
Learn Cocoa — for fun and
for business
Cocoa is the programming environment for Apple development, and this information-packed
developer’s guide is your key to the Cocoa libraries and the Apple developer tools. Written for
developers by an experienced Mac expert and iPhone developer, this book shows you how to
learn and use Xcode and Objective-C, design user interfaces, optimize your code, manage data,
create animations and special eff ects, and package apps for the App Store.

• Master and understand the Xcode® SDK, Objective-C®, and the Cocoa API

• Create, use, profi le, and debug custom objects and subclasses

• Design user interfaces with Interface Builder

• Streamline your code with design patterns such as Model-View-Controller (MVC)

• Work with text, PDFs, Web data, and Apple’s Core Data API

• Create simple and advanced animation eff ects with Core Animation and Core Image

• Learn to develop apps for Mac OS® X and Apple devices

Access the latest information on Apple development
Visit www.wileydevreference.com for the latest on tools and techniques for Apple development,
and download source code for the projects in this book.

Richard Wentk is a developer with more than fi fteen years of experience in publishing, and is one of the UK’s most
reliable technology writers. He covers Apple products and developments for MacWorld and MacFormat magazines, and
also writes about technology and business strategy for publications such as Computer Arts and BBC Focus.

Wentk

Reader Level: Intermediate to Advanced

Shelving Category: COMPUTERS / Programming /
Apple Programming

$49.99 USA • $59.99 CANADA

Developer
Reference

Cocoa®

www.wileydevreference.com

Developer Reference

Richard WentkCocoa
®

02_495896-ftoc.indd vi02_495896-ftoc.indd vi 8/31/10 2:41 PM8/31/10 2:41 PM

Cocoa®

Richard Wentk

01_495896-ffirs.indd i01_495896-ffirs.indd i 8/31/10 3:02 PM8/31/10 3:02 PM

Cocoa®

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-49589-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-
6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2010935569

Trademarks: Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Cocoa is a registered trademark
of Apple, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_495896-ffirs.indd ii01_495896-ffirs.indd ii 8/31/10 3:02 PM8/31/10 3:02 PM

www.wiley.com
http://www.wiley.com/go/permissions

To Bea, for the inspiration.
Nam et ipsa scientia potestas est.

01_495896-ffirs.indd iii01_495896-ffirs.indd iii 8/31/10 3:02 PM8/31/10 3:02 PM

About the Author
With more than ten years of experience as a developer and more than fifteen years in publish-
ing, Richard Wentk is one of Great Britain’s most reliable technology writers. He covers Apple
products and developments for Macworld and MacFormat magazines and also writes about
technology, creativity, and business strategy for magazines such as Computer Arts and Future
Music. As a trainer and a former professional Apple developer returning to development on the
iPhone and OS X, he is uniquely able to clarify the key points of the development process,
explain how to avoid pitfalls and bear traps, and emphasize key benefits and creative possibili-
ties. He lives online but also has a home in Wiltshire, England. For details of apps and other
book projects, visit www.zettaboom.com.

01_495896-ffirs.indd iv01_495896-ffirs.indd iv 8/31/10 3:02 PM8/31/10 3:02 PM

Credits
Acquisitions Editor
Aaron Black

Project Editor
Martin V. Minner

Technical Editor
Benjamin Schupak

Copy Editor
Lauren Kennedy

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Senior Marketing Manager
Sandy Smith

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Senior Project Coordinator
Kristie Rees

Graphics and Production Specialists
Joyce Haughey
Jennifer Henry

Quality Control Technician
John Greenough

Proofreading
Laura Bowman

Indexing
BIM Indexing & Proofreading Services

Media Development Project Manager
Laura Moss

Media Development Assistant Project Manager
Jenny Swisher

Media Development Associate Producer
Shawn Patrick

01_495896-ffirs.indd v01_495896-ffirs.indd v 8/31/10 3:02 PM8/31/10 3:02 PM

02_495896-ftoc.indd vi02_495896-ftoc.indd vi 8/31/10 2:41 PM8/31/10 2:41 PM

Contents
Preface . xv

Acknowledgments. xvi

Introduction . xvii

Part I: Getting Started ... 1

Chapter 1: Introducing Cocoa . 3
Introducing Cocoa ... 3

Understanding Cocoa’s history ... 3

Moving from NeXTStep to Cocoa .. 7

Profiting from Cocoa .. 9

Profiting from the iPhone ... 12

Developing for fun .. 14

Introducing Xcode and the Apple Developer Programs.. 15

Working with Xcode and Interface Builder ... 16

Working with Safari.. 17

Summary ... 18

Chapter 2: Think Cocoa! . 19
Designing for Cocoa ... 19

Understanding Aqua .. 20

Using Aqua with Cocoa ... 21

Creating Cocoa Applications .. 22

Understanding layers and frameworks ... 22

Developing features across layers ... 27

Moving to Cocoa and Objective-C from Other Platforms .. 31

Working with Objective-C objects and messages ... 31

Managing data in Cocoa and Objective-C ... 38

Exploring other Cocoa features ... 45

Comparing Cocoa to other platforms .. 48

Summary ... 55

Chapter 3: Introducing the Cocoa and OS X Documentation 57
Getting Started with the Documentation .. 59

Understanding resource types .. 61

Understanding Topics ... 69

Using the Documentation .. 71

Sorting the documentation .. 71

Working with source code .. 72

Summary ... 72

vii

02_495896-ftoc.indd vii02_495896-ftoc.indd vii 8/31/10 2:41 PM8/31/10 2:41 PM

viii Contents

Chapter 4: Getting Started with Xcode . 75
Getting Ready for Xcode .. 75

Registering as a developer.. 77

Joining the Mac Developer and iPhone Developer programs .. 80

Installing Xcode ... 82

Creating a New OS X Project .. 84

Exploring Xcode’s Windows ... 90

Understanding Groups & Files .. 90

Selecting items for editing ... 92

Customizing the toolbar ... 93

Summary ... 94

Chapter 5: Introducing Classes and Objects in Objective-C 95
Understanding Objects .. 95

Understanding classes .. 97

Designing objects ... 100

Creating classes ... 107

Defining a class interface .. 107

Defining accessors: setters and getters ... 109

Using self .. 110

Defining a class implementation .. 110

Defining public properties .. 111

Defining public methods .. 111

Using Objects in Objective-C .. 113

Summary ... 114

Chapter 6: Getting Started With Classes and Messages
in Application Design .115

Understanding the Cocoa Development Process .. 115

Understanding Applications .. 116

Exploring standard application elements ... 118

Introducing the application delegate ... 118

Discovering Object Methods and Properties .. 121

Finding and using class references ... 121

Introducing Code Sense ... 126

Working with multiple classes .. 128

Receiving messages from OS X with a delegate .. 134

Receiving messages from OS X with NSResponder ... 142

Subclassing NSWindow .. 144

Creating a category on NSWindow ... 149

Summary ... 150

02_495896-ftoc.indd viii02_495896-ftoc.indd viii 8/31/10 2:41 PM8/31/10 2:41 PM

 Contents ix

Chapter 7: Introducing Interface Builder .151
Introducing Nib Files ... 151

Loading objects from nib files... 153

Editing nib files... 154

Getting Started with Interface Builder ... 154

Introducing IB’s windows ... 155

Introducing First Responder and File’s Owner .. 168

Setting Classes and Subclasses .. 170

Summary ... 172

Chapter 8: Building an Application with Interface Builder173
Designing a Project in Interface Builder ... 173

Introducing the Interface Builder workflow .. 174

Adding objects to a nib ... 176

Understanding links, outlets, and actions ... 184

Creating links in Interface Builder ... 189

Using NSTimer to create a simple seconds counter ... 195

Using Advanced UI Techniques .. 199

Using loose typing and (id) sender ... 200

Placing outlets and actions ... 202

Summary ... 205

Part II: Going Deeper ... 207

Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 209
Understanding Model-View-Controller ... 209

Using MVC with Cocoa controller objects .. 212

Creating custom controllers .. 213

Defining the data model ... 214

Understanding Target-Action .. 214

Defining selectors ... 215

Using selectors in code ... 216

Understanding the limitations of selectors ... 216

Defining selectors in Interface Builder .. 217

Creating an example application .. 219

Other applications of selectors.. 221

Using Key-Value Coding .. 222

“Objectifying” values .. 222

Using Key-Value Observing ... 224

Making assignments KVO compliant .. 226

Using KVO ... 227

02_495896-ftoc.indd ix02_495896-ftoc.indd ix 8/31/10 2:41 PM8/31/10 2:41 PM

x Contents

Using Notifications .. 228

Posting notifications... 230

Using notifications and delegates .. 230

Handling Errors and Exceptions ... 232

Using NSError ... 232

Handling errors with NSException .. 233

Summary ... 234

Chapter 10: Working with Files, URLs, and Web Data .235
Creating and Using File Paths .. 236

Creating paths with NSString ... 236

Getting the application bundle path .. 236

Finding other standard directories ... 237

Using autocompletion .. 237

Using paths .. 238

Using file handles ... 238

Using the File Manager ... 239

Creating and Using URLs.. 240

Understanding paths and references .. 240

Using URLs to read and write data .. 240

Using Open and Save Panes ... 241

Using Web APIs ... 247

Getting started with bit.ly .. 248

Using the bit.ly API ... 251

Creating XML requests .. 255

Creating asynchronous Web requests ... 258

Using Cocoa’s XML classes .. 260

Using WebView ... 261

Summary ... 264

Chapter 11: Using Timers, Threads, and Blocks .267
Using NSTimer ... 267

Using performSelector: .. 268

Implementing a pause method .. 269

Running the selector in a separate thread .. 269

Messaging across threads ... 269

Working with NSThread .. 270

Pausing a thread .. 270

Managing thread memory ... 271

Handling UI and thread interactions ... 271

Using NSOperation .. 271

Creating an NSOperation object.. 272

Using NSOperationQueue ... 274

02_495896-ftoc.indd x02_495896-ftoc.indd x 8/31/10 2:41 PM8/31/10 2:41 PM

 Contents xi

Getting Started with Blocks ... 277

Understanding block syntax ... 277

Using NSBlockOperation ... 279

Passing parameters to NSBlockOperation ... 280

Introducing Grand Central Dispatch .. 281

Using NSTask ... 281

Summary ... 283

Chapter 12: Managing Data and Memory in Cocoa .285
Introducing Data Collection Objects ... 286

Using objects, keys, and values... 287

Implementing Key-Value Observing ... 288

Using NSValue and NSNumber ... 290

Using NSArray... 291

Using NSDictionary ... 296

Using NSSet and NSMutableSet .. 297

Enumerating items ... 297

Archiving and de-archiving collection objects .. 299

Using NSCoder and NSData .. 300

Introducing archiving and coding ... 300

Creating a class with NSCoder .. 302

Archiving and de-archiving an object ... 304

Managing Memory .. 307

Using garbage collection .. 307

Implementing manual memory management ... 308

Summary ... 311

Chapter 13: Using Preferences and Bindings .313
Understanding Bindings .. 313

Getting started with bindings... 314

Using bindings to manage interactivity .. 323

Using KVO to manage bindings .. 326

Using formatters .. 328

Using Bindings with Controllers .. 330

Adding a controller object .. 332

Setting up the controller’s data source ... 334

Reading data from the controller into a view ... 335

Implementing Preferences with Bindings ... 340

Understanding preferences .. 341

Creating an application with preferences ... 343

Creating and Using Value Transformers ... 346

Summary ... 350

02_495896-ftoc.indd xi02_495896-ftoc.indd xi 8/31/10 2:41 PM8/31/10 2:41 PM

xii Contents

Chapter 14: Using Core Data .351
Creating a Core Data Application Visually .. 352

Adding an entity ... 354

Adding properties ... 355

Creating relationships .. 356

Generating a user interface .. 359

Building the application ... 361

Exploring and Extending a Core Data Application .. 363

Understanding Core Data’s objects and programming model .. 365

Displaying search results .. 370

Summary ... 374

Chapter 15: Working with Text and Documents .375
Using NSString .. 375

Using NSRange ... 376

Working with encodings .. 377

Using NSAttributedString ... 378

Drawing and using attributed strings ... 380

Creating Nanopad: A Rich Text Editor .. 381

Using NSFontManager .. 381

Saving and loading rich text ... 383

Implementing the Open Recent menu ... 384

Creating, Saving, and Loading Documents .. 385

Creating a default nib file ... 387

Setting document types ... 388

Implementing save and open code... 391

Printing documents .. 393

Using NSUndoManager .. 394

Localizing Applications .. 395

Summary ... 400

Part III: Expanding the Possibilities .. 401

Chapter 16: Managing Views and Creating 2D Graphics403
Understanding Windows and Views .. 404

Understanding the view hierarchy ... 406

Subclassing the root view ... 406

Adding and removing views from the view hierarchy .. 409

Handling mouse events in views .. 414

Understanding the Cocoa Graphics System.. 415

Understanding and defining basic geometry .. 416

Creating shapes and colors in drawRect: .. 418

Creating a simple project: MultiBezier .. 428

02_495896-ftoc.indd xii02_495896-ftoc.indd xii 8/31/10 2:41 PM8/31/10 2:41 PM

 Contents xiii

Using CoreImage Filters ... 429

Adding CoreImage effects in Interface Builder.. 430

Setting up filters for processing .. 432

Applying filters to an image ... 436

Summary ... 438

Chapter 17: Creating Animations and 3D Graphics .439
Using Direct Property Animation ... 440

Creating a timer for animation ... 441

Creating property animation code .. 442

Using drawRect: ... 443

Using Animators .. 443

Creating a simple proxy animation ... 443

Setting the animation duration .. 446

Customizing the animation object .. 446

Creating and using animation paths ... 449

Creating Animations with CALayer .. 452

Using layers for animation .. 452

Creating an animatable filter .. 453

Animating the filter .. 456

Using OpenGL .. 458

Introducing OpenGL ... 459

Creating an OpenGL animation ... 459

Controlling an OpenGL animation .. 462

Summary ... 464

Chapter 18: Debugging, Optimizing, and Managing Code465
Using the Console and NSLog .. 466

Getting started with NSLog .. 466

Selectively enabling NSLog .. 471

Debugging with Breakpoints and the Debugger Window ... 473

Enabling debugging ... 474

Using the Debugger window .. 478

Using Instruments ... 481

Using Shark ... 485

Managing Code with Snapshots and Source Control .. 486

Copying projects and creating snapshot versions manually .. 487

Using Snapshots ... 489

Using SVN source control .. 491

Summary ... 492

02_495896-ftoc.indd xiii02_495896-ftoc.indd xiii 8/31/10 2:41 PM8/31/10 2:41 PM

xiv Contents

Chapter 19: Developing for the iPhone and iPad .493
Introducing the iPhone, iPod touch, and iPad ... 494

Comparing iOS and OS X applications ... 495

Understanding the mobile app business model ... 498

Moving to iOS from OS X .. 502

Getting started with the iPhone SDK .. 502

Understanding iOS app design goals .. 503

Understanding key iOS coding differences.. 505

Considering iOS and hardware compatibility .. 505

Understanding iOS Views and UI Design .. 505

Working with Windows and views on the iPhone .. 505

Managing orientation .. 509

Adding navigation and control features ... 511

Handling touch events ... 514

Working with windows and views on the iPad ... 515

Developing for iOS in Xcode ... 516

Using the Xcode Simulator ... 516

Introducing the Xcode templates ... 517

Building a Simple Application ... 524

Adding view controller subclasses .. 526

Implementing the view controllers .. 526

Creating views .. 528

Handling events with protocol messaging ... 532

Creating an animated view swap ... 534

Selling in the App Store ... 536

Understanding certificates, provisioning profiles, and permissions .. 538

Packaging an app for the App Store ... 541

Uploading an app to the App Store... 542

Summary ... 543

Part IV: Appendixes ... 545

Appendix A: Building Dashboard Widgets .547

Appendix B: Maximizing Productivity and Avoiding Errors565

Index .575

02_495896-ftoc.indd xiv02_495896-ftoc.indd xiv 8/31/10 2:41 PM8/31/10 2:41 PM

Preface

When I started developing for the iPhone after a fifteen-year break from software, my
first thought was: What is going on here? I’d written machine code for Macs and had
some experience with earlier versions of Mac OS. It soon became obvious that Cocoa

Touch was doing clever things behind the scenes, and that my apps were supposed to be
exchanging information with those clever things.

Unfortunately, neither the official documentation nor unofficial sources of help were making it
clear what those things were.

With enough persistence, it’s possible for almost any developer to reverse-engineer the docu-
mentation and answer the “What is going on here?” question for himself or herself. But it’s more
productive to have that information before starting out. So my first goal for this book is to equip
you, as a developer, with the key concepts you need to build Cocoa projects efficiently and
productively.

Understanding Cocoa means more than being able to name-check concepts like delegation
and Model-View-Controller; it means learning how Cocoa applies these concepts, how they
influence the design of Cocoa’s classes, and how your code can leverage the features built into
Cocoa to simplify projects and minimize development time. In short, it means discovering how
to think Cocoa. New features will begin to feel intuitive once you understand the reasoning
behind them.

My second goal for the book is to give readers the skills they need to answer Cocoa questions
for themselves, without handholding. OS X is vast and complex, and a full printed guide of
every feature would have to be delivered on a truck. Books always sell better when readers can
pick them up and take them home without stalling traffic, so this book doesn’t try to detail
every Cocoa feature. It also doesn’t try to build complex sample projects that are unlikely to
match your specific needs. Instead, it gives you the skills you need to find answers to questions
for yourself, using the official documentation and other sources of insight.

One feature you won’t find in this book is cheerleading. Like any other development environ-
ment, Cocoa is a mix of excellence and unpredictability. Cocoa’s best features are almost super-
naturally productive and take you where you want to go with almost no code at all. Other
elements offer a more scenic journey through less intuitive class relationships. Instead of a sales
pitch, this book gives you a guided tour of the highlights but also warns you about some of the
more dangerous parts of town.

Finally, software is as much an art as a science. Art is about creating captivating, enjoyable, and
colorful experiences for an audience. In common with the Apple ethic, this book is deliberately
less formal and more creative than a pure software reference. You’ll find the rules here. And
sometimes you’ll also find suggestions for breaking the rules.

Every author tries to make his or her books as helpful as possible. Comments and feedback are
welcome at cocoadr@zettaboom.com.

03_495896-flast.indd xv03_495896-flast.indd xv 8/31/10 2:41 PM8/31/10 2:41 PM

Acknowledgments

Books don’t write themselves — not yet, anyway. Until operating systems become self-
documenting, writing a book continues to be a team effort.

I’d like to thank acquisitions editor Aaron Black for enthusiastically suggesting the project
and project editor Marty Minner for his support and for taking the manuscript and producing a
book from it. Sincere thanks are also due to the rest of the team at Wiley for their hard work
behind the scenes.

Software development has become a communal activity, and particular appreciation is due to
the countless bloggers, experimenters, developers, and problem-solvers on the Web whose
generosity and creativity have made so much possible in so many ways.

Finally — love as always for Team HGA. I couldn’t have written it without you.

03_495896-flast.indd xvi03_495896-flast.indd xvi 8/31/10 2:41 PM8/31/10 2:41 PM

Introduction

This book is about developing Cocoa projects for OS X using the Xcode SDK. The theoreti-
cal elements of Cocoa are similar to those in Cocoa Touch and apply equally to both OS X
and iOS. The more practical elements were written to describe OS X but with significant

overlap with the equivalent features in iOS.

You’ll find this book useful if you’re a newcomer to Cocoa at the beginner or intermediate level
and have experience with C/C++/C#, Java, Flash, Python, or a Web language such as PHP. If
you’re ambitious and feel up to a challenge, you can start with no experience at all. If you do,
you’ll find it helpful to use Objective-C (Wiley, 2010) as a companion title.

Cocoa isn’t a synonym for OS X, and for practical reasons this book says little about the low-
level Mach/POSIX features that underpin OS X. It mentions some of the C-level frameworks that
Cocoa is built on but doesn’t detail them, although it does give you enough information to
explore them for yourself if you choose to.

Chapter 1 is an introduction to the history of Cocoa and OS X and explains how Cocoa evolved
from Smalltalk and from the Objective-C development environment introduced by NeXT in the
late 1980s. It also includes some strategic hints about the OS X and iOS application markets and
how to research the current state of both so that you can target your applications for maximum
return.

Chapter 2 is an informal introduction to the features that make Cocoa unique. Whether you’re
starting programming from scratch, or have a background in some other environment, this is
one of the most critical chapters in the book. Reading it will save you time later.

Chapter 3 is a guide to the Apple documentation. It may not be obvious why this needs a guide,
but Apple has structured the documentation in specific ways, and you’ll progress more quickly
and with less effort if you understand what this means in practice. Understanding and using the
documentation is a key skill. Don’t skip this chapter, even if you already have experience in
other environments.

Chapter 4 explains how to join Apple’s Developer Programs, and how to download and install
Xcode. It also introduces the key features of Xcode 3.2.3, including the windows, menu items,
and customizable toolbar. This chapter explains how to create a new sample project — an
essential skill that’s used repeatedly later in the book.

Chapter 5 introduces objects and classes and describes how they’re implemented in
Objective-C. If you have experience in other object-oriented environments, you’ll need this
chapter to reorient yourself to Objective-C. If you haven’t, you’ll find an explanation of object-
oriented development that’s a fundamental requirement for understanding Cocoa.

Chapter 6 explores objects in Cocoa in a more hands-on way, with very simple projects that
illustrate how to use objects and their features in real Cocoa applications.

Chapter 7 introduces the key features of Interface Builder and explains how you can use IB to
build complete applications, because IB isn’t just for interfaces.

03_495896-flast.indd xvii03_495896-flast.indd xvii 8/31/10 2:41 PM8/31/10 2:41 PM

xviii Introduction

Chapter 8 demonstrates how to use IB to build a working application with a custom interface
assembled using Cocoa library objects and how to connect a UI created in IB to code written in
Xcode. This is another essential chapter. You’ll need this information to build Cocoa successful
applications.

Chapter 9 introduces some of the standard Cocoa design patterns and their supporting fea-
tures, including target-action, Model-View-Controller, and selectors. It also looks more closely at
Cocoa key-value technologies such as Key-Value Coding and Key-Value Observing and explains
how to work with them effectively.

Chapter 10 introduces the Cocoa file interface and explains how it’s built into many Cocoa
objects, making a file manager unnecessary. For completeness, this chapter also introduces the
file manager and explains how to add open and save panes to an application.

Chapter 11 explains how to manage timing, threads, and tasks in Cocoa. It also introduces the
new block syntax, which is slated to replace delegation and other design patterns in future ver-
sions of OS X.

Chapter 12 introduces Cocoa’s data collection classes, including NSArray, NSDictionary,
and NSSet, and explores some of their features. It explains how to use NSCoder to serialize
data when saving it or reloading it and introduces the essentials of both manual memory man-
agement and automated garbage collection.

Chapter 13 explores bindings, which are often seen as one of Cocoa’s more challenging fea-
tures but which are explained here in an unusually straightforward and practical way.

Chapter 14 follows from the previous chapter with an introduction to Core Data. It explains how
to build a working card index application with no code at all and also how to customize it to
make it more useful and flexible.

Chapter 15 introduces Cocoa’s attributed — styled — text features and explains how to create
applications with multiple document windows. You’ll also find information about printing,
undoing, and localizing text for foreign markets.

Chapter 16 explains how to create 2D graphics, using Cocoa’s path, fill, and stroke features and
also gives a low-level example of creating effects with Cocoa’s Core Image filters.

Chapter 17 expands on the techniques of the previous chapter and demonstrates various ani-
mation techniques, including a simplified but animated Core Image filter. You can also find an
introduction to OpenGL in Cocoa, with a sample animated teapot application.

Chapter 18 introduces various tools and strategies for debugging and profiling code and opti-
mizing performance.

Chapter 19 is about developing for iOS. It introduces the key differences between Cocoa and
Cocoa Touch, explains how to use the iOS simulator and how to get started with development
on real hardware, and also explores some of the commercial opportunities offered by the
iPhone and iPad.

03_495896-flast.indd xviii03_495896-flast.indd xviii 8/31/10 2:41 PM8/31/10 2:41 PM

 Introduction xix

Appendix A is about building dashboard widgets, which use JavaScript instead of Objective-C
and are a quick and easy way to get started with Mac development.

Appendix B lists some of the common errors that appear in Cocoa code and introduces some
possible bug-busting strategies.

Code appears in a monospaced font. Items you type appear in bold.

Projects were developed with Xcode 3.2.3 on OS X 10.6.3. Supporting code is available on the
book’s Web site at www.wiley.com/go/cocoadevref. See the readme there for the most
recent system and software requirements. Code is supplied as is with no warranty and can be
used in both commercial and private Cocoa projects but may not be sold or repackaged as tuto-
rial material.

03_495896-flast.indd xix03_495896-flast.indd xix 8/31/10 2:41 PM8/31/10 2:41 PM

03_495896-flast.indd xx03_495896-flast.indd xx 8/31/10 2:41 PM8/31/10 2:41 PM

Getting StartedI

Chapter 1
Introducing Cocoa

Chapter 2
Think Cocoa!

Chapter 3
Introducing the Cocoa

and OS Documentation

Chapter 4
Getting Started

with Xcode

Chapter 5
Introducing Classes and

Objects in Objective-C

Chapter 6
Getting Started With

Classes and Messages in
Application Design

Chapter 7
Introducing Interface

Builder

Chapter 8
Building an Application

with Interface Builder

In This PartI

04_495896-pp01.indd 104_495896-pp01.indd 1 8/31/10 2:42 PM8/31/10 2:42 PM

04_495896-pp01.indd 204_495896-pp01.indd 2 8/31/10 2:42 PM8/31/10 2:42 PM

In This Chapter

Introducing Cocoa

Introducing Cocoa

Understanding Cocoa’s
history

Profiting from Cocoa

Introducing Xcode and
the Apple developer

programs

Apple’s Cocoa technology is one of computing’s success sto-
ries. When OS X 10.0 was released in 2001, it immediately
revolutionized the look and feel of desktop applications.

Since then, other operating systems have borrowed freely from
Cocoa’s innovations. Apple has continued to innovate with the
iPhone and iPad, introducing Cocoa Touch for mobile devices.
Cocoa Touch offers a simplified and more tactile user experience,
and is the first popular and successful attempt to move beyond a
traditional window, mouse, and menu interface. Future versions of
Cocoa on the Mac are likely to blend the iPhone’s tactile technol-
ogy with the sophisticated data handling, 64-bit memory manage-
ment, and rich user interface options that are already available to
Cocoa developers. Cocoa is widely used in Apple’s own projects,
and it determines the look and feel of an application such as
Aperture, shown in Figure 1.1.

Introducing Cocoa
Cocoa is the collection of libraries and design principles used to
build skeleton Mac applications, create and display a user interface,
and manage data. Cocoa is also a design philosophy based on
unique ideas about application design and development that you
can find throughout the rest of this book. You don’t need to under-
stand Cocoa’s history to use the Cocoa libraries, but their features
may be easier to work with if you do.

Understanding Cocoa’s history
Cocoa’s origins can be traced to the mid-1970s and are closely tied
to the history of the Objective-C programming language. Cocoa
and Objective-C are used at different levels. Cocoa is a code library
and a set of interface and development guidelines. Objective-C is
the language that implements them.

Cocoa is now available for other languages, including JavaScript,
Python, and Ruby on Rails, but most Cocoa developers continue to
work in Objective-C because its syntax and features are a natural fit
for Cocoa projects.

05_495896-ch01.indd 305_495896-ch01.indd 3 8/31/10 2:42 PM8/31/10 2:42 PM

4 Getting Started

Figure 1.1

Apple’s Aperture application uses Cocoa technology and follows Apple’s user interface design
guidelines. Although Cocoa objects implement the interface, they don’t enforce a standard
look and feel.

Objective-C, developed by Brad Cox and Tom Love when they worked at ITT Corporation in the
early 1980s, began as a mix of C and features copied from the Smalltalk experimental language.
Smalltalk had been created — originally as a bet — by Alan Kay at the Xerox Palo Alto Research
Center (PARC). PARC’s famous graphical user interface (GUI) experiments inspired much of the
visual design of both Mac OS and Windows. Smalltalk influenced those experiments by imple-
menting a development environment in which independent objects communicated by sending
and receiving messages.

At a time when most software was still procedural — it started at the beginning of a computer
run and continued to the end, with occasional branches and subroutine calls — Smalltalk’s
model suggested a new and less rigid approach to software development. It enabled program-
mers to build applications from a library of “copy-able” but distinct interactive parts, connected
by a messaging system that made the parts responsive and controllable.

A windowed GUI is difficult to manage in a procedural environment. In a Smalltalk environ-
ment, windows and icons become objects with properties — size, position, graphic contents,

05_495896-ch01.indd 405_495896-ch01.indd 4 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 5

and so on — that can be remotely controlled by messages. When a window receives a message,
it not only stores the value, but also it can automatically redraw itself. Messaging makes it possi-
ble for objects to control each other remotely. Objects can update themselves or trigger behav-
iors in other objects because changing an object’s properties can trigger a much more complex
response.

Objects are opaque; that is, an object’s internal code can be hidden and the object can be
shared with other developers who see an interface — a set of properties and behaviors they can
access remotely — but they don’t need to think about the details of the implementation code
behind these features. This enhances security and simplifies application design. Developers can
use objects as functional building blocks without being distracted by the code that implements
them.

Because objects can send and receive messages and respond to them in programmable ways,
they’re more powerful than conventional data structures and functions. Developers not only
find objects simpler to use, but they also find it easier to invent new and more complex kinds of
interactions. Updating a single property in a single object can automatically trigger a cascade of
responses across an application.

From Smalltalk to Objective-C
Although Smalltalk’s ideas were powerful, its syntax was cumbersome and it never evolved into
a mainstream language. It is only rarely used now by professional developers, though it contin-
ues to be available in hobby projects. For example, experimenters can explore the Smoaktalk
interpreter shown in Figure 1.2, which runs on the Web as a Flash application at www.smoak
talk.com/st/071808.

Smalltalk’s influence is evident in other languages, including Ruby, Perl, and Objective-C.
Objective-C is closest in spirit and implementation to the original Smalltalk design ideals. It
blends them with the features of standard C to create a very powerful and productive environ-
ment. Objective-C can run C code without changes, but it adds features and concepts imported
from Smalltalk. Specifically it supports objects and messaging using some of Smalltalk’s syntax
and conventions.

From Objective-C to NeXTStep
In 1988 Steve Jobs left Apple and started a new company called NeXT. NeXT licensed a version
of Objective-C from StepStone, the owners of the language, and began creating its own com-
piler and libraries. NeXT’s computing hardware products were widely acclaimed, but because
they were too expensive for mainstream users, they sold poorly. NeXT reluctantly dropped out
of hardware development and concentrated on developing the compiler, libraries, and SDK as a
marketable product that could be licensed to potential users. The libraries, known as NeXTStep,
included data management features. They also supported a sophisticated graphical and user
interface (UI) environment based on the object-message development idiom inherited from
Smalltalk.

05_495896-ch01.indd 505_495896-ch01.indd 5 8/31/10 2:42 PM8/31/10 2:42 PM

6 Getting Started

Figure 1.2

Smoaktalk on the Web re-creates a Smalltalk interpreter inside a Flash application. You can
use it to experiment with Smalltalk’s features and syntax.

As NeXTStep became more popular and influential, it evolved into OpenStep, an open industry
standard based on NeXTStep’s features and design goals. The NeXT desktop became a bench-
mark for innovative interface development, supporting arbitrary fonts using Display PostScript,
at a time when most PCs still displayed generic blocky text.

 N O T E
Arguably, OpenStep narrowly missed out on the chance to compete with Microsoft Windows 3.0. In the early 1990s,
OpenStep was an obviously superior operating system, and was already being converted to run Intel x86 machines
from its original Motorola 680x0 platform. Unfortunately, OpenStep shipped later than Windows, handing Microsoft
an early-adopter advantage. Had it shipped earlier and been promoted more aggressively, it might well have over-
shadowed Windows and given the developer community a worthy alternative platform.

05_495896-ch01.indd 605_495896-ch01.indd 6 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 7

Moving from NeXTStep to Cocoa
In 1996 Steve Jobs returned to Apple, bringing NeXTStep with him. In the preceding years
Apple had tried and failed to create a successor to Mac OS 9. Buying NeXTStep and re-hiring its
creator was an obvious solution. After numerous false starts, Apple eventually released OS X
10.0 in 2001. Codenamed Cheetah, OS X 10.0 was built from a blend of OpenStep features and
existing OS 9 code. Apple’s new interpretation of NeXTStep was named Cocoa. Internally, Cocoa
objects still use the letters NS as a prefix — for example, Cocoa’s window object is called
NSWindow.

Although OS X 10.0 was famously unstable — Apple released a free update to OS X 10.1 almost
immediately — the NeXTStep-inspired look and feel of OS X was an immediate success with
users and developers. Apple aggressively promoted OS X development by offering a free SDK.
Since then Cocoa has developed further. In 2005 Apple dropped support for G series processors
and moved OS to Intel Mac technology. Currently Cocoa and OS X are moving toward full 64-bit
support with touch-based user interface extensions. But the SDK continues to be free. A version
is bundled with all Macs, while the most recent update can be downloaded from Apple’s Web
site.

 C R O S S R E F
For more information about the Xcode SDK, see Chapters 3 and 4.

Recent versions of Cocoa remain compatible with NeXTStep code, which often compiles and
runs on OS X with minimal changes. But Cocoa is no longer identical to OpenStep or NeXTStep.
With each OS X update, new features are added and old features are changed or removed.
Figure 1.3 shows Snow Leopard, the most recent version of OS X and Cocoa. Internally the
NeXTStep legacy remains, both in the code and in the Cocoa design philosophy that influenced

NeXTStep may have been directly responsible for the World
Wide Web. The original hypertext browser and server sys-
tem were developed by Tim Berners-Lee on a NeXT system
at the European CERN particle accelerator. The Web isn’t
truly object-oriented or message-based, and HTML remains
a simple mark-up language and not a programming lan-
guage. But hints of Objective-C and NeXTStep are visible in
the way that links and HTML fields are specified as objects
with specific subproperties.

NeXTStep and Cocoa have certainly been influenced by the
Web. Many Cocoa data objects make no distinction between
local and remote data. Where most operating systems
assume that all data is on a local disk or on a network, Cocoa
enables data to be specified and downloaded with a URL.
Some Cocoa objects use URLs for all data. Local file paths
must be converted into a URL before the data can be loaded.

NeXTStep and the Web

05_495896-ch01.indd 705_495896-ch01.indd 7 8/31/10 2:42 PM8/31/10 2:42 PM

8 Getting Started

the OS X user experience. Cocoa remains entirely object-oriented, and Cocoa code still uses a
recognizable version of the messaging and object model that originated in Smalltalk in the late
1970s.

Figure 1.3

The current Snow Leopard is based on Cocoa technology, which remains similar to the
technology used in OS X 10.0. Windows are rendered in a lightly textured gray finish with
subtle 3D effects. The look is set by the OS and can’t be customized within Cocoa.

Today Cocoa is the most popular framework for application development. Many Mac applica-
tions use other OS X libraries to implement media features and manage application data. But
these mixed applications are still considered “Cocoa applications,” as long as they create a
Cocoa look and feel, and are organized around interacting objects and events.

 N O T E
This book concentrates on Cocoa, but introduces key elements from other libraries. Even though technically they are
not included in Cocoa, it’s difficult to develop Cocoa applications without being familiar with them.

05_495896-ch01.indd 805_495896-ch01.indd 8 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 9

Profiting from Cocoa
Developers can learn Cocoa for both fun and profit. The Mac application market is very much
smaller than the Windows market, but is also much less saturated, making it potentially easier
to reach. Mac market share typically oscillates between 3 and 7 percent of total desktop and
laptop sales, and is currently on an upswing because of the influence of the iPhone. Web statis-
tics suggest that around 5 percent of pages are served to users of Safari or the Mac version of
Firefox.

Sales of Windows PCs are partly determined by bulk corporate purchases, and this can distort
user statistics. In reality, Macs continue to be a disproportionally popular choice for domestic
and small business buyers. Even so, the market is limited and prospects for volume sales of
niche applications are not good.

The Mac is also a relatively poor choice for games development. Macs are more expensive
than performance PCs and more difficult to customize, so high-profile game developers have
concentrated on the PC market, but there are exceptions outside of the prestigious high-
performance games market. Simple Flash games are popular on the Web, and some developers
have done well from straight PC and Mac ports, using Web gaming to market the stand-alone
versions. These games have a much smaller development cost than full-scale theatrical 3D
gaming experiences, but can be unexpectedly profitable.

In the creative application market, Apple’s own music, video, and photographic products domi-
nate audio and video, supported by a number of other established software products.
Elsewhere Adobe’s Creative Suite series has become an industry standard for graphic design,
photography, and animation. These markets are now mature, leaving little room for competing
new products. Occasionally a new product can carve a niche for itself if its features are unusual
and appealing enough. For example, Ableton’s Live audio sequencer, shown in Figure 1.4, is a
popular seller with both Mac and PC users. When it arrived it offered new performance features
that weren’t available in existing products.

Competing head-on with existing creative products is a poor strategy unless you have a truly
market-changing idea. Competing on price is unlikely to be any more profitable. Various bud-
get clones and reinterpretations of Adobe Photoshop have been released on the Mac, but none
have successfully taken market share from the original, even when priced much more cheaply.
Solo developers should keep in mind that even when products are useful and well crafted, mar-
keting costs can be much higher than development costs.

But head-on competition isn’t the only option. There is a thriving market for plug-ins and acces-
sory applications that support the market leaders. For example, software music synthesizer and
audio processing plug-ins are steady sellers, and the plug-in and accessory market for video and
graphic design applications is similarly robust. Plug-ins and helper applications are smaller and
simpler than full applications, and can be developed much more quickly — and profitably.

05_495896-ch01.indd 905_495896-ch01.indd 9 8/31/10 2:42 PM8/31/10 2:42 PM

10 Getting Started

Figure 1.4

Ableton’s Live is one of the few media applications to successfully invent a new application niche.
The unique combination of live sample loop playback with interactive control has proved
irresistible to musicians and DJs.

Utility applications are another steady market. Apple’s own Finder application has barely been
updated since OS X 10.0, and users may welcome a convincing alternative. The standard Mac
Mail application lacks refinement and offers a minimal feature set. Automation is another
underexplored market. OS X includes Automator, but it is difficult to use and users may appreci-
ate alternative productivity-enhancing options.

As a rule, opportunities are available wherever Apple’s software is difficult to use or deliberately
limited. This applies to most of the free applications supplied with OS X, so there are obvious
opportunities for innovation. Products that solve a simple problem cheaply are always likely to
do well. For example, various inexpensive helper applications, such as Growl, shown in Figure
1.5, add useful extra features or enhancements to OS X. Products that appeal to all Mac users
but are simple to code and cheap to sell can be ideal projects for solo developers.

05_495896-ch01.indd 1005_495896-ch01.indd 10 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 11

Figure 1.5

Growl is a unique and popular accessory that enhances inter-application communication. Growl
is donationware, but it is so popular that donations have successfully funded development.

As a prospective developer, online software sales aren’t the only possible market — you can
also hire out your services on a freelance basis, developing bespoke applications that may never
be sold commercially. Business owners and development houses support a small but significant
market for experienced Mac developers and consultants. To succeed in this market you’ll need
to be fluent in OS X and Cocoa, as well as willing and able to use APIs for popular Web services
such as Amazon, Twitter, Google, and Facebook. The Twitterrific application shown in Figure 1.6
is one example of this approach.

Developing applications that connect a Mac to these services — or others that are still being
developed — can be a reliable source of income. A successful strategy used by some Apple
developers is to approach companies with relatively simple but popular Windows applications
and ask them if they’ll consider outsourcing the development of a Mac version.

05_495896-ch01.indd 1105_495896-ch01.indd 11 8/31/10 2:42 PM8/31/10 2:42 PM

12 Getting Started

Figure 1.6

The Icon Factory’s Twitterrific application is a good example of successful and accessible
development. It’s small, simple, and cheap, and it aims for volume sales by targeting a very
popular market.

Profiting from the iPhone
Sometimes iPhone development can be even more profitable. There’s a small but non-negligible
chance that an iPhone hit will make you very successful. It’s unwise to be too optimistic about
the prospects of overnight success, but some developers have done extremely well by selling
relatively simple iPhone apps. For more information, see Chapter 19, which looks at the iPhone’s
development model and business strategy in more detail.

Other developers have succeeded by offering solutions for common iPhone problems. This is
an iPhone-friendly extension of the desktop strategy of looking for opportunities where exist-
ing software is limited or frustrating. DigiDNA’s Aid series of applications, shown in Figure 1.7,
makes it possible to use an iPhone as a USB drive for simple file copying and to simplify file
management in iTunes.

05_495896-ch01.indd 1205_495896-ch01.indd 12 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 13

Figure 1.7

DigiDNA’s range of utilities uses a related model, targeting existing popular Apple applications
and creating solutions for some of their shortcomings.

A key difference between Mac and iPhone applications is that Apple has a monopoly on iPhone
app sales. Anyone can develop a Mac application and sell it from a Web site without Apple’s per-
mission. Apple can only block sales of OS X applications if they break the law in an obvious way.

The iPhone market is much more tightly controlled. Apps must be sold through the App Store
and must be approved by Apple before they are listed. Some developers have had unfortunate
experiences with the approval process, and their apps have been removed from sale without
notice. Apple’s stated approval policies aren’t always applied consistently. You can expect an
app to fail if it uses Cocoa features in nonstandard or unsupported ways, conflicts with Apple’s
own business plans or those of Apple’s airtime partners, or includes illegal or questionable con-
tent. Apps that avoid gray areas are usually accepted.

05_495896-ch01.indd 1305_495896-ch01.indd 13 8/31/10 2:42 PM8/31/10 2:42 PM

14 Getting Started

While iPhone development includes an extra element of risk, it also offers access to a huge
potential market. Listing in the App Store is a potentially valuable form of free marketing.
However, it’s not a viable get-rich-quick scheme for developers — a few developers will profit
enormously; most won’t. But it can provide a significant extra income stream.

Combining Mac, PC, and iPhone/iPad development is an increasingly popular strategy.
Applications built from elements across multiple platforms can sell for a higher price, and they
also cross-promote each other.

Developing for fun
Not everyone develops professionally, and Cocoa is a rewarding environment for creative
media projects. Its features include powerful support for graphics, video, and sound.
Adventurous developers who are familiar with accessible Web-centric languages such as Flash
and JavaScript are finding Cocoa and Objective-C a natural next step.

Cocoa applications can only run on a Mac. There is no Web-based version of Cocoa, so you can’t
use Cocoa to create Web graphics. But you can use it to create custom plug-ins for professional
media applications; to process graphic, video, and sound files in imaginative ways; and to pro-
duce printable ultrahigh-resolution graphics that would be difficult to create in other environ-
ments.

Cocoa isn’t as accessible as Flash, Java, or a simplified “toy” language like Processing. It’s also
not as easy to master as a media construction kit such as Cycling 74’s Max/MSP/Jitter product or
the Pure Data open-source equivalent, shown in Figure 1.8. If you need a simple and clean but
limited environment, Cocoa may not be ideal for you.

Cocoa and Objective-C come into their own when you reach the limits of these environments
and begin to explore more complex possibilities. Objective-C is ideal for structured program-
ming of all kinds, including media applications, and the distance between coding in
ActionScript and coding in Objective-C and Cocoa is much smaller than the distance between
writing code and not coding at all.

While Objective-C is still seen by some as “real” programming, and Flash, PHP, JavaScript, and
Perl are considered simpler and less demanding, the distinction is superficial and misleading. As
Apple begins to move beyond the desktop/laptop model into new kinds of computing, these
technologies will start to collide in interesting and creative ways. Developers who are familiar
with all of these environments will have a creative and perhaps professional advantage over
those who are less adventurous.

05_495896-ch01.indd 1405_495896-ch01.indd 14 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 15

Figure 1.8

Developers and users of nonmainstream applications like the Pure Data audio synthesizer often
find that Objective-C and Cocoa development are a natural progression for them once they
reach the limitations of these simpler environments.

Introducing Xcode and the Apple
Developer Programs
If this chapter has inspired you to begin coding, you’ll be pleased to know that the Xcode SDK
used to create Cocoa applications is available to anyone with an Intel Mac. Entry-level member-
ship requires a simple registration but is free and includes access to Apple’s Xcode SDK, which
supports both iPhone and OS X development. You can find out more at the Apple Developer
Center site at http://developer.apple.com, shown in Figure 1.9. For more information,
see Chapter 4.

05_495896-ch01.indd 1505_495896-ch01.indd 15 8/31/10 2:42 PM8/31/10 2:42 PM

16 Getting Started

Figure 1.9

Apple’s developer centers are open to everyone. Free entry-level registration offers access to
the combined Mac and iPhone SDK.

Working with Xcode and Interface Builder
Xcode, shown in Figure 1.10, is a complete suite of development tools; it is described in more
detail in Chapter 3. In addition to an editor and compiler, it also includes Interface Builder (IB),
shown in Figure 1.11.

At first sight IB — as it’s often known — looks like an interface design tool. In fact, the name is
misleading. When you create an application, you can use IB to list the objects it loads as it starts.
Visible objects appear in the interface, but you can also load data objects that don’t appear
there. In reality, Interface Builder is an object hierarchy editor that can also design interfaces,
and you can use it to define the entire architecture of your application.

05_495896-ch01.indd 1605_495896-ch01.indd 16 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 1: Introducing Cocoa 17

Figure 1.10

The Mac and iPhone SDK are built around the Xcode code editor and compiler. Xcode can be
used in a simple one-click-to-build way by beginners, or it can be customized and extended
almost indefinitely by more experienced developers.

Working with Safari
Apple also offers the free Safari Developer Program for Web applications. On the Mac and PC,
Safari remains a minority interest for now. On the iPhone, you can use Web-app technology to
create Web-based apps that have many of the features of conventional iPhone apps but are
simpler to create and can be sold directly from a Web site. With HTML5 and CSS3 (Cascading
Style Sheets 3) due soon in Safari and other browsers, Web apps are likely to have an interesting
future. The Safari development tools also include a powerful JavaScript debugger that you can
use in other projects. Although this book isn’t about Safari, it can be worth exploring the Safari
environment as a halfway house between JavaScript and Flash Web development and the more
complex challenges of Objective-C and Cocoa.

05_495896-ch01.indd 1705_495896-ch01.indd 17 8/31/10 2:42 PM8/31/10 2:42 PM

18 Getting Started

Figure 1.11

Interface Builder includes a complete list of objects that you can add to an application. It also
includes an object hierarchy view, an interface preview, and an Inspector window used to display
and edit objects and their settings.

Summary
This chapter introduced the history of Smalltalk and Objective-C and explained how the devel-
opment process that created Cocoa began with Smalltalk, moved to Objective-C and NeXTStep,
and culminated in the integration of the Cocoa libraries into Mac OS with the release of OS X.

It also explored various commercial business models for iPhone and OS X development, and it
introduced the Apple Developer Program and the Xcode SDK.

05_495896-ch01.indd 1805_495896-ch01.indd 18 8/31/10 2:42 PM8/31/10 2:42 PM

In This Chapter

Think Cocoa!

Designing with Cocoa

Creating Cocoa
applications

Moving to Cocoa and
Objective-C from other

platforms

Although it’s possible to learn Cocoa by rote, laboriously listing
its objects and trying to memorize their key properties and
code interfaces, Cocoa comes alive when you understand its

design principles in a more open way. Some of these principles
derive from Objective-C. Others are related to Aqua — the OS X look
and feel built on top of Cocoa — and are described in more detail
later in this chapter. It’s much easier to master Cocoa by understand-
ing its design philosophy and filling in coding details, as needed,
than by working backward from Cocoa code examples.

Designing for Cocoa
Apple products emphasize creative design; a successful design
includes the following three elements:

 Outstanding aesthetics. Applications should look inspir-
ing and attractive, and users should feel curious and fasci-
nated as soon as they see the interface. But design should
enhance features without overpowering them.

 A sense of fun and creative possibility. This element
isn’t always appropriate — for example, it’s not usually
emphasized in office applications — but even the sim-
plest or most straightforward applications can include ele-
ments that inspire users.

 T I P
Applications sometimes try to fake fun and creativity by including templates and
canned content. This can be popular with users, but it’s more rewarding — and
more difficult — to create an application that empowers users to be completely
original.

 A clean and intuitive mental model. Users should be
able to understand the application’s features with as little
conscious effort as possible. The application should be
invisible; users should never have to think about how to
perform an operation.

 C A U T I O N
Users may have existing ideas about how features should work. A clean and intui-
tive mental model can still fail if it doesn’t match those expectations. For example,
users sometimes find iTunes difficult because they assume that an iPod can work
as an external USB drive. As a model, an external drive is simpler than the way
iTunes really works, leaving them frustrated.

06_495896-ch02.indd 1906_495896-ch02.indd 19 8/31/10 2:42 PM8/31/10 2:42 PM

20 Getting Started

Applications with complex features always require a learning curve. But it’s important to think
about these goals and allow them to shape the design of every Cocoa application, even if the
result isn’t perfect or ideal.

It’s easier to approach these aims when creating simple applications, so Cocoa’s design philoso-
phy is particularly important on the iPhone and iPad. These devices are optimized for stripped-
down and streamlined applications with simple, beautiful, clear interfaces. The mainstream
Cocoa environment is likely to trend in this direction in the future, so it’s useful to consider
mobile aesthetics when designing desktop applications.

Understanding Aqua
Cocoa is part of Aqua. Aqua implements the visual styling of Cocoa applications, including the
glassy buttons and gray window borders. Aqua also defines some specific expectations and
requirements, as shown in the list that follows.

 T I P
You can find the guidelines online by searching for “Apple Human Interface Guidelines.” The URL occasionally changes,
so it’s better to run a search than look for a specific URL.

 Applications use multiple windows. Windows typically float over the desktop and
not inside a separate application window. There is a single menu bar at the top of the
screen. Different windows do not have different menus.

 Applications should start and quit quickly.

 Applications must support the OS X Dock. Full-screen modes are allowed, and users
are responsible for arranging windows on top of the Dock.

 OS X supports multiple users. Users should be able to use the same application on
the same machine in different sessions without conflicts. OS X supports fast user
switching, so users should be able to log out and log in again without losing data or
settings.

 Applications should support internationalization. Cocoa includes features that sim-
plify multi-language and multi-alphabet support.

 OS X includes standard features such as preset keyboard shortcuts, color pickers,
mouse actions, menu options, drag-and-drop options, and file selectors. Cocoa
applications should use these features.

 Windows are designed with standard elements. These elements include a data
source at the left, a toolbar at the top, scroll bars at the right, further options at the
bottom, and so on. Applications should follow the same outline design.

 N O T E
If you’re new to Cocoa, coming from a different development environment, review the design guidelines for Aqua win-
dows. Elements such as Bottom Bars may be unfamiliar. Not all applications use all elements, but you should be aware
of the different options.

06_495896-ch02.indd 2006_495896-ch02.indd 20 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 21

 The spacing of elements within windows is also standardized. Standards for mar-
gins, positioning, grouping, and justification are listed in the Apple Human Interface
Guidelines. For example, preferences panes, such as Safari’s preferences shown in
Figure 2.1, are weighted so that they appear centered in the window, but aren’t simply
center-justified in a mechanical way.

 Fonts are partly standardized. Most applications use the system font, but you can
allow users to select other fonts in certain circumstances.

 Applications should include help files, with topic browsing and open searches.

Figure 2.1

Safari’s preferences are center-weighted rather than center-justified. The layout as a whole appears
balanced, even though none of the individual items is placed on the exact vertical center line. Items
are also grouped vertically for further clarity.

Using Aqua with Cocoa
Many applications fail to follow all these design guidelines. Because OS X applications can be
created and sold by any developer without Apple’s permission, developers can create their own
interface standards.

06_495896-ch02.indd 2106_495896-ch02.indd 21 8/31/10 2:42 PM8/31/10 2:42 PM

22 Getting Started

Aqua is an ideal choice for mainstream productivity and lifestyle applications, but creative and
media applications sometimes take a more individual approach to interface design and feature
access. Although parts of Cocoa are closely tied to Aqua, it’s possible to use Cocoa to create a
completely individual look and feel. Aqua is a set of a guidelines, but Cocoa only enforces them
to the extent that it includes a library of standard objects that can be included in an interface.
You can customize the appearance of most of these objects if you choose to, and still use Cocoa
to define how they respond to user actions.

Creating Cocoa Applications
Cocoa is one library among many others in OS X and isn’t a synonym for the OS as a whole.
Technically, Cocoa is a layer in OS X — a group of libraries that can be used to implement related
features. Some care is needed when discussing layers because Apple’s documentation describes
layers in different ways. For example, in parts of the documentation, Cocoa is described as an
element of the Application Framework layer — a set of four libraries that can be used to build
applications. Elsewhere Cocoa is described as a complete layer in itself. Elsewhere again it’s
described as a group of separate frameworks — code libraries.

Understanding layers and frameworks
You’ll find it helpful to understand that some parts of the documentation sketch a functional
outline of OS X, while others refer to groups of actual code libraries. Confusingly, the functional
outline is only loosely related to the structure of the code. The functional view is best used as an
OS X orientation summary and jargon buster, not as a development aid.

Table 2.1 illustrates a functional summary of the layers in OS X. It’s an extended version of
Apple’s own overview, with added comments.

Table 2.1 Functional OS X Layers — An Outline View
Layer Elements Comments

User Experience Aqua

Spotlight

Accessibility

These elements implement or define the most visible parts of

OS X in a high-level way. They are either APIs (Spotlight,

Accessibility) or concepts and guidelines (Aqua). Simpler

applications can ignore the APIs. More advanced applications

can use them to add certain standard Mac features.

Application Frameworks Cocoa

Carbon

Dashboard & WebKit

POSIX and X11

These code libraries are used to create application skeletons.

They include window management features, data handling,

application setup and teardown, interface creation, and so on.

For more details, see Table 2.2.

06_495896-ch02.indd 2206_495896-ch02.indd 22 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 23

Layer Elements Comments

Graphics and Media Core Animation

Core Image

Core Video

QuickTime

OpenGL

Quartz

Core Audio

These elements include still image, animation, and video and

audio support. This list is a shortened summary, and the names

listed here don’t map exactly to the names of the frameworks

that implement these features. But these names are often used

as generic descriptions for groups of related libraries.

Data and Data Management Core Data

Address Book

Calendar

Use these elements to manage data within an application and

to exchange data with Apple’s own built-in applications. The

Application Frameworks have their own separate internal data

management features. Many applications use both kinds of

data management.

Darwin, Kernel and Driver UNIX system calls

Driver libraries

OS X is built on the BSD (Berkeley System Distribution) variant of

UNIX and includes all the usual low-level UNIX system calls. This

level handles direct — high risk — access to hardware features,

such as disk hardware or the temperature sensor. It also handles

calls to the underlying Darwin version of the UNIX OS.

Figure 2.2 shows how these elements are related to each other graphically. The most sophisticated
and abstract layers are at the top of the diagram. As you travel away from the User Experience layer,
you move into the internals of OS X, eventually reaching the underlying UNIX code.

Figure 2.2

This simplified functional view is
useful to orient you, but a code-
level view of frameworks and layers
is more relevant in practice.

User Experience

OS X

Application Frameworks

Darwin Kernel/Drivers

DataMedia

Cocoa, Aqua, and the user experience
Aqua is a key part of the user experience. While Coca is a code library, Aqua is a look and feel,
defined in part by the glass-like interface graphics pioneered by Apple. As a developer, you
don’t program an Aqua layer, and there is no Aqua framework. Instead, the visible parts of Aqua
are implemented for you automatically. Whenever you add a standard button graphic to your

06_495896-ch02.indd 2306_495896-ch02.indd 23 8/31/10 2:42 PM8/31/10 2:42 PM

24 Getting Started

application, it appears as an Aqua button. In theory, Apple could replace Aqua with a different
look in a future version of OS X without breaking any existing Cocoa code.

 C A U T I O N
You can replace the default Aqua graphics features with custom graphics if you choose to. But Aqua is popular with
users, and if you’re planning to customize the look of an app with your own graphics, you may find it difficult to create
a look with equal or greater user-appeal.

Aqua is much more than a set of glassy graphics. As a layer, Aqua also defines a set of explicit
design guidelines, and an Aqua-compliant application must meet these guidelines. This is cov-
ered in more detail later in this chapter.

The other parts of the user experience layer are built into OS X. Spotlight implements speedy
searches. Dashboard displays mini-applications called widgets, and is described in Appendix A.
Accessibility is used to create accessible applications for partially-abled users. Support for
Spotlight and Accessibility is recommended but not obligatory. Depending on their functions
and user interface, applications can sometimes leave out Spotlight features without disappoint-
ing or frustrating users.

