {
         int2 nodeIndices = g_linksVertexIndices[linkID];
         int node0 = nodeIndices.x;
         int node1 = nodeIndices.y;

         float3 position0 = g_vertexPositions[node0].xyz;
         float3 position1 = g_vertexPositions[node1].xyz;
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         float inverseMass0 = g_verticesInverseMass[node0];
         float inverseMass1 = g_verticesInverseMass[node1]; 

         float3 del = position1 - position0;
         float len  = dot(del, del);
         float k    = ((restLengthSquared – 
                        len)/(massLSC*(restLengthSquared+len)))*kst;
         position0 = position0 - del*(k*inverseMass0);
         position1 = position1 + del*(k*inverseMass1);

         g_vertexPositions[node0] = (float4)(position0, 0.f);
         g_vertexPositions[node1] = (float4)(position1, 0.f);

      }

      barrier(CLK_GLOBAL_MEM_FENCE);
   }
}

Note that to correctly satisfy OpenCL inter-work-item memory consistency 
we must include barrier instructions on each loop iteration. Of course, 
because they are in a loop, these barrier instructions must be executed 
by all work-items in the work-group; the batches should be created such 
that all work-items see the same number with no early exit from the loop. 
In reality we are unlikely to perfectly fill the batches; there will be SIMD 
lanes lying idle at various points in the computation (or writing data that 
will be ignored). This is unfortunate but unavoidable, and the efficiency 
savings from reducing global synchronization trade against this. Note 
that the solver algorithm hasn’t changed, only the pattern of link solv-
ing used to achieve it. This does mean that any given batching produces a 
subtly different output from all other batchings because of the ordering of 
floating-point operations; however, any given batching is deterministic.

Note as well that in this case we are still operating inefficiently in global 
memory. Given that within a group the links will reuse vertex data, and 
that vertex data will not be shared with other work-groups, we can cache 
the vertex data in OpenCL local memory. We will see final code that does 
this in the next section.

Optimizing for SIMD Computation and 
Local Memory
In the current generation high-end GPUs are all SIMD architectures. Cur-
rent architectures from AMD and NVIDIA include up to 24 cores each 
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with 16- or 32-wide SIMD units. Logical SIMD vectors can be wider: a 
64-element vector is executed over four consecutive cycles on 16 SIMD 
lanes on the AMD Radeon HD 6970 architecture by replaying the same 
instruction four times.

These wide SIMD vectors give a certain level of guaranteed synchroni-
zation. We know that any instruction issued on the HD 6970 will be 
executed at the same time across 64 work-items, with no need for barrier 
synchronization. With the AMD compiler and runtime, barriers will be 
automatically converted to no-ops if the work-group size is the same as or 
smaller than the hardware vector size (known as a wavefront).

The consequence of this guaranteed synchronization is that if we define 
our work-groups appropriately and aim for batch sizes and data layouts 
that map efficiently to groups of vector-width work-items, we can generate 
efficient code that does not require barrier synchronization to execute 
correctly. Indeed, it is safe to drop the barriers entirely as long as we 
insert memory fences (mem_fence(CLK_GLOBAL_MEM_FENCE) or mem_
fence(CLK_LOCAL_MEM_FENCE)) to ensure that the compiler does not 
reorder memory operations inappropriately.

As mentioned earlier, we can go one step further. Recall what we saw in 
the previous section: 

for each batch of work-groups:
  for each batch of links within the chunk:
    process link
    barrier;

Now let’s slightly change the algorithm:

for each batch of wavefronts:
  load all vertex data needed by the chunk
  for each batch of links within the wavefront
    process link using vertices in local memory
    local fence
  store updated vertex data back to global memory

This saves on synchronization, and there is reuse of vertex data within 
efficient local memory, reducing the amount of global memory traffic 
and further improving performance. To achieve this we prepare a list of 
vertices to load as extra per-wavefront data and first scan this list to load 
vertices. We update the link data to contain local vertex indices rather 
than global vertex indices. When processing the links local batch by local 
batch within the chunk, the loaded link data indexes the local vertex buf-
fer where the vertices are updated in place. After the chunk is complete, 
the vertices are written back to global memory.
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Our final kernel, including loading from shared memory, using fences 
rather than barriers, and working on a wavefront basis, is seen here:

__kernel void 
SolvePositionsFromLinksKernel(
   const int startWaveInBatch,
   const int numWaves,
   const float kst,
   const float ti,
   __global int2 *g_wavefrontBatchCountsVertexCounts,
   __global int *g_vertexAddressesPerWavefront,
   __global int2 * g_linksVertexIndices,
   __global float * g_linksMassLSC,
   __global float * g_linksRestLengthSquared,
   __global float * g_verticesInverseMass,
   __global float4 * g_vertexPositions,
   __local int2 *wavefrontBatchCountsVertexCounts,
   __local float4 *vertexPositionSharedData,
   __local float *vertexInverseMassSharedData)
{
   const int laneInWavefront = 
       (get_global_id(0) & (WAVEFRONT_SIZE-1));
   const int wavefront = startWaveInBatch + (get_global_id(0) /
                                                   WAVEFRONT_SIZE);
   const int firstWavefrontInBlock = startWaveInBatch + 
       get_group_id(0) * WAVEFRONT_BLOCK_MULTIPLIER;
   const int localWavefront = wavefront - firstWavefrontInBlock;

   // Mask out in case there's a stray "wavefront" at the 
   // end that's been forced in through the multiplier
   if( wavefront < (startWaveInBatch + numWaves) ) {
      // Load the batch counts for the wavefronts
      // Mask out in case there's a stray "wavefront" 
      // at the end that's been forced in through the multiplier
      if( laneInWavefront == 0 ) {
         int2 batchesAndVertexCountsWithinWavefront = 
             g_wavefrontBatchCountsVertexCounts[wavefront];
         wavefrontBatchCountsVertexCounts[localWavefront] = 
             batchesAndVertexCountsWithinWavefront;
      }

      mem_fence(CLK_LOCAL_MEM_FENCE);

      int2 batchesAndVerticesWithinWavefront = 
                wavefrontBatchCountsVertexCounts[localWavefront];
      int batchesWithinWavefront = 
         batchesAndVerticesWithinWavefront.x;
      int verticesUsedByWave = batchesAndVerticesWithinWavefront.y;



ptg

444 Chapter 17: Cloth Simulation in the Bullet Physics SDK

      // Load the vertices for the wavefronts
      for( int vertex = laneInWavefront; 
           vertex < verticesUsedByWave; 
           vertex+=WAVEFRONT_SIZE ) {
      int vertexAddress = g_vertexAddressesPerWavefront[
           wavefront*MAX_NUM_VERTICES_PER_WAVE + vertex];

      vertexPositionSharedData[localWavefront*
               MAX_NUM_VERTICES_PER_WAVE + vertex] = 
           g_vertexPositions[vertexAddress];
                  vertexInverseMassSharedData[localWavefront*
               MAX_NUM_VERTICES_PER_WAVE + vertex] = 
           g_verticesInverseMass[vertexAddress];
   }

   mem_fence(CLK_LOCAL_MEM_FENCE);

   // Loop through the batches performing the solve on each in LDS
   int baseDataLocationForWave = WAVEFRONT_SIZE * wavefront * 
                             MAX_BATCHES_PER_WAVE;

   //for( int batch = 0; batch < batchesWithinWavefront; ++batch )

   int batch = 0;
   do {
      int baseDataLocation = 
            baseDataLocationForWave + WAVEFRONT_SIZE * batch;
      int locationOfValue = baseDataLocation + laneInWavefront;

      // These loads should all be perfectly linear across the WF 
      int2 localVertexIndices = 
         g_linksVertexIndices[locationOfValue];
      float massLSC = g_linksMassLSC[locationOfValue];
      float restLengthSquared = 
                     g_linksRestLengthSquared[locationOfValue];

      // LDS vertex addresses based on logical wavefront 
      // number in block 
      // and loaded index
      int vertexAddress0 = MAX_NUM_VERTICES_PER_WAVE * 
                              localWavefront + localVertexIndices.x;
      int vertexAddress1 = 
         MAX_NUM_VERTICES_PER_WAVE * localWavefront +
                                            localVertexIndices.y;

      float4 position0 = vertexPositionSharedData[vertexAddress0];
      float4 position1 = vertexPositionSharedData[vertexAddress1];
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      float inverseMass0 = 
         vertexInverseMassSharedData[vertexAddress0];
      float inverseMass1 = 
         vertexInverseMassSharedData[vertexAddress1]; 

      float4 del = position1 - position0;
      float len = mydot3(del, del);

      float k = 0;
      if( massLSC > 0.0f ) {
         k = ((restLengthSquared - len)/
                       (massLSC*(restLengthSquared+len)))*kst;
      }

      position0 = position0 - del*(k*inverseMass0);
      position1 = position1 + del*(k*inverseMass1);

      // Ensure compiler does not reorder memory operations
      mem_fence(CLK_LOCAL_MEM_FENCE);

      vertexPositionSharedData[vertexAddress0] = position0;
      vertexPositionSharedData[vertexAddress1] = position1;

       // Ensure compiler does not reorder memory operations
       mem_fence(CLK_LOCAL_MEM_FENCE);

       ++batch;
   } while( batch < batchesWithinWavefront );

   // Update the global memory vertices for the wavefronts
   for( int vertex = laneInWavefront; 
        vertex < verticesUsedByWave; 
        vertex+=WAVEFRONT_SIZE ) {
      int vertexAddress = g_vertexAddressesPerWavefront[wavefront*
                     MAX_NUM_VERTICES_PER_WAVE + vertex];

      g_vertexPositions[vertexAddress] =
           (float4)(vertexPositionSharedData[localWavefront*
            MAX_NUM_VERTICES_PER_WAVE + vertex].xyz, 0.f);
    }

  }
}

What we have tried to demonstrate is that these architectures are not 
scalar architectures, and work-items are not independent, in architectural 
terms not threads. For efficiency, just as we have to optimize for SSE vec-
tors on x86 hardware to attain full performance, for the GPU we can use 
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the architectural features to improve performance of our algorithms. The 
warning in this is that our code is no longer portable across architectures. 
In the Bullet code we currently provide SIMD-optimized and portable ver-
sions of this solver.

Adding OpenGL Interoperation
The final subject we should discuss here is interoperation with OpenGL. 
This was discussed earlier in Chapter 10, and cloth simulation is a 
good example of where such interoperation is useful outside of image 
processing.

When we render soft-body objects on the screen, we create a render call 
and pass it a vertex buffer object, or VBO. This describes a memory buffer 
in GPU memory containing a list of all vertices that we need to draw. In 
addition, we provide buffers containing triangle index lists that reference 
the vertex buffer, and appropriate texture and normal buffers. If we render 
the output of the soft-body simulation, the vertex positions and normals 
are computed on each step of the simulation; the vertex and normal buf-
fers used for rendering must be updated with these new values.

Updating these values via copying back to host memory, performing 
another copy into a structure to upload, and then uploading this to the 
vertex buffer adds additional overhead in terms of bus synchronization 
time and bandwidth. OpenCL/OpenGL interoperability reduces this prob-
lem. We can directly write using an OpenCL kernel into a buffer that will 
be used by the OpenGL rendering code. All data can stay in high-speed 
device memory with none of the overhead of copying back to the host 
and up to the GPU again.

On the host side we create a vertex struct with the necessary fields for 
rendering and create a buffer from this and a VBO handle:

struct vertex_struct 
{
   float pos[3];
   float normal[3];
   float texcoord[2];

};

vertex_struct* cpu_buffer = new . . .
GLuint clothVBO;
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From these objects we create a device-side VBO with the GL_DYNAMIC_
DRAW flag that specifies that this buffer will be updated on a regular basis:

// Construct VBO
glGenBuffers(1, &clothVBO);
glBindBuffer(GL_ARRAY_BUFFER, clothVBO);
// Do initial upload to ensure that the buffer exists on the device
// this is important to allow OpenCL to make use of the VBO
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_struct)*width*height, 
      &(cpu_buffer[0]), GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

To render we use the VBO as a source for vertex data using the following 
code:

// Enable vertex, normal, and texture arrays for drawing
glBindBuffer(GL_ARRAY_BUFFER, clothVBO);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glBindTexture(GL_TEXTURE_2D, texture);

// Set up vertex buffer state and draw
glVertexPointer(
   3, 
   GL_FLOAT, 
   sizeof(vertex_struct), 
   (const GLvoid *)0 );

glNormalPointer(
   GL_FLOAT, 
   sizeof(vertex_struct), 
   (const GLvoid *)(sizeof(float)*3) );

glTexCoordPointer(
   2, 
   GL_FLOAT, 
   sizeof(vertex_struct), 
   (const GLvoid *)(sizeof(float)*6) );

glDrawElements(
   GL_TRIANGLES, 
   (height-1  )*(width-1)*3*2, 
   GL_UNSIGNED_INT, 
   indices);

// Clean up code
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
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glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glBindTexture(GL_TEXTURE_2D, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);

The OpenCL code will first, at some point during setup, create a CL buffer 
from the GL buffer (it is for this reason that the GL buffer must be initial-
ized with data). Then on each frame, after the OpenCL kernels have out-
put the result of a time step of the simulation, the OpenCL version of the 
OpenGL buffer is acquired for use by OpenCL and can be used as a target 
by a kernel. Subsequently the buffer is freed and ready to be used again by 
OpenGL for rendering:

clBuffer = clCreateFromGLBuffer(
   m_context, 
   CL_MEM_WRITE_ONLY, 
   clothVBO, 
   &ciErrNum);

clEnqueueAcquireGLObjects(m_cqCommandQue, 1, &clBuffer, 0, 0, NULL);

clEnqueueReleaseGLObjects(m_cqCommandQue, 1, &clBuffer, 0, 0, 0);

In this fashion we efficiently generate vertex data for rendering by an 
OpenGL application using the OpenCL soft-body simulation. 
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Chapter 18

Simulating the Ocean with 
Fast Fourier Transform

By Benedict R. Gaster,
 Brian Sumner, 

and Justin Hensley

Ocean is an OpenCL demonstration application developed at AMD that 
simulates the surface of the ocean in real time using an approach devel-
oped by Jerry Tessendorf1 that makes use of the fast Fourier transform 
(FFT). This same approach has been used in a number of feature films 
such as Waterworld, Titanic, and Fifth Element and has also appeared in 
modified form in real-time games. Briefly, the fast Fourier transform 
is applied to random noise, generated using the Phillips spectrum that 
evolves over time as a frequency-dependent phase shift. In this chapter we 
describe our implementation of Tessendorf’s approach and its application 
in AMD’s Ocean demo. An example frame generated by this application 
appears in grayscale2 in Figure 18.1 and in full color on the front cover of 
the book.

A key goal of this chapter is to describe an implementation of an opti-
mized fast Fourier transform in OpenCL, but we have chosen to frame it 
within the Ocean application to show a “real” use case. We do not discuss 
the OpenGL rendering (it is mostly orthogonal to our main focus) except 
when it pertains to OpenCL/OpenGL interoperability. 

1 Jerry Tessendorf, “Simulating Ocean Water,” SIGGRAPH Course Notes (2002). 
2 If you are reading the online version of this chapter, you are lucky enough to 

see Figure 18.1 in full color, too.
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An Overview of the Ocean Application
The application consists of two major components:

• The OpenCL generation of a height map, updated in each frame to 
account for the movement of waves

• The OpenGL rendering of this height map to produce the output, as 
seen in Figure 18.1

The program itself is a simple GLUT application (www.opengl.org/
resources/libraries/glut/) that performs the following steps:

1. Initializes base OpenGL (which must be at least version 2.0 or above). 
No OpenGL objects are created at this time; this gives the application 
the flexibility to use interop between OpenGL and OpenCL or not. 
This choice is delayed until after OpenCL has initialized.

2. Initializes base OpenCL; creates a context, programs, and command-
queues. At this time it also generates an initial spectrum that will 
be used in the simulation, with default wind direction and velocity. 
(The wind and velocity can be set by the user at any time during the 
simulation.)

Figure 18.1 A single frame from the Ocean demonstration

www.opengl.org/resources/libraries/glut/
www.opengl.org/resources/libraries/glut/
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3. Loads OpenGL textures, used for the sky box, logos, and so forth; 
loads and compiles OpenGL shaders; and creates a vertex buffer that 
will be used for interop with OpenCL if this feature is enabled.

4. Creates OpenCL buffers that will be used to store the resulting height 
map and are interop buffers with OpenGL, if that mode is enabled. 
Two buffers are produced by OpenCL that are used during rendering, 
the height map and a corresponding set of slopes used for calculating 
normals.

5. Finally the application enters the GLUT display loop, which is no 
different from most GLUT applications. The display callback itself is 
composed of the following elements:

a.  Calls OpenCL to perform the next step in the simulation and 
produce vertex buffer data for the height map and corresponding 
slopes.

b.  Renders the sky box.

c.  Binds and renders the vertex buffers to produce the water, with 
respect to the sky box and other elements.

d.  Finally, renders the controls for wind direction and velocity and 
the logo.

The OpenCL host code uses the C++ Wrapper API and is straightforward. 
We omit the initialization code here. 

Each display iteration calls the following function:

cl_int runCLSimulation(

    unsigned int width, 

    unsigned int height, 

    float animTime)
{
    cl_int err;
    std::vector<cl::Memory> v;
    v.push_back(real);
    v.push_back(slopes);

    err = queue.enqueueAcquireGLObjects(&v);
    checkErr(err, "Queue::enqueueAcquireGLObjects()");

    err = generateSpectrumKernel.setArg(1, real);
    err |= generateSpectrumKernel.setArg(3, width);
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    err |= generateSpectrumKernel.setArg(4, height);
    err |= generateSpectrumKernel.setArg(5, animTime);
    err |= generateSpectrumKernel.setArg(6, _patchSize);
    checkErr(err, "Kernel::setArg(generateSpectrumKernel)");

    err = queue.enqueueNDRangeKernel(
       generateSpectrumKernel, 
       cl::NullRange, 
       cl::NDRange(width+64,height), 
       cl::NDRange(8,8));
    checkErr(
       err,

       "CommandQueue::enqueueNDRangeKernel"
       " (generateSpectrumKernel)");

    err = kfftKernel.setArg(0, real);
    err = queue.enqueueNDRangeKernel(
      kfftKernel, 
      cl::NullRange, 
      cl::NDRange(FFT_SIZE*64), 
      cl::NDRange(64));
    checkErr(
       err, 
       "CommandQueue::enqueueNDRangeKernel(kfftKernel1)");

    err = ktranKernel.setArg(0, real);
    err = queue.enqueueNDRangeKernel(
       ktranKernel, 
       cl::NullRange,
       cl::NDRange(256*257/2 * 64),
       cl::NDRange(64));
    checkErr(
       err, 
       "CommandQueue::enqueueNDRangeKernel(ktranKernel1)");

    err = queue.enqueueNDRangeKernel(
       kfftKernel, 
       cl::NullRange, 
       cl::NDRange(FFT_SIZE*64), 
       cl::NDRange(64));
    checkErr(
       err, 
       "CommandQueue::enqueueNDRangeKernel(kfftKernel2)");

    err  = calculateSlopeKernel.setArg(0, real);
    err |= calculateSlopeKernel.setArg(1, slopes);
    err |= calculateSlopeKernel.setArg(2, width);
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    err |= calculateSlopeKernel.setArg(3, height);
    checkErr(err, "Kernel::setArg(calculatSlopeKernel)");

    err = queue.enqueueNDRangeKernel(
      calculateSlopeKernel, 
      cl::NullRange,
      cl::NDRange(width,height), 
      cl::NDRange(8,8));
    checkErr(err,

      "CommandQueue::enqueueNDRangeKernel(calculateSlopeKernel)");

    err = queue.enqueueReleaseGLObjects(&v);
    checkErr(err, "Queue::enqueueReleaseGLObjects()");

    queue.finish();

    return CL_SUCCESS;
}

The runCLSimulation function is straightforward and is composed of 
the following steps:

1. Acquires shared OpenGL objects, enforcing the OpenCL and OpenGL 
parts of the application to be in sync. 

2. Time-steps the FFT spectrum, representing the transformed height 
field of the ocean. This is outlined in the next section, “Phillips Spec-
trum Generation.”

3. Performs the inverse Fourier transform of the height field, outlined in 
detail later in the section “An OpenCL Discrete Fourier Transform.”

4. Calculates slopes from the height map (used for normal generation in 
the rendering).

5. Releases shared OpenGL objects, enforcing the OpenCL and OpenGL 
parts of the application to again be in sync.

Phillips Spectrum Generation
To generate an initial (noise) distribution and account for wind direc-
tion and velocity, that inverse discrete fast Fourier transform (DFFT) is 
then applied to simulate the motion over time. We use a kernel to apply 
the Phillips spectrum. A detailed description of why this is a good choice 
is beyond the scope of this book; the interested reader is directed to 
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Tessendorf’s work.3 The Phillips spectrum is used to decide wave ampli-
tudes at different (spatial or temporal) frequencies:

phillips(K) = A (exp (-1 / sqrt(kL)^2 / k^4) mag(norm(K) dot norm(w))^2

where

• k is the magnitude of K (the wave vector), which is 2 pi/lambda, where 
lambda is the length of the wave 

• A is a constant globally affecting wave height 

• L is v^2/g, which is the largest possible wave arising from a continuous 
wind with speed v, where gravitational constant g = 9.81

• norm(w) is the normalized wind vector (i.e., wind direction), and 
norm(K) is the normalized wave vector (i.e., wave direction)

The expression mag(norm(K) dot norm(w))^2 reduces a wave’s magnitude 
that is moving perpendicular to the wind, while allowing ones that move 
against it.

As this initial step of generating the Phillips spectrum is computed only 
once for wind direction and velocity, we choose to implement this step 
on the host, and then at each stage of the simulation we perform the 
final step into the FFT spectrum, with respect to time, in OpenCL. Tak-
ing this approach avoids having to provide an OpenCL C random number 
generator; we saw this step as orthogonal, and because there was little to 
no performance impact it seemed unnecessary. However, it is also worth 
pointing out that just because we could do something in OpenCL it does 
not mean that we should; in this case it seemed that the additional work 
when traded off against the performance gain really could not be justi-
fied. The host code to perform this is as follows:

float phillips(
   float kx, 
   float ky, 
   float 
   windSpeed, 
   float windDirection)
{
    float fWindDir = windDirection * OPENCL_PI_F / 180.0f;

    static float A = 2.f*.00000005f;
    float L = windSpeed * windSpeed / 9.81f; 

3 Jerry Tessendorf, “Simulating Ocean Water,” SIGGRAPH 1999,  http://graphics.
ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf.

http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf
http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf
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    float w = L / 75;
    float ksqr = kx * kx + ky * ky;
    float kdotwhat = kx * cosf(fWindDir) + ky * sinf(fWindDir);
    kdotwhat = max(0.0f, kdotwhat);

    float result = 
            (float) (A * (pow(2.7183f, -1.0f / (L * L * ksqr)) 
            * (kdotwhat * kdotwhat)) / (ksqr * ksqr * ksqr));

    float damp = (float) expf(-ksqr * w * w); 
    damp = expf(-1.0 / (ksqr * L * L));
    result *= kdotwhat < 0.0f ? 0.25f : 1.0f;

    return (result * damp);
}

This function is called for each kx and ky in the height field, whose 
dimensions are chosen to match the supported FFT dimensions. In this 
chapter we descibe a 1K×1K FFT implementation but the Ocean applica-
tion itself supports the additional 2K×2K mode.

The following applies the phillips function to each position in the 
input space to produce an initial height field, with respect to the given 
wind speed and direction:

void generateHeightField(
     cl_float2 * h0, 
     unsigned int fftInputH, 
     unsigned int fftInputW)
{
   float fMultiplier, fAmplitude, fTheta;

   for (unsigned int y = 0; y<fftInputH; y++) {
      for (unsigned int x = 0; x<fftInputW; x++) {
         float kx = OPENCL_PI_F * x / (float) _patchSize;
         float ky = 2.0f * OPENCL_PI_F * y / (float) _patchSize;

         float Er = 2.0f * rand() / (float) RAND_MAX - 1.0f;
         float Ei = 2.0f * rand() / (float) RAND_MAX - 1.0f;

         if (!((kx == 0.f) && (ky == 0.f))) {
            fMultiplier = sqrt(phillips(kx,ky,windSpeed, windDir)); 
         }
         else {
            fMultiplier = 0.f;
         }

         fAmplitude = RandNormal(0.0f, 1.0f);
         fTheta = rand() / (float) RAND_MAX * 2 * OPENCL_PI_F;
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         float h0_re = fMultiplier * fAmplitude * Er; 
         float h0_im = fMultiplier * fAmplitude * Ei; 
         int i = y*fftInputW+x;
         cl_float2 tmp = {h0_re, h0_im};
         h0[i] = tmp;
      }
   }
}

Finally, the following OpenCL kernel, along with two support functions, 
updates the spectrum on each iteration of the simulation, with respect to 
time, thus providing movement:

// complex math functions
float2 __attribute__((always_inline)) conjugate(float2 arg)
{
   return (float2)(arg.x, -arg.y);
}

float2 __attribute__((always_inline)) complex_exp(float arg)
{
   float s;
   float c;
   s = sincos(arg, &c);
   return (float2)(c,s);
}

__kernel void generateSpectrumKernel(
   __global float2* h0, 
   __global float * ht_real,
   __global float * ht_imag,
   unsigned int width, 
   unsigned int height, 
   float t, 
   float patchSize)
{
   size_t x = get_global_id(0);
   size_t y = get_global_id(1);
   unsigned int i = y*width+x;

   // calculate coordinates
   float2 k;
   k.x = M_PI * x / (float) patchSize;
   k.y = 2.0f * M_PI * y / (float) patchSize;

   // calculate dispersion w(k)
   float k_len = length (k);
   float w = sqrt(9.81f * k_len);
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   float2 h0_k  = h0[i];
   float2 h0_mk = h0[(((height-1)-y)*width)+x];

   float2 h_tilda = complex_mult(
      h0_k, 
      complex_exp(w * t)) +
         complex_mult(conjugate(h0_mk), complex_exp(-w * t));

   // output frequency-space complex values
   if ((x < width) && (y < height)) {
      ht_real[i] = h_tilda.x;
      ht_imag[i] = h_tilda.y;
   }
}

An OpenCL Discrete Fourier Transform
The discrete Fourier transform (DFT) is an extremely important operation 
in many fields because of its many special properties such as replacing con-
volution with pointwise multiplication4 and very fast implementations.5

Additionally, there are a number of very high-quality and high-perfor-
mance implementations for the CPU, such as FFTW (http://fftw.org).

There are fewer implementations and less information available on pro-
ducing efficient FFTs for OpenCL GPU devices. In the following sections 
we will walk through the detailed thinking behind the Ocean application 
and the resulting code used in it. While these sections are mostly focused 
on transforms of size 1024, we expect this kind of analysis to be quite use-
ful for other sizes as well.

Determining 2D Decomposition

While it is possible to decompose a 2D FFT into smaller 2D FFTs fol-
lowed by a “recombination” step, we will instead use the following usual 
approach to achieve the 2D transform: 

1. Transform all rows using 1D FFT.

2. Transform all columns using 1D FFT.

4 E. Brigham, The Fourier Transform and Its Applications (Prentice Hall, 1988).
5 C. Van Loan, Computational Frameworks for the Fast Fourier Transform (Society 

for Industrial Mathematics, 1987); E. Chu and A. George, Inside the FFT Black 
Box: Serial and Parallel Fast Fourier Transform Algorithms (CRC Press, 1999).

http://fftw.org
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However, for many memory systems, the accesses made in step 2 can suf-
fer performance problems. We can investigate this on the GPU by timing 
two OpenCL kernels that add a constant to each element of a 1K×1K float 
array. The first kernel assigns a work-group to each row of the array, and 
the second assigns a work-group to each column. The elapsed times (in 
milliseconds) observed for each kernel for a few different work-group sizes 
are shown in Table 18.1.

Table 18.1 Kernel Elapsed Times for Varying Work-Group Sizes

Work-Group 
Size

Row Time 
(ms)

Row Time 
(with Pad) (ms)

Column Time 
(ms)

Column Time 
(with Pad) (ms)

64 0.077 0.085 9.60 0.856

128 0.068 0.083 10.0 1.50

256 0.062 0.068 10.6 1.50

The smallest row time of 0.062ms indicates that we were achieving a 
round-trip bandwidth of 133GB per second. The second (pad) time listed 
for each kernel shows the effect of adding a number of “pad” columns (64 
on the device we used to obtain the timings) to improve the performance 
of the memory system. On the CPU, such padding is often done to reduce 
the effects of cache thrashing; on the GPU, padding can help spread the 
accesses over more memory controllers.

The large difference between the row time and column time suggests an 
alternative approach:

1. Transform all rows using 1D FFT.

2. Transpose 1K×1K array.

3. Transform all rows using 1D FFT.

4. Transpose 1K×1K array.

This can be faster than the first approach if the transpose can be per-
formed quickly enough. Note that in the Ocean code, one of the trans-
poses can be eliminated by simply constructing the data in transposed 
order. Similarly, leaving the result of a 2D FFT in transposed order is a 
typical option in FFT packages to improve performance.
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Using Local Memory

A 1D FFT is usually carried out as a series of “passes” over the data. For 
instance, we can recursively expand the decimation-in-time binary 
decomposition until the transform length is 2 (where W is a diagonal 
array of roots of unity usually called “twiddle factors”):

Outlo = FFT(Ineven) + W FFT(Inodd)

Outhi = FFT(Ineven) – W FFT(Inodd)

Thus we arrive at a procedure that requires ten passes over the data 
(1024 = 210):

Out0 = Pass0(In)

Out1 = Pass1(Out0)

Out = Pass9(Out8)

Without local memory each pass requires a round trip of data from global 
memory. Also, element access during the pass may not hit the memory 
system efficiently.

Of course, the number of passes can be reduced by stopping the recursion 
earlier. Two passes of length 32 FFT would also work, as would five passes 
of length 4 FFT, as well as two passes of length 16 FFT followed by one 
pass of length 4. There are trade-offs with each of these choices, as we will 
see.

When local memory is used, some fraction of the data to be transformed 
is kept in local memory, and transfers to and from global memory may be 
reduced to just a few passes, such as the first and last passes. Other passes 
will read and write local memory, which, being on chip, is much faster 
than global memory. However, local memory is also a limited hardware 
resource and constrains the number of work-groups that can use it con-
currently. This constraint directly affects the number of work-items in 
flight and hence the latency-hiding ability of the GPU.

For the Ocean 1K FFT we chose to make use of local memory to reduce the 
global memory traffic to just the first and last passes.

Determining the Sub-Transform Size 

As mentioned previously, the amount of local memory used by a ker-
nel constrains the number of work-items in flight. Another constraint 
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is imposed by the number of physical registers used. Roughly speaking, 
the larger the number used, the fewer the work-items in flight. OpenCL 
C does not provide direct control over register use, but it can be con-
trolled indirectly by the choice of algorithm and implementation of that 
algorithm.

A sub-transform of length R requires around 2R registers. However, near-
optimal operation count short DFTs may require several more than 2R
registers depending on the compiler. With register utilization figuring so 
prominently in latency hiding, it makes sense to look for minimal register 
implementations for a given R.

Using larger Rs means fewer passes but also potentially fewer work-items 
in flight. An FFT library should seek the best trade-off of these effects to 
achieve the best performance.

In the Ocean code, we chose to decompose the 1K FFT into five passes of 
length 4 sub-transforms (1024 = 45). A 4-point DFT can be computed in 
place with no additional registers:

ar0 = zr0 + zr2;
br1 = zr0 - zr2;
ar2 = zr1 + zr3;
br3 = zr1 - zr3;
zr0 = ar0 + ar2;
zr2 = ar0 - ar2;
ai0 = zi0 + zi2;
bi1 = zi0 - zi2;
ai2 = zi1 + zi3;
bi3 = zi1 - zi3;
zi0 = ai0 + ai2;
zi2 = ai0 - ai2;
zr1 = br1 + bi3;
zi1 = bi1 - br3;
zr3 = br1 - bi3;
zi3 = br3 + bi1;

The inputs and outputs here are zr0…zr3 (real components) and zi0…
zi3 (imaginary components). Unfortunately, post-multiplication by the 
twiddle factors requires a few more registers to hold the twiddle factor(s) 
and intermediate results of the complex multiplication.

Determining the Work-Group Size 

An OpenCL FFT kernel can adapt itself to the work-group size it is pre-
sented with at the cost of significant logic and indexing complexity. 
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Alternatively, control flow can be completely eliminated and indexing 
computation greatly reduced by using a kernel targeted for a specific 
transform length and work-group size. The most efficient work-group sizes 
are usually multiples of the hardware wavefront/warp size.

In the Ocean code, for our 1K length we use a work-group to process a 
single transform and considered work-group sizes of 64, 128, and 256. For 
work-group size 64, each work-item must process 16 points per pass, that 
is, four 4-point DFTs (which can be conveniently expressed using OpenCL 
C’s float4 type). For work-group size 128, each work-item must process 8 
points per pass, and for work-group size 256, each work-item must process 
4 points per pass. Of course, “points” is proportional to “registers,” so the 
work-group size gives us a knob to adjust work-item register use. However, 
the number of registers used by the entire work-group does not change.

For the Ocean code, we chose the smaller work-group size of 64.