Cocoa and the application frameworks
As Table 2.2 shows, Cocoa is not the only application framework included in OS X. Developers
can also use low-level POSIX calls and X11 window management to create Unix-compatible
applications; a framework called Carbon to create and manage OS X windows and interface
features through C function calls; and Java and JavaScript to create Web-based or Web-like
applications.

Table 2.2 OS X Application Frameworks
Framework Interface Application Type

Cocoa Objective-C objects and methods Mac-style windowed desktop applications and command line

applications that use Cocoa data types.

Carbon C functions and data structures Mac-style windowed desktop applications and command line

applications using C language data types, structs, and functions.

This layer includes a number of special libraries, for example,

speech synthesis and speech recognition.

POSIX and X11 C functions and data structures UNIX-style applications with X11 windowing and low-level

command line input. Use this framework to create cross-

platform UNIX applications that can run on a Mac and on a

different UNIX platform with minimal changes.

Dashboard and WebKit Java and JavaScript functions and

data types

Web-based applications, including WebKit apps for the iPhone,

and Dashboard widgets for the Mac desktop. For details and

examples, see Appendix A.

06_495896-ch02.indd 2406_495896-ch02.indd 24 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 25

Although most new Mac applications are Cocoa applications, the other frameworks are still in
use; for example, the iTunes application is built with Carbon rather than Cocoa. This book con-
centrates on Cocoa and includes very little on POSIX and X11 development. Dashboard applica-
tions are described in Appendix A.

 N O T E
As with the functional overview, this information is only included to explain some of the terms you’ll see in the docu-
mentation. You don’t usually need to refer to it while creating a Cocoa application.

Cocoa and Carbon
Carbon is a special case because it competes directly with Cocoa and is still widely used. Carbon
was originally included in OS X to simplify the move from Mac OS 9, making it possible to
rewrite older OS 9 applications with updated but compatible OS X code — a process called
Carbonization.

Carbon is arguably more difficult to work with than Cocoa and is programmed via a legacy C
language interface. While Carbon is still officially supported, its status is becoming ambiguous.
Apple has withdrawn a full 64-bit port of Carbon from future versions of OS X, leaving a patch-
work of support that makes it difficult for Carbon developers to move to the new 64-bit applica-
tion model. New developers should use Cocoa almost exclusively.

Cocoa and code layers
Table 2.3 is a code-oriented overview of OS X, showing the relationship between Cocoa and the
other OS X frameworks. This view is closer to the organization of the OS X code libraries. It also
illustrates how each layer is broken down into specific named frameworks that solve imple-
ment-related features.

You’ll find these frameworks listed in the developer documentation, with information about
adding their features to your applications. A complete list of the frameworks in each code layer
would cover many pages. Table 2.3 shows selected key frameworks that represent the most use-
ful elements in each layer.

Table 2.3 OS X Application Layers — Code Frameworks
Layer Selected Key Frameworks Applications

Cocoa Layer Application Kit

NSAnimation

Preference Panes

Security Interface

Drawing and managing application windows and user

interface elements; applying animations; working with

supporting data such as strings and enumerators; managing

application preferences; implementing basic Web and

application security.

Graphics and Media Layer Quartz and Quartz Core

OpenGL and OpenAL

AudioUnit

QuickTime

Core Animation

Drawing and animating text and 2D graphics; creating 3D

graphics; recording, playing back, and processing sounds;

creating, recording, playing back, and processing video;

creating programmable animations for windows and

interface elements.

continued

06_495896-ch02.indd 2506_495896-ch02.indd 25 8/31/10 2:42 PM8/31/10 2:42 PM

26 Getting Started

Table 2.3 Continued
Layer Selected Key Frameworks Applications

Core Services Address Book

Application Services

Calendar Store

Core Data

Core Foundation

Core Graphics

Scripting Bridge

Automator

Accessing user data, including Mac Calendar and Contacts;

creating and managing application-specific databases;

managing scripting and automation events; drawing text

and graphics with low-level primitives.

Core OS System configuration

OpenCL

Exception Handling

Managing network access; managing device-independent

multiprocessing; handling errors and exceptions.

Kernel and Driver Kernel

System

CoreWLA

IOBluetooth

I/O Kit

Using low-level access to the underlying Darwin OS Kernel

via a Unix interface; managing Bluetooth, WiFi, and FireWire

drivers and data transfers; high-risk direct control of hard-

ware features such as disk controllers; access to the values of

various hardware sensors via BSD’s ioreg.

Figure 2.3 illustrates the code overview graphically. A “Cocoa application” is usually a mix of fea-
tures and code from different layers.

Figure 2.3

This code-level overview of the layers in OS X summarizes how
the layers work in practice. Most applications use features from
most of the layers.

Cocoa
User interface, interface media effects, “objectified” data

OS X - Code layers

Graphics and Media
Audio, video, 3D and 2D animation

Core Services
Mac application data, low-level data, low-level 2D graphics and text,

scripting and automation

Core OS
Low-level network access, errors and exceptions

Kernel and Driver
Hardware access, UNIX features

06_495896-ch02.indd 2606_495896-ch02.indd 26 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 27

Developing features across layers
Divisions between layers aren’t clean or simple — there’s no discrete “‘graphics framework” or
“animation framework.” Instead, animation features are spread across the Cocoa layer, the Media
Layer, and Core Graphics. Similarly, you might expect Core Graphics to be in the Media Layer,
but for historical reasons it’s included in the Application Services framework in the Core Services
Layer.

So adding a feature to an application usually means mixing code and features from different
frameworks. It’s not unusual to use Cocoa to create a user interface, Core Graphics to draw
dynamic elements in the interface, and Core Animation to animate the graphics.

There is also some duplication between layers; for example, you can play sound using the Core
Audio or Audio Toolbox layers. This may seem redundant, but these layers offer different fea-
tures. Audio Toolbox implements simple file player objects with limited features, while Core
Audio includes more complex objects that are more difficult to work with, but can be used for
more challenging applications such as real-time sound synthesis.

 T I P
The organization of the frameworks would be very confusing if you had to use all of them all the time. In fact you only
need to master a handful of frameworks. Once you know how to create and control a window, add controls, manage
mouse clicks and keyboard events, and draw graphics and perhaps add sound, you’ve covered the basics — and they’re
not difficult. The rest is useful and interesting, but optional.

“Toll-free bridged” layers
Some of the layers offer more fundamental duplication. For example, NSString in Cocoa is
closely related to CFString in the Core Foundation framework. Some objects are explicitly
described as toll-free bridged — Apple’s way of indicating that objects and their interfaces are
largely interchangeable, even though they exist in different layers.

In fact, many Cocoa objects are simply wrappers for lower-level functions that are listed in other
frameworks. You can ignore this if you develop exclusively in Cocoa, and you can also ignore the
lower-level functions unless you need to work with them. But it’s useful to be aware of the relation-
ship because even when class features are duplicated, they’re rarely duplicated exactly. Related
frameworks always offer a different balance of features and accessibility, and it’s sometimes possible
to use a lower-level framework to solve a problem that can’t easily be solved in Cocoa.

Using frameworks and layers successfully
If you’re new to Cocoa development, you’ll have realized now that the layer model is only a very
rough guide to OS X. In practice you’ll often find yourself digging through the framework refer-
ence documentation to combine features in different layers. But with the overwhelming num-
ber of objects and libraries in OS X and the slightly chaotic organization, it can be difficult to get
a feel for how to approach problems when starting out with Cocoa.

06_495896-ch02.indd 2706_495896-ch02.indd 27 8/31/10 2:42 PM8/31/10 2:42 PM

28 Getting Started

 T I P
It’s easy for new developers to feel overwhelmed by the number of frameworks and objects. No one with a normal
human IQ can remember the entire OS X documentation set. A more practical learning strategy is to master an outline
of the relationships between the most useful frameworks in OS X, and then find the rest of their details in the docu-
mentation when necessary. You don’t need to remember everything — but it’s helpful to remember where to look
when you need to find something.

Table 2.4 shows a simplified view of the OS X layers that strips them down to essentials. This
model doesn’t match Apple’s own classification scheme, but it does match how you’re likely to
work with layers in practice. In a typical application you’ll use the Cocoa Layer to build an appli-
cation skeleton and to manage key application events and data, and you’ll use the Services
Layer to manage media and data. Many applications ignore the OS Layer completely, or they
hardly ever access it. You’ll need to work with it if you create or manage drivers or access the
Mac’s hardware features. Otherwise, you can ignore most of its features.

Table 2.4 Simplifi ed OS X LAYERS
Framework Interface Applications and Elements

“Cocoa Layer” Objective-C objects and methods Window, interface, and application management; high-level media

features; packaged animation effects; object-oriented data; high-

level Web and network access; high-level timer and thread control.

“Services Layer” C functions and data structures Low-level media features, including basic graphic primitives and

customized animations; C-type data structures; low-level Web and

network access. This layer duplicates some of Cocoa’s features with

an alternative C function interface.

“OS Layer” C functions and data structures Useful functions that aren’t included in the other layers, such as ran-

dom number generation. Socket-level Web and network access; sys-

tem and hardware access; low-level process and thread control.

Switching between layers as you work is standard practice. You can simplify development by
understanding that most Mac applications are a mix of Objective-C objects and standard C
function calls, that there’s some feature duplication across the layers, and that the further you
get from the user, the more you’ll be using OS X’s C libraries rather than Cocoa. Figure 2.4 shows
a common workflow.

06_495896-ch02.indd 2806_495896-ch02.indd 28 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 29

Figure 2.4

There’s no single standardized way
to create an OS X application, but
this outline workflow format is widely
used. In practice, most projects iterate
around at least some of the steps.

Create a Cocoa application skeleton

Add animations and special effects

Design and lay out the user interface

following the Aqua guidelines

Connect the interface to the Cocoa code

objects

Add data management and processing

features using Cocoa data objects and

other data frameworks

If the organization of the frameworks seems less than
streamlined, that’s because it is. The OS X frameworks are a
combination of new development and ancient history. In
the same way that Carbon was included to simplify back-
ward compatibility, other frameworks were added at various
stages in the NeXTStep/OS X development story for reasons
that were relevant at the time but may be less pressing now.

Like most operating systems, OS X is an example of comput-
ing archaeology. Not only are the legacy layers less complex
and less abstracted than Cocoa, but they’re also older. If
you’re finding it hard to understand which frameworks are
essential and which are optional, you’ll find this information
in the rest of this book, which highlights the key elements of
Cocoa and OS X.

Occasionally you may use a specialized framework to add a
very specialized feature such as speech synthesis to your
application. Generally, you can ignore the more specialized
frameworks. You can also ignore many of the older frame-
works because their features have been duplicated and sim-
plified in Cocoa.

In outline, you’ll use the Cocoa Layer constantly, the Services
Layer regularly — some elements are essential, while oth-
ers are barely used — and the OS Layer only occasionally. As
you gain more experience, you’ll find the older layers
become simpler to understand and easier to work with.

Cocoa and the Framework Story

06_495896-ch02.indd 2906_495896-ch02.indd 29 8/31/10 2:42 PM8/31/10 2:42 PM

30 Getting Started

Cocoa on the iPhone and iPad
The iPhone and iPad use Cocoa Touch, which is a development and reinvention of Cocoa.
Compared to OS X, iPhone OS offers a drastically simplified collection of frameworks. Cocoa
Touch is less complex than Cocoa, with a smaller library of objects, simpler windowing, and
fewer data objects, as shown in Figure 2.5.

However, both platforms make similar assumptions about application design and use the same
concepts and design ideals. Cocoa Touch applications are less complex and more limited than
Mac applications, but they’re not fundamentally different. If you’re familiar with one environ-
ment, you can move easily to the other. Instead of learning a new language, you can make the
change by extending or modifying your vocabulary.

Figure 2.5

iPhone apps are simpler than OS X apps, and may not need to use the C-function layers. This Zettaboom
app is built entirely from Cocoa Touch components.

06_495896-ch02.indd 3006_495896-ch02.indd 30 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 31

Moving to Cocoa and Objective-C from
Other Platforms
The Web has created an explosion of interest in software development. There are many scripted
and programmed environments to choose from, but historically, most are object-oriented.
Developers are finding that competing platforms use related coding principles and that existing
skills are transferable. If you have experience with another object-oriented language, you
should find Objective-C rewarding and relatively straightforward.

But Cocoa’s code libraries are the result of some unusual ideas about OS design. Cocoa code is
easy to follow, but the ideas that inspired the syntax are unique, with no equivalents in other
environments. To use Cocoa effectively, you must understand them. Objective-C also has
unique features that aren’t available in other languages.

Apple’s developer documentation lists a number of a formal design patterns — relationships
between events, responses, code, and data — that have influenced the development of Cocoa
and OS X. Apple’s list is partly historical and academic, and unfortunately it doesn’t fully explain
some of the patterns, data structures, and principles that are used in Cocoa and OS X.
Experienced developers may be able to pick them up by reading between the lines, but new-
comers can benefit from a more detailed introduction.

Objective-C’s language features are described more formally in Chapter 5, and Cocoa’s elements
are explored in the rest of this book. This chapter includes an overview of Cocoa and
Objective-C for users of other languages. Use it as a cheat sheet that lists essential features that
you must learn and be familiar with. Once you’ve read this section, you’ll find it easier to get
started with the official documentation. All the features introduced here are discussed in later
chapters with practical examples, so consider this section a first look. More detailed hands-on
explanations follow.

 T I P
Don’t skip this section! You’ll find this summary invaluable because it tells you key details that you need to know. The
developer documentation is less focused and includes unnecessary detail that will distract you when you’re starting
out. Although this section is a first-look summary, there’s a lot to take in. Feel free to return to it as you work through
the examples later in this book.

Working with Objective-C objects and messages
Objective-C is object-oriented like Java, C#, and C++. Objects include both methods and proper-
ties, and they are split into class abstractions and specific instances. Inheritance and subclassing
are supported and encouraged. The syntax and file structure used to define objects is slightly dif-
ferent from that used in other languages, but the concepts remain familiar and recognizable. If
you have experience with object-oriented programming in other languages, you already under-
stand enough about the fundamentals of Objective-C to be off to a successful start.

06_495896-ch02.indd 3106_495896-ch02.indd 31 8/31/10 2:42 PM8/31/10 2:42 PM

32 Getting Started

Cocoa applications rely heavily on subclassing. In Objective-C, subclassing is a synonym for cus-
tomization. When you subclass an object, you re-implement — override — some of its existing
features and add new features of your own. Some Cocoa objects are explicitly designed for sub-
classing and include method stubs that you must flesh out with your own code.

One unusual feature of Objective-C classes is class messaging. In other languages, you create
instances of class objects and send messages to the instances. In Objective-C, classes exist as
meta-objects in their own right. They can include class methods that are run on the class itself.
This feature is often used when creating objects: you send a creation request to the class in a
message, and the class creates an instance of an object and returns a pointer.

Objective-C messaging
In Objective-C, messaging is a fundamental feature. Instead of running a method on an object,
you send it a message that triggers the method. Messages are events, not function calls. They
are asynchronous; that is, messages can happen at any time and aren’t tied to a sequential pro-
gram flow.

 N O T E
It’s a useful simplification to pretend that messages are sent and processed instantly. Of course, real code takes time to
run. But to a first approximation, Objective-C tries to hide this from you. To a more advanced and accurate approximation,
Cocoa code can run in separate threads, and Cocoa includes thread-management features that can control the timing of
events and messages. But until you begin working with threads, processes, timers, and performance profiling, it’s useful to
ignore the time-dependent elements of Cocoa code and assume that events are processed instantaneously.

The following is a list of the most common ways in which messaging is used in Objective-C.
Some will be familiar from other languages. Others are less traditional.

 Getting an object property. The only way to read an object property is by sending it a
message and asking for a return. There is no direct-read feature in Objective-C, because
objects are opaque — their internal workings aren’t visible to other objects. If you want
to make a property visible in your own objects, you must add code to make it so.

 Setting an object property. In the same way that you must add code to read a value,
you must also add code to set it. Typically, setting a property doesn’t just save it to
memory, it also triggers a behavior, which may ripple through related objects. For
example, setting an object’s position moves it on the screen automatically. In a less
straightforward example, setting a single object’s position can automatically change
the positions of other objects associated with it so that they move as a group. Cocoa
handles many of these interactions automatically. As long as you initialize and arrange
your objects correctly, you can use Cocoa to simplify and automate some of their
responses.

 T I P
Creating setter and getter code — as it’s known — can be a repetitive chore. Objective-C includes a @synthesize
directive that makes boilerplate setter and getter code unnecessary. @synthesize works like a macro. It takes a
list of properties and automatically creates setter and getter code for them. The code doesn’t appear in your source
files, but it does appear in the application and is visible while debugging. When an object is synthesized, it appears to
have simple readable properties, but in fact these properties are still accessed through getter code.

06_495896-ch02.indd 3206_495896-ch02.indd 32 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 33

 Getting a property or value after processing one or more parameters. This feature
is close to a traditional function call. If you trigger a method and pass a parameter list,
the object returns another object or a value. It’s relatively rare for an object to act as a
simple data processor. More typically, objects respond to parameters in more complex
ways and trigger a behavior and optionally return a value. Return values are used to
indicate success/failure or report status.

 Creating a new object. The only way to generate a new object is by asking an existing
object or a class to create it.

 Initializing an object to some state. Objects are complex data structures, and it’s not
possible to use simple assignments for copying or initialization. Most objects include
initialization methods that either create useful preset values or initialize the object
with data passed from another object.

 Releasing an object when it’s no longer needed. This memory management feature
is built into Cocoa’s object management system and is described in more detail in
Chapter 12.

 Handling specific OS events. When OS X receives a user action, such as a mouse click
or movement, it can pass it to your application for handling. OS X also sends messages
spontaneously — for example, when memory is low or the system is about to shut
down. Your application should include message handlers for these events.

 Posting information about object status. Objects can send messages whenever
their internal state changes. OS X also sends standard messages to an application as it
moves through various states. For example, the applicationDidFinishLaunch-
ing: message is sent to an application when OS X has finished loading it. You can use
it to run custom initialization code.

 Forwarding a message. Message forwarding is a key feature in Objective-C. Objects
can ignore a message and forward it, or they can process a message internally and
then forward an identical copy. The OS X responder chain — a list of objects in every
application that can process user events — uses message forwarding.

 Dealing with events that are about to happen. OS X posts a warning before certain
events. For example, your application can be warned before a window closes. It can
use this warning to shut down animation code and perform a cleanup.

 Deciding if events or responses should happen. Messages replace conditional tests.
In some contexts, OS X asks your application for a Yes/No response — for example, to
enable or disable certain user actions. Unlike fixed conditional code, the response can
vary according to the application state. In a more complex example, Cocoa may enu-
merate a list of objects automatically, and it may use messaging to ask code in your
application to set their properties as it does this.

 N O T E
Dealing with events that have just happened, are about to happen, or need to be confirmed before they happen is part
of the delegation feature in Cocoa. Delegation is described in more detail in Chapter 6. In theory, delegation is about
splitting the burden of response between objects, and it’s also about extending the possibilities of messaging. In prac-
tice, it’s often used in the three ways listed above.

06_495896-ch02.indd 3306_495896-ch02.indd 33 8/31/10 2:42 PM8/31/10 2:42 PM

34 Getting Started

Question-response messaging and delegation
You don’t need to remember the preceding list. The simplest way to understand messaging is as
a question-response dialogue. OS X uses the question-response design pattern, shown in Figure
2.6, to implement application features. When OS X sends a message to your application, it’s ask-
ing a question. Your application can choose to ignore the question or it can respond with a
behavior, with data, or both. Questions are answered by including handler methods for possible
messages. Messages without an associated handler method are ignored.

Figure 2.6

Question-response messaging. This slightly fanciful view of messaging is a useful and accessible mental
model of the relationship between an application and its OS X environment.

Your application has loaded and started running.

Do you want to run some special code?

Your Application

applicationDidFinishLaunching: handler

OS X

Your application has loaded the contents of a window

from a file. Do you want to run some special code?

I am working my way through a list of table cells.

How should I format the next cell?

(Tens or perhaps hundreds of other questions...)

windowDidLoad: handler

tableView:willDisplayCell: handler

(Tens or perhaps hundreds

of other handler methods...)

OS X sees every application as a list of disconnected message handlers. It doesn’t begin at the
beginning of an application and execute the handlers in order. Instead it calls each handler
when it needs to. The order in which the handlers appear in your code doesn’t matter. It’s
important that a handler exists, and it’s useful to keep related handlers close together for clarity
and to make the code easier to maintain. But if you put all of an application’s handler methods
in a single long file in a random order, the application would still work.

If you have experience with Flash or JavaScript, you’ll understand how onload and onclick
messages are sent and processed asynchronously. OS X takes the same principle much further
by keeping track of a list of the objects used in an application and sending messages accord-
ingly. This can generate a truly vast number of possible messages for hundreds or thousands of
possible events and circumstances.

Some messages can be ignored, while others are obligatory. If you don’t include methods that
respond to these messages, certain objects won’t work correctly; some of their features will be
disabled: they’ll appear on the screen and do nothing or may not appear at all.

06_495896-ch02.indd 3406_495896-ch02.indd 34 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 35

Implicit question-response and delegation
Question-response can be explicit or implicit. Explicit messaging makes the connection between
messages and responses obvious in code. For example, the link between a button and its han-
dler method is usually explicit. Many features in Cocoa make implicit assumptions about when
messages are triggered. The context in which OS X is asking for a response may not be visible.

For example, table objects often use implicit question-response to set the appearance of table
items and to request data for each element. In a more traditional OS, you might create your own
looping code to iterate through a list of cells, and use a function call to set their properties. In
Cocoa, the looping is implied — it’s an internal OS X process you have no control over, managed
by implicit code that you can’t see or modify.

If you use a table view, your application is expected to implement a method that supplies data
for each cell. No obvious code triggers the method, but you can see that it runs — for reasons
that seem mysterious until you understand how this feature works. Figure 2.7 illustrates this
process graphically.

Figure 2.7

Implicit question-response hides the source of the question within the internal workings of OS X. This is
easy to understand for one-off application events, but more of a challenge to follow when the object
relationships are more complex or use implied iteration.

OS X

for (each item in table with reference; next reference)

{

[yourApplication getsAQuestionFor: anItemWithReference];

}

Your Application

dataForItemWithReference: handler method
“Give me data

for an item with

[reference]”

Implicit questions are often implemented with delegate methods — optional helper methods
that aren’t always listed in the main class reference for an object. If an object isn’t doing what
you expect, it’s likely that you haven’t implemented all of its required delegate methods.
Delegation is explained in more detail in Chapter 5, with further examples throughout this
book.

 C A U T I O N
When you design your own objects, you can use the same design question-answer pattern to define how they respond
to each other. Custom objects aren’t allowed to ignore messages. If you send an unrecognized message to an object,
your application crashes. Internally, OS X solves this problem for Cocoa object by cheating — every possible message
includes a stub do-nothing handler method. When you write your own handler for a Cocoa object method, your code
overrides the stub.

06_495896-ch02.indd 3506_495896-ch02.indd 35 8/31/10 2:42 PM8/31/10 2:42 PM

36 Getting Started

Cocoa messaging and notifications
Cocoa includes a separate messaging system with more sophisticated features. Notifications are
like an internal e-mail or chat service. You can use them to pass information between applica-
tions or between objects within an application. Objects can sign up to receive notifications and
can post them through a notification center. Notifications can include complex data. They’re a
system-level feature, while Objective-C messaging is a language-level feature. The two messag-
ing systems are unrelated and are used in different ways.

Objective-C syntax
Now that you’ve seen some of the ways in which messaging is used in Cocoa, you may be curious
about messaging code. Objective-C uses square brackets to indicate messages. For example:

 [anObject doSomething];

triggers the doSomething method in anObject.

The messaging syntax can pass parameters.

[anObject doSomethingWith: anInt];

triggers doSomethingWith: and passes it an int. Parameter fields can have descriptive
name strings. For example, in

[anObject doSomethingWith: anInt andABoolToo: YES];

doSomethingWith: and andABoolToo: are part of the message syntax. They’re effectively
code-based tooltips, included for clarity and legibility, and they don’t affect execution.

 C A U T I O N
Objective-C treats aMethod and aMethod: thatTakesAParameter as completely different entities. It’s
good practice in your own code to keep method names as distinct as possible. Some Cocoa method names don’t do
this; you’ll occasionally see an identical method name followed by a number of different parameter groupings.
Objective-C understands the difference, but you may find it harder to remember.

This idiom is often used in Cocoa classes to include hints about the purpose of each field. For
example

[aWindow setHasShadow: YES];

enables a drop shadow effect for aWindow. Replacing YES with NO turns off the drop shadow.
This feature helps make Cocoa code easy to read. But sometimes it gets out of hand.
Objective-C is chatty rather than terse, and some Cocoa methods have very long names. The full
syntax for the dragImage: method built into Cocoa’s NSWindow window object is

[aWindow dragImage: anImage
 at:aPoint
 offset:anOffset

06_495896-ch02.indd 3606_495896-ch02.indd 36 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 37

 event:anEvent
 pasteboard:aPasteboard
 source:anObject
 slideBack:aBool];

This isn’t quite so easy to remember — and if the field names were more descriptive, the
method would be even harder to parse. Unfortunately long method names are unavoidable
in Objective-C and Cocoa.

 T I P
It’s good practice to split very long method names across multiple lines to make them more legible, putting each field
on its own line.

Fortunately, you hardly ever have to type a long method name by hand. Xcode includes code
automation that autocompletes method names for you. You can also copy and paste long
method names directly from the documentation and fill in the fields with property names used
in your code.

Messages can be nested, and the return from one message can be used as the input for another.
A standard example is

MyClass *thisInstance = [[MyClass alloc] initWithData:
initialData];

This idiom is used throughout Cocoa. The alloc method — short for allocate — is sent to
MyClass and returns an instance of an object. The returned object is immediately initialized
with initial data in the initWithData: method. A pointer to the initialized memory area is
passed to thisInstance and used as the object reference.

Objects and asterisks
Objective-C objects are referenced with named pointers defined with asterisks. Objective-C
uses C’s asterisk convention for pointers, so you’ll see asterisks everywhere in Objective-C code.
A standard idiom for creating a new object is

NSClass *myObject = […aCreationMessage…];

The left-hand side of the assignment specifies that myObject is a pointer to an instance of
NSClass. You can also predeclare pointers and reference them later in the usual C-like way:

NSClass *myObject; //Declares myObject as a pointer to an
instance of NSClass

[…otherCode…]
myObject = […aCreationMessage…]; //Creates an instance of NSClass

and assigns it to myObject

06_495896-ch02.indd 3706_495896-ch02.indd 37 8/31/10 2:42 PM8/31/10 2:42 PM

38 Getting Started

Until you create and assign an object to a pointer, it remains NULL — but it still has a type.

Casts are widely used as “code tool tips” while passing parameters in messages to remind you
which type of object to pass in a parameter field. For example:

…thisIsAParameterField:(NSClass *)myObject… //Reminds both you
and the compiler that myObject should be an instance of
NSClass

Objective-C “objectification” with the @ character
Objective-C uses the @ character as an objectification operator that converts whatever follows
into an object. This is most often used in text string definitions. In other languages, you delimit
a string with quote marks. In Objective-C, you must also prepend the @ character to convert the
string into an object. For example:

NSLog(@”This is a string”);

This prints “This is a string” using Cocoa’s NSLog class, which logs output to a console window.
You can also use the C-function equivalent:

fprintf (stderr, “This is a string”);

This line creates exactly the same result and is a functional synonym in conventional C without
objectification.

In Objective-C, you must convert literal strings into objects wherever they appear. This is true
whether they’re text strings, file and path elements, or used for some other purpose. If you leave
out the @ character — which you often do, until you get used to typing it — the compiler won’t
always report an error. In some circumstances, forgetting the @ can cause a crash.

Managing data in Cocoa and Objective-C
Objective-C supports all the standard C data types, including arrays and custom structs. Cocoa
adds its own collection of Cocoa objects that store and manage data. The most important
objects are introduced in Table 2.5 and described in detail in Chapter 5.

Table 2.5 Cocoa Data Objects
Data Objects Description

NSArray Stores a numbered list of objects. Supports enumeration. NSArray is much more complex than a

simple C-type array.

NSDictionary Used throughout Cocoa. You must master NSDictionary to work with Cocoa successfully.

Stores key-value pairs — pairs of named values — and can perform automatic lookup on a key to

return its value.

NSSet Stores an unordered collection of objects. NSSet is faster than NSArray when you need to test

if an object is in a collection.

06_495896-ch02.indd 3806_495896-ch02.indd 38 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 39

Data Objects Description

NSValue Works as a wrapper for conventional C or other Objective-C data types. “Objectifies” them and provides

a standard interface for accessing them, copying them, and comparing them. NSNumber is a

subclass of NSValue that deals exclusively with numerical objects.

NSString The Cocoa string object is vast and complex with many features, including support for non-Western

character sets. It has very little in common with a simple C string array.

These data objects and their supporting methods are used throughout Cocoa to exchange
information and return data. Typically you initialize a data object with useful values and pass a
pointer to it to another object. When OS X sends a message to your application, it often passes
one or more of these Cocoa objects in the parameter list. Similarly, you often need to pack data
into one of these objects before you send it in a message. This can be inconvenient when you’re
passing a single data item rather than a group, set, or list, but it’s often unavoidable.

 C A U T I O N
One of Cocoa’s strangest features is that by default, Cocoa data objects are read-only. You can’t edit the contents of an
NSString or change any of the key-value pairs in an NSDictionary. Cocoa includes separate editable versions
of each object that are mutable; for example, the editable string class is named NSMutableString. You can’t
make an object mutable after it’s created. If you want to be able to change data, create a mutable object and initialize
it with your starting data.

Cocoa includes a much wider collection of data objects, and the complete list is defined in the
Foundation Framework. It features objects that handle Web access, manage date and time infor-
mation, control threads, and implement other complex features. Table 2.5 shows the objects
that you must master because they’re used throughout Cocoa code. The other objects are more
specialized and used less often.

The CoreFoundation framework, which is distinct from the Foundation Framework, offers equiv-
alent data types with a C language interface; for example, CFMutableDictionary is equiva-
lent to Cocoa’s NSMutableDictionary and is used to store key-value pairs in a very similar
way. Code that works in the “System Layer” and the “OS Layer” below Cocoa relies heavily on
these data types. They’re used to access user data from the address book and calendar data-
bases, set up and manage media operations, and work with hardware peripherals. The Core
Foundation versions of these objects are simpler than their Cocoa equivalents and implement a
smaller number of supporting features. But because they’re “toll-free bridged,” you can — with
very little extra effort — use any Cocoa method on a Core Foundation data object.

Copying data objects
Objects are referenced through pointers. A standard mistake is to assume that you can copy
objects with a simple assignment:

anObject = anotherObject;

06_495896-ch02.indd 3906_495896-ch02.indd 39 8/31/10 2:42 PM8/31/10 2:42 PM

40 Getting Started

Other languages support this. In Objective-C, this line compiles correctly, but it simply copies
pointer values. After the assignment runs, you have two pointers to the same data instead of
one. The data itself remains blissfully untroubled by the operation.

Objects are complex and may include other objects in a hierarchy or tree, so copying them may
not be a simple process. Cocoa includes a set of standard NSCopying methods to support
copying, but different objects implement a method called copyWithZone: with varying lev-
els of intelligence and sophistication. When you create custom objects of your own, you must
include code that implements the standard copy methods.

Many Cocoa objects include methods that create and initialize objects using the data in another
object. This may seem counterintuitive when you encounter it for the first time because it looks
redundant. In fact, it’s often the best way to copy data. For example, you can copy an array to a
new array with

newArray = [NSArray arrayWithArray: oldArray];

If you need to copy objects, don’t look for direct copy methods in the documentation; if “copy”
methods exist, they’re often disguised as initializations.

 C A U T I O N
This code is slightly more complex than it looks because it’s an example of class messaging in Cocoa. Instead of sending
a message to an existing array, it sends a message to the NSArray class and passes the existing array as a parame-
ter. Sometimes you copy objects by sending a message to an object, sometimes by sending a message to a class. There’s
little consistency in how Cocoa handles this; you must check the class documentation to find out which option to use.

Comparing data objects
A related mistake is attempting to use a simple C comparison to compare objects:

if (anObject == anotherObject)…

You can do this in other languages to compare strings. In Objective-C, this code compiles and
runs, but instead of comparing data, it compares pointer references, which are almost always
different.

To compare the data, you must use a standard comparison method called isEqual:.

if ([anObject isEqual: anotherObject];)…

isEqual: is available in typed variants for comparing specific objects, including isEqual-
ToString: and isEqualToArray:. These variants are optimized and are more efficient
than the generic comparison method. When you create a custom class, you’ll need to imple-
ment a custom isEqual: method of your own if you want to compare instances.

 C A U T I O N
Note the square brackets in the code. The brackets aren’t optional; isEqual: is a message and not a function. You
must include the brackets or the code won’t compile.

06_495896-ch02.indd 4006_495896-ch02.indd 40 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 41

Key-value pairs in data objects
Although it’s possible to use objects as keys in certain contexts — for details see Chapter 12 —
a key is usually an NSString used as an identifier. Keys must be unique because there is no
way to distinguish between identical strings. A value is any Objective-C object. C data types
must be “objectified” before they can be used as a value, wrapped in an instance of NSValue or
NSNumber. Chapter 12 includes sample code for this.

A key-value pair links keys to values, making it possible to read or write the values using the key
as a reference. Key-value pairs are used throughout Cocoa. They’re one of Cocoa’s fundamental
data idioms and are accessed through forKey: statements:

//Set aKeyName to aValue
[myObject setValue: aValue forKey: @”aKeyName”];

//Read the value of aKeyName and copy it to aReturn
aReturn = [myObject valueForKey: @”aKeyName”];

 N O T E
You can see in this example how the text strings are “objectified” with the @ character.

All Objective-C objects implement a related but different form of key-value access, which sup-
ports named property access. Most object-oriented languages support direct property access,
as shown in Figure 2.8.

Figure 2.8

Simple direct property access is implemented
in Objective-C. But key-value pairs also allow
more complex kinds of access.

value property

Object

This is also available in Objective-C. But Objective-C also supports indirect property access
through the key-value system. If myObject has a property called thisProperty, you can set
it with

[myObject setValue:aValue forKey:@”thisProperty”];

Figure 2.9 illustrates visually how key-value access works. The key string must match the prop-
erty name. As long as there’s a matching name, you can use this feature to access any property
in any object. This feature is called key-value coding. It’s built into Objective-C, and all objects
support it.

06_495896-ch02.indd 4106_495896-ch02.indd 41 8/31/10 2:42 PM8/31/10 2:42 PM

42 Getting Started

Figure 2.9

Indirect property access with a key uses a text string. The text string
doesn’t have to be a string literal; it can also be a mutable string.

value

Object

setValue: value forKey:@”property” property

Cocoa’s data objects support a third kind of key-value storage, in a separate data area. Many
Cocoa class definitions include lists of predefined keys. For these objects, dictionaries stand in
for a separate list of pseudo-properties. Instead of triggering a response from an object by mod-
ifying its properties directly, you create a dictionary, fill it with key-value pairs using the list of
defined key constants in the class documentation, and pass the dictionary to the object in a
message. When the object receives the dictionary, it unpacks it, reads the values for each key,
and responds accordingly. Figure 2.10 illustrates this.

Figure 2.10

Many Cocoa objects use key-value pair dictionaries to implement “pseudo-properties.” Some objects
also return data in a dictionary, and you’ll need to search the dictionary for specific keys to read them as
“properties.”

value1

NSDictionary

setValue: value1 forKey:@”property1”

value2 setValue: value2 forKey:@”property2”

key: @”property1”

= value1

key: @”property2”

= value2

Object

‘property’ dictionary

with many key-value

pairs

other properties...

etc...

for other key-value pairs

In code, this approach looks like this:

[myDictionary setValue:value1 forKey:@”property1”];
[myDictionary setValue:value2 forKey:@”property2”];
…
[anObject doSomethingWithTheValuesIn: myDictionary];

“Pseudo-property” dictionaries are used throughout Cocoa, most obviously in the media layer,
where they’re used to control animation, video, and sound features, but also in the network
management frameworks and in some user interface objects.

06_495896-ch02.indd 4206_495896-ch02.indd 42 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 43

Cocoa uses this indirect approach to save memory. It’s an efficient solution when objects have
hundreds of possible properties but only use a few at a time. For example, a multiformat video
player object might need to support a number of different video file formats, each with a differ-
ent set of properties. It would be possible to define the player object with a complete set of
properties for every possible format, but this would be wasteful. It would also be difficult to
maintain and might break backward compatibility.

It’s more efficient to define a player object with a single property dictionary. As new formats are
supported, the possible key-value pairs for each format in the dictionary can be updated with-
out changing the object’s interface. The key-value and dictionary system provides a flexible
alternative to a list of fixed object properties, at the cost of some extra setup and teardown.

Objective-C memory management
Garbage collection — automated memory cleanup of unused objects — arrived relatively
recently in Objective-C, and legacy code continues to use an older reference counting model to
manage memory. If you’re developing for the Mac, you can now use garbage collection to clean
up memory for you. If you’re developing for the iPhone, you don’t get a choice — garbage col-
lection isn’t available, and reference counting is the only option.

The theory of reference counting is simple. Every time you reference an object, it increments a
hidden counter. When you no longer need the object, you release it with

[anObject release];

When the reference counter reaches zero, the object is removed from memory. It’s an obvious
and easy mistake to assume that using release releases the object immediately, but in fact it
doesn’t — it tells Cocoa that your code is no longer referencing the object, and that it may be
released.

In theory, you should always be able to balance references and release calls. In practice, some-
times you can’t without obsessively tracing all possible execution paths. In some applications,
you may not be able to balance them at all because Cocoa’s referencing mechanism may not
work as you expect it to. Occasionally it doesn’t work as it’s supposed to, making memory errors
inevitable.

It’s often easier to create objects when your application starts up, and release them when it ter-
minates. Officially, this is considered bad practice — resources should ideally be created or
loaded when needed and released when not used — but sometimes it can be a practical way to
make memory management tractable.

For similar reasons, it’s good practice to avoid creating objects inside loops. This applies
whether memory is managed manually or automatically. It’s more efficient to update or re-use
an object inside a loop than to create it and release it repeatedly.

 C A U T I O N
Creating objects repeatedly inside a loop and never releasing them is a good way to waste memory, slow your applica-
tion to a crawl, and generate random crashes.

06_495896-ch02.indd 4306_495896-ch02.indd 43 8/31/10 2:42 PM8/31/10 2:42 PM

44 Getting Started

Whether you choose to use reference counting or are forced to use it, expect to spend many
hours debugging memory leaks and fixing random crashes. Windows, Java, Flash, and Unix all
include garbage collection. It can be challenging to have to get used to managing memory
without automation. On the iPhone, this is one of Objective-C’s weakest and least appealing
features. Fortunately the Xcode development tools include a set of applications that simplify
testing and make it easier to monitor and track memory leaks.

Objects and conditionals
You can’t create objects within a conditional block and refer to them outside it. For example, in

if (condition) {
 createAnObject;
 doOtherStuff…
 }
doStuffWithTheNewObject;

the compiler can’t be sure if the object will exist outside of the conditional. It assumes that it
doesn’t, and reports an error.

Cocoa file management
Cocoa includes a file selector object that loads and displays a standard OS X file list. Under the
hood, file management is less conventional. Files aren’t saved but archived. Archiving automati-
cally includes a conversion stage that transforms an object or collection in memory into bytes
on disk. Loading a file invokes a de-archiver that reverses the process.

This may appear indirect, but it’s an example of Cocoa’s emphasis on abstraction. When you’re
saving an image to disk, you always need to convert it to a standard graphic file format before
writing it out. Cocoa makes it easy to do this; for example, it includes a JPEG archiver. You can
also create your own archiving and de-archiving code for custom file formats.

Cocoa archiving
Cocoa’s data objects include built-in archiving. For example, you can write a dictionary to disk
with

[aDictionary writeToFile: aFilePathString atomically: YES];

This automatically archives the dictionary and writes it to a file in a format that can be read back
with a corresponding

thatOldDictionary =
[NSDictionary dictionaryWithContentsOFile: aFilePathString];

 N O T E
The atomically parameter selects a two-stage write that attempts to write a complete file, and then renames it
to the specified file name if the write succeeds. If the write fails, the file fragment is deleted. This guarantees that files
on disk are always complete.

06_495896-ch02.indd 4406_495896-ch02.indd 44 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 45

Including file write methods inside data objects is unconventional. It’s more common to include
separate file writing code that takes objects and their contents as a parameter. Cocoa also sup-
ports this more traditional option, and it’s discussed in more detail in Chapter 5. But keep in
mind that Cocoa data objects can read and write their own contents directly to and from disk.

Using NSCoder
A special object called NSCoder handles more complex archiving and de-archiving. In many
applications, saving a file means saving a list of objects. You can’t use direct archiving for this
because you’d have to write each object to a separate file.

With an NSCoder, you can create your own archiving method in a custom object and fill it with
a list of encoding methods. This joins your list of objects together, creating a single packed
archive. Optionally, but usefully, you can label each field with a key, making it easy to access it
later. The archived object in each field is treated as a value. To reverse the process, implement a
corresponding decoder method. For practical examples of NSCoder, see Chapter 12.

File paths and URLs
Cocoa makes as little distinction as possible between local and remote data. You can download
a file from a Web site as easily as you can load it from disk. In Cocoa, text file paths and URLs are
closely related. Paths can be converted into URL objects — and sometimes paths must be con-
verted into URLs because some objects can only access local data via a URL.

Although the OS X file system is based on a standard UNIX hierarchy, in practice, system and
user directories often require specialized access code. This is even more relevant on the iPhone,
where apps have access to a very limited and stylized version of the UNIX hierarchy and data is
sandboxed for security reasons.

Exploring other Cocoa features
Cocoa includes a selection of other unique features that developers must be familiar with. Some
are introduced in the developer documentation, but the documentation doesn’t always explain
how these features are designed to be used.

Cocoa network support
Apple’s networking system is called Bonjour, and Cocoa includes objects that can find data on a
Bonjour network. Specifically, Cocoa can find a list of network services. Unfortunately, most data
transfers have to be handled at a lower level of the OS. Web support is more comprehensive.
Cocoa includes simple and direct access to online files and can also support online security. For
less Web-centric online data access, it’s fairly easy — but not trivially simple — to assemble an
application that accesses an online API. Chapter 10 has more details.

Windows and views
OS X supports a windowed interface, with support for various interface objects, including but-
tons, sliders, text fields, file lists, preferences panes, and others. In Cocoa, windows are wrapped

06_495896-ch02.indd 4506_495896-ch02.indd 45 8/31/10 2:42 PM8/31/10 2:42 PM

46 Getting Started

around views. A view is an active area in a window that draws graphics and responds to user
actions. Cocoa includes an NSView object that manages views. In practice, you create an appli-
cation interface by customizing an instance of NSView with your own code. Associated classes
can display tables, forms, text fields, groups of cells, and other standard interface features,
including smaller objects such as sliders, number boxes, and buttons.

In theory, any item that the user can see and interact with is called a view. This is most obvious
on the iPhone, which includes various complex predefined view types, including a Web view
that displays Web pages, a table view that displays a list of items in a table, and so on.

One source of confusion is the relationship between individual items in a view and the appear-
ance of the window as a whole. When designing an interface, the entire interface is the win-
dow’s view. But smaller objects are also views. To avoid confusion, think of the interface as the
view, and the smaller objects as subviews or as view objects. Very small single-feature views
such as buttons and sliders are usually known as controls, although occasionally they’re also
called views, just to confuse you.

Views and objects in Interface Builder
Interface Builder (IB) is the Xcode view design tool. Designing a view might seem to be a simple
visual process, but there’s a hidden subtlety. It’s not immediately obvious to new developers
that resource files — called nib files — can be loaded automatically. By default, an application
loads at least one nib file when it runs. You can override the loading process and control it man-
ually, if you choose to. If you don’t, it just happens — no code is needed.

It’s possible to set up nib files so that they load other nib files. In fact, you can use Interface
Builder to define a collection of objects, views, and data structures across multiple files, and the
entire collection will be loaded automatically. If you think of IB as an interface editor, you’ll miss
this essential feature. You’ll also find it difficult to understand how applications are organized.
For more information, see Chapter 8.

Model, View, Controller
Apple’s developer documentation emphasizes the Model, View, Controller (MVC) design pat-
tern, shown in Figure 2.11. MVC means that data is kept isolated from views, and that controller
objects translate messages in both directions. Views never communicate with data objects
directly.

This might seem like an unnecessary extra complication, but it increases efficiency. In the same
way that a Web browser doesn’t need to download the entire Internet to display a single page,
MVC means that an application’s interface only ever displays a subset of its data. Cocoa applica-
tions are designed to use MVC and include predefined controller objects for various data types.

Figure 2.12 shows one possible example. The model is a table with thousands of entries. A good
way to make an application impossibly slow would be to copy every cell’s data to an editable
cell in a list on the screen, keeping all of the visible cells in memory at the same time.

06_495896-ch02.indd 4606_495896-ch02.indd 46 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 47

Figure 2.11

Model-View-Controller — MVC — is one of the
fundamental OS X and Cocoa design patterns
and is built into Cocoa’s object hierarchy.

View

User interface

Controller

Translates between

data and interface

Messages

Messages

Model

Application data

Not allowed!

Figure 2.12

Applying MVC to a table display makes it possible to pass data selectively to and from the interface, as
required. This is a more complex but much more efficient solution than a direct link between table data
and a list of scrollable visible cells.

Data table

Cell 1

Data access

messages

Table view controller

Reads data from table, assigns

it to visible cells in table view.

Recycles cells as the table view

scrolls. Writes edits to table.

Cell 2

. . .

Cell 1000

Cell 1001

. . .

Table view

Cell view 10 shows cell 14 data.

Cell view 1 shows cell 15 data.

Cell view 2 shows cell 16 data.

Cell view 3 shows cell 17 data.

. . .

Cell view 9 is unused,

waiting to be recycled.

Refresh

messages,

scroll events,

and edits

06_495896-ch02.indd 4706_495896-ch02.indd 47 8/31/10 2:42 PM8/31/10 2:42 PM

48 Getting Started

MVC allows a more efficient implementation. Cells still appear on the screen in a scrollable list,
but they have no direct connection to the data source. As the user scrolls up and down the list,
the controller removes cells from the top or bottom, refills them with data, and reinserts them
at the bottom or top. Instead of displaying thousands of cells, the application can create the
same scrollable effect with a handful. The controller object automates cell updates, and the pro-
cess is transparent and invisible, at the cost of some extra setup and teardown.

Controllers are glue code, but they’re intelligent glue code. They simplify access in both direc-
tions. Cocoa and Cocoa Touch both include prewritten controller classes to simplify interface
design and eliminate unneeded code. You can also create custom controllers for your own
applications.

Bundles and plists
A bundle is the list of files included with an application. A bundle typically includes the .app
executable, at least two icon files, and optional data, graphics, and support files. Applications
also include at least one plist — a property list stored as XML files that points OS X at key appli-
cation resources and includes essential application preferences. Cocoa includes objects that can
load data from a bundle and both read and write plists.

 T I P
In OS X, an application’s .app file is really a folder that contains the application’s bundle. To view the contents of a bun-
dle, right-click an .app file in Finder and select Show Package Contents. You’ll see a Contents folder that you can open
to reveal the bundle’s files and folders.

Comparing Cocoa to other platforms
Every platform and environment has its own unique qualities. Objective-C and Cocoa are no dif-
ferent. Cocoa’s biggest strength is its sophistication. The object library is rich and powerful and
it’s often possible to implement features with a few lines of code. The learning curve isn’t negli-
gible, but the initial frustration is a temporary phase. With experience, Cocoa starts to feel pro-
ductive and enjoyable.

Setup and teardown
If you’re used to a simpler language like Flash, expect to spend some time dealing with new
coding overheads. If you’re drawing graphics in Flash, a Flash stage is created for you automati-
cally and you can immediately draw on it with ActionScript’s drawing functions. This makes
Flash creatively rewarding because you can concentrate on results, not on overhead code.

In Cocoa, you must create the equivalent of a stage yourself. Depending on the application, this
can take many extra steps using code from a significant number of classes and frameworks.
Initially, this can make Cocoa feel difficult and unresponsive. It’s not unusual for newcomers to
feel that they’re disappearing into a rabbit hole of descending classes, frameworks, methods,
and constants until they complete their setup code. Sound, animation, and data management
incur similar overhead. Because there are no shortcuts, you’ll sometimes need to learn a lot
about Cocoa and OS X to implement a relatively simple feature, especially when encountering
setup for the first time.

06_495896-ch02.indd 4806_495896-ch02.indd 48 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 49

The Cocoa approach has advantages: it is flexible and open-ended; is able to handle output to
various devices, from printers to screens to files, automatically; and can create advanced effects
with very little code. Looked at positively, setup code can often be reused as boilerplate. Once
you have your equivalent to a Flash stage, you can recycle the setup code in other applications
with only minor changes. Even so, allow for extra setup and teardown before you start; there
may be more than you’re expecting.

Abstraction and object orientation
Cocoa is highly abstracted and object oriented. Relationships between causes and outcomes
are loose and can be customized. For example, an unsophisticated operating system might
include a loop that captures keyboard events into a buffer and a minimal framework that can
read and process events. Your application might read the events and process them from the
buffer.

Cocoa takes a much less direct approach. Keyboard events are abstracted into messages, and
your application must include handlers for some or all of the possible messages. For example,
Cocoa’s user interface manager object NSResponder sends various messages as a user types
on the Mac keyboard, such as:

cancelOperation:
capitalizeWord:
deleteBackward:
willPresentError:
yank:

This list of edit control messages includes more than 170 items. The full list of messages that
NSResponder can send runs into the hundreds and implements mouse control, touchpad
control, gesture sensing, graphics tablet control, and other standard features.

Through abstraction, Cocoa implements much of the event processing and some of the applica-
tion design for you. Although these message names imply text editing, you could also use them
in a different application, such as a mathematical equation editor. You can choose which mes-
sages your application responds to. If you don’t include a handler method for a message, the
message and the user action are ignored; if you do include a handler, you can choose what it
does and how it works. Cocoa doesn’t force you to implement features that match the method
names, although it’s less confusing for the user if you do.

Abstraction adds flexibility, often in a useful way. It also adds complexity. Whereas a simple OS
sets colors with three numerical RGB components, Cocoa encapsulates color in an NSColor
object. There’s no option to set colors directly. You must create and initialize an NSColor
object, set its properties to the required components, and then use messaging to allow other
objects to read the properties — perhaps to draw a line or to set a point. Sample code might
look this:

NSColor *myTranslucentBlack = [NSColor initWithCalibratedRed: 0
green: 0 blue: 0 alpha: 0.5];

[aReceiverObject drawSomethingWithColor: myTranslucentBlack];

06_495896-ch02.indd 4906_495896-ch02.indd 49 8/31/10 2:42 PM8/31/10 2:42 PM

50 Getting Started

This code calls the NSColor class to return a new NSColor object with translucent black color
values. While it isn’t impossibly complex, it’s more complex than a hypothetical

line (x1, y1) to (x2, y2) with 0,0,0,0.5;

in a simpler language. If you’re managing memory manually, you must remember to release the
color object when you no longer need it. If you’re managing memory with garbage collection,
you still need to be careful about creating objects unnecessarily or inefficiently. Be especially
careful around loops — creating objects within loops is always inefficient, and you should avoid
it where possible.

Abstraction is one of the features of OS X that contributes to the initial challenge of setup and
teardown. It would be useful if Cocoa offered simplified classes and objects for common
requirements. Cocoa sometimes does, but often it doesn’t.

Generally, Cocoa tries to pack as much generality into objects as possible. The NSColor object
allocated previously includes built-in support for color calibration. This feature is free — it’s built
into NSColor, and calling the initWithCalibrated: method invokes it automatically.
Before it returns a color object, NSColor refers to the current calibration table and adjusts the
color constants accordingly. Other Cocoa objects are similarly rich and detailed, and they imple-
ment sophisticated features automatically. This is often a good and useful thing. But sometimes
your application’s needs don’t coincide with Cocoa’s features, and you’ll either need to work
around them or re-implement them manually.

Moving to Cocoa and OS X from Windows
Windows development has always been pitched at two levels. Visual Basic and the related Visual
Basic for Applications provide entry-level access. For more advanced developers, Microsoft has
shifted emphasis toward the C# language and the .NET collection of frameworks.

Visual Basic can seem very different than Objective-C, but there are familiar points of reference.
Visual Basic applications are event driven, making them similar in outline to the Cocoa environ-
ment. But Objective-C and Cocoa are more precise, more demanding, and more complex, with
many more features and objects. A good strategy when moving from Visual Basic is to start
small and keep it simple. Instead of immediately trying to build an entire application, begin by
creating very simple application skeletons. Flesh them out gradually with features — menu sup-
port methods controls, more complex views — working back from the interface toward media
and animation support, data management, and finally networking and hardware. You’ll find this
strategy used in the rest of this book.

For more experienced developers, C# is recognizably similar to Objective-C. But there are obvi-
ous differences in syntax and concept. For example:

aClass.aMethodWithAParameter(20); //C#
[aClass aMethodWithAParameter: 20]; //Objective-C

In Objective-C, class prototypes and implementations are split into separate header and imple-
mentation files. This is an Objective-C tradition rather than a language feature, but most devel-
opers follow it. Elsewhere, Objective-C lacks C#’s generics; classes can accept untyped

06_495896-ch02.indd 5006_495896-ch02.indd 50 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 51

parameters using a generic id class, but type recognition isn’t automatic. C# also has better
support for boxing, the ability to disguise and wrap low-level data types into full objects.

There are more obvious differences in the development environments and the associated librar-
ies. Xcode is based on the GNU compiler suite and is a powerful development environment with
a homespun feel and almost endless potential for customization. The Windows development
suites have a different history and are less open, but some features may feel more professional.

Yellow Box is — or more accurately, was — a long-rumored
but mythical optional element in OS X that would allow
Cocoa applications to compile and run in Windows without
changes. In the same way that Universal Binaries made it
possible for developers to create applications for both
G-series and Intel processors with minimal code modifica-
tions, Yellow Box was slated to do the same for Windows and
Mac applications.

Simple cross-platform development would still be a huge
boost for the Mac developer market, and the popularity of
the iPhone suggests that an iPhone version of Yellow Box
would take the Windows developer market by storm. But so
far Yellow Box shows no signs of appearing. Apple no longer
mentions it and — perhaps most tellingly — it no longer
features in Apple rumors.

Yellow Box is unlikely for practical reasons. Even a simple
iPhone version would be dauntingly difficult. There is no
good technical reason why many Cocoa features couldn’t be
made to run under Windows, but complete compatibility is
unlikely, and efficiency would suffer. On the Mac, Cocoa
hooks directly into OS X. On Windows, many features would
need to be translated into their nearest Windows equiva-
lents, with adjustments and corrections. Full-speed execu-
tion would be unlikely.

There are also very significant differences in developer tools.
In the original plan, Yellow Box would work on a Mac but
would compile Windows binaries. Currently, a Windows ver-
sion of the Mac SDK would be more interesting and useful.
But the SDK relies heavily on Unix features and code, and an
equivalent version for the Windows environment would be

very difficult and time-consuming to develop — especially
if Apple continued to give it away for free.

Yellow Box also remains unlikely for political reasons. At the
time of writing, iPhone app development is booming.
Allowing millions of Windows developers to join the gold
rush could swamp the market, perhaps diluting it to the
point where tens of billions of apps sold just a few units
each. Financially, iPhone development is driving an uptick in
Mac sales, and this would disappear if a Mac were no longer
essential. So there is no strong incentive to release a
Windows version of the SDK.

While it’s possible that Apple is secretly continuing to
develop Yellow Box or a more modern alternative, there’s no
reason to believe that if such a project exists it will ever see
the light of day. At best it would be kept secret as insurance
against unforeseen developments. More realistically, it
won’t appear at all.

While Apple has left Yellow Box on the shelf, competition
has appeared from an unexpected source. Novell has spon-
sored an open-source implementation of C# and the .NET
frameworks called Mono, shown in Figure 2.13. The
MonoDevelop environment is free and supports cross-plat-
form development across Windows, Linux, and OS X. It
doesn’t support Objective-C, so you can’t port Objective-C
and Cocoa projects to Windows. But it does support multi-
platform development in C# and .NET, so you can compile
applications for three platforms from a single code base.
There’s also a commercial version for iPhone development,
although it currently sells for $399, making it an expensive
choice for nonprofessional developers.

Cocoa, Windows, Yellow Box,
and Mono

06_495896-ch02.indd 5106_495896-ch02.indd 51 8/31/10 2:42 PM8/31/10 2:42 PM

52 Getting Started

As a generalization, Cocoa is smaller and more tightly focused than the Windows libraries.
Xcode is at least as productive as Microsoft’s Visual tools, but it has a different emphasis and a
different mix of more refined and less successful features. But if you’re used to C# and .NET,
you’ll find that you can master most of Cocoa and Xcode quite easily.

Figure 2.13

Mono is an alternative solution for cross-platform development, but as a C#/.NET environment, it
doesn’t provide access to all of Cocoa’s features. It’s also banned from the App Store — Apple doesn’t
support iPhone OS apps created with non-Apple SDKs — but can be used for OS X development.

Moving from Flash
At first sight, Flash, Cocoa, and Objective-C have little in common, but in fact many elements of
Cocoa and ActionScript mirror each other with uncanny precision. Table 2.6 shows a short and
very incomplete list.

06_495896-ch02.indd 5206_495896-ch02.indd 52 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 53

Table 2.6 Object correspondences in Actionscript and Cocoa
ActionScript Cocoa

Object NSObject

MovieClip NSView in Cocoa

UIView on the iPhone

Button NSButton in Cocoa

UIButton on the iPhone

Event NSNotification

this self

There are also obvious differences. NSButton includes methods for adding a bezel and border,
managing a complex mix of possible button states, and setting up an optional mouse-triggered
auto-repeat feature. Button in ActionScript has no equivalents.

While it’s possible to create graphic effects exclusively in Cocoa, many applications also need to
use some of the functions in the Core Graphics and Quartz libraries, with associated setup and
teardown code that has no Flash equivalent.

Generally, moving from ActionScript to Cocoa is rewarding and unexpectedly easy. Although
Cocoa code can’t run in a browser, Cocoa runs more quickly than Flash, and Cocoa objects typi-
cally have more features, making it easy to develop complex effects that would be impossible in
Flash.

 T I P
Flash game developers on the iPhone will want to look at the open source Cocos2D framework at www.cocos2d-
iphone.org. It implements a simplified language that makes it easier to concentrate on the details of event pro-
gramming while hiding the more complex elements of Cocoa Touch and Objective-C. Flash video developers will want
to explore the Quartz Composer application included in Xcode. Quartz Composer is a simple but powerful programma-
ble video synthesis and processing toolkit.

Moving from Java
Java borrowed heavily from Objective-C, and so many of Java’s language features have a direct
equivalent in Objective-C. Java is more fluid than Objective-C. Classes can be defined and
implemented more spontaneously, so the Java environment can feel less formal and more cre-
ative. Java is also more abstracted than Objective-C. It doesn’t support low-level access to hard-
ware or to the underlying operating system. Whereas Objective-C is tightly bound to Cocoa,
Java developers can choose between various GUI toolkits.

Java has no direct equivalent to Cocoa or to the lower-level OS X layers, so culture shock is likely
when moving from Java to Objective-C. Although both languages are object-oriented, Cocoa
and OS X are huge and detailed, and so the learning curve can be steep. Java developers can
continue using the same grammar, but will need to learn a much larger vocabulary and set of

06_495896-ch02.indd 5306_495896-ch02.indd 53 8/31/10 2:42 PM8/31/10 2:42 PM

54 Getting Started

ideas and idioms. On OS X, Java’s SWT (Standard Widget Toolkit) includes links to some of
Cocoa’s features and can be used as a transitional learning aid.

Java is inherently cross-platform, and OS X includes Java as an application framework, so devel-
opers can create Mac applications, such as the jEdit code editor shown in Figure 2.14, without
using Objective-C or Cocoa. But Objective-C code is much faster and more efficient, and the
Cocoa and OS X layers implement a much wider selection of features. Java remains a good
choice for simple applications, but more complex projects need the full performance of
Objective-C and Cocoa.

Figure 2.14

jEdit illustrates the flexibility and limitations of Java on OS X. It implements a very useable text and code
editor, but lacks the deep links with UNIX and OS X that are built into Xcode.

Moving from C or Assembler
If you’re used to traditional procedural programming, you’ll find Cocoa more challenging. You’ll
feel at home with the frameworks in OS X with a conventional C interface. But Cocoa and
Objective-C may be more difficult to understand because they make different assumptions
about how to approach problems and build solutions.

06_495896-ch02.indd 5406_495896-ch02.indd 54 8/31/10 2:42 PM8/31/10 2:42 PM

 Chapter 2: Think Cocoa! 55

Although it may not be obvious from the code, Cocoa’s philosophy is very visual. It’s also event
driven. You may find you can improve your understanding of Cocoa development by sketching
the links between objects graphically. This can help break old procedural habits and make the
overall structure and flow of events in a Cocoa application easier to follow. Examples are
included in later chapters.

Summary
This chapter has covered a lot of ground. Don’t try to assimilate it all at once. It introduced infor-
mation explored in more detail in later chapters, with added practical examples. The chapter
began with a first look at the Aqua design guidelines and then explored the relationship
between Cocoa and the rest of OS X, looking in detail at the OS X frameworks and layers.

Next, it looked at some of the fundamental features of Objective-C and the standard data types
and design idioms used throughout Cocoa and OS X. Finally, it examined some of the similari-
ties and differences between OS X and Cocoa and other popular development platforms.

06_495896-ch02.indd 5506_495896-ch02.indd 55 8/31/10 2:42 PM8/31/10 2:42 PM

06_495896-ch02.indd 5606_495896-ch02.indd 56 8/31/10 2:42 PM8/31/10 2:42 PM

In This Chapter

Introducing the Cocoa
and OS X Documentation

Understanding resource
types

Using the documentation

After the brief tour of frameworks and layers earlier in the pre-
vious chapter, the OS X and Cocoa documentation should
be easier to understand than if you’d dived into it cold.

Apple makes the Cocoa documentation, shown in Figure 3.1, avail-
able in two places. Developers can download and install the free
Xcode SDK, as described in Chapter 4. In addition to a suite of
design tools, the SDK includes a full set of documentation visible in
a simple Safari-based viewer. Nondevelopers and prospective
developers can view the Cocoa documentation online. Currently
the URL is http://developer.apple.com/mac/library/
navigation.

 C A U T I O N
Apple occasionally rearranges its developer Web site, so the documentation URL
isn’t guaranteed to remain accurate. If the URL changes, expect a redirect to the
new location. If no redirect is available, you can find the location by searching for
“Mac OS X Reference Library.” The library has always been freely available online
and this is unlikely to change in the future. But Apple is moving away from disk-
based documentation to online access, so it may not be bundled in full with future
versions of Xcode.

Using the Apple documentation efficiently is a key skill, which isn’t
easy to master. The documentation itself is a slightly chaotic mix of
history and new features, with varying degrees of detail. The
browser can also be difficult to use.

 T I P
You can solve the browser problem by using a free third-party helper application
called AppKiDo, available from http://homepage.mac.com/aglee/
downloads/appkido.html and shown in Figure 3.2. AppKiDo is highly
recommended. It transforms and simplifies the browsing experience, and can lit-
erally save you hours of browsing time. It also groups and sorts related Cocoa
classes in useful ways, making it easier to follow how Cocoa is organized.

07_495896-ch03.indd 5707_495896-ch03.indd 57 8/31/10 2:43 PM8/31/10 2:43 PM

58 Getting Started

Figure 3.1

The developer documentation is formally known as the Mac OS X Reference Library. There’s also
a separate iPhone OS Reference Library for iPhone developers.

07_495896-ch03.indd 5807_495896-ch03.indd 58 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 59

Figure 3.2

AppKiDo reads the documentation content and presents it in a more accessible form, with
faster and more efficient class reference browsing. Unfortunately it only includes the Cocoa
layer, not the C function layers.

Getting Started with the Documentation
The most important window is at the top right. In Xcode 3.2 it shows four different panes:
Overview, Getting Started, Required Reading, and Featured, illustrated in Figure 3.3. The
arrangement of the windows and features changes between updates, but you’ll usually find
elements that are recognizably similar.

07_495896-ch03.indd 5907_495896-ch03.indd 59 8/31/10 2:43 PM8/31/10 2:43 PM

60 Getting Started

Figure 3.3

Required Reading is the best place to begin — specifically with the Cocoa Fundamentals and
the introductions to Xcode and Interface Builder.

Although Getting Started is visible by default, the Required Reading section is a better place to
start. The guides to Xcode and Interface Builder are essential reading, and the Cocoa
Fundamentals Guide is a good overview, although some elements are pitched at a high level of
abstraction and may be difficult to follow at a first reading. The Objective-C 2.0 reference is
comprehensive but terse, and is best used as a reference rather than as an introductory guide.

The Apple Human Interface Guidelines are a mix of theory and practice. The most useful section
is Part III: The Aqua Interface. This has very detailed information about interface elements,
including mouse cursors, function keys, key shortcut selections, and visual design standards.
You should skim this section immediately and refer to it again when you begin designing an

07_495896-ch03.indd 6007_495896-ch03.indd 60 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 61

application. You’ll also find it helpful to review the interfaces of selected Apple and third-party
applications. Not all of the guidelines are obvious. Even if you’re an experienced Mac user, you’ll
find design suggestions and elements that you may not have consciously noticed before.

The Featured section typically includes two or three selected new articles, often about recent
OS updates. The content is aimed at experienced developers and may mention any framework
in any layer. It’s best to ignore these articles when starting out; they may become more useful
when you’ve gained more experience.

 T I P
The iPhone documentation follows a similar format. There’s less of it, because Cocoa Touch is smaller and simpler than
Cocoa. But the outline design of both platforms is similar, and you can follow the same strategies to use the documen-
tation efficiently.

Understanding resource types
The rest of the documentation is divided into broad resource types. Although you’ll spend most
of your time looking at the framework reference pages, it’s worth taking a few moments to
explore the other resources so you can begin to familiarize yourself with the useful resources,
while also noting the less useful ones.

Articles
Articles hold a grab bag of miscellaneous essays and features, such as the Binding Your
Preferences in Cocoa introduction shown in Figure 3.4. Many articles are highly specialized and
of little practical interest unless you’re looking for information about a very tightly focused
topic; in short, you can ignore them. For newcomers to Cocoa, the most useful articles are as
follows:

 Binding Your Preferences in Cocoa

 Getting Control with Subversion and Xcode

 Installing your Application on Mac OS X: Guidelines for Developers

 Maximizing Mac OS X Application Performance

 Optimizing with Shark 4 — a series of three articles

07_495896-ch03.indd 6107_495896-ch03.indd 61 8/31/10 2:43 PM8/31/10 2:43 PM

62 Getting Started

Figure 3.4

While most articles are irrelevant, a handful, such as this introduction to Cocoa Bindings, are essential
reading for developers at every level.

Getting Started
Getting Started includes a list of introductory guides. Each guide is split into fundamentals,
examples, and an in-depth collection of links to more detailed information. The Getting Started
guides can be useful, but most of the content is a very minimal orientation summary followed
by links to in-depth programming guides and to sample code. The Getting Started with Audio &
Video guide shown in Figure 3.5 is typical; it lists possible applications, but doesn’t explain the
relationship between key features, classes, and frameworks. If you’re getting started, you won’t
necessarily want to start here.

07_495896-ch03.indd 6207_495896-ch03.indd 62 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 63

Figure 3.5

The Getting Started with Audio & Video guide is typical of the other Getting Started articles. It’s a list of
links and examples padded with a short introduction, and not a true overview or orientation.

Guides
Guides include information about the coding interfaces to various OS X features. A small num-
ber of user interface and style guidelines also appears in this section. Guides vary in quality.
Some are detailed and include source-code snippets that you can copy and paste into your
applications. Others are very bare single-paragraph outlines of complex features. Only a small
number are immediately useful when you’re starting out. The rest detail the APIs of extremely
specialized features that are rarely used.

Essential guides include the String Programming Guide, the Error Handling Programming Guide
and the Undo Manager Architecture Guide, shown in Figure 3.6. You don’t need to assimilate
the contents of these guides immediately, but you should be aware that they exist so that you
can use them as reference material when you’re working with a specific Cocoa feature.

07_495896-ch03.indd 6307_495896-ch03.indd 63 8/31/10 2:43 PM8/31/10 2:43 PM

64 Getting Started

Figure 3.6

Guides typically follow a similar format — a short introduction, followed by a selection of mini-articles
with more detail. Sometimes the mini-articles include sample code that you can copy and paste into
your application.

Reference
The Reference section takes up the bulk of the documentation. Once you’ve assimilated the
introductory guides, you’ll spend most of your time looking at these reference listings. There
are two types of reference articles. A handful provide general reference material about broad
topics, such as detailed compiler settings. Most are code references, with formal lists of proper-
ties/variables and code interfaces. This group includes Objective-C object references, and C
function and struct references for all layers of OS X. Code references are grouped into the layers
introduced earlier. The class references follow a fixed format, part of which is shown in Figure
3.7. A small number of class references include an extra Class at a Glance overview summary.
The Table of Contents can include all or some of the following sections:

 The Overview is a short text article that sketches the function of the class and how it
should be used.

 The Tasks section provides a plain list of methods grouped by function. Each method
is a link — you can click it to display more information.

07_495896-ch03.indd 6407_495896-ch03.indd 64 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 65

 The optional Properties section lists the class properties and briefly sketches their fea-
tures. Not all classes include a Properties section.

 The optional Class Methods section lists class methods in more detail, with a sketch of
their features and functions.

 The Instance Methods section lists the instance methods, using the same format as the
Class Methods.

 A final optional section lists other information and may include constants, further
optional methods, or information about notification messages generated by the class.

Figure 3.7

The Class References are long documents. The easiest way to navigate them is by using the internal
links, to skip forward, and the list of contents at the top left — rather than the back button — to move
back to a section header.

 C A U T I O N
One of the less friendly features of the Class References is the linking. When you click a link, it takes you to a position
on the same page. You’ll almost certainly click the browser’s Back button when you’ve finished — and it will take you
to the previous page you viewed, not back to the original location. There’s no fix for this, and you’ll have to keep
reminding yourself not to do it.

07_495896-ch03.indd 6507_495896-ch03.indd 65 8/31/10 2:43 PM8/31/10 2:43 PM

66 Getting Started

Release Notes
The Release Notes are another grab bag of short articles. Figure 3.8 shows a typical example.
The notes list updated properties, constants, and new classes added in each release of OS X.
This information is included for completeness rather than for reference. Very occasionally you
may find that code isn’t working because information listed here hasn’t been included in the
main documentation. More typically, the main class references are updated as soon as changes
are made, and the release notes provide a sporadically valuable change log.

Figure 3.8

It’s possible some developers may still need to see the original Java 1.3.1 release notes from 2003,
but it’s not likely.

Sample Code
The Sample Code, shown in Figure 3.9, is one of the most useful features of the documentation,
and includes a collection of mini-applications with full source code and project settings that
you can use as worked examples. The sample code is tightly linked to the Xcode SDK. You can
save an example to a project folder, open it in Xcode, compile it, and run it with just two or
three mouse clicks.

07_495896-ch03.indd 6607_495896-ch03.indd 66 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 67

 T I P
The Sample Code resource isn’t a complete and definitive list of all available sample code. You can find further code
samples online; Apple’s online sample code library doesn’t always match the library in the documentation. Some of
the framework reference documents list further sample code that doesn’t appear in this section.

Figure 3.9

In the internal version of the documentation included with Xcode, the Download Sample Code
link is replaced with a button that automatically loads the project into Xcode. Online, you must
download the project file and unzip it manually before opening it.

Technical Notes
The Technical Notes section, shown in Figure 3.10, is another grab bag of short essays and mini-
features. Many of these items are of historical interest with no useful content. You can find
essays here that refer to Mac OS 6, 7, 8, and 9 and mention features and code interfaces that
have long been superseded, such as the QuickTime for Windows article in Figure 3.10, which
was written in 1996. A small number of articles, such as the New HID Manager APIs feature, may
be useful to current developers. Unfortunately, some articles are so out of date, their content is
misleading. It can be useful to skim this section for interest, but most of the contents can be
ignored — unless you’re an IT historian.

07_495896-ch03.indd 6707_495896-ch03.indd 67 8/31/10 2:43 PM8/31/10 2:43 PM

68 Getting Started

Figure 3.10

Some of the Technical Notes are more useful for their nostalgic value than their practical content.

Technical Q&As
The Technical Q&As section is another miscellaneous and somewhat random collection. It con-
centrates on bug fixes and minor development notes. It includes some useful content, but it
also includes a generous selection of ancient articles that are redundant or irrelevant. The most
relevant items are the most recent. As a rough guide, items dated from 2000 onward may be
useful, such as the Sorting Like the Finder feature, shown in Figure 3.11. Earlier content is very
likely to be outdated.

07_495896-ch03.indd 6807_495896-ch03.indd 68 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 69

Figure 3.11

The Technical Q&As are more up to date than the Technical Notes. The information about sorting
files for display shown here is still current.

Understanding Topics
The Topics list, shown in Figure 3.12, is an attempt to group resources by subject. In theory,
selecting a subject shows a list of all the relevant articles in the documentation; for example,
selecting Audio & Video displays a list of all the documentation resources that may be useful
when developing audio and video features.

Navigating the Topics
In practice, because the resources themselves include old and out-of-date information, it can be
difficult to make sense of the topic lists. One of the essential features missing from the docu-
mentation is prioritization. Features that are essential for beginners are given the same promi-
nence as highly specialized development notes from the mid-1990s. This makes it difficult to
find key points. While the Topics breakdowns can be useful, they’re an indexing feature and not
a useful or complete summary of everything you need to learn to master a topic.

07_495896-ch03.indd 6907_495896-ch03.indd 69 8/31/10 2:43 PM8/31/10 2:43 PM

70 Getting Started

Figure 3.12

The Topic breakdown is the best way to view everything related to a topic, although many of the items
that appear here are redundant or irrelevant.

Reading about Tools & Languages
In spite of the name, the Tools & Languages section doesn’t include definitive reference infor-
mation about tools and languages. Instead it supplements the guides in the Required Reading
section, adding extra detail and introducing noncore features. For example, you’ll find a guide
to Quartz Composer, Apple’s visual animation and video processing tool. Quartz Composer is a
useful and entertaining feature included with Xcode, but you don’t need to use it or know
about it to create working applications.

It’s worth looking through this section because it contains some useful content, including infor-
mation about using features of Xcode that are hidden behind its GUI (graphical user interface).
You can use this content to customize and optimize Xcode if you choose to. Initially, you can
treat this section as a collection of extra material and not an essential reference.

07_495896-ch03.indd 7007_495896-ch03.indd 70 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 71

Using the Documentation
When you’re starting out, the documentation has a poor signal-to-noise ratio and may try to
distract you with irrelevant content. This becomes less of a problem as you gain experience,
because you’ll assimilate the information in the Getting Started guides or find equivalent help
elsewhere. You’ll also start to remember the frameworks and objects that are used regularly and
to memorize some of their features. You can improve your productivity by using the documen-
tation methodically. Random browsing isn’t recommended. A more focused approach will help
you find useful details more reliably.

Sorting the documentation
Sorting is a key skill when using the documentation. The listing window has five headings: Title,
Resource Type, Topic, Framework, and Date. Clicking each heading sorts the contents of the
window alphabetically, except for the Date heading, which sorts chronologically.

 T I P
The Framework heading doesn’t appear when you’re viewing the framework reference documentation because it’s
redundant.

Clicking Title is likely to display a jumble of unrelated features. For a more useful summary, try
clicking Topic, Resource Type, or Framework. When viewing the grab-bag sections — Technical
Notes, Technical Q&As, Release Notes, and Articles — it can also be useful to sort by Date, to
eliminate irrelevant older content.

 T I P
It’s a good idea to check the date of any resource before using it, because some of the documentation is simply out-
dated and wrong. There’s no formal sell-by date, but as a rule of thumb, any item that’s more than five years old may
not be accurate.

When clicking Topic to sort contents, the headings include extra subgroups that aren’t visible in
the main Topic listing. For example the catch-all General topic includes a Memory Management
subsection. You can use this feature to find items that you might otherwise miss.

The sorting algorithm groups items by subresource — topic or resource type — and then sorts
them alphabetically within each group. The list of titles can appear chaotic, but in fact it’s orga-
nized so that related items are shown next to each other. One confusing quirk is that in a Topic
sort, General items appear at the top of the list. The remaining items are sorted alphabetically in
the usual way. A useful search sequence for finding the classes in a framework is

Frameworks List ➪ <named framework> ➪ Resource Type ➪
Reference

07_495896-ch03.indd 7107_495896-ch03.indd 71 8/31/10 2:43 PM8/31/10 2:43 PM

72 Getting Started

Working with source code
Source code can be at least as useful as reference documentation. Sometimes you can solve a
problem or implement a feature by copying code, even if you don’t fully understand how it
works. This is an unapologetic cheat, and you should aim to understand the code you use. But
even when you don’t, it’s an approach you can use to gain experience. Figure 3.13 shows my
suggested strategy.

Apple’s code samples are often quite dense. It’s unlikely you’ll be able to use them directly, but
stripping out code that you don’t need can be a good way to learn about application design.
Don’t forget that at least some of the application’s architecture is defined by its nib files, so
you’ll need to explore those too.

Summary
This chapter introduced you to the developer documentation. It explained the differences
between the various documentation resources and included practical hints for finding the most
useful content. It also included some suggestions for working with the documentation as a
whole and for making the best use of other online resources and of source code created by
Apple and by other developers.

07_495896-ch03.indd 7207_495896-ch03.indd 72 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 3: Introducing the Cocoa and OS X Documentation 73

Figure 3.13

My suggested flowchart for the documentation concentrates on finding useful code.
When you’re staring out, sample code and class references are the most useful resources.

Select a feature

to include in your

application.

Y

Y

N

Search the programming

guides and the

framework lists to find

the framework that can

implement the feature.

Does the documentation

give you enough

information to

implement the feature?

Experiment and

iterate to create your

own implementation.

Implement the

feature with

sample code.

Implement the

feature.

Search the

documentation for

sample code that

illustrates how to

implement the feature.

Is sample code

included in the

documentation?

Is sample

code available

online?

Is sample code

included in one of

the Apple sample

applications?

Can the sample

code be copied or

modified to implement

the feature?

N

N

N
N

Y

Y Y

07_495896-ch03.indd 7307_495896-ch03.indd 73 8/31/10 2:43 PM8/31/10 2:43 PM

07_495896-ch03.indd 7407_495896-ch03.indd 74 8/31/10 2:43 PM8/31/10 2:43 PM

In This Chapter

Getting Started with
Xcode

Getting ready for Xcode

Installing Xcode

Creating a new OS X
project

Exploring Xcode’s
windows

In theory, Objective-C is as platform-independent as C++, Java,
Ruby, and Python. In practice, it isn’t. Most developers write
code that combines the features of Objective-C and Cocoa,

using them as an informal blended language that runs almost
exclusively on Apple hardware. Only one toolkit supports this
approach — Apple’s Xcode SDK (software development kit).

Xcode includes dedicated class and object management features
that aren’t available in other environments. Developers rely on
these features to add new classes to their applications and to
define the list of objects that’s loaded when an application runs.
While it’s possible to create working Objective-C code with a text
editor and a command-line compiler, this isn’t an efficient way to
work. It doesn’t take advantage of the helper features in Xcode,
which make it easier to work with Cocoa objects.

The next few chapters introduce Cocoa object creation and class
management in a theoretical way using working example code cre-
ated in Xcode and Interface Builder. They also outline some typical
design processes and illustrate how to add specific features to an
application, translating details in the developer documentation
into working code.

Getting Ready for Xcode
Until the announcement of iPhone iOS 4 in April 2010, Apple
offered two versions of Xcode. Mac developers could use an OS
X-only version of Xcode, while iPhone developers were supplied
with a combined version with templates and documentation for
both OS X and iPhone OS projects.

Apple no longer supports the OS X-only version, and all developers
must use the combined SDK. This encourages developers to
explore both platforms, but the combined SDK is a much larger
download — up to 5GB versus 800MB of the OS X-only SDK. After
the download completes, it can take three hours to install the com-
bined SDK on the oldest and slowest Intel Macs. An hour is more
typical on recent hardware.

08_495896-ch04.indd 7508_495896-ch04.indd 75 8/31/10 2:43 PM8/31/10 2:43 PM

76 Getting Started

 T I P
If you bought a Mac before Q2 2010, it’s likely that you’ll have the OS X-only version of Xcode on the OS support DVD
bundled with your system. It may not be up to date, and some features may not be an exact match for the descriptions
in the rest of this book, but if you’re experimenting rather than creating code for release, you can use this version to
bypass developer signup and a subsequent download. Look for the Xcode.mpkg file in the Optional Installs folder.
You can update this version later, if you choose to.

Although Xcode runs on any Intel Mac from a Mac mini upward, compilation is a processor- and
disk-intensive process. OS X development is demanding, and the faster your Mac runs, the less
time you’ll spend waiting for each build. This is less true of iPhone apps, because they’re simpler
and more compact. After an initial compilation run, recompiling an iPhone OS app after a minor
edit can be almost instant, even on slow hardware.

If you don’t own a Mac, you can use GNUstep to experiment
with Objective-C and to develop very simple Cocoa applica-
tions. This is a valid option for Windows and Linux users, but
unfortunately GNUstep is a poor substitute for Xcode. It
lacks the C function libraries that support Cocoa on the Mac,
it doesn’t include any of Cocoa’s more recent classes and
features, and it doesn’t implement the Aqua interface or
most of the OS X layers and frameworks. Without Aqua,
GNUstep applications have the look and feel of NeXTStep
applications from the early 1990s, and there’s no support for
some of the recent core Cocoa features.

Xcode includes a sophisticated integrated editor, while
GNUstep uses the free jEdit editor. Both environments rely
on a version of the GCC (GNU Compiler Collection) compiler,
but there are subtle differences between the two versions.
Code is approximately compatible, but not all of Objective-
C’s features are implemented in an identical way.

Compared to Xcode, GNUstep is a very limited environment.
Some of the examples in this chapter are compatible with
GNUstep, but most of the code in later chapters isn’t. If you
have no other option or if you want to try out some very
simple examples, you can use GNUstep to get started with
Cocoa. But if you want to develop applications for other
users, either for fun or for profit, you’ll need a Mac and a
copy of Xcode.

OS X developers can create working applications in alterna-
tive environments such as Mono. Mono is an alternative set
of libraries that have been partly reimplemented with Cocoa
elements. But code written in Mono doesn’t call on Cocoa’s
features directly. Mono is a valid alternative for simplified
cross-platform development, but it doesn’t support many
standard Cocoa and OS X features and is an inefficient choice
for high-performance applications, or for applications that
rely heavily on the Cocoa and OS X media and animation
features.

iPhone OS developers have always had more limited
choices. Because Objective-C and Cocoa Touch are relatively
complex and programmed at a low level, various simplified
alternative SDKs and frameworks have appeared, such as
Cocos2D, Flash for iPhone, and Ansca Corona. Projects built
with these SDKs have been accepted in the App Store.

At the start of 2010, Apple announced a new Xcode-only
policy for iPhone apps. Only Objective-C, C, C++, and native
Apple Java apps are allowed. Alternative SDKs and frame-
works are banned from the App Store. It’s not clear how
rigidly this policy will be enforced, or whether previously
accepted non-Xcode apps will also be banned. But develop-
ers should keep in mind that Apple is emphasizing that
Xcode and Objective-C are the definitive development envi-
ronment, and attempting to use an alternative for commer-
cial projects is now very risky.

Alternatives to Xcode

08_495896-ch04.indd 7608_495896-ch04.indd 76 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 77

It’s useful to have as much screen space as possible. A dual-monitor system is extremely helpful,
and a triple- or quad-monitor system is better, although a single large monitor is also viable.
The ideal minimum configuration ca n display a code window on one monitor and documenta-
tion on another, which also doubles as a scratchpad for testing and debugging. It’s possible to
work with a single low-resolution screen, but Xcode is designed to show multiple windows
simultaneously. Switching between windows is distracting and takes valuable time, significantly
degrading productivity.

Registering as a developer
Although Xcode is free, you’ll need to register as a developer to download it. The sign-up pro-
cess is straightforward, but you’ll need a valid e-mail address for confirmation. Begin at
http://developer.apple.com, shown in Figure 4.1.

Figure 4.1

You do not have to register to view Apple’s developer welcome page. The design and layout are
updated regularly; this version shows Mac OS X Snow Leopard.

Click the Mac Dev Center link to open the Mac Dev Center, shown in Figure 4.2. You can see the
download link at the bottom left, but the design of this page changes regularly so it may be in a
different location on the page when you view it. The key words to look for are Xcode and SDK.

08_495896-ch04.indd 7708_495896-ch04.indd 77 8/31/10 2:43 PM8/31/10 2:43 PM

78 Getting Started

Figure 4.2

You are not required to register to view the technical documentation on the Mac Dev Center page.
However, to download code, you must sign up.

Clicking the download link takes you to the sign-up page shown in Figure 4.3. This page is also
redesigned regularly, so it may look different when you view it. Click the Get Started button on
the left to begin the registration process.

Figure 4.4 shows the first page of the sign-up process. If you already have an Apple ID that you
use with another online Apple product, you can also use it as a developer ID. If you plan to
develop commercially on the iPhone, create a new ID here because it will simplify accounting
and sales reporting later.

08_495896-ch04.indd 7808_495896-ch04.indd 78 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 79

Figure 4.3

The sign-up page illustrates the benefits of registration. Basic sign-up is currently free.

The rest of the sign-up process is straightforward. After specifying an ID, entering your contact
details, answering a few simple questions, accepting the Developer Agreement, and processing
an e-mail confirmation, your developer account is created. You can then log in again and return
to the screen shown in Figure 4.2. The download link is now active and you can begin down-
loading the SDK.

 C A U T I O N
If you have a slower broadband connection, you may want to leave the download running overnight. It takes around
six hours at 1MB/second. On dialup, it can take most of a week to download the file, so the most practical way to get
the SDK is to ask a friend with broadband to download it, burn it to a DVD, and post it to you. Apple doesn’t sell DVD
copies of Xcode. Because access to the developer documentation is being moved online, dialup is becoming an increas-
ingly impractical option.

08_495896-ch04.indd 7908_495896-ch04.indd 79 8/31/10 2:43 PM8/31/10 2:43 PM

80 Getting Started

Figure 4.4

You can use an existing Apple ID to gain initial access to the developer program, and re-register
later with a new commercial ID if you plan to release iPhone apps.

Joining the Mac Developer and iPhone Developer
programs
Signing up as a free developer gives you entry-level access to the Developer Program. A further
level is available to developers willing to pay an annual fee. In 2010 Apple revamped its Mac
Developer Program, reducing the fee to $99/year from $499 but eliminating a number of bene-
fits. In the older program, developers were given a discount on Mac hardware and could also
send applications to Apple’s Compatibility Testing labs for hardware testing. More expensive
tiers offered “free” tickets to the Apple Developer Convention and further discounts.

In the new program, the chief benefits are a free copy of the current version of OS X and access
to advanced beta — “seed” — versions that can be downloaded in the months before the offi-
cial public launch of an update. Developers can request two technical support incidents per
year, where they discuss development problems with an Apple engineer who reviews their
code and offers troubleshooting advice or a workaround. Access to the Apple Developer
Forums and to a selection of instructional videos is also included.

08_495896-ch04.indd 8008_495896-ch04.indd 80 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 81

If you’re experimenting with development on the Mac, you can ignore the Developer Program.
None of the benefits are indispensable. Mac applications can be built, run, given away, and sold
successfully without them.

The equivalent iPhone Developer Program offers a more useful selection of benefits and is rec-
ommended for any serious developer. The annual fee is the same, $99, and developers receive
two technical support incidents, access to the forums and videos, and advanced copies of seed
releases of Xcode that support forthcoming updates, as shown in Figure 4.5. The iPhone
Developer Program also unlocks the hardware testing features built into Xcode. Until this is
enabled, apps must be run in a Simulator application with limited emulation of the hardware
features of an iPhone, iPad, or iPod touch.

Figure 4.5

During OS seed periods, beta updates are released every fortnight or so. Updates are only
available to developers who have paid the annual Developer Program fee.

08_495896-ch04.indd 8108_495896-ch04.indd 81 8/31/10 2:43 PM8/31/10 2:43 PM

82 Getting Started

The program also controls access to the App Store. Only paid-up developers are allowed to sell
apps in the store. The iPhone Program is so tightly controlled that apps built in Xcode and
installed on a handset expire automatically after a few months. Developers can run a build of
their code on their own devices for a limited period. When this expires, the app stops working
and it must be rebuilt and reinstalled. An app can only be installed permanently by submitting
it to the App Store, waiting for it to be approved, and buying it.

Currently corporate and business developers can sign up for two alternative corporate programs
that cost $299/yr. Only businesses with more than 500 employees and a DUNS number — an
international business identifier — are eligible. The Enterprise iPhone program allows in-house
distribution and development of iPhone applications, bypassing the App Store. Because Mac
development is unrestricted, there is no equivalent Enterprise Program for OS X.

Installing Xcode
After downloading the Xcode dmg file, double-click it to open it. Installation is conventional,
with few surprises. Double-click the Xcode.mpkg file in the dmg folder and follow the
prompts. The SDK is designed to support multiple versions of both OS X and iPhone OS. You
can select these using the dialog shown in Figure 4.6. There’s no need to support older versions
of either OS, but you can install them for compatibility testing.

 N O T E
You can use this dialog to install an additional set of Unix command-line developer tools by checking the UNIX
Development box. This feature is optional — it’s not used by Xcode and isn’t required for Cocoa development. It’s use-
ful if you’re familiar with Unix development and want to use a traditional collection of command line compiler tools,
libraries, and man pages on a Mac. The tools are installed into <usr>.

By default Xcode is installed in a new Developer directory, shown in Figure 4.7, which is
placed in the root directory of your Mac’s hard disk, not in a user directory. Developer is best
left where it is — moving it may break the installation. For quick access, it’s useful to add
Developer to the Places list in Finder.

You can view the applications included in Xcode by opening the Applications folder.
Xcode appears at the bottom of the list. You may want to add it to the Dock, together with
Interface Builder. The other applications in this folder are used less frequently.

08_495896-ch04.indd 8208_495896-ch04.indd 82 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 83

Figure 4.6

Older versions of both iPhone OS and OS X can be useful for compatibility testing, but most
builds target the most recent OS.

It’s an excellent idea to create a Projects folder. When you create a project in Xcode, it’s
automatically placed inside a new folder. Most developers generate tens or even hundreds of
these folders, so you’ll find it helpful to collect them into subfolders; for example, to keep trials
and experiments distinct from commercial projects. A separate Projects folder also simplifies
version control.

08_495896-ch04.indd 8308_495896-ch04.indd 83 8/31/10 2:43 PM8/31/10 2:43 PM

84 Getting Started

Figure 4.7

You can add your own Project folders (not shown here) to the contents of the Developer directory,
and then divide projects further into useful subdirectories. Allow at least one folder for random
experimentation.

Creating a New OS X Project
To create an application, double-click Xcode.app. Click the large Create a New Xcode Project
button, shown in Figure 4.8.

 C A U T I O N
This book was prepared with Xcode 3.2.3. A preview version of Xcode 4 was released just before the book went to
press. Xcode 4 offers a faster compiler and also integrates Interface Builder, which no longer works as a separate
stand-alone application. Otherwise the editing and building process for applications remains recognizably similar. For
more information about Interface Builder, see Chapter 7.

08_495896-ch04.indd 8408_495896-ch04.indd 84 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 85

Figure 4.8

The Xcode start-up screen displays a list of recent projects, if there are any. It’s a good idea to
review the Getting Started with Xcode tutorial for a quick overview of some of Xcode’s features.

Xcode displays a template window, shown in Figure 4.9. The window shows a list of file and
application templates supported by Xcode. Click Application in the template pane at the left of
the window. Then click Cocoa Application in the template pane at the top of the window. Click
the Choose button at the bottom right.

 N O T E
If you’re using the iPhone version of Xcode, you’ll see an extra division at the top left for iPhone templates. Make sure
you select the Application option under Mac OS X and not under iPhone OS — unless you want to create an iPhone
app. iPhone and OS X templates have a different structure.

A File Selector sheet drops down from the top of the window. Type in a name such as First in
the Save As: field at the top of the sheet, as shown in Figure 4.10. Keep the name short and
avoid spaces: the name is used as a prefix for some of the files in the project. Using a long name
here creates unwieldy filenames in the project. The name you enter also sets the application
name.

08_495896-ch04.indd 8508_495896-ch04.indd 85 8/31/10 2:43 PM8/31/10 2:43 PM

86 Getting Started

Figure 4.9

iPhone OS offers a selection of project templates, described in Chapter 19. Cocoa applications start
with a single common Cocoa Application template. The other templates are more specialized
and used infrequently.

 C A U T I O N
You can change the application name later if you choose to, but it’s extremely difficult to rename project files. Xcode
treats the build target, the application, the project name, and the project files as separate entities, with independent
names.

08_495896-ch04.indd 8608_495896-ch04.indd 86 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 87

Figure 4.10

You can save a new project anywhere on disk, but by default this dialog selects the Developer
folder. It’s efficient to create one or more project folders here rather than elsewhere on disk.

Xcode creates a new template with the name you specify and opens a new project window,
shown in Figure 4.11.

 N O T E
The project window isn’t maximized when it appears. You can either resize it manually or click the green button at the
top left of the window to maximize it. For monitors smaller than 26", it’s easier to work with a maximized project. For
larger projects, you may find it more productive to have more than one project or file window open at the same time.

08_495896-ch04.indd 8708_495896-ch04.indd 87 8/31/10 2:43 PM8/31/10 2:43 PM

88 Getting Started

Figure 4.11

When you create a new Xcode project, it appears in a single window that is a combined editor
and file selector. You can have more than one project window open at a time, either switching
between them manually or tiling them on a larger monitor for fast access.

Building a project is a single-click process. There’s no need to define compiler options or to
change any of the default settings. Click the Build and Run button at the top of the window.
Xcode compiles and runs the application, creating a floating window and a new menu bar, as
shown in Figure 4.12.

 T I P
As the application compiles, it posts status information at the bottom left of the main Xcode window. Xcode is an
incremental compiler — it only compiles files that have been added to the project or have changed. Depending on the
speed of your Mac, it takes 15 to 30 seconds to build and run the template application for the first time. Subsequent
edits build more quickly.

Although the application seems to be independent, it’s running as a subprocess within Xcode. If
you quit Xcode, the application is terminated. You can run an application independently by
opening the Build ➪ Debug folder within its project folder and double-clicking the .app file.

08_495896-ch04.indd 8808_495896-ch04.indd 88 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 89

This isn’t usually helpful while coding and debugging. Xcode includes separate console and
debugging windows, and they can only be accessed when the application is running within
Xcode.

The application isn’t complex. It displays an empty window that supports a basic feature set.
You can resize the window by dragging the resize box at the bottom right. The red, orange, and
green window buttons at the top left respectively close, hide, and restore the window in the
usual way. The application adds itself automatically to the Dock when it runs, displaying a
default application icon. To quit, choose First ➪ Quit First from the menu.

 N O T E
The application isn’t set up to quit automatically when you close the window, so closing the window leaves the menu
in place and the application running. You can only quit from the menu.

Figure 4.12

The size and position of the default template’s window are set within the application. By default,
it appears on top of Xcode. Although the window is empty, it’s fully functional. It can be dragged,
resized, hidden, and so on.

08_495896-ch04.indd 8908_495896-ch04.indd 89 8/31/10 2:43 PM8/31/10 2:43 PM

90 Getting Started

Exploring Xcode’s Windows
Now that you have created a first application, you’ll want to take a closer look at Xcode. Xcode
is a deceptively simple development environment with some unexpectedly rich and powerful
features. Newcomers can literally build both Mac and iPhone applications with a single click,
ignoring most of Xcode’s features. More experienced developers can customize Xcode almost
indefinitely, creating custom build phases, using both online and offline version control, and
building projects of various kinds.

Understanding Groups & Files
It’s important to understand how projects and files are organized, because copying or moving
an Xcode project folder in Finder without setting it up correctly can destroy it. The Groups &
Files pane in Xcode appears on the left side of the screen. It includes features that look like fold-
ers and other items. The folders are called groups. They appear to work like Finder folders. You
can use reveal triangles to open and close them, drag files into and out of them, and create new
folders. But the group structure is superficial and is for your convenience only — there are no
equivalent folders in the project directory in Finder.

When you create a new project, a named project icon appears at the top left, and code and
resource groups appear “inside” it. Figure 4.13 shows the folders in a new empty project, and
Table 4.1 summarizes how they’re used.

 N O T E
Under the folders is a list of additional features, including Targets, Build Products, Find Results, and others. You don’t
need to use these features to build and run a project.

Table 4.1 Groups in Xcode’s Groups & Files Pane
Application Notes

Classes Objective-C class files

Other sources Miscellaneous C files, including main.c
A .pch prefix header file for the project

Resources Nib files used by Interface Builder

Optional graphics and other media files

Frameworks Frameworks used in the project

Products A list of build products

(Usually there’s just one — the finished app)

08_495896-ch04.indd 9008_495896-ch04.indd 90 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 91

Figure 4.13

The Groups & Files area at the top left is a key feature in Xcode. You’ll spend a lot of time here selecting
files for editing and then working on them in the editor window in the lower-right area of the Xcode
window.

It’s critically important to understand that even though the Groups & Files pane looks like a
Finder window, the items in this window are symbolic links to files on disk. Think of them as
named placeholder links that point to a file path.

By default, the link name matches the filename — so file.h points to a real file.h on disk.
But in Xcode this isn’t always true, and you can rename, delete, and rearrange the links in the
Groups & Files pane without affecting the files they point to. A link named file.h can actually
point to somethingcompletelydifferent.h on disk.

Initially this indirect system appears almost completely counterintuitive, but it offers significant
benefits. For example, you can include files from any disk location in an Xcode project without
having to copy them to the project folder on disk.

08_495896-ch04.indd 9108_495896-ch04.indd 91 8/31/10 2:43 PM8/31/10 2:43 PM

92 Getting Started

 C A U T I O N
Renaming or moving a project folder with Finder can break a project. If you move or rename files in Finder, the links in
Groups & Files may point to file paths that are no longer valid. Xcode’s default link settings don’t allow you to copy a
project folder without damage. This is easy to fix — for details see Chapter 18— but for now, don’t attempt to move
or duplicate project folders using Finder.

Selecting items for editing
To the right of the Groups & Files pane are two more windows. The File List in the top pane dis-
plays a list of files in the project. This is a flat version of the view in the Groups & Files pane,
without groups and without the extra items that appear at the bottom. However, it adds some
extra fields at the right that display information about file sizes and project groupings. You can
use these fields to enable or disable compilation of selected files. This is an advanced feature
and isn’t relevant to entry-level projects.

Clicking any editable file in this window loads it into the text editor window at the bottom of
the screen. You can also load items by clicking their names in Groups & Fields. This is one of
Xcode’s most productive features — all the files in a project can be accessed instantly without
saving and loading.

 T I P
The text editor window can display graphic files. Clicking any supported image file loads a preview into the window.
There are no editing features, but you nominate an external editor in Xcode’s Preferences. For details, see Chapter 18.

The text editor window also includes understated but powerful navigation options.
Immediately above the text area are two drop-down lists. On the far left is a History list, which
displays a list of recently accessed files. You can use this as yet another way to load files into the
Edit Window. To right of the History list is a Symbol list that displays method titles and other
headings, shown in Figure 4.14. You can use this feature to scroll down to a selected method
with a single click.

At the top right of the text editor window are two other essential navigation features. The Split
icon above the scroll bar splits the window into two or more sections that can display two dif-
ferent files. Often it’s useful to view a header file in one window and implementation code in
another. To the left of the padlock icon — which locks a file, preventing editing — is the
Counterpart icon. This toggles the text window between a header file and its corresponding
implementation file. Both icons are shown in Figure 4.15.

These features are simple, but they make Xcode a very productive environment. Before you
start work on larger projects, it’s useful to get into the habit of using them. They can literally
save you hours of development time.

08_495896-ch04.indd 9208_495896-ch04.indd 92 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 4: Getting Started with Xcode 93

Figure 4.14

The History list and Symbols list are typical of Xcode’s more advanced features. They’re not prominently
emphasized and it’s easy to miss them, but they can be very effective timesavers.

Figure 4.15

Xcode’s icons include similarly powerful features you can use to speed up your work.

Customizing the toolbar
You can customize the toolbar by right-clicking it anywhere and selecting Customize Toolbar.
To remove an item, drag it off the toolbar. To add an item, drag it from the drop-down window
onto the central toolbar area. Figure 4.16 shows a suggested customized configuration. You’ll
find it useful to include the Build option, to check a build without running it, and the Clean All
option, to remove existing build products and rebuild a project from scratch. As you gain expe-
rience with Xcode, it’s likely that you’ll want to add other more advanced features here.

08_495896-ch04.indd 9308_495896-ch04.indd 93 8/31/10 2:43 PM8/31/10 2:43 PM

94 Getting Started

Now that you have been introduced to Xcode, you can begin to explore some of the features of
Objective-C and look at how they’re used to create a working application.

Figure 4.16

Customizing the toolbar allows fast single-click access to some of Xcode’s essential features.
Unfortunately the options are fixed — you can’t create and add your own icons or implement
your own features.

Summary
In this chapter you learned about Apple’s developer programs and were introduced to the fea-
tures of the different developer programs and levels. You discovered how to register as a devel-
oper, how to download and install the Xcode SDK, and how easy it is to create, build, and run an
empty sample project. You were also introduced to some of Xcode’s more advanced features,
including the editing icons and the toolbar customization feature.

08_495896-ch04.indd 9408_495896-ch04.indd 94 8/31/10 2:43 PM8/31/10 2:43 PM

In This Chapter

Introducing Classes and
Objects in Objective-C

Understanding objects

Designing objects

Creating classes

Using objects

Objective-C is object-oriented. Code is assembled from
objects defined by class templates; instances are created
and released dynamically and controlled by messages.

Cocoa is a mix of object-oriented features and conventional C,
blended with practical tools and techniques for creating and man-
aging objects.

This chapter is a first look at the theory of object-oriented develop-
ment in Objective-C and introduces class definitions, messaging,
and constructors. The chapters that follow illustrate the practice
and explain how to create links between Objective-C code and the
contents of a nib file.

Understanding Objects
Objects can represent concrete data or abstract processes and rela-
tionships. Some of the advantages of an object-oriented approach
include:

 Abstraction. Objects make application design simpler by
hiding low-level complexity. You can concentrate on cre-
ating clean relationships between the elements in your
application.

 Encapsulation. Objects can contain other objects, linked
and grouped in various ways. Grouped objects can be
treated as a single object with a simplified interface, or
their elements can be accessed individually.

 Simplified flow control and looping. Objects can be
counted, enumerated, looped, collected, and processed
as if they were simple data types. Some of Cocoa’s data
types include looping and enumeration features. You can
use these features to process a collection of objects with a
single line of code.

 Intuitive event management. Objective-C is explicitly
event driven, and the event management features are
flexible and powerful.

 Intuitive but formal data dependency management.
An object can respond to a message by accessing its own
data or by interrogating other objects. Data dependency
can be managed automatically.

09_495896-ch05.indd 9509_495896-ch05.indd 95 8/31/10 2:43 PM8/31/10 2:43 PM

96 Getting Started

Table 5.1 lists some possible practical applications. Properties are data fields, and methods are
code blocks that can be triggered inside an object to elicit a response.

Table 5.1 Examples of Possible Objects and Applications
Object Possible Properties Possible Methods

GUI window object Position

Size

Opacity

Front/key window status

Respond to a mouse click

Maximize/Minimize/Close

Move to position

Report position

Bring to front

Game object or token State

Position

Velocity

Texture

Move to position

Change state

Change texture

Redraw

Game playing field Game state

Game score

Player number

Array of tokens

Update score

Start with new player

Report high score

Address book Individual entry (can be a subobject)

Entry subproperties

Add entry

Delete entry

Update subproperty

Count entries

Save/restore entries

Search entries

Music synthesizer or sample event Synthesizer/sampler settings

Note start/end times

Play note

Stop note

Create note with settings

Generic object Pointer reference

Memory state

Create

Destroy and release memory

Copy

Save/restore from disk

Part of the challenge of object-oriented programming is object design. The ideal design encap-
sulates powerful features within a clean and intuitive interface that is responsive and easy to
work with.

 N O T E
Cocoa also includes hybrid data structures that aren’t true objects but are partially interchangeable with them.
Formally these are plain C-language structs, but they can be cast or copied to a related Cocoa object class. In a
typical application you use a combination of Cocoa objects, hybrid structs, and standard C data types.

09_495896-ch05.indd 9609_495896-ch05.indd 96 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 97

Some Cocoa objects are used as drop-in solutions that implement specific features; for exam-
ple, the NSDate object holds information about the system date and time. Others are designed
to be modified and extended. All Cocoa objects are extensions of an object called NSObject,
which implements essential object creation, memory management, and copying methods. You
can extend NSObject to create a minimal blank object. You can also modify most of Cocoa’s
other objects to create sophisticated customized features.

 N O T E
It’s possible to create customized objects in Objective-C that aren’t related to NSObject, but this is usually a wasted
effort. NSObject implements core object management features “for free.” A customized alternative has to imple-
ment similar features from scratch — which isn’t a small project.

Understanding classes
A class is a blank template that defines an object’s features. For example, Cocoa’s NSWindow
class defines the features of an OS X window. Class definitions list an object’s property fields
and the methods it supports, including the code blocks that implement them. In theory, class
definitions are blank and static: they hold no data and do nothing. To work with data, the tem-
plates are used to create instances — working copies of an object. In practice, Objective-C treats
the class itself as a single separate instance with unique methods and properties. Class methods
are often used to create and return information about class instances.

Table 5.2 summarizes the different elements that define objects and make them usable.

Table 5.2 Object Anatomy: Classes, Instances, and Messages
Feature Summary

Class definition A template that defines the methods and properties in each object. Every object has a single unique class template.

Instance A working version of an object that can store data. Copies are created and released from memory as needed.

Each copy organizes its data using the same template.

Pointer A named variable that stores the base memory address of an instance. The string is used as a handle for the

address. Pointers must be unique within a given scope.

Property A data field. Class templates define the data type of each field and specify a useful name. Instances can store

data in each field. Properties cannot be accessed directly. Accessor methods must be included to make them

accessible from other objects.

Methods Code blocks that define how an object responds to messages. Optionally, methods can take parameters and

generate return values.

Messages Events that are sent to an instance to run a named code block. In Objective-C, messages can also be sent to the

class template.

Accessors Methods that read or write properties — explicit setter (write) and getter (read) code. Accessors can be

generated automatically with Objective-C’s @synthesize directive. Optionally, accessors can force an

update of an object’s internal data or state while implementing a read/write.

C features C isn’t used in object-to-object messaging, but can appear in object method code, and C data types can be used as

properties or wrapped into objects. C function calls are often included within objects as helper code that implements

low-level features. Parts of Cocoa use C structs as proto-objects that are partly interchangeable with full objects.

09_495896-ch05.indd 9709_495896-ch05.indd 97 8/31/10 2:43 PM8/31/10 2:43 PM

98 Getting Started

Introducing classes and instances
Figure 5.1 shows a stylized sketch of a simple class with three properties and eight methods —
the set and get methods are the accessors. In a Cocoa application, all objects must have an
init method that initializes properties and private internal values to defaults. The list of prop-
erties and methods that can be accessed by other objects is the interface.

Figure 5.1

Anatomy of a simple class. In this example
the properties are ints. In a more complex
class, the properties might be pointers to
other objects, and the methods might
access data in other objects.

class Foo

properties

int x

int y

int z

methods

init

set x

set y

set z

get x

get y

get z

getSumOf xyz

 N O T E
Objects may include private variables, that are hidden from other objects, and private methods, that the object can
run on itself. Private features don’t appear in the object’s interface. By definition, features in the interface should be
public.

Figure 5.2 illustrates how a class can have two instances. Unlike the template, which is blank, the
instances contain working data. Because the internal values of x, y, and z are different in each
instance, the sumOfxyz method returns a different total. When the objects have their properties
set as shown, you can trigger the sumOfxyz method to return those values; for example:

int aNumber = [anInstance sumOfxyz]; //Sets aNumber to 12
int aNumber = [anotherInstance sumOfxyz]; //Sets aNumber to

123453

09_495896-ch05.indd 9809_495896-ch05.indd 98 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 99

An object that receives a message is called the receiver. In this code anInstance and
anotherInstance are both receivers.

Figure 5.2

Creating instances makes it possible to use a class,
filling its fields with data and calling its methods to
access and process that data.

class Foo

properties

int x

int y

int z

methods

init

set x

set y

set z

get x

get y

get z

get sumOfxyz

Foo *anInstance

properties

x = 3

y = 4

z = 5

methods

init

set x

set y

set z

get x

get y

get z

get sumOfxyz

Foo *anotherInstance

properties

x = −3

y = 123456

z = 0

methods

init

set x

set y

set z

get x

get y

get z

get sumOfxyz

09_495896-ch05.indd 9909_495896-ch05.indd 99 8/31/10 2:43 PM8/31/10 2:43 PM

100 Getting Started

Creating implicit and explicit instances
It’s critically important to understand that an application can create object instances explicitly
with Objective-C code or implicitly by loading them from a nib file at run time.

This can seem mysterious, because not all objects have supporting code. For example, the
blank template application introduced in the previous chapter includes a working menu. The
code in the template doesn’t create or display the menu, or handle standard events such as
Quit. Instead, the menu is defined in the application nib file and is loaded when the application
launches. The nib also includes initialization settings for the menu that bind items to standard
events.

When you run the application, the menu objects are created automatically and some of the
menu options are set up to respond when you select them. In this example, this happens with-
out supporting code. You can choose to add code to access objects loaded from a nib. If you
don’t, the objects are still loaded and created in memory, but you can’t directly access their
properties or methods.

Loading objects from a nib is an example of dynamic loading in Objective-C. Objects can be
loaded and released at run time, and it’s possible to reconfigure the architecture of an applica-
tion as it runs. Typically, Interface Builder manages part of this process, and the rest is imple-
mented with code.

Designing objects
Properties can be traditional C data types, custom or predefined structs, or objects. There’s no
limit on the number of properties in a class, but objects with hundreds of properties are
unwieldy and may need to be redesigned.

There is also no restriction on the complexity of a method. A method interface can hide deep
complexity, and method code can access the properties and methods of other objects. Good
method design hides complexity by creating interfaces and results that are easy to understand,
and which encapsulate a useful return in a simple way.

It’s good practice to define class, property, and method names that are explicitly descriptive
and easy to understand, even when this means extra typing. This improves code clarity and can
help simplify object design. For example, extended variations of sumOfxyz might return the
result as a string:

sumOfxyzAsBinaryString
sumOfxyzAsHexString
sumOfxyzAsDecimalString

Cocoa often uses descriptive names for its objects and methods. It’s bad practice to create
ambiguous or imprecise names:

sum //Sum of what?
Total
sumAsString //What kind of string?
returnValue

09_495896-ch05.indd 10009_495896-ch05.indd 100 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 101

Naming conventions
By convention, class and function names use UpperCamelCase while instance, method,
property, and general data-type names use lowerCamelCase. Spaces are not allowed, but
underscores are. It’s useful to explicitly include the type of class of an object or data structure in
its name.

 N O T E
Supposedly CamelCase gets its name from the double hump of the two capitals. It has a more formal name — medial
capitals — but this lacks alliteration, has twice as many syllables, and doesn’t mention an animal, making it harder to
remember. CamelCase isn’t enforced by the compiler, but it is a standard naming convention.

Cocoa classes and features are named using UpperCamelCase with an optional additional
framework prefix. For example, the Cocoa/NeXTStep classes are prefixed with NS, an abbrevia-
tion for NeXTStep:

NSWindow
NSViewController
NSBrowserDelegate

Other OS X libraries have their own prefixes. Because of overlaps, the naming scheme is slightly
random. For example, CoreAudio items begin with Audio and not CA, which is used by the
Core Animation library.

 C A U T I O N
Not every Cocoa feature prefixed with NS is an object. Most are, but there are common exceptions. For example,
NSInteger is a wrapper for a standard int. For details of the exceptions, see the Foundation Framework
Reference in the developer documentation. The Other References group lists the C functions, C data types, and con-
stants that are used in Cocoa but aren’t defined as objects.

Because names are descriptive, they can be long. For example:

CFAbsoluteTimeGetDifferenceAsGregorianUnits

is a function in the Core Foundation Time Utilities library. Constants in Cocoa are prefixed with a
k followed by a library prefix, followed by a long name, for example:

kCFAbsoluteTimeIntervalSince1970

It’s helpful to follow the conventions in your own class definitions. If you create your own cus-
tom frameworks, it’s essential to add a unique abbreviation prefix.

There’s no formal designation for developer-created objects. Many developers use a, my, and
this as prefixes to indicate instances created in their code.

aWindow
myView
thisDictionary

This is informal, but works well for simple projects.