Obtaining the Twiddle Factors

The twiddle factors used in the FFT are a key ingredient in combining 
smaller transforms into larger ones. They are primitive nth roots of unity 
(or simple functions thereof) and are of the form cos(A) + i sin(A) (where 
i is the imaginary value sqrt(-1) and A is 2 pi K/N, where N is the trans-
form length and 0 <= K < N). There are a variety of options for obtaining 
the twiddle factors affecting both performance and accuracy. They can 
be computed by the accurate OpenCL built-in sin and cos functions. 
They can instead be computed using either the built-in half_sin and 
half_cos functions or the built-in native_sin and native_cos func-
tions. GPUs typically have limited-accuracy machine instructions for sine 
and cosine that are exposed by the native_sin and native_cos built-in 
functions. They can offer the highest performance, but the cost is reduced 
accuracy of the result.

Other options are to read precomputed twiddle factors from a constant 
buffer, image (texture), or global buffer. The first two are likely to be faster 
than the third because of caching, and the first can be used especially eas-
ily by simply defining a simple OpenCL __constant array in the kernel 
program itself.

It is also worth noting that a combination of approaches of varying accu-
racy may also be used based on various instances of the “double angle” 
formulas of trigonometry.
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For the Ocean code, we decided that the accuracy of the native functions 
was sufficient.

Determining How Much Local Memory Is Needed 

In each pass, a given work-item may require data produced by a differ-
ent work-item on the previous pass. Local or global memory is needed to 
pass data between work-items, and we’ve determined that we’ll use local 
memory. We can trade off between local memory size and complexity and 
number of barriers.

For instance, in the simplest (maximum use) case, a pass would look like 
this:

1. Load entire vector from local memory into registers.

2. Local barrier.

3. Compute sub-transform(s).

4. Save entire vector to local memory.

5. Local barrier.

If the entire vector is able to be held in registers, we can halve the amount 
of local memory needed by partially mixing passes into this:

1. Compute sub-transforms.

2. Save real part of vector to local memory.

3. Local barrier.

4. Read next pass real part of vector from local memory.

5. Local barrier.

6. Save imaginary part of vector to local memory.

7. Local barrier.

8. Read next pass imaginary part of vector from local memory.

It may be possible to reduce the amount of local memory even further by 
writing and reading subsets of the vector, along with more barriers.

In the Ocean code, we use the second approach and note that all the local 
barriers are essentially free because the work-group size we chose is the 
same as the wavefront size on the GPU hardware we are using.
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Avoiding Local Memory Bank Conflicts

Local memories are often banked structures, and performance may be 
reduced when the work-group/wavefront/warp accesses only a small 
number of memory banks on a given access. There are a number of tech-
niques to reduce conflicts, including more complicated addressing and/or 
padding. 

Of course, padding can increase the amount of memory used by the ker-
nel and end up degrading the ability of the GPU to hide latency, so ideally 
both cases should be compared.

For the Ocean code, we found that a transpose implementation with local 
memory bank conflicts performs at about the same speed as a conflict-free 
version. However, for the FFT, we found that a conflict-free implementa-
tion is about 61 percent faster than a version with conflicts.

Using Images

Up to this point, we have been assuming that the inputs and outputs of 
the FFT and transpose kernels have been OpenCL buffers. However, the 
inputs could instead be OpenCL read-only images (usually cached) and 
write-only images that are accessed using OpenCL samplers. If we con-
sider the multipass structure of the FFT, though, the only significant dif-
ferences in the implementation would be the initial read of data from the 
input image and the final store to the output image. The situation would 
be different if OpenCL were to ever allow read-write images.

A Closer Look at the FFT Kernel
The FFT kernel starts with this:

__kernel __attribute__((reqd_work_group_size (64,1,1))) void
kfft(__global float *greal, __global float *gimag)
{
    // This is 4352 bytes
    __local float lds[1088];

This tells us a few things already:

• The kernel is designed specifically for a 1D iteration space with a 
work-group size of 64.
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• The real and imaginary parts of the complex data are in separate 
arrays rather than interleaved within a single array. (This turns out to 
be most convenient for the rest of the Ocean code.)

• Because there are no other arguments, this kernel was designed for 
only one FFT size (1K).

• Some padding must be in use because 1088 is not the 1024 or 2048 
that we might expect.

This kernel gets to pulling in the data pretty quickly:

uint gid = get_global_id(0);
uint me = gid & 0x3fU;
uint dg = (me << 2) + (gid >> 6) * VSTRIDE;
__global float4 *gr = (__global float4 *)(greal + dg);
__global float4 *gi = (__global float4 *)(gimag + dg);

float4 zr0 = gr[0*64];
float4 zr1 = gr[1*64];
float4 zr2 = gr[2*64];
float4 zr3 = gr[3*64];

float4 zi0 = gi[0*64];
float4 zi1 = gi[1*64];
float4 zi2 = gi[2*64];
float4 zi3 = gi[3*64];

Here, VSTRIDE is the number of elements between the first element of 
two successive rows. Each access to gr and gi pulls 1024 consecutive 
bytes from the vector being worked on, and each work-item gets four 
consecutive elements of the vector, each set of four separated by 256 ele-
ments, which is exactly what is required for the first pass of a length 4 
sub-transform pass.

The first transform and multiplication by twiddle factor appear as

FFT4();
int4 tbase4 = (int)(me << 2) + (int4)(0, 1, 2, 3);
TW4IDDLE4();

The 4-point FFT was given previously when we determined the sub-trans-
form size. Because the type of the variables is float4, the kernel must use 
at least 32 registers. We recall from when we obtained our twiddle factors 
that the twiddle factor “angle” is a multiple of 2 pi/1024. The specific mul-
tiple required by the first pass is given by the tbase4 computation. The 
actual computation of the twiddle factors is carried out by the following 
function, where ANGLE is 2 pi/1024:
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__attribute__((always_inline)) float4
k_sincos4(int4 i, float4 *cretp)
{
    i -= (i > 512) & 1024;
    float4 x = convert_float4(i) * -ANGLE;
    *cretp = native_cos(x);
    return native_sin(x);
}

The first statement in the function quickly and accurately reduces the 
range of the angle to the interval [-pi, pi].

Following the actual computation, each work-item needs to save the val-
ues it has produced and read the new ones it needs for the next pass. Let’s 
look at a single store and load at the end of the first pass:

__local float *lp = lds + ((me << 2) + (me >> 3));
lp[0] = zr0.x;
…
barrier(CLK_LOCAL_MEM_FENCE);
lp = lds + (me + (me >> 5));
zr0.x = lp[0*66];

Each store to or load from lp is of course a SIMD parallel operation. The 
local memory on the GPU we used has 32 banks of 32-bit values. Using 
the previous addressing expressions, we can compute the first several load 
and store banks, as shown in Table 18.2.

Table 18.2 Load and Store Bank Calculations

me Store Bank Load Bank

0 0 0

1 4 1

2 8 2

3 12 3

4 16 4

5 20 5

6 24 6

7 28 7

continues
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It turns out that all 64 work-items in the work-group access each bank 
exactly twice on each load and store, which is optimal.

The following four passes look very much like the first with the exception 
that the twiddle factors vary more slowly and the addressing into local 
memory changes because of the different elements needed for each pass. 
In each case the addressing has been chosen to minimize bank conflicts.

In the last pass, the twiddle factors are all 1.0, so the final sub-transform 
and store back to global memory looks like the following, where again 
each store transfers 1024 consecutive bytes back to global memory:

FFT4();

gr[0*64] = zr0;
gr[1*64] = zr1;
gr[2*64] = zr2;
gr[3*64] = zr3;

gi[0*64] = zi0;
gi[1*64] = zi1;
gi[2*64] = zi2;
gi[3*64] = zi3;

On the GPU we tested, transforming 1024 vectors using this kernel takes 
about 0.13ms. Using the standard 5 N log2(N) approximation for the flop 
count for an FFT of length N, this time corresponds to a rate of about 400 

Table 18.2 Load and Store Bank Calulations (Continued )

me Store Bank Load Bank

8 1 8

9 5 9

10 9 10

11 13 11

12 17 12

13 21 13

14 25 14

15 29 15
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GFLOPS per second. It also corresponds to a round-trip bandwidth from 
global memory of about 130GB per second.

A Closer Look at the Transpose Kernel
The transpose kernel is responsible for transposing the two 1024×1024 
arrays that make up the complex data. Because these arrays are square, 
the operation can be performed in place quite easily. As one might expect, 
we break the arrays into smaller blocks. Each work-group is then assigned 
a pair of blocks, (i, j) and (j, i), which are then read into local memory 
and transposed. Block (i, j) is then stored to location (j, i), and block (j, i)
is stored to location (i, j). We evaluated a few different block sizes and 
settled on a 32×32 block for the Ocean code.

One small question arises: how to assign a block to a work-group, because 
operating on all blocks as previously described would only end up trans-
posing the diagonal blocks. We make use of a convenient quadratic 
polynomial:

pB(t) = - ½ t2 + (B + ½) t

At the non-negative integers, this polynomial takes on the values 0, B, B
+ (B - 1), B + (B - 1) + (B - 2), and so on. Given our 32×32 block size, if we 
choose B = 1024/32 = 32, we can compute (i, j) using this code found in 
the transpose kernel:

uint gid = get_global_id(0);
uint me = gid & 0x3fU;
uint k = gid >> 6;
int l = 32.5f - native_sqrt(1056.25f - 2.0f * (float)as_int(k));
int kl = ((65 - l) * l) >> 1;
uint j = k - kl;
uint i = l + j;

The blocks accessed run down the diagonal and then the subdiagonals.

Given our work-group size of 64, each work-item must handle 16 points of 
the block. The block is read using

uint go = ((me & 0x7U) << 2) + (me >> 3)*VSTRIDE;
uint goa = go + (i << 5) + j * (VSTRIDE*32);
uint gob = go + (j << 5) + i * (VSTRIDE*32);

__global float4 *gp = (__global float4 *)(greal + goa);
float4 z0 = gp[0*VSTRIDE/4*8];
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float4 z1 = gp[1*VSTRIDE/4*8];
float4 z2 = gp[2*VSTRIDE/4*8];
float4 z3 = gp[3*VSTRIDE/4*8];

We’ve assigned the threads so that each access fetches eight 256-byte 
chunks of global memory.

The transpose in the Ocean code uses the conflict-free approach. So 
just as for the FFT, the addressing of loads and stores to local memory is 
slightly complicated. The first store and load looks like this:

uint lo = (me >> 5) + (me & 0x7U)*9 + ((me >> 3) & 0x3U)*(9*8);
__local float *lp = ldsa + lo;
lp[0*2] = z0.x;
…
barrier(CLK_LOCAL_MEM_FENCE);

uint lot = (me & 0x7U) + ((me >> 3) & 0x3U)*
                                   (9*8*4 + 8) + (me >> 5)*9;
lp = ldsa + lot;
z0.x = lp[0*2*9];

Once again, these accesses are optimal. Data is written back to global 
memory in the same eight 256-byte chunks per access.

On the machine we tested, using a VSTRIDE of 1088, the Ocean transpose 
kernel runs in about 0.14ms, which corresponds to a round-trip band-
width to global memory of about 120GB per second.

Thus, the time for the entire 2D FFT used in Ocean is roughly 0.13 + 0.14 
+ 0.13 = 0.40 ms.
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Chapter 19

Optical Flow

Optical flow is a fundamental concept in computer vision. Optical flow 
describes the motion that occurs between images and has application 
in image stabilization, frame rate upsampling, and motion or gesture 
analysis. In this chapter, we will discuss an implementation of pyramidal 
Lucas-Kanade (LK) optical flow.1 Sub-pixel accuracy is essential to the 
implementation and is maintained by a number of resampling opera-
tions requiring linear interpolation. As we will see, the texture-filtering 
hardware on the GPU can be used to perform linear interpolation of data, 
which can provide significant speedups. Additionally, we will discuss how 
local memory and early kernel exit techniques provide acceleration.

Optical Flow Problem Overview
Optical flow describes the motion that occurs between images. At each 
point in the image, we will compute a 2D flow vector that describes the 
motion that occurred between points in the images. This is called “dense” 
optical flow because it produces a dense set of vectors for the entire image, 
in contrast to tracking only a few sparse points. Optical flow is computa-
tionally intensive, and other implementations attempt only sparse compu-
tation, whereas we will discuss a dense implementation that achieves high 
performance on a GPU using OpenCL.

As an intuitive explanation, consider the situation where we know the 
gradient of the image at some location. This tells us if it is getting brighter 
or darker in some direction. If we later observe that the location itself has 
become brighter or darker, we can make some inference as to the motion 
of the image content. This makes the assumption that the brightness of 

1 J. Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature 
Tracker,” Intel Corporation Microprocessor Research Labs (2000).
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the object itself isn’t changing and so the change in pixel brightness is 
due to motion. Given two images I(x, y) and J(x, y), we seek to find the 
image velocities dx and dy that minimize the residual error:
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Here we have a window of size (wx, wy) centered around a point (ux, uy), 
where (x, y) denotes the position in the window. Thus for each pixel with 
its surrounding window, we are searching for the motion that minimizes 
the difference in brightness, indicating where that region has moved.

This chapter presents an implementation of optical flow using OpenCL. 
In the discussion, we will use test images from the “MiniCooper”2 data 
set. Figure 19.1 shows two images from this set where we see that a man is 
closing the trunk of a car. Figure 19.2 shows the recovered motion vectors 
from two sequential images in the set. The motion vectors occur around 
the area of the trunk and where the man moves; both areas have vectors 
generally pointing downward as the trunk closes.

2 Simon Baker et al., “A Database and Evaluation Methodology for Optical Flow,” 
International Journal of Computer Vision 92, no. 1 (March 2011): 1–31. 

(a) (b)

Figure 19.1 A pair of test images of a car trunk being closed. The first (a) and 
fifth (b) images of the test sequence are shown.
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There are many methods of finding the optical flow between images. Here 
we discuss the implementation of pyramidal Lucas-Kanade optical flow, 
which is presented because it is a widely known and studied algorithm 
that may be familiar to the reader and facilitates discussion of the GPU 
mappings. 

Computationally, Lucas-Kanade optical flow minimizes the residual error, 
which reduces essentially to finding the optical flow v = [vx, vy]

T as

ν = −G b1  (2)

The matrix G and vector b are given by the image values I, J and deriva-
tives Ix, Iy, and Ixy (the product of Ix and Iy): 
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Pyramidal Lucas Kanade Optical Flow in OpenCL

Figure 19.2 Optical flow vectors recovered from the test images of a car trunk 
being closed. The fourth and fifth images in the sequence were 
used to generate this result.
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Here I(x, y) is termed the image difference and b the mismatch vector.

The algorithm operates on image pyramids. Each level of the image pyra-
mid is the same image with different scales. The bottom of the pyramid 
is the initial image, and each pyramid level is the image scaled by some 
scaling factor. In our implementation each level is scaled by 0.5 in each 
image dimension.

The image difference at level L for iteration k is computed as

− −∂ = − + + + +1 1( , ) ( , ) ( , )L L L k L k
k x x y yI x y I x y J x g v y g v (5)

Pyramidal Lucas-Kanade optical flow is an iterative scheme, where equa-
tion (2) is evaluated iteratively at each position for k iterations, with the 
guess for the flow vector being refined (x', y') = (x + vx, y + vy) at each itera-
tion, at each level. Here, (gL

x, gL
y) is the guess for the flow from the previ-

ous pyramid level, and (vk
x, vk

y) is the calculation of the flow at iteration 
k at the present level. The iterative reevaluation of equation (2) requires 
heavy computation.

The algorithm proceeds from the upper levels L down to level 0 (full-size 
image).

At each level, the flow vector, v = [vx, vy]
T, computed from the previous 

level is used as a starting guess to the current level, and for the initial 
level it is initialized as (0, 0). Figure 19.3 depicts an implementation of the 
pyramidal LK optical flow algorithm based on the image pyramid struc-
ture. It shows the process of downsampling the images, computing image 
derivatives and the matrix G, and then computing the flow from smallest 
to largest pyramid level. 

First, we discuss the overall approach to mapping this to the GPU. The 
algorithm begins by creating the image pyramids, storing each level in 
texture memory on the GPU. From the equations, it can be seen that we 
need image pyramids for the images, I, J, and derivatives, Ix, Iy. Image 
pyramid creation proceeds from the base pyramid level and generates 
successively high levels. For each pyramid level, images are filtered in two 
kernels that implement a separable filter. A separable filter implements a 
2D filter kernel as two 1D filter kernel passes. In our implementation we 
implement a 5×5 filter kernel by horizontal 1×5 and vertical 5×1 filter 
kernels. These kernels simply read image values around a center pixel and 
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calculate a weighted sum. The horizontal kernel can be implemented as 
shown in the next code block. Note that we have omitted code to per-
form efficient coalesced memory writes and use textures for simplicity 
and because the majority of the time is spent computing the flow kernel 
shown later. 

__kernel void downfilter_x_g( 
    __read_only image2d_t src,
    __global uchar *dst, int dst_w, int dst_h )
{

    sampler_t srcSampler = CLK_NORMALIZED_COORDS_FALSE | 
        CLK_ADDRESS_CLAMP_TO_EDGE |
        CLK_FILTER_NEAREST ;

    const int ix = get_global_id(0);
    const int iy = get_global_id(1);

    float x0 = 
        read_imageui( src, srcSampler, (int2)(ix-2,iy)).x/16.0f;
    float x1 = 
        read_imageui( src, srcSampler, (int2)(ix-1,iy)).x/4.0f;
    float x2 = 
        (3*read_imageui( src, srcSampler, (int2)(ix,iy)).x)/8.0f;
    float x3 = 
        read_imageui( src, srcSampler, (int2)(ix+1,iy)).x/4.0f;
    float x4 = 
        read_imageui( src, srcSampler, (int2)(ix+2,iy)).x/16.0f;

    int output = round( x0 + x1 + x2 + x3 + x4 );
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Figure 19.3 Pyramidal Lucas-Kanade optical flow algorithm
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    if( ix < dst_w && iy < dst_h ) {
      // uncoalesced when writing to memory object
      // acceptable if caches present, otherwise should be written
      // for coalesced memory accesses
      dst[iy*dst_w + ix ] = (uchar)output;
    }
}

Because we are downsampling, a lowpass filter is used and a decimation 
by two is also applied after filtering to create the next-higher (smaller) 
pyramid level. Note that we can avoid having a kernel only performing 
decimation. Instead, we can combine the decimation with the second, 
vertical filter pass by only performing the vertical pass at pixel locations 
that write to the next level after decimation. This can be done by launch-
ing a kernel that covers the dimensions of the upper level and multiplying 
the lookups by 2 to index into the lower level correctly before writing the 
results. The following code shows the vertical filtering and decimation 
kernel:

__kernel void downfilter_y_g(
    __read_only image2d_t src,
    __global uchar *dst, int dst_w, int dst_h )
{
    sampler_t srcSampler = CLK_NORMALIZED_COORDS_FALSE | 
        CLK_ADDRESS_CLAMP_TO_EDGE |
        CLK_FILTER_NEAREST ;

    const int ix = get_global_id(0);
    const int iy = get_global_id(1);

    float x0 = read_imageui( src, srcSampler,
            (int2)(2*ix,2*iy-2) ).x/16.0f;
    float x1 = read_imageui( src, srcSampler, 
             (int2)(2*ix,2*iy-1) ).x/4.0f;
    float x2 = (3*read_imageui( src, srcSampler, 
             (int2)(2*ix,2*iy) ).x)/8.0f;
    float x3 = read_imageui( src, srcSampler, 
             (int2)(2*ix,2*iy+1) ).x/4.0f;
    float x4 = read_imageui( src, srcSampler, 
             (int2)(2*ix,2*iy+2) ).x/16.0f;

    int output = round(x0 + x1 + x2 + x3 + x4);

    if( ix < dst_w-2 && iy < dst_h-2 ) {
        dst[iy*dst_w + ix ] = (uchar)output;
    }
}
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Noting again the components of equations (3) and (4), we see that in 
addition to the image pyramid values, we require derivative values at each 
level of the pyramid. This is done by sending the newly computed image 
pyramid to kernels that compute the derivatives at each level. Note also 
that the derivative computation at each image level is independent of the 
others, and when supported, GPU hardware can run different derivative 
kernels concurrently for more efficiency. The derivative computation is a 
3×3 filter kernel implemented in two passes as a separable filter.

Given the image pyramids for I and J and image derivative pyramids for 
each level of I, the flow is calculated according to equation (2), start-
ing from the upper level of the pyramid, and propagating results down 
through pyramid levels until the base level is reached, generating dense 
optical flow results. The kernel for computing optical flow at each pyra-
mid level is iterative, performing the computation a number of times. First 
note that for equation (2), the components v and b change each iteration. 
v is solved each iteration and so changes, and b has the following compo-
nents, as shown in equation (5), which change each iteration: 

− −+ + + +1 1( , )L k L k
x x y yx g v y g v

The matrix G, however, remains fixed in position and its values remain 
the same and so can be precomputed at each image location and simply 
retrieved when needed at the first iteration of each computation of equa-
tion (2). Because G is composed of local sums of derivative values, each 
work-item reads the local x and y derivative values and computes a four-
component image value. The four-component vector type serves in this 
case as a handy data type for storing the 2×2 matrix G. Depending on 
the accuracy required, G can be saved as an int4 data type, because for 
input pixels in the range of [0, 255] the maximum squared image deriva-
tive falls within the capabilities of a 32-bit integer. If the filters used for 
downsampling and derivatives produced only integer results, this main-
tains accuracy. In case more accuracy is desired, floating-point could be 
used throughout at the cost of increased memory access time and space 
requirements. The following kernel gathers the data for G into a single 
memory buffer. Here, FRAD is defined as the radius of the window within 
which G is gathered. 

#define FRAD 4
// G is int4 output
// This kernel generates the "G" matrix 
// (2x2 covariance matrix on the derivatives)
// Each thread does one pixel, 
// sampling its neighborhood of +/- FRAD 
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// radius and generates the G matrix entries.
__kernel void filter_G( __read_only image2d_t Ix, 
                        __read_only image2d_t Iy,
                        __global int4 *G, int dst_w, int dst_h )
{
  sampler_t srcSampler = CLK_NORMALIZED_COORDS_FALSE | 
                         CLK_ADDRESS_CLAMP_TO_EDGE | 
                         CLK_FILTER_NEAREST ;
  const int idx = get_global_id(0);
  const int idy = get_global_id(1); 

  int Ix2 = 0;
  int IxIy = 0;
  int Iy2 = 0;
  for( int j=-FRAD ; j <= FRAD; j++ ) {
    for( int i=-FRAD ; i<= FRAD ; i++ ) { 
      int ix = read_imagei(Ix,srcSampler,(int2)(idx+i,idy+j)).x;
      int iy = read_imagei(Iy,srcSampler,(int2)(idx+i,idy+j)).x;

      Ix2 += ix*ix;
      Iy2 += iy*iy;
      IxIy += ix*iy;

    }
  }
  int4 G2x2 = (int4)( Ix2, IxIy, IxIy, Iy2 );
  if( idx < dst_w && idy < dst_h ) {
    G[ idy * dst_w + idx ] = G2x2;
  }
}

Now, with G, I, and J pyramids and the derivative pyramids calculated, 
the flow computation of equation (2) can be calculated in a single kernel. 
We now look at parts of a kernel that solves for the flow vector given G, I,
and J pyramids and the derivative pyramids. This kernel iteratively solves 
the equation until some convergence criteria or maximum number of 
iterations is reached. 

The following code shows the kernel solving for the optical flow. Some 
discussion of the kernel is presented inline. Note that I, Ix, and Iy are read-
ing from local memory; those lines are omitted here and discussed later. 
Additionally, we are using a bilinear sampling object, bilinSampler,
also discussed later. For now the inline discussion will focus on steps that 
compute the flow vector. We begin by showing the beginning of the ker-
nel called lkflow, including its parameter and variable declarations, and 
computation of its indices for accessing the input images:
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#define FRAD 4
#define eps 0.0000001f;

// NB: It's important that these match the launch parameters!
#define LOCAL_X 16
#define LOCAL_Y 8

__kernel void lkflow( 
  __read_only image2d_t I,
  __read_only image2d_t Ix,
  __read_only image2d_t Iy,
  __read_only image2d_t G,
  __read_only image2d_t J_float,
  __global float2 *guess_in,
  int guess_in_w,
  __global float2 *guess_out,
  int guess_out_w,
  int guess_out_h,
  int use_guess )
{
  // declare some shared memory (see details below)
  __local int smem[2*FRAD + LOCAL_Y][2*FRAD + LOCAL_X] ;
  __local int smemIy[2*FRAD + LOCAL_Y][2*FRAD + LOCAL_X] ;
  __local int smemI[2*FRAD + LOCAL_Y][2*FRAD + LOCAL_X] ;

  // Create sampler objects. One is for nearest neighbor, 
  // the other for bilinear interpolation
  sampler_t bilinSampler = CLK_NORMALIZED_COORDS_FALSE |
                           CLK_ADDRESS_CLAMP_TO_EDGE |
                           CLK_FILTER_LINEAR ;
  sampler_t nnSampler = CLK_NORMALIZED_COORDS_FALSE |
                        CLK_ADDRESS_CLAMP_TO_EDGE |
                        CLK_FILTER_NEAREST ;

  // Image indices. Note for the texture, we offset by 0.5 to 
  //use the center of the texel. 
  int2 iIidx = { get_global_id(0), get_global_id(1)};
  float2 Iidx = { get_global_id(0)+0.5, get_global_id(1)+0.5 };

The next steps of the kernel shown here copy data into local memory, but 
the code and discussion are deferred until later: 

  // load some data into local memory because it will be reused 
  // frequently
  // ( see details below )
  // ... 

Between levels, the motion estimated, n, is propagated as the starting 
input for the next level, appropriately scaled to account for the larger 



ptg

478 Chapter 19: Optical Flow

image size. The following code determines the appropriate lookup for the 
guess from the previous pyramid level, when available, and then retrieves 
and scales it: 

  float2 g = {0,0}; 
  // Previous pyramid levels provide input guess. Use if available.
  if( use_guess != 0 ) {
    // lookup in higher level, div by two to find position 
    // because it's smaller
    int gin_x = iIidx.x/2;
    int gin_y = iIidx.y/2;
    float2 g_in = guess_in[gin_y * guess_in_w + gin_x ];
    // multiply the motion by two because we are in a larger level. 
    g.x = g_in.x*2;
    g.y = g_in.y*2;
  }

Next, G is read from its four-component data type buffer. It is then 
inverted to form a 2×2 matrix G-1. When inverting, a determinant is com-
puted and care is taken to set the determinant to a small non-zero value 
in case of a 0 determinant because it is used as a divisor in the 2×2 matrix 
inversion. The following code shows the lookup of the G matrix values 
and the matrix inversion:

  // invert G, 2x2 matrix, use float since 
  // int32 will overflow quickly
  int4 Gmat = read_imagei( G, nnSampler, iIidx );
  float det_G = 
    (float)Gmat.s0 * (float)Gmat.s3 - 
    (float)Gmat.s1 * (float)Gmat.s2 ;
  // avoid possible 0 in denominator
  if( det_G == 0.0f ) det_G = eps;
  float4 Ginv = {
    Gmat.s3/det_G, -Gmat.s1/det_G, 
    -Gmat.s2/det_G,  Gmat.s0/det_G };

The kernel then proceeds by calculating the mismatch vector ∂ ( , )kI x y  in 
equation (5) to find b. Given G-1 and b, the updated motion is found as 
v = G–1b, and the process repeats until convergence or some maximum 
number of iterations. We can define convergence in this case as happen-
ing when the change in the motion vector is negligible, because in that 
case, the next iteration will look up similar values and the motion will 
remain negligible, indicating some local solution has been reached. The 
following code shows this iterative computation of the motion as well as 
the check for convergence:
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  // for large motions we can approximate them faster by applying 
  // gain to the motion
  float2 v = {0,0};
  float gain = 4;
  for( int k=0 ; k < 8 ; k++ ) {
    float2 Jidx = { Iidx.x + g.x + v.x, Iidx.y + g.y + v.y };
    float2 b = {0,0};
    float2 n = {0,0};

    // calculate the mismatch vector
    for( int j=-FRAD ; j <= FRAD ; j++ ) {
      for( int i=-FRAD ; i<= FRAD ; i++ ) {
        int Isample = smemI[tIdx.y + FRAD +j][tIdx.x + FRAD+ i];

        float Jsample = read_imagef( J_float,bilinSampler,
          Jidx+(float2)(i,j) ).x;
        float dIk = (float)Isample - Jsample;
        int ix,iy;
        ix = smem[tIdx.y + FRAD +j][tIdx.x + FRAD+ i];
        iy = smemIy[tIdx.y + FRAD +j][tIdx.x + FRAD+ i];
        b += (float2)( dIk*ix*gain, dIk*iy*gain );
      }
    }

    // Optical flow (Lucas-Kanade).
    //  Solve n = G^-1 * b
    //compute n (update), mult Ginv matrix by vector b
    n = (float2)(Ginv.s0*b.s0 + Ginv.s1*b.s1,Ginv.s2*b.s0 
      + Ginv.s3*b.s1);

    //if the determinant is not plausible, 
    //suppress motion at this pixel
    if( fabs(det_G)<1000) n = (float2)(0,0);
    // break if no motion
    if( length(n) < 0.004  ) break;

    // guess for next iteration: v_new = v_current + n
    v = v + n;
  }
  int2 outCoords = { get_global_id(0), get_global_id(1) }; 

  if( Iidx.x < guess_out_w && Iidx.y < guess_out_h ) {
    guess_out[ outCoords.y * guess_out_w + outCoords.x ] = 
      (float2)(v.x + g.x, v.y + g.y);
  }

} // end kernel
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Sub-Pixel Accuracy with Hardware Linear 
Interpolation
Many algorithms require sub-pixel image sampling. In the case of our LK 
optical flow example, sub-pixel accuracy is required for computing the 
image difference of equation (5) at each iteration k and level L because 
after each iteration, the currently computed motion is used to resample 
the original image data by applying the following offset to the lookup: 

( , )g v g vx
L

x
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L
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This can be easily achieved by sending the current lookup location as 
floating-point values to a texture sampler function, with the sampler set 
to perform linear interpolation: 

− −+ + + +1 1( , )L k L k
x x y yx g v y g v

The GPU will return a bilinearly interpolated sample at the given loca-
tion. Care should be taken when using linear interpolation to offset the 
texture coordinates by 0.5 appropriately, because typically the work-item 
and work-group IDs are used to create an integer index that then needs to 
be offset by 0.5 (the “center” of the texel) before applying any additional 
offsets, such as the motion vectors in our example. On NVIDIA GPUs, 
the CUDA programming guide contains full details on the interpolation 
performed by the hardware. Using hardware interpolation performs what 
would otherwise be four lookups and arithmetic operations in a single 
lookup.

Application of the Texture Cache
A useful feature of the texturing hardware on the GPU is the presence of 
a texture cache. The cache is useful when many samples are taken from a 
2D spatially local area. This occurs frequently in many image-processing 
algorithms. In the case of our optical flow example, the iterative compu-
tation of the mismatch vector in equation (5) requires a number of 2D 
texture lookups within the window area (wx, wy), Additionally, note that 
the center of the window (px, py) varies, dependent on the current motion 
vector guess, and thus the window location varies per iteration and at 
each location because different areas of the image will exhibit different 
motions. 
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Despite the variations, the motions typically exhibit some degree of 
locality per iteration, the update will typically be small and sub-pixel, the 
motion will vary slowly across the image, and regions of an image will 
exhibit similar motions. The texture hardware caching mechanisms are 
transparent to the programmer, and no explicit code or limitations on the 
motion are imposed by the caching mechanism.

Using Local Memory
While the texture cache is useful, a programmer may wish to use it for 
all of I, J and derivative data Ix and Iy. On a GTX 460 graphics card, it was 
observed to achieve only about 65 percent cache hits (a runtime profiler, 
such as the CUDA Visual Profiler, can be used to retrieve these statis-
tics for a kernel). Because so many textures are used, cache data may be 
evicted even though it may need to be reloaded later. 

One observation is that for a given work-group, at each iteration of the 
flow, the same data for I, Ix, and Iy is repeatedly read from the texture. 
To alleviate the demands on the texture cache, we can use OpenCL local 
memory as a user-managed cache. Local memory (also referred to as 
shared memory in the terminology of CUDA hardware) is memory that 
resides at the processing units of a GPU and so can be accessed fast. For 
each work-group, we read from a tile of data the size of the work-group 
plus a border whose width is the width of the window (wx, wy). These 
borders can be considered as an apron around the tile. A tile of data and 
its surrounding apron can be read from texture memory and placed into 
local memory for each of I, Ix, and Iy.

Because the apron and tile areas combined contain more pixels than 
threads in the work-group, the copying of data into local memory can be 
achieved by four reads by the work-group. These read operations copy the 
upper left and right and lower left and right regions of the combined tile 
and apron areas, and care is taken in the latter three not to overrun the 
local memory area. Note that the data for image J is not copied to local 
memory. This is because we are making use of the linear interpolation 
hardware that is used when reading from the texture memory. 

Also at each iteration of the flow calculation the lookup location var-
ies and may move outside any set tile area, and so J is best left in texture 
memory. The values for the G matrix need only be read once and are 
unique to each thread, and so the threads store the values for G as a ker-
nel variable (which places them in a register). After reading the data from 
texture memory into local memory, a barrier call is used to ensure that 
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all threads in the work-group have written their input to local memory. 
Only the copying of data for I is shown for brevity. In the full optical flow 
kernel, these copies are performed for each of I, Ix, and Iy.

Recall from earlier that we are using a FRAD of 4 and a local work-group 
size of 16×8:

#define FRAD 4
#define LOCAL_X 16
#define LOCAL_Y 8

The copying from textures into local memory then can be accomplished 
with a few lines. The local memory size is the size of the work-group 
plus the window radius of FRAD on all sides. Here, we show the code for 
copying into local memory that we alluded to earlier. The code places the 
image values into local memory arrays, which are the size of the work-
group plus the surrounding apron pixels. The following code relies on the 
presence of a global memory cache for efficient access but could also be 
written to minimize non-coalesced accesses on older architectures:

  int2 tIdx = { get_local_id(0), get_local_id(1) };

  // declare some local memory
  __local int smem[2*FRAD + LOCAL_Y][2*FRAD + LOCAL_X] ;

  // load upper left region of smem
  smem[ tIdx.y ][ tIdx.x ] = read_imageui( Ix, nnSampler, 
    Iidx+(float2)(-FRAD,-FRAD) ).x;

  // upper right
  if( tIdx.x < 2*FRAD ) { 
    smem[ tIdx.y ][ tIdx.x + LOCAL_X ] = 
    read_imageui( Ix, nnSampler, 
      Iidx+(float2)(LOCAL_X - FRAD,-FRAD) ).x;
  }
  // lower left
  if( tIdx.y < 2*FRAD ) {
    smem[ tIdx.y + LOCAL_Y ][ tIdx.x ] = 
    read_imageui( Ix, nnSampler, 
      Iidx+(float2)(-FRAD, LOCAL_Y-FRAD) ).x;
  }
  // lower right
  if( tIdx.x < 2*FRAD && tIdx.y < 2*FRAD ) {
    smem[ tIdx.y + LOCAL_Y ][ tIdx.x + LOCAL_X ] = 
    read_imageui( Ix, nnSampler, Iidx+
       (float2)(LOCAL_X - FRAD, LOCAL_Y - FRAD) ).x;
  }
  // Wait for all threads to populate local memory array
  barrier(CLK_LOCAL_MEM_FENCE);
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Early Exit and Hardware Scheduling
The flow calculation is iterative and can exit when the change in motion 
vector becomes negligible. Consider an image taken from a static camera 
where an object moves through the scene. In such a case, motion occurs 
only at points on and around the object and not elsewhere. For the parts 
of the scene that have no motion, the flow calculation can exit early, after 
the first or at most a few iterations (due to noise). Also, motion generally 
tends to be spatially coherent. This means that for many work-groups, all 
the work-items may converge before reaching the maximum number of 
iterations. 

This is advantageous on generations of GPU hardware that are able to effi-
ciently schedule new work-groups as older ones complete. In areas where 
there is motion, the work-groups will remain processing longer. Those 
work-groups that have both motion and non-motion remain resident on 
the GPU until all the work-items complete. The ability of a kernel to exit 
early is advantageous; in the case of the test sequence used in our discus-
sion, without the early exit, it took 1.5 times longer to complete than with 
early exit.

Efficient Visualization with OpenGL Interop
To see optical flow at work, we would like to visualize the resulting flow 
vectors on the screen. When the images are sourced from a camera video 
stream, we can create an interactive viewing application. In this case, 
we would also like to perform the visualization efficiently. There are two 
parts to the visualization: the images and the flow vector. For the image, 
either image I or J is chosen and can be associated with texture data as 
discussed in Chapter 10. This is relatively straightforward; instead we will 
discuss using OpenGL interop to draw the flow vectors as line primitives. 

Because final flow vectors reside on the graphics hardware already, this is 
a good opportunity to use the OpenGL interop capabilities of OpenCL. 
The flow vectors are drawn in the typical way: a vertex buffer is created 
in OpenGL and an associated OpenCL memory object is created from the 
vertex buffer using clCreateFromGLBuffer(). To draw motion vectors 
we wish to draw line segments specified by their start and end positions, 
and so each drawing primitive should have an (x, y) start and end posi-
tion that totals four components. The vertex buffer object is created as 
width×height×sizeof(float)×4 to accommodate four elements (two pairs 
of coordinates). After the flow has been calculated in OpenCL, we use 
OpenCL to set this buffer. 
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A simple kernel is used to write the image coordinates of each pixel as the 
starting coordinates of the vector. This is done by creating a position from 
the global ID of the work-item, which corresponds to a pixel raster coordi-
nate. The kernel is also given the memory object containing the motion 
vector data. The motion vector is added to the coordinates, and this end 
coordinate is written to the last two elements of the vector. Additionally, 
many of the locations are suppressed by setting their start and end posi-
tions to (0, 0) or some offscreen location. This is because if all the vectors 
were shown at the same time, the vectors would be too dense to view. So 
the kernel performs the update only for some pixel locations and ignores 
others. Finally, the results can be displayed by binding the updated vertex 
buffer and calling glDrawArrays() with the GL_LINES primitive argu-
ment, which expects start and end vertices. The kernel to perform these 
operations is shown next. It writes start and end vertex positions and sup-
presses some results for viewing. 

__kernel void motion( 
  __global float4 *p,  // output vertex buffer
  __global float2 *v,  // input flow vectors
  int w, int h )
{
  const int ix = get_global_id(0);
  const int iy = get_global_id(1);

  if( ix < w && iy < h ) {
    float4 startp =  (float4)( ix, iy, ix, iy);
    float2 motion = v[iy*w + ix] ;
    float4 endp = (float4)( 
      startp.x,
      startp.y,
      startp.x + motion.x , 
      startp.y + motion.y );
    if( ix % 10 == 0 && iy % 10 == 0 && 
      fabs(motion.x) < 20 && fabs(motion.y) < 20) 
      p[iy*w + ix ] = (float4)endp;
     else 
      p[iy*w + ix ] = (float4)(0,0,0,0);
  }
}

Performance
Table 19.1 shows the performance of the OpenCL optical flow algorithm. 
Using the radius and iterations shown previously, the GPU LK optical 
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flow pipeline is able to process the test 640×480 “MiniCooper” image 
in 20.5ms on a GTX 460, which contains 7 multiprocessors. On a GTX 
580 with 16 multiprocessors the same test took 9.2ms. The application of 
local memory made a significant difference, which could be seen by using 
either local memory or texture lookups for the image data. 

Table 19.1 GPU Optical Flow Performance

3 Texture Lookups, 
0 Local Memory 
Arrays (ms)

2 Texture Lookups, 
1 Local Memory 
Array (ms)

1 Texture Lookups, 
2 Local Memory 
Arrays (ms)

0 Texture Lookups, 
3 Local Memory 
Arrays (ms)

GTX460 55.8 41.5 31.5 20.5

GTX580 24.8 17.6 13.5 9.2
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Chapter 20

Using OpenCL with PyOpenCL 

While the focus of this book has been on using OpenCL from C and C++, 
bindings for other languages such as Python, Ruby, and .NET have been 
developed. This chapter introduces you to using OpenCL in Python by 
porting the ImageFilter2D example from Chapter 8 to Python. The pur-
pose of this chapter is to introduce you to the basic differences between 
OpenCL and Python and to talk about some of Python’s advantages.

This chapter assumes that you have a working knowledge of program-
ming in Python and are able to set up a Python development environ-
ment. If you are not familiar with the language, teaching you Python is 
beyond the scope of this book. However, there are many terrific resources 
available to learn the language. One highly recommended resource is A
Quick, Painless Tutorial on the Python Language by Norman Matloff of the 
University of California–Davis (available at http://heather.cs.ucdavis.
edu/~matloff/Python/PythonIntro.pdf).  This is an incredibly succinct and 
easy-to-understand tutorial for learning the language quickly.

Introducing PyOpenCL
PyOpenCL is an open-source (MIT-licensed) project that provides bind-
ings between OpenCL and Python. There are a number of features of 
PyOpenCL that make it an attractive library for those looking to work 
with Python. PyOpenCL provides complete access to the OpenCL API. It 
takes great advantage of language features of Python (such as dynamic 
typing) to provide easier-to-use access to OpenCL APIs. Cleanup of objects 
and error checking are done automatically for you, which means you can 
write much less code to interact with OpenCL. Further, because the bind-
ings to OpenCL are natively implemented in C++, there is a relatively low 
overhead for using it. 

As of this writing, PyOpenCL is at version 2011.1 and is considered 
by the authors to be “stable.” That is, code written in PyOpenCL now 

http://heather.cs.ucdavis.edu/~matloff/Python/PythonIntro.pdf
http://heather.cs.ucdavis.edu/~matloff/Python/PythonIntro.pdf
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should continue to function with future versions. The API will provide 
deprecation warnings as it evolves, but it is now at a stable enough state 
to use in development. The latest version and installation instructions 
for  PyOpenCL can be found at the project’s Web site at http://documen.
tician.de/pyopencl/index.html.

Running the PyImageFilter2D Example
The source code for the Python port of the ImageFilter2D example from 
Chapter 8 is provided in the Chapter_20/PyImageFilter2D directory. 
The example was developed in Python v2.6 and requires an installation of 
the following Python packages:

• Numpy: PyOpenCL makes use of numpy for data structures such 
as arrays and numeric types and is a foundation of interacting with 
PyOpenCL. Installation information can be found at http://numpy
.scipy.org/. 

• pyopencl v0.92+: PyOpenCL needs to be built against the OpenCL 
implementation available on your platform, which is done during the 
installation process. Installation instructions are at http://wiki.tiker
.net/PyOpenCL.

• PIL (Python Image Library): The Python Image Library provides 
a number of functions for loading and storing images. Installation 
instructions are at www.pythonware.com/products/pil/. 

Once the necessary dependencies are installed, the example can be run as 
follows:

$ python ImageFilter2D.py input.jpg output.jpg

This example loads the input image from a file, executes a Gaussian filter 
kernel using OpenCL, and then outputs the resultant image to the output 
file. Any image formats that are supported by the PIL can be filtered using 
the program. 

PyImageFilter2D Code
The PyImageFilter2D example was coded by taking the C source from 
the ImageFilter2D example in Chapter 8 and porting it to Python. The 
original example was written in C and was 375 lines long (exluding 

www.pythonware.com/products/pil/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://wiki.tiker.net/PyOpenCL
http://wiki.tiker.net/PyOpenCL
http://documen.tician.de/pyopencl/index.html
http://documen.tician.de/pyopencl/index.html
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comments), whereas the Python version has only 129 lines. A lot of this 
has to do with the fact that PyOpenCL wraps error checking and uses 
dynamic typing for various conveniences. The full listing of the PyImage-
Filter2D example is provided in Listing 20.1. The remainder of this chap-
ter will walk through the stages of the program and discuss the changes 
that were required to move from C to PyOpenCL.

Listing 20.1 ImageFilter2D.py

import pyopencl as cl
import sys
import Image # Python Image Library (PIL)
import numpy

def CreateContext():
    platforms = cl.get_platforms();
    if len(platforms) == 0:
        print "Failed to find any OpenCL platforms."
        return None

    devices = platforms[0].get_devices(cl.device_type.GPU)
    if len(devices) == 0:
        print "Could not find GPU device, trying CPU..."
        devices = platforms[0].get_devices(cl.device_type.CPU)
        if len(devices) == 0:
            print "Could not find OpenCL GPU or CPU device."
            return None

    # Create a context using the first device
    context = cl.Context([devices[0]])
    return context, devices[0]

def CreateProgram(context, device, fileName):
    kernelFile = open(fileName, 'r')
    kernelStr = kernelFile.read()

    # Load the program source
    program = cl.Program(context, kernelStr)

    # Build the program and check for errors
    program.build(devices=[device])

    return program

def LoadImage(context, fileName):
    im = Image.open(fileName)
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    # Make sure the image is RGBA formatted
    if im.mode != "RGBA":
        im = im.convert("RGBA")

    # Convert to uint8 buffer
    buffer = im.tostring()
    clImageFormat = cl.ImageFormat(cl.channel_order.RGBA, 
                                   cl.channel_type.UNORM_INT8)

    clImage = cl.Image(context, 
                       cl.mem_flags.READ_ONLY | 
                       cl.mem_flags.COPY_HOST_PTR,
                       clImageFormat,
                       im.size,
                       None,
                       buffer
                       )

    return clImage, im.size

def SaveImage(fileName, buffer, imgSize):
    im = Image.fromstring("RGBA", imgSize, buffer.tostring())
    im.save(fileName)

def RoundUp(groupSize, globalSize):
    r = globalSize % groupSize;
    if r == 0:
        return globalSize;
    else:
        return globalSize + groupSize - r;

def main():

    imageObjects = [ 0, 0 ]

    # Main
    if len(sys.argv) != 3:
        print "USAGE: " + sys.argv[0] + " <inputImageFile> 
               <outputImageFile>"
        return 1

    # Create an OpenCL context on first available platform
    context, device = CreateContext();
    if context == None:
        print "Failed to create OpenCL context."
        return 1
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    # Create a command-queue on the first device available
    commandQueue = cl.CommandQueue(context, device)

    # Make sure the device supports images, otherwise exit
    if not device.get_info(cl.device_info.IMAGE_SUPPORT):
        print "OpenCL device does not support images."
        return 1

    # Load input image from file and load it into
    # an OpenCL image object
    imageObjects[0], imgSize = LoadImage(context, sys.argv[1])

    # Create ouput image object
    clImageFormat = cl.ImageFormat(cl.channel_order.RGBA, 
                                   cl.channel_type.UNORM_INT8)
    imageObjects[1] = cl.Image(context,
                               cl.mem_flags.WRITE_ONLY,
                               clImageFormat,
                               imgSize)

    # Create sampler for sampling image object
    sampler = cl.Sampler(context,
                         False, #  Non-normalized coordinates
                         cl.addressing_mode.CLAMP_TO_EDGE,
                         cl.filter_mode.NEAREST)

    # Create OpenCL program
    program = CreateProgram(context, device, "ImageFilter2D.cl")

    # Call the kernel directly
    localWorkSize = ( 16, 16 )
    globalWorkSize = ( RoundUp(localWorkSize[0], imgSize[0]),
                       RoundUp(localWorkSize[1], imgSize[1]) )

    program.gaussian_filter(commandQueue,
                            globalWorkSize,
                            localWorkSize,
                            imageObjects[0],
                            imageObjects[1],
                            sampler,
                            numpy.int32(imgSize[0]),
                            numpy.int32(imgSize[1]))

    # Read the output buffer back to the Host
    buffer = numpy.zeros(imgSize[0] * imgSize[1] * 4, numpy.uint8)
    origin = ( 0, 0, 0 )
    region = ( imgSize[0], imgSize[1], 1 )
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    cl.enqueue_read_image(commandQueue, imageObjects[1],
                          origin, region, buffer).wait()

    print "Executed program successfully."

    # Save the image to disk
    SaveImage(sys.argv[2], buffer, imgSize)

main()

Context and Command-Queue Creation
Several of the demo programs that come with PyOpenCL use a conve-
nience function pyopencl.create_some_context() to create a con-
text. By default, if not passed an argument, this function can provide an 
interactive prompt for choosing an OpenCL device on which to create the 
context. For example, on a Linux machine with a dual-GPU NVIDIA GTX 
295, this function produces a prompt such as the following:

Choose device(s):
[0] <pyopencl.Device 'GeForce GTX 295' at 0xab7a90>
[1] <pyopencl.Device 'GeForce GTX 295' at 0xcb6630>
Choice, comma-separated [0]:

If running in non-interactive mode (or if an argument of false is passed 
to the function), a context will be created in an implementation-defined 
manner. While this convenience function is an appropriate way to create 
a context for many programs, in our example we create the context in a 
more traditional way, as shown in Listing 20.2.

Listing 20.2 Creating a Context

def CreateContext():
    platforms = cl.get_platforms();
    if len(platforms) == 0:
        print "Failed to find any OpenCL platforms."
        return None

    devices = platforms[0].get_devices(cl.device_type.GPU)
    if len(devices) == 0:
        print "Could not find GPU device, trying CPU..."
        devices = platforms[0].get_devices(cl.device_type.CPU)
        if len(devices) == 0:



ptg

Loading to an Image Object 493

            print "Could not find OpenCL GPU or CPU device."
            return None

    # Create a context using the first device
    context = cl.Context([devices[0]])
    return context, devices[0]

The call to cl.get_platforms() returns a list of Python objects of type 
pyopencl.Platform. This object contains methods for querying infor-
mation about the platform as well as retrieving a list of all of the devices 
available on the platform. The code in Listing 20.2 simply uses the first 
platform available and then queries to see if any GPU devices are available 
on the platform by calling platforms[0].get_devices(cl.device_
type.GPU). If no GPU devices are found, then the code goes on to check 
whether any CPU devices are available. Finally, the first device found is 
used to create a context by calling cl.Context([devices[0]]). This 
function returns a new pyopencl.Context object from the list of devices 
passed into it. In this case, our list is only a single device, but in general it 
is possible to create the context from a list of devices.

Once the context is created and the list of devices has been retrieved, cre-
ating the command-queue in PyOpenCL is trivial:

commandQueue = cl.CommandQueue(context, device)

This function creates a command-queue for the context and device that 
are passed in. Like other PyOpenCL calls, the command-queue is returned 
as a new object (pyopencl.CommandQueue). The object contains meth-
ods such as get_info() and set_property(), which provide wrappers 
to the low-level OpenCL API functions. In general, this is the pattern that 
OpenCL uses. Each C-typed OpenCL API object (e.g., cl_context) is 
wrapped in a Python class that provides Python methods that interface to 
the OpenCL API calls that are relevant to that object.

Loading to an Image Object
The next step the program takes is to load the input image from disk and 
load its contents into an OpenCL image object. The Python Image Library 
(PIL) is used to load the image from disk and convert it to an RGBA-
formatted image, as shown in Listing 20.3. Once converted to RGBA, 
the image is converted to a Python string using the Image.tostring()
method. This buffer is then loaded to a pyopencl.Image object.
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Listing 20.3 Loading an Image

def LoadImage(context, fileName):
    im = Image.open(fileName)
    # Make sure the image is RGBA formatted
    if im.mode != "RGBA":
        im = im.convert("RGBA")

    # Convert to uint8 buffer
    buffer = im.tostring()
    clImageFormat = cl.ImageFormat(cl.channel_order.RGBA, 
                                   cl.channel_type.UNORM_INT8)

    clImage = cl.Image(context, 
                       cl.mem_flags.READ_ONLY | 
                       cl.mem_flags.COPY_HOST_PTR,
                       clImageFormat,
                       im.size,
                       None,
                       buffer
                       )

    return clImage, im.size

The image format object is created using the pyopencl.ImageFormat con-
structor, which takes as arguments the channel order and  channel type. The 
image format is defined by specifying the channel order with pyopencl
.channel_order and the channel type with pyopencl.channel_type.
This is another design that is used throughout PyOpenCL: rather than hav-
ing one large namespace of enumerants starting with CL_, each is categorized 
for the objects to which it is relevant. 

The creation of the image object is very similar to the OpenCL C API 
with one large difference: there is not a separate API call for each image 
dimensionality (e.g., clCreateImage2D, clCreateImage3D). Rather, the 
dimensions of the image are passed in as a tuple and the implementation 
will choose to create the correct OpenCL image object.

Creating and Building a Program
Creating and building a program are quite easy in PyOpenCL. The simple 
code for loading an OpenCL kernel from a file and building it for a list of 
devices is shown in Listing 20.4.
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Listing 20.4 Creating and Building a Program

def CreateProgram(context, device, fileName):
    kernelFile = open(fileName, 'r')
    kernelStr = kernelFile.read()

    # Load the program source
    program = cl.Program(context, kernelStr)

    # Build the program and check for errors
    program.build(devices=[device])

    return program

The source code to the kernel is read into a string buffer and then 
the program is created using cl.Program(context, kernelStr).
Building the program for the device is done by calling program.
build(devices=[device]). Whereas normally one has to write code 
to check whether compile errors occurred and if so grab the info log, this 
is not necessary in PyOpenCL. If a compile error occurs, PyOpenCL will 
throw an exception containing the result of the build log.

Setting Kernel Arguments and Executing 
a Kernel
Perhaps the best advantage of PyOpenCL dynamic typing is in how kernel 
arguments are set and the kernel is executed. The kernels defined in the 
OpenCL program actually become methods of the program object that was 
created. For example, in the ImageFilter2D.cl the gaussian_fil-
ter() is declared with the following function signature:

__kernel void gaussian_filter(__read_only image2d_t srcImg,
                              __write_only image2d_t dstImg,
                              sampler_t sampler,
                              int width, int height)

Once the program is built, this kernel actually dynamically becomes a 
method of the pyopencl.Program that was created. Rather than having 
to manually set kernel arguments by index using clSetKernelArg()and 
executing the program using clEnqueueNDRangeKernel(), the method 
can be invoked directly as if it were a function, as shown in Listing 20.5.
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Listing 20.5 Executing the Kernel

    # Call the kernel directly
    localWorkSize = ( 16, 16 )
    globalWorkSize = ( RoundUp(localWorkSize[0], imgSize[0]),
                       RoundUp(localWorkSize[1], imgSize[1]) )

    program.gaussian_filter(commandQueue,
                            globalWorkSize,
                            localWorkSize,
                            imageObjects[0],
                            imageObjects[1],
                            sampler,
                            numpy.int32(imgSize[0]),
                            numpy.int32(imgSize[1]))

The localWorkSize and globalWorkSize are computed and stored in 
tuples. The execution of the gaussian_filter() method will, under-
neath the hood, set the kernel arguments and queue the kernel for execu-
tion. It is also possible to provide events to wait for as a last argument to 
the function (although this was not done in this example). It is easy to see 
how this convenience not only makes the code more readable, but also 
makes executing kernels significantly simpler than using the low-level API.

Reading the Results
Finally, after executing the kernel, the program reads back the results of 
the filtered image object into a host memory buffer to write it to a file. 
The code for this is shown in Listing 20.6.

Listing 20.6 Reading the Image into a Numpy Array

    # Read the output buffer back to the Host
    buffer = numpy.zeros(imgSize[0] * imgSize[1] * 4, numpy.uint8)
    origin = ( 0, 0, 0 )
    region = ( imgSize[0], imgSize[1], 1 )

    cl.enqueue_read_image(commandQueue, imageObjects[1],
                          origin, region, buffer).wait()

A numpy array is initialized to the appropriate size with type uint8 in 
which to store the results. The image is read back to the host by calling 
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pyopencl.enqueue_read_image(). This function returns a pyopencl
.Event object. In order to ensure that the buffer is read before moving 
in, the code explicitly calls the wait() method on the resultant event 
object. Finally, this host buffer is saved to an image file using the PIL in 
the SaveImage() function from Listing 20.1.
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Chapter 21

Matrix Multiplication with OpenCL

Matrix multiplication is commonly used to demonstrate program opti-
mization in high-performance computing. In its most basic form, matrix 
multiplication is a toy program consisting of a single multiply-accumulate 
statement buried inside a triply nested loop. Unlike most toy programs, 
however, matrix multiplication has a more serious side. First, this opera-
tion is the single most important building block for dense linear algebra 
computations. Second, if you work at it hard enough, matrix multipli-
cation can run near the peak performance of most modern processors. 
Therefore, it presents many opportunities for performance optimization, 
and making it fast has practical value.

In this discussion, we will start with a simple matrix multiplication func-
tion for a CPU. We will convert the code into OpenCL. And then we 
will explore a series of code transformations that take advantage of the 
OpenCL memory model to optimize the program. Along the way, we will 
report performance results for the multiplication of square matrices of 
order 1000. All the results in this chapter were generated on an Intel Core 
Duo CPU (T8300) running at 2.4GHz and a GeForce 8600M GT GPU from 
NVIDIA. The OpenCL release used in the benchmarks was provided by 
Apple as part of the Snow Leopard release of OS X. 

The Basic Matrix Multiplication Algorithm
A dense matrix is a rectangular array of numbers. It is called “dense” 
because the numbers are almost always non-zero; hence there is no rea-
son to keep track of zeros to reduce storage or accelerate computations. 
Throughout this discussion, we will consider three matrices: A (N by P), 
B (P by M), and C (N by M). Multiplication of A times B with the result 
added into C is mathematically defined as
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Matrix multiplication, as shown in Figure 21.1 for the (i, j)th element of 
C, consists of a dot product of the ith row of A with the jth column of B. A 
program to carry out this computation is shown in Listing 21.1. It consists 
of a double nested loop to run over the elements of the C matrix. Inside is 
an additional loop to compute the appropriate dot product. 

C (i,j ) C (i,j ) A (i,: )
B(:,j )= + *

Figure 21.1 A matrix multiplication operation to compute a single element of 
the product matrix, C. This corresponds to summing into each 
element Ci,j the dot product from the ith row of A with the jth 
column of B.

In the listing we represent the matrices as one-dimension arrays with 
explicit index algebra to map the pair of indices onto a single index. This 
is a common technique when dealing with multidimension arrays. The 
program using GCC with default compiler settings ran at 167 MFLOPS.

Listing 21.1 A C Function Implementing Sequential Matrix Multiplication

void seq_mat_mul(
   int Mdim, int Ndim, int Pdim, // matrix dimensions
   float *A, float *B, float *C) // C = C + A * B
  {
       int i, j, k;
       float tmp;

       for (i=0; i<Ndim; i++){
              for (j=0; j<Mdim; j++){
                  tmp = 0.0;
                  for(k=0;k<Pdim;k++){
                     // C[i][j]+=A[i][k]* B[k][j];
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                      tmp += *(A+(i*Ndim+k)) *  *(B+(k*Pdim+j));
                  }
                  *(C+(i*Ndim+j)) = tmp;
            }
        }
}

A Direct Translation into OpenCL
The matrix multiplication program from Listing 21.1 can be directly 
converted into an OpenCL kernel. The result is shown in Listing 21.2. 
Each work-item is assigned an element of the product matrix to compute. 
The outer two loops over i and j are deleted and replaced with calls to a 
function to find the global ID for the work-item in each of the two dimen-
sions. Care is taken to make sure the resulting work-item IDs fit within 
the C matrix, at which point the dot product is carried out to compute the 
matrix product for element i, j of the C matrix. Note that all three matri-
ces are left in global memory. The resulting performance on the GPU was 
511 MFLOPS, and the identical code on the CPU was 744 MFLOPS.

Listing 21.2 A kernel to compute the matrix product of A and B summing the 
result into a third matrix, C. Each work-item is responsible for a 
single element of the C matrix. The matrices are stored in global 
memory.

const char *C_elem_KernelSource = "\n" \
"__kernel mmul(                                             \n" \
"   const int Mdim,                                         \n" \
"   const int Ndim,                                         \n" \
"   const int Pdim,                                         \n" \
"   __global float* A,                                      \n" \
"   __global float* B,                                      \n" \
"   __global float* C)                                      \n" \
"{                                                          \n" \
"   int k;                                                  \n" \
"   int i = get_global_id(0);                               \n" \
"   int j = get_global_id(1);                               \n" \
"   float tmp;                                              \n" \
"   if( (i < Ndim) && (j <Mdim))                            \n" \
"   {                                                       \n" \
"       tmp = 0.0;                                          \n" \
"       for(k=0;k<Pdim;k++)                                 \n" \
"           tmp         += A[i*Ndim+k] *  B[k*Pdim+j];      \n" \
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"       C[i*Ndim+j] = tmp;                                  \n" \
"   }                                                       \n" \
"}                                                          \n" \
"\n";

The host code for the OpenCL matrix multiplication program is provided 
in Listing 21.3. The first available platform and a device are selected. 
While the host code from the listing shows a CPU device, this same host 
program can be used with a GPU by replacing the constant CL_DEVICE_
TYPE_CPU in the call to clGetDeviceIDs() with CL_DEVICE_TYPE_
GPU. A command-queue is established with profiling enabled through the 
CL_QUEUE_PROFILING_ENABLE property followed by the definition of 
the matrices on the host. In this program, two basic matrix manipulation 
functions are used to initialize the matrices and then later test the results. 
Because the contents of these functions are simple and not illustrative of 
the concepts discussed in this chapter, these functions are not included in 
this listing.

The memory objects are set up by calls to clCreateBuffer(). The pro-
gram is then constructed from a string literal (the one in Listing 21.2). 
Throughout this listing, the error testing has been deleted in order to save 
space. An exception is made, however, for the case of building a program 
because it is important to understand how to display the output from the 
OpenCL compiler using a call to clGetProgramBuildInfo().

The kernel and the kernel arguments are then set up, after which the buf-
fers associated with the matrices are submitted to the command-queue. 
The command-queue is in-order, so it is safe to assume that the memory 
objects are present in the global memory when the kernel is enqueued. 
The global dimensions for a two-dimension NDRange are set, while in 
this case the local dimensions are not set (i.e., they are set to NULL). This 
was done so that the OpenCL implementation could choose the local 
dimensions, thereby adjusting to the needs of the CPU or the GPU com-
pute device without programmer intervention.

The host waits for the kernel to complete, at which point timing data 
is extracted from the enqueue kernel event with calls to clGetEvent-
ProfilingInfo(), once with CL_PROFILING_COMMAND_START and then 
again with CL_PROFILING_COMMAND_END. The memory object associated 
with the C matrix is then copied onto the host and the results tested. The 
host program finishes by cleaning up the environment and releasing vari-
ous OpenCL objects.
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Listing 21.3 The Host Program for the Matrix Multiplication Program

#ifdef APPLE
#include <OpenCL/opencl.h>
#else
#include "CL/cl.h"
#endif
#define ORDER 1000

int main(int argc, char **argv)
{
    float            *A;               // A matrix 
    float            *B;               // B matrix
    float            *C;               // C matrix (C = A*B)
    int              Mdim, Ndim, Pdim; // A[N][P], B[P][M], C[N][M] 
    int              err;              // error code from OpenCL
    int              szA, szB, szC;    // number of matrix elements
    size_t           global[DIM];      // global domain size
    size_t           local[DIM];       // local  domain size
    cl_device_id     device_id;        // compute device id 
    cl_context       context;          // compute context
    cl_command_queue commands;         // compute command queue
    cl_program       program;          // compute program
    cl_kernel        kernel;           // compute kernel
    cl_uint          nd;               // Number of dims in NDRange
    cl_mem           a_in;             // Memory object for A matrix 
    cl_mem           b_in;             // Memory object for B matrix
    cl_mem           c_out;            // Memory Object for C matrix
    int              i;

    Ndim = ORDER;    Pdim = ORDER;    Mdim = ORDER;

//------------------------------------------------------------------- 
// Set up the OpenCL platform using whichever platform is "first"
//------------------------------------------------------------------- 
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;

    err = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);

    err = clGetDeviceIDs(firstPlatformId, CL_DEVICE_TYPE_CPU, 1, 
                         &device_id, NULL);

    cl_context_properties properties [] =
    {
       CL_CONTEXT_PLATFORM, (cl_context_properties)firstPlatformId,0
    };
    context = clCreateContext(properties, 1, &device_id, NULL, NULL,
                          &err);
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    commands = clCreateCommandQueue(context, device_id, 
          CL_QUEUE_PROFILING_ENABLE, &err);

    // Set up matrices 
    szA = Ndim*Pdim;    szB = Pdim*Mdim;     szC = Ndim*Mdim;
    A   = (float *)malloc(szA*sizeof(float));
    B   = (float *)malloc(szB*sizeof(float));
    C   = (float *)malloc(szC*sizeof(float));
    initmat(Mdim, Ndim, Pdim, A, B, C);  // function to set matrices 
                                         // to known values.
//------------------------------------------------------------------- 
// Set up the buffers, initialize matrices, and write them 
// into global memory
//------------------------------------------------------------------- 

    a_in   = clCreateBuffer(context,  CL_MEM_READ_ONLY,
                   sizeof(float) * szA, NULL, NULL);
    b_in   = clCreateBuffer(context,  CL_MEM_READ_ONLY,
                   sizeof(float) * szB, NULL, NULL);
    c_out  = clCreateBuffer(context,  CL_MEM_WRITE_ONLY, 
                   sizeof(float) * szC, NULL, NULL); 

    // Create the compute program from the source buffer
    *program = clCreateProgramWithSource(context, 1, 
                (const char **) & C_elem_KernelSource, NULL, &err);

    // Build the program
    err = clBuildProgram(*program, 0, NULL, NULL, NULL, NULL);
    if (err != CL_SUCCESS)
    {
        size_t len;
        char buffer[2048];

        printf("Error: Failed to build program executable!\n");
        clGetProgramBuildInfo(*program, device_id, 
                            CL_PROGRAM_BUILD_LOG, 
                            sizeof(buffer), buffer, &len); 
        printf("%s\n", buffer);
        return FAILURE;
    }

    // Create the compute kernel from the program 
    *kernel = clCreateKernel(*program, "mmul", &err);

    // Set the arguments to our compute kernel
    err  = 0;
    err  = clSetKernelArg(*kernel, 0, sizeof(int),    &Mdim);
    err |= clSetKernelArg(*kernel, 1, sizeof(int),    &Ndim);
    err |= clSetKernelArg(*kernel, 2, sizeof(int),    &Pdim);
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    err |= clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in);
    err |= clSetKernelArg(*kernel, 4, sizeof(cl_mem), &b_in);
    err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);

    // Write the A and B matrices into compute device memory 
    err = clEnqueueWriteBuffer(commands, a_in, CL_TRUE, 0, 
                        sizeof(float) * szA, A, 0, NULL, NULL);
    err = clEnqueueWriteBuffer(commands, b_in, CL_TRUE, 0, 
                        sizeof(float) * szB, B, 0, NULL, NULL);
    cl_event prof_event;

    // Execute the kernel over the entire range of C matrix elements 
    global[0] =(size_t) Ndim; global[1] =(size_t) Mdim; *ndim = 2;
    err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, 
                            global, NULL, 0, NULL, &prof_event);
    // Wait for the commands to complete before reading back results
    clFinish(commands);

    cl_ulong ev_start_time=(cl_ulong)0;
    cl_ulong ev_end_time=(cl_ulong)0;
    size_t ret_size;

    err = clGetEventProfilingInfo(prof_event,
                    CL_PROFILING_COMMAND_START,
                    sizeof(cl_ulong), 
                    &ev_start_time,
                    NULL);

    err = clGetEventProfilingInfo(prof_event,
                    CL_PROFILING_COMMAND_END,
                    sizeof(cl_ulong), 
                    &ev_end_time,
                    NULL);
    // Read back the results from the compute device
          err = clEnqueueReadBuffer( commands, c_out, CL_TRUE, 0, 
                         sizeof(float) * szC, C, 0, NULL, NULL ); 

          run_time  = ev_end_time - ev_start_time;
          results(Mdim, Ndim, Pdim, C, run_time);

    clReleaseProgram(program);
    clReleaseKernel(kernel);
    clReleaseMemObject(a_in);
    clReleaseMemObject(b_in);
    clReleaseMemObject(c_out);
    clReleaseCommandQueue(commands);
    clReleaseContext(context);
}
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Increasing the Amount of Work per Kernel
In parallel programming, it is important to manage a computation to 
minimize parallel overhead. With order-1000 matrices, one work-item per 
matrix element results in a million work-items. This seems a bit exces-
sive, so in the next version of the program, each work-item will compute 
a row of the matrix. The modifications required to support this change 
are illustrated in Figure 21.2. An entire row of the C matrix is computed 
using one row from the A matrix repeatedly while sweeping through the 
columns of the B matrix. The NDRange is changed from a 2D range set 
to match the dimensions of the C matrix to a 1D range set to the number 
of rows in the C matrix. At this point we switch our focus to the GPU, 
which in this case (as shown by a call to clGetDeviceInfo() with CL_
DEVICE_MAX_COMPUTE_UNITS) has four compute units. Hence we set the 
work-group size to 250 and create four work-groups to cover the full size 
of the problem.