09_495896-ch05.indd 10109_495896-ch05.indd 101 8/31/10 2:43 PM8/31/10 2:43 PM

102 Getting Started

Alternatively, developers can use their initials or a unique two-character or three-character
acronym to identify their classes. This is helpful when working on collaborative projects
because names such as aWindow may already be in use. For example:

RWWindow
CDRObject
CDRView

Object constructors and pointers
Objective-C uses C’s asterisk pointer convention, as illustrated in Figure 5.3. A pointer name can
be any string that is unique within its scope, but it’s useful to include the class name as a suffix.
For example, a pointer to an instance of class Foo is declared like this:

Foo *aPointerToFoo = …//This is traditional

Figure 5.3

aPointerToFoo is a variable that holds a memory address.
The exact data type depends on whether the application uses a
32-bit or 64-bit memory model. It’s legal, and occasionally useful,
to compare or manipulate pointer addresses directly.

Memory

*aPointerToFoo

stores a memory address

Memory

(an instance of Foo

in memory)

A unique pointer is generated whenever a new instance of a class is created. Objective-C
doesn’t support formal constructors. Instead objects are created using a standard code idiom
that runs two methods called alloc and init to return a pointer to an instance of a class.
alloc creates an instance of an object, and init initializes it. The methods are always nested,
as shown here:

Foo *aPointerToFoo = [[Foo alloc] init]; //Do this

Foo *aPointerToFoo = [Foo alloc];
aPointerToFoo = [aPointerToFoo init]; //Don’t do this

The first version appears throughout Cocoa code. With occasional exceptions, described next,
you can use this code as-is to create Cocoa objects.

09_495896-ch05.indd 10209_495896-ch05.indd 102 8/31/10 2:43 PM8/31/10 2:43 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 103

//Create a new instance of NSView
NSView *aView = [[NSView alloc] init];

Understanding alloc, init, and nesting
Figure 5.4 illustrates how alloc and init work together. [Class alloc] returns a pointer
to an instance of Class. But because the code is nested — the return from [aClass alloc]
is passed directly to init — this pointer doesn’t need an explicit name.

 C A U T I O N
init here means any initialization method. Some init methods take parameters. This doesn’t alter the idiom; as
long as the alloc and init methods are nested, the code is correct.

Figure 5.4

The alloc message runs on the Foo class and returns an
instance. The init method runs on the instance and
returns a pointer to an initialized instance, which may —
sometimes — be different than the pointer returned by
alloc. Nesting alloc and init guarantees that
the final pointer is usable.

class Fooalloc message

init message

Pointer to initialized instance

Instance of Foo

Generally, you can use nesting to avoid creating temporary pointers. It’s good practice to
include one or two levels of nesting. It’s bad practice to nest more than three levels because the
code becomes difficult to follow. Unfortunately, because of Cocoa’s syntax, deeper nesting is
sometimes unavoidable.

Sample code that uses the new instance might look like this:

[aPointerToFoo setx: 1];
[aPointerToFoo sety: 2];
[aPointerToFoo setz: 3];
int aTotal = [aPointerToFoo sumOfxyz];

09_495896-ch05.indd 10309_495896-ch05.indd 103 8/31/10 2:43 PM8/31/10 2:43 PM

104 Getting Started

You might create another instance with

Foo *aDifferentPointerToFoo = [[Foo alloc] init];

followed by similar code using the aDifferentPointer instance:

[aDifferentPointerToFoo setx: 15];
//Etc…

It’s critically important to understand that pointer variables aren’t identical to instances. A
pointer is a size_t integer that points to the memory used by an object instance and is used
as a reference to it. Misunderstanding this can result in code that leaks memory or crashes. If a
pointer is overwritten before an object is released from memory, the object’s memory is lost.
This becomes very important on the iPhone where memory is managed manually. But overwrit-
ing a pointer can create a memory leak in a Mac application, even with garbage collection.

Class and instance methods
A class template is equivalent to a type definition. In the same way that two named ints are
different entities, the two instances of Foo are completely distinct and independent. They use
the same template, but there is no other connection between them.

Most objects are designed to be used as instances, and the class itself is a template with no
active features. But some Cocoa objects include class methods that are run on the class and not
on an instance. Certain class methods return an object without using alloc, for example:

NSDate *now = [NSDate date];

This reads the date and time from the system date object, writes it to an instance of NSDate,
and returns a pointer to it. It would be more consistent if the code looked like this:

NSDate *now = [[NSDate alloc] init];

In fact, this is also valid. NSDate’s init method automatically returns the current date and time.
But the first version is used more widely, apparently for historical reasons.

 N O T E
Class methods are often thread safe. Instance methods may not be thread safe. The documentation doesn’t always
detail the differences, so if your code supports multi-threading, you may need to experiment to discover which option
runs reliably. For information about creating and managing threads, see Chapter 11.

Class methods are typically used to create objects — alloc is a class method — or to return a
pointer to a system object, such as the shared application manager NSApplication. For
example, running the sharedApplication class method on NSApplication returns a
pointer to the current application:

//Get a pointer to the current application
//and send it a terminate message to quit
[[NSApplication sharedApplication] terminate: nil];

09_495896-ch05.indd 10409_495896-ch05.indd 104 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 105

Subclassing and inheritance
Cocoa is a library of prewritten classes that you can drop into your code. When you subclass
an existing class, you create a new version of the class and use it as a starting point for your
own additions. You can then add new features of your own, or override — write code that
re-implements — some or all of its existing features.

When you create a subclass, it inherits all the features of its parent. Before you begin to modify
it, the subclass is a direct copy of the existing parent template, with all its properties and meth-
ods. It has a new name, but is functionally identical to its parent class.

Inheritance and subclassing save you time. You don’t need to reinvent the wheel, or the win-
dow — you can reuse an existing class, extending it or modifying it as needed. Cocoa is
designed to encourage this kind of customization. You can subclass almost any class, and some
Cocoa classes are deliberately minimal with bare outlines of features, rather like a car chassis
without a body, wheels, or seating.

For example, the NSView class — UIView on the iPhone — includes a drawRect: method
that can fill the view with graphics. By default, drawRect: is empty and does nothing. If you
don’t add code to it, it continues to do nothing when the application runs. When you want to
draw custom graphics in a window, you subclass NSView and fill out drawRect: with custom
code. The new drawRect: overrides the old empty version.

 T I P
Sometimes it’s easier to modify an existing class without creating a subclass. Objective-C includes a category feature
that makes this possible. The name is misleading — no categories are categorized. Instead, an existing class is
extended with new properties and methods. Unlike a subclass, the name doesn’t change, and the new features are
added “in-place.” For a practical example, see Chapter 8.

When you create a subclass, it becomes a new class in its own right. You can subclass it again,
and then subclass the subclass indefinitely, without restrictions. You can also create multiple
subclasses with different features from the same source class.

Cocoa uses this feature to organize classes into a hierarchy or tree. At the root is the minimal
object template class called NSObject. As illustrated in Figure 5.5, classes spread out from
NSObject in various branches. Each branch implements different but related features such as
window and UI management, networking, data management, and so on. The further away from
NSObject a class gets, the more specialized it is.

The complete NSObject hierarchy includes more than 100 objects. The developer documen-
tation includes information about each class’s place in the hierarchy and the classes it inherits
its features from. You don’t need to memorize the class relationships, but you do need to be
aware of them, and an outline understanding of the class hierarchy is useful.

09_495896-ch05.indd 10509_495896-ch05.indd 105 8/31/10 2:44 PM8/31/10 2:44 PM

106 Getting Started

Figure 5.5

A very small part of the NSObject subclass hierarchy. For a complete view, see http:
//developer.apple.com/mac/library/documentation/Cocoa/
Reference/Foundation/ObjC_classic/Intro/IntroFoundation.html.

NSObject

NSData NSString NSValue NSStream

NSMutableData NSMutableString NSNumber NSInputStream

NSDecimalNumber

NSOutputStream

NSPurgeableData

Figure 5.6 uses NSButton as an example. Under the reference title you can see an Inherits
from field with a list of classes. This list tells you that NSButton includes all the properties and
methods listed in its own class reference, and that it also implements all the properties and
methods built into NSControl, NSView, NSResponder, and NSObject.

These extra methods and properties aren’t listed on the NSButton page — to find them, you
have to read the reference pages for the other classes. It’s good practice to do this, especially
when you’re new to Cocoa programming, because it helps to fix an outline of the hierarchy in
your memory. It also expands your ideas about what’s possible. For example, you can use
NSView methods to animate instances of NSButton, changing their size to make them pulse,
or changing their position to make them jiggle in an iPhone-like way. Working through the sub-
classing hierarchy isn’t only a technical process, it also can be a creative way to discover new
possibilities for your application.

 N O T E
The Conforms to field lists a separate set of optional methods that can be used in subclass code.

09_495896-ch05.indd 10609_495896-ch05.indd 106 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 107

Figure 5.6

A close-up of the NSButton class reference showing
subclassing and inheritance information

Subclasses, superclasses, and the root class
NSObject is Cocoa’s root class. When you create a subclass, the original class is known as the
superclass. You can send messages from any object to its superclass using the super variable.
super isn’t a separate object. It’s used to “unoverride” method names, accessing the unmodi-
fied and unextended originals. For example, if you subclass NSView and call [super
drawRect:…] your code runs the original unmodified drawRect: method. This is more of
an illustrative example than a useful one, but the same technique can be used to run unmodi-
fied methods in objects that have useful features. super is often used in init methods,
described in Chapter 7.

Creating classes
Class definitions are split across two files — a header file with a .h extension and a code file
with a .m extension. The header is called the interface. It declares the methods and properties
that are visible to other objects. The code file holds the implementation — the code that runs
when each method is triggered. The implementation can also contain private variables and
methods that are invisible to other objects. A feature is only public if it appears in both files.

 T I P
As you’ll see in Chapter 6, Xcode makes it easy to create new classes with a selection of default templates. You don’t
have to type in the contents of the interface and implementation files from scratch — you can start with a template
file and modify it.

Defining a class interface
The contents of an interface file are organized like this:

#import <any required headers>
@interface MyNewClass : NSObject <protocols>{
(a list of instance variables)

09_495896-ch05.indd 10709_495896-ch05.indd 107 8/31/10 2:44 PM8/31/10 2:44 PM

108 Getting Started

}
(a list of public properties prefixed with @property

declarations)
(a list of public methods that can be accessed by other objects…)
(a list of public setter and getter methods, if used)
@end

The @interface directive tells Objective-C that the following lines define the class interface.
The rest of the line includes the name for the class, which can be any unique string followed by
the name of the superclass from which it inherits its features.

In words, this line tells Objective-C to create a new class called MyNewClass, copying methods
and properties from NSObject. To subclass a different class, replace NSObject. For example,
the following subclasses NSView:

@interface MyNewViewClass : NSView <protocols>{…

 N O T E
The protocols field includes one or more named bundles of optional methods that can be used in the class. A pro-
tocol is a slightly more complex form of import/include. Protocols are used as a quick way to import groups of
related methods to a class. They’re optional, but many Cocoa objects use them. For some examples, see Chapter 6.

Instance variables, also known as ivars, can be objects with pointers or standard C data types.
For example:

{
 NSView *aView; //This is a pointer to a view
 int numberOfGiraffes; //This is a standard C int
}

The list of properties between the curly brackets defines private internal variables. To expose
them to other objects, the property names must be prefixed with a @property directive.

@property (nonatomic, retain) NSView *aView; //aView can be
public

 N O T E
(nonatomic, retain) defines the memory management options for properties that are objects. C data types
don’t require this extra information. For more information, see Chapter 12.

The methods list defines every public method that can be triggered by other objects. For
example:

- (void) thisIsAMethod;
//This is a method with no return value and no parameters
- (NSValue *) thisIsAnotherMethod: (int) aNumber;
//This is a method that returns an instance of NSValue and takes

an int as a parameter

09_495896-ch05.indd 10809_495896-ch05.indd 108 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 109

Methods are listed as signatures — one-line summaries that list the type, output type, name,
and parameters used in the method. Signatures end with a semicolon. They do not include
implementation code.

In both the interface and implementation files, Objective-C uses the - character as a prefix for
instance method definitions and + as a prefix for class method definitions.

- (void) thisIsAnInstanceMethod;
+ (void) thisIsAClassMethod;

Defining accessors: setters and getters
In Objective-C, properties are private and invisible unless setter and getter methods are defined
for them. Setters write values; getters read them. Properties can allow either or both modes of
access. You can define setters and getters explicitly with code, or implicitly using the @syn-
thesize directive.

Use @synthesize to generate the setters and getters required for simple read and write
operations. The directive works rather like a macro, and it creates setter and getter code auto-
matically. It also implements dot-format property access.

anInt = anObject.numberOfElephants;
anObject.numberOfWheels = 5;

This syntax is common in other languages. In Objective-C, it is only valid if the properties are
synthesized.

Use explicit setter and getter code when reading or writing a property triggers a more complex
outcome, such as a change in the state of an object or an operation that accesses other proper-
ties and features. For example, a setter can automatically redraw visible graphics when a win-
dow’s size is changed, or a getter can count the number of times a property has been accessed
and write the count to another property.

By convention, getter method names are identical to the name of the property they access,
while setters prefix the name with set. Define setters and getters in the interface as follows:

- (int) numberOfElephants; //A getter for the numberOfElephants
property

-(void) setNumberOfWheels: (int) aNumber; //A setter for the
numberOfWheels property

To use them, the syntax is

anInt = [anObject numberOfElephants];
[anObject setNumberOfWheels: 5];

The compiler doesn’t enforce this naming convention, but it’s used in Cocoa and it helps make
the code easy to read. There are no restrictions on the complexity of setter and getter code. If
necessary, a single setter method can dramatically change the state of the entire application.

09_495896-ch05.indd 10909_495896-ch05.indd 109 8/31/10 2:44 PM8/31/10 2:44 PM

110 Getting Started

Using self
In a class, self is used to access internal methods. For example:

[self doSomethingInternal];

triggers the doSomethingInternal method, which is assumed to be present in the class.
Internal methods can be private or public. You can also use self to make property access
operations explicit.

//If aProperty uses a custom getter, this is necessary
aValue = [self aProperty];

//…because this is interpreted as a pointer copy
aValue = aProperty;

Defining a class implementation
The contents of an implementation file are organized like this:

#import MyNewClass.h
#import (any other classes that are referenced)
@implementation MyNewClass
(an optional list of @synthesize directives for properties)
(an optional list of private variables)
(a list of methods with full implementation code)
@end

The #import directive loads the interface header file. For historical reasons, Objective-C uses
#import for Objective-C headers and #include for C headers. The rest of the file is a list of
implemented methods. Any method listed in the interface must be implemented in the imple-
mentation. The implementation doesn’t have to be complete and finished — a stub will do —
but the compiler will throw an error if it’s absent.

 N O T E
It’s possible to combine the header and implementation within a single file. This is bad practice because classes often
need to import the interface declarations of other classes. This becomes very inefficient when headers aren’t sepa-
rated from code.

If a class references a class or a framework, it must include a #import directive for its headers.
For clarity and memorability, it’s good practice to include the #import directives in the imple-
mentation.

To use @synthesize, follow it with a list of property names and end the list with a semicolon:

@synthesize aProperty, anotherProperty, somethingElse, aView;

09_495896-ch05.indd 11009_495896-ch05.indd 110 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 111

This runs the @synthesize feature on the four listed properties and generates setter and get-
ter code for them. You can then use dot syntax or conventional method code to access these
properties from other objects.

aValue = [thisObject aProperty]; //Using a synthesized getter
aValue = thisObject.aProperty; //Identical code using dot syntax

[thisObject aProperty: 5]; //Using a synthesized setter
thisObject.aProperty = 5; //Identical code using dot syntax

Defining public properties
To summarize, you must do three things to create a property that can be accessed by other
objects:

 1. Include it in the list of ivars in the interface.

 2. Declare it again as a @property in the interface.

 3. Add an explicit setter/getter method or @synthesize the property in the imple-
mentation.

All three steps are obligatory. If you skip one, the build will fail or the application may crash. If
you change a property name, you must change it in all three places.

 T I P
It can be difficult to keep these three steps in mind when concentrating on the rest of the code, so it’s helpful to use
this summary as a check list. The three steps eventually begin to become automatic, but forgetting a step remains a
popular and common error.

Defining public methods
To define a public method, follow these four steps:

 1. Declare the signature in the interface. The signature includes the class/instance
type, return type, name, and parameter list. End with a semicolon.

 2. Copy the signature to the implementation file.

 3. Replace the semicolon with an opening curly bracket.

 4. Add implementation code and close the curly bracket.

For example, the following code completely defines a method called thisMethodDoes
Nothing:

- (void) thisMethodDoesNothing; //Add this line to the method
list in the interface

09_495896-ch05.indd 11109_495896-ch05.indd 111 8/31/10 2:44 PM8/31/10 2:44 PM

112 Getting Started

- (void) thisMethodDoesNothing {
} //Add these two lines to the method body list in the

implementation

The rules for defining parameter lists and return values are similar to those in C. Methods can
take any number of parameters. Parameter types must be explicit. For example:

//This line appears in the interface
- (AClass *) thisMethodDoesSomething: (AnotherClass *)

aParameter;
//This block of code appears in the implementation
- (AClass *) thisMethodDoesSomething: (AnotherClass *) aParameter

{
 AClass *aResult; //This is a private variable for this method
 aResult = [aParameter doSomethingToIt];
 return aResult;
}

 T I P
aParameter is used as a private variable within the method. Name conflicts are common, so it can be useful to
prefix parameters with an underscore to ensure that local parameter names don’t conflict with global properties.

- (AClass *) thisMethodDoesSomething:
 (UsingAnotherClass *) _aParameter;

Xcode assumes that if your code references a method, it exists. If the compiler can’t find the
method at compile time, it logs a warning but allows the build to complete. The compiler gen-
erates the same warning if you use a method before you define its implementation.

Method names are only loosely linked to objects, and the Objective-C run time looks up
method names dynamically. For example, as long as aMethod is available in both classes, this
is valid code even if both implementations of aMethod are different:

aPointer = anInstanceOfAClass;
[aPointer aMethod];
aPointer = aInstanceOfASubclassOfAClass;
[aPointer aMethod];

 C A U T I O N
By default, when you create a new project, Xcode assumes you’ll be managing memory manually. Usually you’ll want
to enable garbage collection instead. For instructions on how to do this, see the last section in Chapter 12. Projects in
the rest of this book assume that garbage collection is enabled.

09_495896-ch05.indd 11209_495896-ch05.indd 112 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 5: Introducing Classes and Objects in Objective-C 113

Using Objects in Objective-C
This overview outlines a first look at objects in Objective-C, but Objective-C uses objects in
unusual ways. A key point is that the relationship between objects, messages, and data is kept
as loose as possible. Connections that are defined at compile-time in most languages can be
changed at run time in Objective-C. For example, Objective-C allows loose typing, and includes
class management features that can read an object’s class at run time, or test if it’s a member of
a class hierarchy.

Table 5.3 introduces Objective-C’s more creative elements. This list isn’t a complete summary
of Objective-C’s more creative options, but it lists the features that are widely used in Cocoa
applications.

Table 5.3 Key Objective-C Features
Feature Summary

Object-oriented architecture Objects can be defined, instantiated, and destroyed. Subclassing and method

overrides are widely used.

Explicit and implicit object creation Object instances can be created in code, or they can be defined as resources in

an Interface Builder file and loaded automatically when the application runs.

The loading process can be spread across multiple files.

Dynamic loading Objects can be loaded when needed and released dynamically to minimize

memory use.

Loose typing in message parameters using id Type information in message parameters can be enforced, ignored, retrieved

dynamically, or implied at run time using a placeholder id data type.

Loose links between objects and messages Messages and objects are loosely bound - a named message can be sent to any

target object that supports it. Target objects can be selected at run-time.

Certain objects allow explicit nomination of a target object for certain

messages.

Message selectors A selector data type is available as a container/handle for each method.

Code can use selectors to choose messages dynamically at run time.

Automatic message creation Messages can be generated automatically without explicit code — for

example, when an object property is updated.

Self-messaging Objects can trigger internal methods by sending messages to self.

Abstract classes Cocoa includes a small number of abstract classes, mostly used as bundles of

methods that must be overridden manually.

Delegation Related messages can be collected into protocols and adopted by any object,

which acts as a delegate that implements handlers for the group. Delegate

objects can be assigned and reassigned dynamically.

09_495896-ch05.indd 11309_495896-ch05.indd 113 8/31/10 2:44 PM8/31/10 2:44 PM

114 Getting Started

Cocoa relies on this looseness to implement some of its more flexible features. For example, a
single object can process messages sent from many different objects with different parameter
lists. This is often useful in UI design. An event handler can receive messages from various UI
objects without making assumptions about the format or source of the messages. Similarly,
data collection objects — arrays, sets, and dictionaries — can store various data types in a sin-
gle collection. Chapters 8 and 9 illustrate these features in more detail.

Having looked at the theory, you’re ready to move on to some practice in the next chapter,
which demonstrates how to use Cocoa objects in a simple application.

Summary
In this chapter you were introduced to objects and looked at some of the benefits offered by
object-oriented design when compared with more traditional programming models. You
explored classes and instances and learned about Objective-C and Cocoa naming conventions.

Next, you looked at the benefits of subclassing and inheritance and discovered how they were
used in Cocoa to simplify development. Finally, you saw sketches of the interface and imple-
mentation code used to create classes in Objective-C and were introduced to an overview of
some of Objective-C’s unique features.

09_495896-ch05.indd 11409_495896-ch05.indd 114 8/31/10 2:44 PM8/31/10 2:44 PM

In This Chapter

Getting Started With
Classes and Messages in

Application Design

Understanding the Cocoa
development process

Understanding
applications

Discovering object
methods and properties

Creating subclasses

Introducing Code Sense

Receiving messages from
OS X with a delegate

Receiving messages from
OS X with NSResponder

Although Cocoa and Xcode both use Objective-C, having a
theoretical understanding of classes isn’t enough to work
with them effectively. Essential practical skills include:

 Understanding the structure of a Cocoa application.

 Finding the right Cocoa object to solve a problem or
implement a feature.

 Translating the Cocoa documentation into working code.

 Using Xcode and Interface Builder to add, release, and
manage application objects.

Understanding the Cocoa
Development Process
Cocoa code often requires detective work. Cocoa objects are com-
plex, with many features that cross-reference other objects and
data types. The developer documentation is comprehensive, but
the links between classes and supporting features are perhaps not
as clear as they might be.

When you use a Cocoa class for the first time, it’s likely you’ll follow
a process that I’ll outline in this chapter, with false starts, incorrect
guesses, and repeated searches through the documentation. When
you discover a solution, it’s likely to be elegant and powerful. You
can often implement a sophisticated solution with a single line of
code, but it may take you some time to find this ideal.

Timesaving help is always welcome, which is why it’s so helpful to
look for sample code and related online discussions. Occasionally
you can find a worked example that solves your problem. More
often you’ll find references to unexplored or unnoticed features
that can point you toward a solution. Generally, you’ll save time by
looking for worked examples outside the documentation; for
example, in Apple’s own sample code and solutions posted in
online forums.

10_495896-ch06.indd 11510_495896-ch06.indd 115 8/31/10 2:44 PM8/31/10 2:44 PM

116 Getting Started

Understanding Applications
I’ll use the minimal sample project from Chapter 4 as a teaching lab for getting started with
application design. Begin by launching Xcode and reloading the project from Chapter 4 called
First. You’ll see three groups — Classes, Other Sources, and Resources — at the top of the
Groups & Files pane in Xcode. Click the reveal triangles beside them to explore their contents,
and then click main.m, as shown in Figure 6.1.

Figure 6.1

main.m is included as the launch point for every application, but it is usually left unedited.
The argc and argv parameters are ignored, and the function doesn’t return a useful result code.

These three groups define the key elements in an application. Although only some of them are
code files, you can think of them as the application’s source code. The other items in the Groups
& Files pane define how Xcode builds these elements into a finished application.

10_495896-ch06.indd 11610_495896-ch06.indd 116 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 117

 N O T E
The easy, but unexpected, way to set the developer name and copyright info in the comments at the start of each file
is to create a card with personal details in Address Book and choose Make This My Card from the Card menu. Xcode
reads the information from Address Book when it creates a new project. You can also enter the following in Terminal
on a single line:

defaults write com.apple.Xcode
PBXCustomTemplateMacroDefinitions

 ‘{“ORGANIZATIONNAME”=”<OrgNameHere>”;}’

Table 6.1 lists the key elements in each folder. In this chapter, you’ll concentrate on the contents
of the top three groups. All elements are essential — a project won’t build without them — but
some can be used as is, without changes.

 N O T E
The files in a real project include the project name as a prefix. This prefix isn’t included in the table.

Table 6.1 Elements of a Cocoa Application
Element Explanation Group

Class files Source code for the application’s class templates. Classes

main.m Standard application start-up code. (This file can be edited, but isn’t

usually modified.)

Other Sources

_Prefix.pch Precompiled headers used to avoid repeat compilation of the Cocoa

headers. Other common project headers can be added here.

For simple projects, this file isn’t changed.

Other Sources

-info.plist Default application settings, including the names of the first loaded

class and the default nib file.

Resources

InfoPlist.strings Used for localization; a “folder” that holds a file with a list of text

strings for each language supported by the application.

Resources

Nib files At least one nib file, defined in -info.plist, is loaded

automatically. Other nib files can be defined and loaded on demand, if

needed.

Resources

 C A U T I O N
When you add new files to a project, Xcode doesn’t attempt to move them to the correct groups. The group structure is
cosmetic. It doesn’t affect compilation, but it does make it easier to keep related files together.

10_495896-ch06.indd 11710_495896-ch06.indd 117 8/31/10 2:44 PM8/31/10 2:44 PM

118 Getting Started

Exploring standard application elements
In an empty template, there are exactly three source code files. Two are usually used as is, and
another is only modified occasionally. The main.m file, shown in Figure 6.1, is a standard C
main() function. All Cocoa applications include this file. It runs a loader function called
NSApplicationMain(), which initializes a memory manager, and then loads and runs the
body of the application. It’s possible to modify this file to create a different start-up environ-
ment, but you can ignore it in most projects.

Similarly, you can usually ignore the _Prefix.pch file. It contains an import directive for the
Cocoa library header collections and is used to speed up compilation by making sure that these
headers are only compiled once. Occasionally you may choose to add extra header collections
here. More typically, you’ll leave it unchanged.

By default, your application ignores the Info.plist option for string localization. There are two
ways to support non-English languages in a Cocoa application: localization strings and localized
nib files. If you’re developing for an English-speaking audience, you can ignore these options. If
not, you can find out more about localization in Chapter 9.

Introducing the application delegate
Active application code is collected in the files in the Classes folder. If your project is named
First you’ll see two files called FirstAppDelegate.h and FirstAppDelegate.m.

 T I P
For clarity, the Classes folder only includes code for subclasses. You can — and often do — use Cocoa classes and
objects as is, without subclassing them.

The architecture of a Cocoa application is unexpectedly indirect. An NSApplication object
exists, but you rarely access it directly. Instead, whenever OS X sends an application-level mes-
sage, the message is passed to an application delegate object. The delegate handles messages
that are sent by OS X when the application is about to quit, when the user hides it or unhides it,
when OS X runs out of memory, and so on.

Unlike the application object, the delegate is designed to be subclassed. When you create a
new project, a delegate subclass with the AppDelegate suffix is created for you automati-
cally. To a good approximation, this delegate is the application.

 N O T E
Using a delegate may seem redundant and unnecessarily complex, but it offers practical advantages. You’ll look at
them later in this chapter.

This delegate can be extended with handlers for every application control message generated
by OS X, but the default template-generated delegate is lightweight and does very little. The
code defines a link to a window object and includes a single stub method that is triggered
when the application loads.

10_495896-ch06.indd 11810_495896-ch06.indd 118 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 119

Click FirstAppDelegate.h to reveal it in the Editor Window. The interface looks like this:

#import <Cocoa/Cocoa.h>
@interface FirstAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
}
@property (assign) IBOutlet NSWindow *window;
@end

Table 6.2 breaks down the features in detail.

Table 6.2 Sample Class Interface Feaures
Feature Explanation

#import <Cocoa/Cocoa.h> This line imports the Cocoa framework headers. The default template adds

this line — and the others — “for free.”

When you reference a framework in a class, you must add a corresponding

line here by hand to import its headers.

@interface FirstAppDelegate The code that follows is the interface for the

FirstAppDelegate class.

: NSObject This class is a subclass of NSObject and inherits its methods and

properties.

<NSApplicationDelegate> The class imports and uses a bundle of predefined optional methods called

the NSApplicationDelegate Protocol.

This particular protocol is part of Cocoa. It defines a set of optional

application management methods that may be implemented in the

delegate.

NSWindow *window; The class includes an instance of Cocoa’s NSWindow class, accessed via

a pointer named window.

@property window can be a public property.

(assign) window uses assign operations for memory management.

(Memory management is introduced in Chapter 12.)

IBOutlet window is a pointer to an object defined in an associated nib file.

window isn’t allocated in code; it’s loaded automatically from the nib

file when the application loads.

The nib loading process also initializes its pointer.

FirstAppDelegate.m is shown next. Table 6.3 breaks down its features.

#import “FirstAppDelegate.h”
@implementation FirstAppDelegate
@synthesize window;

10_495896-ch06.indd 11910_495896-ch06.indd 119 8/31/10 2:44 PM8/31/10 2:44 PM

120 Getting Started

- (void) applicationDidFinishLaunching: (NSNotification *)
aNotification {

 //Insert code here to initialize your application
}
@end

Table 6.3 Sample Class Interface Features
Feature Explanation

#import “FirstAppDelegate.h” This line imports the class interface file.

(If you don’t include this line or forget to rename the header if

you rename a class, the compiler can’t find the variable and

method definitions it needs to build the implementation.)

@implementation FirstAppDelegate The code that follows is the implementation for the

FirstAppDelegate class.

@synthesize window; This line generates setter and getter methods for window.

- (void)

applicationDidFinishLaunching:…
This is an implementation for the application-
DidFinishLaunching: method, which is a

method defined in the

NSApplicationDelegete protocol.

The default implementation included in the template is an

empty stub. You can expand it with your own application ini-

tialization code.

Functionally, you can add custom start-up code to the applicationDidFinishLaunching:
method, but none of the other messages that the delegate can handle are implemented — yet.
These other methods are introduced later in this chapter. The delegate is a subclass of
NSObject. In theory this means you can run any NSObject method on the delegate. This is
often useful for other subclasses for NSObject, but not for the application delegate — it’s
unlikely that you’ll want to copy the delegate or release it from memory. In this context,
NSObject is subclassed because it’s the simplest and easiest way to create a generic Cocoa
object that can be customized with further features. Its inherited features are redundant. This isn’t
usually true when subclassing NSObject; generally, you do want to be able to copy objects and
manage them in memory, but the application delegate is a special case.

Note that although the application includes other objects such as a menu, they’re not refer-
enced in the code or loaded explicitly by the delegate. When the application loads, the menu
loads with it, without alloc events or messages. This is an example of dynamic loading, which
was introduced in Chapter 5. The menu is defined in the MainMenu.xib nib file and loaded
automatically. This file is described in the next chapter.

10_495896-ch06.indd 12010_495896-ch06.indd 120 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 121

window is defined and loaded from the nib file in the same way. The IBOutlet directive tells
the compiler to leave the window pointer value empty at compile time. When Cocoa’s nib
loader loads the object, it loads a valid address into the pointer. Your code can then access the
features of window in the usual way. This process is automatic.

IBOutlet NSWindow *window; //Undefined at compile time
//After the nib loader has done its work
//window points to the object called window in the nib file
[window doSomething]; //This is now valid

Discovering Object Methods and Properties
When the application runs, window appears on the screen and waits. By default it does noth-
ing, because there’s no supporting code for it. You can control it by adding code that sends
messages to it:

[window aHypotheticalMessageThatDoesSomethingInteresting];

But you don’t yet know which messages NSWindow responds to. To discover this information,
you have to review the NSWindow class reference page in the developer documentation.

Finding and using class references
While you can browse to a class reference by drilling down through the layer and framework
hierarchy introduced in Chapter 2, there’s a shortcut. In Xcode, choose Help ➪ Developer
Documentation. This loads the offline version of the documentation built into Xcode. Figure 6.2
shows the window that appears in Xcode 3.2.3.

 N O T E
If you’re using a later version of Xcode, you’ll almost certainly see a similar page, but it may have different graphics.

At the top right of the window is a Spotlight-like search field with a magnifying glass. You can
search for the NSWindow class reference by typing NSWindow into the search field. But Xcode
supports a shortcut that can save you significant time. In the interface file, highlight NSWindow
with the mouse and right-click it. You’ll see a complex floating menu with many options, as
shown in Figure 6.3. Choose Find Text in Documentation. This is equivalent to copying the text,
pasting it into the search field, and waiting for the results. This is an immensely helpful feature
in Xcode, and you’ll find it invaluable.

10_495896-ch06.indd 12110_495896-ch06.indd 121 8/31/10 2:44 PM8/31/10 2:44 PM

122 Getting Started

Figure 6.2

The Xcode documentation Quick Start page includes sample videos. This page changes with
every new version of Xcode, so you may not see the graphics or features shown here.

When the search completes, the left-hand pane contains a list of search results that mention
NSWindow. This list is messy because the search returns all resource types, but you can ignore
almost all of it. At the top of the list is an API pane with a C icon next to NSWindow. This icon
tells you that a document is a class reference. The documentation browser usually — but not
always — displays a class reference if it finds one that matches the search string.

 T I P
When you type in a search string manually, the search field attempts to search for it immediately, even before you fin-
ish typing. This isn’t always helpful, but you can use it to search for items that share a starting string. You can also use
the Contains, Prefix, and Exact buttons at the top left to further fine-tune the search. You can hide the list at the left
by double-clicking NSWindow or the C icon in the API pane, or by dragging the dividing line between the search results
and the Table of Contents all the way to the left.

10_495896-ch06.indd 12210_495896-ch06.indd 122 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 123

Figure 6.3

The Find Text in Documentation feature can be a huge timesaver. You can use it to search the
documentation for any highlighted string.

Exploring class references
Class references are single scrollable pages. NSWindow is a complicated class with many fea-
tures, so the reference is long and detailed. The most efficient way to explore it is to use the
Table of Contents list that appears in the pane to the left of the main window.

You can use the reference information in various ways. When looking for a list of possible fea-
tures, it’s useful to scan the Tasks list. It includes a complete list of the messages that
NSWindow responds to, grouped by application and function. You can view the Tasks list by
scrolling down or by clicking the Tasks header in the Table of Contents. Clicking the reveal trian-
gle expands it to show a summary list in the Contents pane, as shown in Figure 6.4.

10_495896-ch06.indd 12310_495896-ch06.indd 123 8/31/10 2:44 PM8/31/10 2:44 PM

124 Getting Started

Figure 6.4

Clicking the reveal triangle next to the Tasks header displays a list of solution-based summaries
for each class. Use the task list as a quick overview of the class’s features.

 T I P
At first sight the list of tasks, methods, and other features for some Cocoa objects can appear overwhelming. You don’t
need to memorize these lists, and it’s a given that unless you have developer superpowers, you won’t immediately
know how to use all the features that appear. Cocoa is a library of connected objects and features. Some are self-
explanatory, but others won’t make sense until you’ve learned more about how Cocoa objects work together.

For a first project, you’ll attempt a very simple task — changing the window’s title string. Scroll
down through the list of tasks to find the Managing Titles subheading. As you might expect,
this subheading includes a list of features devoted to managing the title bar. Each blue item is a
clickable link. setTitle: looks like a possible solution, so click the setTitle: link to read a
description of this method.

 C A U T I O N
Methods and properties often match their names in an intuitive way, but sometimes they don’t. For example, you
might expect the center method to center the window in the screen. In fact it centers it horizontally, but places it
above center vertically for prominence and visual impact. To avoid surprises, check the full description of a feature
before you use it.

10_495896-ch06.indd 12410_495896-ch06.indd 124 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 125

Figure 6.5 shows the setTitle: entry. It has a title followed by a brief description, followed
by a code signature. Making sense of the signature is a fundamental skill. Even if you have
experience in other object-oriented languages and already understand what each element
does, some of the Objective-C syntax may be unfamiliar.

Figure 6.5

The setTitle: method description includes a terse list of the method’s features. Very few
of the class reference pages include sample code or examples.

Understanding signatures
In this example, you want to send the setTitle: message to an instance of NSWindow. The
signature tells you four things:

 The initial “-” character indicates that this is an instance method, not a class method. It
must be run on an instance of NSWindow, not on the class as a whole. This is good
news — it means you can use this method on window. For a class method, the initial
character would be a “+,” and it would have to be run on NSWindow itself, not on an
instance.

10_495896-ch06.indd 12510_495896-ch06.indd 125 8/31/10 2:44 PM8/31/10 2:44 PM

126 Getting Started

 (void) indicates there’s no return value. If the method supplied a return value, this
field would indicate its type in the usual C-like way.

 The third field is the name of the method and also defines the string used to trigger
it — setTitle:.

 The colon indicates that a parameter follows the method name. In this example, the
parameter is an instance of NSString, which is Cocoa’s string object data type. When
a parameter is a Cocoa object, it appears as a link. If you need more information about
NSString, click on the link to view its class reference.

Putting this information together, you can guess that the message you need to send to window
looks like this:

[window setTitle: aString];

aString can be defined as in-line literal using the @ objectification character. So your final
code looks like this:

[window setTitle: @”A Window Title”];

Introducing Code Sense
To add this code, type it after the comment line in applicationDidFinishLaunching:.
You’ll notice that as soon as you type the open square bracket and win, Xcode completes the
rest of the word window. Similarly when you type setT, Xcode automatically expands it to
setTitle: and also adds a reminder field that tells you that setTitle: takes a parameter
string.

This autocompletion feature is called Code Sense. Code Sense doesn’t read your mind — this
may change in future versions of Xcode — but it does try to predict your typing and insert likely
items from the application’s symbol table. The table includes the full set of Cocoa objects by
default.

Code Sense can dramatically improve your productivity, but it can take a while to get used to
having an assistant that makes guesses as you type:

 To accept a guess, press the Tab key. The cursor moves past the guess.

 When a symbol has multiple substring options — for example setT could be read as
setTitle: or setTitleWithRepresentedFilename: — press the Return key
to accept a part-symbol. The cursor moves to the next substring.

 To set a reminder field, tab to it and start typing. Your input overwrites the reminder
string. For classes with multiple parameters, tab to each field in turn.

10_495896-ch06.indd 12610_495896-ch06.indd 126 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 127

 To see a list of matching symbols, press the F5 key. Scroll up and down the list by
pressing the keyboard’s up and down arrow keys, or select a symbol with the mouse.
Click once to highlight a symbol, and double-click to insert it in the code.

 To ignore a guess, keep typing to overwrite it.

 When you close a curly bracket, the corresponding opening bracket flashes so you can
check for balance. Closing square brackets are sometimes — but not always — added
automatically. When brackets don’t balance, Code Sense makes a warning sound.

 N O T E
Code Sense isn’t infallible, and square bracket autocompletion is handled in a somewhat random way. However, you
always get a warning when brackets don’t balance. Code Sense is most useful when it becomes second nature. You will
occasionally need to backspace to overwrite wrong guesses, but it’s usually more of a help than a distraction.

Figure 6.6 shows the added line in FirstAppDelegate.m and also illustrates what happens
if you build and run the modified project. The code does indeed change the title bar. Success!

Figure 6.6

The blank template application with a new window title and the code that creates it.

10_495896-ch06.indd 12710_495896-ch06.indd 127 8/31/10 2:44 PM8/31/10 2:44 PM

128 Getting Started

Working with multiple classes
For a more difficult challenge, you can try to maximize the window as soon as the application
runs. Apple’s human interface guidelines don’t support maximization, and windows have no
simple maximization method. The green button on an OS X window resizes the window frame
to a default size, but this doesn’t have the same effect as a simple maximization.

 N O T E
In theory, according to Apple’s guidelines, Cocoa applications should have multiple floating windows. But some users
find that a single main window with floating subwindows is more intuitive and easier to use — perhaps because it
avoids the popular OS X distraction of accidentally losing application focus by clicking outside a window. Because the
UI guidelines aren’t policed, you can implement whichever solution you feel most comfortable with.

Ignoring any possible controversy, you’ll implement a maximize feature. Without a maximiza-
tion method, the only way to maximize a window is to set its size manually. Scanning the list of
tasks reveals a task called Sizing Windows, which looks as if it might solve part of the problem.
But it’s worth looking at the Introduction to Window Programming Guide for Cocoa, show in
Figure 6.7, to see if it contains further hints.

 T I P
You can find the Window Programming Guide for Cocoa by scrolling down to the bottom of the NSWindow’s Table of
Contents. Most classes don’t include a Companion Guide, but NSWindow is a key class with many features, and the
documentation has been expanded to include a guide that introduces them.

The subsection called How Windows Work introduces the concept of a frame. In Cocoa, a frame
is the rectangle that surrounds an object and defines its size and position. Returning to the
Sizing Windows subheading shows that it features a number of frame-related methods. frame
returns the current frame but is read-only, and it can’t be used to set the frame. setFrame
Origin: changes the position of the frame and the position of the window. setFrame:
does exactly what we want — calling setFrame: on a window resizes it.

From the setFrame: method description, you can see that its parameters include display,
which is a Boolean that defines whether or not the window contents are refreshed, and ani-
mate, which enables an optional animation effect. display is irrelevant for an empty window,
but you may as well set it to YES in case you add other content later. animate looks like an
interesting parameter to experiment with. So your first attempt looks like this:

[window setFrame: aFrame display: YES animate: YES];

10_495896-ch06.indd 12810_495896-ch06.indd 128 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 129

Figure 6.7

Guides vary in depth and complexity. The NSWindow guide is very comprehensive, but some
guides are short notes with a couple of terse examples.

Exploring C-language features
How do you calculate aFrame? According to the documentation, aFrame should be an
instance of NSRect. There’s no link to NSRect, so the only way to find out more about it is to
search for it. You can use the Find Text in Documentation feature to search the documentation.
Highlight NSRect in the documentation, right-click to show a floating menu, and select Find
Text in Documentation. Figure 6.8 shows the result.

This reveals that NSRect is a C-language typedef, and not an object. You’ve already fallen
out of Cocoa’s object hierarchy into an underlying C library that is part of the Foundation layer.
NSRect is a Foundation data type. The Foundation library is still part of Cocoa, but it uses C
code and data structures and isn’t object-oriented.

10_495896-ch06.indd 12910_495896-ch06.indd 129 8/31/10 2:44 PM8/31/10 2:44 PM

130 Getting Started

Figure 6.8

Cocoa’s C language functions and data types don’t appear as links in the documentation, but
you can search for them manually. NSRect is a Foundation data type.

Looking for more information about NSRect is unhelpful, because there isn’t any. You can drill
down further to find out about NSPoint and NSSize. Or you could create your own custom
NSRect implementation and use it to convert a group of floats or ints into an NSRect.

There’s a simpler solution. The Foundation layer includes a list of Foundation Functions that
support its data types. You can use the NSMakeRect() function to create an NSRect from
arbitrary height, width, and position floats.

 C A U T I O N
Cocoa data types are often deeply nested. NSRect includes an NSPoint made from two CGFloats , which are
plain C floats redefined. It’s normal to drill down through multiple data structures to find that the underlying data
types are familiar C data types buried under multiple Cocoa redefinitions.

Discovering framework functions and data types
Unfortunately, the documentation fails to introduce the Foundation Functions when you look
up information about a Foundation Data Type. You can only learn about them by looking

10_495896-ch06.indd 13010_495896-ch06.indd 130 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 131

through sample code or finding them in an online discussion — or reading about them in a
book.

Many frameworks offer a selection of helper functions and data types. These are critically useful,
but difficult to find unless you already know they exist.

For example, the Quartz 2D graphics library includes a collection of CGGeometry features that
provide the functions and data types used to implement low-level graphics.

When you start working with a new framework, it’s obligatory to check its Framework Reference
page to review its functions and data types. This won’t always lead you to the features you need
to solve a problem because you may need to look for related frameworks to find them. For
example, NSWindow is part of the Application Kit framework shown in Figure 6.9. Reviewing
the Application Kit Functions Reference page won’t tell you that it relies on the Foundation
Functions, shown in Figure 6.10, for various support functions.

But as a rule of thumb, the Foundation Functions are used throughout Cocoa. It can be helpful
to review them whenever you’re exploring new features.

Figure 6.9

The Application Kit Functions Reference lists some of Cocoa’s less obvious features. You won’t find
these functions unless you look for them, but they’re critically useful to many of Cocoa’s features.

10_495896-ch06.indd 13110_495896-ch06.indd 131 8/31/10 2:44 PM8/31/10 2:44 PM

132 Getting Started

Figure 6.10

Similarly, the Foundations Functions Reference page lists a selection of other essential Cocoa
functions. The task list is particularly revealing. You won’t use these functions regularly, but
you should know that they exist and be familiar with what they can do.

Having explored the Foundation Functions, your revised code looks like this:

[window setFrame: NSMakeRect(x,y,w,h) display: YES animate: YES];

This resizes the window to an arbitrary size you can specify using static floats for x, y, w, h.
Experimenting with this line reveals something unexpected — setting x and y to 0 anchors the
window at the bottom of the screen, not at the top. This is because OS X windows use a bottom-
left origin. To move a window to the top of the screen, the bottom coordinate must be calculated.
For example, on a screen with a resolution of 1024 × 768, Figure 6.11 shows the result of

[window setFrame: NSMakeRect(0,0,640,480) display: YES animate:
YES];

This simple problem is beginning to look more challenging. Not only is there no simple maxi-
mize feature, but also fixing the top of a window requires some extra coordinate transforma-
tions. If you want to anchor the window and resize it to fill the screen, you need to know the
screen resolution. Is there a better solution?

10_495896-ch06.indd 13210_495896-ch06.indd 132 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 133

Figure 6.11

A first attempt at resizing the window succeeds in changing its size, but doesn’t calculate the size from
the screen dimensions.

Expanding the search to related classes
For certain applications, the answer turns out to be “No”: some features can’t be implemented
easily or elegantly. You may need to resort to hacks or other less than optimal solutions.

But in this example, if you review NSWindow’s Table of Contents again, you’ll see a heading
called Accessing Screen Information. The first method in this Task is called screen and returns
the screen the window is in as an instance of an NSScreen object.

NSScreen *thisScreen = [window screen];

Clicking through to the NSScreen class reference reveals that NSScreen implements a method
called frame that returns an NSRect for the screen’s frame. So you can use the fragment

[thisScreen frame]

to return an NSRect. This is almost perfect, but the NSRect returned by frame covers the
entire screen. Looking again reveals another method called visibleFrame that returns the

10_495896-ch06.indd 13310_495896-ch06.indd 133 8/31/10 2:44 PM8/31/10 2:44 PM

134 Getting Started

area that excludes the standard OS X menu at the top of the screen and the Dock at the bottom.
This is exactly the area you want and solves the problem.

You can now write a new version that gets the visible frame from the current screen and passes
it back to window:

NSScreen *thisScreen = [window screen];
[window setFrame: [thisScreen visibleFrame] display: YES

animated: YES];

It’s possible to simplify this code to a single line. There’s no need to make thisScreen an
explicit pointer; you don’t access it again. So you can use a nested return:

[window setFrame: [[window screen] visibleFrame] display: YES
animated: YES];

To recap how the nested code works:

[window screen]
//returns the current screen as an NSScreen
[[window screen] visibleFrame]
//runs the visibleFrame method on the screen, returning an NSRect
[window setFrame: [[window screen] visibleFrame]…];
//passes the NSRect to setFrame and sets the size and position of

window

You can repeat this process to explore the other features of NSWindow. If you look through the
class reference, you can find methods that enable or disable the drop shadow, modify the window
opacity, close or minimize the window, and so on. Some methods are simple but powerful — for
example, print sends the window contents to the OS X printing system and implements the fea-
tures of a basic printing solution. Others are more complex and require a deeper knowledge of
Cocoa and its messaging system.

 T I P
It’s an excellent idea to experiment with some of NSWindow’s other methods, to familiarize yourself with the class’s
features.

Receiving messages from OS X with a delegate
window is a Cocoa object embedded in OS X. Your application controls it by sending messages
to it. But how can your application handle messages that come from OS X? You’ve looked
briefly at the application delegate and seen that it implements a handler for a single OS X mes-
sage called applicationDidFinishLaunching:. Other messages can be handled by
adding further handlers. But where can you find a list of those messages?

10_495896-ch06.indd 13410_495896-ch06.indd 134 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 135

Working with protocols
Looking again at the code for the interface, you can see the NSApplicationDelegate
protocol.

#import <Cocoa/Cocoa.h>
@interface FirstAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
}
@property (assign) IBOutlet NSWindow *window;
@end

The <NSApplicationDelegate> statement in the second line tells the compiler that the
FirstAppDelegate class can use methods bundled inside the
NSApplicationDelegate protocol.

You can think of a protocol declaration as a terse but powerful #include statement. Using an
imaginary protocol called AnImaginaryProtocol

@interface AnObject: NSObject <AnImaginaryProtocol>

is almost equivalent to:

#import <Cocoa/Cocoa.h>
@interface AnObject : NSObject {
 }
//List of <AnImaginaryProtocol> delegate methods starts here
- (void)anOptionalMethod;
- (void)anotherOptionalMethod;
- (AClass *) anOptionalMethodThatReturnsAValue;
+ (void) andSoOn…;
//List of <AnImaginaryProtocol> delegate methods ends here
@end

In a sense, a protocol is a convenient way to skip unnecessary copying and pasting in a class
interface. When you adopt <AnImaginaryProtocol>, the methods between the comments
are pasted into the interface automatically. You can then add implementation code for them in
the class implementation.

But protocol methods get a special, useful dispensation from the compiler. Unlike conventional
methods, they don’t have to be matched by a corresponding implementation. Instead you can
pick and choose which protocol methods to implement. It’s equally valid to add implementation
code for all, some, or none of the methods adopted from a protocol. The compiler flags a warn-
ing if some of the methods aren’t implemented, but you can build a project without imple-
menting any of them.

This makes protocols and delegates immensely responsive. Without delegation or protocols, an
object must be packed with empty method stubs for every possible message it can receive.
With delegation, code is only required for methods that are actually implemented. Figures 6.12
and 6.13 illustrate how this works.

10_495896-ch06.indd 13510_495896-ch06.indd 135 8/31/10 2:44 PM8/31/10 2:44 PM

136 Getting Started

Figure 6.12

Without a protocol, a class has to include a list of all possible method definitions in the interface and a
list of all possible method stubs in the implementation.

class Foo header

properties

int x

int y

int z

methods

init

set x

set y

set z

optionalMethod1

optionalMethod2

optionalMethod3

return x

return y

return z

return sumOfxyz

class Foo implementation

properties

int x

int y

int z

methods

init

set x

set y

set z

optionalMethod1 - required stub

optionalMethod2 - implemented in full

optionalMethod3 - required stub

return x

return y

return z

return sumOfxyz

Adopting optional methods the hard way,

with copy/paste in the interface

and a full set of implementations

Figure 6.13

With a protocol, optional methods can be bundled into a single simple #include statement and only
included in the implementation when needed.

class Foo header

properties

int x

int y

int z

<a protocol>
method list

optionalMethod1

optionalMethod2

optionalMethod3

methods

init

set x

set y

set z

<a protocol>

return x

return y

return z

return sumOfxyz

class Foo implementation

properties

int x

int y

int z

methods

init

set x

set y

set z

optionalMethod1 - not required

optionalMethod2 - implemented in full

optionalMethod3 - not required

return x

return y

return z

return sumOfxyz

Adopting optional

methods the easy

way, by moving the

optional methods

to a protocol...

...and adding

implementation code

only for methods that

are used. No stubs

are required.

10_495896-ch06.indd 13610_495896-ch06.indd 136 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 137

Many Cocoa objects have associated delegate protocols. You can also define custom protocols for
your own objects. NSApplicationDelegate is a standard Cocoa protocol, so you can find a
list of definitions of its optional methods in the developer documentation. Protocol Reference
pages are similar to Class Reference pages, and you can search them in the same way — by copy-
ing and pasting search words into the documentation search field or by using the Find Text in
Documentation menu option. Figure 6.14 shows the NSApplicationDelegate protocol ref-
erence page.

Figure 6.14

Like a class reference, a protocol reference displays methods grouped into tasks. There’s also a conven-
tional alphabetical list of the methods in the protocol.

Reading a Protocol Reference
A Protocol Reference page is like a Class Reference page, and it is organized in a similar way.
Protocols aren’t objects, so they don’t have properties, but they do include a list of methods
grouped by tasks. You can use the Table of Contents at the top left of the page to review the
tasks, and you can also access an alphabetical list lower down on the page.

The messages shown in this reference are generated automatically by OS X at various points in
an application’s lifecycle. We’ve already used the applicationDidFinishLaunching:
method, which is triggered after the application loads. This stub is included in the template as a
convenience because this method is used in so many applications. If you don’t need to use this

10_495896-ch06.indd 13710_495896-ch06.indd 137 8/31/10 2:44 PM8/31/10 2:44 PM

138 Getting Started

feature, you can delete the stub. You can also add further delegate methods, as shown below.
An object can adopt an unlimited number of protocols, although in practice if an object is
adopting more than three protocols the application’s design may need to be simplified. To
adopt multiple protocols, separate them with commas:

@interface AnObject: NSObject <AnImaginaryProtocol,
ACompletelyDifferentProtocol, YetAnotherProtocol>

If an object adopts multiple Cocoa protocols, it will receive all the corresponding messages sent
by OS X. You can also define your own protocols and send messages from them to other cus-
tom objects in your application.

Understanding delegation in Cocoa
Delegates and protocols are completely general and not limited to high-level application man-
agement. In theory, a delegate object can do anything a normal object can do, and there are no
restrictions on protocol methods.

In practice, most Cocoa objects use delegation in a selective way. These options were listed in
Chapter 2, but they’re important enough to repeat here.

Delegate messages are sent:

 When an event is about to happen

 When an event has happened

 To ask if an event or response should happen

 To request data from another object

If you review the list of methods defined in the NSApplicationDelegate protocol refer-
ence, you’ll see they fit into one of these groups:

 applicationDidFinishLaunching: is received by the application delegate
when the application has finished loading.

 applicationDidChangeScreenParameters: is received when the screen res-
olution changes.

 applicationShouldTerminate: is received when OS X wants to know if an
application should quit. The application delegate controls the response by returning
YES or NO. You can use this feature to keep an application running while it saves its
state before quitting.

 applicationWillUnhide: is received when the application is unhidden.

This event-based model describes how delegates are often used in Cocoa. You won’t find it
explained in the documentation, but it’s much easier to understand delegates and protocols if
you appreciate these design goals.

10_495896-ch06.indd 13810_495896-ch06.indd 138 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 139

Other objects that support delegation follow this model. Elsewhere in Cocoa you can find dele-
gate messages that are sent:

 Before a menu opens

 After a window is hidden

 To return a method for a given key triggered by an animation event

 To return image data

 When an audio player objects finishes playing a file

This list is a very short selection of Cocoa’s delegate features. You can find the full list of objects
that support a delegate and their associated protocols by searching the documentation for
“protocol reference.”

Implementing delegate methods
Now that you’ve been introduced to the methods in NSApplicationDelegate, you can
experiment with adding them to the application. The fastest and simplest way to implement a
delegate method is to copy its signature directly from the documentation and paste it into a
class implementation.

As an exercise, you’ll implement applicationWillHide:, which is triggered when the user
hides the application’s window. Find the method in the task list and click it to see the full defini-
tion. Highlight the signature with the mouse as shown in Figure 6.15 and press Ô+C to copy it.

Press Ô+V to paste it into the implementation file, as shown in Figure 6.16. Because it’s the start
of a new method block, make sure it’s pasted before the @end directive but after the curly
bracket that closes applicationDidFinishLaunching:. The window-maximizing code
has been removed because it’s not used in this example.

 N O T E
aNotification is a notification object passed by OS X to this method. It arrives as a received parameter. In this
example, you’ll ignore it because it doesn’t contain any useful information. Notifications are system-level events gen-
erated and managed by OS X. Don’t confuse them with Objective-C messages — the two messaging systems are unre-
lated. For more about notifications, see Chapter 9.

There’s no limit to the possible complexity of the method implementation. In a commercial
application, this method might halt a running timer to save processor cycles, write the applica-
tion state to disk ready for a fast restore when the application unhides, or even send an e-mail.
You’ll create an implementation that’s very much less sophisticated — one that logs a message
to the console.

10_495896-ch06.indd 13910_495896-ch06.indd 139 8/31/10 2:44 PM8/31/10 2:44 PM

140 Getting Started

Figure 6.15

To implement a method, copy and paste its signature from the documentation. You can also type
it in manually, but copying and pasting is quicker and less error prone. All parameter names are
local. If they clash with existing names, add an underscore.