C (i,j ) C (i,j ) A (i,: )
B(:,j )= + *

1000

10
00

250

Figure 21.2 Matrix multiplication where each work-item computes an entire 
row of the C matrix. This requires a change from a 2D NDRange 
of size 1000×1000 to a 1D NDRange of size 1000. We set the 
work-group size to 250, resulting in four work-groups (one for each 
compute unit in our GPU). 

The kernel and changes to the host program required for this case are 
shown in Listing 21.4. The kernel is similar to the previous version except 
the code now includes a loop over the j index so the kernel marches 
across a row of C for each work-item. Note that as before the computation 
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works with the memory objects directly from global memory. The result-
ing performance on the GPU is 258 MFLOPS, which is a considerable 
drop from our value of 511 MFLOPS. In a real project (as opposed to this 
simple example) different work-group sizes would be tried to improve 
performance and better align with the properties of the GPU. In this 
case, however, we will settle for 258 MFLOPS and proceed with further 
optimizations.

Listing 21.4 Each work-item updates a full row of C. The kernel code is shown as 
well as changes to the host code from the base host program in 
Listing 21.3. The only change required in the host code was to the 
dimensions of the NDRange.

const char *C_row_KernelSource = "\n" \
"__kernel mmul(                                             \n" \
"   const int Mdim,                                         \n" \
"   const int Ndim,                                         \n" \
"   const int Pdim,                                         \n" \
"   __global float* A,                                      \n" \
"   __global float* B,                                      \n" \
"   __global float* C)                                      \n" \
"{                                                          \n" \
"   int k,j;                                                \n" \
"   int i = get_global_id(0);                               \n" \
"   float tmp;                                              \n" \
"   if( (i < Ndim) )                                        \n" \
"   {                                                       \n" \
"       for(j=0;j<Mdim;j++){                                \n" \
"          tmp = 0.0;                                       \n" \
"          for(k=0;k<Pdim;k++)                              \n" \
"              tmp         += A[i*Ndim+k] *  B[k*Pdim+j];   \n" \
"          C[i*Ndim+j] = tmp;                               \n" \
"       }                                                   \n" \
"   }                                                       \n" \
"}                                                          \n" \
"\n";

//------------------------------------------------------------------
// Host code changes . . . change to a 1D NDRange and set local 
// work-group size
//------------------------------------------------------------------

   global[0] = (size_t) Ndim; 
   local[0]  = (size_t) 250;
   *ndim     = 1;
   err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global,
                                local, 0, NULL, NULL);
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The core of matrix multiplication is a multiply-accumulate computation. 
Most processors have sufficient bandwidth into the ALU to keep this com-
putation running near peak performance, but only if the data movement 
costs can be hidden. Hence, the essence of optimizing matrix multiplica-
tion is to minimize data movement. Our matrix multiplication kernels up 
to this point have left all three matrices in global memory. This means the 
computation streams rows and columns through the memory hierarchy 
(global to private) repeatedly for each dot product. 

We can reduce this memory traffic by recognizing that each work-item 
reuses the same row of A for each row of C that is updated. This is shown 
in Figure 21.3.

C (i,j ) C (i,j ) A (i,: )
B(:,j )= + *

Private memory of
each work-item

Figure 21.3 Matrix multiplication where each work-item computes an entire 
row of the C matrix. The same row of A is used for elements in the 
row of C so memory movement overhead can be dramatically 
reduced by copying a row of A into private memory.

This version of the matrix multiplication program uses the same host code 
as the prior case. Even the kernel code is only slightly changed. In Listing 
21.5, a float array of size 1000 is defined. Because this occurs inside the 
kernel, the memory is allocated in the private memory of the processing 
element that will run the kernel. Then, prior to computing the dot prod-
ucts for the elements of the C matrix, the required row of the A matrix 
is copied from global memory into private memory. The use of private 
memory for the row of A had a dramatic impact on performance, from 
our prior result of 258 MFLOPS to 873 MFLOPS.

Listing 21.5 Each work-item manages the update to a full row of C, but before 
doing so the relevant row of the A matrix is copied into private 
memory from global memory.

const char *C_row_priv_KernelSource = "\n" \
"__kernel void mmul(                                       \n" \
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"   const int Mdim,                                        \n" \
"   const int Ndim,                                        \n" \
"   const int Pdim,                                        \n" \
"   __global float* A,                                     \n" \
"   __global float* B,                                     \n" \
"   __global float* C)                                     \n" \
"{                                                         \n" \
"   int k,j;                                               \n" \
"   int i = get_global_id(0);                              \n" \
"   float Awrk[1000];                                      \n" \
"   float tmp;                                             \n" \
"   if( (i < Ndim) )                                       \n" \
"   {                                                      \n" \
"       for(k=0;k<Pdim;k++)                                \n" \
"          Awrk[k] = A[i*Ndim+k];                          \n" \
"                                                          \n" \
"       for(j=0;j<Mdim;j++){                               \n" \
"          tmp = 0.0;                                      \n" \
"          for(k=0;k<Pdim;k++)                             \n" \
"              tmp         += Awrk[k] *  B[k*Pdim+j];      \n" \
"          C[i*Ndim+j] = tmp;                              \n" \
"       }                                                  \n" \
"   }                                                      \n" \
"}                                                         \n" \
"\n";

Optimizing Memory Movement: Local Memory
A careful consideration of the dot products in the matrix multiplication 
shows that while each work-item reuses its own unique row of A, all the 
work-items in a group repeatedly stream the same columns of B through 
the compute device in the course of updating a row of C. This is shown 
in Figure 21.4. We can reduce the overhead of moving data from global 
memory if the work-items comprising a work-group copy the columns of 
the matrix B into local memory before they start updating their rows of C.

To support this optimization, changes were needed in both the kernel 
and the host program. These changes are shown in Listing 21.6. The key 
change was to set up the local memory for each kernel. This is needed 
because dynamic memory allocation within a kernel is not supported in 
OpenCL. Hence, a memory object of the appropriate size had to be allo-
cated on the host and then passed as an argument to the kernel. This is 
done by an extra call to clSetKernelArg(). Then inside the kernel, the 
work-items copy a column of B into local memory. This is done in parallel 
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using a cyclic distribution of the loop iterations. Before any work-item can 
proceed, all the copying must complete. Hence, the loop that carries out 
the copies is followed by a barrier(CLK_LOCAL_MEM_FENCE); with the 
memory fence selected to ensure that each work-item in the group sees 
a consistent state for the local memory. Following the barrier, the kernel 
code is essentially the same as in the previous case. This modification had 
a dramatic impact on performance, taking the matrix multiplication from 
873 MFLOPS to 2472 MFLOPS.

Listing 21.6 Each work-item manages the update to a full row of C. Private 
memory is used for the row of A and local memory (Bwrk) is used 
by all work-items in a work-group to hold a column of B. The host 
code is the same as before other than the addition of a new 
argument for the B-column local memory.

const char *C_row_priv_bloc_KernelSource = "\n" \
"__kernel void mmul(                                         \n" \
"   const int Mdim,                                          \n" \
"   const int Ndim,                                          \n" \
"   const int Pdim,                                          \n" \
"   __global float* A,                                       \n" \
"   __global float* B,                                       \n" \
"   __global float* C,                                       \n" \
"   __local  float* Bwrk)                                    \n" \
"{                                                           \n" \
"   int k,j;                                                 \n" \
"   int i    = get_global_id(0);                             \n" \
"   int iloc = get_local_id(0);                              \n" \

Local memory for
each work-group

C (i,j ) C (i,j ) A (i,: )
B(:,j )= + *

Private memory of
each work-item

Figure 21.4 Matrix multiplication where each work-item computes an entire 
row of the C matrix. Memory traffic to global memory is 
minimized by copying a row of A into each work-item’s private 
memory and copying rows of B into local memory for each 
work-group.
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"   int nloc = get_local_size(0);                            \n" \
"   float Awrk[1000];                                        \n" \
"   float tmp;                                               \n" \
"   if( (i < Ndim) )                                         \n" \
"   {                                                        \n" \
"       for(k=0;k<Pdim;k++)                                  \n" \
"          Awrk[k] = A[i*Ndim+k];                            \n" \
"                                                            \n" \
"       for(j=0;j<Mdim;j++){                                 \n" \
"          for(k=iloc;k<Pdim;k=k+nloc)                       \n" \
"              Bwrk[k] = B[k*Pdim+j];                        \n" \
"       barrier(CLK_LOCAL_MEM_FENCE);                        \n" \
"          tmp = 0.0;                                        \n" \
"          for(k=0;k<Pdim;k++)                               \n" \
"              tmp         += Awrk[k] *  Bwrk[k];            \n" \
"          C[i*Ndim+j] = tmp;                                \n" \
"       }                                                    \n" \
"   }                                                        \n" \
"}                                                           \n" \
"\n";

//------------------------------------------------------------------
// Host code modifications  . . Added one more argument (6) to the 
// list of args for the kernel. Note that an OpenCL memory object 
// is not provided since this is to be used in local memory.
//------------------------------------------------------------------
    err  = 0;
    err  = clSetKernelArg(*kernel, 0, sizeof(int),    &Mdim);
    err |= clSetKernelArg(*kernel, 1, sizeof(int),    &Ndim);
    err |= clSetKernelArg(*kernel, 2, sizeof(int),    &Pdim);
    err != clSetKernelArg(*kernel, 3, sizeof(cl_mem), &a_in);
    err |= clSetKernelArg(*kernel, 4, sizeof(cl_mem), &b_in);
    err |= clSetKernelArg(*kernel, 5, sizeof(cl_mem), &c_out);
    err |= clSetKernelArg(*kernel, 6, sizeof(float)*Pdim, NULL);

Performance Results and Optimizing the Original 
CPU Code
Performance results from this example are summarized in Table 21.1. 
Directly translating the program into OpenCL for the CPU resulted in 
a significant performance improvement. Most of this chapter, however, 
focused on the GPU. In particular, these results show the impact of opti-
mizing how data is mapped onto global, private, and local memory.



ptg

512 Chapter 21: Matrix Multiplication with OpenCL

Table 21.1 Matrix Multiplication (Order-1000 Matrices) Results Reported as 
MFLOPS and as Speedup Relative to the Unoptimized Sequential C 
Program (i.e., the Speedups Are “Unfair”)

Matrix Multiplication Optimization Case MFLOPS Speedup

CPU: Sequential code in C (no optimization) 167 1

CPU: C(i, j) per work-item, all global memory 744 4.5

GPU: C(i, j) per work-item, all global memory 511 3

GPU: C row per work-item, all global memory 258 1.5

GPU: C row per work-item, A private, B in global 
memory

873 5.2

GPU: C row per work-item, A private, B in local 
memory

2472 15

There is an impressive 15-fold speedup for the optimized GPU code versus 
the CPU code. This speedup value, however, is misleading. Considerable 
effort was expended to optimize the code on the GPU, but no effort what-
soever was expended to optimize the sequential code on the CPU. This 
situation, inflating speedups by comparing to an unoptimized sequential 
code, happens all too often and has led to unrealistic expectations of the 
benefits of moving from a CPU to a GPU.

Consider the functions in Listing 21.7. These simple optimizations per-
mute the order of the three nested loops. This serves to change the mem-
ory access patterns and hence reuse of data from the cache as the contents 
of the three matrices are streamed through the CPU. Following common 
practice in the linear algebra literature, we call the dot product algorithm 
ijk and the two permutations ikj and kij. We also changed the data type 
from single to double and used the O3 compiler switch to GCC. Perfor-
mance in MFLOPS varied considerably with 272, 1130, and 481 for the kjk,
ikj, and kij, respectively. Note that this is the most trivial of optimizations 
and many additional optimization are well known (cache blocking, TLB 
blocking, SSE). Still, with these optimizations, our more honest sequential 
CPU reference point becomes 1130 MFLOPS, which reduces the OpenCL-
GPU maximum speedup to a more realistic value of 2.2.
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Listing 21.7 Different Versions of the Matrix Multiplication Functions Showing 
the Permutations of the Loop Orderings

void mat_mul_ijk(int Mdim, int Ndim, int Pdim, double *A, 
                 double *B, double *C)
{
    int i, j, k;
    for (i=0; i<Ndim; i++){
        for (j=0; j<Mdim; j++){
          for(k=0;k<Pdim;k++){
               /* C(i,j) = sum(over k) A(i,k) * B(k,j) */
               C[i*Ndim+j] += A[i*Ndim+k] *  B[k*Pdim+j];
             }
          }
    }
}

void mat_mul_ikj(int Mdim, int Ndim, int Pdim, double *A, 
                 double *B, double *C)
{
    int i, j, k;
    for (i=0; i<Ndim; i++){
          for(k=0;k<Pdim;k++){
        for (j=0; j<Mdim; j++){
               /* C[i][j] += sum(over k) A[i][k] * B[k][j] */
               C[i*Ndim+j]  += A[i*Ndim+k] *  B[k*Pdim+j];
             }
          }
    }
}

void mat_mul_kij(int Mdim, int Ndim, int Pdim, double *A, 
                 double *B, double *C)
{
    int i, j, k;
          for(k=0;k<Pdim;k++){
    for (i=0; i<Ndim; i++){
        for (j=0; j<Mdim; j++){
               /* C[i][j] += sum(over k) A[i][k] * B[k][j] */
               C[i*Ndim+j]  += A[i*Ndim+k] *  B[k*Pdim+j];
             }
          }
    }
}
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Chapter 22

Sparse Matrix-Vector Multiplication

By Gordon Fossum

This chapter describes an optimized implementation of the Sparse Matrix-
Vector Multiplication (SpMV) algorithm using OpenCL.

Sparse matrices, for the purposes of this chapter, are defined as large two-
dimensional matrices in which the vast majority of the elements of the 
matrix are equal to zero. They may be largely diagonal, or not. They may 
be symmetric, or not (perhaps not even square). They may be singular 
(containing entire rows with no non-zero elements), or not. They are used 
to characterize and solve problems in a wide variety of domains. 

The sample uses a new portable tiled and packetized sparse matrix data 
format, which has both a single-precision and a double-precision instan-
tiation. The format is intended to improve cache utilization and minimize 
“gather/scatter” inefficiency. 

The implementation demonstrates OpenCL’s ability to bridge the gap 
between hardware-specific code (fast, but not portable) and single-source 
code (very portable, but slow), yielding a high-performance, efficient 
implementation on a variety of hardware that is almost as fast as a hard-
ware-specific implementation. 

These results are accomplished with kernels written in OpenCL C that can 
be compiled and run on any conforming OpenCL platform.

Sparse Matrix-Vector Multiplication (SpMV) 
Algorithm
The SpMV algorithm efficiently multiplies a sparse matrix by an input 
vector, producing an output vector. That is, it computes an equation of 



ptg

516 Chapter 22: Sparse Matrix-Vector Multiplication

the form y = A * x, where y and x are vectors and A is a matrix, which in 
this case is a sparse matrix.

Various sparse matrix representation schemes have been proposed that 
seek to balance the competing needs of minimizing the memory footprint 
of the sparse matrix while maximizing the performance of the algorithm. 

One traditional method for representing a sparse matrix is to create three 
arrays of binary data, one containing the non-zero floating-point data 
of the matrix (referred to as Val); another, same-size array containing 
the column index where each of these non-zero elements comes from 
(referred to as Col_ind); and a third, smaller array containing the indices 
into the previous two arrays where each row starts (referred to as Row_
ptr). This is commonly referred to as either the compressed sparse row 
(CSR) or compressed row storage (CRS) format.

For example, look at the sparse matrix in Figure 22.1.

2.2 0.0 0.0 0.0 0.0 0.0 7.1 3.3 0.0

0.0 8.5 0.0 0.0 0.0 0.0 0.0 6.2 0.0

0.0 0.0 1.7 6.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 9.2 0.0 0.0 0.0

2.9 0.0 0.0 0.0 0.0 0.0 1.3 4.2 0.0

0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 9.8

Figure 22.1 Sparse matrix example

This sparse matrix would be represented with three arrays, as follows:

Val = {2.2, 7.1, 3.3, 8.5, 6.2, 1.7, 6.6, 4.5, 9.2, 2.9, 1.3, 4.2, 3.7, 9.8}; 

Col_ind = {0, 6, 7, 1, 7, 2, 3, 4, 5, 0, 6, 7, 2, 8}; 

Row_ptr = {0, 3, 5, 7, 8, 9, 12}; 

A more basic method is to create an ASCII file with header information 
consisting of the name of the matrix, whether the matrix is symmetric 
or not (symmetric or general, respectively), and whether the file merely 
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contains the pattern of non-zero content or actually contains the values 
of these non-zero elements (pattern or coordinate, respectively). The body 
of this file then contains a series of lines, where each line contains a row 
index, a column index, and (optionally) a data value. This is referred 
to as Matrix Market (MM) exchange format (see http://math.nist.gov/ 
MatrixMarket/formats.html for more information) and is used most nota-
bly by the University of Florida in its large collection of sparse and dense 
matrices (www.cise.ufl.edu/research/sparse/matrices).

Various other matrix representations are described in previous implemen-
tations of SpMV, which were targeted at particular hardware platforms 
and developed before the advent of OpenCL. 

In the paper “Efficient Sparse Matrix-Vector Multiplication on CUDA,”1

a hybrid approach is adopted that seeks to optimize for several potential 
storage formats: coordinate (COO), CSR, ELLPACK, and a Packet format, 
which differs from the one in this chapter in several particulars. The two 
most important are that the output indices are not individually stored, 
but rather a single offset is loaded into the packet, and all output data is 
implicitly keyed off of that one offset. Further, every read-modify-write 
operation to the local output buffer is fully coalesced across 16 compute 
units.

In the paper “Optimizing Sparse Matrix-Vector Multiplication on GPUs,”2

the authors choose to concentrate on the CSR format and implement 
variants on CSR that are more suited for GPU architectures. In particular, 
16 threads are assigned to each row in the CSR format, and each thread 
strides through the row, computing on only every sixteenth element. The 
format is further modified to pad the rows to multiples of 16. Further, 
they analyze the matrix to identify dense sub-blocks and deal with them 
in a special way. 

The device-independent tiled and packetized sparse matrix representation 
used by this implementation has a single format (actually a format for 
single precision and a format for double precision) and achieves perfect 
coalescing of all matrix accesses and output accesses.

1 Nathan Bell and Michael Garland, “Efficient Sparse Matrix-Vector 
Multiplication on CUDA,” NVIDIA Technical Report NVR-2008-004 
(December 2008), www.nvidia.com/object/nvidia_research_pub_001.html.

2 Muthu Manikandan Baskaran and Rajesh Bordawekar, “Optimizing Sparse 
Matrix-Vector Multiplication on GPUs”, RC24704 (2008), http://domino.
watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/1
d32f6d23b99f7898525752200618339.

http://math.nist.gov/MatrixMarket/formats.html
http://math.nist.gov/MatrixMarket/formats.html
www.cise.ufl.edu/research/sparse/matrices
www.nvidia.com/object/nvidia_research_pub_001.html
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/1d32f6d23b99f7898525752200618339
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/1d32f6d23b99f7898525752200618339
http://domino.watson.ibm.com/library/CyberDig.nsf/1e4115aea78b6e7c85256b360066f0d4/1d32f6d23b99f7898525752200618339
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Description of This Implementation
This implementation has a single source file of host code, which performs 
the following operations: 

• Reads the Matrix Market format matrix data from disk

• Initializes the OpenCL environment

• Creates the tiled and packetized matrix

• Initializes the input vector

• Calls the kernel code passing it the input vector, the matrix, and the 
output vector

• Verifies the results

• Reports performance data

• Shuts down the OpenCL environment and cleans up

It further provides a single source file of kernel code, containing two similar 
kernels. These two kernels accommodate two different methods of hiding 
memory latency, one implicit (using multithreading or cache hierarchies) 
and the other one explicit (double buffering with asynchronous DMAs). 

The first (implicit) kernel implements read/write direct access to global 
memory serially with the computations on that data. This kernel is best 
used on an OpenCL CPU or GPU device. 

As previously mentioned, this kernel is run in parallel on a large number 
of compute devices or compute units, in batches of local work-groups. 
Within each local work-group, we explicitly acknowledge and use a 
smaller computational grouping, which we call a team of processing ele-
ments that executes on a compute unit, which has a size of 16 for a GPU 
and a size of 1 for a CPU. The use of a team size of 1 on CPUs derives 
from a need to avoid current inefficiencies in OpenCL compilers, wherein 
multiple work-groups are simulated with a loop-unrolling mechanism that 
unfortunately results in cache-thrashing behavior on many CPUs. When 
future compilers are available that unroll their loops in a more efficient 
fashion, all teams on all devices will have a size of 16. Within the GPU 
device, the local work-group is composed of one or more of these teams. 
Thus, the team size is 16, and the local work-group size might be 64 or 
128, for example. There are several reasons why 16 is the best size to use:

• Every GPU we have encountered has a natural affinity for grouping its 
global memory read-write operations in multiples of 64 bytes (or 16 
4-byte elements).
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• A group of 16 single-precision elements, along with their necessary 
control and index information, conveniently fits into a 128-byte 
cache line. 

• GPUs enjoy improved performance when the algorithm can perform 
coalesced memory accesses, which are grouped in multiples of 16. 

An if test within this first kernel is used to distinguish between GPUs (team 
size 16) and CPUs (team size 1). The GPU clause computes a single product, 
and the CPU clause implements a loop to compute the 16 products. 

It’s also important to note that the amount of local memory available 
to each GPU processor is carefully analyzed, and the size of the matrix 
subsets destined for each work-group is restricted to ensure that multiple 
work-groups are able to “fit” into this available local memory, to improve 
performance on any GPU device. 

The second (explicit) kernel uses OpenCL’s async_work_group_copy
built-in function to implement double-buffered reads and writes of data 
between distant global memory and close local memory. This kernel is 
best used by the Cell/B.E. Accelerator device. 

While both of these kernels execute on any hardware, there are clear 
performance benefits to pairing the kernel with the hardware that most 
naturally uses its memory latency mechanism. 

Tiled and Packetized Sparse Matrix 
Representation
It is assumed that the sparse matrix is very large and that it is frequently 
reused (meaning that many vectors are to be multiplied against it). There-
fore, it should be reorganized into a device-friendly format. The motiva-
tion for this representation is to perform well across multiple hardware 
platforms. 

While the full matrix (complete with all the zero elements) is never 
explicitly present, it is the basis for the hierarchy of terms used in this 
chapter. Here’s a short description of this hierarchy:

• The full matrix is broken up into rows of tiles. Each such row is called 
a slab.

• Each tile is sliced into strips of 16 rows each. 

• Each such strip gives rise to a series of packets.
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The global view of the tiled matrix representation is that the full matrix 
(complete with all of the zero elements) is partitioned into large rows of 
tiles (called slabs) whose width spans the entire width of the matrix and 
whose height corresponds to a contiguous subset of the output vector. 
Each tile in this row of tiles corresponds to an appropriately large con-
tiguous subset of the input vector. Figure 22.2 shows a full matrix being 
multiplied by an input vector to compute an output vector. The hatched 
section of the matrix is a tile, within a row of tiles. The contiguous 
hatched areas of the input and output vectors are those that are used in 
conjunction with this matrix tile. 

A

Slab

Tile

xy

Figure 22.2 A tile in a matrix and its relationship with input and output 
vectors

The process of packetizing the slab proceeds in one of two ways, both 
involving a logical partition into strips of 16 matrix rows each. For devices 
that benefit from having local copies of contiguous sections of input vec-
tor, the strips are contained within the tiles. For devices that only access 
input data directly from global memory, the strips span the entire slab. 
Each strip is the source for a series of 16-element packets, where each of 
these 16 elements is sourced from a different row of the strip. 

These packets also contain index and control information. If the ele-
ments are single precision, the packet is 128 bytes long. If the elements are 
double precision, the packet is 192 bytes long. 
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Each packet contains the following:

• A word specifying the global offset into the index vector of the 
hatched region affected by the tile containing the packet (which cor-
responds to the column in the full matrix where this tile begins)

• The input offset for the next tile, to allow devices whose memory sub-
systems can operate in parallel with the computations to preload the 
next section of the input vector 

• A count of how many packets remain in this tile, to allow the kernels 
to control their loop structures 

• The offset into the output vector, relative to the global offset specified 
in the second word of the header block above elements (which, again, 
corresponds to a row offset within the matrix) where the 16 output 
values are to be accumulated into 16 consecutive vectors

• Four words (16 bytes) of pad to ensure that the indices that follow are 
on a 32-byte boundary, and the floating-point data following those is 
on a 64-byte boundary (this is important for all architectures) 

• Sixteen 2-byte input indices, relative to the input offset, one for each 
element of the packet 

• Sixteen floating-point elements (single or double precision), which are 
actual non-zero data from the full matrix 

The organization of the packet is as shown in Figures 22.3 and 22.4 (each 
line comprises 16 bytes of this packet format).

0 × 0

0 × 0

0 × 10

0 × 20

0 × 70

0 × 60

0 × 50

0 × 40

0 × 30

0 × 4 0 × 8 0 × C

Input offset

pad pad pad pad

Next input offset Remaining packets Output offset

Index 6Index 5Index 4Index 3Index 2Index 1Index 0

Index 8

Matrix element 0 Matrix element 1 Matrix element 2 Matrix element 3

Matrix element 4 Matrix element 5 Matrix element 6 Matrix element 7

Matrix element 8 Matrix element 9 Matrix element 10 Matrix element 11

Matrix element 12 Matrix element 13 Matrix element 14 Matrix element 15

Index 9 Index 10 Index 11 Index 12 Index 13 Index 14 Index 15

Index 7

Figure 22.3 Format of a single-precision 128-byte packet
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Header Structure
The overall structure of this tiled and packetized sparse matrix starts with 
a header block. The header block contains three 4-byte words of data per 
tile row consisting of the following:

• The offset into the tiled matrix memory structure where this slab’s 
packets begin 

• The offset into the output vector where this slab’s computational 
results should be written (which corresponds to a row number in the 
full matrix) 

• The number of contiguous elements of the output vector computed by 
this slab (corresponding to the number of contiguous rows of the full 
matrix that are represented by this slab) 

The format is as shown in Figure 22.5.

0 × 0

0 × 0

0 × 10

0 × 20

0 × B0

0 × A0

0 × 70

0 × 80

0 × 90

0 × 60
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0 × 4 0 × 8 0 × C

Input offset

pad pad pad pad

Next input offset Remaining packets Output offset

Index 6Index 5Index 4Index 3Index 2Index 1Index 0

Index 8

Matrix element 0

Matrix element 8 Matrix element 9

Matrix element 1

Matrix element 2

Matrix element 10 Matrix element 11

Matrix element 3

Matrix element 4

Matrix element 12 Matrix element 13

Matrix element 5

Matrix element 6

Matrix element 14 Matrix element 15

Matrix element 7

Index 9 Index 10 Index 11 Index 12 Index 13 Index 14 Index 15

Index 7

Figure 22.4 Format of a double-precision 192-byte packet
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Tiled and Packetized Sparse Matrix Design 
Considerations
The pad to 128-byte boundary is included for the benefit of all archi-
tectures, because data packets that reside on 64-byte boundaries perform 
better on GPUs and on cache-enabled CPUs, and because we always read 
even-sized groups of packets, they also improve the speed of async_
work_group_copy commands in Cell/B.E. Accelerator devices, which 
work best with 128-byte alignment. 

The configuration of 16 elements and 16 indices is chosen to correspond 
with common cache line sizes, common team sizes on GPUs, and the 
minimum size for moving memory parcels in some architectures. The 
load store kernel contains logic to enable different processing for GPU and 
CPU architectures. 

The data is organized into the packets to guarantee that the elements in 
the packet correspond to consecutive rows of the matrix, so that a single 
block write of computed results serves to update the output vector that is 
the target of the computations involving this matrix, also eliminating the 
need to have 16 separate row indices, but rather a single index (the output 
offset shown in Figures 22.2 and 22.3). Essentially, this means that one 
must gather elements from the input vector to work with this packet, but 

Offset to tile row 0

0 × 0

0 × 0

0 × 0C

0 × 18

0 × 4 0 × 8

Output vector offset 0 Out vector chunk size 0

Offset to tile row 1 Output vector offset 1 Out vector chunk size 1

Offset to tile row 2

Offset to tile row N

Pad to 128-byte boundary ...

...

...

Packets to tile row 0 (as described in Figure 22.2 or Figure 22.3)

Output vector offset 2

Output vector offset N

Out vector chunk size 2

Out vector chunk size N

Figure 22.5 Format of the header block of a tiled and packetized sparse matrix
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there is no scatter operation after computations. Instead, we need only 
execute a single 64-byte or 128-byte read/modify/write for each packet to 
update the output.

Optional Team Information
In the case where the local work-group size is large (when use of GPUs is 
contemplated), this sample is further optimized through the inclusion 
of data specifying for each compute unit within the GPU where its first 
packet is and how many packets are to be processed. One or more initial 
packets in each slab is repurposed to contain this data. Each team needs 
to know the offset and length for its section of the slab. 

For the purposes of this sample, two 2-byte quantities suffice to hold the 
offset and length, although these could be expanded to 4 bytes each if the 
matrices are large enough to require it. Thus, work-group sizes up to 512 
can be accommodated with a single repurposed packet (512/16 is 32, and 
4 bytes of data for each team adds up to 128 bytes). When the work-group 
size exceeds 512, more initial packets are used to contain the data.

Tested Hardware Devices and Results
This implementation was run and verified on six hardware platforms, 
described in Table 22.1, all running OpenCL version 1.1, except for the 
GTX 280.

This sample was run on 22 different matrices. One of these was created 
as a sample (sample.mtx), and the other 21 were downloaded from the 
University of Florida Matrix Market Web site. Table 22.2 lists these 21 
matrices, with references detailing which matrices were found in which of 
three previous papers on this subject.

For brevity, the two performance charts in Figures 22.6 and 22.7 listing 
the minimum, maximum, and average performance over all 22 matrices 
are provided for each hardware device tested. Results for both double and 
single precision are presented, to the extent that the devices support them. 