Implement the method code with a call to NSLog:

- (void) applicationWillHide: (NSNotification *)aNotification {
 NSLog (@”You hid the application!”);
}

 N O T E
NSLog is Cocoa’s console output object. You can write the console with printf, but NSLog includes extra fea-
tures that can convert object values into formatted strings. It’s the simpler and more powerful choice for Cocoa debug-
ging. Don’t forget to end the method with a curly bracket. Also, note that Code Sense doesn’t autocomplete NSLog
itself, but does add a string reminder once it recognizes it. This is a persistent bug in Xcode.

10_495896-ch06.indd 14010_495896-ch06.indd 140 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 141

Figure 6.16

Pasting a method signature creates the first part of the method implementation. To complete
the implementation, add code between the curly brackets.

To view the output, open Xcode’s console window by choosing Run ➪ Console. The console
window includes a convenient copy of Xcode’s main toolbar. It can’t be customized, but you
can use Build and Run to build and run the project without having to switch back to the main
Xcode window.

Click Build and Run. When the window appears, choose First ➪ Hide First to hide the applica-
tion. Figure 6.17 shows how the result.

The applicationWillHide: method is triggered by OS X, running your new code. The
code you added posts a console message. To unhide the application, click its icon in the Dock. If
you hide it again, the method is triggered again. Optionally, you can experiment with some of
the other methods defined in the protocol. For example, you can use applicationWillUn-
hide: to log a message when the application unhides and at least one of its windows
becomes visible.

10_495896-ch06.indd 14110_495896-ch06.indd 141 8/31/10 2:44 PM8/31/10 2:44 PM

142 Getting Started

Figure 6.17

Hiding the window makes it disappear into the Dock, but because the application is running as an
Xcode subprocess, the console window continues to be visible — and it displays this message.

 N O T E
applicationWillHide: is triggered before the window disappears. applicationDidHide: is trig-
gered after the window disappears. Cocoa often gives you both options for important events. In this example they’re
functionally identical. In a different context, you might want to use applicationWillHide: to stop anima-
tions or other foreground processes before allowing the window to disappear.

Receiving messages from OS X with NSResponder
OS X uses a variety of mechanisms to send messages to an application. Application control mes-
sages don’t process mouse event information — so how can you make an application respond
to mouse clicks or movements? Reviewing the Table of Contents for NSWindow shows that
there’s a Handling Mouse Events task. This includes a mouseLocationOutsideOfEvent
Stream method, which returns the position of the mouse cursor inside the window on
demand.

10_495896-ch06.indd 14210_495896-ch06.indd 142 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 143

You could put this method inside a loop and poll it continuously to monitor the mouse posi-
tion. But this would be inefficient, and it wouldn’t handle mouse clicks. Given Objective-C’s
event-based programming model, it’s realistic to assume that there’s an event-based solution.

Interface objects — including windows — can use the NSResponder class to respond to user
actions. Scrolling to the top of NSWindow’s class reference reveals the Inherits from… list. This tells
you that NSWindow is a subclass of NSObject, and also of NSResponder. It also means that
NSWindow includes all the properties and methods of NSObject and NSResponder “for free.”

Every class that handles user messages in Cocoa is a subclass of NSResponder. So you can use
its features to make window respond to mouse clicks. Figure 6.18 shows the mouse event
methods listed in the NSResponder class reference.

Figure 6.18

By subclassing NSResponder — where it’s not subclassed already — you can handle a rich selection
of mouse and other event messages.

10_495896-ch06.indd 14310_495896-ch06.indd 143 8/31/10 2:44 PM8/31/10 2:44 PM

144 Getting Started

 C A U T I O N
NSResponder is an abstract class. You can’t create an instance of NSResponder, but you can create instances
of its subclasses. Effectively, NSResponder is a bundle of methods that implements event handling for window,
view, and application objects. You can subclass it to create your own event-driven objects. Developers occasionally
debate whether NSResponder would be better implemented as a protocol. The answer may well be “yes,” but it’s
implemented as an abstract class, so that’s how it has to be used.

Like protocol methods, the NSResponder methods are designed to be overridden. You use
them by copying their signature, adding them to a receiver, and then implementing them with
custom code. In this example, you want to make window respond to mouse events, so window
is the receiver. The code

[window mouseDown: theEvent];

doesn’t work because it sends a message to the window. You’re looking for a message handler
in the window.

 T I P
You can use this code to send simulated mouse clicks to a window. In fact, you can trigger any NSResponder
method artificially by running the method from your code. Most applications don’t need this, but you can use this fea-
ture to create mouse and key event automation.

But where does the code go? There are no class files for NSWindow. How can you modify it?

Subclassing NSWindow
An obvious solution is to subclass NSWindow and extend it with a mouse-handling method. If
you subclass NSWindow, you can add one or more custom methods to it, including some of the
NSResponder methods.

Xcode includes features that make it easy to add a subclass to a project. Right-click the Classes
group at the top of the Groups & Files pane in Xcode and choose Add ➪ New File, as shown in
Figure 6.19. You can also choose File ➪ New File from the main menu.

Select Cocoa Class in the Mac OS X pane at the left, and select Objective-C class in the list of file
types at the top, as shown in Figure 6.20. Locate the Subclass Of drop-down list halfway down
the window, and click NSObject if it’s not already selected.

10_495896-ch06.indd 14410_495896-ch06.indd 144 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 145

Figure 6.19

Adding a new class in Xcode. If you right-click a group, the class is automatically added to the
selected group. This isn’t always a good thing. If the class includes a nib file, you’ll have to drag
it to the Resources group by hand.

Click Next at the bottom right and enter a filename in the box at the top of the window.
Because you’re subclassing NSWindow, it’s a good idea to use a name that reminds you that
this is a window-like class, such as FirstNewWindow. Click Finish to add the new class to the
project. Figure 6.21 shows the result.

 T I P
Xcode doesn’t enforce a naming convention or add a project prefix to new files. For clarity, it’s useful to follow a stan-
dard naming convention such as <projectname><subclassname><object type>. Including the project name makes
it easier to keep track of files when you begin reusing them in other projects.

10_495896-ch06.indd 14510_495896-ch06.indd 145 8/31/10 2:44 PM8/31/10 2:44 PM

146 Getting Started

Figure 6.20

Think of NSObject as a blank generic subclass. The other subclass options shown here include
prewritten method stubs. The NSObject option creates a blank subclass without prewritten code.

By default, this process creates a subclass of NSObject. This isn’t what you want here, so as a
first step you need to change the interface code in FirstNewWindow.h. When the file is cre-
ated, the first line of the interface looks like this:

@interface FirstNewWindow : NSObject {

To redefine your new class as a subclass of NSWindow instead of NSObject, change the
code to

@interface FirstNewWindow : NSWindow {

Save the file, and that’s it — you’ve subclassed NSWindow. You can repeat these steps to sub-
class any other Cocoa object.

10_495896-ch06.indd 14610_495896-ch06.indd 146 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 147

Figure 6.21

Exploring the new subclass. Currently it’s still a subclass of NSObject.

 T I P
When you create a new file in Xcode, you can use the drop-down menu to select NSObject, NSDocument,
NSView, or NSWindowController as the source class. These classes are subclassed regularly, so they’re built
into Xcode to save you time. Choosing NSObject creates a blank header and implementation file. The other classes
generate files that include stub definitions of some of their key methods.

Now that you have subclassed NSWindow, you can extend it by overriding one of the
NSResponder mouse methods. You’ll use mouseDown:. As before, the easy way to do this is
to copy and paste the signature from the method signature from the class reference into the
new class.

In Xcode, select FirstNewWindow.m. Paste the line under the @implementation
FirstNewWindow directive so that the file looks like this:

-(void)
@implementation FirstNewWindow
-(void)mouseDown: (NSEvent *) theEvent
@end

10_495896-ch06.indd 14710_495896-ch06.indd 147 8/31/10 2:44 PM8/31/10 2:44 PM

148 Getting Started

Add curly brackets to the method and then add a line that uses NSLog to send a message. The
finished method looks like the version shown in Figure 6.22.

Figure 6.22

Implementing the mouseDown: method in your new subclass of NSWindow. The code is correct —
but it doesn’t work!

Build and run the file. Open the console window by choosing Run ➪ Console in the main
Xcode window. When the application window appears, click in it.

 C A U T I O N
Whenever you click Build and Run after making an edit, Xcode displays a Save before Building? dialog. Usually you’ll
want to click Yes to save the edited files. If you click Cancel, the files won’t be saved. Xcode always builds from the
saved files, not the versions visible in the editor. You can also use Cancel if you realize you need to make more edits
before a build.

Unfortunately, also as shown in Figure 6.22, nothing happens in the console window. Clicks
have no effect. You’ve subclassed the window object, and you’ve added a mouse method, so
why isn’t the code working?

10_495896-ch06.indd 14810_495896-ch06.indd 148 8/31/10 2:44 PM8/31/10 2:44 PM

 Chapter 6: Getting Started With Classes and Messages in Application Design 149

There are two ways to make the code active. One uses a feature in Interface Builder and is intro-
duced in the next chapter. The other gives you the power to modify the features of NSWindow
in place, without subclassing. It’s called creating a category on a class.

Creating a category on NSWindow
Think of a category as an in-place subclass. Instead of copying the features of NSWindow to a
subclass with a different name, you can create a category to add new methods directly to
NSWindow.

 T I P
Don’t be confused by the name. Nothing is categorized, and there are no categories in the usual sense. A category is an
in-place subclass that adds extra methods. It might as well be called a zombo or some other made-up word.

Understanding categories
Categories make it possible to modify and extend Cocoa objects without changing their class.
This can be useful when Cocoa objects enforce strong property typing and refuse to accept a
subclass.

For example, NSWindow has a setContentView: method that takes an instance of NSView.
The compiler generates a warning if you try to pass a subclass of NSView. In this example you
can ignore the warning and your code will work — probably. But other Cocoa classes are less
forgiving of type mismatches.

When you create a category, you change the properties of the class as a whole. If you create a
category on NSWindow, every window in the application is modified.

Creating a category
To create a category, follow these steps:

 1. Create a new file, using the steps required to create a subclass.

 2. Save the file as <classname>+<category name>. For example, a category on
NSWindow should be saved as NSWindow+<aName>. The category name is arbitrary.

 3. In the interface file, add a list of the methods you are adding to the class.

 4. In the implementation, add the code that implements each method.

For example, to extend NSWindow with a maximize method, the interface looks like this:

#import <Cocoa/Cocoa.h>
@interface NSWindow (maximize)
 -(void) maximize;
@end

10_495896-ch06.indd 14910_495896-ch06.indd 149 8/31/10 2:44 PM8/31/10 2:44 PM

150 Getting Started

The (maximize) after NSWindow is arbitrary. The name doesn’t have to match the method
or methods in the interface.

The implementation looks like this:

#import “NSWindow+Maximize.h”
@implementation NSWindow (maximize)
-(void) maximize {
 [self setFrame:[[self screen] visibleFrame]
 display: YES
 animate: YES];
}
@end

After you add this category to your project, you can maximize any window in your application
with

[aWindow maximize];

You can repeat steps 3 and 4 to add your custom mouseDown method to NSWindow.

 N O T E
Sample code for this chapter is available on the Web site at www.wiley.com/go/cocoadevref.

Summary
You’ve learned a lot in this chapter, so take some time to review your new skills. You looked at
the structure of a Cocoa application and learned about the role of the delegate object. You
were introduced to protocols, discovered some of their possible applications, and explored how
to use delegate objects and protocols in practice.

You encountered NSResponder for the first time, and learned how to implement its methods
in a subclass of NSWindow. You were taken through a step-by-step demonstration of subclass-
ing, were introduced to categories, and discovered that important parts of every Cocoa applica-
tion are defined in its nib files, which are explored in the next chapter.

10_495896-ch06.indd 15010_495896-ch06.indd 150 8/31/10 2:45 PM8/31/10 2:45 PM

In This Chapter

Introducing
Interface Builder

Introducing nib files

Getting started with
Interface Builder

Setting classes and
subclasses

As emphasized in previous chapters, Interface Builder — also
known as IB — could be called Application Builder. Many
developers use IB exclusively as an interface design tool. But

you can use it in a completely general way, creating arbitrary col-
lections of objects for your applications and defining arbitrary links
between them.

 T I P
Even when used exclusively for UI design, you can use IB to create loadable ele-
ments within a UI, such as individual entries in a table or scrolling subwindows.
You don’t have to use IB to design complete views. Potentially you can combine IB
elements with code to create customized animated interfaces that have more in
common with Flash design than with the standard Aqua/OS X look and feel.

Introducing Nib Files
A nib file is a collection of objects. The contents of a nib file are
read-only: you can’t use a nib file as a persistent store for mutable
data. But IB includes initialization options for certain objects, so you
can preset some of their properties to useful values; for example,
you can set the initial position and size of an application window.
Table 7.1 lists some of the key features of the nib system.

Nib file loading is semiautomated. An application’s initial nib file is
defined in its info.plist file, as shown in Figure 7.1. This nib is
always loaded automatically.

11_495896-ch07.indd 15111_495896-ch07.indd 151 8/31/10 2:45 PM8/31/10 2:45 PM

152 Getting Started

Table 7.1 Key Features of the Nib System
Feature Explanation

General object support Nib files can include any Cocoa object or customized subclass.

Implicit object instantiation Object instances loaded from a nib file are allocated and initialized in memory without

alloc/init code.

Visual UI design Objects with visible elements can be positioned with IB’s graphic view editor.

UI object defaults Visible objects can have a subset of their properties initialized to default values.

Object graphs Objects can be grouped together in trees or hierarchies, which are accessed via a common root

object.

Semiautomated loading Nib files can be loaded automatically or loaded manually using code.

Lazy loading Object groups can be loaded and released as needed to maximize memory.

Nib swapping Nib swapping is a practical application of lazy loading. Nib files can be swapped as needed —

for example, to load different views into a single window.

Outlets and actions Objects in the nib file can be linked to objects in code via IBOutlets. Methods in code can be

triggered by events generated by nib objects via IBActions.

Bindings Objects can trigger code events automatically without explicit outlets or actions.

Figure 7.1

To locate the default nib file, open the Resources group, click First-info.plist, and
scan down the list of items to find the Main nib file base name. You can edit this name to load
a different nib file, but more typically you’ll use the default nib when the application loads.

11_495896-ch07.indd 15211_495896-ch07.indd 152 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 153

The classes shown in Table 7.2 can load a nib file on demand. NSNib supports two-stage load-
ing, where the nib is loaded in one operation and expanded into a set of accessible objects in a
second operation. This guarantees that all objects are available. For practical examples of on-
demand nib loading, see Chapter 15.

Table 7.2 Cocoa Nib Loading Options
Option Explanation

info.plist The application info.plist file includes a default nib that is loaded automatically.

NSNib Use the initWithNibNamed: method to load a named nib, and use either

instantiateNibWithOwner: or instantiateNibWith
ExternalNameTable: to unpack the nib objects into memory. Use this

deferred unpacking option to control when objects are ready to be accessed.

NSBundle Use the loadNibNamed: method to create a new object from the nib contents.

NSDocument Use the windowNibName: method to specify a nib that creates an empty

document.

NSWindowController Use initWithWindowNibName: to specify a nib that defines the window

contents.

NSViewController The iPhone equivalent of NSWindowController — use init
WithNibName: to select and load a nib that contains a view.

Loading objects from nib files
The nib files generated by IB contain blank class instances, arranged in groups called graphs.
Certain Cocoa objects can be nested in a folder-like way to create a tree or hierarchy. For exam-
ple, a view controller object can contain a number of views, each of which may contain sub-
views. IB supports structures like these automatically and displays them visually. Not all objects
can be graphed, and IB automatically limits nesting to objects that support it.

The examples and illustrations in this book were prepared
with Xcode 3. Preview versions of Xcode 4 were announced
but not yet shipping just before the book went to press.
Although the features and changes to Xcode 4 haven’t been
finalized, a key difference is that IB no longer runs as a sepa-
rate application and is now built into Xcode. The linking
process outlined below has also been enhanced and
extended. You can now drag links directly to the code that
features outlets and actions. If you drag a link to the code

window from an object that doesn’t have an assigned action
method, Xcode/IB creates a stub for you automatically.

Generally, IB is much better integrated than it was in Xcode
3. You no longer need to be so careful about saving changes
in IB when you modify the interface, or reloading classes
when you make changes to the code. Otherwise, the steps
used to design an interface and link it to code remain recog-
nizably similar to those used in Xcode 3.x.

Comparing Xcode 3 and Xcode 4

11_495896-ch07.indd 15311_495896-ch07.indd 153 8/31/10 2:45 PM8/31/10 2:45 PM

154 Getting Started

Cocoa’s nib loader runs its own implicit alloc/init code as objects are loaded into memory.
But by default, the objects aren’t accessible from your code. To make them accessible, you must
create links to them — a complex process that combines code directives with manual editing in
IB, introduced in detail in the next chapter.

Editing nib files
Editing a nib is a six-step process. Typically you repeat the steps as the project evolves, adding
more objects to a nib, or more nibs to the project.

 1. Define outlets and actions in your code.

 2. Launch IB, using one of the methods listed later in this chapter. IB scans your code
and generates a list of outlets and actions. To avoid restarting IB after every code edit,
you can also choose File ➪ Reload All Class Files file option.

 3. Add objects to the nib file. If the objects are visible — buttons, windows, and so
on — specify their size, position, color, and other default properties.

 4. If your code uses subclasses, reclass any modified objects to force IB to load the
subclass.

 5. Use IB’s linking tools to connect objects and messages to outlets and actions.

 6. Save the nib file. This step is critical because Interface Builder doesn’t save changes
automatically before a build.

When you build and run the project, Xcode includes the modified nib file. If you follow the steps
and create links successfully, your application can receive messages from objects in the nib file,
send messages to them, and read or write their properties.

Getting Started with Interface Builder
You can launch IB by double-clicking any nib file within Xcode. You can also run IB directly by
double-clicking Interface Builder.app in the Applications directory created by Xcode,
but double-clicking a nib file is more convenient.

With the First project open, click the Resources group in Xcode’s Groups & Files pane to open it.
MainMenu.xib is generated automatically when you create a new project, so you’ll see it
when you open the Resources group, as shown in Figure 7.2.

Double-click MainMenu.xib and wait. Interface Builder is a complex application, and it can
take up to a minute to load. When it appears, choose Window ➪ Bring All To Front. You should
see the windows shown in Figure 7.3.

11_495896-ch07.indd 15411_495896-ch07.indd 154 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 155

Figure 7.2

The MainMenu.xib file is in the Resources group. The English item indicates the default
English localization for the –; you can support other languages by creating nibs for them with
different labels.

 N O T E
Although nib files have a .xib extension, they’re not called xib files. The original extension was .nib, an acronym
for NeXT Interface Builder. In Interface Builder 3.0, nib files were reimplemented using XML, and the extension was
changed to .xib. The original name remained the same — possibly because no one is entirely sure how to pro-
nounce xib.

Introducing IB’s windows
IB has four window types. The Document, or Doc, window lists the objects in the nib file. The
Doc window is associated with one or more Edit windows, which preview the visual design of
the nib file. A nib often contains multiple elements that can be previewed in separate edit win-
dows; for example, the standard application template includes a blank window and a separate
menu element.

11_495896-ch07.indd 15511_495896-ch07.indd 155 8/31/10 2:45 PM8/31/10 2:45 PM

156 Getting Started

Figure 7.3

Interface Builder’s windows, which are described next. The Main Menu window is independent of the
others and simulates the application menu.

The Library window displays a library of Cocoa and other OS X items that can be added to the
file. The Inspector window displays information about whichever item is currently selected in
the Doc window. The Inspector and Library windows include tabs that can display subwindows.

 T I P
For reasons that remain mysterious, windows in Interface Builder like to hide behind other windows. It’s helpful to get
into the habit of selecting the Bring All To Front menu option to force them into the foreground. You can open multi-
ple projects in Interface Builder. When you select Bring All To Front, they all appear, so it’s a good idea to work on a
single project at a time.

Introducing the Document window
Selecting the Doc window shown in Figure 7.4 reveals the full list of objects included in the
blank template. Objects are arranged in a finder-like way, with reveal triangles. Select the
Window (First) object and click its reveal triangle. You’ll see another object, called Content View,
which appears indented under Window. Indentation indicates that an object is “inside” another
object, within a tree structure with the top-most object as the root.

11_495896-ch07.indd 15611_495896-ch07.indd 156 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 157

Figure 7.4

Expanding the items in the Doc window reveals how items are shown
“inside” other items or placed on a lower branch of the object tree.

You can change the graph by dragging and dropping items. To remove items from the nib,
highlight them and choose Edit ➪ Delete. You can also use the backspace-delete key. To add
items to the nib, drag them across from the Objects list in the Library window.

The hierarchy is interpreted by different objects in different ways. To see an example, click the
reveal triangle next to the Main Menu object. For a menu, the hierarchy defines menu headings,
followed by lists of menu items. For a window, the hierarchy defines the objects that appear
inside the window, and it also sets the order in which they’re drawn. It’s possible to hide objects
behind other objects by changing their position in the graph. Objects with the same indenta-
tion are drawn top down, so objects lower down on the list cover objects above them, as shown
in Figures 7.5 and 7.6.

11_495896-ch07.indd 15711_495896-ch07.indd 157 8/31/10 2:45 PM8/31/10 2:45 PM

158 Getting Started

Figure 7.5

Objects are drawn from the top of the Doc window down. Lower objects cover higher objects. When the
slider is under the text field — the small white rectangle — it appears above it in the preview.

 N O T E
When you drag an object from the Library to the Doc window, the release location is important: it defines the object’s
position in the graph. Only certain object relationships are permitted, and it’s impossible to drop an object in a loca-
tion that creates an invalid graph.

11_495896-ch07.indd 15811_495896-ch07.indd 158 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 159

Figure 7.6

Swapping the items changes the draw order. When the text field is drawn last, it covers the slider.

Introducing the Edit window
The Edit window, shown in Figure 7.7, is visual representation of the visible elements in the Doc
window. Double-click the Window object to open an Edit window for it. The window in the blank
template is empty, but you can add items to it by dragging them from the library window.

Use the Edit window for visual editing by dragging elements to set their sizes and positions. As
you move items, guidelines appear to indicate useful visual relationships that help you align
elements with each other. Note that you can use the Inspector window, described later, to set
an object’s size and position numerically.

11_495896-ch07.indd 15911_495896-ch07.indd 159 8/31/10 2:45 PM8/31/10 2:45 PM

160 Getting Started

Figure 7.7

The Edit window’s guidelines appear automatically to
indicate alignment. In this example, the text field is center
aligned with the slider, and it is also aligned with the
“safe” edge of the window, which defines the useful
drawing area. On the iPhone — but not on the Mac —
a guideline appears to indicate the window’s center line.

 C A U T I O N
Interface Builder displays independent nib elements in separate preview windows, so an application’s menu always
appears separately. It’s considered an independent feature that isn’t associated with a window, and it has a special
preview window that enables you to test the menu design dynamically. However the preview doesn’t support
editing — you can only add, remove, and rearrange menu items in the Doc window.

It’s important to understand that only some of the items in the Doc window can be edited in an
Edit window. For example, if you double-click the NSApplication object in the Doc window,
nothing happens. It only exists in code, and code is edited in Xcode, not in IB. Typically only
menus, windows, and preference panes can be edited visually.

Introducing the Library window
The Library window is a list of resources that can be included in a nib file. It has three tabs:
Objects, Classes, and Media. When you design a nib file, you’ll use the Objects tab regularly and
the Classes and Media tabs much less often.

The Objects tab, shown in Figure 7.8, displays a scrollable list of objects that you can add to a
window to create a Cocoa interface. To add an object to a nib, drag it from this window to the
Doc window and release it. The Doc window automatically enforces valid object trees. You can
drop any object at the root level of a nib file, but only selected objects can be dropped inside
other objects. For example, you can’t drop an instance of NSApplication inside a window,
because — not surprisingly — windows can’t contain applications.

11_495896-ch07.indd 16011_495896-ch07.indd 160 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 161

Figure 7.8

The Objects tab of the Library shows visible objects — Cocoa elements that
can be used to build an interface. Not all Cocoa objects are visible.

You can also add objects with a visual element by dragging and dropping them onto an open
Edit window. This immediately adds the object to the nib design so you can see it and work
with its location and size. It also places it into a valid position in the graph.

 T I P
You can create a very simple Hello World application by dragging a Label object — an instance of NSTextField —
from the Library onto an empty window, double-clicking it to enable editing, and changing the text to “Hello, World.”
If you save the nib file and then build and run the application, the window appears showing the text. After an empty
window, this is the simplest of all possible Cocoa applications.

The Classes tab, shown in Figure 7.9, displays an alphabetical list of Cocoa classes. Selecting an
object reveals information about it in four subtabs:

 Inheritance displays the object’s superclasses.

 Definitions displays the framework that defines the object. Some objects are defined
in plug-ins. Ignore the plug-in feature for now; it’s not used in basic nib design.

 Outlets displays object properties that have been prelisted in IB as a convenience. You
can create your own custom outlets for any objects, but a handful of objects feature
predefined outlets. For example, NSDrawer includes outlets to a parent window, a
content view, and a delegate.

 Similarly, Actions displays a list of predefined actions. For example, NSDocument
includes links to predefined print, save, save as, and other methods.

11_495896-ch07.indd 16111_495896-ch07.indd 161 8/31/10 2:45 PM8/31/10 2:45 PM

162 Getting Started

Most objects don’t include predefined outlets and actions, so these elements remain blank. The
contents of this tab are occasionally useful as a memory jogger, but it’s possible to design a nib
file without using this tab at all.

Figure 7.9

The Classes tab of the Library window shows all Cocoa objects — visible and
invisible. You can use this tab to add data objects such as NSSet to a nib.
This tab also displays class inheritance relationships and predefined connections.

The Media tab, shown in Figure 7.10, displays predefined graphics and other media features.
Most of the graphics are designed to be used within an instance of NSCell — Cocoa’s button
and table cell manager class. Use this tab to add standard Mac graphics to your application.

 N O T E
You can design your own graphics and import them manually using other Xcode features, but they won’t appear in the
Media tab. For details, see Chapter 16.

11_495896-ch07.indd 16211_495896-ch07.indd 162 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 163

Figure 7.10

The Media tab displays standard Mac graphics that you can use in your applications
to create a familiar look and feel. You can also load graphics independently and assign
them in code, but this tab is a quick way to create a UI with standard Aqua features.

Introducing the Inspector window
The Inspector window is the most critical window in IB. It has multiple functions, and is used for
the following:

 Presetting object properties and behaviors

 Defining object special effects, including animations

 Setting object position and size and defining object behaviors when a window is
resized

 Creating bindings, implicit links to code that are triggered when the object is modified

 Creating explicit links to object and outlets in code

 Assigning an object to a subclass

 Setting an object tooltip

When you select an object in the Doc window, its corresponding properties appear in the
Inspector window, selected by the icons in the tab bar at the top of the window. The icons are
slightly cryptic. Here’s a list of their formal names, from left to right.

11_495896-ch07.indd 16311_495896-ch07.indd 163 8/31/10 2:45 PM8/31/10 2:45 PM

164 Getting Started

The Attributes tab, shown in Figure 7.11, is a context-dependent property editor. It’s equivalent
to setting object properties in code, but is easier to work with because it displays many proper-
ties simultaneously. When the selected object is visible in an Edit window, changing its proper-
ties in the Inspector immediately updates its appearance. Each object has a different selection
of editable properties: some objects have no editable properties at all; others display tens of
options. Properties define how the object appears and how it behaves. For example, a slider
object can appear with or without check marks, and the slider’s movement can be free or con-
strained to the check marks; a text field can be center-, left-, or right-justified, with various pos-
sible line break options; and so on.

Figure 7.11

The Attributes tab is one of the most critical
elements of IB. Use this tab to preset object
properties. Every object displays a different
selection of properties; for example, you can
set the title and define the controls that are
visible for the application’s window.

The Effects tab, shown in Figure 7.12, selects special effects, including drop shadow and trans-
parency effects, and various animation effects implemented with both predefined and editable
filters. For example, you can specify Photoshop-like compositing modes to combine the object
with objects that are drawn beneath it. You can also set animated transitions — such as page
curls and dissolves — that are triggered in response to user actions.

11_495896-ch07.indd 16411_495896-ch07.indd 164 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 165

 C A U T I O N
IB’s animated effects can be unreliable. It’s better to create animations using the techniques introduced in Chapter 17.

Effects are optional and usually cosmetic, so you can ignore these options, as many developers
do. But this tab provides creative possibilities that you can use to create unique, striking, and
distinctive effects. Effects are supported by almost all visible objects.

Figure 7.12

The Effects tab defines optional animations
and special effects. Most of these features
are specialized, and many are only used rarely,
although the drop-shadow effect shown here
is a simple but useful effect that adds depth
to a window or object. This tab is not available
on the iPhone.

11_495896-ch07.indd 16511_495896-ch07.indd 165 8/31/10 2:45 PM8/31/10 2:45 PM

166 Getting Started

The Size tab, shown in Figure 7.13, defines object size and alignment. It not only sets the object
dimensions, it also defines how the object is anchored to the window around it, and it includes
alignment and placement buttons that can center an object horizontally or vertically or align it
with other elements.

 T I P
You can select multiple objects in either the Editor or the Doc window, and use the placement buttons to align and
center them as a group. For an example of working with the Inspector, see the next chapter.

Figure 7.13

Use the Size tab to set the size, position,
and alignment of objects with fine
numerical control. The Placement and
Alignment buttons auto-align and
auto-center selected items.

The Bindings tab, shown in Figure 7.14, links a selection of object properties to various data pro-
cessing features in the application. Bindings are an advanced Cocoa feature that simplifies data
management. For example, you can use bindings to manage application preferences without
having to create outlets and actions for every possible preference. For more information, see
Chapter 13.

11_495896-ch07.indd 16611_495896-ch07.indd 166 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 167

Figure 7.14

The Bindings tab links items to data structures
in the application, bypassing standard accessors
and allowing for automated refreshes and updates.
Bindings are not available on the iPhone.

The Connections tab, shown in Figure 7.15, is used to link an object to outlets and actions
defined in code. When you select the tab, the Inspector window displays a list of available out-
lets and actions. The linking process is detailed in the next chapter. After linking, you can click
this tab to review the connections between an object and its supporting code.

The Identity tab, shown in Figure 7.16, defines an object’s class, sets an optional tool tip, and
defines optional runtime attributes. You can also highlight objects with a colored tag for conve-
nience. This is a cosmetic feature that doesn’t affect the object’s appearance in the application,
but makes it easier to view related objects in IB. The Class Identity field at the top of the Identity
tab is the most useful element. Use it to set the class of an object using a drop-down list that
displays a list of available classes. This list is automatically preset to show compatible classes; for
example, you’re not allowed to reclass an application object as a slider object, but you can
change a text field into a different type of text field with slightly different features.

11_495896-ch07.indd 16711_495896-ch07.indd 167 8/31/10 2:45 PM8/31/10 2:45 PM

168 Getting Started

Figure 7.15

The Connections tab lists an object’s outlets and
actions. Received actions are events received by
the object from other objects or processed internally,
while sent actions (not shown here) are sent from
the object to other objects. Outlets are links to
predefined properties, while Referencing Outlets
are links to custom properties in the code.

Introducing First Responder and File’s Owner
The Doc window includes two items called File’s Owner and First Responder. Unlike the other
items in a nib file, they aren’t true objects — they’re placeholders, and they are used as link des-
tinations. As Figure 7.17 illustrates, they’re a halfway house between messages and outlets gen-
erated within the nib and the corresponding outlets and actions defined in code. File’s Owner is
a placeholder for the object that loaded the nib and stands in for the object that “owns” the nib.
First Responder is a placeholder for the Cocoa responder chain.

11_495896-ch07.indd 16811_495896-ch07.indd 168 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 169

Figure 7.16

Use the Identity tab to select an object’s class
from a list of nominally compatible classes –
including custom subclasses. You can also
define tool tip text here.

 N O T E
The blank application template includes an instance of Font Manager. If your application doesn’t need to support
multiple fonts, you can delete this object. It’s essential for full-featured text editing, but is redundant in simple appli-
cations. The template also includes an instance of NSApplication, which is the main application object. This
object must appear in the main nib file. It isn’t needed in any other nibs.

11_495896-ch07.indd 16911_495896-ch07.indd 169 8/31/10 2:45 PM8/31/10 2:45 PM

170 Getting Started

Figure 7.17

File’s Owner is a virtual placeholder object, standing in for the object that loaded the nib.
It’s included as a link source and destination — it’s not practical to link from IB to the
corresponding code in Xcode, so File’s Owner is used as a halfway house. First Responder
performs an equivalent function for the Cocoa Responder Chain.

Object that loaded the nib

IBOutlet and IBAction

directives defined in code.

Nib Object 2
File’s Owner

(Placeholder Icon)

List of Outlets

and Actions
Links

Nib Object 1

Nib Object ...n

Nib Object 2
First Responder
(Placeholder Icon)

List of Actions

Cocoa responder chain

IBAction directives in code

collected from all

responder-ready objects

in the application.

Links

Nib Object 1

Nib Object ...n

Setting Classes and Subclasses
Now that we’ve had a tour of Interface Builder, we can return to the problem at the end of the
previous chapter where we successfully subclassed NSWindow, but discovered it wasn’t
responding to messages.

Under the menu tree is an object called Window (First). Window (First) is an instance of
NSWindow — this is why the subclass of NSWindow we created in the previous chapter does
nothing. The nib file is still loading an instance of NSWindow, and our new subclass is being
ignored.

Interface Builder includes an option for changing the class of an object. Click on it in the Doc
Window to highlight it, and click the right-most tab in the Inspector window — it shows the let-
ter “i” inside a circle. The top-most pane is called the Class Identity pane. It includes a drop-
down menu with a list of all the classes used in the project. Click on the drop-down menu to see
a list of compatible classes, and select FirstNewWindow, as shown in Figure 7.18. This reclasses
the window as an instance of our new subclass, adding the newly defined features to the
object.

11_495896-ch07.indd 17011_495896-ch07.indd 170 8/31/10 2:45 PM8/31/10 2:45 PM

 Chapter 7: Introducing Interface Builder 171

When you create a subclass in code, you must subclass the corresponding object in any nib file
that references it. If you don’t, the application loads the original unmodified class, and your
code is ignored. I illustrated this feature early on because it can be one of the more puzzling
and confusing features of Cocoa application design.

Figure 7.18

To replace an object with a custom subclass,
select it in IB, click the Identity tab, and select
the subclass name from the list. The object
now supports all the properties and methods
of your subclass.

Save the file, and Build and Run the project. You should get the result shown in Figure 7.19. The
default window has been replaced with the subclass, which now responds to mouse events.
Success!

Now that you have created a very simple project, you can move on to a more complex
application.

11_495896-ch07.indd 17111_495896-ch07.indd 171 8/31/10 2:45 PM8/31/10 2:45 PM

172 Getting Started

Figure 7.19

After reclassing the application window as your new FirstNewWindow class, the window
responds to mouse click events and runs your click handler.

Summary
In this chapter, you were introduced to nib files and looked briefly at the Cocoa classes you can
use to load them into your application. You were given a detailed tour of the different windows
in Interface Builder, with their subtabs. Finally, you learned how to use the Identity tab in the
Inspector window to subclass a nib object to force it to run custom code.

11_495896-ch07.indd 17211_495896-ch07.indd 172 8/31/10 2:45 PM8/31/10 2:45 PM

In This Chapter

Building an Application
with Interface Builder

Designing a project in
Interface Builder

Understanding links,
outlets, and actions

Using advanced UI
techniques

Now that you have had an introduction to Interface Builder
(IB), you are ready to use it to build a simple application.
This application will use a simple UI created in IB that links

nib objects with code. It runs a simple timer, controlled by two but-
tons. The button text changes according to the application state,
and the count appears in a large font.

Designing a Project in
Interface Builder
First, in Xcode, choose File ➪ New Project, click the Application
item under the Mac OS X section, select the Cocoa Application
template, and click the Choose button. Save the project as Counter.
Open the Resources group, and double-click MainMenu.xib to
launch IB and load the nib file for editing. After IB loads, choose
Window ➪ Bring All To Front.

If the Library window isn’t visible, choose Tools ➪ Library. If the
Edit window isn’t visible, double-click Window (Counter) in the Doc
window. You should see a collection of windows similar to the one
shown in Figure 8.1.

The position, size, and layout of the windows aren’t standardized in
IB, so the layout you see may vary. You’ll be working with the Doc,
Inspector, Edit, and Library windows. You can ignore the menu. If
you have a larger monitor, you should be able to view all of these
windows simultaneously. On a smaller display, you may need to
minimize certain windows to allow space for the others.

 T I P
The sample project in this chapter uses the objects in the standard IB library. You
can extend the library with third-party objects. For example, the BWToolkit at
http://brandonwalkin.com/bwtoolkit/ is a useful free collec-
tion of IB objects.

12_495896-ch08.indd 17312_495896-ch08.indd 173 8/31/10 2:46 PM8/31/10 2:46 PM

174 Getting Started

Figure 8.1

Creating a working layout ready for editing. On a dual monitor system, you can keep the code
visible in one window and IB’s windows visible in another. A single monitor system is less
convenient.

Introducing the Interface Builder workflow
As outlined in the previous chapter, Interface Builder and Xcode do not create automatic links
between objects in a nib file and objects in code. You must add links manually, and until you
do, the nib objects and the code remain disconnected. If you load a nib without creating links, it
appears in memory, but your code can’t access its features. When the user interacts with it, it
doesn’t send messages to your application.

Linking is a complex multistage process. It’s error prone, and many basic build errors are cre-
ated by missing links and other nib-related problems. These errors are usually trivial and easy to
repair, but the most efficient way to avoid them is by following an explicit workflow, shown in
Figure 8.2. The items in bold are critical steps. You must work through these steps for every
object in the nib that is accessed from your code.

12_495896-ch08.indd 17412_495896-ch08.indd 174 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 175

Figure 8.2

A typical IB workflow. For a simple project, you can start with code definitions
and then add matching objects to the nib. In most projects, you’ll iterate
through the steps as shown.

Create the project/object with a new nib.

Add objects to the view by dragging them from the library.

Position and resize the objects in the Edit window.

Center, align, and define object resize behaviors in the Size tab of the Inspector window.

Set default object properties with the Attributes tab in the Inspector window.

Define outlets and actions in the code that match and support the objects in the nib.

Reclass any subclassed objects.

Use the linking tool to link objects to code.

SAVE THE NIB FILE!

Build and run to test.

If necessary, iterate from Step 2.

Use File --> Reload All Class Files to scan the code.
(IB makes an internal list of outlets and actions.)

12_495896-ch08.indd 17512_495896-ch08.indd 175 8/31/10 2:46 PM8/31/10 2:46 PM

176 Getting Started

 N O T E
You can add “dumb” objects to a nib for decoration. Dumb objects don’t need links: they appear in a view when the nib
loads, but they don’t support user interaction, and their appearance never changes. Examples include decorative or
indicative graphics, such as background wallpaper in a view.

Adding objects to a nib
You’ll begin by adding a text field to the nib. If it isn’t already selected, select the Objects tab in the
Library window. Scroll through the window until you find the Label object — it’s slightly more
than halfway down the list. Drag it from the Library window and drop it on the Edit window, as
shown in Figure 8.3. When you release the mouse button, the label is added to the view.

Figure 8.3

Adding an object to a view in the Edit window. You can also drop objects into the Doc window,
but adding them to the Edit window lets you define the object’s position.

12_495896-ch08.indd 17612_495896-ch08.indd 176 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 177

The full list of objects in the Library window is long, so it can be difficult to find items. The win-
dow includes a search feature that can preselect objects for you by name. At the bottom of the
window, type button into the search box, as shown in Figure 8.4.

Figure 8.4

Using the Library search to preselect items by name

 T I P
The search is text-based, so you can use any named feature; for example, you might search for “textured” instead of
“button.”

Drag and release a Push Button from the Library into the view, and then drag and release
another Push Button. Move it around the view without releasing it. You’ll see various guidelines
appear as it aligns with the label and the other button; for example, when the two buttons are
horizontally aligned, you’ll see the lines shown in Figure 8.5.

12_495896-ch08.indd 17712_495896-ch08.indd 177 8/31/10 2:46 PM8/31/10 2:46 PM

178 Getting Started

Figure 8.5

Adding or moving any object in the view displays guidelines that make it easier to align objects
horizontally, vertically, or along a mutual center line.

Setting fonts and font sizes
Click the label to select it; two marker dots appear at each side. Choose Fonts ➪ Show Fonts to
display a font selector and text size dialog. The label should be big and readable, so you’ll set
the size to 96 points. At the right-hand side of the font selector, select 96 from the list.

You’ll also change the font to OCR A Std to create a digital look. The choice of font doesn’t
affect the application, so you can select a different font here if you prefer an alternative styling.
The result is shown in Figure 8.6. For completeness, you can also change the font used in the
buttons. Click each button in turn and select a new font from the list.

12_495896-ch08.indd 17812_495896-ch08.indd 178 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 179

Figure 8.6

Using the Fonts dialog to select the font and size for the text label. When you change the font
size, the label resizes itself automatically.

Aligning objects and setting attributes
Because you don’t want the word “label” to appear, you’ll begin by changing the label text.
Double-click the label. The view changes to the one shown in Figure 8.7

Because this is a counter, the default count is 0, so type “0” and press Return to replace the
label text.

12_495896-ch08.indd 17912_495896-ch08.indd 179 8/31/10 2:46 PM8/31/10 2:46 PM

180 Getting Started

Figure 8.7

Double-clicking an item with text enables text editing. You can type in any replacement text.
Press Return to confirm an edit, or press Escape to cancel it.

You’ll notice that the text is left justified. It’s often useful to center-justify text labels, so you’ll
modify the text field accordingly. If the Inspector window isn’t visible, choose Tools ➪
Inspector to display it. Select the leftmost Attributes tab. If the text field isn’t already selected,
click it. You’ll see a list of properties — called attributes — that can be set for the text field. You
can set most of these properties in your start-up code, but it’s often more convenient to preset
them in IB. This generates less code, makes the code easier to maintain, and also gives you
instant visual feedback as you design a view. To select center-justification, click the center-
alignment tab, shown in Figure 8.8.

 T I P
If you hover the mouse over an attribute, a tool tip appears with a reminder of the code used to access the equivalent
property.

12_495896-ch08.indd 18012_495896-ch08.indd 180 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 181

Figure 8.8

Setting default text field attributes. Most of the attributes are self-explanatory. Optionally, you
can set the font color here. Clicking the black area in the Text box, which appears halfway down,
displays a color picker.

Selecting cell objects
On the Mac, many UI items are split into a container object and an underlying cell object. This
isn’t true on the iPhone, where UI items tend to be self-contained single objects. If you click an
item twice in the Edit window — slowly, so that you don’t generate a double-click — you can
select the underlying cell object, as shown in Figure 8.9. Note that the title of the Inspector win-
dow changes to Text Field Cell and a highlight appears around the cell object. The cell object
defines the object’s contents and most of its appearance. Any edits you make to the cell are
automatically applied to the object as a whole.

12_495896-ch08.indd 18112_495896-ch08.indd 181 8/31/10 2:46 PM8/31/10 2:46 PM

182 Getting Started

Figure 8.9

Clicking an object twice slowly, rather than double-clicking, selects an object’s cell, if it has one.
Most cell objects share most of their attributes with their container object. Editing one object
automatically changes the properties of the other.

Centering and aligning objects
The label isn’t centered in the view. You can align objects by eye, but IB includes a centering
tool for precise alignments. Select the Size tab at the top of the Inspector window (the third tab
from the left) and click the Align Horizontal Center button, shown in Figure 8.10. The label is
centered automatically. The adjacent placement button centers objects vertically. You can use
the numbers at the top left of this window to set the size and position of objects numerically.
You can drag a rubber-band box around groups of objects in the Edit window to align them
together.

The Autosizing features control how objects respond when the surrounding window is resized.
The outer lines in the square anchor objects to the surrounding frame; for example, you can
force an object to keep a fixed distance from the edges of a window. The inner lines control
whether or not the object resizes itself with respect to the anchor points.

12_495896-ch08.indd 18212_495896-ch08.indd 182 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 183

Figure 8.10

Using the Placement buttons in the Size panel to center an object in the window. The Alignment
button row above the Placement buttons is active when multiple objects are selected.

 T I P
You won’t use resizing in this example, but you’ll find it useful to experiment with this feature. It’s particularly impor-
tant for iPhone applications that implement autorotation in code; turning off the anchors and autosizing options
forces objects in a view to rotate and reposition themselves automatically.

You’re nearly done editing the view. Edit the left button text so it says Start and the right button
text so it says Stop. Save the file. You’re now ready to start linking the objects in the nib to new
supporting code.

 T I P
You can build and run the application at this point. When it loads, you’ll see that the window contains the new objects.
You can click the buttons. They darken momentarily in the usual Aqua way, but because they’re not connected to the
code, nothing happens.

12_495896-ch08.indd 18312_495896-ch08.indd 183 8/31/10 2:46 PM8/31/10 2:46 PM

184 Getting Started

Understanding links, outlets, and actions
When you link nib objects to code, every active object in the nib must have a counterpart in
code. In this example nib, there are two buttons and a text field, so you must declare two but-
ton objects and a text field object in the code. As mentioned earlier, “dumb” non-interactive
objects don’t require code, but active objects must have a code counterpart, and you must link
the counterpart to its associated object in IB.

Links have two ends and two types. Outlets are used to read and set object properties. Actions
are used to respond to messages. At the code end, outlets are defined using the IBOutlet
directive. Actions are defined with IBAction, but this isn’t always obligatory. At the nib file
end, links are defined using a visual linking tool.

Figure 8.11 illustrates how outlets and actions are used. Outlets define a unique link between
an object referenced in code and an object in the nib file. Outlets have exactly one object at
each end of the link. Actions have a single destination — an event handling method — but can
be triggered from multiple sources.

Figure 8.11

Typical design patterns for outlets and actions. This figure shows the simplest and
most common design pattern. More complex patterns are also supported; for
example, received actions are processed inside an object, rather than being sent
to another object.

IBOutlet anObject;

Code
Referencing Outlet

in the nib file

Link anObject

IBAction aMethod: (id) sender;

Code
Selector or specific event

message in the nib file

Link any object (user action)

 T I P
Technically, IBOutlet tells the compiler to leave a pointer undefined at compile time. Cocoa’s nib loader returns
the value at runtime when the nib loads. IBAction is a method placeholder. Objective-C calculates all method
addresses at runtime, so the directive is largely for clarity.

Using IBOutlet and IBAction
To create an outlet, insert the IBOutlet directive into an object’s property declaration.
Replace

@property (assign) AClass *anInstance;

with

@property (assign) IBOutlet AClass *anInstance;

12_495896-ch08.indd 18412_495896-ch08.indd 184 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 185

That’s all that’s required. The rest of the process is completed in IB.

 T I P
Although it’s trivially easy to create an outlet, it can be harder to remember that you need to do it. If you follow the
checklist in Figure 8.2, you won’t forget.

IBAction is more complex. In certain circumstances, the IBAction directive is optional, and
a conventional void method is an acceptable substitute. This feature is implemented differ-
ently on the iPhone and on OS X. On the Mac, Interface Builder recognizes a method as an
IBAction as long as it has the following signature:

-(void) methodName: (id) sender;

You don’t need to replace void with IBAction, but actions must have this signature to be
recognized. No variation is allowed. The sender parameter holds a pointer to the object that
triggered the message. Applications are described next.

This auto-recognition feature is implemented on the iPhone. You must include the IBAction
directive. However, you can specify actions that don’t take a parameter. For example:

- (IBAction) methodName;

is valid on the iPhone only. The sender parameter is discarded.

 N O T E
More information about sender appears later in this chapter.

Defining outlets and actions in the interface
To keep the application as simple as possible, you’ll implement the counter within the applica-
tion delegate. In a typical application, the delegate would be reserved for system messages, and
the counter features would be implemented in a subclassed window or a custom view. In prac-
tice, this means subclassing at least one extra object, and doesn’t add anything to the function-
ality or efficiency of the application. For this example only, you’ll keep the supporting code in
the delegate.

Click CounterAppDelegate.h. An outlet to the window object is already defined, so you can see
an example of the correct syntax. Add declarations for an NSTextField, and two
NSButtonCell objects, as follows:

#import <Cocoa/Cocoa.h>
@interface TimerAppDelegate : NSObject <NSApplicationDelegate> {
 NSWindow *window;
 NSButtonCell *startButton;
 NSButtonCell *stopButton;
 NSTextField *countText;
}

12_495896-ch08.indd 18512_495896-ch08.indd 185 8/31/10 2:46 PM8/31/10 2:46 PM

186 Getting Started

@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet NSButtonCell *startButton;
@property (assign) IBOutlet NSButtonCell *stopButton;
@property (assign) IBOutlet NSTextField *countText;
@end

 N O T E
You’re creating outlets to button cell objects and not to button objects because cell objects are the active and editable
element in many UI objects, including buttons. You can only set the text of a button by modifying the cell object inside
it. However, this rule of thumb isn’t completely consistent. The text field includes a cell, but it’s easier to ignore it and
set the text with a direct outlet to the field itself.

How do you know the names of the objects in the nib? The names are listed in the right-hand
column in the Doc window, as shown in Figure 8.12. Click the reveal triangle for Window
(Counter) and for all of its subobjects. The Type column lists the object names. When you add
objects to a nib, you can use this feature to read their names, if you don’t know them already.

 N O T E
While you must use standard Cocoa object names, you have a free choice of pointer names. This example uses self-
explanatory names for clarity, but these names are arbitrary.

Figure 8.12

To find object names, look in the Type column.
You must use the same object names when you
create outlets in your code.

12_495896-ch08.indd 18612_495896-ch08.indd 186 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 187

You’ll also define three action methods — one that will be triggered from a button to start the
count, one to stop the count, and one to reset the count. Add these three signatures after the
property declarations, but before the @end directive:

- (void) startCount: (id) sender;
- (void) stopCount: (id) sender;
- (void) resetCount: (id) sender;

This completes the interface, which is shown in Figure 8.13. Choose File ➪ Save to save the file.

Figure 8.13

The completed interface for the timer project. Outlets and actions are defined, but not yet
implemented.

 N O T E
Although there are three methods, there are only two buttons. In this example, I’ll demonstrate how to switch meth-
ods dynamically, reprogramming a button to trigger two different methods depending on the state of the timer. It’s
just as practical to create a separate reset button, but the dynamic option is more powerful.

12_495896-ch08.indd 18712_495896-ch08.indd 187 8/31/10 2:46 PM8/31/10 2:46 PM

188 Getting Started

Defining outlets and actions in the implementation
To complete the first stage of the code, you’ll add the new objects to the implementation and
create method stubs for the new methods. At this stage in the development workflow you have
two choices: You can create a stub-filled prototype implementation, add links to it in Interface
Builder, and then return to the code to complete the implementation; or you can write a first
draft of the code, add links in Interface Builder, and run a test build.

Both approaches are valid, but the first is simpler and easier to manage because you can add
code features in stages, implementing and testing each method and each event separately. The
second approach is better suited to implementing handler methods with working code copied
from an existing application. You’ll use the first approach here.

Select CounterAppDelegate.m in Xcode. Start by adding the new pointers to the @synthe-
size directive in the file. Next, add a stub for each method. The final implementation should
look like this:

#import “CounterAppDelegate.h”
@implementation CounterAppDelegate
@synthesize window, startButton, stopButton, countText;
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 // Insert code here to initialize your application
}
- (void) startCount: (id) sender{
}
- (void) stopCount: (id) sender{
}
- (void) resetCount: (id) sender{
}
@end

Save the file. Now you’re ready to link the code to the objects in Interface Builder. Following is a
recap of what you’ve done so far:

 1. Added an object for each “live” object in the nib

 2. Created pointers for those objects

 3. Added an IBOutlet directive for each object

 4. Defined some action methods in the interface

 5. Created a stub implementation for each method

This checklist is the bare minimum needed to create code-side objects ready for linking. As you
can see, this isn’t an elegant or simple process — and there are more stages to come when you
finish the nib-side links. Unfortunately, there is no other way to work with nib files. You must
work through these steps carefully whenever you design a nib and create supporting code for
it. With practice, the process becomes easier.

12_495896-ch08.indd 18812_495896-ch08.indd 188 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 189

Creating links in Interface Builder
The nib-side linking process begins when IB loads the current class headers. Behind the scenes,
it scans them and creates a list of possible link destinations. The destinations are listed in vari-
ous pop-up menus in IB. To create a link, you drag a line from a link destination to a target
object. When linking actions, you select the action from a separate floating pop-up menu that
appears over the target object.

Take a look at how this works in practice. Begin by choosing File ➪ Reload All Class Files in IB.
This runs the scan and creates the link list. This process is invisible — IB provides no feedback
while it’s happening, although for larger projects, the spinning beach ball icon may appear
while you wait for the process to complete. The scan is also run automatically whenever IB
loads, and when you double-click a nib file in Xcode to open it for editing.

In the Doc window, select the Counter App Delegate object. In the Inspector window, select the
Connections tab (the one with the rightward-pointing arrow, second from the right). Figure
8.14 shows the result. The link destinations in the Application Delegate are listed in the window.

Figure 8.14

A list of link destinations. The outlets and actions are listed in separate sections. Some links already
exist; they’re built into the template to save you time, so you don’t need to add them by hand.

12_495896-ch08.indd 18912_495896-ch08.indd 189 8/31/10 2:46 PM8/31/10 2:46 PM

190 Getting Started

Two links are already present. The delegate property is linked to File’s Owner, and the win-
dow object is linked to the window object in the nib. These premade links are built into the
template.

Creating a link to an outlet
You’ll start by linking one of the outlets. Click and hold the mouse on the circle to the right of
the startButton outlet. Drag the cursor toward the Button Cell (Start) object in the Doc window.
Release the mouse when the blue rectangle appears around the object, as shown in Figure 8.15.

Figure 8.15

Creating a link to an outlet. Drag a line from the outlet to a target object, then release the mouse.
The new link (not shown here) appears in the Connections window.

When you release the mouse, you’ll see that a new link has been created. Repeat the process for
the stopButton outlet, releasing the mouse on the Button Cell (Stop) object. Repeat it again for
the countText outlet, but release the mouse on the Static Text (0) object.

Note that it’s not possible to release the mouse on either of the Push Button objects, or on the
Text Field Cell objects. This isn’t accidental — IB doesn’t allow you to create links to invalid des-
tinations. Figure 8.16 shows the result of linking all three outlets.

12_495896-ch08.indd 19012_495896-ch08.indd 190 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 191

Figure 8.16

After linking all three outlets, you should see this when you select the Counter App Delegate
object. All three outlets have been connected to their counterpart objects in the nib.

 T I P
You can drag links to a Doc window or to an Edit window. Dragging a link to an Edit window links an outlet to valid
objects automatically. If you hold the mouse without releasing it when the blue rectangle flashes, the Edit window
highlights the current target object for you.

Creating a direct link to an action
Click the Counter App Delegate object to select it. Drag and release a line from the start-
Count: method to the Push Button (Start) object. Repeat for the stopCount: method, link-
ing it to the Push Button (Stop) object. Leave the resetCount: method unlinked.

Linking to an action is slightly different from linking to an outlet. Cell containers and cell objects
are interchangeable — either works as a link destination. For this first example, the linking is
complete. Figure 8.17 shows the result. We’re now ready to implement the core of the applica-
tion. To recap, if you build and run the application, clicking on the buttons will trigger the stub
methods in the code, and you can add code to set the properties of all of the objects. This code
doesn’t exist yet — and before we add it, we’ll take a look at an alternative way to create links
that illustrates one of Objective-C’s most powerful features.

12_495896-ch08.indd 19112_495896-ch08.indd 191 8/31/10 2:46 PM8/31/10 2:46 PM

192 Getting Started

Figure 8.17

The start and stop buttons have been linked to their corresponding methods. Clicking the button
triggers the method.

Creating a link using a selector
An action is a target, triggered by an event. In IB, event triggers are listed as Sent Actions.
Although you’ve just dragged a link from the App Delegate to a button, in reality the message
passes in the opposite direction, from the button to the delegate.

This distinction isn’t critical in this application. But sometimes it’s more convenient to drag a
link from a button or other UI object to a link destination object, and then select one of its avail-
able methods.

Click the Counter App Delegate again, and click the diagonal cross to the left of the startCount:
link. This deletes the link; it’s the standard IB link removal option. You’ll re-create the link using
an alternative approach.

Click Push Button (Start). Under the Sent Actions tab, you’ll see a single circle, labeled selector. A
selector is a programmable method variable. It works like a pointer, but it points to a method
and not to an object.