For each matrix, when running on GPUs, various local work-group sizes 
were investigated to determine the optimum size. Over the 22 matrices, 
the GPUs delivered optimal performance according to the histogram in 
Table 22.3.
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Table 22.1 Hardware Device Information

Hardware Model Number
SDK Version/Driver 
Version

Device
Type Cores Threads

Clock
(GHz) OS

IBM POWER6 (JS43 Model 7778-23X) IBM 0.3/0.3 CPU 4×2 16 4.2 RHEL 5.5

IBM POWER7 (PS701 Model 
8406-71Y)

IBM 0.3/0.3 CPU 1×8 32 3.0 RHEL 6.0

Intel Westmere (IBM 6391, System x 
iDataPlex dx360 M3)

AMD 2.3/2.0 CPU 2×6 24 2.67 RHEL 5.5

NVIDIA GTX 280 NVIDIA
OpenCL 1.0

GPU 240 240 2.6 RHEL 5.2

NVIDIA TeslaTM

(Model M2050)

NVIDIA
OpenCL 1.1
Candidate 
1/258.19

GPU 448 448 1.15 RHEL 5.5

AMD Firestream

(Model 9350)

AMD 2.3/
CAL 1.4.900

GPU 288 1440 0.70 RHEL 5.5

Cell/B.E. Blade

(IBM QS22 Model 0793-2RZ)

IBM 0.3/0.3 Accelerator 2x8 16 3.2 RHEL 5.5
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Table 22.2 Sparse Matrix Description

Matrix Name on Matrix 
Market Web Site Name Given in Other Papers Papers

bcsstk35.mtx bcsstk35 “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

cant.mtx FEM/Cantilever or FEM-Cant “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

consph.mtx FEM/Spheres or FEM-Sphr “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

cop20k_A.mtx FEM/Accelerator or FEM-Accel “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

dense2.mtx Dense “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

ex11.mtx ex11 “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

lp_osa_60.mtx lp_osa_60 or lp “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

mac_econ_fwd500.mtx Economics or Econom “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

mc2depi.mtx Epidemiology or Epidem “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “Tesla C2050 Performance Benchmarks”

nasasrb.mtx Nasasrb “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

olafu.mtx Olafu “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”
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Matrix Name on Matrix 
Market Web Site Name Given in Other Papers Papers

para-7.mtx para-7 “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

pdb1HYS.mtx Protein “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “Tesla C2050 Performance Benchmarks”

pwtk.mtx Wind tunnel or Tunnel “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “T esla C2050 Performance Benchmarks”

qcd5_4.mtx QCD “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Tesla C2050 Performance Benchmarks”

raefsky3.mtx raefsky3 “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

rail4284.mtx rail4284 or LP “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “Tesla C2050 Performance Benchmarks”

rim.mtx rim “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”

rma10.mtx FEM/Harbor or FEM-Har “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “Tesla C2050 Performance Benchmarks”

shipsec1.mtx FEM/Ship or FEM-Ship “Efficient Sparse Matrix-Vector Multiplication on 
CUDA,” “Optimizing Sparse Matrix-Vector Multiplica-
tion on GPUs,” “Tesla C2050 Performance Benchmarks”

venkat01.mtx venkat01 “Optimizing Sparse Matrix-Vector Multiplication on 
GPUs”
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Figure 22.6 Single-precision SpMV performance across 22 matrices on seven 
platforms
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Figure 22.7 Double-precision SpMV performance across 22 matrices on five 
platforms
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Table 22.3 Optimal Performance Histogram for Various Matrix Sizes

Size <= 64 Size = 128 Size = 256 Size = 512

ATI GPU 1 matrix 12 matrices 9 matrices 0 matrices

NVIDIA GTX 280 17 matrices 4 matrices 1 matrix 0 matrices

NVIDIA M2050 0 matrices 7 matrices 9 matrices 6 matrices

It is important to mention the use or non-use of OpenCL image objects 
in GPUs at this point. Not all OpenCL implementations support access to 
image objects, so (for portability) this sample is not written to try to use 
image objects. On GPUs this decision precludes the use of texture memory 
and texture caches. Because the algorithm is memory-bound, this choice 
has performance implications, relative to implementations that exploit 
image objects. Here are some results quoted in two previous SpMV papers. 
The results in the first bullet point involve the use of texture memory, and 
the results in the second bullet point do not. Also, please note that the 
first bullet point compares results on an NVIDIA M2050, and the second 
compares results on an NVIDIA GeForce GTX 280.

• The two recommended methods listed for processing single preci-
sion in “Efficient Sparse Matrix-Vector Multiplication on CUDA” are 
hybrid and packet. For some matrices, hybrid is fastest, and for oth-
ers, packet is fastest. Taking the average of these two methods across 
the 12 matrices that “Tesla C2050 Performance Benchmarks” shares in 
common with this chapter, the min/avg/max statistics for this CUDA/
texture memory implementation are 7.0/16.2/23.2. This sample’s 
results over the same 12 matrices are 3.0/11.0/17.2. 

• The two recommended methods listed for processing single-precision 
SpMV without cache (meaning without texture memory) in “Opti-
mizing Sparse Matrix-Vector Multiplication on GPUs” are thread 
mapping and aligned access. In all cases listed, aligned access beats 
thread mapping. Across the 15 matrices this paper shares with this 
chapter, the min/avg/max statistics for this CUDA implementation 
are 0.3/6.1/9.75. This sample’s results over the same 15 matrices are 
2.0/6.3/11.0. 

Listing 22.1 describes the kernels that implement the sparse matrix-vector 
multiplication. The full source (kernels and host source code) for the 
histogram is provided in the Chapter_22/spmv directory of the book’s 
source code examples. 
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Listing 22.1 Sparse Matrix-Vector Multiplication OpenCL Kernels

/******************************************************************/
/*                                                                */
/* Licensed Materials - Property of IBM                           */
/*                                                                */
/*                                                                */
/* (C) Copyright IBM Corp. 2010                                   */
/* All Rights Reserved                                            */
/*                                                                */
/* US Government Users Restricted Rights - Use, duplication or    */
/* disclosure restricted by GSA ADP Schedule Contract with IBM    */
/* Corp.                                                          */
/*                                                                */
/******************************************************************/
/* ============================================================== */
/*                                                                */
/* The "matbuffer" buffer contains the tiled matrix.              */
/* The data in this tiled matrix is organized into "rows of       */
/* tiles" which are called "slabs."                               */
/* The first section of this buffer contains three words of       */
/* "header information" for each slab of the matrix. Each         */
/* instantiation of the kernel is indexed by get_global_id(0)     */
/* which matches the number of the slab. The three header words   */
/* for each slab are:                                             */
/*    "offset": the offset into the buffer where the slab's       */
/*              data begins                                       */
/*    "outindex": the index into the output vector where this     */
/*                slab's output is to begin                       */
/*    "outspan": the number of elements of the output vector      */
/*               which this slab is responsible for               */
/*                                                                */
/* The actual data in the slab is organized into 16-element       */
/* "packets" of length 128 bytes                                  */
/* (see the definition of the "packet" struct below).             */
/* Each packet contains four "control words" used by the kernels, */
/* 16 2-byte indices into the input array, and 16                 */
/* floating-point values from the matrix.                         */
/*                                                                */
/* The four "control words" are:                                  */
/*    0: base offset into the input vector for this packet        */
/*    1: base offset into the input vector for a FUTURE packet    */
/*       (useful for double buffering)                            */
/*    2: the number of packets remaining in this slab             */
/*    3: the offset (relative to the second header word) into the */
/*       output vector for this packet                            */
/*                                                                */
/* These four words are followed by four words of pad, reserved   */
/* for future use. Next come 16 short integers, containing        */
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/* offsets into the input vector. Next come 16 floating-point     */
/* values, containing the actual matrix data.                     */
/*                                                                */
/* Specific output offsets for each value are not needed, because */
/* the packets are created in a special format: each value is     */
/* intended to update the output vector element subsequent to     */
/* that of the previous value. So, if a packet is targeted to     */
/* location 512 of the output vector, then the 16 values in the   */
/* packet will be updating locations 512 through 527 of the       */
/* output vector respectively, and in order. This adds to the     */
/* complexity of the code which creates these packets but results */
/* in significant performance payoffs, when performing the        */
/* multiplications.                                               */
/*                                                                */
/* It's frequently the case that there is empty data in these     */
/* packets because of this construction. This data is carefully   */
/* set up so that when we are dealing with local buffers, the     */
/* garbage calculations go into an area which never gets written  */
/* back to main memory. In the case where global memory is        */
/* accessed directly, the "matrix data" in the empty values is    */
/* set to zero, so that regardless of what the input is, the      */
/* output is unaffected.                                          */
/*                                                                */
/* ============================================================== */

/* These two structures are defined both in spmv.c and spmv.cl    */
/* (using different variable types).                              */
/* If you change something here, change it in the other file as   */
/* well.                                                          */

typedef struct _slab_header {
    uint offset;
    uint outindex;
    uint outspan;
} slab_header;

typedef struct _packet {
    uint seg_input_offset;
    uint future_seg_input_offset;
    uint npackets_remaining;
    uint seg_output_offset;
    uint pad1;
    uint pad2;
    uint pad3;
    uint pad4;
    ushort input_offset_short[16];
    union {
        float8 matdataV8[2];
        float matdata[16];
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    } uf;
} packet;

/* ============================================================== */
/* Kernel using basic load/store mechanisms and local vars. This  */
/* version is optimized for the GPU and CPU devices               */
/* ============================================================== */
__kernel void tiled_spmv_kernel_LS(
        __global float *input, 
        __global float *output, 
        __global uint *matbuffer,

        uint column_span, 
        uint slabspace,
        uint team_size, 
        uint num_header_packets,
        __local float *outputspace) 
{
    uint i, gunit, lunit, start, span, npackets, teamnum, n_teams, 
         outindex, outspan; 
    __global slab_header *headptr;
    __global float *work_input;
    __global packet *gsegptr; 
    __global packet *gsegptr_stop; 
    __global float *outptr;
    __local float *outptr16;

    /* The local work-group is interpreted as a set of "teams,"   */
    /* each consisting of 1 or 16 work units. This construction   */
    /* is frequently very useful on the GPU device.               */

    headptr = ((__global slab_header *) matbuffer) + 
    get_global_id(1);
    outspan = headptr->outspan;
    outindex = headptr->outindex;
    n_teams = get_local_size(0)/team_size;  /* number of teams */
    gunit = get_local_id(0); 
    teamnum = gunit/team_size; /* which team is this? */
    start = get_global_id(0);  /* where in the packets is my */
                               /* "first word"? */
    span = get_global_size(0); /* what stride shall I use when */
                               /* clearing or transmitting output */
                               /* buffers? */

    /* Zero out the output buffer */
    /* Each team has its own separate output buffer. */
    /* At the end, these are accumulated. */
    for (i = start; i < slabspace; i += span) {
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#ifdef DOUBLE
        outputspace[i] = 0.0;
#else
        outputspace[i] = 0.0f;
#endif
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    /* Pointer to the start of the packets. */
    gsegptr = &(((__global packet *) matbuffer)[headptr->offset]); 

    /* Pointer to pertinent area of output vector. */
    outptr = &output[outindex];

    /* We have two clauses here. The first is optimized for the   */
    /* GPU device, and the second is optimized for the CPU        */
    /* device. The distinction is that in the GPU device the      */
    /* memory access pattern for each work unit is strided, and   */
    /* in the CPU device, the memory access pattern is contiguous.*/
    /* Virtually all processing happens in the selected clause    */
    /* below.                                                     */

    if (team_size == 16) {
        lunit = gunit % team_size; /* Which work unit within the */
                                   /* team am I? */
        __global uint *first_team_offset;
        first_team_offset = (__global uint *) gsegptr;
        int temp_offset, temp_packetcount;
        temp_offset = first_team_offset[teamnum] / 65536;
        temp_packetcount = first_team_offset[teamnum] % 65536;
        gsegptr += num_header_packets + temp_offset;
        for (i=0; i<temp_packetcount; ++i) {
            outptr16 = &outputspace[gsegptr->seg_output_offset];
            work_input = &input[gsegptr->seg_input_offset];
            outptr16[lunit] += gsegptr->uf.matdata[lunit] * 
                    work_input[gsegptr->input_offset_short[lunit]];
            ++gsegptr;
        }
    }
    else { /* team_size is 1, and this work unit needs to do */
           /* all 16 elements in the packet */
        /* skip over team_offset data */
        gsegptr += num_header_packets; 
        /* Number of packets to be processed. */
        npackets = gsegptr->npackets_remaining; 
        int stopdex  = ((teamnum + 1) * npackets) / n_teams;
        int startdex = ((teamnum    ) * npackets) / n_teams;
        gsegptr_stop = &gsegptr[stopdex];
        gsegptr = &gsegptr[startdex];
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        while (gsegptr < gsegptr_stop) {
            outptr16 = &outputspace[gsegptr->seg_output_offset];
            work_input = &input[gsegptr->seg_input_offset];
            for (lunit=0; lunit<16; ++lunit) {
                outptr16[lunit] += gsegptr->uf.matdata[lunit] * 
                   work_input[gsegptr->input_offset_short[lunit]];
            }
            ++gsegptr;
        }
    }
    barrier(CLK_LOCAL_MEM_FENCE);

    /* Now that processing is done, it's time to write out */
    /* the final results for this slab. */
    for (i=start; i<outspan; i+=span) {
        outptr[i] = outputspace[i];
    }
}

/* =========================================================== */
/* Kernel using "async_work_group_copy".  This version is      */
/* optimized for the ACCELERATOR device                        */
/* =========================================================== */

/* =========================================================== */
/* Grab a pile of input vector data into local storage         */
/* "_inputspace_index" is the offset into the local space.     */
/* "_input_offset" is the offset into the global input vector. */
/* =========================================================== */

#define GET_INPUT(_inputspace_index, _input_offset) {              \
  eventI[_inputspace_index] = async_work_group_copy(               \
   (__local float8 *)&inputspace[column_span * _inputspace_index], \
     (const __global float8 *) &input[_input_offset],              \
     (size_t) (column_span>>3),                                    \
     (event_t) 0);                                                 \
}

/* ========================================================= */
/* Grab a pile of matrix packets into local storage          */
/* "_lsegspace_index" specifies the correct offset.          */
/* ========================================================= */

#define GET_PACKET(_lsegspace_index) {                            \
     eventS[lsegspace_tag] = async_work_group_copy(               \
              (__local uchar16 *) &lsegspace[(_lsegspace_index)], \
              (const __global uchar16 *) &gsegptr[gseg_index],    \
              (size_t) ((sizeof(packet)/16)*(segcachesize/2)),    \
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              (event_t) 0);                                       \
              gseg_index += (segcachesize/2);                     \
}

/* ========================================================= */
/*                                                           */
/* For a given packet of matrix data, residing in LOCAL      */
/* memory, do the following:                                 */
/*    Snap a pointer to the beginning of the packet.         */
/*    If it's time, grab a new batch of input data.          */
/*    Snap pointers to the output and matrix float data.     */
/*    Spend 16 lines performing the scalar computations.     */
/*    Perform two 8-way SIMD FMA operations.                 */
/*    Update the index to the next packet.                   */
/*                                                           */
/* ========================================================= */
#define PROCESS_LOCAL_PACKET {                                \
    float8 inV[2];                                            \
    lsegptr = (__local struct _packet *)                      \
                   &lsegspace[lsegspace_index];               \
    if (lsegptr->seg_input_offset != curr_input_offset) {     \
        curr_input_offset = lsegptr->seg_input_offset;        \
        next_input_offset = lsegptr->future_seg_input_offset; \
        GET_INPUT(inputspace_index, next_input_offset)        \
        inputspace_index = 1 - inputspace_index;              \
        wait_group_events(1, &eventI[inputspace_index]);      \
    }                                                         \
    work_input = &inputspace[column_span * inputspace_index]; \
    outputspaceV8 = (__local float8 *)                        \
                     &outputspace[lsegptr->seg_output_offset];\
    inV[0].s0 = work_input[lsegptr->input_offset_short[ 0]];  \
    inV[0].s1 = work_input[lsegptr->input_offset_short[ 1]];  \
    inV[0].s2 = work_input[lsegptr->input_offset_short[ 2]];  \
    inV[0].s3 = work_input[lsegptr->input_offset_short[ 3]];  \
    inV[0].s4 = work_input[lsegptr->input_offset_short[ 4]];  \
    inV[0].s5 = work_input[lsegptr->input_offset_short[ 5]];  \
    inV[0].s6 = work_input[lsegptr->input_offset_short[ 6]];  \
    inV[0].s7 = work_input[lsegptr->input_offset_short[ 7]];  \
    inV[1].s0 = work_input[lsegptr->input_offset_short[ 8]];  \
    inV[1].s1 = work_input[lsegptr->input_offset_short[ 9]];  \
    inV[1].s2 = work_input[lsegptr->input_offset_short[10]];  \
    inV[1].s3 = work_input[lsegptr->input_offset_short[11]];  \
    inV[1].s4 = work_input[lsegptr->input_offset_short[12]];  \
    inV[1].s5 = work_input[lsegptr->input_offset_short[13]];  \
    inV[1].s6 = work_input[lsegptr->input_offset_short[14]];  \
    inV[1].s7 = work_input[lsegptr->input_offset_short[15]];  \
    outputspaceV8[0] = fma(lsegptr->uf.matdataV8[0], inV[0],  \
                                            outputspaceV8[0]);\
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    outputspaceV8[1] = fma(lsegptr->uf.matdataV8[1], inV[1],  \
                                            outputspaceV8[1]);\
    ++lsegspace_index;                                        \
}

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void tiled_spmv_kernel_AWGC(
        __global float *input, /* pointer to input memory object */
        __global float *output,/* pointer to output memory object */
        __global uint *matbuffer, /* pointer to tiled matrix */
                                  /* memory object in global */
                                  /* memory */
        uint column_span, /* size of fixed chunks of the input */
                          /* vector */
        uint slabspace,   /* size of the variable chunk of output */
                          /* vector to be computed */
        uint segcachesize,   /* number of tiled matrix packets */
                             /* which fit in "outputspace" */
        uint num_header_packets,
        __local float *inputspace, /* local buffer to hold staged */
                                   /* input vector data */
        __local float *outputspace, /* local buffer to hold */
                             /* computed output, to be written */
                             /* out at the end */
        __local packet *lsegspace) /* local buffer to hold staged */
                                   /* tiled matrix packet data */
{
    __global slab_header *headptr;
    __local float *work_input;
    __local float8 *outputspaceV8;
    int i, tempmax;
    event_t eventS[2], eventI[2], eventO;

    int temp = segcachesize/2;
    int half_scs = 0;
    while (temp) {
        ++half_scs;
        temp >>= 1;
    }

    /* This is a global packet pointer, indexing into the global */
    /* memory object containing the tiled matrix */
    __global packet *gsegptr; 

    /* This is a local packet pointer, indexing into the local */
    /* storage for our tiled matrix */
    __local  packet *lsegptr; 



ptg

Tested Hardware Devices and Results 537

    headptr = ((__global slab_header *) matbuffer) 
                                      + get_global_id(0);
    gsegptr = &(((__global packet *) matbuffer)[headptr->offset]); 
    gsegptr += num_header_packets;  /* skip over team_offset data */
    lsegptr = &lsegspace[0];

    int gseg_index = 0;  /* index into global memory of the */
                         /* packets for this slab */
    int inputspace_index = 0;  /* offset index into the local */
                               /* space for the input */
    int lsegspace_index = 0;   /* offset index into the local */
                               /* space for the tiled matrix */
    int lsegspace_tag = 0;     /* tag used to manage events */
                               /* regarding local packets */

    GET_PACKET(0)
    wait_group_events(1, &eventS[0]);
    /* how many packets are to be processed in this slab? */
    uint npackets = lsegptr->npackets_remaining;
    if (npackets == 0) return;
    GET_PACKET(segcachesize/2)
    tempmax = (segcachesize < npackets) ? segcachesize : npackets;
    for (i=0; i<slabspace; ++i) {
        outputspace[i] = 0.0f; /* zero out the output buffer */
    }

    uint curr_input_offset = lsegptr->seg_input_offset;
    uint next_input_offset = lsegptr->future_seg_input_offset;
    GET_INPUT(0, curr_input_offset) /* Load the first two parcels */
    GET_INPUT(1, next_input_offset) /* of local input vector data */
    /* and wait on the first one. */
    wait_group_events(1, &eventI[inputspace_index]);

    /* this first loop handles the bulk of the work with */
    /* minimal if-tests, segcachesize/2 packets at a time */
    while (npackets > tempmax) {
        for (i=0; i<segcachesize/2; ++i) {
            PROCESS_LOCAL_PACKET
        }
        /* load next batch of packets, using double buffering */
        lsegspace_index &= (segcachesize-1);
        lsegspace_tag = (lsegspace_index == 
                         (segcachesize/2)) ? 1 : 0;
        npackets -= segcachesize/2;
        GET_PACKET((segcachesize/2)-lsegspace_index);
        wait_group_events(1, &eventS[lsegspace_tag]);
    }
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    /* this second loop handles the remaining packets, one packet */
    /* at a time */
    while (npackets) {
        PROCESS_LOCAL_PACKET
        lsegspace_index &= (segcachesize-1);
        lsegspace_tag = (lsegspace_index == 
                            (segcachesize/2)) ? 1 : 0;
        --npackets;
        if ((lsegspace_index & ((segcachesize/2)-1)) == 0) {
            if (npackets > segcachesize/2) {
                GET_PACKET((segcachesize/2)-lsegspace_index);
            }
            if (npackets > 0) {
                wait_group_events(1, &eventS[lsegspace_tag]);
            }
        }
    }

    /* Now that processing is done, it's time to write out the */
    /* final results for this slab. */

    eventO = async_work_group_copy(
                (__global float *) &output[headptr->outindex], 
                (__const local float *) outputspace, 
                (size_t) (headptr->outspan), 
                (event_t) 0);
    wait_group_events(1, &eventO);
    wait_group_events(1, &eventI[1-inputspace_index]);
    wait_group_events(2, eventS);
}

Additional Areas of Optimization
The number of packets from any slice must be equal to the maximum 
number of non-zero elements found in any of its rows. Because the other 
rows will typically have fewer elements, some packets will be loaded with 
null elements (whose matrix floating-point value is zero). This “reduction 
in packet density” has the effect of reducing performance, and the corre-
lation is quite high. In fact, across the 22 matrices studied, and across four 
hardware platforms, the averaged statistical correlation between gigaflops 
and packet density was  = 0.8733.

An optimization for this packet density inefficiency is to permute the 
rows within each slab according to their non-zero element count. The 
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algorithmically complete permutation would be a full sort, but simpler 
(and faster) heuristics might suffice. This would require adding a permu-
tation array to each slab in the data structure. The kernels would read in 
that permutation array and use it to scatter the output data when they are 
completely finished with the slab, which won’t add significantly to the 
total compute time. This improvement guarantees that we get roughly the 
same gigaflop performance from all matrices, no matter how ill formed 
they are.
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Appendix A

Summary of OpenCL 1.1

This appendix lists the APIs, data types, and other interfaces used by pro-
grammers working with OpenCL 1.1. Headings that introduce each topic 
in the appendix include in square brackets the section number in the 
OpenCL 1.1 specification where further information can be found. This 
text is also available as a compact reference card at www.khronos.org/
files/opencl-1-1-quick-reference-card.pdf. 

The OpenCL Platform Layer 
The OpenCL platform layer implements platform-specific features that 
allow applications to query OpenCL devices and device configuration 
information and to create OpenCL contexts using one or more devices.

Contexts [4.3]

cl_context clCreateContext (
   const cl_context_properties *properties,
   cl_uint num_devices, const cl_device_id *devices, 
   void (CL_CALLBACK*pfn_notify)(const char *errinfo,
   const void *private_info, size_t cb, void *user_data),
   void *user_data, cl_int *errcode_ret)
properties: CL_CONTEXT_PLATFORM, CL_GL_CONTEXT_KHR, 
   CL_CGL_SHAREGROUP_KHR, CL_{EGL, GLX}_DISPLAY_KHR, CL_WGL_HDC_KHR 

cl_context clCreateContextFromType (
   const cl_context_properties *properties,
   cl_device_type device_type,
   void (CL_CALLBACK *pfn_notify)(const char *errinfo,
   const void *private_info, size_t cb, void *user_data),
   void *user_data, cl_int *errcode_ret)
properties: See clCreateContext

cl_int clRetainContext (cl_context context)

www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
www.khronos.org/files/opencl-1-1-quick-reference-card.pdf
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cl_int clReleaseContext (cl_context context)

cl_int clGetContextInfo (cl_context context,
   cl_context_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_CONTEXT_REFERENCE_COUNT, 
   CL_CONTEXT_{DEVICES, PROPERTIES}, CL_CONTEXT_NUM_DEVICES

Querying Platform Information and Devices [4.1, 4.2]

cl_int clGetPlatformIDs (cl_uint num_entries,
   cl_platform_id *platforms, cl_uint *num_platforms)

cl_int clGetPlatformInfo (cl_platform_id platform,
   cl_platform_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_PLATFORM_{PROFILE, VERSION}, 
   CL_PLATFORM_{NAME, VENDOR, EXTENSIONS}

cl_int clGetDeviceIDs (cl_platform_id platform,
   cl_device_type device_type, cl_uint num_entries,
   cl_device_id *devices, cl_uint *num_devices)
device_type: CL_DEVICE_TYPE_{CPU, GPU},
   CL_DEVICE_TYPE_{ACCELERATOR, DEFAULT, ALL} 

cl_int clGetDeviceInfo (cl_device_id device,
   cl_device_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_DEVICE_TYPE, 
   CL_DEVICE_VENDOR_ID, 
   CL_DEVICE_MAX_COMPUTE_UNITS, 
   CL_DEVICE_MAX_WORK_ITEM_{DIMENSIONS, SIZES}, 
   CL_DEVICE_MAX_WORK_GROUP_SIZE, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_CHAR, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_SHORT, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_INT, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_LONG, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_FLOAT, 
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_DOUBLE,
   CL_DEVICE_{NATIVE, PREFERRED}_VECTOR_WIDTH_HALF, 
   CL_DEVICE_MAX_CLOCK_FREQUENCY, 
   CL_DEVICE_ADDRESS_BITS, 
   CL_DEVICE_MAX_MEM_ALLOC_SIZE, 
   CL_DEVICE_IMAGE_SUPPORT, 
   CL_DEVICE_MAX_{READ, WRITE}_IMAGE_ARGS, 
   CL_DEVICE_IMAGE2D_MAX_{WIDTH, HEIGHT}, 
   CL_DEVICE_IMAGE3D_MAX_{WIDTH, HEIGHT, DEPTH}, 
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   CL_DEVICE_MAX_SAMPLERS, 
   CL_DEVICE_MAX_PARAMETER_SIZE, 
   CL_DEVICE_MEM_BASE_ADDR_ALIGN, 
   CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, 
   CL_DEVICE_SINGLE_FP_CONFIG, 
   CL_DEVICE_GLOBAL_MEM_CACHE_{TYPE, SIZE}, 
   CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, 
   CL_DEVICE_GLOBAL_MEM_SIZE, 
   CL_DEVICE_MAX_CONSTANT_{BUFFER_SIZE, ARGS}
   CL_DEVICE_LOCAL_MEM_{TYPE, SIZE}, 
   CL_DEVICE_ERROR_CORRECTION_SUPPORT, 
   CL_DEVICE_PROFILING_TIMER_RESOLUTION, 
   CL_DEVICE_ENDIAN_LITTLE, 
   CL_DEVICE_AVAILABLE, 
   CL_DEVICE_COMPILER_AVAILABLE, 
   CL_DEVICE_EXECUTION_CAPABILITIES, 
   CL_DEVICE_QUEUE_PROPERTIES, 
   CL_DEVICE_{NAME, VENDOR, PROFILE, EXTENSIONS},
   CL_DEVICE_HOST_UNIFIED_MEMORY,
   CL_DEVICE_OPENCL_C_VERSION,
   CL_DEVICE_VERSION,
   CL_DRIVER_VERSION, CL_DEVICE_PLATFORM

The OpenCL Runtime

Command-Queues [5.1]

cl_command_queue clCreateCommandQueue (cl_context context,
   cl_device_id device, cl_command_queue_properties properties,
   cl_int *errcode_ret)
properties: CL_QUEUE_PROFILING_ENABLE,
   CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ ENABLE 

cl_int clRetainCommandQueue (cl_command_queue command_queue)

cl_int clReleaseCommandQueue (cl_command_queue command_queue)

cl_int clGetCommandQueueInfo (cl_command_queue command_queue,
   cl_command_queue_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_QUEUE_CONTEXT, CL_QUEUE_DEVICE, 
   CL_QUEUE_REFERENCE_COUNT, CL_QUEUE_PROPERTIES
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Buffer Objects
Elements of a buffer object can be a scalar or vector data type or a user-
defined structure. Elements are stored sequentially and are accessed using 
a pointer by a kernel executing on a device. Data is stored in the same 
format as it is accessed by the kernel.

Create Buffer Objects [5.2.1]

cl_mem clCreateBuffer (cl_context context, cl_mem_flags flags,
   size_t size, void *host_ptr, cl_int *errcode_ret)

cl_mem clCreateSubBuffer (cl_mem buffer, cl_mem_flags flags,
   cl_buffer_create_type buffer_create_type,
   const void *buffer_create_info, cl_int *errcode_ret)

flags for clCreateBuffer and clCreateSubBuffer:
   CL_MEM_READ_WRITE, CL_MEM_{WRITE, READ}_ONLY, 
   CL_MEM_{USE, ALLOC, COPY}_HOST_PTR

Read, Write, and Copy Buffer Objects [5.2.2]  

cl_int clEnqueueReadBuffer ( cl_command_queue command_queue,
   cl_mem buffer, cl_bool blocking_read, size_t offset, size_t cb,
   void *ptr, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
   cl_mem buffer, cl_bool blocking_write, size_t offset, size_t cb,
   const void *ptr, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReadBufferRect (cl_command_queue command_queue,
   cl_mem buffer, cl_bool blocking_read,
   const size_t buffer_origin[3],  const size_t host_origin[3],
   const size_t region[3], size_t buffer_row_pitch,
   size_t buffer_slice_pitch, size_t host_row_pitch,
   size_t host_slice_pitch, void *ptr,
   cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteBufferRect (cl_command_queue command_queue,
   cl_mem buffer, cl_bool blocking_write,
   const size_t buffer_origin[3], const size_t host_origin[3],
   const size_t region[3], size_t buffer_row_pitch,
   size_t buffer_slice_pitch, size_t host_row_pitch,
   size_t host_slice_pitch, void *ptr,
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   cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBuffer (cl_command_queue command_queue,
   cl_mem src_buffer, cl_mem dst_buffer, size_t src_offset,
   size_t dst_offset, size_t cb, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueCopyBufferRect (cl_command_queue command_queue,
   cl_mem src_buffer, cl_mem dst_buffer, const size_t src_origin[3],
   const size_t dst_origin[3], const size_t region[3],
   size_t src_row_pitch, size_t src_slice_pitch,
   size_t dst_row_pitch, size_t dst_slice_pitch,
   cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

Map Buffer Objects [5.23]

void * clEnqueueMapBuffer (cl_command_queue command_queue,
   cl_mem buffer, cl_bool blocking_map, cl_map_flags map_flags,
   size_t offset, size_t cb, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event,
   cl_int *errcode_ret)

Manage Buffer Objects [5.4.1–2]

cl_int clRetainMemObject (cl_mem memobj)

cl_int clReleaseMemObject (cl_mem memobj)

cl_int clSetMemObjectDestructorCallback (cl_mem memobj,
    void (CL_CALLBACK *pfn_notify) (cl_mem memobj, void *user_data),
    void *user_data)

cl_int clEnqueueUnmapMemObject (cl_command_queue command_queue,
   cl_mem memobj, void *mapped_ptr, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

Query Buffer Objects [5.4.3]

cl_int clGetMemObjectInfo (cl_mem memobj, cl_mem_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:  CL_MEM_{TYPE, FLAGS, SIZE, HOST_PTR}, 
   CL_MEM_{MAP, REFERENCE}_COUNT, CL_MEM_OFFSET, 
   CL_MEM_CONTEXT, CL_MEM_ASSOCIATED_MEMOBJECT
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Program Objects

Create Program Objects [5.6.1]

cl_program clCreateProgramWithSource ( cl_context context,
   cl_uint count, const char **strings, const size_t *lengths,
   cl_int *errcode_ret)

cl_program clCreateProgramWithBinary (cl_context context,
   cl_uint num_devices, const cl_device_id *device_list,
   const size_t *lengths, const unsigned char **binaries,
   cl_int *binary_status, cl_int *errcode_ret)

cl_int clRetainProgram (cl_program program)

cl_int clReleaseProgram (cl_program program)

Build Program Executable [5.6.2]

cl_int clBuildProgram (cl_program program, cl_uint num_devices,
   const cl_device_id *device_list, const char *options,
   void (CL_CALLBACK*pfn_notify)(cl_program program,

void *user_data), void *user_data)

Build Options [5.6.3]

Preprocessor

(-D processed in order listed in clBuildProgram)

-D name
-D name=definition
-I dir

Optimization Options

-cl-opt-disable
-cl-strict-aliasing
-cl-mad-enable
-cl-no-signed-zeros
-cl-finite-math-only
-cl-fast-relaxed-math
-cl-unsafe-math-optimizations
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Math Intrinsics

-cl-single-precision-constant
-cl-denorms-are-zero

Warning Request/Suppress

-w
-Werror

Control OpenCL C Language Version

-cl-std=CL1.1      // OpenCL 1.1 specification.

Query Program Objects [5.6.5]

cl_int clGetProgramInfo (cl_program program,
   cl_program_info param_name,size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name:  CL_PROGRAM_{REFERENCE_COUNT}, 
   CL_PROGRAM_{CONTEXT, NUM_DEVICES, DEVICES},
   CL_PROGRAM_{SOURCE, BINARY_SIZES, BINARIES}

cl_int clGetProgramBuildInfo (cl_program program,
   cl_device_id device, cl_program_build_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:  CL_PROGRAM_BUILD_{STATUS, OPTIONS, LOG} 

Unload the OpenCL Compiler [5.6.4]

cl_int clUnloadCompiler (void)

Kernel and Event Objects

Create Kernel Objects [5.7.1]

cl_kernel clCreateKernel (cl_program program,
   const char *kernel_name, cl_int *errcode_ret)

cl_int clCreateKernelsInProgram (cl_program program,
   cl_uint num_kernels, cl_kernel *kernels,
   cl_uint *num_kernels_ret)
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cl_int clRetainKernel (cl_kernel kernel)

cl_int clReleaseKernel (cl_kernel kernel)

Kernel Arguments and Object Queries [5.7.2, 5.7.3]

cl_int clSetKernelArg (cl_kernel kernel, cl_uint arg_index,
   size_t arg_size, const void *arg_value)

cl_int clGetKernelInfo (cl_kernel kernel,cl_kernel_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:   CL_KERNEL_FUNCTION_NAME, CL_KERNEL_NUM_ARGS, 
   CL_KERNEL_REFERENCE_COUNT, CL_KERNEL_CONTEXT, CL_KERNEL_PROGRAM

cl_int clGetKernelWorkGroupInfo (cl_kernel kernel,
   cl_device_id device, cl_kernel_work_group_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:  CL_KERNEL_WORK_GROUP_SIZE, 
   CL_KERNEL_COMPILE_WORK_GROUP_SIZE, 
   CL_KERNEL_{LOCAL, PRIVATE}_MEM_SIZE, 
   CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 

Execute Kernels [5.8]

cl_int clEnqueueNDRangeKernel ( cl_command_queue command_queue,
   cl_kernel kernel, cl_uint work_dim,
   const size_t *global_work_offset,
   const size_t *global_work_size,
   const size_t *local_work_size, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueTask (cl_command_queue command_queue,
   cl_kernel kernel, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueNativeKernel (cl_command_queue command_queue,
   void (*user_func)(void *), void *args, size_t cb_args,
   cl_uint num_mem_objects, const cl_mem *mem_list,
   const void **args_mem_loc, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)
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Event Objects [5.9]

cl_event clCreateUserEvent (cl_context context, cl_int *errcode_ret)

cl_int clSetUserEventStatus (cl_event event,
   cl_int execution_status)

cl_int clWaitForEvents (cl_uint num_events,
   const cl_event *event_list)

cl_int clGetEventInfo (cl_event event, cl_event_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:  CL_EVENT_COMMAND_{QUEUE, TYPE}, 
   CL_EVENT_{CONTEXT, REFERENCE_COUNT},
   CL_EVENT_COMMAND_EXECUTION_STATUS

cl_int clSetEventCallback (cl_event event,
   cl_int command_exec_callback_type,
   void (CL_CALLBACK *pfn_event_notify)(cl_event event,
   cl_int event_command_exec_status,
   void *user_data), void *user_data)

cl_int clRetainEvent (cl_event event)

cl_int clReleaseEvent (cl_event event)

Out-of-Order Execution of Kernels and Memory Object 
Commands [5.10]

cl_int clEnqueueMarker (cl_command_queue command_queue,
   cl_event *event)

cl_int clEnqueueWaitForEvents (cl_command_queue command_queue,
   cl_uint num_events, const cl_event *event_list)

cl_int clEnqueueBarrier (cl_command_queue command_queue)

Profiling Operations [5.11]

cl_int clGetEventProfilingInfo (cl_event event,
   cl_profiling_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name:  CL_PROFILING_COMMAND_QUEUED, 
   CL_PROFILING_COMMAND_{SUBMIT, START, END}
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Flush and Finish [5.12]

cl_int clFlush (cl_command_queue command_queue)

cl_int clFinish (cl_command_queue command_queue)

Supported Data Types

Built-In Scalar Data Types [6.1.1]

Table A.1

OpenCL Type API Type Description

bool N/a True (1) or false (0)

char cl_char 8-bit signed

unsigned char, uchar cl_uchar 8-bit unsigned  

short cl_short 16-bit signed  

unsigned short, ushort cl_ushort 16-bit unsigned  

int cl_int 32-bit signed  

unsigned int, uint cl_uint 32-bit unsigned  

long cl_long 64-bit signed  

unsigned long, ulong cl_ulong 64-bit unsigned  

float cl_float 32-bit float  

half cl_half 16-bit float  (for storage only)

size_t N/a 32- or 64-bit unsigned integer

ptrdiff_t N/a 32- or 64-bit signed integer

intptr_t N/a Signed integer

uintptr_t N/a Unsigned integer

void void Void
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Built-In Vector Data Types [6.1.2]

Table A.2

OpenCL Type API Type Description

charn cl_charn 8-bit signed

ucharn cl_ucharn 8-bit unsigned

shortn cl_shortn 16-bit signed

ushortn cl_ushortn 16-bit unsigned

intn cl_intn 32-bit signed

uintn cl_uintn 32-bit unsigned

longn cl_longn 64-bit signed

ulongn cl_ulongn 64-bt unsigned

floatn cl_floatn 32-bit float

Other Built-In Data Types [6.1.3]

Table A.3

OpenCL Type Description

image2d_t 2D image handle

image3d_t 3D image handle

sampler_t Sampler handle

event_t Event handle

Reserved Data Types [6.1.4]

Table A.4

OpenCL Type Description

booln Boolean vector

double, doublen  OPTIONAL 64-bit float, vector

continues
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OpenCL Type Description

halfn 16-bit, vector

quad, quadn 128-bit float, vector

complex half, complex halfn
imaginary half, imaginary halfn

16-bit complex, vector

complex float, complex floatn
imaginary float, imaginary floatn

32-bit complex, vector

complex double, complex doublen
imaginary double, imaginary doublen

64-bit complex, vector

complex quad, complex quadn
imaginary quad, imaginary quadn

128-bit complex, vector

floatnxm n*m matrix of 32-bit floats

doublenxm n*m matrix of 64-bit floats

long double, long doublen 64- to 128-bit float, vector

long long, long longn 128-bit signed

unsigned long long, ulong long,
ulong longn

128-bit unsigned

Vector Component Addressing [6.1.7]

Vector Components

Table A.5

float2 v; float3 v; float4 v; float8 v; float16 v;

0 v.x, v.s0 v.x,v.s0 v.x, v.s0 v.s0 v.s0

1 v.y, v.s1 v.y, v.s1 v.y, v.s1 v.s1 v.s1

2 v.z, v.s2 v.z, v.s2 v.s2 v.s2

3 v.w, v.s3 v.s3 v.s3

4 v.s4 v.s4

Table A.4  (Continued )
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float2 v; float3 v; float4 v; float8 v; float16 v;

5 v.s5 v.s5

6 v.s6 v.s6

7 v.s7 v.s7

8 v.s8

9 v.s9

10 v.sa, v.sA

11 v.sb, v.sB

12 v.sc, v.sC

13 v.sd, v.sD

14 v.se, v.sE

15 v.sf, v.sF

Vector Addressing Equivalencies

Numeric indices are preceded by the letter s or S, for example, s1.
Swizzling, duplication, and nesting are allowed, for example, v.yx, v.xx,
v.lo.x.

Table A.6

v.lo v.hi v.odd v.even

float2 v.x, v.s0 v.y, v.s1 v.y, v.s1 v.x, v.s0

float3* v.s01, v.xy v.s23, v.zw v.s13, v.yw v.s02, v.xz

float4 v.s01, v.xy v.s23, v.zw v.s13, v.yw v.s02, v.xz

float8 v.s0123 v.s4567 v.s1357 v.s0246

float16 v.s01234567 v.s89abcdef v.s13579bdf v.s02468ace

When using .lo or .hi with a 3-component vector, the .w component is 
undefined.

Table A.5  (Continued )
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Conversions and Type Casting Examples [6.2]

T a = (T)b;   // Scalar to scalar, or scalar to vector
T a = convert_T(b);
T a = convert_T_R(b);
T a = as_T(b);
T a = convert_T_sat_R(b);   //R is rounding mode

R can be one of the following rounding modes:

Table A.7

_rte To nearest even 

_rtz Toward zero

_rtp Toward +infinity 

_rtn Toward -infinity

Operators [6.3]

These operators behave similarly as in C99 except that operands may 
include vector types when possible:

Table A.8

+ - * % / -- ++ == != &

~ ^ > < >= <= | ! && ||

?: >> << , = op= sizeof

Address Space Qualifiers [6.5]

__global, global
__local, local
__constant, constant
__private, private

Function Qualifiers [6.7]

__kernel, kernel 
__attribute__((vec_type_hint(type)))   //type defaults to int
__attribute__((work_group_size_hint(X, Y, Z)))
__attribute__((reqd_work_group_size(X, Y, Z)))
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Preprocessor Directives and Macros [6.9]
#pragma OPENCL FP_CONTRACT on-off-switch 
where on-off-switch is one of ON OFF DEFAULT

Table A.9

__FILE__ Current source file 

__LINE__ Integer line number 

__OPENCL_VERSION__ Integer version number 

__CL_VERSION_1_0__ Substitutes integer 100 for version 1.0

__CL_VERSION_1_1__ Substitutes integer 110 for version 1.1 

__ENDIAN_LITTLE__ 1 if device is little endian   

__kernel_exec(X, typen) Same as __kernel __attribute__

((work_group_size_hint(X, 1, 1))) \
 __attribute__ ((vec_type_hint(typen)))

__IMAGE_SUPPORT__ 1 if images are supported  

__FAST_RELAXED_MATH__ 1 if –cl-fast-relaxed-math optimization 
option is specified

Specify Type Attributes  [6.10.1]
Use the following attributes to specify special attributes of enum, struct, 
and union types:

__attribute__((aligned(n)))
__attribute__((aligned))
__attribute__((packed))
__attribute__((endian(host)))
__attribute__((endian(device)))
__attribute__((endian))
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Math Constants [6.11.2]
The values of the following symbolic constants are type float and are 
accurate within the precision of a single-precision floating-point number:

Table A.10

MAXFLOAT Value of max. non-infinite single-precision floating-point 
number.

HUGE_VALF Positive float expression, evaluates to +infinity. Used as 
error value.

HUGE_VAL Positive double expression, evaluates to +infinity. Used as 
error value. Optional

INFINITY Constant float expression, positive or unsigned infinity.

NAN Constant float expression, quiet NaN.

M_E_F Value of e.

M_LOG2E_F Value of log2e.

M_LOG10E_F Value of log10e.

M_LN2_F Value of loge2.

M_LN10_F Value of loge10.

M_PI_F Value of .

M_PI_2_F Value of  / 2.

M_PI_4_F Value of  / 4.

M_1_PI_F Value of 1 / .

M_2_PI_F Value of 2 / .

M_2_SQRTPI_F Value of 2 / .

M_SQRT2_F Value of 2.

M_SQRT1_2_F Value of 1 / 2.

Each occurrence of T within a function call must be the same. n is 2, 3, 4, 
8, or 16 unless otherwise specified.  
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Work-Item Built-In Functions [6.11.1] 
D is dimension index.

Table A.11

uint get_work_dim () Number of dimensions in use

size_t get_global_size (uint D) Number of global work-items  

size_t get_global_id (uint D) Global work-item ID value

size_t get_local_size (uint D) Number of local work-items 

size_t get_local_id (uint D) Local work-item ID 

size_t get_num_groups (uint D) Number of work-groups

size_t get_group_id (uint D) Returns the work-group ID 

size_t get_global_offset (uint D) Returns global offset

Integer Built-In Functions [6.11.3]
T is type char, charn, uchar, ucharn, short, shortn, ushort,
ushortn, int, intn, uint, uintn, long, longn, ulong, or ulongn.

U is the unsigned version of T. S is the scalar version of T.

Table A.12

U abs (T x) | x |

U abs_diff (T x, T y) | x – y | without modulo overflow

T add_sat (T x, T y) x + y and saturates the result

T hadd (T x, T y) (x + y) >> 1 without modulo 
overflow

T rhadd (T x, T y) (x + y + 1) >> 1

T clz (T x) Number of leading 0 bits in x

T clamp (T x, T min, T max)
T clamp (T x, S min, S max)

min(max(x, minval), maxval)

T mad_hi (T a, T b, T c) mul_hi(a, b) + c

continues
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T mad_sat (T a, T b, T c) a * b + c and saturates the result

T max (T x, T y) y if x < y, otherwise it returns x

T max (T x, S y) y if x < y, otherwise it returns x

T min (T x, T y) y if y < x, otherwise it returns x

T min (T x, S y) y if y < x, otherwise it returns x

T mul_hi (T x, T y) High half of the product of x and y

T rotate (T v, T i) Result [indx] = v[indx] << i[indx]

T sub_sat (T x, T y) x - y  and saturates the result

For upsample, scalar types are permitted for the following vector types:

Table A.13

shortn upsample(
charn hi, ucharn lo)

result[i]= ((short)hi[i]<< 8) | lo[i]

ushortn upsample(
ucharn hi, ucharn lo)

result[i]=((ushort)hi[i]<< 8) | lo[i]

intn upsample(
shortn hi, ushortn lo)

result[i]=((int)hi[i]<< 16) | lo[i]

uintn upsample(
ushortn hi, ushortn lo)

result[i]=((uint)hi[i]<< 16) | lo[i]

longn upsample(
intn hi,  uintn lo

result[i]=((long)hi[i]<< 32) | lo[i]

ulongn upsample(
uintn hi, uintn lo)

result[i]=((ulong)hi[i]<< 32) | lo[i]

The following fast integer functions optimize the performance of kernels. 
In these functions, T is type int, int2, int3, int4, int8, int16, uint,
uint2, uint4, uint8, or uint16.

Table A.14

T mad24 (T a, T b, T c) Multiply 24-bit int. values a, b, add 32-bit int. 
result to 32-bit int. c

T mul24 (T a, T b) Multiply 24-bit int. values a and b

Table A.12  (Continued )
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Common Built-In Functions [6.11.4] 
T is type float or floatn (or optionally double, doublen, or halfn). 
Optional extensions enable double, doublen, and halfn types.

Table A.15

T clamp (T x, T min, T max)
floatn clamp (floatn x, float min, float max)
doublen clamp (doublen x, double min, double max)
halfn clamp (halfn x, half min, half max)

Clamp x to range 
given by min,
max

T degrees (T radians) radians to 
degrees

T max (T x, T y)
floatn max (floatn x, float y)
doublen max (doublen x, double y)
halfn max (halfn x, half y)

Max of x and y

T min (T x, T y)
floatn min (floatn x, float y)
doublen min (doublen x, double y)
halfn min (halfn x, half y)

Min of x and y

T mix (T x, T y, T a)
floatn mix (floatn x, float y, float a)
doublen mix (doublen x, double y, double a)
halfn mix (halfn x, half y, half a)

Linear blend of x
and y

T radians (T degrees) degrees to 
radians

T step (T edge, T x)
floatn step (float edge, floatn x)
doublen step (double edge, doublen x)
halfn step (half edge, halfn x)

0.0 if x < edge,
else 1.0

T smoothstep (T edge0, T edge1, T x)
floatn smoothstep (float edge0, float edge1, floatn x)
doublen smoothstep (double edge0, double edge1, doublen x)
halfn smoothstep (half edge0, half edge1, halfn x)

Step and 
interpolate

T sign (T x) Sign of x



ptg

560 Chapter 23: Summary of OpenCL 1.1

Math Built-In Functions [6.11.2]
T is type float or floatn (or optionally double, doublen, or halfn). 
intn, uintn, and ulongn must be scalar when T is scalar. Q is qualifier 
__global, __local, or __private. HN indicates that Half and Native 
variants are available by prepending half_ or native_ to the function 
name. Optional extensions enable double, doublen, half, and halfn
types.

Table A.16

T acos (T) Arc cosine 

T acosh (T) Inverse hyperbolic cosine

T acospi (T x) acos (x)/

T asin (T) Arc sine

T asinh (T) Inverse hyperbolic sine

T asinpi (T x) asin (x)/

T atan (T y_over_x) Arc tangent

T atan2 (T y, T x) Arc tangent of y/x

T atanh (T) Hyperbolic arc tangent

T atanpi (T x) atan (x)/

T atan2pi (T x, T y) atan2 (x, y)/

T cbrt (T) Cube root

T ceil (T) Round to integer toward 
+infinity

T copysign (T x, T y) x with sign changed to sign of y

T cos (T) HN Cosine

T cosh (T) Hyperbolic cosine

T cospi (T x) cos ( x)

T half_divide (T x, T y) 
T native_divide (T x, T y)

x /y  (T may be float or floatn)

T erfc (T) Complementary error function

T erf (T) Calculates error function of T
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T exp (T x) HN Exponential base e

T exp2 (T) HN Exponential base 2

T exp10 (T) HN Exponential base 10

T expm1 (T x) e^x -1.0

T fabs (T) Absolute value

T fdim (T x, T y) “Positive difference” between x
and y

T floor (T) Round to integer toward -infinity

T fma (T a, T b, T c) Multiply and add, then round

T fmax (T x, T y)
halfn fmax (halfn x, half y)
floatn fmax(floatn x, float y)
doublen fmax(doublen x, double y)

Return y if x < y, otherwise it 
returns x

T fmin (T x, T y)
halfn fmin (halfn x, half y)
floatn fmin(floatn x, float y)
doublen fmin(doublen x, double y)

Return y if y < x, otherwise it 
returns x

T fmod (T x, T y) Modulus. Returns x – y * 
trunc (x/y)

T fract (T x, Q T *iptr) Fractional value in x

T frexp (T x, Q intn *exp) Extract mantissa and exponent

T hypot (T x, T y) Square root of x ^2+ y ^2 

intn ilogb (T x) Return exponent as an integer 
value

T ldexp (T x, intn n)
T ldexp (T x, int n)

x  * 2^n

T lgamma (T x)
T lgamma_r (T x, Q intn *signp)

Log gamma function

T log (T) HN Natural logarithm

T log2 (T) HN Base 2 logarithm

continues

Table A.16  (Continued )
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T log10 (T) HN Base 10 logarithm

T log1p (T x) ln (1.0 + x)

T logb (T x) Exponent of x

T mad (T a, T b, T c) Approximates a * b + c

T maxmag (T x, T y) Maximum magnitude of x and y

T minmag (T x, T y) Minimum magnitude of x and y

T modf (T x, Q T *iptr) Decompose a floating-point 
number

float nan (uintn nancode)
floatn nan (uintn nancode)
halfn nan (ushortn nancode)
doublen nan (ulongn nancode)

Quiet NaN

T nextafter (T x, T y) Next representable floating-point 
value following x in the direction 
of y

T pow (T x, T y) Compute x to the power of 
y (x^y)

T pown (T x, intn y) Compute x^y, where y is an 
integer

T powr (T x, T y) HN Compute x^y, where x is >= 0

T half_recip (T x)   
T native_recip (T x)  

1 /x  (T may be float or floatn)

T remainder (T x, T y) Floating-point remainder

T remquo (T x, T y, Q intn *quo) Floating-point remainder and 
quotient

T rint (T) Round to nearest even integer

T rootN (T x, intn y) Compute x to the power of 1/y

T round (T x) Integral value nearest to x
rounding 

T rsqrt (T) HN Inverse square root

T sin (T) HN Sine

Table A.16  (Continued )
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T sincos (T x, Q T *cosval) Returns sin(x) and sets cosval 
cos(x)

T sinh (T) Hyperbolic sine

T sinpi (T x) sin ( x)

T sqrt (T) HN Square root

T tan (T) HN Tangent

T tanh (T) Hyperbolic tangent

T tanpi (T x) tan ( x)

T tgamma (T) Gamma function

T trunc (T) Round to integer toward zero

Geometric Built-In Functions [6.11.5]
Vector types may have two, three, or four components. Optional exten-
sions enable double, doublen, and halfn types.

Table A.17

float dot (float p0, float p1)
float dot (floatn p0, floatn p1)
double dot (double p0, double p1)
double dot (doublen p0, doublen p1)
half dot (half p0, half p1)
half dot (halfn p0, halfn p1)

Dot product

float{3,4} cross (float{3,4} p0, float{3,4} p1)
double{3,4} cross (double{3,4} p0, double{3,4} p1)
half{3,4} cross (half{3,4} p0, half{3,4} p1)

Cross-product

float distance (float p0, float p1)
float distance (floatn p0, floatn p1)
double distance (double p0, double p1)
double distance (doublen p0, doublen p1)
half distance (half p0, half p1)
half distance (halfn p0, halfn p1)

Vector distance

continues

Table A.16  (Continued )
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float length (float p)
float length (floatn p)
double length (double p)
double length (doublen p)
half length (half p)
half length (halfn p)

Vector length

float normalize (float p)
floatn normalize (floatn p)
double normalize (double p)
doublen normalize (doublen p)
half normalize (half p)
halfn normalize (halfn p)

Normal vector 
length 1

float fast_distance (float p0, float p1)
float fast_distance (floatn p0, floatn p1)

Vector distance

float fast_length (float p)
float fast_length (floatn p)

Vector length

float fast_normalize (float p)
floatn fast_normalize (floatn p)

Normal vector 
length 1

Relational Built-In Functions [6.11.6] 
T is type float, floatn, char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong, or 
ulongn (and optionally double, doublen). S is type char, charn,
short, shortn, int, intn, long, or longn. U is type uchar, ucharn,
ushort, ushortn, uint, uintn, ulong, or ulongn. Optional extensions 
enable double, doublen, and halfn types.

Table A.17  (Continued )

Table A.18

int isequal (float x, float y)
intn isequal (floatn x, floatn y)
int isequal (double x, double y)
longn isequal (doublen x, doublen y)
int isequal (half x, half y)
shortn isequal (halfn x, halfn y)

Compare of x == y

continues
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int isnotequal (float x, float y)
intn isnotequal (floatn x, floatn y)
int isnotequal (double x, double y)
longn isnotequal (doublen x, doublen y)
int isnotequal (half x, half y)
shortn isnotequal (halfn x, halfn y)

Compare of x!= y

int isgreater (float x, float y)
intn isgreater (floatn x, floatn y)
int isgreater (double x, double y)
longn isgreater (doublen x,  doublen y)
int isgreater (half x, half y)
shortn isgreater (halfn x, halfn y)

Compare of x > y

int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)
int isgreaterequal (double x,  double y)
longn isgreaterequal (doublen x, doublen y)
int isgreaterequal (half x, half y)
shortn isgreaterequal (halfn x, halfn y)

Compare of  x >= y

int isless (float x, float y)
intn isless (floatn x, floatn y)
int isless (double x, double y)
longn isless (doublen x, doublen y)
int isless (half x, half y)
shortn isless (halfn x, halfn y)

Compare of  x < y

int islessequal (float x, float y)
intn islessequal (floatn x, floatn y)
int islessequal (double x, double y)
longn islessequal (doublen x, doublen y)
int islessequal (half x, half y)
shortn islessequal (halfn x, halfn y)

Compare of x <= y

int islessgreater (float x, float y)
intn islessgreater (floatn x, floatn y)
int islessgreater (double x, double y)
longn islessgreater (doublen x, doublen y)
int islessgreater (half x, half y)
shortn islessgreater (halfn x, halfn y)

Compare of 
(x < y) || (x > y)

continues

Table A.18  (Continued )
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int isfinite (float)
intn isfinite (floatn)
int isfinite (double)
longn isfinite (doublen)
int isfinite (half)
shortn isfinite (halfn)

Test for finite value

int isinf (float)
intn isinf (floatn)
int isinf (double)
longn isinf (doublen)
int isinf (half)
shortn isinf (halfn)

Test for infinity value 
(positive or negative)

int isnan (float)
intn isnan (floatn)
int isnan (double)
longn isnan (doublen)
int isnan (half)
shortn isnan (halfn)

Test for a NaN

int isnormal (float)
intn isnormal (floatn)
int isnormal (double)
longn isnormal (doublen)
int isnormal (half)
shortn isnormal (halfn)

Test for a normal value

int isordered (float x, float y)
intn isordered (floatn x, floatn y)
int isordered (double x, double y)
longn isordered (doublen x, doublen y)
int isordered (half x, half y)
shortn isordered (halfn x, halfn y)

Test if arguments are 
ordered

int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)
int isunordered (double x, double y)
longn isunordered (doublen x, doublen y)
int isunordered (half x, half y)
shortn isunordered (halfn x, halfn y)

Test if arguments are 
unordered

int signbit (float)
intn signbit (floatn)
int signbit (double)
longn signbit (doublen)
int signbit (half)
shortn signbit (halfn)

Test for sign bit

Table A.18  (Continued )
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Vector Data Load/Store Functions [6.11.7]
Q is an address space qualifier listed in 6.5 unless otherwise noted. R
defaults to the current rounding mode or is one of the rounding modes 
listed in 6.2.3.2. T is type char, uchar, short, ushort, int, uint, long,
ulong, half, or float (or optionally double). Tn refers to the vector 
form of type T. Optional extensions enable the double, doublen, half,
and halfn types.

int any (S x) 1 if MSB in any compo-
nent of x is set; else 0

int all (S x) 1 if MSB in all compo-
nents of x are set; else 0

T bitselect (T a, T b, T c)
halfn bitselect (halfn a, halfn b, halfn c)
doublen bitselect (doublen a, doublen b, doublen c)

Each bit of result is 
corresponding bit of a if 
corresponding bit of c is 0

T select (T a, T b, S c)
T select (T a, T b, U c)
doublen select (doublen, doublen, longn)
doublen select (doublen, doublen, ulongn)
halfn select (halfn, halfn, shortn)
halfn select (halfn, halfn, ushortn)

For each component of a 
vector type, result[i] = 
if MSB of c[i] is set 
? b[i] : a[i]

For scalar type, result = 
c ? b : a

Table A.18  (Continued )

Table A.19

Tn vloadn (size_t offset, const Q T *p) Read vector data from 
memory

void vstoren (Tn data, size_t offset, Q T *p) Write vector data to memory 

(Q in this function cannot be 
__constant)

float vload_half (size_t offset,
        const Q half *p)

Read a half from memory 

floatn vload_halfn (size_t offset,
        const Q half *p)

Read multiple halfs from 
memory

continues



ptg

568 Chapter 23: Summary of OpenCL 1.1

Atomic Functions [6.11.11, 9.4]
T is type int or unsigned int. T may also be type float for 
atomic_xchg, and type long or ulong for extended 64-bit atomic 
functions. Q is volatile __global or volatile __local, except Q must be 
volatile __global for atomic_xchg when T is float.

The built-in atomic functions for 32-bit values begin with atomic_ and 
the extended 64-bit atomic functions begin with atom_. For example:

void vstore_half (float data, size_t offset,
Q half *p)

void vstore_half_R (float data, size_t offset,
Q half *p)

void vstore_half (double data, size_t offset,
Q half *p)

void vstore_half_R (double data, size_t offset,
Q half *p)

Write a half to memory  

(Q in this function cannot be 
__constant)

void vstore_halfn (floatn data, size_t offset,
Q half *p)

void vstore_halfn_R (floatn data,
        size_t offset, Q half *p)
void vstore_halfn (doublen data, size_t offset,

Q half *p)
void vstore_halfn_R (doublen data,
        size_t offset, Q half *p)

Write a half vector to 
memory  

(Q in this function cannot be 
__constant)

floatn vloada_halfn (size_t offset,
        const Q half *p)

sizeof (floatn) bytes of 
data read from location 
(p + (offset * n))

void vstorea_halfn (floatn data, size_t offset,
Q half *p)

void vstorea_halfn_R (floatn data,
        size_t offset, Q half *p)
void vstorea_halfn (doublen data,
        size_t offset, Q half *p)
void vstorea_halfn_R (doublen data,
        size_t offset, Q half *p)

Write a half vector to vector-
aligned memory 

(Q in this function cannot be 
__constant)

Table A.19  (Continued )
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Table A.20

Built-in Atomic Function Extended Atomic Function

atomic_add () atom_add ()

Extended 64-bit atomic functions are enabled by the follow-
ing pragma; extension-name is one of cl_khr_int64_{base,
extended}_atomics:

#pragma OPENCL EXTENSION extension-name : enable

Table A.21

T atomic_add (Q T *p, T val) Read, add, and store

T atomic_sub (Q T *p, T val) Read, subtract, and store

T atomic_xchg (Q T *p, T val) Read, swap, and store

T atomic_inc (Q T *p) Read, increment, and store

T atomic_dec (Q T *p) Read, decrement, and store

T atomic_cmpxchg (Q T *p, T cmp, T val) Read and store (*p ==cmp)
? val : *p)

T atomic_min (Q T *p, T val) Read, store min(*p, val)

T atomic_max (Q T *p, T val) Read, store max(*p, val)

T atomic_and (Q T *p, T val) Read, store (*p & val)

T atomic_or (Q T *p, T val) Read, store (*p | val)

T atomic_xor (Q T *p, T val) Read, store (*p ^ val)
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Table A.22

event_t async_work_group_copy( __local T *dst,
   const __global T *src, size_t num_gentypes,
   event_t event)
event_t async_work_group_copy( __global T *dst,
   const __local T *src, size_t num_gentypes, event_t event)

Copies num_
gentypes T
elements from 
src to dst.

event_t async_work_group_strided_copy( __local T *dst,
   const __global T *src, size_t num_gentypes,
   size_t src_stride, event_t event)
event_t async_work_group_strided_copy( __global T *dst,
   const __local T *src, size_t num_gentypes,
   size_t dst_stride, event_t event)

Copies num_
gentypes T
elements from 
src to dst.

void wait_group_events (int num_events, event_t *event_list) Wait for events 
that identify the 
async_work_
group_copy
operations to 
complete. 

void prefetch (const __global T *p, size_t num_gentypes) Prefetch 
num_gentypes
* sizeof(T)
bytes into the 
global cache.

Async Copies and Prefetch Functions [6.11.10]
T is type char, charn, uchar, ucharn, short, shortn, ushort,
ushortn, int, intn, uint, uintn, long, longn, ulong, ulongn, float,
floatn and optionally halfn double, doublen. Optional extensions 
enable the halfn, double, and doublen types.

Synchronization, Explicit Memory Fence 
[6.11.9-10]
The flags argument is the memory address space, set to a combination of 
CLK_LOCAL_MEM_FENCE and CLK_GLOBAL_MEM_FENCE.
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Miscellaneous Vector Built-In Functions [6.11.12]
Tn and Tm are the 2-, 4-, 8-, or 16-component vectors of char, uchar,
short, ushort, half, int, uint, long, ulong, float, double. Un is the 
built-in unsigned integer data type. For vec_step(), Tn also includes 
char3, uchar3, short3, ushort3, half3, int3, uint3, long3, ulong3,
float3, and double3. half and double types are enabled by cl_khr_
fp16 and cl_khr_fp64, respectively.

Table A.24

int vec_step (Tn a)
int vec_step (typename)

Takes a built-in scalar or vector 
data type argument and returns 
an integer value representing the 
number of elements in the scalar 
or vector.

Tn shuffle (Tm x, Un mask)
Tn shuffle2 (Tm x, Tm y, Un mask)

Constructs permutation of 
elements from one or two input 
vectors, returns a vector with the 
same element type as input and 
length that is the same as the 
shuffle mask.

Table A.23

void barrier (cl_mem_fence_flags flags) All work-items in a work-
group must execute this 
before any can continue.

void mem_fence (cl_mem_fence_flags flags) Orders loads and stores of a 
work-item executing a kernel. 

void read_mem_fence (cl_mem_fence_flags flags) Orders memory loads.

void write_mem_fence (cl_mem_fence_flags flags) Orders memory stores.
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Table A.25

float4 read_imagef (image2d_t image,  sampler_t sampler,
        int2 coord)
float4 read_imagef (image2d_t image, sampler_t sampler,
        float2 coord)
int4 read_imagei (image2d_t image, sampler_t sampler,
        int2 coord)
int4 read_imagei (image2d_t image, sampler_t sampler,
        float2 coord)
uint4 read_imageui (image2d_t image, sampler_t sampler,
        int2 coord)
uint4 read_imageui (image2d_t image, sampler_t sampler,
        float2 coord)
half4 read_imageh (image2d_t image,  sampler_t sampler,
        int2 coord) H
half4 read_imageh (image2d_t image, sampler_t sampler,
        float2 coord) H

Read an element 
from a 2D image

void write_imagef (image2d_t image, int2 coord,
       float4 color)
void write_imagei (image2d_t image,  int2 coord,
       int4 color)
void write_imageui (image2d_t image, int2 coord,
       uint4 color)
void write_imageh (image2d_t image,  int2 coord,
       half4 color) H

Write color
value to (x, y)
location speci-
fied by coord in 
the 2D image

float4 read_imagef (image3d_t image, sampler_t sampler,
        int4 coord)
float4 read_imagef (image3d_t image, sampler_t sampler,
        float4 coord)
int4 read_imagei (image3d_t image, sampler_t sampler,
        int4 coord)
int4 read_imagei (image3d_t image, sampler_t sampler,
        float4 coord)

Read an element 
from a 3D image

Image Read and Write Built-In Functions 
[6.11.13, 9.5, 9.6.8]
The built-in functions defined in this section can be used only with image 
memory objects created with clCreateImage2D or clCreateImage3D.
sampler specifies the addressing and filtering mode to use. H = To enable 
read_imageh and write_imageh, enable extension cl_khr_fp16. 3D = 
To enable type image3d_t in write_image{f, i, ui}, enable exten-
sion cl_khr_3d_image_writes.
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uint4 read_imageui (image3d_t image, sampler_t sampler,
int4 coord)
uint4 read_imageui (image3d_t image, sampler_t sampler,
float4 coord)

Read an element 
from a 3D image

int get_image_width (image2d_t image)
int get_image_width (image3d_t image)

Image width in 
pixels

int get_image_height (image2d_t image)
int get_image_height (image3d_t image)

Image height in 
pixels

int get_image_depth (image3d_t image) Image depth in 
pixels

int get_image_channel_data_type (image2d_t image)
int get_image_channel_data_type (image3d_t image)

Image channel 
data type

int get_image_channel_order (image2d_t image)
int get_image_channel_order (image3d_t image)

Image channel 
order

int2 get_image_dim (image2d_t image) Image width, 
height

int4 get_image_dim (image3d_t image) Image width, 
height, and 
depth

Use this pragma to enable type image3d_t in write_image{f, i, ui}:

   #pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
void write_imagef (image3d_t image, int4 coord, float4 
color) 3D
void write_imagei (image3d_t image,  int4 coord, int4 
color) 3D
void write_imageui (image3d_t image, int4 coord, uint4 
color) 3D

Writes color at 
coord in the 3D 
image

Image Objects

Create Image Objects [5.3.1]  

cl_mem clCreateImage2D (cl_context context, cl_mem_flags flags,
   const cl_image_format *image_format, size_t image_width,
   size_t image_height, size_t image_row_pitch, void *host_ptr,
   cl_int *errcode_ret)

Table A.25  (Continued )
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flags: (also for clCreateImage3D, clGetSupportedImageFormats)
   CL_MEM_READ_WRITE,  CL_MEM_{WRITE, READ}_ONLY, 
   CL_MEM_{USE, ALLOC, COPY}_HOST_PTR

cl_mem clCreateImage3D (cl_context context, cl_mem_flags flags,
   const cl_image_format *image_format, size_t image_width,
   size_t image_height, size_t image_depth,
   size_t image_row_pitch, size_t image_slice_pitch,
   void *host_ptr, cl_int *errcode_ret)
flags: See clCreateImage2D

Query List of Supported Image Formats [5.3.2] 

cl_int clGetSupportedImageFormats (cl_context context,
   cl_mem_flags flags, cl_mem_object_type image_type,
   cl_uint num_entries, cl_image_format *image_formats,
   cl_uint *num_image_formats)
flags: See clCreateImage2D

Copy between Image, Buffer Objects [5.3.4]

cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue,
   cl_mem src_image, cl_mem dst_buffer, const size_t src_origin[3],
   const size_t region[3], size_t dst_offset,
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event)

cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue,
   cl_mem src_buffer, cl_mem dst_image, size_t src_offset,
   const size_t dst_origin[3], const size_t region[3],
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event)

Map and Unmap Image Objects  [5.3.5]

void * clEnqueueMapImage (cl_command_queue command_queue,
   cl_mem image, cl_bool blocking_map, cl_map_flags map_flags,
   const size_t origin[3], const size_t region[3],
   size_t *image_row_pitch, size_t *image_slice_pitch,
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event, cl_int *errcode_ret)
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Read, Write, Copy Image Objects [5.3.3]   

cl_int clEnqueueReadImage (cl_command_queue command_queue,
   cl_mem image, cl_bool blocking_read, const size_t origin[3],
   const size_t region[3], size_t row_pitch,size_t slice_pitch,
   void *ptr, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueWriteImage (cl_command_queue command_queue,
   cl_mem image, cl_bool blocking_write, const size_t origin[3],
   const size_t region[3], size_t input_row_pitch,
   size_t input_slice_pitch, const void *ptr,
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event)

cl_int clEnqueueCopyImage (cl_command_queue command_queue,
   cl_mem src_image, cl_mem dst_image, const size_t src_origin[3],
   const size_t dst_origin[3], const size_t region[3],
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event)

Query Image Objects [5.3.6]

cl_int clGetMemObjectInfo (cl_mem memobj, cl_mem_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:   CL_MEM_{TYPE, FLAGS, SIZE, HOST_PTR}, 
   CL_MEM_{MAP, REFERENCE}_COUNT, CL_MEM_{CONTEXT, OFFSET}, 
   CL_MEM_ASSOCIATED_MEMOBJECT

cl_int clGetImageInfo (cl_mem image, cl_image_info param_name,
   size_t param_value_size, void *param_value,
   size_t *param_value_size_ret)
param_name:  CL_IMAGE_{FORMAT, ELEMENT_SIZE}, 
   CL_IMAGE_{ROW, SLICE}_PITCH, CL_IMAGE_{HEIGHT, WIDTH, DEPTH}, 
   CL_IMAGE_D3D10_SUBRESOURCE_KHR, CL_MEM_D3D10_RESOURCE_KHR
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Image Formats [5.3.1.1, 9.5]
Supported image formats:

Table A.26

Image_num_Channels Image_Channel_Order Image_Channel_Data_Type

4 CL_RGBA: CL_UNORM_INT8, CL_UNORM_INT16,
CL_SIGNED_INT8, CL_SIGNED_INT16,
CL_SIGNED_INT32 CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16,
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_BGRA:  CL_UNORM_INT8

Access Qualifiers [6.6]  
Apply to image image2d_t and image3d_t types to declare if the image 
memory object is being read or written by a kernel. The default qualifier 
is __read_only.