12_495896-ch08.indd 19212_495896-ch08.indd 192 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 193

Think of a selector as a generic placeholder for methods. It can be filled with any method you
choose. When you link to a selector, you fill the placeholder with a specific method. The method
is triggered when the user interacts with the object.

 N O T E
For more information about selectors, see Chapter 9.

With a button, the method is triggered when the user clicks the button. Selectors are used
throughout Cocoa. For example, click the Main Menu item, and use the reveal triangles to drill
down to the Menu Item (Undo) object in the menu. You’ll see that a sent action to a method
called undo: is already defined. Click the delete cross. The method is deleted, and you can see
that the menu item uses a selector to specify its action, as shown in Figure 8.18.

Figure 8.18

Many objects use a selector to define the method that is triggered when the user interacts with them.
Selectors are the core feature of the Cocoa menu system.

12_495896-ch08.indd 19312_495896-ch08.indd 193 8/31/10 2:46 PM8/31/10 2:46 PM

194 Getting Started

When you design an application menu, you specify a selector for each item. Each selector calls a
different method in your code. The default menu includes a list of predefined methods. To
implement each feature, you implement a corresponding method. You can customize the
menu by changing the text labels for one or more items and by making their selectors point to
new custom methods.

Creating a link to a selector requires an extra step that isn’t needed when linking an outlet.
Re-select Push Button (Start), and drag a link from its selector property to the Counter App
Delegate object. When you release the mouse, you’ll see a pop-up menu appear, as shown in
Figure 8.19. The menu shows a list of available methods in the target object. Click a method to
select it and complete the link; select startCount: in this example. When the linking is com-
plete, you have re-created Figure 8.17. As a final step, save the nib file before you move back to
Xcode to implement the rest of the counter code. Xcode doesn’t remind you to save it before
you build a project.

Figure 8.19

Using a selector or method pop-up. To create a link, select a method from the list. If the list is
very long, you’ll see up/down scroll arrows at the top and bottom.

12_495896-ch08.indd 19412_495896-ch08.indd 194 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 195

 T I P
Save the nib file. Did I mention that you should remember to save the nib file? Save the nib file.

Using NSTimer to create a simple seconds counter
There are many ways to implement a timed counter in Cocoa. The simplest is to use NSTimer —
a lightweight but powerful timer object. NSTimer can be run as a one-shot counter or as
a repeating counter. To create a repeating counter, add the following boilerplate code to
applicationDidFinishLaunching: :

NSTimer *myTimer =
[NSTimer scheduledTimerWithTimeInterval: 1
 target: self
 selector: @selector (timerMethod)
 userInfo: nil
 repeats: YES];

 N O T E
NSTimer uses a very long nested signature. For convenience and clarity, it’s useful to split the parameters across
multiple lines. This is purely cosmetic. It doesn’t affect the code, but it does make it easier to read and modify.

This creates a timer that calls timerMethod once a second. Setting repeats to NO would call
timerMethod once. Note how timerMethod is defined in code with a selector. The princi-
ple is almost exactly the same as for a button — the method in the selector slot is triggered
automatically by a timer event instead of a user action. The name of timerMethod is arbitrary.
It must be unique and it must exist, but there are no other restrictions on the method name.

There’s an extra detail to note. The target property specifies the object in which the selector
method exists. You can use this feature to trigger a method in a different object; or, as is done
here, you can specify self to trigger a method in the same object.

Finally, to stop a timer, use the invalidate method.

[myTimer invalidate];

This stops the timer and releases the timer object from memory. Optionally, you can set the
timer pointer to nil after invalidating it. You can then test for nil to avoid invalidating the
timer again, which is likely to cause a crash.

Implementing a timer method
A simple outline of the timer method looks like this:

-(void) timerMethod {
doThingsHere…
}

12_495896-ch08.indd 19512_495896-ch08.indd 195 8/31/10 2:46 PM8/31/10 2:46 PM

196 Getting Started

Add this code beneath applicationDidFinishLaunching:. It’s possible to pass the
timer object to a method. This feature isn’t used in this application, but it’s often useful when
working with timers. Replace the selector with

selector: @selector (timerMethod:)

The extra colon is enough to tell Cocoa to pass a pointer to the timer object as a parameter,
which you can then copy from the signature.

-(void) timerMethod: (NSTimer *) timer {
doThingsHere…
[timer invalidate]; //Stop the timer
}

In this example, the timer method needs to increment a counter. It also needs to report the
timer value to the view; specifically, it needs to update the text in the text field. It’s easy to
implement a counter with an int, and increment it at every timer tick.

-(void) updateTimer {
timerCount += 1;
}

Reporting the timer value is slightly more difficult. Many Cocoa objects include a text or
title property that holds a text label. Uniquely, NSTextField uses a property called
stringValue instead. To set the text of the label called countText, use

countText.stringValue = <any string>;

To convert a number into a string, use the NSString stringWithFormat: method. This
implements standard C text formatting identical to that used in printf and sprintf; for
example, %i interprets a number as an int and converts it to a text string. The method is
implemented as an NSString class method. The format string must be “objectified” with @ in
the usual way. The final code for the timer method is

-(void) updateTimer {
 timerCount += 1;
 countText.stringValue =
 [NSString stringWithFormat: @”%i”, timerCount];
}

This increments the count at each tick, and then writes the value to the label in the nib. Because
you’ve linked the countText object to the text field in the view, updating the stringValue
parameter automatically updates the count that appears in the view. In short, it just works. No
more code is needed to display the value.

12_495896-ch08.indd 19612_495896-ch08.indd 196 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 197

Implementing start and stop button methods
The button methods need to start and stop the timer and reset the counter variable. In this
example they also reprogram the buttons dynamically. Initially the buttons are labeled Start
and Stop. Only the Start button is enabled. Clicking Start renames the buttons to Reset and
Continue. It modifies their selectors and disables the Start button so that the user can’t create a
second timer if one is already running. The complete code is as follows:

#import “CounterAppDelegate.h”
@implementation CounterAppDelegate
@synthesize window, startButton, stopButton, countText;
NSTimer *thisTimer; // Generic timer object pointer
int timerCount;
- (void)applicationDidFinishLaunching:
 (NSNotification *)aNotification {
 timerCount = 0; //Initialize the count on start-up
}
- (void) startCount: (id) sender {
 stopButton.action = (SEL)@selector(stopCount:);
 //Stop button does stop
 stopButton.title = @”Stop”;
 [stopButton setEnabled: YES];
 [startButton setEnabled: NO]; //Prevent double timing
 thisTimer = [NSTimer scheduledTimerWithTimeInterval: 1
 target:self
 selector:@selector(updateTimer)
 userInfo:nil
 repeats:YES]; //Boilerplate timer initialization
}
- (void) stopCount: (id) sender {
 if (thisTimer != nil) {
 [thisTimer invalidate];
 thisTimer = nil; //Kill the timer
}
 [startButton setEnabled: YES];
 stopButton.action = (SEL)@selector(resetCount:);
 //Stop button does reset
 stopButton.title = @”Reset”;
 startButton.title = @”Continue”;
 //Identical to Start, but without clearing the timer
 //variable
}
- (void) resetCount: (id) sender {
 //Reinitialize everything on reset
 timerCount = 0;
 countText.stringValue = @”0”;
 stopButton.action = nil; //Stop button does nothing

12_495896-ch08.indd 19712_495896-ch08.indd 197 8/31/10 2:46 PM8/31/10 2:46 PM

198 Getting Started

 stopButton.title = @”Stop”;
 startButton.title = @”Start”;
 [stopButton setEnabled: NO];
 [startButton setEnabled: YES];
}
- (void) updateTimer {
 timerCount +=1;
 countText.stringValue =
 [NSString stringWithFormat:@”%i”, timerCount];
}
@end

The methods cycle through different possible timer states, changing the labels on the buttons
and the selectors they trigger. For example, in startCount:

 stopButton.action = (SEL)@selector(stopCount:);

This line fills stopButton’s selector slot with the stopCount: method. When the user clicks
the button, stopCount: is triggered.

A key feature of selectors is that they can be modified at any time. The stopCount: method
updates the selector to trigger the resetCount: method, which in turn modifies the selector
so that it does nothing. Selector switching is a simple but very powerful technique. You can use
it to reconfigure a UI dynamically, so that the user triggers different events depending on the
application state. You can also modify selectors internally, changing the events that are trig-
gered as the application runs; for example, you might change the timer’s selector so that it trig-
gers a different method on every tenth count.

The remaining code updates the title property of both buttons to reflect their new functions.
The setEnabled: property is used to enable and disable buttons dynamically, making it
impossible for the user to click the Start button again when the timer is already running. When
this property is set to NO, the button appears grayed out and the user can’t click it.

You can now add the code, or view the sample on the Web site. The finished application is
shown in Figure 8.20.

 N O T E
The sample code is available at www.wiley.com/go/cocoadevref.

12_495896-ch08.indd 19812_495896-ch08.indd 198 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 199

Figure 8.20

The finished application. The button labels are updated
dynamically to indicate different application states.
Buttons are also enabled and disabled dynamically.

Using Advanced UI Techniques
To create a basic UI in OS X and on iPhone OS, you need to know how to use the following:

Selectors

Cell objects

Delegate objects, delegate messages, and self

Outlets

Actions

Visual nib layout

Attribute settings

Linking

With these core skills, you can add almost any interface object to a Cocoa UI and create sup-
porting code for it, using the documentation as a reference. For example, you can now create
customized menus by changing the menu labels, adding and removing menu items, and defin-
ing selectors for active menu items.

But other Cocoa object interfaces aren’t implemented consistently, and some objects require
special tricks or knowledge. With these core skills, you can understand what needs to be done
in outline, even when it’s not obvious how it needs to be done in practice.

12_495896-ch08.indd 19912_495896-ch08.indd 199 8/31/10 2:46 PM8/31/10 2:46 PM

200 Getting Started

 T I P
The easiest way to find worked solutions for difficult or inconsistent objects is to look for them online. Developer dis-
cussions often mention these gotchas. Finding a worked solution can save you hours of frustration.

With more advanced techniques, you can use UI objects in more flexible and elegant ways, cre-
ating simple and powerful interfaces with minimal code.

Using loose typing and (id) sender
Objective-C supports an open, generic placeholder pointer type named id. Use id in parame-
ter lists and method returns when the type isn’t defined until runtime or when the same
method must handle different object types. For example:

- (AClass *) thisMethodDoesSomething: (id) aParameter;

aParameter can be of any data type. id is a catch-all pointer type, and it tells the compiler
that the pointer points to . . . something. This is often used in UI event handlers.

-(void) handleAnEvent: (id) sender;

sender is the object that triggered the event. It can be any type of object: a button, switch,
slider, and so on. Many Cocoa objects are designed with id in their signature because it would
be unwieldy to create different subclasses and methods for every possible supported object in
the signature.

id is typically used in four ways:

 Case 1: As a placeholder pointer when the type doesn’t matter; for example, when a
method saves a pointer to an object but doesn’t need to access its features.

 Case 2: Where a Cocoa object uses id in a parameter or return field, but the applica-
tion is deliberately limited to ensure that only certain types are used.

 Case 3: When the type must be discovered explicitly at runtime.

 Case 4: For direct object identification.

Using id with data collections
In Case 1, Cocoa’s data collection objects — NSArray, NSSet, NSDictionary — implicitly
save pointers of the id type. You can load any slot in a data collection with any kind of object,
mixing them as needed. This makes collections very flexible and powerful. The same array can
store numbers, strings, standard Cocoa objects, and custom objects, and move them between
entries as needed without restriction.

 N O T E
You can use the id data type in your own methods. It’s a generic data type. Although it’s often used with a sender
parameter, it has other possible applications.

12_495896-ch08.indd 20012_495896-ch08.indd 200 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 201

Using (id) sender with casts
In Case 2, objects must be “re-typed” with a cast before their properties can be accessed. For
example:

- (void) anActionMethod: (id) sender {
aButton = (NSButton *) sender; //Assume sender is an NSButton
something = aButton.aProperty; //Access a property
…
}

This is a standard idiom in event handler methods. Use it when you are sure that, for example,
aParameter is an NSButton. You can guarantee this by linking the interface in IB so that
only NSButton objects trigger aMethod:. Do not use it when sender’s type is not fixed.

This idiom is necessary because the id type doesn’t support property accessors. The following
isn’t valid because the compiler doesn’t know which properties are valid for an id type:

something = sender.aProperty;

The cast gives the compiler this information.

Using (id) sender with class checking
In Case 3, Objective-C supports a Class data type for classes, and you can use it to read a class name
at runtime. Classes are managed with a predefined Class type. You can discover a class with

Class thisIsAClass = [sender class];

You can also convert the class name to a string for listing or testing with

NSString *aString = NSStringFromClass([sender class]);

This is sometimes useful for debugging. But you don’t need to check class names as strings
because you can compare them directly. To run code according to the class of an object, use
the following:

//Check for an exact match
if ([anObject isMemberOfClass: [className class]])
 {doSomething…
//Check for a match while also checking inheritance
if ([anObject isKindOfClass: [className class]])
 {doSomethingElse…

The first conditional returns TRUE if and only if anObject is an instance of className. The
match must be exact. The second returns TRUE if anObject is a subclass of classname. For
example, all Cocoa objects are subclasses of NSObject, so setting classname to NSObject
always returns TRUE.

You can use these conditionals to select code according to an object’s class at runtime. This is a
more complex solution than Case 2, shown previously, but it can support a much wider range
of objects.

12_495896-ch08.indd 20112_495896-ch08.indd 201 8/31/10 2:46 PM8/31/10 2:46 PM

202 Getting Started

Potentially, you can create a single method to handle every possible event from an interface. This
solution won’t be simple or elegant, but it is possible to do this. More typically, you can use class
checking in a switch to select handler code for a small number of different sender types.

Using (id) sender to identify objects
In Case 4, you can use the value of sender directly, in a direct comparison to identify the
object that triggered an event. For example, your application might have three objects in its UI:

@property (assign) IBOutlet NSButtonCell *firstButton;
@property (assign) IBOutlet NSButtonCell *secondButton;
@property (assign) IBOutlet NSTextField *firstTextField;

You can link all of these objects to a single handler method, and use a pointer comparison to
discover which object triggered the event.

-(void) eventHandler: (id) sender {
if (sender == firstButton) {
 //First button was clicked
}
if (sender == secondButton) {
 //Second button was clicked
}

if (sender == firstTextField) {
 //The text field did something
}

//Etc… }

This code is inherently loosely typed, and it is valid for all objects. It’s particularly useful for UIs
with multiple text fields.

Placing outlets and actions
A standard problem in UI design is deciding which object to link to. The simple example in this
chapter is built around a single subclassed object — the app delegate. This minimal design is
perfect for applications with a single view. You can implement menu and other event handlers
in the delegate without creating further objects. This is somewhat nonstandard, but it’s a simple
solution and works.

In a more complex application, there may be many nib files, each with many objects. When
designing multi-view UIs, you must do the following:

 1. Define how objects send messages to each other.

 2. Create links for those messages.

12_495896-ch08.indd 20212_495896-ch08.indd 202 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 203

A key limitation of the nib editing system is that you cannot drag links between nib files. IB’s
interface doesn’t support this. But the First Responder object is designed to offer a workaround
for action linking.

 N O T E
There’s no way to link outlets across multiple nib files because the requirement doesn’t make sense. Outlets are associ-
ated with a single object, which is in turn associated with a single nib file. Typically, all outlets in a nib are linked to
File’s Owner or, occasionally, to a delegate object.

When you create an action method in any object in the application, it’s added to the responder
chain. When you click First Responder, you’ll see a list of received actions. This list includes all
the action methods in the application, collected from every object. You can link to these actions
in the usual way — and this solves the cross-linking problem.

Figure 8.21 illustrates this with an example from an iPhone application. The showZetta and
showInfo: methods are in different objects, but both appear as linking destinations inside
First Responder. When an application has multiple nibs, the same list of First Responder meth-
ods appears in all of them.

Figure 8.21

Using First Responder to view all of the action methods in an application. You can use this
feature to send messages to objects that aren’t in the current nib.

12_495896-ch08.indd 20312_495896-ch08.indd 203 8/31/10 2:46 PM8/31/10 2:46 PM

204 Getting Started

 C A U T I O N
First Responder doesn’t indicate if a method is already linked directly as a selector. You can easily create multiple links
to the same methods. This may not be a problem in your application, but it can be useful to double-check whether or
not a method is already linked within an object before trying to link it again in First Responder.

Placing NSResponder events in OS X
First Responder also supports a very long list of standard methods that can be used in every
application and which are supported by many objects. These are defined in the documentation
for NSResponder, which was introduced in Chapter 6.

To implement these methods, follow this two-step process:

 1. Link a suitable object to them, so that they’re triggered by a user action. The
menu items in the default menu are prelinked to some of the methods for conve-
nience.

 2. Implement a handler method in a suitable object in the application. For example,
to implement undo events, create a method called undo:. You can place the method
in any object that is a subclass of NSResponder.

Using standard event messages on the iPhone
The iPhone supports a simplified version of NSResponder, with a smaller selection of stan-
dard messages. It also supports a modified selector system, which generates yet another list of
messages. Instead of a single blank selector slot triggered by a click, iPhone objects respond to
different user actions with different event messages. Figure 8.22 shows the standard event list.
This list is available for most objects, but is implemented differently in different objects. For
example, a button doesn’t send the Value Changed message, but a slider does; a text field
doesn’t send Touch Down, but it does send Editing Did Begin; and so on.

This is a refinement of the selector system; you can define different handlers for different event
types and for objects within them, but in practice it works in a similar way. Link each event to
the method in your code that it handles. To ignore an event type, leave it unlinked.

12_495896-ch08.indd 20412_495896-ch08.indd 204 8/31/10 2:46 PM8/31/10 2:46 PM

 Chapter 8: Building an Application with Interface Builder 205

Figure 8.22

Events on the iPhone. This list is standardized
and available in many UI objects, but most
objects can only send a subset of these messages.

Summary
This chapter has covered a lot of ground. You may need to work through it a couple of times to
take it all in, but it’s worth the time because it explains some of Cocoa’s key practical concepts.

At the start of the chapter, you were introduced to a typical Interface Builder workflow. Next,
you found out how to add objects to a nib, how to center and align them, and how to modify
their default properties.

In the next section, you were introduced to outlets and actions, and how to define them in
code. You also learned about the Interface Builder linking process and how to link objects in
code to objects in a nib file. You then explored a simple application that used selectors to swap
handler methods dynamically, creating a UI that reconfigured itself.

Finally, you were introduced to some more advanced techniques used in event handlers,
including (id) sender idioms and First Responder events.

12_495896-ch08.indd 20512_495896-ch08.indd 205 8/31/10 2:46 PM8/31/10 2:46 PM

12_495896-ch08.indd 20612_495896-ch08.indd 206 8/31/10 2:46 PM8/31/10 2:46 PM

Going DeeperII

Chapter 9
Using Cocoa

Design Patterns and
Advanced Messaging

Chapter 10
Working with Files,

URLs, and Web Data

Chapter 11
Using Timers,

Threads, and Blocks

Chapter 12
Managing Data and

Memory in Cocoa

Chapter 13
Using Preferences

and Bindings

Chapter 14
Using Core Data

Chapter 15
Working with Text

and Documents

In This PartII

13_495896-pp02.indd 20713_495896-pp02.indd 207 8/31/10 2:46 PM8/31/10 2:46 PM

13_495896-pp02.indd 20813_495896-pp02.indd 208 8/31/10 2:46 PM8/31/10 2:46 PM

In This Chapter

Using Cocoa Design
Patterns and Advanced

Messaging

Understanding Model-
View-Controller in Cocoa

Understanding and using
target-action

Using Key-Value Coding

Using Key-Value
Observing

Working with notifications
and errors

It’s traditional in a Cocoa book to mention design patterns and
features such as Model-View-Controller (MVC), target-action,
Key-Value Coding (KVC), and Key-Value Observing (KVO).

Apple’s documentation mystifies these design patterns and makes
them seem more difficult and complex than they really are. They’re
an essential part of Cocoa, and you can use them to implement
impressively efficient code. But the practice can be much simpler
than the theory.

Understanding Model-View-
Controller
Model-View-Controller, often shortened to MVC, was introduced in
Chapter 2. The outline of MVC is shown in Figure 9.1. An applica-
tion is split into three elements — a store of data called a model, an
interface called a view, and a controller object that passes data
between them.

MVC implies, but doesn’t enforce, the suggestion that model data
should be kept in separate objects and perhaps in separate custom
classes.

In a simple application, this seems unnecessarily complex, because
it is. If your data is in a single array or dictionary, there’s nothing to
be gained by taking a data object out of the App Delegate and put-
ting it into a separate wrapper object. It can be useful in a larger
application to keep data in a separate data-handling class. But gen-
erally, the key feature of MVC isn’t how the data is stored but how
it’s processed and prepared for display by the controller.

14_495896-ch09.indd 20914_495896-ch09.indd 209 8/31/10 2:47 PM8/31/10 2:47 PM

210 Going Deeper

Figure 9.1

MVC in outline form. The model and the view
don’t communicate directly. The key to MVC is
implementing an efficient and, optionally,
creative controller design.

View

User interface

Controller

Translates between

data and interface

Messages

Messages

Model

Application data

Not allowed!

A controller can do more than link the view and the model. When MVC is done properly, the
controller layer adds useful benefits, typically some of the following:

 Increased efficiency. The controller can select some of the data for display, as
needed, rather than attempting to access all of it at every refresh. Typically a table dis-
plays a small selection of values from a data source. A well-designed controller
accesses only the values it needs to create a useful display or implement an editing
feature.

 Abstraction and reuse. The same controller code and view objects can be reused and
can work with different data sources.

 Format translation. A simple controller can support multiple types, interconverting
between strings, number values, and Booleans. A more complex controller can take a
list of numbers and convert them into a table, a scatter plot, a graph, and so on, suit-
able for display by an appropriate view object.

 User control. A controller can manage selection events, handle multiple selections,
and implement editing operations. It can also sort values for display, and it can option-
ally produce other summary displays, such as averages.

14_495896-ch09.indd 21014_495896-ch09.indd 210 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 211

To use MVC effectively, concentrate on the controller code and consider how it can add value to
your application. Figures 9.2 to 9.4 outline some practical examples.

Figure 9.2

Using MVC in a game. The controller translates the game data into a format
that can be processed by the game’s rendering engine, and it maintains the
viewport properties that define the view of the game world seen by the user.

Game scene

data model

Game tokens

Player tokens

Scenery

Controller

Event handler

(Viewport zoom)

(Viewport location

in scene)

(Viewport rotation)

Model Controller View

Viewport renderer

and window

Game controls

Figure 9.3

Using MVC to manage a database. MVC is a natural design pattern for databases.
The controller manages edit events and can reinterpret the data to display it in
various ways, for example, as graphics, tables, sorted summaries, and so on.

Database

Items

Fetch/

Edit

Controller

Event handler

(Infographic type)

(Sort options)

(Selections)

Model Controller View

Window

Menu and mouse

events

14_495896-ch09.indd 21114_495896-ch09.indd 211 8/31/10 2:47 PM8/31/10 2:47 PM

212 Going Deeper

Figure 9.4

Using MVC in a browser. Browser applications support MVC almost
automatically. It would be very inefficient to download the entire
contents of a Web server to display a single page. Instead, the MVC
pattern makes it possible to interact with each page one at a time.
The controller translates the HTML and other scripts on each page
into a visible view, and it manages user action with the data model.

Web server

Web pages

Put/Get

Browser

(Parses HTML,
JavaScript and

Flash)

Event handler

(Browser options)

Model Controller View

Window

Menu and mouse

events

 C A U T I O N
Model-View-Controller isn’t related to modal views. In Cocoa and Cocoa Touch, a modal view takes control of the inter-
face and locks out other interaction. For example, when a save/open sheet appears, the user can only select a file or
click the Cancel button. The rest of the interface stops responding until the sheet is dismissed.

Using MVC with Cocoa controller objects
Some of Cocoa’s classes, such as NSTableView, require explicit translation code in a control-
ler. For example, to display a table of values from a data source array in a table view, implement
two delegate methods:

-(int) numberOfRowsInTableView: (NSTableView *) tableView {
return [dataSourceArray count];
}
- (id)tableView:(NSTableView *)tableView
 objectValueForTableColumn:(NSTableColumn *)tableColumn
 row:(int)row
{
 return [dataSourceArray objectAtIndex:row];
}

These two methods perform the auto-enumeration introduced in Chapter 2. Cocoa uses them
to ask your application for a count of items to display in the table column, and then to ask for an
object to display in each row.

14_495896-ch09.indd 21214_495896-ch09.indd 212 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 213

Similar code is needed whenever your application displays the contents of an array in a column.
To save reinventing the wheel, it’s useful to have a generic controller class that can solve this
problem.

You could create your own solution, but Cocoa includes classes that implement a solution for
you. Controller objects, such as NSArrayController and NSDictionaryController,
abstract the relationship between a data source and a view object and provide translation, sort-
ing, and selection features that make it easy to design an interface with tables and other UI ele-
ments that interact with the contents of a data collection object, such as NSArray and
NSDictionary.

To the controller, the data source array is a generic array, and the UI object is a generic multi-
object view. The controller doesn’t care what the data objects represent. This is a useful feature
because it makes the controller universal; it can manage any data.

In Cocoa, MVC has been applied in a specific way, and controller objects are the most obvious
practical implementation of the pattern. Each controller works slightly differently, so to use
them effectively you must learn how they capture, translate, and output data. The concepts and
techniques are introduced in detail in Chapter 13. For now it’s enough to know that MVC isn’t
theoretical — it’s implemented in Cocoa in specific objects that are designed to make MVC easy
to use. These objects can add extra features to your application that you might not have been
able to include otherwise.

Creating custom controllers
At its most basic, a controller must implement data source access and UI update methods.
These methods are often plain and unexciting glue code. This code must be included but isn’t
fun to write.

You can add benefits to your application by treating controller design as a creative opportunity
rather than a chore. Good applications present data in transparent, intuitive ways. You can use
the controller layer to add features that summarize or preprocess data and to design a UI that
implements the new possibilities.

There are many opportunities for innovation in controller and UI design. For example, most
applications use a three-step (select-initialize-implement) design pattern for their UIs. First the
user selects a feature, then he or she initializes its settings, then the feature is applied to modify
or display the data.

One of the goals of iPhone and iPad app design is to streamline this process to eliminate unnec-
essary steps. For example, in some contexts it’s possible to create apps that save and load set-
tings and data in the background, without an explicit “Save settings” step. User data persists
automatically.

You can apply the same principle to other application features, and also to desktop application
design. Applying MVC creatively makes it possible to make applications that are more appeal-
ing, intuitive, and valuable.

14_495896-ch09.indd 21314_495896-ch09.indd 213 8/31/10 2:47 PM8/31/10 2:47 PM

214 Going Deeper

Defining the data model
Cocoa’s data collection objects — NSArray, NSDictionary, NSSet, and others — are
designed to simplify data management. Key-Value Coding (KVC), described in detail later in this
chapter, is one of the fundamental data access patterns. You must understand KVC to use Cocoa
effectively, because it’s used by a significant selection of Cocoa objects. Custom data models
often use KVC by default. Other design patterns are possible, but KVC is built into Cocoa and is a
natural fit for data management.

The data model should also support archiving — file save and load. Data archiving features are
built into Cocoa objects, and it’s possible to save and load an instance of most classes, with their
current property values. Some classes require extra code to implement this; others work as is.
For more information, see Chapter 10.

Cocoa also includes a more complex technology, called Core Data, that makes it possible to
build a model that defines entities — object-like data containers with properties — and rela-
tionships that link entities to each other. Core Data is optional, but it offers the benefit of a per-
sistent managed store of entities that can be saved and reloaded as a single combined object.

Taken together, a good Cocoa data model should be the following:

 Archivable. This is true by default for most objects.

 KVC compliant. This gives Cocoa the best possible flexibility for data access.

 Built from standard data collection objects such as NSArray. This simplifies
archiving and also supports KVC compliance.

While you can build a data model from standard C data types, it’s unlikely to meet these
requirements. The code interface may be simpler, but it won’t support the features that Cocoa
needs to access it efficiently. Without those features, MVC becomes difficult to implement.

Understanding Target-Action
Now that you’ve looked at some outline notes about MVC, it’s time to take a closer look at some
related design patterns. MVC is a top-level design pattern that sketches the features of the
application as a whole. Target-action is a lower-level pattern that defines how objects message
each other. You were introduced to some examples of target-action in the previous chapter.
Now, you’ll look at it more closely.

Target-action is uncomplicated. A typical objective-C message looks like this:

[anObject aMessage];

When objects support target-action, the object and the message are stored as properties, and
an external event triggers the message, as shown in Figure 9.5. The trigger event is often a user
action, but in some applications it can be a timer event or a generic event scheduled by an
object.

14_495896-ch09.indd 21414_495896-ch09.indd 214 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 215

Figure 9.5

Using target-action when the target and the action are specified as properties.

Trigger event [anObject: aMethod];
Message generatedObject supporting

target-action

target property:

anObject

action property:

aMethod

Some methods also support target-action, specifically timer methods and a method called
performSelector:. The target and the action are defined in the method body.

[anObject doSomethingThatSupportsTargetAction
target: anObject action: @selector(aMethod)…];

Both variations create the same result: aMethod is triggered in anObject.

 C A U T I O N
If aMethod isn’t found in anObject, an error is generated and the application may crash.

The key benefit of target-action is that both the target and the action can be changed under
program control. You can dynamically reconfigure your application to redirect messages from
one object and method to another, as needed.

In practice, this happens less frequently than it could. Typically a target-action is defined at
launch, and it isn’t modified again. But sometimes it’s useful to modify targets and actions
dynamically. Target-action makes it possible to do that.

Defining selectors
To define an action method, you must wrap it in a selector — an “objectified” method. You can
use selectors as objects, copying them, archiving them, comparing them, and performing other
tricks. More typically, you use the selector syntax as a bit of boilerplate syntax that wraps up a
method so that it can be plugged into target-action code.

The syntax is slightly unusual and can be difficult to remember. It looks like this:

@selector(aMethod:)

Key points to remember:

 There are no quotation marks anywhere in the statement.

 The brackets are round.

 If the method takes a parameter, a colon is included. Parameters aren’t listed.

14_495896-ch09.indd 21514_495896-ch09.indd 215 8/31/10 2:47 PM8/31/10 2:47 PM

216 Going Deeper

SEL is the associated data type. You can define a SEL variable and use it in place of a literal
selector.

SEL theSelector;
if (aCondition)
theSelector = @selector(methodOne:);
else
theSelector = @selector(methodTwo:);
anObject.action = theSelector;

 C A U T I O N
SEL doesn’t define a pointer. Don’t put an asterisk in front of a SEL variable.

Using selectors in code
Target-action is often, but not exclusively, used with subclasses of NSControl. This includes
most UI objects such as buttons, menus, and sliders. This code is valid for all of its subclasses:

[aControl setTarget: anObject];
[aControl setAction: @selector(aMethod:)];

Where aControl is @synthesized, dot syntax is also valid.

aControl.target = anObject;
aControl.action = @selector(aMethod:);

You can read an action and compare it with a selector directly with ==:

If (aControl.action == @selector(aMethod:)) {…}

You can use this to test whether you need to modify the selector or to process an event accord-
ing to the current selector state.

A property called continuous is an optional feature implemented in NSControl. When
continuous is TRUE, a control fires its selector while the user holds the mouse down.
Otherwise, it generates one single message for each click. Use this feature to implement auto-
increment and auto-decrement.

Understanding the limitations of selectors
The action system has an obvious limitation: you can’t use it to pass parameters to the target
method. Some variants of target-action support an extended syntax with an extra parameter
that can pass an object to the selector:

[anObject setAction:
@selector withObject: anObjectUsedAsAParameter];

14_495896-ch09.indd 21614_495896-ch09.indd 216 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 217

This is only available in limited circumstances. If you need to pass parameters to your selector
method, pass them externally through some associated properties or other data objects.

The other limitation is that a selector isn’t a pointer. It doesn’t point to a specific entry point in
memory. Instead, it triggers a runtime lookup of a method name, which returns a pointer. This
can be an ambiguous process, because more than one object may implement the same method
name.

Generally, selectors are local. If there’s no explicit target object, the lookup assumes that
you’re trying to find a matching method in self. This is intuitive behavior, and rarely a prob-
lem. But keep in mind that selectors don’t usually range over the whole of your application,
except when there’s a supporting target property.

This short summary is almost all you need to know about target-action. It’s an unusual feature
that isn’t available in most other languages, but in practice it’s very unmysterious.

Defining selectors in Interface Builder
When you create an IBAction link in Interface Builder (IB), you’re really setting an object’s tar-
get and the action properties. This is why setting an action is a two-step process. Assume you
have a nib file with a button and you’re going to link the button to an action. The first step
selects the target object graphically, as shown in Figure 9.6.

Figure 9.6

When creating a link, the first step sets the target object for the link.

14_495896-ch09.indd 21714_495896-ch09.indd 217 8/31/10 2:47 PM8/31/10 2:47 PM

218 Going Deeper

In this example, this step defines the button’s target object as the App Delegate. The second
step sets the action method, as shown in Figure 9.7.

Figure 9.7

Setting the action method by selecting from a pop-up list

In code, you can select any public method as a valid action. In IB, only methods that are defined
as an IBAction appear in the pop-up menu. It would be convenient if IB listed every compati-
ble method in the target object — but it doesn’t. You can work around this by defining the
actions in code when the application loads. Use this to choose any valid selector in any object,
including objects that your code creates dynamically.

 C R O S S R E F
For an example of dynamically created buttons with an assigned action, see the random button example in
Chapter 16.

14_495896-ch09.indd 21814_495896-ch09.indd 218 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 219

Creating an example application
Figure 9.8 shows a simple application that illustrates target-action. It’s a slightly extended and
simplified variation on the counter application from the previous example. Two buttons create
a counter that counts up and down. The timer is replaced by the continuous property. When
this is enabled, trigger events are generated while the mouse button is held down.

Figure 9.8

A simple target-action application. Selecting the Flip
button swaps the selectors in the Up and Down buttons.

The buttons are linked to addOne: and subtractOne: methods that change the value of a
timer variable. The value is displayed in a text field. Figure 9.9 shows the elements and links in
the nib file.

upButton, downButton, and theText outlets link to the properties of the two main but-
tons and the text field. The addOne: and subtractOne: methods control a counter. The
flipButton action triggers the button flip method.

The header file for the project defines the objects, outlets, and actions that are used.

#import <Cocoa/Cocoa.h>
@interface TargetAction_AppDelegate : NSObject
{
 NSWindow *window;
NSTextField *theText;
NSButton *upButton;
NSButton *downButton;
}
@property (nonatomic, retain) IBOutlet NSWindow *window;
@property (nonatomic, retain) IBOutlet NSTextField *theText;
@property (nonatomic, retain) IBOutlet NSButton *upButton;
@property (nonatomic, retain) IBOutlet NSButton *downButton;
- (IBAction) addOne: (id) sender;
- (IBAction) subtractOne: (id) sender;
- (IBAction) flipButtons: (id) sender;
@end

14_495896-ch09.indd 21914_495896-ch09.indd 219 8/31/10 2:47 PM8/31/10 2:47 PM

220 Going Deeper

Figure 9.9

The project nib file: it’s straightforward and has no unusual features.

The implementation file implements the button action methods. The code for the addOne:
and subtractOne: methods updates the counter and writes its new value to the text field.

The flipButtons: method swaps the title and action of both buttons, and it also toggles
their continuous property. When the buttons are flipped, single clicks trigger a single update of
the counter. Otherwise, the count changes while the mouse button is held down. The code also
includes a selector comparison that checks the current flip state.

#import “TargetAction_AppDelegate.h”
@implementation TargetAction_AppDelegate
@synthesize window, theText, upButton, downButton;
int theCount;
-(IBAction) addOne: (id) sender{
 theCount +=1;
 theText.stringValue =
 [NSString stringWithFormat:@”%i”, theCount];
}
-(IBAction) subtractOne: (id) sender{
 theCount -=1;
 theText.stringValue =

14_495896-ch09.indd 22014_495896-ch09.indd 220 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 221

 [NSString stringWithFormat:@”%i”, theCount];
}
- (IBAction) flipButtons: (id) sender {
 if (upButton.action == @selector(addOne:)) {
 upButton.action = @selector(subtractOne:);
 [upButton setContinuous: NO];
 upButton.title = @”Down”;
 downButton.action = @selector(addOne:);
 [downButton setContinuous: NO];
 downButton.title = @”Up”;
 } else {
 upButton.action = @selector(addOne:);
 [upButton setContinuous: YES];
 upButton.title = @”Up”;
 downButton.action = @selector(subtractOne:);
 [downButton setContinuous: YES];
 downButton.title = @”Down”;
 }
}
@end

Other applications of selectors
Table 9.1 lists some other ways that selectors and target-action are used in Cocoa.

Table 9.1 Selected Advanced applications of target-action and selectors
Application Description

NSTimer Supports both target and action. Selects a method that is called on each

timer tick or after a delay.

performSelector: A method built into NSObject and supported by most classes.

Supports both target and action. Selects a method that can be run

immediately or after a delay. Supports explicit multithreading.

performSelectorInBackground: A very simple way to run a method in a separate background thread.

Data collection objects: NSArray and so on Include a makeObjectsPerformSelector: method

that automatically enumerates through every object in the collection

and runs the selected method on it.

Core Animation Certain Core Animation classes can trigger a selector when an animation

completes. Use this for composite multiple animations or to control user

input while the animation runs.

NSInvocation Wraps a selector and a target into a combined object with parameters to

create a powerful composite. Sometimes used to manage Cocoa’s undo

system.

canPerformSelector: A method that can be run on any object to check whether it implements

a selector. Use it to avoid crashes and error messages.

14_495896-ch09.indd 22114_495896-ch09.indd 221 8/31/10 2:47 PM8/31/10 2:47 PM

222 Going Deeper

Using Key-Value Coding
Like selectors, Key-Value Coding (KVC) introduces indirection into Objective-C. But KVC is a very
different and unrelated technology, with very different applications.

KVC makes it possible to access properties indirectly, using their name strings.

aReturn = anObject.aProperty; //Direct access
aReturn = [anObject valueForKey: @”aProperty”]; //KVC access

KVC looks simple in theory, but it can be tricky in practice. Some of the issues include:

 Values must be “objectified.” The technology could more accurately be called Key-
Object Coding, because, with a few exceptions, values must be wrapped inside
objects.

 KVC isn’t usually used for standard property access. It’s easier to use standard set-
ters, getters, and @synthesize.

 KVC is widely used to initialize and return groups of values and to access the val-
ues in data collection objects. You must master it to use Cocoa effectively.

 Cocoa’s keypath management can seem erratic. You can use object.prop-
erty.subproperty syntax to define a keypath. But not all classes support keypath
access, and classes that do support it don’t always implement it consistently. This par-
ticularly applies to mutable data collections.

 KVC makes it harder to trap errors. If you use string literals as keys, the compiler
can’t check them. You can solve this problem by defining the key strings as constants
in a header file and using them throughout your code.

“Objectifying” values
Consider this simple example of KVC, which reads and sets some of the values of NSWindow.
This code looks like a reasonable attempt to set the hasShadow property.

[window setValue: NO forKey: @”hasShadow”];

But it doesn’t work, because setValue: expects an object, not a BOOL. The correct code is:

 [window setValue: [NSNumber numberWithBool: NO]
forKey: @”hasShadow”];

This demonstrates how values must be objectified, adding an extra layer of complexity to KVC.
Figure 9.10 illustrates this.

14_495896-ch09.indd 22214_495896-ch09.indd 222 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 223

Figure 9.10

Converting numerical types into NSNumber objects, and
back again. You can’t use KVC on numerical types without
“objectifying” them.

Converting a numerical type to an NSNumber object

NSNumber *objectint [NSNumber numberWithInt: int]

Converting an NSNumber object to a numerical type

NSNumber *object int[object intValue]

 C A U T I O N
If there’s a set… method, convert the first character after set to lowercase. For example, NSWindow has a
setHasShadow method. The corresponding key is hasShadow.

Using NSNumber
Strings are already objectified with the @ character. To objectify numerical values, wrap them in an
instance of NSNumber. All numerical types, including int, float, BOOL, and others, must be
wrapped in a similar way. For the full list of supported types, see the NSNumber class reference.

For example, use this code to set a float:

 [window setValue:
[NSNumber numberWithFloat: 0.75]
forKey: @”alphaValue”];

NSNumber supports named <type>value methods that translate an NSNumber back into
its equivalent simple type. Equivalent code to read a value looks like this:

BOOL returnFlag =
[[window valueForKey: @”hasShadow”] boolValue];
float aFloat =
[[window valueForKey: @”alphaValue”] floatValue];
etc…

 T I P
When creating new keys, it’s useful to include a type definition in the key name as a reminder or “code tool tip.”

@”something” //Bad
@”somethingBOOL” //Good

14_495896-ch09.indd 22314_495896-ch09.indd 223 8/31/10 2:47 PM8/31/10 2:47 PM

224 Going Deeper

Using nil
Because NSNumber is an object type, it’s possible for its value to be nil. If there’s a danger
that your code may access a value that hasn’t been set, it’s important to test for this:

if ([window valueForKey: @”hasShadow”] ! = nil)
 BOOL returnFlag = [[window valueForKey: @”hasShadow”]

boolValue];

Cocoa keys are likely to be initialized. Custom objects may or may not include initialization
code, so it’s good practice to make sure that all possible values are initialized correctly or that
returned values are tested for nil before being used.

Using NSNull
Confusingly, collection objects — NSDictionary, NSArray, NSSet, and so on — use a dif-
ferent but equivalent value called null.

nil is an empty pointer, while null is an object used as a placeholder for a missing and unde-
fined value. null is defined as the output of the NSNull class, and it is an instance of NSNull.

NSNull *aNullValue = [NSNull null];

This bizarre construct is the only way to access the null value.

Avoiding errors
If the KVC system can’t find a key, an error is raised. You can control KVC errors by implementing
the valueForUndefinedKey: method in the object you’re accessing. Add this boilerplate
method signature, implementing the method to create a useful return, such as an error value
that your code can trap:

-(id) valueForUndefinedKey: (NSString *) key
{
//return a default value to avoid generating an exception
}

An equivalent setValue: forUndefinedKey: method is triggered when you try to set the
value of an unrecognized key. Overriding this method with an empty implementation is the
easiest way to avoid generating an on-write exception.

Using Key-Value Observing
Key-Value Observing (KVO) is a related technology that links keys to an observer method.
Whenever the value is updated, the observer method is triggered. You can use this to monitor
any property in any object that is KVO compliant.

14_495896-ch09.indd 22414_495896-ch09.indd 224 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 225

KVO literally means that when a value is modified, the observer method is triggered — a form
of remote viewing. KVO works even if there’s no other connection between the object that’s
being watched and the object that is doing the watching.

The observer method receives a dictionary containing details of the changes. The dictionary can
be configured to report any combination of the old, new, original, and prior values. The
observer method can be in a different object. Figure 9.11 illustrates how this works.

Figure 9.11

Understanding KVO. The registerAsObserver: method is run once
to enable KVO. The observeValueForKey: method is run each time
the value of the keypath is modified.

Observed object

Property @”key”

Observer object

observeValueForKeyPath:

method
(Property value)

Key-value write message

registerAsObserver: forKeyPath: @”key”

Observer method triggered automatically by KVO

Like KVC, KVO is built into NSObject. To implement it, add a method to register an object:

- (void)registerAsObserver
{
[objectToWatch addObserver: watchingObject
 forKeyPath:@”observedProperty”
 options:(NSKeyValueObservingOptionNew |
 NSKeyValueObservingOptionOld)
 context:NULL];
}

This initializes watchingObject as an observer for the observedProperty key in
objectToWatch. Objects can observe themselves, so both objects can be self.

The options field ORs together two selection flags and sets up the dictionary to return both
the old and new values. context is a free field that can be used to pass any pointer to the
observer.

To process updates, add the following method to the observer. The method definition is a boil-
erplate list of passed parameters. The same method body can handle updates for multiple
properties, so it’s useful to include a list of conditionals that runs separate code for each.

14_495896-ch09.indd 22514_495896-ch09.indd 225 8/31/10 2:47 PM8/31/10 2:47 PM

226 Going Deeper

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 if ([keyPath isEqual:@”observedProperty”]) {
 //Do something
 }
}

 T I P
Although the method is called observeValue…, it’s more accurate to think of it as changedValueWasOb-
served: because it’s triggered when a changed value is observed. Technically, it’s meant to imply that the method
should observe the value and do something with it. But the name doesn’t make this obvious.

This example reads the most recently updated value for the key from the dictionary and passes
it to a doSomethingWith: method (not defined here) for further processing. There are no
restrictions on the complexity of the observer method. It’s possible — but not useful – to build
most of an application’s features into the observer code.

If the object is observing more than one other object, you can also compare (id) object to a
list of possible targets, with a direct pointer comparison.

The observeValueForKeyPath: method is triggered whenever an observed value is
changed. To remove an observer, use

- (void)unregisterForChangeNotification
{
 [objectToWatch removeObserver: watchingObject
 forKeyPath:@”observedProperty”];
}

These methods can be run at any time. You can enable and disable observation dynamically.

It’s important to understand that KVO is object-focused, not key-focused. Any object or combina-
tion of objects can observe a given keypath. Each observer is independent, and their observer
methods can respond to a change in independent ways. Adding or removing an observer has
no effect on other observers. It’s sometimes useful to turn off observations in one object while
allowing them to continue in other objects.

Making assignments KVO compliant
When you @synthesize object properties, they automatically become partially KVO compli-
ant. When another object updates a property, KVO is triggered. But when code inside an object
updates a property, KVO does nothing.

KVO plugs itself into an object’s accessor methods. Direct assignments don’t use accessors,
so KVO can’t observe them. This can be a problem, because some assignments are internal.

14_495896-ch09.indd 22614_495896-ch09.indd 226 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 227

As an example, assume you have an object called myObject, an instance of MyClass, which
has a property called thisInt. The following code will trigger a KVO update as long as you run
it inside another object:

myObject.thisInt = 15;

The accessor method is triggered by an external property write. But if you include internal
update code within myObject, the assignment doesn’t use an accessor, and so the assign-
ment is invisible to KVO.

@implementation MyClass
…
thisInt +=10;

One solution is to force updates with explicit code:

[self willChangeValueForKey: @”thisInt”];
thisInt = thisInt + 10;
[self didChangeValueForKey: @”thisInt”];

This is ugly and is a lot of extra trouble when you want to add one number to another.
Other solutions are possible, but the most elegant is to use self and dot syntax for critical
assignments:

self.thisInt = thisInt+10;

Specifying self forces the assignment to use an accessor, which solves the problem in a sim-
ple and readable way. Use it for critical assignments only. To improve performance, don’t use it
for intermediate steps in a calculation.

You must also check that accessors are used when working with bindings (described in Chapter
13). Bindings use KVO, and if you don’t set values with accessors, they don’t track updates
correctly.

 C A U T I O N
This solution only works with dot syntax. If you don’t approve of dot syntax, you’ll have to use ugly, old-fashioned con-
structions like [self setThisInt: [self thisInt] +10];.

Using KVO
KVO can be immensely powerful. Your application can monitor events anywhere in your code
and respond automatically to given values or application states. Setting a value in one place in
the code can trigger a chain of dependent events automatically. Many Cocoa objects are KVO
compliant; your application can watch for changes in Cocoa object properties and respond as
needed. Some applications include the following:

14_495896-ch09.indd 22714_495896-ch09.indd 227 8/31/10 2:47 PM8/31/10 2:47 PM

228 Going Deeper

 Responding when a background process writes a value to a property after com-
pleting a calculation. Instead of using a delegate method or explicit method call,
your application can monitor the property and capture the update automatically.

 Monitoring changes to application preferences. The application can track updates
as a user makes them on a separate preferences pane, without linking (see Chapter 13
for an example).

 Copying values from one location to another. KVO makes it much easier to imple-
ment spreadsheet-like mutual dependencies.

Understanding KVO limitations
KVO isn’t supported by every object, and sometimes it’s only partially supported. This is particularly
true of mutable data collection objects. For example, KVO is triggered when you create, assign, or
copy an array, but not when the contents of the array are modified. This means KVO is blind to array
edit operations. You can fix this with a dummy assignment after you modify the array:

self.theArray = theArray;

This is an ugly workaround, but you can use it to notify a KVO observer that the array has
changed or to trigger a KVO observer method on demand.

KVO and nil/null values
In the same way that KVC can return nil, KVO can return null values. For robustness, it’s use-
ful to test for this by testing for [NSNull null], which is Cocoa’s way of specifying a null
value.

if((newValue[change valueForKey: @”new”]) != [NSNull null]) {…

When using Cocoa objects, the key names are given. It’s not always easy to remember the data
type reference by a key, so it’s good practice to note the type in a comment.

Using Notifications
Cocoa’s notifications are an application-wide messaging service. Many classes generate notifi-
cations as they work. You can set up objects to receive all notifications posted by another
object or to respond only to named notifications. Figure 9.12 is a block diagram of the notifica-
tion system.

14_495896-ch09.indd 22814_495896-ch09.indd 228 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 229

Figure 9.12

Understanding notifications. The notification
is passed to the common message center,
which checks its records for a matching
name and triggers the registered selectors
for that notification.

Object

posts notification: @”aName”

For notification: @”aName”

[observer1: aMethod];

[observer2: anotherMethod];

and so on...

NSNotificationCenter

Posting a notification triggers the following events:

 1. An object posts a named notification to the default notification center.

 2. The center checks its records for the name.

 3. If it finds a matching name, it enumerates each stored entry for the name.

 4. Each entry includes a target object and a selector. The notification center triggers
the selector in the target object, passing it an NSNotification object with a copy
of the name and an optional object pointer, which is usually the original sender.

To register an object for notifications, use

 [[NSNotificationCenter defaultCenter]
addObserver: theObserverObject
 selector: @”TheMethodTriggeredWhenTheNotificationArrives”
 name: @”AUniqueName”
 object: anOptionalObject];

If name is left blank, the observer responds to all notifications posted by an object.

14_495896-ch09.indd 22914_495896-ch09.indd 229 8/31/10 2:47 PM8/31/10 2:47 PM

230 Going Deeper

Some names are predefined. For example, NSWindow posts NSWindowDidBecomeKey
Notification and NSWindowWillCloseNotification, among others. If they exist,
you can find the notification names listed at the bottom of a Class Reference.

If a message triggers a notification automatically, you’ll also find the notification listed in the
method description; for example, sending update to a window updates it and posts an
NSWindowDidUpdateNotification object. This “just happens” — it’s built into the
method.

Posting notifications
You can create custom notifications with custom names. To post an identification, use

[[NSNotificationCenter defaultCenter]
postNotification: @”AName”
 object: anOptionalObject];

Often anOptionalObject is self, giving the notification an explicit return address. You can
also use the object field to pass useful information in a dictionary, array, or string, or in a pointer
to another object. It’s up to the sender and receiver to agree to the contents of the notification
and how they’ll be used — or more accurately, it’s up to you to define the format for both.

An optional extended method supports both an optional object and a dictionary you can pack
with other objects.

[[NSNotificationCenter defaultCenter]
postNotification: @”AName”
 object: anOptionalObject
 userInfo: aDictionary];

To define a method that receives and processes notifications, use

-(void) handlerMethod: (NSNotification *) theNotification {
NSString *theName = theNotificaton.name;
id *theObject = theNotification.object;
NSDictionary *theDictionary = theNotification.userInfo;
}

Plug this method into the handler selector slot when you register a notification. All data fields
are optional. You may not need them, because sometimes it’s enough to know that a certain
event happened.

Using notifications and delegates
Notifications include a useful shortcut. If an object has a delegate, the delegate automatically
observes notifications and can trigger a corresponding delegate method. There’s no need to
define an observer.

14_495896-ch09.indd 23014_495896-ch09.indd 230 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 231

This is a hidden feature. You won’t find the corresponding delegate methods listed in a proto-
col, so you have to reconstruct them using guesswork and insider knowledge. This isn’t difficult,
because the format is consistent. To find the delegate method for the
NSWindowDidMoveNotification message, remove the class name from the start and the
“Notification” from the end.

Implement the method so that it receives a notification as a parameter and returns void, like this:

-(void) windowDidMove: (NSNotification *) theNotification {
//Code goes here
}

Figure 9.13 shows the result when the code is added to the App Delegate in an empty template.
The delegate method logs a message when the window is moved. The compiler complains that
it can’t find a delegate protocol for NSWindow, but the code works anyway.

Figure 9.13

Converting a predefined notification into a delegate method. The method is triggered
automatically in the delegate, even though there’s no formal protocol and no explicit
registered observer.

14_495896-ch09.indd 23114_495896-ch09.indd 231 8/31/10 2:47 PM8/31/10 2:47 PM

232 Going Deeper

Handling Errors and Exceptions
Many Cocoa objects support an error parameter, which is an instance of NSError. NSError
stores a pointer to an error object, so the syntax is unusual: the error pointer is prefixed with &.
For example, to write a string to disk with error checking, use the following:

NSError *error;
[aString writeToFile: aFilePath
 atomically: YES
 encoding: anEncoding:
 error: &error];

Ignore the other parameters for now; they’re discussed in Chapter 10 and Chapter 12. In this
section, you’ll look at &error.

The previous code tells the writeToFile: method to fill the &error pointer with error
information if the method fails. You can ignore this error trapping and leave error set to nil.
This is occasionally valid. For example, when you read an item from disk, you can check if it’s
nil instead of trapping an explicit error, but including an error check creates more robust code.

Using NSError
The error object itself isn’t very informative. You can use

[error localizedDescription]; //Returns a description string
[error localizedFailureReason];//An alternative description

to return text descriptions of the error suitable for logging. Sometimes these include a cryptic
error code, which can only be converted to a useful description of the error by reading through
various header files. For egregious errors, the description may be straightforward and useful.

 N O T E
Errors are grouped by domain — one of Mach, POSIX, or OSStatus — which defines the OS layer responsible for defin-
ing the error.

You can convert an error into an NSAlert with the following:

NSAlert *alert = [NSAlert alertWithError: error];
[alert runModal];

This displays the error with the description strings built into a pop-up alert panel, as shown in
the example in Figure 9.14, which tries to load a string from a file with a null file path.

14_495896-ch09.indd 23214_495896-ch09.indd 232 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 9: Using Cocoa Design Patterns and Advanced Messaging 233

Figure 9.14

Converting an error object into an error alert panel.

Handling errors with NSException
If a block of code is error-prone, you can use @try, @catch, and @finally compiler direc-
tives to handle errors. Use @throw to create an NSException that diverts the code to an
error handler. For example:

@try {
 //{Do useful things}
 if (thereWasAnError) {
 NSException *thisException = [NSException
 exceptionWithName: @”Something bad happened”
 reason: @”For a reason”
 userInfo: nil];
 @throw thisException;
 }
}
@catch (NSException *exception) {
 if ([exception name] isEqual: @”Something bad happened”]) {
 //Something bad handler

14_495896-ch09.indd 23314_495896-ch09.indd 233 8/31/10 2:47 PM8/31/10 2:47 PM

234 Going Deeper

}
@finally {
 //Clean up, if necessary
}

The @try block contains code that may create an error, and the @catch block handles the
error if it occurs. The @finally block runs regardless.

You can add multiple conditionals in the @catch section to deal with multiple exceptions by
name. You can also subclass NSException to create custom exception objects, with optional
extra features. Replace NSException with the name of your subclass in the @catch handler.

Optionally, you can add a @catch section to catch system-generated exception events. This is
a plausible but potentially risky way to create a crash-free application. Even if an application is
fatally wounded by an exception, it may still be possible to give the user a chance to save his or
her data before quitting.

Summary
In this chapter, you learned more about various Cocoa messaging features and design patterns.
You were introduced to a detailed explanation of Model-View-Controller (MVC), with informa-
tion about how it’s implemented in various controller objects in Cocoa.

Next you learned about the target-action design pattern, and you investigated a simple applica-
tion that used target-action to swap the methods triggered by a button click. You also learned
about selectors, and you discovered how to use selectors to trigger a message after a delay.

In the next section, you explored key-value coding, learning about its strengths and some of its
limitations. You were introduced to practical key-value observing, and you discovered how to
use it effectively.

You learned about notifications, discovering how to post and observe them, and you also
learned how to implement notification-based delegate methods without a formal protocol.

Finally, you explored Cocoa’s error-handling features, and you discovered how to create error
alert panels and how to split your application into sections that can trap and manage excep-
tions without crashes.