__read_only,  read_only
__write_only,  write_only

Sampler Objects [5.5]
cl_sampler clCreateSampler (cl_context context,
   cl_bool normalized_coords, cl_addressing_mode addressing_mode,
   cl_filter_mode filter_mode, cl_int *errcode_ret)

cl_int clRetainSampler (cl_sampler sampler)

cl_int clReleaseSampler (cl_sampler sampler)

cl_int clGetSamplerInfo (cl_sampler sampler,
   cl_sampler_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name:  CL_SAMPLER_REFERENCE_COUNT, 
   CL_SAMPLER_{CONTEXT, FILTER_MODE},
   CL_SAMPLER_ADDRESSING_MODE, CL_SAMPLER_NORMALIZED_COORDS
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Sampler Declaration Fields [6.11.13.1]
The sampler can be passed as an argument to the kernel using clSet-
KernelArg, or it can be a constant variable of type sampler_t declared 
in the program source. 

const sampler_t <sampler-name> =
                 <normalized-mode> | <address-mode> | <filter-mode>
normalized-mode:
   CLK_NORMALIZED_COORDS_{TRUE, FALSE}
address-mode:
   CLK_ADDRESS_{REPEAT, CLAMP, NONE}, 
   CLK_ADDRESS_{CLAMP_TO_EDGE, MIRRORED_REPEAT}
filter-mode:
   CLK_FILTER_NEAREST,  CLK_FILTER_LINEAR

OpenCL Device Architecture Diagram [3.3]
This table shows memory regions with allocation and memory access 
capabilities.

Table A.27

Global Constant Local Private

Host Dynamic 
allocation

Read/write 
access

Dynamic 
allocation

Read/write 
access

Dynamic 
allocation

No access

No allocation

No access

Kernel No allocation

Read/write 
access

Static 
allocation

Read-only 
access

Static 
allocation

Read/write 
access

Static 
allocation

Read/write 
access

This conceptual OpenCL device architecture includes processing elements 
(PEs), compute units (CUs), and devices. The host is not shown. 

OpenCL/OpenGL Sharing APIs
Creating OpenCL memory objects from OpenGL objects using 
clCreateFromGLBuffer, clCreateFromGLTexture2D, clCreate-
FromGLTexture3D, and clCreateFromGLRenderbuffer ensure that the 
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storage of the OpenGL object will not be deleted while the corresponding 
OpenCL memory object exists. 

CL Buffer Objects > GL Buffer Objects [9.8.2]

cl_mem clCreateFromGLBuffer (cl_context context, cl_mem_flags flags,
    GLuint bufobj, int *errcode_ret)
flags: CL_MEM_{READ, WRITE}_ONLY, CL_MEM_READ_WRITE

CL Image Objects > GL Textures [9.8.3]

cl_mem clCreateFromGLTexture2D (cl_context context,
   cl_mem_flags flags, GLenum texture_target, GLint miplevel,
   GLuint texture, cl_int *errcode_ret)
flags: See clCreateFromGLBuffer
texture_target: GL_TEXTURE_{2D, RECTANGLE}, 
   GL_TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, 
   GL_TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}

cl_mem clCreateFromGLTexture3D (cl_context context,
   cl_mem_flags flags, GLenum texture_target, GLint miplevel,
   GLuint texture, cl_int *errcode_ret)
flags: See clCreateFromGLBuffer
texture_target: GL_TEXTURE_3D

CL Image Objects > GL Renderbuffers [9.8.4]

cl_mem clCreateFromGLRenderbuffer (cl_context context,
   cl_mem_flags flags, GLuint renderbuffer, cl_int *errcode_ret)
flags: clCreateFromGLBuffer

Query Information [9.8.5]

cl_int clGetGLObjectInfo (cl_mem memobj,
   cl_gl_object_type *gl_object_type, GLuint *gl_object_name)
*gl_object_type returns: CL_GL_OBJECT_BUFFER,
   CL_GL_OBJECT_{TEXTURE2D, TEXTURE3D}, CL_GL_OBJECT_RENDERBUFFER

cl_int clGetGLTextureInfo (cl_mem memobj,
   cl_gl_texture_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_GL_TEXTURE_TARGET, CL_GL_MIPMAP_LEVEL
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Share Objects [9.8.6]

cl_int clEnqueueAcquireGLObjects (cl_command_queue command_queue,
   cl_uint num_objects, const cl_mem *mem_objects,
   cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReleaseGLObjects (cl_command_queue command_queue,
   cl_uint num_objects, const cl_mem *mem_objects,
   cl_uint num_events_in_wait_list, const cl_event *event_wait_list,
   cl_event *event)

CL Event Objects > GL Sync Objects [9.9]

cl_event clCreateEventFromGLsyncKHR (cl_context context,
   GLsync sync, cl_int *errcode_ret)

CL Context > GL Context, Sharegroup [9.7]

cl_int clGetGLContextInfoKHR (
   const cl_context_properties *properties,
   cl_gl_context_info param_name, size_t param_value_size,
   void *param_value, size_t *param_value_size_ret)
param_name: CL_DEVICES_FOR_GL_CONTEXT_KHR,
   CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

OpenCL/Direct3D 10 Sharing APIs [9.10]
Creating OpenCL memory objects from OpenGL objects using 
clCreateFromGLBuffer, clCreateFromGLTexture2D, clCreate-
FromGLTexture3D, or clCreateFromGLRenderbuffer ensures that the 
storage of that OpenGL object will not be deleted while the corresponding 
OpenCL memory object exists. 

cl_int clGetDeviceIDsFromD3D10KHR (cl_platform_id platform,
   cl_d3d10_device_source_khr d3d_device_source, void *d3d_object,
   cl_d3d10_device_set_khr d3d_device_set, cl_uint num_entries,
   cl_device_id *devices, cl_uint *num_devices)
d3d_device_source: CL_D3D10_DEVICE_KHR, CL_D3D10_DXGI_ADAPTER_KHR
d3d_object: ID3D10Device, IDXGIAdapter
d3d_device_set: CL_ALL_DEVICES_FOR_D3D10_KHR, 
   CL_PREFERRED_DEVICES_FOR_D3D10_KHR
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cl_mem clCreateFromD3D10BufferKHR (cl_context context,
   cl_mem_flags flags, ID3D10Buffer *resource, cl_int *errcode_ret)
flags: CL_MEM_{READ, WRITE}_ONLY, CL_MEM_READ_WRITE

cl_mem clCreateFromD3D10Texture2DKHR (cl_context context,
   cl_mem_flags flags, ID3D10Texture2D  *resource, UINT subresource,
   cl_int *errcode_ret)
flags: See clCreateFromD3D10BufferKHR

cl_mem clCreateFromD3D10Texture3DKHR (cl_context context,
   cl_mem_flags flags, ID3D10Texture3D *resource, UINT subresource,
   cl_int *errcode_ret)
flags: See clCreateFromD3D10BufferKHR

cl_int clEnqueueAcquireD3D10ObjectsKHR (
   cl_ command_queue command_queue, cl_uint num_objects,
   const cl_mem *mem_objects, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)

cl_int clEnqueueReleaseD3D10ObjectsKHR (
   cl_ command_queue command_queue, cl_uint num_objects,
   const cl_mem *mem_objects, cl_uint num_events_in_wait_list,
   const cl_event *event_wait_list, cl_event *event)
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Symbols
-- (pre-increment) unary operator,  131
- (subtract) operator, 124–126
?: (ternary selection) operator,  129
- or -- (unary) operators,  131
| or || (or) operators, 127–128
+ (addition) operator, 124–126
+ or ++ (post-increment) unary operator, 

131
!= (not equal) operator, 127
== (equal) operator, 127
% (remainder) operator, 124–126
& or && (and) operators, 127–128
* (multiply) operator, 124–126
^ (exclusive or) operator, 127–128
^^ (exclusive) operator, 128
~ (not) operator, 127–128
> (greater than) operator, 127
>= (greater than or equal) operator,  127
>> (right shift) operator, 129–130

Numbers
0 value, 64–65, 68
2D composition, in DFT, 457–458
64-bit integers, embedded profile, 

385–386
754 formats, IEEE floating-point arith-

metic, 34

A
accelerator devices

defined, 69
tiled and packetized sparse matrix 

design, 523, 534
access qualifiers

as keywords in OpenCL C,  141
overview of, 140–141
reference guide, 576

 

add (+) arithmetic operator,  124–126
address space qualifiers

casting between address spaces, 
139–140

constant, 137– 138
global, 136
as keywords in OpenCL C,  141
local,  138–139
overview of, 135– 136
private, 139
reference guide, 554
supported, 99

addressing mode, sampler objects,  282, 
292–295

ALL_BUILD project, Visual Studio,  43
AltiVec Technology Programming Interface 

Manual, 111–113
AMD

generating project in Linux,  40–41
generating project in Windows, 

40–41
storing binaries in own format,  233

and (& or &&) operators, 127–128
Apple

initializing contexts for OpenGL 
interoperability,338

querying number of platforms, 64
storing binaries in own format,  233

application data types, 103– 104
ARB_cl_event extension, OpenGL, 

349–350
architecture diagram, OpenCL device,  577
arguments

context, 85
device, 68
enqueuing commands,  313
guassian_kernel(), 296–297
kernel function restrictions,  146
reference guide for kernel, 548
setting kernel, 55–57, 237–240

Index
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arithmetic operators
overview of,  124–126
post- and pre-increment (++ and --)

unary, 131
symbols, 123
unary (+ and -), 131

arrays
parallelizing Dijkstra’s algorithm, 

412–414
representing sparse matrix with 

binary data,  516
as_type(), 121–123
as_typen(), 121–123
ASCII File, representing sparse matrix, 

516–517
assignment (=) operator, 124, 132
async copy and prefetch functions, 

191–195, 570
ATI Stream SDK

generating project in Linux and 
Eclipse, 44–45

generating project in Visual Studio, 
42–44

generating project in Windows,  40
querying and selecting platform, 

65–66
querying context for devices,  89
querying devices,  70

atomic built-in functions
embedded profile options,  387
overview of, 195– 198
reference guide, 568–569

_attribute_ keyword, kernel qualifier, 
133–134

attributes, specifying type,  555
automatic load balancing, 20

B
barrier synchronization function, 

190–191
batches

executing cloth simulation on GPU, 
433–441

SpMV implementation, 518
behavior description, optional exten-

sion, 144
bilinear sampling object, optical flow, 

476

binaries, program
creating, 235–236
HelloBinaryWorld example, 229–230
HelloWorld.cl (NVIDIA) example, 

233–236
overview of, 227–229
querying and storing,  230–232

binary data arrays, sparse matrix,  516
bit field numbers, 147
bitwise operators, 124, 127– 128
blocking enqueue calls, and callbacks, 

327
blocking_read, executing kernel,  56
bool, rank order of, 113
border color, built-in functions, 209– 210
bracket() operator, C++ Wrapper API, 

370–371
buffers and sub-buffers

computing Dijkstra’s algorithm, 415
copying,  274–276
copying from image to, 299, 303–304
creating, 249–256
creating from OpenGL, 339– 343
creating kernel and memory objects, 

377–378
direct translation of matrix multipli-

cation into OpenCL, 502
executing Vector Add kernel, 377–

378, 381
mapping,  276–279
in memory model,  21
Ocean application,  451
OpenCL/OpenGL sharing APIs, 

446–448, 578
overview of, 247–248
querying, 257–259
reading and writing, 259– 274
reference guide, 544–545

building program objects
reference guide, 546–547
using clBuildProgram(). see

clBuildProgram()
built-in data types

other, 108–109
reference guide, 550–552
scalar, 99–101
vector, 102– 103

built-in functions
async copy and prefetch, 191–195
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atomic, 195–198, 387, 568–569
border color, 209–210
common, 172–175, 559
floating-point constant, 162– 163
floating-point pragma, 162
geometric, 175–177, 563– 564
image read and write, 201–206, 

572– 573
integer, 168–172, 557–558
math, 153–161, 560–563
miscellaneous vector, 199–200,  571
overview of, 149
querying image information,  214–215
relational, 175, 178–181, 564–567
relative error as ulps, 163–168
samplers, 206–209
synchronization,  190–191
vector data load and store, 181–189
work-item, 150–152, 557
writing to image, 210–213

Bullet Physics SDK. see cloth simulation 
in Bullet Physics SDK

bytes, and vector data types,  102

C
C++ Wrapper API

defined, 369
exceptions, 371– 374
Ocean application overview, 451
overview of, 369–371

C++ Wrapper API, Vector Add example
choosing device and creating com-

mand-queue, 375–377
choosing platform and creating 

context, 375
creating and building program object, 

377
creating kernel and memory objects, 

377–378
executing Vector Add kernel, 378–382
structure of OpenCL setup,  374–375

C99 language
OpenCL C derived from, 32–33,  97
OpenCL C features added to,  99

callbacks
creating OpenCL contexts,  85
event objects. see

clSetEventCallback()

events impacting execution on host, 
324–327

placing profiling functions inside, 
331–332

steps in Ocean application,  451
capacitance, of multicore chips,  4–5
case studies

cloth simulation. see cloth simulation 
in Bullet Physics SDK

Dijkstra’s algorithm. see Dijkstra’s 
algorithm, parallelizing

image histogram. see image 
histograms

matrix multiplication. see matrix 
multiplication

optical flow. see optical flow
PyOpenCL. see PyOpenCL
simulating ocean. see Ocean simula-

tion, with FFT
Sobel edge detection filter, 407–410

casts
explicit, 116
implicit conversions between vectors 

and, 111–113
cEnqueueNDRangeKernel(), 251, 255
ckCreateSampler(), 292–295
CL_COMPLETE value, command-queue, 

311
CL_CONTEXT_DEVICES, C++ Wrapper 

API, 376
cl_context_properties fields, 

initializing contexts,  338–339
CL_DEVICE_IMAGE_SUPPORT property, 

clGetDeviceInfo(), 386–387
CL_DEVICE_IMAGE3D_MAX_WIDTH

property, clGetDeviceInfo(),
386–387

CL_DEVICE_MAX_COMPUTE_UNITS,
506–509

CL_DEVICE_TYPE_GPU, 502
_CL_ENABLE_EXCEPTIONS preprocessor 

macro, 372
cl_image_format, 285, 287–291
cl_int clFinish (), 248
cl_int clWaitForEvents(), 248
CL_KERNEL_PREFERRED_WORK_GROUP_

SIZE MULTIPLE query, 243–244
CL_KERNEL_WORK_GROUP_SIZE query, 

243–244



ptg

584 Index

 

cl_khr_gl_event extension, 342, 348
cl_khr_gl_sharing extension, 

336–337, 342
cl_map_flags, clEnqueueMapBuffer(),

276–277
cl_mem object, creating images,  284
CL_MEM_COPY_FROM_HOST_PTR, 377–378
cl_mem_flags, clCreateBuffer(),

249–250
CL_MEM_READ_ONLY | CL_MEM_COPY_

HOST_PTR memory type,  55
CL_MEM_READ_WRITE, 308
CL_MEM_USE_HOST_PTR, 377–378
cl_net error values, C++ Wrapper API, 

371
cl_platform, 370–371
CL_PROFILING_COMMAND_END, 502
CL_PROFILING_COMMAND_START, 502
CL_QUEUE_PROFILING_ENABLE flag, 328
CL_QUEUE_PROFILING_ENABLE prop-

erty, 502
CL_QUEUED value, command-queue,  311
CL_RUNNING value, command-queue, 

311
CL_SUBMITTED value, command-queue, 

311
CL_SUCCESS return value, clBuild-

Program(), 220
_CL_USER_OVERRIDE_ERROR_STRINGS

preprocessor macro, 372
classes, C++ Wrapper API hierarchy, 

369–370
clBarrier(), 313–316
clBuffer(), 54
cl::Buffer(), 377–378, 381
clBuildProgram()

build options, 546–547
building program object, 219– 220, 

222
creating program from binary, 

234–236
floating-point options,224
miscellaneous options, 226–227
optimization options, 225–226
preprocessor build options, 223– 224
querying program objects,  237
reference guide, 546

cl::CommandQueue::enqueueMap-
Buffer(), 379, 381

cl::commandQueue::enqueueUnmap
Obj(), 379, 382

cl::Context(), 375
cl::Context::getInfo(), 376
clCreateBuffer()

creating buffers and sub-buffers, 
249–251

creating memory objects,  54–55
direct translation of matrix multipli-

cation into OpenCL, 502
reference guide, 544
setting kernel arguments,  239

clCreateCommandQueue(), 51–52, 543
clCreateContext(), 84–87, 541
clCreateContextFromType()

creating contexts, 84–85
querying context for associated 

devices, 88
reference guide, 541

clCreateEventFromGLsyncKHR()
explicit synchronization, 349
reference guide, 579
synchronization between OpenCL/

OpenGL, 350–351
clCreateFromD3D10BufferKHR(), 580
clCreateFromD3D10Texture2DKHR(),

580
clCreateFromD3D10Texture3DKHR(),

580
clCreateFromGL*(), 335, 448
clCreateFromGLBuffer(), 339–343, 578
clCreateFromGLRenderbuffer()

creating memory objects from 
OpenGL, 341

reference guide, 578
sharing with OpenCL,  346–347

clCreateFromGLTexture2D(), 341, 578
clCreateFromGLTexture3D(), 341, 578
clCreateImage2D()

creating 2D image from file, 284–285
creating image objects, 283– 284
reference guide, 573–574

clCreateImage3D(), 283–284, 574
clCreateKernel()

creating kernel objects, 237–238
reference guide, 547
setting kernel arguments, 239– 240

clCreateKernelsInProgram(),
240–241, 547
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clCreateProgram(), 221
clCreateProgramWithBinary()

creating programs from binaries, 
228–229

HelloBinaryWorld example, 229–230
reference guide, 546

clCreateProgramWithSource()
creating and building program object, 

52–53
creating program object from source, 

218–219, 222
reference guide, 546

clCreateSampler(), 292–294, 576
clCreateSubBuffer(), 253–256, 544
clCreateUserEvent()

generating events on host, 321–322
how to use, 323–324
reference guide, 549

clEnqueueAcquireD3D10Ob-
jectsKHR(), 580

clEnqueueAcquireGLObjects()
creating OpenCL buffers from 

OpenGL buffers, 341–342
explicit synchronization, 349
implicit synchronization,  348–349
reference guide, 579

clEnqueueBarrier()
function of, 316–317
ordering constraints between 

commands, 313
reference guide, 549

clEnqueueCopyBuffer(), 275–276, 545
clEnqueueCopyBufferToImage()

copying from buffer to image, 
303–305

defined, 299
reference guide, 574

clEnqueueCopyImage()
copy image objects, 302– 303
defined, 299
reference guide, 575

clEnqueueCopyImageToBuffer()
copying from image to buffer, 

303–304
defined, 299
reference guide, 574

clEnqueueMapBuffer()
mapping buffers and sub-buffers, 

276–278

moving data to and from buffer, 
278–279

reference guide, 545
clEnqueueMapImage()

defined, 299
mapping image objects into host 

memory, 305–308
reference guide, 574

clEnqueueMarker(), 314–317, 549
clEnqueueMarker()

defining synchronization points,  314
function of, 315–317

clEnqueueNativeKernel(), 548
clEnqueueNDRangeKernel()

events and command-queues,  312
executing kernel,  56–57
reference guide, 548
work-items, 150

clEnqueueReadBuffer()
reading buffers, 260–261, 268–269
reading results back from kernel,  48, 

56–57
reference guide, 544

clEnqueueReadBufferRect(),
269–272, 544

clEnqueueReadImage()
defined, 299–301
mapping image results to host 

memory pointer, 307–308
reference guide, 575

clEnqueueReleaseD3D10ObjectsKHR(),
580

clEnqueueReleaseGLObjects()
implicit synchronization,  348–349
reference guide, 579
releasing objects acquired by 

OpenCL, 341–342
synchronization between OpenCL/

OpenGL, 351
clEnqueueTask(), 150, 548
clEnqueueUnmapMapImage(),

305–306
clEnqueueUnmapMemObject()

buffer mapping no longer required, 
277–278

moving data to and from buffer, 
278–279

reference guide, 545
releasing image data,  308
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clEnqueueWaitForEvents(), 314–317, 
549

clEnqueueWriteBuffer()
reference guide, 544
writing buffers, 259–260,  267

clEnqueueWriteBufferRect(),
272–273,  544–545

clEnqueueWriteImage()
defined, 299
reference guide, 575
writing images from host to device 

memory, 301–302
cles_khr_int64 extension string, 

embedded profile, 385–386
clFinish()

creating OpenCL buffers from 
OpenGL buffers, 342–343

OpenCL/OpenGL synchronization 
with, 348

OpenCL/OpenGL synchronization 
without, 351

preprocessor error macro for, 327
reference guide, 549

clFlush()
preprocessor error macro for, 327
reference guide, 549
using callbacks with events, 327

cl.get_platforms(), PyOpenCL,  493
clGetCommandQueueInfo(), 543
clGetContextInfo()

HelloWorld example, 50–51
querying context properties,  86–87
querying list of associated devices,  88
reference guide, 542

clGetDeviceIDs()
convolution signal example,91
querying devices,  68–69
translation of matrix multiplication 

into OpenCL, 502
clGetDeviceIDsFromD3D10KHR(), 542
clGetDeviceInfo()

determining images supported,290
embedded profile, 384
matrix multiplication,506–509
querying context for associated 

devices, 88
querying device information,  70–78
querying embedded profile device 

support for images, 386–387

querying for OpenGL sharing 
extension, 336–337

reference guide, 542–543,  579
steps in OpenCL usage, 83

clGetEventInfo(), 319–320, 549
clGetEventProfilingInfo()

direct translation of matrix multipli-
cation, 502

errors, 329–330
extracting timing data, 328
placing profiling functions inside 

callbacks, 332
profiling information and return 

types, 329
reference guide, 549

clGetGLContextInfoKHR(), 579
clGetGLObjectInfo(), 347–348, 578
clGetGLTextureInfo(), 578
clGetImageInfo(), 286
clGetKernelInfo(), 242–243,  548
clGetKernelWorkGroupInfo(),

243–244, 548
clGetMemObjectInfo()

querying buffers and sub-buffers, 
257–259

querying image object,  286
reference guide, 545

clGetPlatformIDs()
querying context for associated 

devices, 88
querying platforms, 63–64
reference guide, 542

clGetPlatformInfo()
embedded profile, 384
querying and selecting platform, 

65–67
reference guide, 542

clGetProgramBuildInfo()
creating and building program object, 

52–53
detecting build error, 220–221, 222
direct translation of matrix multipli-

cation, 502
reference guide, 547

clGetProgramInfo()
getting program binary back from 

built program, 227–228
reference guide, 547

clGetSamplerInfo(), 294–295, 576
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clGetSupportedImageFormats(), 291, 
574

clGetXXInfo(), use of in this book,  70
CLK_GLOBAL_MEM_FENCE value, barrier 

functions,  190–191
CLK_LOCAL_MEM_FENCE value, barrier 

functions,  190–191
cl::Kernel(), 378
cl::Kernel:setArg(), 378
cloth simulation in Bullet Physics SDK

adding OpenGL interoperation, 
446–448

executing on CPU, 431–432
executing on GPU, 432–438
introduction to, 425–428
optimizing for SIMD computation 

and local memory, 441–446
overview of, 425
of soft body, 429–431
two-layered batching,  438–441

cl::Program(), 377
clReleaseCommandQueue(), 543
clReleaseContext(), 89, 542
clReleaseEvent(), 318–319, 549
clReleaseKernel(), 244–245, 548
clReleaseMemObject()

reference guide, 545
release buffer object, 339
release image object,  284

clReleaseProgram(), 236, 546
clReleaseSampler(), 294, 576
clRetainCommandQueue(), 543
clRetainContext(), 89, 541
clRetainEvent(), 318, 549
clRetainKernel(), 245, 548
clRetainMemObject(), 339, 545
clRetainProgram(), 236–237, 546
clRetainSampler(), 576
clSetEventCallback()

events impacting execution on host, 
325–326

placing profiling functions inside 
callbacks, 331–332

reference guide, 549
clSetKernelArg()

creating buffers and sub-buffers,  250, 
255

executing kernel, 55– 56
executing Vector Add kernel, 378

matrix multiplication using local 
memory, 509–511

reference guide, 548
sampler declaration fields,  577
setting kernel arguments, 56, 237– 240
thread safety and, 241–242

clSetMemObjectDestructor-
Callback(), 545

clSetUserEventStatus()
generating events on host, 322
how to use, 323–324
reference guide, 549

clUnloadCompiler(), 237, 547
clWaitForEvents(), 323–324, 549
CMake tool

generating project in Linux and 
Eclipse, 44–45

generating project in Visual Studio, 
42–44

installing as cross-platform build tool, 
40–41

Mac OS X and Code::Blocks,  40–41
cmake-gui, 42–44
Code::Blocks, 41–42
color, cloth simulation

executing on GPU, 433–438
in two-layered batching,  438–441

color images. see image histograms
comma operator (,), 131
command-queue

acquiring OpenGL objects, 341– 342
as core of OpenCL, 309– 310
creating, 50–52
creating after selecting set of devices, 

377
creating in PyOpenCL,  493
defining consistency of memory 

objects on, 24
direct translation of matrix multipli-

cation into OpenCL, 502
events and, 311–317
executing kernel,  56–57
in execution model,  18–21
execution of Vector Add kernel, 378, 

380
OpenCL runtime reference guide,  543
runtime API setting up, 31– 32
transferring image objects to, 

299–300
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common functions, 172–175
compiler

directives for optional extensions, 
143– 145

unloading OpenCL,  547
component selection syntax, vectors, 

106–107
components, vector data type,  106–108
compute device, platform model, 12
compute units, platform model, 12
concurrency,  7–8

exploiting in command-queues,  310
kernel execution model,  14
parallel algorithm limitations,  28–29

conditional operator, 124, 129
const type qualifier, 141
constant (_constant) address space 

qualifier, 137–138, 141
constant memory

device architecture diagram,  577
memory model, 21–23

contexts
allocating memory objects against,  248
choosing platform and creating,  375
convolution signal example, 89–97
creating, 49–50,  84–87
creating in PyOpenCL,  492–493
defining in execution model, 17–18
incrementing and decrementing 

reference count, 89
initializing for OpenGL interoperabil-

ity, 338–339
OpenCL platform layer, 541–542
overview of, 83
querying properties, 85–87
steps in OpenCL,  84

convergence, simulating soft body, 430
conversion

embedded profile device support 
rules, 386–387

explicit, 117–121, 132
vector component, 554

convert_int(), explicit conversions, 118
convolution signal example, 89–97
coordinate mode, sampler objects,  282, 

292–295
copy

buffers and sub-buffers,  274–276, 545
image objects, 302–305, 308, 575

costArray:, Dijkstra’s algorithm, 
413–414, 415–417

CPUs
executing cloth simulation on, 

431–432
heterogeneous future of multicore, 

4–7
matrix multiplication and perfor-

mance results, 511–513
SpMV implementation, 518–519

CreateCommandQueue(), 50–51
CreateContext(), 49–50, 375
CreateMemObjects(), 54–55
CSR format, sparse matrix, 517

D
DAG (directed acyclic graph), command-

queues and, 310
data load and store functions, vectors, 

181–189
data structure, Dijkstra’s algorithm, 

412–414
data types

explicit casts, 116–117
explicit conversions, 117–121
implicit type conversions, 110–115
reference guide for supported, 

550–552
reinterpreting data as other, 121–123
reserved as keywords in OpenCL C, 

141
scalar. see scalar data types
specifying attributes, 555
vector. see vector data types

data-parallel programming model
overview of, 8–9
parallel algorithm limitations,  28–29
understanding, 25–27
writing kernel using OpenCL C, 

97–99
decimation kernel, optical flow,  474
declaration fields, sampler,  577
default device, 69
#define preprocessor directive, 142,  145
denormalized numbers, 34,  388
dense matrix,  499
dense optical flow, 469
derived types, OpenCL C, 109– 110
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design, for tiled and packetized sparse 
matrix, 523– 524

device_type argument, querying 
devices, 68

devices
architecture diagram,  577
choosing first available,  50–52
convolution signal example, 89–97
creating context in execution model, 

17–18
determining profile support by,  390
embedded profile for hand held, 

383–385
executing kernel on, 13–17
execution of Vector Add kernel, 380
full profile for desktop,  383
in platform model,  12
querying, 67–70, 78–83, 375–377, 

542–543
selecting, 70–78
steps in OpenCL, 83–84

DFFT (discrete fast Fourier transform), 
453

DFT. see discrete Fourier transform 
(DFT), Ocean simulation

Dijkstra’s algorithm, parallelizing
graph data structures,  412–414
kernels,  414–417
leveraging multiple compute devices, 

417–423
overview of,  411–412

dimensions, image object,  282
Direct3D, interoperability with. see

interoperability with Direct3D
directed acyclic graph (DAG), command-

queues and, 310
directional edge detector filter, Sobel, 

407–410
directories, sample code for this book,  41
DirectX Shading Language (HLSL), 

111–113
discrete fast Fourier transform (DFFT),  453
discrete Fourier transform (DFT), Ocean 

simulation
avoiding local memory bank con-

flicts,  463
determining 2D composition, 457–458
determining local memory needed, 

462

 

determining sub-transform size, 
459–460

determining work-group size,  460
obtaining twiddle factors,  461–462
overview of, 457
using images, 463
using local memory, 459

distance(), geometric functions, 
175–176

divide (/) arithmetic operator, 124–126
doublen, vector data load and store, 181
DRAM, modern multicore CPUs,  6–7
dynamic libraries, OpenCL program vs.,  97

E
early exit, optical flow algorithm,  483
Eclipse, generating project in, 44–45
edgeArray:, Dijkstra’s algorithm, 