14_495896-ch09.indd 23414_495896-ch09.indd 234 8/31/10 2:47 PM8/31/10 2:47 PM

In This Chapter

Working with Files, URLs,
and Web Data

Creating and using file
paths

Creating and using URLs

Using Web APIs

Using WebView

Cocoa’s file handling is unusual. In most operating systems,
files are managed by calling a file manager object. In Cocoa,
data objects can read and write data directly. A separate file

manager is only required when you need to delete, copy, rename,
or move files under program control.

 N O T E
Cocoa’s NSFileManager class can be used to access stdio — the default system
i/o channel. It also supports nonlinear file reads, making it possible to extract
bytes from a while without loading it into memory.

For example, NSString has methods for reading and writing
string data to files; NSDictionary can read and write dictionar-
ies; and so on. Typically an initWithContentsOfFile:
method initializes a data object with the contents of a file specified
by a path string that points to a unique location in the file system.
A corresponding writeToFile: method writes data.

For completely general file access, the NSCoder class described in
the Chapter 12 read and write complex arbitrary data collections.
You can use NSCoder to create application-specific files that mir-
ror your application’s internal object or document structure, com-
bining data from multiple objects of different classes.

 C R O S S R E F
For more information about Cocoa’s data objects, see Chapter 12.

Perhaps the most unique feature of Cocoa file handling is the close
relationship between local and remote data. In most operating sys-
tems, local and remote data is handled by different classes.

In Cocoa, URL objects and local file paths are almost synonymous.
All data objects have an initWithContentsOfURL: method
that loads data from a specified URL. The URL can represent a local
file path or an online data source. The same class handles both, and
it doesn’t distinguish between them.

In fact, string file paths are becoming a legacy feature of both OS X
and iPhone OS. Strings are not yet deprecated, but there is a trend
toward using URL objects as the default path specifier for all file
operations.

15_495896-ch10.indd 23515_495896-ch10.indd 235 8/31/10 2:47 PM8/31/10 2:47 PM

236 Going Deeper

Creating and Using File Paths
In theory, a path string is a standard instance of NSString, with the usual Unix format. For
example:

/Users/Main/Desktop/aFileName

In practice, path strings require specific formatting, and their contents must exclude invalid char-
acters. It’s possible to create path strings with the general concatenation methods built into
NSString. But NSString also includes a selection of path-specific methods that create valid
path strings automatically. Other methods can decompose them into their components — ele-
ments that define subdirectories.

Creating paths with NSString
The NSString path methods are listed in the Class Reference, and a task is dedicated to them.
You can use them to do the following:

 Create absolute and relative paths from a source array of components

 Break an existing path into an array of components

 Append a new path component to an existing path

 Add or remove an extension

 Convert a “tilde path” such as /~Me into a full system path. (Tilde paths are used as
shortcuts, often to user directories.)

Most path methods are self-explanatory and easy to use:

NSString *myDirectory = @”~me”;
NSString *myPath = [myDirectory stringByExpandingTildeInPath];
//myPath = @”/Users/me”

To find a user’s home directory, use the NSHomeDirectory() functions:

NSString *userHomeDirectory = NSHomeDirectory();
NSString *myHomeDirectory = NSHomeDirectoryForUser(@”me”);

Getting the application bundle path
When you distribute an application, it’s often useful to include images, sounds, and other data
within the application folder. The bundle, as it’s known, has a specific path. You must use this
path to load the files. The standard boilerplate for the path to aFile.ext is:

NSString *thePath =
[[NSBundle mainBundle] pathForResource: @“aFile” ofType@”ext”];

15_495896-ch10.indd 23615_495896-ch10.indd 236 8/31/10 2:47 PM8/31/10 2:47 PM

 Chapter 10: Working with Files, URLs, and Web Data 237

Optionally you can add inDirectory:subPath to specify a subpath. To find an array of
paths to multiple files with the same extension, use:

NSArray *theArrayOfPaths =
[[NSBundle mainBundle] pathForResourcesOfType@”ext”

inDirectory:subPath];

Finding other standard directories
To find a standard system directory such as /Documents use:

NSString *standardDirectory;
NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
if ([paths count] > 0) {
 standardDirectory = [paths objectAtIndex:0];
}

In OS X, you can replace NSDocumentDirectory with one of the other NSSearch
PathDirectory constants. You can find the full set of definitions in the Foundation Data
Types Reference. For example:

 NSApplicationDirectory — the application’s root directory

 NSDesktopDirectory — the desktop

 NSDownloadsDirectory — the default download location

This technique is more reliable than starting with the root system path and appending /
Documents to it. Standard directories may not be where you expect them to be, and this
approach is more likely to return a valid path to them.

Using autocompletion
Cocoa includes an autocompletion feature that scans a target directory for a list of filenames
that match a template. This is independent of the file search implemented in Spotlight.

NSString *testPath = @”usr/somepath/a”;
NSString *longestCompletion;
NSArray *outputArray;

unsigned allMatches =

[testPath completePathIntoString:&longestCompletion
 caseSensitive:NO
 matchesIntoArray:&outputArray
 filterTypes:NULL];

allMatches returns a count of matching files that start with “a,” and outputArray returns
an array of full paths to each matching file. For a practical example, set testPath to a valid
directory path and append the search string to find matching files.

15_495896-ch10.indd 23715_495896-ch10.indd 237 8/31/10 2:48 PM8/31/10 2:48 PM

238 Going Deeper

To search for files with specific extensions, load filterTypes with an array containing the
extensions before running the search:

NSArray *filterTypes =
[NSArray arrayWithObjects: @”jpg”, @”tiff”, nil];

Typically you use testPath to display a list of possible matches, and then allow the user to
select one or more.

Using paths
Once you have a path string, Cocoa’s data objects can load data from the file it points to with stan-
dard <object>WithContentsOfFile: and initWithContentsOfFile: methods.

For example, to load a string from a text file at aPath use:

NSString *textInTheFile =
[NSString stringWithContentsOfFile: aPath
encoding: anEncoding: error: &error];

The encoding parameter defines the string encoding, the mapping between characters and
byte values. NSUTF8StringEncoding and NSASCIIStringEncoding are two standard
values. For more information, see Chapter 15. &error is a standard system error handler and is
introduced in Chapter 9.

NSArray, NSDictionary, NSSet, NSData, and NSImage have equivalent methods.

The corresponding write operation is

[aString writeToFile: aPath
 encoding:anEncoding
 atomically: YES];

Again, Cocoa’s other data objects have corresponding methods.

The atomically parameter is a BOOL. When it is YES, the file is written in two stages to guar-
antee that it is closed and readable. When it is NO, failed file writes can leave uncompleted file
fragments on disk; there isn’t any good reason to specify NO.

Using file handles
Cocoa’s object-oriented file system simplifies object-oriented reads and writes, but complicates
byte-level file access. To read and write binary files with pointer control, use NSFileHandle.
For example:

NSFileHandle *aReadHandle =
[NSFileHandle fileHandleForReadingAtPath: aPath];
NSData *someData =
[aReadHandle readDataOfLength: anInteger];
//Read more data or change the seek pointer here, as needed
[aReadHandle closeFile];

15_495896-ch10.indd 23815_495896-ch10.indd 238 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 239

To move the seek pointer, use

[aReadHandle seekToFileOffset: aLongInt];

A corresponding writeData: method writes data to the file. Use the synchronizeFile
method to flush caches and buffers and to guarantee that the file contents are updated correctly.

 T I P
File handles can also be used for data transfers. NSFileHandle supports asynchronous communication with dele-
gate methods that post notifications as data is sent or transmitted. For details, see the Class Reference.

Using the File Manager
You can use a File Manager object to copy, move, and delete files and to list directory contents.
Most applications don’t need to implement a File Manager. Users can use Finder to work with
individual files, so these features are only useful in applications that batch file operations, such
as a backup/restore application, or when an application needs to delete temporary files while
closing. File open/save operations can be performed with standard file access panes, and direc-
tory lists are only useful when creating a customized equivalent — or when performing batch
operations that scan the directory structure.

However, you can use a File Manager to compare two files or to change the application’s cur-
rent directory.

The File Manager class is easy to work with. To create a File Manager object, use

NSFileManager *thisManager = [NSFileManager defaultManager];

This returns the default system file manager, which is the only manager your application
should use.

To compare two files, use

[thisManager contentsEqualAtPath: aPath andPath: anotherPath];

This returns a BOOL you can test for equality. Copy/Move operations are similarly
straightforward:

[thisManager copyItemAtPath: aPath
toPath: anotherPath error:&error];

To change the current application directory, use

[thisManager changeCurrentDirectoryPath: aNewPath];

15_495896-ch10.indd 23915_495896-ch10.indd 239 8/31/10 2:48 PM8/31/10 2:48 PM

240 Going Deeper

Creating and Using URLs
Although URLs are partly interchangeable with string paths, they are more complex. They also
support additional features. Some objects, such as the NSOpenPane and NSSavePane
objects used to present the user with a file selector, return URL paths automatically. More typi-
cally you create a file access URL from a string path; for example:

NSURL *thisURL = [NSURL fileURLWithPath: aPath];

You can also extract the path string from a URL:

NSString *thePath = [thisURL path];

 C A U T I O N
NSURL’s string method returns a string in a URL-specific format. This is neither a valid file path nor a valid Web
URL. If you log it, you’ll see that it looks nothing like a path. Also, it’s best not to use the URLWithString: and
initWithString: methods for file paths — they may not parse a path string correctly.

Understanding paths and references
NSURL supports two kinds of path objects: a file path and a file reference. When you create a
file URL you don’t need to specify the type, because the file system checks the type at runtime
and parses the URL data accordingly. But it’s useful to be aware of the distinction. You can con-
vert a reference into a path by running filePathURL: on it. Use fileReferenceURL: to
convert a path into a reference. isFileReferenceURL and isFileURL are BOOL methods
that return the type.

Using URLs to read and write data
Most objects offer methods that correspond to those used for file path reads and writes. For
example, to load a string, use

NSString *textInTheFile =
[NSString stringWithContentsOfURL: aURL
encoding: anEncoding: error: &error];

But unlike a file path, the URL can be remote:

NSURL *aURL =
[NSURLWithString: @”http://www.asite.com/file.txt”];

If you know the address of a file on a remote server, you can use this feature to download it, as
discussed later in this chapter in the section on Web APIs.

15_495896-ch10.indd 24015_495896-ch10.indd 240 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 241

Using Open and Save Panes
Cocoa includes two classes that enable a user to select a file visually and return a URL while
opening and saving files. NSOpenPane creates the Finder-like window shown in Figure 10.1.
NSSavePane creates the simpler window shown in Figure 10.2, although it can be expanded
to the larger pane shown in Figure 10.3.

Figure 10.1

The standard NSOpenPane. The pane slides down from the top of the
application window. This animation is automatic — it’s built into the class
and can’t be changed.

15_495896-ch10.indd 24115_495896-ch10.indd 241 8/31/10 2:48 PM8/31/10 2:48 PM

242 Going Deeper

Figure 10.2

The standard small NSSavePane. You can use this pane to type
in a filename and save it to the current directory.

Typically these classes wrap around the code that loads and saves data, using either the fea-
tures built into Cocoa’s data collection classes or a custom NSCoder implementation. You can
use these classes to:

 Support a configurable window title, optional text message, return button prompt,
and other user-friendly labeling features.

 Preselect one or more file types when opening files. Other file types are grayed out
and cannot be selected or opened.

 Allow multiple selections while opening.

 Automatically append a file extension while saving.

 Preselect a default directory.

 Enable or disable directory switching.

15_495896-ch10.indd 24215_495896-ch10.indd 242 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 243

 Show or hide hidden files.

 Enable either document-modal or application-modal display.

 Refresh and revalidate the file view dynamically.

 Return a Cancel or OK status.

 Return a file path in a variety of formats. (From OS X 10.6 onward, URLs are preferred.)

Figure 10.3

Clicking the downward-pointing triangle next to the file name box
reveals NSSavePane’s larger view, with full directory access.

The open and save panes and Cocoa’s object-oriented data features make it possible to create
very minimal applications, such as the Picopad application available on the Web site. Picopad
implements a very simple text editor with file save/load. The editor stores text in an
NSTextView, which is held inside an NSScrollView, as shown in Figure 10.4.

 N O T E
You can download the Picopad application at www.wiley.com/go/cocoadevref.

15_495896-ch10.indd 24315_495896-ch10.indd 243 8/31/10 2:48 PM8/31/10 2:48 PM

244 Going Deeper

Figure 10.4

The nib file for Picopad. NSScrollView includes an instance of NSTextView. In this
example, you’ll ignore the scroll bars and link directly to the text view; you don’t need to
access the scroll view’s properties.

NSWindow is subclassed as TheWindow, and it includes a pair of open/save methods,
openADocument: and saveTheDocument:, that are linked to the Open and Save As
menu items. TheWindow also includes an outlet to the text view, so that the application can
read and write its text. The header and one of the links is shown in Figure 10.5.

15_495896-ch10.indd 24415_495896-ch10.indd 244 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 245

Figure 10.5

The header file for TheWindow includes an outlet to the text view and a pair of methods for
opening and saving a file. One of the methods is shown linked to its corresponding menu item.
The other item, not shown here, is also linked.

The save and open methods are easy to implement. From OS X 10.6 onward, NSOpenPane and
NSSavePane use inline blocks as return handlers instead of delegate methods. The complete
code for TheWindow follows:

@implementation TheWindow
@synthesize theTextView;
-(void) saveTheDocument: (id) sender {
 //Create a panel
 NSSavePanel *savePanel = [NSSavePanel savePanel];
 savePanel.allowedFileTypes = [NSArray arrayWithObject:@”txt”];
 //Display it, and append the handler block
 [savePanel beginSheetModalForWindow:self

completionHandler:^(NSInteger result) {

15_495896-ch10.indd 24515_495896-ch10.indd 245 8/31/10 2:48 PM8/31/10 2:48 PM

246 Going Deeper

//This is the handler block
 if (result == NSFileHandlingPanelOKButton) {
 //Save the file on OK, do nothing on Cancel
 [theTextView.string writeToURL: savePanel.URL atomically: YES

encoding: NSUTF8StringEncoding error:nil];
 }
}]; //This is the end of the handler
}
- (void) openADocument: (id) sender {
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];
 openPanel.allowedFileTypes = [NSArray arrayWithObject:@”txt”];
 [openPanel beginSheetModalForWindow:self

completionHandler:^(NSInteger result) {

 if (result == NSFileHandlingPanelOKButton) {
 //If OK, load the file
 NSString *theText = [NSString stringWithContentsOfURL:openPa

nel.URL encoding: NSUTF8StringEncoding error:nil];
 [theTextView setString: theText];
 }
 }];
}

Key points of the code:

 1. The first line creates a save panel and initializes it with an array that preselects
.txt files.

 2. The second line displays the sheet. It runs modally, locking out the rest of the
application.

 3. The result handler is inside a block. It checks the return button status and does noth-
ing if the user cancelled. Otherwise, it writes the data to a file as a string, at the URL
returned from the pane.

 4. The open method is almost identical, but it loads the data from the selected file into
the text view.

You can customize the open/save panels further by setting other optional properties. This mini-
mal solution implements a full open/save application with editing, copy/paste, and file save and
load — all with a few lines of code. The finished application is shown in Figure 10.6.

 C A U T I O N
If your Mac is on a network and you are connected to any remote servers, the open and save panes will scan the net-
work and ping the servers. This isn’t usually a problem, but if you are using a network monitor like Little Snitch, don’t
be surprised when your minimal application triggers a network access warning.

15_495896-ch10.indd 24615_495896-ch10.indd 246 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 247

Figure 10.6

Saving a file with Picopad. If you look very closely, you may be able to see a
very blurry and faint view of the text in the text field, behind the Save As
label at the top of the pane. Like all Aqua elements, the pane is slightly
translucent and it blurs whatever is behind it.

Using Web APIs
One of the key applications of NSURL is Web API access. Google, Amazon, Yahoo, Twitter,
Facebook, and other popular Web services offer APIs that developers can use to implement
advanced features. For example, you can use Google’s new Location API to return a list of busi-
nesses around a given location.

NSURL includes features that make it possible to connect to any Web API. Typically your appli-
cation follows four steps:

 1. It creates a URL in the very specific format required by the API.

 2. It uses an NSURL method to send the URL to the server.

 3. It downloads the response.

 4. It extracts data from the response.

15_495896-ch10.indd 24715_495896-ch10.indd 247 8/31/10 2:48 PM8/31/10 2:48 PM

248 Going Deeper

 T I P
Although Web APIs are accessed through standard http: URLs, APIs serve data, not Web pages. But you can use
NSURL to download HTML pages from any site; for example, to spider it, scan it for links, or download a selection of
pages for offline review.

In practice, your application must do four things to use any API:

 1. Set up access credentials and security.

 2. Initialize the URL request correctly.

 3. Select either a synchronous or asynchronous download method for the return, and
capture the data correctly.

 4. Parse the data to extract useful information from it.

Getting started with bit.ly
As an example, I’ve used the bit.ly URL shortening service, often used on Twitter to create terse
URLs. It offers a selection of different API options, from simple text access to XML data. It also
implements security and supports both synchronous and asynchronous downloads, as I’ll
explain below.

As a first step, you’ll create a new application — call it bit.ly — and edit the nib to create the
view shown in Figure 10.7. It includes two active text fields, that need outlets, and two static
descriptive labels.

To create outlets and define a method that can be triggered to shorten a URL, modify the app
delegate header as follows, and link the outlets to their corresponding objects in Interface
Builder (IB):

@interface bit_lyAppDelegate : NSObject <NSApplicationDelegate,
NSTextFieldDelegate> {

 NSWindow *window;
 NSTextField *sourceURL;
 NSTextField *bitlyURL;
}
@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet NSTextField *sourceURL;
@property (assign) IBOutlet NSTextField *bitlyURL;
-(void) toBitly;
@end

15_495896-ch10.indd 24815_495896-ch10.indd 248 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 249

Figure 10.7

Creating the initial bit.ly nib. The source URL text field should be much wider than the bit.ly
return field, for reasons that may be obvious.

Getting text from a text field
Note that I’ve adopted the NSTextFieldDelegate protocol. The text field doesn’t trigger a
selector. Instead it calls a delegate method in the protocol:

-(void) controlTextDidEndEditing:
(NSNotification *)aNotification;

The protocol supports other delegate methods, but this method is the critical one in this appli-
cation. It’s triggered when the user presses the Return key after editing the text. You can imple-
ment the method to read the new text and process it; in this case, passing it to the bit.ly API to
shorten it.

To use the protocol, set the delegate of sourceURL to self when the application launches,
as shown below, and implement the didEndEditing: method, which you’ll do in detail
later. You’ll also set an initial prompt string to save typing it by hand for every URL.

- (void)applicationDidFinishLaunching:

15_495896-ch10.indd 24915_495896-ch10.indd 249 8/31/10 2:48 PM8/31/10 2:48 PM

250 Going Deeper

 (NSNotification *)aNotification {
 sourceURL.delegate = self;
 sourceURL.stringValue = @”http://”;
}

To access the text in a text field, use the stringValue property. (You might expect this to be
called text, but it isn’t.)

Getting a bit.ly key
Some extra setup is needed first. Most APIs use an access key or password system. The key is
embedded in every request URL as plain text. A few APIs use more secure credentialed session
systems. Credentialing systems can become very complex, and they are outside the scope of
this book. For an example, see the oauth system at http://oauth.net, which is used by
Twitter.

The bit.ly service uses the simpler key system. Before going further, visit the bit.ly site
(http://bit.ly/) and sign up to get your key string, as shown in Figure 10.8.

Figure 10.8

Getting a bit.ly access key and username. Do not use this key in
your own projects. Getting a key is easy, and it’s free. If you use
this key to test high-performance batched access, it will stop
working. This will inconvenience other readers and may result
in an unwelcome midnight visit from the author.

15_495896-ch10.indd 25015_495896-ch10.indd 250 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 251

Using the bit.ly API
Before you can use the bit.ly API, you need to find some documentation for it. You can find
details of most public APIs with a Google search. You can find the bit.ly API documentation at
http://code.google.com/p/bitly-api/wiki/ApiDocumentation, as shown in
Figure 10.9.

Figure 10.9

Finding the bit.ly API reference documentation. Some APIs are public and open source, so the docu-
mentation isn’t necessarily available on the main Web site.

The documentation suggests that there are a number of API features: you can shorten a URL,
you can find out how many times it has been clicked, you can expand a short URL into a long
URL, and so on.

 T I P
Documentation quality is very variable. Some APIs have very clear documentation with examples; others are opaque.
Examples are usually helpful; if you can’t find them in the documentation, try searching for them elsewhere online.

15_495896-ch10.indd 25115_495896-ch10.indd 251 8/31/10 2:48 PM8/31/10 2:48 PM

252 Going Deeper

You want to shorten URLs, so you need the shorten feature. Clicking the /v3/shorten link takes
you to a page of definitions and examples of different formats. For this example, you want the
text format shown highlighted in Figure 10.10.

Figure 10.10

Getting the URL requirements. APIs that support URL access always list the required URL, with
full details of each subfield.

To use the API successfully, you must send requests with exactly this format:

http://api.bit.ly/v3/shorten?login=<name>&apiKey=<key>&longUrl=<e
scapedURL>&format=txt

If you do this correctly, the bit.ly server returns a standard shortened URL string:

http://bit.ly<short six character URL>

Creating a long URL
You can glue together this long URL from components. For example, the login name and key
can be defined at the start of the file as a preamble string constant, and the &format=text

15_495896-ch10.indd 25215_495896-ch10.indd 252 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 253

string can be stored in a separate string constant. To combine part strings into a complete
string, you can use the [NSString stringWithFormat:] method to concatenate a series
of input strings. The exact code appears later in the complete code listing.

The long URL is more of a challenge. Looking at the format, you can see that it uses escaped
characters. A space is converted into %20, a colon into %3A, and so on. This is a standard
requirement for many APIs, because it eliminates ambiguity and guarantees that the server can
read the URL correctly.

Cocoa — or rather, Core Foundation — includes a function that converts that string into its
escaped equivalent. The function is slightly tricky to set up, but the following code works as a
boilerplate method that you can drop into any code to convert a string into an escaped string:

- (NSString *)urlEncodeValue:(NSString *)str
{
NSString *escapedURL = (NSString *)
CFURLCreateStringByAddingPercentEscapes(kCFAllocatorDefault,
(CFStringRef)str, NULL, CFSTR(“~:/?#[]@!$&â€™()*+,;=\””) ,
kCFStringEncodingUTF8);
return escapedURL;
}

The characters after CFSTR are automatically replaced with their escaped equivalents in the
return string. You can add more characters to this list if you need to, but this standard selection
handles most requirements.

Finally, after the string processing, you need to convert the finished long URL string into a URL
object. This is easy: you can use the [NSURL urlWithString:] method to return the equiv-
alent URL object.

Sending the URL request and processing the return
There are various ways to send a URL request. At this point, Apple’s NSURL documentation can
be more confusing than helpful. It suggests using various auxiliary URL connection and
response objects.

In fact, there’s a single line solution. For a simple Web transaction, the easiest option is to use
the stringWithContentsOfURL: method built into NSString. It returns a string object:

theReturnString = [NSString stringWithContentsOfURL: aURL
encoding: NSUTF8Encoding error: nil];

This single line of code is extremely powerful. It sends the URL request to a remote server, waits
for a response, and downloads the return data into a waiting string object. If the request fails,
the return string is nil. But if you set up your URL request correctly, this line of code is all you
need to retrieve a shortened URL. The finished code shown here copies the return to the return
field in the view — and you’re done.

@synthesize window, sourceURL, bitlyURL;
NSURL *thisURL;

15_495896-ch10.indd 25315_495896-ch10.indd 253 8/31/10 2:48 PM8/31/10 2:48 PM

254 Going Deeper

NSURLRequest *thisRequest;
NSString *returnURL;
NSString *escapedURLString;
NSString *bitlyPreambleString = @”http://api.bit.ly/v3/shorten?lo

gin=cocoadr&apiKey=R_21ea99c0c86054c24e276b5c693aa6d7&uri=”;
NSString *bitlyPostambleString = @”&format=txt”;
NSString *bitlyURLString;
- (void)applicationDidFinishLaunching:
 (NSNotification *)aNotification {
 sourceURL.delegate = self;
 sourceURL.stringValue = @”http://”;
}
- (void)controlTextDidEndEditing:(NSNotification *)aNotification
{
 [self toBitly];
}
-(void) toBitly{
 escapedURLString =
 [self urlEncodeValue: sourceURL.stringValue];

 thisURL = [NSURL URLWithString:
 [NSString stringWithFormat:@”%@%@%@”,
 bitlyPreambleString,
 escapedURLString,
 bitlyPostambleString]];

returnURL = [NSString stringWithContentsOfURL:thisURL
 encoding: NSUTF8StringEncoding error: nil];
if (returnURL != nil)
 bitlyURL.stringValue = returnURL;
else
 bitlyURL.stringValue = @”Error”;
}
- (NSString *)urlEncodeValue:(NSString *)str
{
 NSString *escapedURL = (NSString *)
 CFURLCreateStringByAddingPercentEscapes(kCFAllocatorDefault,
 (CFStringRef)str, NULL, CFSTR(“~:/?#[]@!$&â€™()*+,;=\””) ,
 kCFStringEncodingUTF8);
 return escapedURL;
}
@end

 N O T E
In this example you’ve created a toBitly method that creates and sends the request and reads the return. This
method is called from the delegate return when the user presses the Return key. The split isn’t necessary, but it aids
modularity; you might want to use the same method elsewhere.

15_495896-ch10.indd 25415_495896-ch10.indd 254 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 255

The finished application is shown in Figure 10.11. To use it, type in a URL and press Return. The
shortened bit.ly address appears in the lower text field, or it reports an error if there was a prob-
lem.

Figure 10.11

Getting the URL requirements. APIs that support URL access always list
the required URL explicitly.

Creating XML requests
Most Web APIs return data in one of two industry-standard formats: JSON (JavaScript Object
Notation) and XML. Both formats are text-based (at least, at present) but include special format-
ting that defines fields and subfields.

JSON is a more recent and more robust format than XML. XML can suffer from white space
issues, and parsers may not extract data from an XML formatted string correctly if there are
minor errors.

Unfortunately, Cocoa doesn’t include native support for JSON. It does include native support for
XML, with a selection of XML management classes. But native support isn’t always necessary. It’s
possible to extract data from both JSON and XML API returns with simple string processing. The
process isn’t elegant, but it is a lightweight way to extract data from one or two specific fields
when the surrounding tags are known.

 T I P
Developing a full JSON parser is a major project — and it’s already been done. You can add JSON support to Cocoa by
adding a third-party JSON framework. One of the most popular is json-framework, which is hosted at http://
code.google.com/p/json-framework.

Figure 10.12 shows an extended version of the simple bit.ly project. Added elements include a
single extra text field, an associated text field outlet called returnXML in the app delegate
header file, and a link between the two.

15_495896-ch10.indd 25515_495896-ch10.indd 255 8/31/10 2:48 PM8/31/10 2:48 PM

256 Going Deeper

Figure 10.12

Adding an extra text field to the project, so that you can view the raw XML return

Selecting the XML format
The only other required change is modifying the &format=txt defined in the postamble
string to &format=xml. This tells the bit.ly server that your application wants a packet of XML
data instead of a simple text string. The XML will need to be processed to extract the shortened
link from it. But you can copy the return string to returnXML.stringvalue to see the raw
XML returned from the server. Building and running the project should produce the result
shown in Figure 10.13.

Why go to the trouble of downloading this extra data? As mentioned earlier, many APIs don’t
support text returns, so you’re often forced to use XML. But as you can see from the return, it
includes extra data that isn’t provided by the simple text API. For example, the new_hash field
tells you whether you’ve shortened this URL before. You can also read a separate status code
and status text to tell you more about error conditions if the return fails.

15_495896-ch10.indd 25615_495896-ch10.indd 256 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 257

Figure 10.13

The raw XML return. You can see the shortened URL buried inside it,
within the url tags.

You don’t always need this data, but XML and JSON returns always offer more data and, hence,
more flexibility. Sometimes they also offer multiple returns; for example, some of the Google
APIs return multiple locations when queried with an address or location search string.

It’s possible to create generalized XML and JSON parsers that can extract any named value from
a return string. A general parser can turn into an advanced project, and it isn’t usually necessary.
More typically, you’ll read one or two values from the return, and assume that its format is fixed.
In the case of the bit.ly API, the XML format is standardized. Every valid return formats data in
the same way, using the same sequence of elements and subelements.

Parsing XML returns as text
If you don’t want to use Cocoa’s XML frameworks, you can parse this data as text. Text parsing is
less general, but it uses fewer resources. The XML frameworks aren’t memory-efficient. Text
parsing is a good choice on the iPhone, where memory must be managed carefully.

 T I P
Text parsing also makes it possible to extract data from plain HTML. You can use text parsing to summarize or process
plain HTML from any Web site.

15_495896-ch10.indd 25715_495896-ch10.indd 257 8/31/10 2:48 PM8/31/10 2:48 PM

258 Going Deeper

A simple text parser is listed below. It takes the same return string as an input and extracts data
from two fields: status_txt and url.

if (returnURLString != nil) {
 returnXML.stringValue = returnURLString;
 statusRange = [returnURLString rangeOfString: @”<status_txt>”];
 thisRange.location = statusRange.location+12;
 thisRange.length = 2;
 thisString = [returnURLString substringWithRange:thisRange];
 if ([thisString isEqualToString: @”OK”]) {
 NSLog(@”Status OK”);
 urlStartRange = [returnURLString rangeOfString: @”<url>”];
 urlEndRange = [returnURLString rangeOfString: @”</url>”];
 thisRange.location = urlStartRange.location+5;
 thisRange.length = urlEndRange.location - urlStartRange.

location - 5;
 bitlyURL.stringValue = [returnURLString

substringWithRange:thisRange];
}
else
 bitlyURL.stringValue = @”Error”;

This code uses the rangeOfString: method to find the range — index and length — of
a target string. First, the code looks for <status_txt> to find the starting index of the
status string. It copies exactly two characters from that index into a new string using the
substringWithRange: method and checks whether this short new string is equal to OK.

If it is, it repeats the same sequence looking for the substring between the <url> and </url>
tags. This code can extract strings of any length between any two tags. In this example, the
length of the shortened URL string is fixed, so the code could be simplified slightly. But in this
form, it’s a workable general solution for extracting the contents of any tag from any XML
return.

 N O T E
The complete project is available on the Web site (www.wiley.com/go/cocoadevref), as is the more com-
plex project discussed next.

Creating asynchronous Web requests
The previous example used the same stringWithContentsOfURL: method to send an API
request and read its return. The code is simple, but it stalls your application while it waits for the
return to complete, or fail. This is called a synchronous request.

The more sophisticated alternative is called an asynchronous request. An asynchronous request
creates a request object, with associated delegate methods. It then triggers the object to begin
the request.

15_495896-ch10.indd 25815_495896-ch10.indd 258 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 259

Instead of waiting for the request to complete, the application can continue to run. As data is
returned from the server, it’s collected by the delegate methods and appended to an instance
of NSData. When the request completes, it calls a method called connectionDidFinish
Loading:, which can then process the return.

Asynchronous methods can seem complex, but they can be implemented with standard boiler-
plate code. One possible example follows:

-(void) toBitly: (id) sender {
 escapedURLString = [self urlEncodeValue: sourceURL.stringValue];
 thisURL = [NSURL URLWithString: [NSString

stringWithFormat:@”%@%@%@”, bitlyPreambleString,
escapedURLString, bitlyPostambleString]];

 //Create the request object
 NSURLRequest *theRequest = [NSURLRequest requestWithURL:thisURL

cachePolicy: NSURLRequestReloadIgnoringLocalCacheData
timeoutInterval: 30];

 //Start the connection
 [theSpinner startAnimation:self];
 NSURLConnection *theConnection = [[NSURLConnection alloc]

initWithRequest:theRequest delegate:self];
 if(theConnection) {
 //Connection initialized correctly
 theData = [[NSMutableData data] retain];
 }
 else {
 NSLog(@”Connection didn’t initialize”);
 return;
 }
}
- (void) connection: (NSURLConnection *)connection

didReceiveResponse: (NSURLResponse *)response {
 //Reset the data after a response - use in case of redirects
 [theData setLength: 0];
}

- (void) connection: (NSURLConnection *)connection

didReceiveData: (NSData *)data {
 //Some data arrived - append it
 [theData appendData:data];
}
- (void) connection: (NSURLConnection *)connection

didFailWithError: (NSError *)error {
 [theSpinner stopAnimation:self];
 NSLog(@”Connection failed”);
 [theData release];
 return;
}

15_495896-ch10.indd 25915_495896-ch10.indd 259 8/31/10 2:48 PM8/31/10 2:48 PM

260 Going Deeper

-(void) connectionDidFinishLoading:(NSURLConnection *)connection
{
//Process the data here
}

Key features of the code include:

 The connection requires two objects: a URL request and a URL connection.

 The NSURLRequest object defines the properties of the connection, including the
URL and the timeout interval. If the request doesn’t complete before the end of the
timeout interval, the request fails.

 The request object also defines the caching policy. Here, the cache is set to reload at
every attempt because caching API returns can be risky, especially if the remote data is
transient.

 The request is passed to an NSURLConnection object, which initiates the connec-
tion. It specifies a delegate object for the connection, which monitors the connection
status and receives data as it arrives.

 Four delegate methods manage the connection.

 connection: didReceiveResponse: is triggered by an active new connection,
and it resets the data receiver object.

 connection: didReceiveData: appends data to the data object as it arrives.

 connection: didFailWithError: reports an error code.

 connectionDidFinishLoading: is triggered after the data has been received
successfully.

Although this is byte-level Web access — you can use NSData in a general way to receive data
of any format — you can use this code to manage almost any asynchronous Web request.

Using Cocoa’s XML classes
Cocoa’s XML implementation is complex, partly because XML can be complex. The core class is
NSXMLDocument, which can be loaded using the initWithData: method. While it’s possi-
ble to extract data into supporting data types such NSXMLElement and NSXMLNode, this isn’t
necessary for a simple task, such as retrieving the text between two tags. It’s possible to scan
the XML document directly using a query framework called XPath, which is built into
NSXMLDocument.

XPath is a standard Web technology. A JavaScript version is built into all standard Web brows-
ers. An XPath search assumes that the data in an XML file is formatted in a path-like structure.
Queries pass a path to the document, and the search returns the data at that path.

15_495896-ch10.indd 26015_495896-ch10.indd 260 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 261

 C A U T I O N
Neither NSXMLDocument nor nodeForXPath: are available on the iPhone. Use NSXMLParser — a
dynamic parser class that takes an XML string and triggers various delegate methods as it scans it — instead.
NSXMLParser is more lightweight than NSXMLDocument, but less convenient. To extract specific elements,
you must add explicit switches or conditional tests to the delegate methods.

Sample code to extract a text string from the url tag follows:

theDocument = [[NSXMLDocument alloc] initWithData:theData
options:NSXMLDocumentTidyXML error:&theError];

if (theDocument) {
 //We have a valid document
 NSLog(@”The XML doc: \r%@”, theDocument);
 //Get the text string within the url tags
 NSArray *someNodes = [theDocument
 nodesForXPath:@”/response/data/url/text()”
 error:&theError];
 //This is the string we’re looking for
 bitlyURL.stringValue = [someNodes objectAtIndex:0];
 } else {
 bitlyURL.stringValue = @”Doc error”;
 return;
}

Key features of the code include:

 The document is created with the NSXMLDocumentTidyXML option, which tidies
the document format and can eliminate minor errors.

 The nodesForXPath array returns the elements at the search path.

 Accessing a text() element returns a text object that can be read from the array. No
further processing or extraction is required.

 The project code includes a spinner activity indicator, a very simple but effective addi-
tion that illustrates the download state.

 T I P
To find the path you need, review the order of the indented tags in the raw XML. XPath can perform many tricks,
including reading multiple returns with the same tag. For more information, see the XPath tutorial at www.
w3schools.com/xpath/xpath_examples.asp.

Using WebView
No discussion of URLs would be complete without an introduction to WebView, Cocoa’s Web
browser. You can use WebView to add a browser window to any application, with full control
over the URL, the size of the window — scroll bars appear automatically, as needed — and stan-
dard browser features such as forward and back buttons.

15_495896-ch10.indd 26115_495896-ch10.indd 261 8/31/10 2:48 PM8/31/10 2:48 PM

262 Going Deeper

Create a new project, and save it as WebView. Right-click Frameworks, select WebKit.framework
from the list that appears, and click Add, as shown in Figure 10.14.

Figure 10.14

Adding the WebKit framework before creating a WebView. WebKit includes a very rich set of
features for Web management within Objective-C and JavaScript apps.

In Interface Builder, add a WebView to the Content View object from the library. Set its autosiz-
ing options, as shown in Figure 10.15.

Edit the WebViewAppDelegate.h file as follows:

@class WebView;
@interface WebViewAppDelegate : NSObject <NSApplicationDelegate>{
 NSWindow *window;
 WebView *webView;
}
@property (assign) IBOutlet NSWindow *window;
@property (assign) IBOutlet WebView *webView;
@end

15_495896-ch10.indd 26215_495896-ch10.indd 262 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 263

Figure 10.15

Setting the autosizing options for a WebView forces it to follow the window size. If you don’t set
this feature, the size of the WebView remains fixed, which is sometimes, but not usually, a
desirable property.

Save the file. In IB, link the webView outlet to the WebView object. Then, edit the
WebViewAppDelegate.m file as follows:

#import “WebViewAppDelegate.h”
#import <WebKit/WebKit.h>
@implementation WebViewAppDelegate
@synthesize window, webView;
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 WebFrame *mainFrame = [webView mainFrame];
 NSURL *url = [NSURL URLWithString:@”http://www.apple.com”];
 NSURLRequest *aRequest = [NSURLRequest requestWithURL:url];
 [mainFrame loadRequest: aRequest];
}

Build and run the application and wait for the page to load. Then click the Store link. You should
see the result shown in Figure 10.16.

15_495896-ch10.indd 26315_495896-ch10.indd 263 8/31/10 2:48 PM8/31/10 2:48 PM

264 Going Deeper

Figure 10.16

The WebView running in its window. You can click active links to navigate.

The code is slightly less straightforward than it looks. The key feature is that the mainFrame
property is the active browser window; a WebView is a wrapper for one or more web frames.
mainFrame is the most important active frame. In most applications you can ignore the others.

WebView is a very sophisticated class. You can add browser essentials such as forward, back,
and refresh buttons, but you can also implement controlled downloading with various delegate
methods. There’s even an estimatedProgress method that can drive a progress bar.

As a trivial exercise, you may want to try adding a URL bar and downloading a new page when
the user enters a new URL. More sophisticated applications are also possible.

 T I P
Most applications use WebView to access Web pages. Because URLs can be local, you can use WebView to access local
HTML, CSS, or image content.

Summary
In this chapter, you learned about file paths, URLs, and their similarities and differences. You
explored Cocoa’s File Manager class, and you discovered how to compare files and build work-
ing open/save panes into your application. You also learned how to load and save data from
the local file system, how to create and find valid paths, and how to get started with the file fea-
tures of Cocoa’s data objects.

15_495896-ch10.indd 26415_495896-ch10.indd 264 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 10: Working with Files, URLs, and Web Data 265

Next, you explored NSURL in detail, and you found out how to use URL objects to load online
data into Cocoa objects. You experimented with the bit.ly Web API, and you learned how to
assemble simple text-based request and complex asynchronous requests that extracted infor-
mation from an XML return.

Finally, you were introduced to the WebView object in WebKit, and you saw how easy it is to
add a simple Web browser to any project.

15_495896-ch10.indd 26515_495896-ch10.indd 265 8/31/10 2:48 PM8/31/10 2:48 PM

15_495896-ch10.indd 26615_495896-ch10.indd 266 8/31/10 2:48 PM8/31/10 2:48 PM

In This Chapter

Using Timers, Threads,
and Blocks

Using NSTimer

Working with NSThread

Using NSOperation

Working with blocks and
Grand Central Dispatch

Using NSTask

It’s often useful to do many things at the same time. Cocoa offers
a selection of classes and techniques for creating multiple simul-
taneous events and processes and for managing the relative

and absolute timing of events. The newest classes use a new code
idiom called blocks, which was introduced in OS X 10.6. Blocks can
be used anywhere in an application, but Cocoa’s event and data
collection classes are being modified to support blocks where pre-
viously they used delegates and calls to other classes.

Using NSTimer
NSTimer is the simplest Cocoa event timing class. To trigger
events at regular intervals, use:

NSTimer *theTimer = [NSTimer
scheduledTimerWithTimeInterval: float

 target: anObject
 selector: @selector(theTimerMethod:)
 userInfo: anOptionalObject
 repeats: YES];

Implement the timer method in the target object:

-(void) theTimerMethod: (NSTimer *) theTimer
{

//This code is called on every timer tick
}

To stop the timer, use

[myTimer invalidate];

The shortest possible interval is 0.0001s, but on typical hardware,
the shortest useful interval is 0.01s. Timer events aren’t guaranteed
to be timed accurately. On a busy system, the event can occur at
any moment after the scheduled time. Each event is timed inde-
pendently, so errors do not accumulate.

 T I P
Although formally the time interval’s type is NSTimeInterval, in practice
you can use a float literal.

16_495896-ch11.indd 26716_495896-ch11.indd 267 8/31/10 2:48 PM8/31/10 2:48 PM

268 Going Deeper

The userInfo property is a placeholder for an object that you want to pass to the timer
method. To retrieve it, use

anObject = [myTimer userInfo];

An alternative method can fire the timer at a specific date/time, set with an NSDate object. The
timer must be registered with a run loop.

NSTimer *theTimer = [[NSTimer alloc] initWithFireDate: aDate
 interval: float
 target: anObject
 selector: @selector(theTimerMethod:)
 userInfo: anOptionalObject
 repeats: YES];
[[NSRunLoop mainRunLoop]
addTimer: theTimer forMode: NSDefaultRunLoopMode];

NSTimer is ideal for low-precision counting and timing events. To drive animations, put view
update code inside the timer method. The code can create simple view-based animations or
update a complex OpenGL scene. For more details, see Chapter 17.

 C A U T I O N
Note that Core Animation uses its own independent timers, for improved performance.

Using performSelector:
NSTimer is ideal for repeating events. For one-off timed events, performSelector: can be
a better solution. It offers more control and better support for parameter passing, and it doesn’t
require a separate object.

performSelector: is built into NSObject and can be used in most Cocoa objects. The
simplest implementation looks like this:

[targetObject performSelector: @selector(aMethod:)
 withObject: anObject
 afterDelay: floatLiteral];

aMethod: is triggered in the target object after the delay period. anObject is passed as a
parameter. An object can call this method on self to send itself a delayed message.

Usefully, it’s possible to cancel a message before it’s triggered.

[NSObject cancelPreviousPerformRequestsWithTarget: targetObject];

All pending messages to targetObject: are cancelled. Optionally, you can specify a selector
and object parameter to selectively cancel a message with those parameter settings.

16_495896-ch11.indd 26816_495896-ch11.indd 268 8/31/10 2:48 PM8/31/10 2:48 PM

 Chapter 11: Using Timers, Threads, and Blocks 269

Implementing a pause method
You can use performSelector: to simulate a pause feature. Assume you have a method called
aLongMethod. To create a pause, split aLongMethod into two and use performSelector: to
trigger the second part after a delay.

-(id) aLongMethod {
 //Do things
 //Pause here…
 [self performSelector: @selector(restOfMethod:)
 withObject: anObject
 afterDelay: 1.0];
}

-(id)restOfMethod: optionalObject {
 //Finish the rest after the pause
}

You can also use pause execution in the current thread with

[NSThread sleepForTimeInterval: 2.0];

Running the selector in a separate thread
The performSelectorInBackground: method is a simple way to run a method in a sepa-
rate thread. The method specified by the selector detaches itself from the main thread and runs
in the background. You have no control over thread priority. If you need to pass parameters,
use performSelectorInBackground: withObject: and pack the parameters into an
array or dictionary.

If you are not using garbage collection, the background method must implement its own
autorelease pool, as described in the Managing thread memory section below.

Messaging across threads
performSelector: can trigger a method in a specific thread and wait until the method
completes:

[targetObject performSelector: @selector(aMethod:)
onThread: aThread withObject: aParameterObject waitUntilDone: YES];

Optionally, you can add a modes parameter to the end of this signature to specify the thread
mode. The parameter takes an NSArray of strings that defines the list of supported modes.
There is no option to delay the message, but it’s possible to use the performSelector:
withDelay: method to delay a second performSelector: that triggers the message.

aThread is an instance of NSThread. A performSelectorOnMainThread: option
selects target objects in the main thread, but it’s possible to create separate custom instances of
NSThread to spin off threads from the main application.

16_495896-ch11.indd 26916_495896-ch11.indd 269 8/31/10 2:49 PM8/31/10 2:49 PM

270 Going Deeper

Working with NSThread
NSThread is becoming a legacy object in OS X, but it can still be useful in iOS, which has a sim-
pler threading model. A thread is a method that runs independently of the object that triggered
it. To create a thread, use

[NSThread detachNewThreadSelector: @selector(theThreadMethod:)
 toTarget: self
 withObject:anOptionalObject];

The method is implemented with

-(void) theThreadMethod: (id)theOptionalObject {
//Do things
[NSThread exit];
}

You can pack theOptionalObject with as much data as you need. It can be a single
NSNumber or a complete dictionary of key-value pairs.

The exit call terminates the thread. Alternatively you can create an independent thread object:

NSThread *theThread = [[NSThread alloc]
initWithTarget: selfOrOther selector: @selector(theThreadMethod)

withObject:anOptionalObject];

Pausing a thread
With a separate object, you can set its properties, including name, stackSize, and
threadPriority — the latter on a range from 0.0 to 1.0. To run the thread, use the
start method. To end a thread externally, send it a cancel message. Depending on
the thread code, this may have no effect.

Threads, including the main thread, can be paused with

[NSThread sleepForTimeInterval: aFloat];

Call this from inside the thread you want to pause. It’s a class method, but NSThread implicitly
identifies the thread it’s called from and pauses it accordingly. A corresponding sleepUntil
Date: method sets an absolute wake-up time/date instead of an interval.

 C A U T I O N
If you pause the main thread for more than a couple of seconds, the beach ball icon appears and the application is
marked as “not responding.”

16_495896-ch11.indd 27016_495896-ch11.indd 270 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 271

Managing thread memory
On OS X you can use garbage collection to simplify thread memory management. On the
iPhone, you must create a local autorelease pool for the thread when it launches, and release
it just before the thread exits.

NSAutoreleasePool *aPool = [[NSAutoreleasePool alloc] init];
//Thread code goes here
[aPool release];
[NSThread exit];

This is standard boilerplate code, and is all that’s required to implement an autorelease pool.

Handling UI and thread interactions
Only some of AppKit and UIKit are thread-safe, so accessing UI objects directly from a thread
can be risky. Typically you use a thread to perform a background operation such as a download,
search, or archiving operation that would otherwise slow down execution.

If you need to trigger UI updates, use

[mainThreadObject performSelectorOnMainThread: SEL(aMethod:)
 withObject: anObject
 waitUntilDone: BOOL];

Place update code in a special selector/method that performs the update but runs in the main
thread and can be triggered remotely. You can choose to pause the thread, while it waits for the
main thread to complete the selector, or continue.

To receive messages from the UI, use the equivalent performSelectorOnThread:
method, nominating the thread and a target object and method inside it.

 T I P
It’s sometimes useful to run performSelectorOnMainThread: just before a thread exits to let the main
thread know that the other thread has completed its run. Use waitUntilDone: YES to make sure that the main
thread has copied or read any results of the run, if it needs to.

Using NSOperation
NSOperation is more recent than NSThread and has the following advantages:

 Threads are objects, not methods.

 Parameters can be passed through a customized init method with any number of
items.

16_495896-ch11.indd 27116_495896-ch11.indd 271 8/31/10 2:49 PM8/31/10 2:49 PM

272 Going Deeper

 Results can be read from the thread object’s properties as it runs, or before it
terminates.

 Queuing and concurrency can be managed. Operations can run in the background
concurrently — simultaneously — or sequentially. Concurrent processing can define a
maximum number of running threads.

NSOperation requires more setup than NSThread and is less flexible. Use it for more com-
plex threaded applications when you need more control over threading and when you need to
pass a wider a selection of objects and values to a background task.

Next you’ll create a simple example that uses NSOperation to list primes.

Creating an NSOperation object
An NSOperation object must have the following:

 A custom init or initWith: method that initializes its local values.

 A main method with the main thread code. Other local methods can be defined as
needed.

The init method is called when the object is created, and the main method is triggered when
the run queue runs the object. A header for a simple object that defines a BackgroundTask
class follows:

#import <Foundation/Foundation.h>
@interface BackgroundTask : NSOperation {
 int limitInt;
}
@property int limitInt;
- (id) initWithInt: (int) anInt;
@end

To create an NSOperation object in Xcode, add an NSObject to your project in the usual
way: right-click the Classes Folder, select Add New File, select OS X Cocoa Class and Objective-C
class, and select Subclass of NSObject in the class pop-up menu. Name and save it.

After saving, change the class from NSObject to NSOperation, as shown previously.

 C A U T I O N
Don’t forget to use GetInfo to change the Path Type of the new files to Relative To Enclosing Group.

The code for a sample background task follows:

#import “BackgroundTask.h”
#import “NSOperationAppDelegate.h”
@implementation BackgroundTask

16_495896-ch11.indd 27216_495896-ch11.indd 272 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 273

@synthesize limitInt;
- (id) initWithInt: (int) anInt
{
 if (![super init]) return nil;
 limitInt = anInt;
 return self;
}
- (void) main {
 for (int i=0; i< limitInt; i++) {
 if ([self isPrime: i])
 NSLog (@”%i is prime”, i);
 }
 [[NSOperationAppDelegate shared] performSelectorOnMainThread:
 @selector(taskDidFinish:)
 withObject: self
 waitUntilDone: YES];
 return;
}
-(BOOL) isPrime: (int) testNumber {
 if (testNumber < 1) return NO;
 if ((testNumber ==2) || (testNumber == 3)
 || (testNumber == 1)) return YES;
 if ((testNumber%2 == 0) || (testNumber%3 ==0)) return NO;
 int divisor = 5;
 int limit = 1+sqrt(testNumber);
 while (divisor < limit) {
 if (((testNumber%divisor) ==0) ||
 (testNumber%(divisor+2)) ==0) return NO;
 divisor +=6;
 }
 return YES;
}
@end

Key features of the code include:

 The initWithInt: method copies the initialization int to a local property. main
doesn’t support parameter passing, so you must pass parameters via init.

 The main loop cycles through a list of integers, tests them, and logs them if
they’re prime. The prime test is in a separate local method. Because it’s part of the
NSOperation object, this method becomes part of the background task.

 performSelectorOnMainThread: is used to notify the main thread when the thread
completes. This is an optional but useful feature.

 The thread exits automatically.

 [NSOperationAppDelegate shared] returns a pointer to the app delegate that
creates and runs this object. It’s described in more detail next.

16_495896-ch11.indd 27316_495896-ch11.indd 273 8/31/10 2:49 PM8/31/10 2:49 PM

274 Going Deeper

Using NSOperationQueue
To run an NSOperation object, create an instance of NSOperationQueue, a queue manager
object. Create as many instances of NSOperation as you need. Queue them with

[aQueue addOperation: anInstance];

This adds the operation to the queue. The queue runs the operation when it has a free execu-
tion slot, and manages objects before they’re executed. Sample code that runs up to four
instances simultaneously follows:

#import “NSOperationAppDelegate.h”
#import “BackgroundTask.h”
@implementation NSOperationAppDelegate
@synthesize window;
static NSOperationAppDelegate *sharedInstance;
+ (id) shared {
 //Other objects can use shared to get a pointer to this object
 return sharedInstance;
}
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 sharedInstance = self;
 NSOperationQueue *theQueue = [[NSOperationQueue alloc] init];
// [theQueue setMaxConcurrentOperationCount:1];
// When set to 1, dispatches tasks sequentially
 [theQueue setMaxConcurrentOperationCount:4];
 //When set to 4, dispatches up to 4 tasks concurrently
 BackgroundTask *task1 =
 [[BackgroundTask alloc] initWithInt:1000];
 [theQueue addOperation:task1];
 BackgroundTask *task2 =
 [[BackgroundTask alloc] initWithInt:2000];
 [theQueue addOperation:task2];
 BackgroundTask *task3 =
 [[BackgroundTask alloc] initWithInt:500];
 [theQueue addOperation:task3];
}
-(void) taskDidFinish: (id) sender {
 NSLog(@”Task %@ finished”, sender);
}
@end

 C A U T I O N
You can use a suspend method to control the queue. It doesn’t suspend execution, as you might expect; it suspends
dispatch. When the queue is suspended, no more tasks are queued until the suspension is cancelled.

The + (id) shared method is a convenient way to give other objects a pointer to the App
Delegate when they need to message it. It’s not obligatory, but is a simple way to allow tasks to
“call home” if they need to.

16_495896-ch11.indd 27416_495896-ch11.indd 274 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 275

The sharedInstance property is set to self, and when other objects call shared, they
receive the App Delegate’s self value. They can then use

[[NSOperationAppDelegate shared] sendAMessage];

You can implement a shared property in this way in any custom class, as long as there is exactly
one instance.

//in yourClass
static yourClass *sharedInstance;
sharedInstance = self;
//In another object
[[yourClass shared] sendAMessage];

Don’t use this idiom when you create a class that requires multiple instances.

 T I P
Don’t be confused by the fact that the class name is NSOperationAppDelegate. This is a custom class used to
demonstrate the features of NSOperation. It’s not a prebuilt Cocoa class, and you can’t use it in your own applica-
tion. But you can use the shared idiom, as long as you slot in your class name, as shown previously.

Other key features of the code include:

 An instance of NSOperationQueue manages the task list.

 Tasks are created with different initialization values.

 Tasks are added to the run queue with addOperation.

 The taskDidFinish: method is an optional custom method used to report the
completion of a task. It’s triggered in each task by calling performSelector
OnMainThread:, as shown in the previous listing.

To summarize, follow these steps to use NSOperation:

 1. Subclass NSOperation to create a class for your task.

 2. Add an initWith: method to implement parameter passing. Copy passed parame-
ters to local properties or values.

 3. Add a main method as an entry point to the task code. Add extra local methods as
needed.

 4. Optionally, add a performSelectorOnMainThread method to report when
the task exits or when it needs attention.

 5. In your main thread, create an instance of NSOperationQueue.

 6. Create and initialize instances of your task class, as needed.

 7. Run them by adding them to the task queue with addOperation:.

16_495896-ch11.indd 27516_495896-ch11.indd 275 8/31/10 2:49 PM8/31/10 2:49 PM

276 Going Deeper

 8. Optionally, use setMaxConcurrentOperations: to limit the maximum number of
parallel tasks.

 9. Optionally, use setQueuePriority: to set the priority of an operation, choosing one
of the constants defined at the bottom of the NSOperation Class Reference.

Figure 11.1 shows the results of running with setMaxConcurrentOperations: set to 4.
The tasks run simultaneously, with equal priority.

Figure 11.1

Allowing concurrent operations makes it possible for the tasks
to run in parallel.

Figure 11.2 shows the result of decreasing setMaxConcurrentOperations: to 1. The
tasks run sequentially. The queue manager dispatches them in the order they were queued.

Figure 11.2

When concurrent operations are disabled, tasks run sequentially.

16_495896-ch11.indd 27616_495896-ch11.indd 276 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 277

One obvious disadvantage of NSOperation is its inflexibility. If your application needs to
queue many different tasks, it can take a lot of time to create a custom subclass for each.

NSOperation has been extended to allow task code to be defined with blocks, which allow
the use of inline code or predefined code blocks that are used more fluidly.

Getting Started with Blocks
Blocks are a new feature in Objective-C, borrowed from similar idioms in other languages, such
as Ruby. A block is an object, but is used like a function. Block code can be created inline, or it
can be defined in a separate declaration and called via a block pointer, which is similar to an
object pointer, with modified syntax.

A block is an alternative design pattern that can replace delegation and selectors. Both dele-
gates and selectors can be difficult to follow, because related code may be scattered among
many objects. Block code is inline, which makes it easy to read and maintain. For example, in
the block operation example later in this chapter, code that runs in a separate thread is immedi-
ately visible and can be edited in-place. It isn’t buried in a method inside a separate object.

Technically a block encapsulates a block of code, including the state of all relevant variables at
the time it is created. This complicates variable and parameter assignment. By default, variable
values are fixed when the block is defined. To make them mutable, you must prefix them with
a __block directive, defined with a double underscore.

Block support was added to some of Cocoa’s key classes in OS X 10.6 and will be developed fur-
ther in future versions. For some applications, blocks offer a viable alternative to delegation,
because they allow inline code that is easier to write and easier to understand.