412–414
“Efficient Sparse Matrix-Vector Multipli-

cation on CUDA” (Bell and 
Garland), 517

embedded profile
64-bit integers, 385–386
built-in atomic functions,387
determining device supporting,  390
full profile vs.,  383
images, 386–387
mandated minimum single-precision 

floating-point capabilities, 
387–389

OpenCL programs for, 35– 36
overview of, 383–385
platform queries,  65

_EMBEDDED_PROFILE_macro, 390
enumerated type

rank order of, 113
specifying attributes, 555

enumerating, list of platforms,  66–67
equal (==) operator, 127
equality operators, 124, 127
error codes

C++ Wrapper API exceptions, 371– 374
clBarrier(), 313
clCreateUserEvent(), 321–322
clEnqueueMarker(), 314
clEnqueueWaitForEvents(),

314–315
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error codes (continued )
clGetEventProfilingInfo(),

329–330
clGetProgramBuildInfo, 220–221
clRetainEvent(), 318
clSetEventCallback(), 326
clWaitForEvents(), 323
table of, 57–61

ERROR_CODE value, command-queue,  311
.even suffix, vector data types, 107– 108
event data types, 108, 147–148
event objects

OpenCL/OpenGL sharing APIs,  579
overview of, 317–320
reference guide, 549–550

event_t async_work_group_copy(),
192, 332–333

event_t async_work_group_
strided_copy(), 192, 332–333

events
command-queues and, 311–317
defined, 310
event objects. see event objects
generating on host, 321– 322
impacting execution on host, 

322–327
inside kernels, 332–333
from outside OpenCL,  333
overview of, 309– 310
profiling using, 327–332
in task-parallel programming model, 

28
exceptions

C++ Wrapper API, 371–374
execution of Vector Add kernel, 379

exclusive (^^) operator, 128
exclusive or (^) operator, 127–128
execution model

command-queues,  18–21
contexts, 17–18
defined, 11
how kernel executes OpenCL device, 

13–17
overview of, 13
parallel algorithm limitations,  28–29

explicit casts, 116–117
explicit conversions, 117–121, 132
explicit kernel, SpMV, 519
explicit memory fence,  570–571

 

 

explicit model, data parallelism,  26–27
explicit synchronization, 349
exponent, half data type,  101
expression, assignment operator, 132
extensions, compiler directives for 

optional, 143– 145

F
fast Fourier transform (FTT). see Ocean 

simulation, with FFT
fast_ variants, geometric functions,  175
FBO (frame buffer object), 347
file, creating 2D image from,  284–285
filter mode, sampler objects, 282, 292– 295
float channels, 403–406
float data type, converting,  101
float images, 386
float type, math constants,  556
floating-point arithmetic system, 33– 34
floating-point constants, 162– 163
floating-point data types, 113, 119–121
floating-point options

building program object,  224–225
full vs. embedded profiles, 387– 388

floating-point pragmas, 143, 162
floatn, vector data load and store 

functions, 181, 182–186
fma, geometric functions,  175
formats, image

embedded profile, 387
encapsulating information on, 282
mapping OpenGL texture to OpenCL 

image, 346
overview of, 287–291
querying list of supported,  574
reference guide for supported,  576

formats, of program binaries, 227
FP_CONTRACT pragma, 162
frame buffer object (FBO),  347
FreeImage library, 283,284–285
FreeSurfer. see Dijkstra’s algorithm, 

parallelizing
FTT (fast Fourier transform). see Ocean 

simulation, with FFT
full profile

built-in atomic functions,387
determining profile support by 

device, 390
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embedded profile as strict subset of, 
383–385

mandated minimum single-precision 
floating-point capabilities, 
387–389

platform queries,  65
querying device support for images, 

386–387
function qualifiers

overview of, 133– 134
reference guide, 554
reserved as keywords,  141

functions. see built-in functions

G
Gaussian filter, 282–283, 295– 299
Gauss-Seidel iteration, 432
GCC compiler, 111–113
general-purpose GPU (GPGPU), 10,  29
gentype

barrier functions, 191–195
built-in common functions, 173–175
integer functions,  168–171
miscellaneous vector functions, 

199–200
vector data load and store functions, 

181–189
work-items, 153–161

gentyped
built-in common functions, 173–175
built-in geometric functions, 175– 176
built-in math functions, 155–156
defined, 153

gentypef
built-in geometric functions, 175– 177
built-in math functions, 155–156, 

160–161
defined, 153

gentypei, 153, 158
gentypen, 181–182, 199– 200
geometric built-in functions, 175– 177, 

563–564
get_global_id(), data-parallel kernel, 

98–99
getInfo(), C++ Wrapper API, 375–377
gl_object_type parameter, query 

OpenGL objects, 347–348
glBuildProgram(), 52–53

glCreateFromGLTexture2D(), 344–345
glCreateFromGLTexture3D(), 344–345
glCreateSyncFromCLeventARB(),

350–351
glDeleteSync() function, 350
GLEW toolkit,  336
glFinish()

creating OpenCL buffers from 
OpenGL buffers, 342

OpenCL/OpenGL synchronization 
with, 348

OpenCL/OpenGL synchronization 
without, 351

global (_global) address space 
qualifier, 136, 141

global index space, kernel execution 
model, 15–16

global memory
device architecture diagram,  577
matrix multiplication, 507–509
memory model, 21–23

globalWorkSize, executing kernel, 
56–57

GLSL (OpenGL Shading Language), 
111–113

GLUT toolkit, 336, 450–451
glWaitSync(), synchronization, 

350–351
GMCH (graphics/memory controller), 6– 7
gotos, irreducible control flow, 147
GPGPU (general-purpose GPU), 10,  29
GPU (graphics processing unit)

advantages of image objects. see
image objects

defined, 69
executing cloth simulation on, 

432–438
leveraging multiple compute devices, 

417–423
matrix multiplication and perfor-

mance results, 511–513
modern multicore CPUs as, 6–7
OpenCL implementation for NVIDIA, 

40
optical flow performance,  484–485
optimizing for SIMD computation 

and local memory, 441–446
querying and selecting, 69– 70
SpMV implementation, 518–519



ptg

592 Index

GPU (graphics processing unit) (continued )
tiled and packetized sparse matrix 

design, 523– 524
tiled and packetized sparse matrix 

team, 524
two-layered batching,  438–441

graph data structures, parallelizing 
Dijkstra’s algorithm,  412–414

graphics. see also images
shading languages, 111–113
standards, 30–31

graphics processing unit. see GPU 
(graphics processing unit)

graphics/memory controller (GMCH), 
6–7

grayscale images, applying Sobel 
OpenCL kernel to, 409–410

greater than (>) operator, 127
greater than or equal (>=) operator, 127

H
half data type, 101–102
half_ functions, 153
half-float channels, 403–406
half-float images, 386
halfn, 181, 182–186
hand held devices, embedded profile for. 

see embedded profile
hardware

mapping program onto, 9–11
parallel computation as concurrency 

enabled by, 8
SpMV kernel, 519
SpMV multiplication, 524–538

hardware abstraction layer, 11, 29
hardware linear interpolation, optical 

flow algorithm, 480
hardware scheduling, optical flow 

algorithm, 483
header structure, SpMV, 522– 523
height map, Ocean application, 450
HelloWorld sample

checking for errors,  57–61
choosing device and creating com-

mand-queue, 50–52
choosing platform and creating 

context, 49–50

creating and building program object, 
52–53

creating kernel and memory objects, 
54–55

downloading sample code,  39
executing kernel, 55– 57
Linux and Eclipse,  44–45
Mac OS X and Code::Blocks,  41–42
Microsoft Windows and Visual 

Studio, 42–44
overview of, 39, 45–48
prerequisites, 40–41

heterogeneous platforms,  4–7
.hi suffix, vector data types, 107– 108
high-level loop, Dijkstra’s algorithm, 

414–417
histogram. see image histograms
histogram_partial_image_rgba_

unorm8 kernel, 400
histogram_partial_results_rgba_

unorm8 kernel, 400–402
histogram_sum_partial_results_

unorm8kernel, 400
HLSL (DirectX Shading Language), 

111–113
host

calls to enqueue histogram kernels, 
398–400

creating, writing and reading buffers 
and sub-buffers, 262–268

device architecture diagram,  577
events impacting execution on, 

322–327
execution model, 13, 17–18
generating events on, 321–322
kernel execution model,  13
matrix multiplication, 502–505
platform model,  12

host memory
memory model, 21–23
reading image back to, 300–301
reading image from device to, 

299–300
reading region of buffer into, 

269–272
writing region into buffer from, 

272–273
hybrid programming models,  29
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I
ICC compiler, 111–113
ICD (installable client driver) model,  49, 

375
IDs, kernel execution model,  14–15
IEEE standards, floating-point arithme-

tic, 33–34
image channel data type, image formats, 

289–291
image channel order, image formats, 

287–291
image data types,  108–109, 147
image difference, optical flow algorithm, 

472
image functions

border color, 209–210
querying image information,  214–215
read and write, 201–206
samplers, 206–209
writing to images,  210–213

image histograms
additional optimizations to parallel, 

400–402
computing, 393–395,  403–406
overview of, 393
parallelizing, 395–400

image objects
copy between buffer objects and,  574
creating, 283–286, 573–574
creating in OpenCL from OpenGL 

textures, 344–347
Gaussian filter example, 282–283
loading to in PyOpenCL, 493–494
mapping and ummapping, 305– 308, 

574
memory model, 21
OpenCL and, 30
OpenCL C functions for working 

with, 295–299
OpenCL/OpenGL sharing APIs,  578
overview of, 281–282
querying,  575
querying list of supported formats, 

574
querying support for device images, 

291
read, write, and copy, 575
specifying image formats, 287– 291
transferring data, 299–308

image pyramids, optical flow algorithm, 
472–479

image3d_t type, embedded profile,  386
ImageFIlter2D example, 282–291, 

488–492
images

access qualifiers for read-only or 
write-only, 140–141

describing motion between. see
optical flow

DFT, 463
embedded profile device support for, 

386–387
formats. see formats, image
as memory objects,  247
read and write built-in functions, 

572– 573
Sobel edge detection filter for, 407–410
supported by OpenCL C, 99

Image.tostring() method, PyO-
penCL, 493–494

implicit kernel, SpMV, 518–519
implicit model, data parallelism,  26
implicit synchronization, OpenCL/

OpenGL, 348–349
implicit type conversions, 110–115
index space, kernel execution model, 

13–14
INF (infinity), floating-point arithmetic, 

34
inheritance, C++ API, 369
initialization

Ocean application overview, 450–451
OpenCL/OpenGL interoperability, 

338–340
parallelizing Dijkstra’s algorithm,  415

in-order command-queue, 19–20,  24
input vector, SpMV, 518
installable client driver (ICD) model,  49, 

375
integer built-in functions, 168–172, 

557–558
integer data types

arithmetic operators,  124–216
explicit conversions, 119–121
rank order of, 113
relational and equality operators,  127

intellectual property, program binaries 
protecting, 227
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interoperability with Direct3D
acquiring/releasing Direct3D objects 

in OpenCL, 361–363
creating memory objects from 

Direct3D buffers/textures, 
357–361

initializing context for,  354–357
overview of, 353
processing D3D vertex data in 

OpenCL, 366–368
processing Direct3D texture in 

OpenCL, 363– 366
reference guide, 579–580
sharing overview, 353–354

interoperability with OpenGL
cloth simulation, 446–448
creating OpenCL buffers from 

OpenGL buffers, 339– 343
creating OpenCL image objects from 

OpenGL textures, 344–347
initializing OpenCL context for, 

338–339
optical flow algorithm, 483–484
overview of, 335
querying for OpenGL sharing 

extension, 336–337
querying information about OpenGL 

objects, 347–348
reference guide, 577–579
sharing overview, 335– 336
synchronization,  348–351

irreducible control flow, restrictions, 
147

iterations
executing cloth simulation on CPU, 

431–432
executing cloth simulation on GPU, 

434–435
pyramidal Lucas-Kanade optical flow, 

472
simulating soft body, 429–431

K
kernel attribute qualifiers,  134–135
kernel execution commands, 19– 20
kernel objects

arguments and object queries, 548
creating, 547–548

creating, and setting kernel argu-
ments, 237–241

executing, 548
managing and querying, 242– 245
out-of-order execution of memory 

object command and, 549
overview of, 237
program objects vs., 217–218
thread safety, 241–242

_kernel qualifier, 133–135, 141, 217
kernels

applying Phillips spectrum, 453–457
constant memory during execution 

of, 21
creating, writing and reading buffers/

sub-buffers, 262
creating context in execution model, 

17–18
creating memory objects,  54–55, 

377–378
in data-parallel programming model, 

25–27
data-parallel version of, 97–99
defined, 13
in device architecture diagram,  577
events inside, 332–333
executing and reading result, 55– 57
executing Ocean simulation applica-

tion, 463–468
executing OpenCL device, 13– 17
executing Sobel OpenCL, 407–410
executing Vector Add kernel, 381
in execution model,  13
leveraging multiple compute devices, 

417–423
in matrix multiplication program, 

501–509
parallel algorithm limitations,  28–29
parallelizing Dijkstra’s algorithm, 

414–417
programming language and, 32– 34
in PyOpenCL,  495–497
restrictions in OpenCL C,  146–148
in task-parallel programming model, 

27–28
in tiled and packetized sparse matrix, 

518–519, 523
keywords, OpenCL C,  141
Khronos, 29–30
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L
learning OpenCL,  36–37
left shift (<<) operator, 129–130
length(), geometric functions, 175–177
less than (<) operator, 127
less than or equal (<=) operator, 127
library functions, restrictions in OpenCL 

C, 147
links

cloth simulation using two-layered 
batching, 438–441

executing cloth simulation on CPU, 
431–432

executing cloth simulation on GPU, 
433–438

introduction to cloth simulation, 
426–428

simulating soft body, 429–431
Linux

generating project in, 44–45
initializing contexts for OpenGL 

interoperability, 338–339
OpenCL implementation in, 41

.lo suffix, vector data types, 107– 108
load balancing

automatic, 20
in parallel computing, 9

loading, program binaries,  227
load/store functions, vector data, 

567–568
local (_local) address space qualifier, 

138–139, 141
local index space, kernel execution 

model, 15
local memory

device architecture diagram,  577
discrete Fourier transform, 459, 

462–463
FFT kernel,  464
memory model, 21–24
optical flow algorithm,  481–482
optimizing in matrix multiplication, 

509–511
SpMV implementation, 518–519

localWorkSize, executing kernel, 
56–57

logical operators
overview of, 128
symbols, 124

unary not(!), 131
Lucas-Kanade. see pyramidal Lucas-

Kanade optical flow algorithm
luminosity histogram,  393
lvalue, assignment operator, 132

M
Mac OS X

OpenCL implementation in, 40
using Code::Blocks,  41–42

macros
determining profile support by 

device, 390
integer functions,  172
OpenCL C, 145–146
preprocessor directives and, 555
preprocessor error, 372–374

mad, geometric functions,  175
magnitudes, wave, 454
main() function, HelloWorld OpenCL 

kernel and, 44–48
mandated minimum single-precision 

floating-point capabilities, 
387–389

mantissa, half data type,  101
mapping

buffers and sub-buffers,  276–279
C++ classes to OpenCL C type, 

369–370
image data, 305–308
image to host or memory pointer, 299
OpenGL texture to OpenCL image 

formats, 346
markers, synchronization point,  314
maskArray:, Dijkstra’s algorithm, 

412–414, 415
masking off operation, 121–123
mass/spring model, for soft bodies, 

425–427
math built-in functions

accuracy for embedded vs. full 
profile, 388

floating-point constant, 162– 163
floating-point pragma, 162
overview of, 153–161
reference guide, 560–563
relative error as ulps in, 163–168

math constants, reference guide,  556
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math intrinsics, program build options, 
547

math_ functions, 153
Matrix Market (MM) exchange format, 

517–518
matrix multiplication

basic algorithm, 499– 501
direct translation into OpenCL, 

501–505
increasing amount of work per kernel, 

506–509
overview of, 499
performance results and optimizing 

original CPU code, 511–513
sparse matrix-vector. see sparse 

matrix-vector multiplication 
(SpMV)

using local memory, 509–511
memory access flags, 282– 284
memory commands,  19
memory consistency, 23–24,  191
memory latency, SpMV, 518–519
memory model, 12, 21–24
memory objects

buffers and sub-buffers as, 247– 248
creating context in execution model, 

17–18
creating kernel and,  54–55, 377–378
matrix multiplication and, 502
in memory model, 21–24
out-of-order execution of kernels and, 

549
querying to determine type of, 

258–259
runtime API managing, 32

mesh
executing cloth simulation on CPU, 

431–432
executing cloth simulation on GPU,  433
introduction to cloth simulation, 

425–428
simulating soft body, 429–431
two-layered batching,  438–441

MFLOPS, 512– 513
Microsoft Windows

generating project in Visual Studio, 
42–44

OpenCL implementation in, 40
OpenGL interoperability, 338–339

 

mismatch vector, optical flow algorithm, 
472

MM (Matrix Market) exchange format, 
517–518

multicore chips, power-efficiency of,  4–5
multiplication

matrix. see matrix multiplication
sparse matrix-vector. see sparse 

matrix-vector multiplication 
(SpMV)

multiply (*) arithmetic operator, 
124–126

N
n suffix,  181
names, reserved as keywords,  141
NaN (Not a Number), floating-point 

arithmetic, 34
native kernels, 13
NDRange

data-parallel programming model,25
kernel execution model,  14–16
matrix multiplication, 502,  506–509
task-parallel programming model, 27

normalize(), geometric functions, 
175–176

not (~) operator, 127–128
not equal (!=) operator, 127
NULL value, 64–65, 68
num_entries, 64, 68
numeric indices, built-in vector data 

types, 107
numpy, PyOpenCL, 488,  496–497
NVIDIA GPU Computing SDK

generating project in Linux,  41
generating project in Linux and 

Eclipse, 44–45
generating project in Visual Studio,  42
generating project in Windows,  40
OpenCL/OpenGL interoperability, 

336

O
objects, OpenCL/OpenGL sharing API, 

579
Ocean simulation, with FFT

FFT kernel, 463–467
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generating Phillips spectrum, 
453–457

OpenCL DFT. see discrete Fourier 
transform (DFT), Ocean 
simulation

overview of, 449–453
transpose kernel,  467–468

.odd suffix, vector data types, 107– 108
OpenCL, introduction

conceptual foundation of, 11–12
data-parallel programming model, 

25–27
embedded profile, 35– 36
execution model, 13–21
graphics, 30–31
heterogeneous platforms of, 4–7
kernel programming language, 32– 34
learning,  36–37
memory model, 21–24
other programming models,  29
parallel algorithm limitations,  28–29
platform API, 31
platform model,  12
runtime API, 31–32
software, 7–10
summary review, 34–35
task-parallel programming model, 

27–28
understanding, 3–4

OpenCL C
access qualifiers, 140–141
address space qualifiers, 135– 140
built-in functions. see built-in 

functions
derived types, 109–110
explicit casts, 116–117
explicit conversions, 117–121
function qualifiers, 133– 134
functions for working with images, 

295–299
implicit type conversions,  110
kernel attribute qualifiers,  134–135
as kernel programming language, 

32–34
keywords, 141
macros, 145–146
other data types supported by, 

108–109
overview of, 97

preprocessor directives, 141–144
reinterpreting data as another type, 

121–123
restrictions, 146–148
scalar data types, 99–102
type qualifiers, 141
vector data types, 102– 108
vector operators. see vector operators
writing data-parallel kernel using, 

97–99
OPENCL EXTENSION directive, 143– 145
OpenGL

interoperability between OpenCL 
and. see interoperability with 
Direct3D; interoperability with 
OpenGL

Ocean application,  450–453
OpenCL and graphics standards, 30
reference guide for sharing APIs, 

577–579
synchronization between OpenCL, 

333
OpenGL Shading Language (GLSL), 

111–113
operands, vector literals,  105
operators, vector. see vector operators
optical flow

application of texture cache,  480–481
early exit and hardware scheduling, 

483
efficient visualization with OpenGL 

interop, 483–484
performance, 484–485
problem of, 469–479
sub-pixel accuracy with hardware 

linear interpolation, 480
understanding, 469
using local memory, 481–482

optimization options
clBuildProgram(), 225–226
partial image histogram, 400–402
program build options,  546

“Optimizing Power Using Transforma-
tions” (Chandrakasan et al.), 4–5

“Optimizing Sparse Matrix-Vector 
Multiplication on GPUs” (Baskaran 
and Bordawekar), 517

optional extensions, compiler directives 
for, 143– 145
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or (|) operator, 127–128
or (||) operator, 128
out-of-order command-queue

automatic load balancing, 20
data-parallel programming model,24
execution model, 20
reference guide, 549
task-parallel programming model,28

output, creating 2D image for, 285– 286
output vector, SpMV, 518
overloaded function, vector literal as, 

104–105

P
packets

optimizing sparse matrix-vector 
multiplication, 538–539

tiled and packetized sparse matrix, 
519– 522

tiled and packetized sparse matrix 
design, 523– 524

tiled and packetized sparse matrix 
team, 524

pad to 128-boundary, tiled and pack-
etized sparse matrix, 523– 524

parallel algorithm limitations,  28–29
parallel computation

as concurrency enabled by software, 8
of image histogram,  395–400
image histogram optimizations, 

400–402
parallel programming, using models for,  8
parallelism, 8
param_name values, querying platforms, 

64–65
partial histograms

computing, 395– 397
optimizing by reducing number of, 

400–402
summing to generate final histogram, 

397–398
partitioning workload, for multiple 

compute devices, 417–423
Patterns for Parallel Programming (Matt-

son), 20
performance

heterogeneous future of,  4–7
leveraging multiple compute devices, 

417–423

 

matrix multiplication results, 511–513
optical flow algorithm and,  484–485
soft body simulation and,  430–431
sparse matrix-vector multiplication 

and, 518, 524–538
using events for profiling, 327–332
using matrix multiplication for high. 

see matrix multiplication
PEs (processing elements), platform 

model, 12
phillips function, 455–457
Phillips spectrum generation, 453–457
platform API, 30–31
platform model, 11–12
platforms

choosing, 49–50
choosing and creating context,  375
convolution signal example, 89–97
embedded profile, 383–385
enumerating and querying, 63–67
querying and displaying specific 

information, 78–83
querying list of devices associated 

with, 68
reference guide, 541–543
steps in OpenCL, 83–84

pointer data types, implicit conversions, 
111

post-increment (++ ) unary operator, 131
power

efficiency of specialized core, 5–6
of multicore chips, 4–5

#pragma directives, OpenCL C, 143– 145
predefined identifiers, not supported, 

147
prefetch functions, 191–195, 570
pre-increment (-- ) unary operator, 131
preprocessor build options, 223– 224
preprocessor directives

OpenCL C, 141–142
program object build options, 

546–547
reference guide, 555

preprocessor error macros, C++ Wrapper 
API, 372– 374

private (_private) address space 
qualifier, 139,141

private memory, 21–23, 577
processing elements (PEs), platform 

model, 12
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profiles
associated with platforms, 63–67
commands for events, 327–332
embedded. see embedded profile
reference guide, 549

program objects
build options, 222– 227
creating and building, 52–53, 377
creating and building from binaries, 

227–236
creating and building from source 

code, 218–222
creating and building in PyOpenCL, 

494–495
creating context in execution model, 

17–18
kernel objects vs., 217– 218
managing and querying,  236–237
reference guide, 546–547
runtime API creating, 32

programming language. see also OpenCL 
C; PyOpenCL, 32– 34

programming models
data-parallel, 25–27
defined, 12
other, 29
parallel algorithm limitations,  28–29
task-parallel, 27–28

properties
device, 70
querying context, 85–87

PyImageFilter2D, PyOpenCL, 488–492
PyOpenCL

context and command-queue 
creation,  492–493

creating and building program, 
494–495

introduction to, 487–488
loading to image object, 493–494
overview of, 487
PyImageFilter2D code, 488–492
reading results, 496
running PyImageFilter2D example, 

488
setting kernel arguments/executing 

kernel,  495–496
pyopencl vo-92+, 488
pyopencl.create_some_context(),

492

pyramidal Lucas-Kanade optical flow 
algorithm, 469,  471–473

Python, using OpenCL in. see
PyOpenCL

Python Image Library (PIL),  488, 
493–494

Q
qualifiers

access, 140–141
address space, 135–140
function, 133– 134
kernel attribute,  134–135
type, 141

queries
buffer and sub-buffer, 257–259, 545
device, 542–543
device image support,  291
event object, 319–320
image object, 214–215, 286, 575
kernel, 242–245, 548
OpenCL/OpenGL sharing APIs,  578
OpenGL objects, 347–348
platform, 63–66, 542–543
program object, 241–242,  547
storing program binary and, 230–232
supported image formats,  574

R
R,G, B color histogram

computing, 393–395,  403–406
optimizing, 400–402
overview of, 393
parallelizing, 395–400

rank order, usual arithmetic conversions, 
113–115

read
buffers and sub-buffers, 259–268,  544
image back to host memory, 300–301
image built-in functions, 201–206, 

298, 572– 573
image from device to host memory, 

299–300
image objects, 575
memory objects,  248
results in PyOpenCL,  496–497

read_imagef(), 298–299
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read-only qualifier, 140–141
read-write qualifier, 141
recursion, not supported in OpenCL C, 

147
reference counts

buffers and sub-buffers,  256
contexts, 89
event objects, 318

regions, memory model, 21–23
relational built-in functions,175, 

178–181, 564–567
relational operators, 124,  127
relaxed consistency model, memory 

objects, 24
remainder (%) arithmetic operator, 

124–126
render buffers, 346–347, 578
rendering of height map, Ocean applica-

tion, 450
reserved data types,  550–552
restrict type qualifier,  141
restrictions, OpenCL C, 146–148
return type, kernel function restrictions, 

146
RGB images, applying Sobel OpenCL 

kernel to, 409
RGBA-formatted image, loading in 

PyOpenCL,  493–494
right shift (>>) operator, 129–130
rounding mode modifier

explicit conversions, 119–121
vector data load and store functions, 

182–189
_rte suffix, 183, 187
runCLSimulation(), 451–457
runtime API, 30–32, 543

S
sampler data types

determining border color, 209– 210
functions, 206–209
restrictions in OpenCL C,  108–109, 

147
sampler objects. see also image objects

creating, 292–294
declaration fields,  577
functions of,  282
overview of, 281–282

 

reference guide, 576–577
releasing and querying,  294–295

_sat (saturation) modifier, explicit 
conversions, 119–120

SaveProgramBinary(), creating 
programs, 230–231

scalar data types
creating vectors with vector literals, 

104–105
explicit casts of,  116–117
explicit conversions of, 117–121
half data type, 101–102
implicit conversions of, 110–111
integer functions,  172
reference guide, 550
supported by OpenCL C, 99–101
usual arithmetic conversions with, 

113–115
vector operators with. see vector 

operators
scalar_add (), writing data-parallel 

kernel, 97–98
754 formats, IEEE floating-point arith-

metic, 34
sgentype

integer functions,  172
relational functions,181

shape matching, soft bodies,  425
sharing APIs, OpenCL/OpenGL, 577– 579
shift operators, 124, 129– 130
shuffle, illegal usage of, 214
shuffle2, illegal usage of, 214
sign, half data type,  101
SIMD (Single Instruction Multiple Data) 

model, 26–27, 465
simulation

cloth. see cloth simulation in Bullet 
Physics SDK

ocean. see Ocean simulation, with 
FFT

Single Instruction Multiple Data (SIMD) 
model, 26–27, 465

Single Program Multiple Data (SPMD) 
model, 26

single-source shortest-path graph 
algorithm. see Dijkstra’s algorithm, 
parallelizing

64-bit integers, embedded profile, 
385–386
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sizeof operator, 131– 132
slab, tiled and packetized sparse matrix, 

519
Sobel edge detection filter, 407–410
soft bodies

executing cloth simulation on CPU, 
431–432

executing cloth simulation on GPU, 
432–438

interoperability with OpenGL, 
446–448

introduction to cloth simulation, 
425–428

simulating, 429–431
software, parallel, 7– 10
solveConstraints, cloth simulation on 

GPU, 435
solveLinksForPosition, cloth simulation 

on GPU, 435
source code

creating and building programs from, 
218–222

program binary as compiled version 
of, 227

sparse matrix-vector multiplication 
(SpMV)

algorithm, 515– 517
defined, 515
description of, 518–519
header structure, 522– 523
optional team information,524
other areas of optimization, 538–539
overview of, 515
tested hardware devices and results, 

524–538
tiled and packetized design, 523– 524
tiled and packetized representation 

of, 519–522
specify type attributes,  555
SPMD (Single Program Multiple Data) 

model, 26
SpMV. see sparse matrix-vector multipli-

cation (SpMV)
storage

image layout, 308
sparse matrix formats,  517

strips, tiled and packetized sparse 
matrix, 519

struct type
restrictions on use of, 109–110, 146
specifying attributes, 555

sub-buffers. see buffers and sub-buffers
sub-pixel accuracy, optical flow algo-

rithm, 480
subregions, of memory objects, 21
subtract (-) arithmetic operator,  124–126
sub-transform size, DFT,  459–460
suffixes, vector data types, 107– 108
synchronization

commands, 19–21
computing Dijkstra’s algorithm with 

kernel,  415–417
explicit memory fence,  570–571
functions,  190–191
OpenCL/OpenGL, 342, 348–351
primitives,  248

synchronization points
defining when enqueuing com-

mands, 312– 315
in out-of-order command-queue,  24

T
T1 to T3 data types, rank order of,  114
task-parallel programming model

overview of, 9–10
parallel algorithm limitations,  28–29
understanding, 27–28

team information, tiled and packetized 
sparse matrix,  524

ternary selection (?:) operator, 129
Tessendorf, Jerry, 449, 454
tetrahedra, soft bodies, 425–428
texture cache, optical flow algorithm, 

480–482
texture objects, OpenGL. see also image 

objects
creating image objects in OpenCL 

from, 344–347
Ocean application creating, 451
OpenCL/OpenGL sharing APIs,  578
querying information about, 347– 348

thread safety, kernel objects, 241– 242
tiled and packetized sparse matrix

defined, 515
design considerations, 523– 524
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tiled and packetized sparse matrix 
(continued )

header structure of, 522– 523
overview of, 519–522
SpMV implementation, 517–518

timing data, profiling events, 328
traits, C++ template, 376
transpose kernel, simulating ocean, 

467–468
twiddle factors, DFT

FFT kernel,  464–466
obtaining, 461–462
using local memory, 463

2D composition, in DFT, 457–458
two-layered batching, cloth simulation, 

438–441
type casting, vector component,  554
type qualifiers, 141

U
ugentype, 168–169, 181
ugentypen, 214–215
ulp values, 163– 168
unary operators, 124, 131–132
union type, specifying attributes,  555
updatingCostArray:, Dijkstra’s 

algorithm,  413–417
usual arithmetic conversions, 113– 115

V
vadd() kernel, Vector Add kernel, 378
variable-length arrays, not supported in 

OpenCL C, 147
variadic macros and functions, not 

supported in OpenCL C,  147
VBO (vertex buffer object),  340–344, 

446–448
vbo_cl_mem, creating VBO in OpenGL, 

340–341
Vector Add example. see C++ Wrapper 

API, Vector Add example
vector data types

application, 103–104
built-in, 102–103
components,  106–108, 552– 554
data load and store functions, 

181–189

explicit casts, 116–117
explicit conversions, 117–121
implicit conversions between, 

110–113
literals,  104–105
load/store functions reference, 

567–568
miscellaneous built-in functions, 

199–200, 571
operators. see vector operators
optical flow algorithm,  470–472
reference guide, 550

supported by OpenCL C, 99
usual arithmetic conversions with, 

113–115
vector literals,  104–105
vector operators

arithmetic operators,  124–126
assignment operator, 132
bitwise operators, 127– 128
conditional operator, 129
logical operators,  128
overview of, 123– 124
reference guide, 554
relational and equality operators,  127
shift operators, 129–130
unary operators, 131– 132

vertex buffer object (VBO), 340–344, 
446–448

vertexArray:, Dijkstra’s algorithm, 
412–414

vertical filtering, optical flow,  474
vertices

introduction to cloth simulation, 
425–428

simulating soft body, 429–431
Visual Studio, generating project in, 

42–44
vload_half(), 101, 182, 567
vload_halfn(), 182, 567
vloada_half(), 185–186, 568
vloadn(), 181, 567
void return type, kernel functions,  146
void wait_group_events(), 193, 

332–333
volatile type qualifier,  141
voltage, multicore chip, 4–5
vstore_half()

half data type,  101
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reference guide, 568
vector store functions, 183,  187

vstore_halfn(), 184, 186–188, 568
vstorea_halfn(), 186, 188–189, 568
vstoren(), 182, 567
VSTRIDE, FFT kernel,  464

W
wave amplitudes, 454
weightArray:, Dijkstra’s algorithm, 

412–414
Windows. see Microsoft Windows
work-group barrier, 25–27
work-groups

data-parallel programming model, 
25–27

global memory for,  21
kernel execution model,  14–16
local memory for, 21, 23
SpMV implementation, 518
tiled and packetized sparse matrix 

team, 524
work-items

barrier functions,  190–191
built-in functions, 557

 

data-parallel programming model, 
25–27

functions,  150–152
global memory for,  21
kernel execution model, 13–15
local memory for,  23
mapping get_global_id to, 98–99
matrix multiplication, 501–509
private memory for, 21
task-parallel programming model, 

27
write

buffers and sub-buffers, 259– 268, 
544–545

image built-in functions,210–213, 
298–299, 572– 573

image from host to device memory, 
301–302

image objects, 575
memory objects,  248

write_imagef(), 298–299
write-only qualifier, 140–141

Z
0 value, 64–65, 68
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