Although blocks are often associated with multithreading, blocks are a separate technology.
They’re not inherently multithreaded, and can be used as standard single-threaded Objective-C
code. But some of the new Cocoa extensions make it possible to define a task with block code
and launch it, in much the same way that NSTask calls a selector to define a method and then
launches the method in a separate thread.

Understanding block syntax
Blocks have two sections: an optional header and a body that contains the block code. Classes
that support blocks allow body-only blocks to be used as inline code. Depending on the con-
text, this may disable certain features, such as parameter passing or support for return values.

Blocks are marked with the ^ (caret) character and delimited with curly brackets, followed by an
apostrophe.

aBlock = ^{ some code goes here};

If no parameters or return values are defined, void is assumed. You can call the block with

aBlock();

16_495896-ch11.indd 27716_495896-ch11.indd 277 8/31/10 2:49 PM8/31/10 2:49 PM

278 Going Deeper

To define a return value, use

aBlock = ^(int n) {return n*20};
NSLog(@”%i”, aBlock(3)); //Logs 60

The full block declaration includes the return type, the name, and the parameter list, followed
by a copy of the parameter list, followed by the code.

int (^aBlock) (int) = ^(int n) {return n+1};

If the return type is missing, the compiler assumes it from the code — which is why the previous
two lines of code were valid.

Fixing variables and values
If a block references a variable or value when it’s created, the value is frozen into the code.
Parameters are referenced in the usual way, but if you don’t define a variable as a parameter,
the block makes a copy of its current state when it’s created and doesn’t allow it to be changed.
For example:

int b;
b=2;
aBlock = ^(int a) {return a*b};
NSLog(@”%i”, aBlock(3)); //Logs 6
b=3;
NSLog(@”%i”, aBlock(3)); //Still logs 6

To convert b into a block variable, add a block underscore prefix to the original definition:

__block int b=3;
NSLog(@”%i”, aBlock(3)); //Logs 9

Technically, this replaces the constant value of b frozen into the code with a reference. The ref-
erence points to a location in block memory, which is a separate memory area that persists as
long as at least one block is active. In simple terms, b can now be accessed as a variable.

Blocks are objects, and they can be copied, stored in arrays and dictionaries, and archived. They
can also be triggered remotely like methods, using dot syntax. Internally you can run a block with

self.aBlock();

You can also declare blocks as properties so that other objects can run them. To make them accessi-
ble, declare a typdef, which is similar to a standard C typedef and can be used like a class name.

typedef int (^MyBlockType) (int);
MyBlockType aBlock = ^(int aNum) {
return aNum*42;
};

Add the following to the header file:

@property (readwrite, copy) MyBlockType aBlock;

16_495896-ch11.indd 27816_495896-ch11.indd 278 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 279

You can then run the block in an instance of the surrounding class with

someInstanceName.aBlock(anInt);

Using NSBlockOperation
NSBlockOperation supports both named and inline blocks, but does not allow parameters to
be passed or returned. The equivalent block-based implementation of your prime generator follows:

#import “NSBlockOperationAppDelegate.h”
@implementation NSBlockOperationAppDelegate
@synthesize window;
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 NSOperationQueue *theQueue =
 [[NSOperationQueue alloc] init];
 int limitInt = 1000;
 NSBlockOperation *block1 =
 [NSBlockOperation blockOperationWithBlock:
 //***Start of the block
 ^{
 for (int i=0; i< limitInt; i++) {
 if ([self isPrime: i])
 NSLog (@”%i is prime”, i);
 }
 }];
 //***End of the block
 [block1 setCompletionBlock:^{
 NSLog(@”Finished”);
 }];
 [theQueue addOperation:block1];
 return;
}
-(BOOL) isPrime: (int) testNumber {
 if (testNumber < 1) return NO;
 if ((testNumber ==2) || (testNumber == 3)
 || (testNumber == 1)) return YES;
 if ((testNumber%2 == 0) || (testNumber%3 ==0)) return NO;
 int divisor = 5;
 int limit = 1+sqrt(testNumber);
 while (divisor < limit) {
 if (((testNumber%divisor) ==0) ||
 (testNumber%(divisor+2)) ==0) return NO;
 divisor +=6;
 }
 return YES;
}
@end

16_495896-ch11.indd 27916_495896-ch11.indd 279 8/31/10 2:49 PM8/31/10 2:49 PM

280 Going Deeper

The NSOperationQueue is created and used as before, but is primed with an NSBlock
Operation object created in the code. The active code is an inline block that starts immedi-
ately after blockOperationWithBlock:.

This example implements an optional feature. A separate setCompletionBlock: method
defines another block that is called when the task terminates. You can also add multiple execution
blocks to a single block operation object, so they run simultaneously, subject to a concurrency limit.

This code is much simpler than the version that used NSOperation, and it is easier to write.
There’s no need to create a separate class, and a completion method can be defined inline.

But NSBlockOperation has a significant limitation: it doesn’t support parameter passing or
return parameters. The signature of a block operation is void (^) (void), and this can’t be
changed. Fortunately, there is a workaround.

Passing parameters to NSBlockOperation
Passing parameters to a block isn’t entirely straightforward. To illustrate this, you’ll create a very
simple block that logs an int. You’ll then queue it twice, with two different parameters. The
code is as follows:

- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {
 int limitInt = 0;
 NSOperationQueue *theQueue = [[NSOperationQueue alloc] init];
 //*** Block definition starts here
 void (^aBlock) (int) = ^(int thisInt) {
 NSLog(@”i: %i”, thisInt);
 };
 //*** Block definition ends here
 limitInt = 100;
 NSBlockOperation *block1 =
 [NSBlockOperation blockOperationWithBlock: ^{
 aBlock(limitInt);
 }];
 [theQueue addOperation:block1];
 limitInt = 1000;
 NSBlockOperation *block2 =
 [NSBlockOperation blockOperationWithBlock: ^{
 aBlock(limitInt);
 }];
 [theQueue addOperation:block2];
}
@end

The block definition defines the block code. This code is used to create two separate tasks with
the same code.

16_495896-ch11.indd 28016_495896-ch11.indd 280 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 281

The NSOperationQueue is managed as before. addOperation: is used to queue each
block operation as it’s created.

The block syntax itself is nested. You can’t pass parameters to the block defined by the
blockOperationWithBlock:, but you can treat that block as a dummy wrapper and call
your active block inside it. This solves the problem — with the caveat that aBlock uses a
parameter reference rather than a parameter value, taking the current value of limitInt.

If some other process changes limitInt before a block is dispatched, it will take the runtime
value, which may not be the value you set here. For reliable code, it’s best to pass parameters
as literals, or to make a local copy of a value that can be passed to the block. Both options
guarantee that the value won’t change while the code runs.

Introducing Grand Central Dispatch
NSOperation is a wrapper around a lower-level technology called Grand Central Dispatch
(GCD). In most applications, you can do everything you need with NSOperationQueue. GCD
offers improved low-level thread management that gives you more control over how threads
are grouped and run. It implements a separate collection of queues that runs independently of
the main queue, and also gives finer control over priority.

GCD understands blocks; for example, to start a thread with GCD use:

dispatch_async(queue, ^{ block code});

For more details about GCD, see the Grand Central Dispatch Reference in the Documentation.

Using NSTask
Cocoa includes another class that supports threading and remote execution. NSTask is a wrap-
per for system-level Unix calls. You can use NSTask to invoke the shell to execute simple com-
mands such as ls, or to run utilities such as traceroute or ping.

By default, NSTask pipes return data back to stdio — the system input/output stream —
which is connected to the console. You can run an NSTask and monitor the results in the con-
sole window. To capture the output in your own application, create an instance of NSPipe;
connect it to the task; create an instance of NSFileHandle; implement an observer method
that captures data as it arrives; and pass it back to your application.

There are few applications where this is necessary or useful. A simple example that calls the
say speech synthesizer utility from a text view appears below. Figure 11.3 shows the finished
application.

16_495896-ch11.indd 28116_495896-ch11.indd 281 8/31/10 2:49 PM8/31/10 2:49 PM

282 Going Deeper

Figure 11.3

Make your Mac talk with NSTask and say. Running say triggers
a complex sequence of events, which are logged to the console.

The window includes a single text view, which is linked via an outlet to the App Delegate. The
controlTextDidEndEditing: method is called when the user presses Return. The string
is wrapped in quote marks and passed as a parameter to NSTask.

NSTask requires two values. The first is the launch path that defines the location of the utility.
For say, the path is /usr/bin/say. The second is an array of arguments, which is equivalent
to the args array used in C applications, but is passed with the setArguments: method. In
this example, the quoted string is the only parameter. The code is as follows:

@synthesize window, theText;

- (void)applicationDidFinishLaunching:(NSNotification *)
aNotification {

 theText.delegate = self;
}
- (void)controlTextDidEndEditing:(NSNotification *)aNotification

{

16_495896-ch11.indd 28216_495896-ch11.indd 282 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 11: Using Timers, Threads, and Blocks 283

 NSLog(theText.stringValue);
 NSTask *aTask = [[NSTask alloc] init];
 [aTask setLaunchPath:@”/usr/bin/say”];
 NSString *talkString =
 [NSString stringWithFormat:@”\”%@\””, theText.stringValue];
 NSArray *args = [NSArray arrayWithObjects: talkString,nil];
 [aTask setArguments: args];
 [aTask launch];
}
@end

It can take a few moments for the set-up process to load and initialize the synthesizer and begin
speaking. Once the code is running, you can create multiple parallel tasks by pressing the Return
key over and over. Each runs and terminates independently, and the synthesized speech overlaps.

 T I P
The Web site for this book includes an alternative version of the code that can run any command with arguments and
has a kill feature. You can download the code at www.wiley.com/go/cocoadevref. The standard Unix file
path searching feature built into Terminal isn’t implemented, so you must specify all file paths explicitly.

Summary
In this chapter, you learned how to manage parallel tasks and events. You were introduced to
various applications for NSTimer, and explored how to use performSelector: to trigger
messages after a delay.

Next you learned how to use NSThread, and how to create and schedule methods so that they
run in a separate thread. You discovered how to use some of the more complex variations of
performSelector: to pass messages back to the main thread, to manage the UI, or to col-
lect data.

You were introduced to NSOperation, and you discovered how to create subclasses that can
run as separate background tasks, how to manage the operation queue, and how to control
thread priority.

You explored blocks, discovered how to use NSBlockOperation to schedule block events,
and investigated some of the limitations of parameter passing. You were also introduced briefly
to Grand Central Dispatch (GCD), and you discovered how to schedule block tasks using an
alternative low-level interface.

Finally, you experimented with NSTask, creating a simple interface to the Mac’s built-in speech
synthesizer.

16_495896-ch11.indd 28316_495896-ch11.indd 283 8/31/10 2:49 PM8/31/10 2:49 PM

16_495896-ch11.indd 28416_495896-ch11.indd 284 8/31/10 2:49 PM8/31/10 2:49 PM

In This Chapter

Managing Data and
Memory in Cocoa

Introducing data
collection objects

Using NSCoder and
NSData

Archiving and
de-archiving object

properties

Managing memory

Cocoa includes unique data collection objects, which are used
almost as regularly as floats, ints, and character strings are in
C and Java. You can use these objects as custom object

stores, but you’ll also spend time packing data into a collection and
passing it to a Cocoa class, and unpacking data from a collection
returned by a Cocoa class.

 C A U T I O N
Cocoa doesn’t always use data collections efficiently. Certain classes force you to
pack data into an array or dictionary when you want to pass a single string or a
number. This adds overhead and complicates the code, but it is sometimes
obligatory.

Basic data collection skills include:

 Understanding the difference between mutable and stan-
dard classes.

 Understanding the difference between arrays, sets,
dictionaries, and byte data.

 Finding objects by index, key, or other search options.

 Enumerating objects and processing them.

 Creating single-object collections.

 Counting, listing, sorting, and summarizing the contents
of a collection.

 Using key-value coding to initialize and read the settings
and parameters used in some of Cocoa’s frameworks; for
example, some of the media classes require and return
key-value dictionaries.

 Saving and loading objects to and from disk.

 T I P
Data collection objects have very little in common with their simpler C-language
counterparts. A C array is a very simple data type, with limited features.
NSArray shares the same indexed access model, but it supports powerful
features such as counting, searching, and enumeration.

17_495896-ch12.indd 28517_495896-ch12.indd 285 8/31/10 2:49 PM8/31/10 2:49 PM

286 Going Deeper

Data collection objects can be grouped and nested. It’s not unusual to fill an array with dictionaries,
and key-value paths can become complex. It can be very useful to sketch class graphs that illustrate
how objects are linked and how they interpret key-value combinations.

Introducing Data Collection Objects
Cocoa’s data collection objects have a number of unusual features:

 They implement their own disk access methods. You can save and load the con-
tents of any data object to disk. You can also load data from a URL into the object.

 By default, data is defined at initialization and is read-only. If you need to change
the contents of a collection, use a mutable subclass.

 Data collections store objects. Simple C types must be “objectified.” Typically this
means converting ints, floats, and other types into an instance of NSNumber, or using
NSValue as a wrapper for other data types. Strings must be an instance of
NSString.

 Data collections support implicit enumeration methods. You can run a method on
every object in the collection with a single line of code.

 Modifying a mutable data collection doesn’t trigger a Key-Value Observing (KVO)
message or modify the value of an object in a collection. If you want a collection
that triggers KVO responses, you’ll need to add some work-around code.

Table 12.1 introduces the key features of each object.

Table 12.1 Cocoa Data Objects
Data objects Description

NSArray Stores objects in an indexed list. Supports enumeration, predicate searching, and

sorting.

NSMutableArray Supports insertion and removal of objects. Inserting an object automatically

increases the indexes of the objects after it.

NSDictionary Stores objects as key-value pairs. Supports key and value listing, key enumeration,

object enumeration, and predicate searching.

NSMutableDictionary Allows insertion and deletion of key-value pairs, and allows modification of the

value or object linked to a key.

NSSet Stores an unordered collection of objects without indexes. NSSet is faster than

NSArray when you need to test whether an object is in a collection.

NSMutableSet Supports insertion and deletion of objects, and supports union, intersection, and

difference operations between sets.

17_495896-ch12.indd 28617_495896-ch12.indd 286 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 287

Data objects Description

NSValue Typically used the data element in collections. Works as a wrapper for

conventional C or other Objective-C data types. Objectifies them and provides a

standard interface for accessing, copying, and comparing them. Also supports

pointers, NSRange, and the NSPoint, NSRect, and NSSize

types used in graphics.

NSNumber NSNumber is a subclass of NSValue and works with numerical values.

NSIndexSet A set of array indexes. Used for multiple array operations.

NSMutableIndexSet can be modified dynamically.

Using objects, keys, and values
Key-value pairings are a fundamental feature of the data collection objects. But it’s easy to mis-
understand how keys, objects, and values are related.

Understanding objects and values
You might expect values to access the contents of an object. As Figure 12.1 shows, they don’t.

The code creates a mutable dictionary, and adds various objects and values to it. The console
output shows that the valueForKey: and objectForKey: methods return the same object.

When you’re working with string keys, the two methods are synonymous. The critical difference
between objects and values is more subtle and is not intuitively obvious.

 When you use valueForKey:, the key must be an NSString.

 When you use objectForKey:, the key can be any object in any class.

objectForKey: is immensely flexible and powerful. You can search, enumerate, and orga-
nize objects using any data type or class as a key. You can use this feature to search and orga-
nize collections of any object — pointers, graphical data, game tokens, and so on — and to pair
objects in useful ways.

valueForKey: is a poor relation. It forces you to pair an object with a string. Some Cocoa
frameworks use valueForKey: exclusively in their class definitions, so you’re often com-
pelled to use it.

Using setValue: forKey
NSArray and NSSet implement the setValue: forKey: method. This enumerates the
items in the array or set and runs setValue: forKey: on each in turn.

Although these classes are nominally read-only, you can use this method to modify the values
inside mutable collections stored inside a non-mutable object.

17_495896-ch12.indd 28717_495896-ch12.indd 287 8/31/10 2:49 PM8/31/10 2:49 PM

288 Going Deeper

Figure 12.1

Illustrating how valueForKey: and objectForKey: return the same object.
The difference between these methods is in the key, not in the object/value.

Figure 12.2 shows an example. An NSArray holds a series of NSMutableDictionary items.
Running the setValue: forKey: method on the array modifies the values of the matching
keys in every dictionary.

You can use this technique to implement a quick reset feature. For example, the array might
contain an array of player information in a game. You can reset any one key value for every
player with a single line of code.

Implementing Key-Value Observing
Data collection objects are not observable. Adding, removing, counting, and searching items
don’t trigger Key-Value Observing (KVO). To implement KVO, you must add it manually.
Typically you wrap changes inside one or more editing methods. Each method can specify a
constant that tells KVO about the edit. For example:

- (void) editMethod: (id) objectsToReplace
 atindexes: (NSIndexSet *) indexes {
 [self willChange: NSKeyValueChangeReplacement

17_495896-ch12.indd 28817_495896-ch12.indd 288 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 289

 valuesAtIndexes: indexes forKey: @”these objects”];
//Add code to replace some of the objects in the collection
 [self didChange: NSKeyValueChangeReplacement
 valuesAtIndexes: indexes forKey: @”these objects”];
}

The supported constants are:

 NSKeyValueChangeReplacement

 NSKeyValueChangeRemoval

 NSKeyValueChangeInsertion

Figure 12.2

setValue: forKey: can change values inside mutable objects —
even when they’re stored inside a non-mutable collection.

dictionaryA

at index: 0

@”key1”

12

@”key2”

59

@”key3”

12

dictionaryB

at index: 1

NSArray

@”key1”

-5

@”key2”

0

@”key3”

475

setValue: [NSNumber numberWithInt: 16] forKey: @”key2”

dictionaryC

at index: 2

@”key1”

341

@”key2”

4060

@”key3”

-10000

dictionaryA

at index: 0

@”key1”

12

@”key2”

16

@”key3”

12

dictionaryB

at index: 1

NSArray

@”key1”

-5

@”key2”

16

@”key3”

475

dictionaryC

at index: 2

@”key1”

341

@”key2”

16

@”key3”

-10000

17_495896-ch12.indd 28917_495896-ch12.indd 289 8/31/10 2:49 PM8/31/10 2:49 PM

290 Going Deeper

If your code doesn’t need to know when items have been changed, removed, or inserted, you
can trigger KVO with a dummy assignment after an edit.

self.dataCollectionObject = dataCollectionObject;

This tells KVO that the object has been accessed, but not if or how the collection was changed.
It’s a minimal solution, but it may be enough in some applications.

Using NSValue and NSNumber
You can add any object to any data collection. You can also mix objects in the same collection,
which is one reason why the data collection objects are so powerful. By default, you can fill any
data slot in any data object with any class.

 N O T E
Cocoa has no concept of a typed array or set. If you need to enforce typing, you can implement it manually.

Because data collections store objects and not naked values, you often have to use NSValue
and NSNumber to “objectify”’ an existing value.

NSNumber is relatively easy to work with. To create an NSNumber object, use

NSNumber *aNumber = [NSNumber numberWith<Type>: rawValue];

The NSNumber Class Reference lists the supported types. Long and unsigned variants are
available.

To convert an NSNumber back into a numeric C type, use

<a type> rawValue = [aNumber <type>Value];

For example, to convert to and from a float, use

NSNumber *aNumber = [NSNumber numberWithFloat: 2.71828];
float theNumber = [aNumber floatValue];

You can use a stringValue method to convert a number into a string. The formatting is arbi-
trary, so it’s better to use the NSString stringWithFormat: method for conversions,
because you can apply standard C format specifiers. For details, see Chapter 15.

NSValue is more open-ended, and it supports the handful of Cocoa data types that aren’t
objects, such as NSRange, NSRect, NSPoint, and others. You can also use it to “objectify”
custom C data structures. The most useful built-in types include:

 Pointer

 Geometrical point (NSPoint)

17_495896-ch12.indd 29017_495896-ch12.indd 290 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 291

 Geometrical rectangle (NSRect)

 Geometrical rectangle size (NSSize)

 Two-valued range (NSRange)

The syntax for these standard types is similar to that used by NSNumber:

NSValue *aValue = [NSValue numberWith<Type>: rawValue];
<a type> rawValue = [aValue <type>Value];

NSValue also supports arbitrary custom C typedefs, with a conversion feature.

typedef struct {
//Assorted data types
} StructName;
StructName letsMakeOne;
//Code to set struct values
NSValue *aStructWrapper = [NSValue value: &letsMakeOne
 withObjCType: @encode(StructName)];

This creates an object called aStructWrapper, which contains the values in letsMakeOne,
which is an instance of StructName. Once aStructWrapper is initialized, you can insert it
into a data collection object.

The withObjCType: parameter tells NSValue how to organize the interval values. The value
parameter tells NSValue what the values are.

To extract the values, use

[letsMakeOne getValue: &aStructWrapper];

This unwraps the contents of aStructWrapper and copies them into a variable with a
matching typedef.

Using NSArray
NSArray’s init methods can create an array from a variety of data sources, including the
following:

 Another array

 A file

 A data source accessed via a URL, which can be a local file or an online data source (see
Chapter 10 for details).

 A single object

 A list of objects

 A C array of objects

17_495896-ch12.indd 29117_495896-ch12.indd 291 8/31/10 2:49 PM8/31/10 2:49 PM

292 Going Deeper

You can usually ignore the initWith… methods and use their class equivalents. Use

NSArray *aNewArray = [NSArray arrayWith<data source>];

instead of

NSArray *aNewArray = [[NSArray alloc] initWith<data source>];

To create an array with a single object, use

NSArray *theArray = [NSArray arrayWithObject: theObject];

This is required throughout Cocoa when passing an object to another object that takes an array
parameter. The array parameter can have many objects, but sometimes only one is needed.

When defining a list of objects with the plural variant of this method, terminate it with nil.

NSArray *theArray = [NSArray arrayWithObjects: object1, object2,
nil];

As mentioned in earlier chapters, you can copy arrays by creating a new array with the contents
of an existing array. NSArray includes methods that can modify the array as it’s copied. They
can extract a range of objects from the array, add a new object, or combine two arrays. For
example:

NSArray *newArray =
[oldArray arrayByAddingObject: newObjectToAdd];

This copies the objects from oldArray to newArray and then appends newObjectToAdd.

Although NSArray isn’t mutable, these modification methods make it possible to mutate the
data in the array, at the cost of some extra code and another array object.

You can also copy an array directly using the copyWithZone: method. This is implemented
by all data collection objects.

NSArray *copiedArray = [oldArray copyWithZone: NULL];

Use NULL to specify the default memory pool.

Using NSMutableArray
NSMutableArray supports editing but enforces a contiguous list.

[aMutableArray insertObject: anObject AtIndex: n];

The indexes of existing objects above n are automatically increased by one, as shown in
Figure 12.3. The removeObjectAtIndex: method recalculates existing indexes in an
analogous way.

17_495896-ch12.indd 29217_495896-ch12.indd 292 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 293

Figure 12.3

Inserting an object into a mutable array automatically adjusts
the existing indexes.

NSMutableArray Result

0:

Object A

insertObject: objectZ

atIndex: 0

1:

Object B

2:

Object C

NSMutableArray

0:

Object Z

1:

Object A

2:

Object B

3:

Object C

Related methods are available for removing, replacing, and exchanging objects. You can use
removeAllObjects to empty the array.

You can hint a capacity for NSMutableArray by creating it with

aMutableArray = [NSMutableArray arrayWithCapacity: integer];

Mutable arrays expand and contract as needed. Hinting a capacity preassigns a block of memory,
slightly increasing performance.

The capacity does not set the array bounds as it would for a C array. The bounds limit is set by
the current item count, not the capacity.

The array contents must be a contiguous list. Gaps aren’t permitted. Attempting to insert an
item at index:50 in an empty array raises an exception, even when the capacity is 50.

If you need to implement a non-contiguous array, use NSDictionary, pairing objects with
arbitrary index keys.

Searching NSArray and NSMutableArray
NSArray and NSMutableArray organize data with the usual index model. index:0 holds
the first object, index:1 the next, and so on. But these classes also implement powerful search
options that allow random access.

17_495896-ch12.indd 29317_495896-ch12.indd 293 8/31/10 2:49 PM8/31/10 2:49 PM

294 Going Deeper

The basic query method is objectAtIndex:

(id) theObject = [anArray objectAtIndex: anInteger];

This returns the object at the integer index. The object can be of any type. Your code must sup-
port id for the object, implement type checking, or enforce typing in some other way.

You can also search the array for a specific object, returning an index if it exists.

theIndex = [anArray indexOfObject: aSearchObject];

This method returns the first match, ignoring other matches. If no match is found, theIndex is
set to the constant NSNotFound, which is defined as a very large number.

Optionally, you can limit the search to a range of indexes with an extra inRange: parameter
that takes an instance of NSRange.

From OS X 10.6 onward, NSArray supports searches with arbitrary inline search code. This fea-
ture uses the new block technology described in Chapter 11. The inline code is completely cus-
tomizable. You can implement any search condition or test. NSArray enumerates its contents,
applies the test code, and returns an index if there’s a match; for example:

theIndex = [anArray indexOfObjectPassingTest:
(BOOL (^)(id obj, NSUInteger idx, BOOL *stop)){
 if ([obj isEqual: searchObject]) {
 stop = YES;
 return idx;
 }
}];

The conditional defines the test. Here the test is a simple comparison, but the test can be arbi-
trarily complex, optionally referencing some of the internal properties of each entry in the array.
The stop Boolean terminates the search.

Sorting NSArray and NSMutableArray
There is no way to sort an NSArray in place, and you can only sort an NSMutableArray in-
place with custom code.

However, you can use the sortedWith… methods to create another array with the same con-
tents sorted using any arbitrary function, selector, or sort descriptor.

Sorting is implicitly type-dependent, and it’s impossible to define a general sorting solution for
an array of arbitrary objects.

Typically you assume the array contains data of a single type, and then create a sort algorithm
accordingly. For example a sorting function takes two items of a given type and returns three
NSInteger comparison constants — NSOrderedAscending, NSOrderedDescending,
and NSOrderedSame.

17_495896-ch12.indd 29417_495896-ch12.indd 294 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 295

NSInteger aSort (id thingOne, id thingTwo, void *aContext) {
 v1 = [thingOne <type>Value];
 v2 = [thingTwo <type>Value];
 if (v1 < v2) return NSOrderedAscending;
 if (v1 = v2) return NSOrderedSame;
 if (v1 > v2) return NSOrderedDescending;
}

This assumes that values are available and direct comparisons are possible. Complex objects
require a more complex solution.

You can then use the sorting function to create a sorted array.

NSArray *sortedArray =
[sourceArray sortedArrayUsingFunction: aSort context: NULL];

Sorting with a selector is similar, with the difference that the selector runs on each object in the
array, passing another object as a parameter. The return codes are the same.

Arrays without using NSArray
If you don’t need the features of NSArray, you can create a C array of object pointers with

ClassName *arrayName[numberOfEntriesConstant];

Each entry is a pointer to an instance of ClassName. This is equivalent to creating a list of
related pointers, but it also supports indexed access.

ClassName *arrayName1;
ClassName *arrayName2;
etc…

You can set items individually:

NSString *someStrings [3];
someStrings[0] = @”aString”;
someStrings[1] = anObject.name;
someStrings[2] = someStrings[0];

Note that someStrings is an array of pointer variables, not an array of string objects.

NSString *aString;
aString = @”One fish”;
someStrings[0] = aString;
aString = @”Two fish”;
//someStrings [0] is still @”One fish”

Be careful when using manual memory management. You can leak objects if you don’t release
them.

17_495896-ch12.indd 29517_495896-ch12.indd 295 8/31/10 2:49 PM8/31/10 2:49 PM

296 Going Deeper

Using NSDictionary
NSDictionary collects key object/value pairs. It’s more flexible than NSArray, allowing
arbitrary indexing and object pairing. The keys can represent almost any data in any format, so
it’s possible to emulate a noncontiguous array with numerical keys.

You can create a dictionary by merging two arrays to create key-value pairs:

aDictionary =
[NSDictionary dictionaryWithObjects:
objectArray forKeys: keyArray];

Use allKeys to reverse this process and return an array of keys, and use allValues to
return an array of objects/values.

You can also specify a list of alternating keys and values:

bDictionary =
[NSDictionary dictionaryWithObjectsAndKeys:
value1, @”key1”, value2, @”key2”, nil];

The sorting and enumeration features are similar to those in NSArray.

Accessing File Attributes
NSDictionary includes convenience methods for accessing a file handler’s attributes dic-
tionary. Instead of specifying an explicit key, you can call these methods directly to return vari-
ous attributes; for example:

NSDate *creationDate = [anAttributesDictionary fileCreationDate];

You can use the attributes dictionary to access low-level file information. This information isn’t
usually required for simple read/write archiving operations.

Using NSMutableDictionary
Use setObject: forKey: and setValue: forKey: to add items to the dictionary or to
replace existing items.

You can copy an entire existing dictionary with the setDictionary: method. Use this to
make a mutable copy of dictionary data before editing it.

removeAllObjects, removeObjectForKey: , and removeObjectsForKeys: manage
deletion. The latter takes an array of keys.

NSMutableDictionary supports capacity hinting. The key system doesn’t implement
bounds checking.

17_495896-ch12.indd 29617_495896-ch12.indd 296 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 297

Using NSSet and NSMutableSet
Use NSSet to create an unordered collection of objects — specifically when ordering and
indexing aren’t important, but your application needs to check whether an object is included in
a set or in some combination of two sets. Table 12.2 lists the most useful methods.

Table 12.2 Useful NSSet and NSMutableSet Methods
Method Description

NSSet methods

intersectsSet: Returns TRUE if two sets share at least one common object.

isEqualToSet: Returns TRUE if two sets are identical.

isSubsetOfSet: Returns TRUE if every object in the original set is also in another set.

NSMutableSet methods

unionSet: Merges two sets.

setSet: Replaces one set with another.

minusSet: Removes items from the source set if they also appear in the target set.

intersectSet: Removes items from the source set if they don’t also appear in the target set.

NSSet also implements the enumeration, count, and search methods implemented by other
collection objects. You can convert an array into a set with the setWithArray: initializer.
However, you can’t easily convert a set back into an array. Potentially, you can enumerate each
item in a set and add it to an array, but, naturally, the ordering will be undefined.

Enumerating items
There are three ways to enumerate the items in a data collection.

Using NSEnumerator
You can ask the class to create an NSEnumerator object using one of the available class
methods, and then use the nextObject method to step through each item in turn. For
example, you would enumerate an array as follows:

NSEnumerator *enumerator = [anArray objectEnumerator];
id object;
while (object = [enumerator nextObject]) {
 //do something with the object
}

Each class can return different enumerators. Table 12.3 lists the most useful options. Only
NSArray implies a defined order. For other classes, the order generated by object
Enumerator isn’t explicitly defined.

17_495896-ch12.indd 29717_495896-ch12.indd 297 8/31/10 2:49 PM8/31/10 2:49 PM

298 Going Deeper

Table 12.3 essential Enumeration methods
Data objects Description

NSArray objectEnumerator
reverseObjectEnumerator

NSDictionary objectEnumerator
keyEnumerator
enumerateKeysAndObjectsUsingBlock{}

NSSet objectEnumerator
enumerateObjectsUsingBlock{}

Using fast enumeration
Cocoa also supports fast enumeration, which is implemented with minimal code, optimized for
efficiency.

for (id anItem in dataCollectionObject) {
 //Process anItem
}

If the items in the data collection are of a single type, replace id with the type.

You can use break to terminate the enumeration loop, and use a counter variable — incre-
mented manually — to count indexes and optionally apply a conditional to select a specific
item, apply a range, and so on.

for (id anItem in dataCollectionObject) {
 if ([anItem isEqual: aTestItem])
 //Optionally, do something with anItem
 break;
 else
 //Process the other items
 }
}

Using implicit enumeration
The makeObjectsPerformSelector: method enumerates the collection and runs the
selector on each item. It’s equivalent to

for (id anItem in dataCollectionObject) {
 [anItem performSelector: @selector(aMethod)];
}

Optionally, you can pass an object to the method as a parameter, using the withObject:
extension. The method parameter should be id. Strong typing isn’t supported.

17_495896-ch12.indd 29817_495896-ch12.indd 298 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 299

Performance considerations
Fast enumeration is fast. It runs slightly faster than a for-next loop or an enumerator object.
Cocoa’s core is optimized for object processing, so data collection enumeration can be as fast as
C array indexing. Generally, you can use fast enumeration without performance worries.

Enumerating mutable collections
Don’t enumerate a mutable collection while it’s being modified. If the data in the collection
changes, the enumerator raises an exception.

The safe way to enumerate mutable objects is to copy them to a temporary read-only object,
and then run the enumeration on the read-only data. Enumerators aren’t suitable for condi-
tional editing.

//Don’t do this!
for (id anItem in mutableCollection) {
 if ([anItem isEqual: aTestItem])
 //code to replace anItem or delete it from the collection
 }
}

Counting items
All the data collection objects implement the count method, which returns an integer with the
number of items; for example:

int items = [aDictionary count];

Archiving and de-archiving collection objects
All the collection objects implement direct disk access. You can save and load data directly to
and from disk with an arbitrary filename by calling a disk access method on a collection object.
For example, to save data from an array, use

[anArray writeToFile: aFilePath atomically: YES];

You can reload the data with

anArray = [NSArray arrayWithContentsOfFile: aFilePath];

You don’t need to create a file manager object. These methods handle low-level disk access
for you.

 C R O S S R E F
For information about creating and using file paths and URLs, see Chapter 10.

17_495896-ch12.indd 29917_495896-ch12.indd 299 8/31/10 2:49 PM8/31/10 2:49 PM

300 Going Deeper

A typical application may use tens or hundreds of data collection objects in its model. It would be
inefficient to create a separate file for each one. Fortunately, Cocoa includes a “collection of collec-
tions” class that can create a single data buffer from a group of collections, save it to disk as a sin-
gle file, and retrieve the original collection data when it’s reloaded. The class is called NSCoder.

Using NSCoder and NSData
NSData is Cocoa’s simplest data collection object. It’s a wrapper for an arbitrary blob of binary data.
NSData doesn’t care what the data means, or how it’s organized. It doesn’t support keys, indexing,
sets, dictionaries, or other access methods. It simply treats the data as a contiguous byte buffer.

NSMutableData adds byte-level editing. You can change the length of the buffer, append
more bytes or data from another NSData object, and replace a range of bytes in the buffer.

NSData is sometimes used for generic storage in an application. More typically, it’s used as a
file or data transfer buffer. Chapter 10 has an example of an asynchronous Web download that
appends incoming data to a buffer as it’s downloaded. In the following section, NSData is
paired with NSCoder to create a file buffer for application data.

Introducing archiving and coding
Most applications save documents and data into a single file. Cocoa’s NSCoder class merges
an object’s property values into a single NSData object. The data can then be saved to disk as a
single file. NSCoder supports a decoding method that reverses the process, unpacking the
merged data and copying it back to an object’s properties.

There are two components to an NSCoder implementation. First, every class that supports
archiving must implement two methods:

 encodeWithCoder: defines how the class converts its properties into blocks of
binary that can be added to a file buffer.

 initWithCoder: defines how binary is converted back into property values.

The conversion is managed by two methods called encode: and decode:. These methods
are run on each property in turn within encodeWithCoder: and decodeWithCoder:.

 encode: generates a block of binary for a single property and links it to a key string.

 decode: searches for a key string and converts the associated binary back into an
object or value.

Second, the class responsible for saving and loading data uses an instance of NSKeyedArchiver
to manage the conversion of object properties to an NSData block, and back again.

NSKeyedArchiver runs the encodeWithCoder: and initWithCoder: methods for
you. You never need to call them directly. You can simply tell NSKeyedArchive that you
want to convert an object into binary, or convert a file of binary back into an object, passing an
NSData object as a parameter. The conversion is automatic.

17_495896-ch12.indd 30017_495896-ch12.indd 300 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 301

Even more usefully, the NSCoder process is recursive. Data collection objects automatically run
NSCoder on their elements. If they need to, the elements run NSCoder on their subelements, and
so on, until no more recursion is needed. As long as every class in the tree implements NSCoder
correctly, this happens effortlessly with no extra code. Figure 12.4 summarizes the process.

Figure 12.4

Saving and loading composite objects to disk. The NSCoder methods are built
into the class implementation. They’re called indirectly by NSKeyedArchiver.

[archiver encodeObject:

theObject forKey: @”aKey”];

NSKeyedArchiver

NSData

Binary data

theObject

string property with

@”key1”

string property with

@”key4”

int property with

@”key2”

array property with

@”key3”

and so on...

theObject

string property with

@”key1”

string property with

@”key4”

int property with

@”key2”

array property with

@”key3”

and so on...

NSData

Binary data

Save

[archiver decodeObjectforKey: @”aKey”];

NSKeyedArchiver

Load

17_495896-ch12.indd 30117_495896-ch12.indd 301 8/31/10 2:49 PM8/31/10 2:49 PM

302 Going Deeper

Creating a class with NSCoder
I’ll show you how to create a simple implementation of NSCoder and NSKeyedArchiver to
save and load data in a form. The data is stored in a custom data model class. In a commercial
application, multiple instances of the class could be used to store many forms. In this example,
you’ll concentrate on the code that saves and loads a single instance, using a single file with a
fixed name. The code writes data from the form UI before saving the values. When the data is
reloaded, the code creates a new data instance with the saved values, and copies them back to
the form for display and editing.

 T I P
If you want to experiment with saving and loading multiple files, you can combine this project with the sample code
for save/open panes in Chapter 10.

The project nib is shown in Figure 12.5. It uses an NSForm object to store three text strings, one
of which is interpreted as an integer. An associated NSTextView object provides a free text
field for notes. The NSForm and NSTextView are linked to outlets in the App Delegate. Two
buttons trigger disk save and load actions.

Figure 12.5

The application nib file uses an NSForm, which is simply an array of text fields, accessed by index.

17_495896-ch12.indd 30217_495896-ch12.indd 302 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 303

The code that follows lists the header and implementation for the custom data class. Only prop-
erties with encode: and decode: methods are archived. This is a minimal example; in a prac-
tical class, you can add other methods to implement other features, as needed.

 T I P
In this example, you’ll implement full archiving of every property. It’s sometimes useful to archive selectively. You can
do this easily — just leave some of the properties out of the coding methods.

The keys associated with each property are arbitrary. The key strings are for encoding and
decoding only. Each key must be unique.

@interface DataClass : NSObject {
 NSString *firstName;
 NSString *secondName;
 int theAge;
 NSString *theNotes;
}
@property (retain) NSString *firstName;
@property (retain) NSString *secondName;
@property (retain) NSString *theNotes;
@property int theAge;
-(void)encodeWithCoder: (NSCoder *)encoder;
-(id) initWithCoder: (NSCoder *)decoder;
@end
@implementation DataClass
@synthesize firstName, secondName, theNotes, theAge;
-(void)encodeWithCoder: (NSCoder *)encoder
{
 [encoder encodeObject: firstName forKey: @”firstName”];
 [encoder encodeObject: secondName forKey: @”secondName”];
 [encoder encodeObject: theNotes forKey: @”theNotes”];
 [encoder encodeInt: theAge forKey:@”theAge”];
}
-(id) initWithCoder: (NSCoder *)decoder;
{
 if (self = [super init])
 {
 firstName = [decoder decodeObjectForKey:@”firstName”];
 secondName = [decoder decodeObjectForKey:@”secondName”];
 theNotes = [decoder decodeObjectForKey:@”theNotes”];
 theAge = [decoder decodeIntForKey:@”theAge”];
 }
 return self;
}
@end

17_495896-ch12.indd 30317_495896-ch12.indd 303 8/31/10 2:49 PM8/31/10 2:49 PM

304 Going Deeper

There are a few subtleties in this code. If an object is a subclass of NSObject, as here, initialize
it with

if (self = [super init])
{…

If it’s a subclass of some other class, initialize it with

if (self = [super initWithCoder: coder])
{…

This implements the recursion, which stops automatically when the superclass is NSObject.

Object coding should happen automatically, irrespective of the complexity or internal structure
of an object. For simple types, use type-specific encode and decode statements.

encodeBool: forKey:
encodeInt: ForKey:
encodeFloat: ForKey:
encodeDouble: ForKey:

decodeBoolForKey:
decodeIntForKey:
decodeFloatForKey:
decodeDoubleForKey:

Other numeric types can be wrapped inside an NSNumber or NSValue.

Archiving and de-archiving an object
The code for saving and loading a record follows. In this example, the code is in the App
Delegate, but you can implement it wherever a class needs to load and save the values in
another class.

#import “NSCoderAppDelegate.h”
#import “DataClass.h”
@implementation NSCoderAppDelegate
@synthesize window, theForm, theText;
NSString *savePath;
- (void)applicationDidFinishLaunching:
 (NSNotification *)aNotification {
 //Create the file path
 NSString *documentsDirectory =
 [NSHomeDirectory()
 stringByAppendingPathComponent:@”Documents”];
 savePath = [documentsDirectory
 stringByAppendingPathComponent:@”SaveState.obj”];
}
- (IBAction) saveRecord: (id) sender {
 //Create an instance of the record object

17_495896-ch12.indd 30417_495896-ch12.indd 304 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 305

 DataClass *anInstance = [[DataClass alloc] init];
 //Prepare it for archiving by copying the form data to it
 anInstance.firstName = [[theForm cellAtIndex:0] stringValue];
 anInstance.secondName = [[theForm cellAtIndex:1] stringValue];
 anInstance.theAge = [[theForm cellAtIndex:2] intValue];
 anInstance.theNotes = theText.string;
 //Run the archiver
 NSMutableData *saveData = [[NSMutableData alloc] init];
 NSKeyedArchiver *archiver =
 [[NSKeyedArchiver alloc]
 initForWritingWithMutableData:saveData];
 [archiver encodeObject: anInstance forKey:@”SaveState”];
 [archiver finishEncoding];
 if (![saveData writeToFile:savePath atomically:YES])
 NSLog(@”Save error”);
}
- (IBAction) loadRecord: (id) sender {
 //Load a blob of data from the saved file
 NSData *restoreData =
 [[NSMutableData alloc] initWithContentsOfFile:savePath];
 //Initialize an unarchiver with the loaded data
 NSKeyedUnarchiver *unarchiver =
 [[NSKeyedUnarchiver alloc]
 initForReadingWithData:restoreData];
 //Create a new data object instance
 DataClass *anInstance = [[DataClass alloc] init];
 //Initialize the properties with saved data
 anInstance = [unarchiver decodeObjectForKey:@”SaveState”];
 //Copy the values back to the form
 [[theForm cellAtIndex:0]
 setStringValue: anInstance.firstName];
 [[theForm cellAtIndex:1]
 setStringValue: anInstance.secondName];
 [[theForm cellAtIndex:2] setStringValue:
 [NSString stringWithFormat: @”%i”,anInstance.theAge]];
 theText.string = anInstance.theNotes;
}
@end

Key features of the code include:

 The file path is a static path to a single file in the Documents directory.

 The saveRecord: method copies information from the form to the data record
before saving it. In another application, data might be loaded into a record in some
other way, or generated automatically. The details aren’t important, as long as the data
object holds valid values before it’s archived.

 The NSForm object is an array of text fields. The contents of each cell in the list are
accessed by index.

17_495896-ch12.indd 30517_495896-ch12.indd 305 8/31/10 2:49 PM8/31/10 2:49 PM

306 Going Deeper

 The archiver is prepared by creating an instance of NSMutableData and passing it
to NSKeyedArchiver as an initialization parameter. This sets up an empty buffer for
the archiver.

 The key in the encodeObject: method is arbitrary. It doesn’t matter what it is, but it
must match the key in the decodeObjectForKey: method in the load code.

 The finishEncoding: method implements the archiving process. You must place this
method after encodeObject:.

 The unarchiving code is a mirror image of the archiver, but it uses NSKeyedUnarchiver,
which runs the decode: method for each property in the file.

Figure 12.6 shows the application running. Clicking Save Record saves the data in the UI.
Clicking Load Record restores saved data from a file.

Figure 12.6

The single form example saves and loads a
record in this one form. You can easily extend
the code to support multiple forms.

Because NSCoder works recursively, it’s almost trivial to extend this example to support multi-
ple forms. Add another data class that uses an array or dictionary to hold multiple records, and
then implement custom NSCoder methods to support archiving for the class. Run the
archiving methods on your new composite class to save all records into a single file. With some
additions to the UI, you can build a useful card index application with very little effort, adding
optional search and listing features using the enumeration, sorting, and search features built
into NSArray and NSDictionary.

 T I P
For an alternative card index application, see Chapter 14.

17_495896-ch12.indd 30617_495896-ch12.indd 306 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 307

Managing Memory
Earlier chapters introduced the idea of memory management. Cocoa is optimized for automatic
memory management using a behind-the-scenes technology called garbage collection.
Garbage collection automatically keeps track of items in memory and frees them when they’re
not being used. It “just works,” and when it’s enabled, you can mostly leave it to manage mem-
ory for you.

Using garbage collection
Examples in this book assume that memory is managed with garbage collection. The sample
projects on the Web site are built with garbage collection, and they should work without
changes. But when you create a new project, garbage collection is turned off. You must enable
it by hand, as shown in Figure 12.7.

Figure 12.7

Enabling garbage collection, which is off by default, causing
random crashes.

To find the Garbage Collection options, find the Targets item in the Groups & Files pane and
right-click the name of your application under it. You’ll see the dialog in Figure 12.7. Scroll
down to the Code Generation section, and find the Objective-C Garbage Collection entry. Click
in the selectable field next to the label, and choose the Supported option. You don’t need to
save the changes — your project is updated automatically.

17_495896-ch12.indd 30717_495896-ch12.indd 307 8/31/10 2:49 PM8/31/10 2:49 PM

308 Going Deeper

 C A U T I O N
You must enable garbage collection before you add code to a new project. If you don’t, the compiler assumes that
you’re adding manual memory management features to your code.

 C A U T I O N
If those features are missing, your code will crash.

Implementing manual memory management
You can choose to manage memory manually. This is usually a bad choice — except on the
iPhone, where you’re not given a choice at all. Manual memory management is notoriously dif-
ficult. The theory is simple, but the practice is unlikely to work as you expect, for reasons that
can be caused by obvious mistakes or by subtle issues built into Cocoa classes.

The key feature of manual memory management is the retain count. Every object counts the
number of times a retain method is called on it. Using retain or referencing the object incre-
ments the counter. Using release decrements the counter. When the counter is zero, the object
is released from memory. Trying to access it again creates a crash. The essential memory man-
agement methods are shown in Table 12.4.

Table 12.4 essential Memory Management Methods
Method Description

[object assign]; Duplicates a pointer, but doesn’t change the retain count.

[object retain]; Increments the retain count.

[object release]; Decrements the retain count.

[object autorelease]; Hands the object over to an autorelease pool. This is risky — you never

know when autoreleased items will disappear.

object2 = [object copy]; Calls the object’s copy method. The results depend on the object’s implementation

of copy.

 C A U T I O N
The autorelease feature looks like a simple fix for memory management issues — but it isn’t, because it autore-
leases objects on its own schedule, which may not match yours. To guarantee that an object is available when you
need it, you must take part-ownership of it and retain it.

17_495896-ch12.indd 30817_495896-ch12.indd 308 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 309

Manual memory management code typically follows this cycle:

 1. alloc/init an object.

 2. Use the object.

 3. release the object.

The golden rule for memory management is that every reference is balanced by a release.
For example, on the iPhone you create, display, and release an alert with the following:

*UIAlert *myAlert = [UIAlert initWith<list of properties>];
[myAlert show];
[myAlert release];

This seems simple, but it’s important to understand that release doesn’t immediately free
the object. Instead, it tells the memory manager that your code is no longer referencing the
object. In this example, iOS retains the alert until the user finishes with it — then it releases it.
The final release happens out of sight, within the OS. Your release statement gives the OS per-
mission to release the object. It doesn’t necessarily trigger a release event.

To manage memory correctly, all objects must implement the following features:

 An init method that returns nil if not enough memory exists to create an object.

 Memory-aware setters.

 A dealloc method that is called in every object just before it’s released, giving it a
chance to release the objects it references.

Cocoa objects should implement these methods correctly internally. But because Cocoa objects
are opaque, it’s not possible to see what’s happening inside them. Some classes hold onto
objects when you’re not expecting them to. In the worst case, it’s possible to create a retain
cycle where objects reference each other.

Creating a standard init method
The suggested boilerplate code for an init method is as follows:

-(init) {
if (self = [super init]) {
//Set up instance variables, if needed
}
return self;
}

Add this to every custom class, and use it. Some classes use [super init] to release the
original object created by alloc and replace it with a new one. This code allows for that possi-
bility, which happens rarely, though not rarely enough to ignore.

17_495896-ch12.indd 30917_495896-ch12.indd 309 8/31/10 2:49 PM8/31/10 2:49 PM

310 Going Deeper

Creating a standard setter method
The suggested boilerplate for a memory-aware setter method for a property called item is:

- (void) setItem: (id) newItem {
 if (newItem != item) {
 [item release];
 item = [newItem retain];
 }
}

@synthesize implements this for you, but you should use this code in any custom setters you
write. It looks like a complex solution to a simple problem, but it’s the only way to guarantee that
values are released correctly when they’re updated.

A simpler setter is guaranteed to leak memory.

-(void) setItem: (id) item {
 //Don’t do this
 item = newItem;
}

The original memory referenced by item is now lost. No pointer holds a reference to it, and it
can never be released.

 C A U T I O N
The != conditional is pseudocode. In practice, you’ll need to implement it with some variant of the standard
isEqual: method.

Using dealloc
Add a dealloc method to every custom class you create.

-(void) dealloc {
 [super dealloc];
 [propertyOne release];
 …
 [lastProperty release];
}

This method defines what happens when your object is released. [super dealloc] allows a
superclass to run dealloc recursively if it needs to. The individual release methods free the
memory used by your class properties. If you don’t implement dealloc, your custom class is
unlikely to release memory correctly.

17_495896-ch12.indd 31017_495896-ch12.indd 310 8/31/10 2:49 PM8/31/10 2:49 PM

 Chapter 12: Managing Data and Memory in Cocoa 311

Using memory management heuristics
Finally, there are some heuristic rules that can help with memory management. These are
unofficial and not a substitute for formally analyzing the structure of your code. But they can
help solve a temporary memory problem while you get other parts of your code working.
These are quick-fix, non-final suggestions and shouldn’t be used in production code.

 Random crashes tell you that objects aren’t being retained correctly.

 References don’t persist across methods. If you create an object inside a method, you
should retain it if you want it to be available in another method.

 Set pointers to nil after releasing them. Releasing a nil pointer doesn’t cause a
crash.

 Beware of delegate objects. Setting a delegate object can do unhelpful things to the
retain count of some of its properties.

 Beware of Core Animation, which may not manage memory as you’d expect it to.

 T I P
The Object Allocations instrument built into Xcode is invaluable for tracking memory errors. A robust application
doesn’t crash because of missing objects, and it doesn’t leak memory because object references are being overwritten.
See Chapter 18 for more on this instrument and other diagnostic tips.

Summary
In this chapter, you learned about data collection objects, memory management, and archiving
methods. You explored the key features of NSArray, NSDictionary, and NSSet, and you
discovered how to enumerate the items in a collection object, how to search items, and how to
process each item with custom code.

Next, you discovered NSCoder and investigated how it worked with NSKeyedArchiver and
NSKeyedUnarchiver to create composite object collections that could be saved to a binary
file and reloaded and unpacked to restore original object properties.

Finally, you were introduced to practical garbage collection and to some of the less obvious
challenges and possible solutions required to work with manual memory management.

17_495896-ch12.indd 31117_495896-ch12.indd 311 8/31/10 2:49 PM8/31/10 2:49 PM

17_495896-ch12.indd 31217_495896-ch12.indd 312 8/31/10 2:49 PM8/31/10 2:49 PM

In This Chapter

Using Preferences
and Bindings

Understanding bindings

Using bindings
with controllers

Implementing
preferences

with bindings

Creating and using
value transformers

In the same way that space is big, bindings are complex. Apple’s
documentation might not be considered a model of clarity, and
it’s difficult to find good information online from other sources,

in part because bindings cause so much confusion to so many
developers that even Cocoa experts have trouble with them. This
chapter is designed to cut through the confusion that surrounds
bindings and present them in a simple and clear way. To use bind-
ings successfully you must understand:

 What bindings are

 How bindings relate to other technologies, such as
properties, Key-Value Observing (KVO), and Key-Value
Coding (KVC)

 How bindings are implemented in code

 How bindings are implemented in Interface Builder (IB)

 How bindings are connected to controller objects

 How bindings and controllers collect and transform
values

Fortunately expert-level insight into each of these features isn’t
required.

Understanding Bindings
Bindings are a step up from Key-Value Observing (KVO). They link
object properties. When one property changes, the property or UI
object at the other end of the binding also changes. But bindings
add intelligence to KVO. With some care, it’s possible to bind
strings to numbers, and vice versa.

Updates can be read-only, with one object — such as a User
Interface element in a view — observing and reporting the value of
another. They can also be read-write; changing the value of one
object automatically changes the corresponding value in another.
When bindings are set up correctly, this happens without code.

18_495896-ch13.indd 31318_495896-ch13.indd 313 8/31/10 2:50 PM8/31/10 2:50 PM

314 Going Deeper

Bindings are typically used in two ways:

 In a simple application, they can take the place of outlets. UI objects can be auto-
matically connected to code objects without declaring any IBOutlets or linking
them in IB. The binding links the two objects, with optional added intelligence. For
example, a text field can display a number value automatically, without explicit con-
version.

 In a more complex application, bindings are used as data pipes that synchronize
blocks of data. Bindings can synchronize arrays, dictionaries, and other complex data
types; for example, a drop-down list can be populated automatically by binding it to a
data source. Even more usefully, they can synchronize the editing of data, making it
possible to add, update, and remove data with a simplified UI and minimal supporting
code.

Confusion arises because the Apple documentation implies that bindings require controller
objects, specifically NSObjectController, NSArrayController, NSDictionary
Controller, NSTreeController, and NSUserDefaultsController.

You can use bindings without these objects. You can bind any object to any other as long as both
support KVC and KVO. For simple applications, adding a controller adds an unnecessary layer of
confusion and complication. Table 13.1 summarizes other common misunderstandings about
bindings.

Table 13.1 Facts and Fiction about Bindings
Fiction Fact

Bindings require a controller object. You can use bindings without a controller.

Bindings “just work.” Bindings work as long as you always access values through accessor

methods and bind compatible objects to each other. Simple assignments

don’t trigger the KVO mechanism.

Bindings are always two-way. Some bindings are read-only. Displayed values may not be editable.

Bindings are designed to work with Interface Builder. You can create bindings programmatically without using IB.

Bindings eliminate unnecessary code. Bindings can eliminate pages of code in larger projects. For smaller projects

where bindings are used in an outlet-like way, the benefits may be less obvious.

Getting started with bindings
To use bindings successfully, keep these requirements in mind:

 Bindings work with object properties. You can’t bind to a private variable.

 Bindings rely on KVO. All properties and assignments must be KVO-compliant.

18_495896-ch13.indd 31418_495896-ch13.indd 314 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 315

Using accessors
As outlined in Chapter 9, you must use accessor methods when setting the values accessed by
bindings.

value = value*10; //This doesn’t work
self.value = value*10; //This does - it’s obligatory

This is a prime source of confusion. If you don’t update values correctly, bindings don’t work.

 T I P
You can bind to system objects as well as to objects in your own code. If their properties are KVO-compliant, bindings
will track them as their values change. If they’re not KVO-compliant, nothing happens. Class References occasionally
mention that properties are KVO-friendly. If they don’t, you can test them by trying to set up a KVO observer.

Creating a simple binding
The SimpleBindings1 project on the Web site for this book demonstrates how to bind a counter
value to a slider object. You can find the project at www.wiley.com/go/cocoadevref.
Load the project before continuing. All the code is in the app delegate. The header defines a
counter as a property:

#import <Cocoa/Cocoa.h>
@interface SimpleBindingsAppDelegate : NSObject

<NSApplicationDelegate> {
 NSWindow *window;
 int sliderCount;
}
@property (assign) IBOutlet NSWindow *window;
@property int sliderCount;
@end

The implementation creates a timer, which fires a timerMethod. sliderCount counts to a
maximum value, reverses direction, counts down, and reverses direction again at 0.

#import “SimpleBindingsAppDelegate.h”
@implementation SimpleBindingsAppDelegate
@synthesize window, sliderCount;
int delta = 1;
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 NSTimer *thisTimer = [NSTimer

scheduledTimerWithTimeInterval:0.05 target: self selector:
@selector(timerMethod) userInfo: nil repeats: YES];

}

18_495896-ch13.indd 31518_495896-ch13.indd 315 8/31/10 2:50 PM8/31/10 2:50 PM

316 Going Deeper

-(void) timerMethod {
 self.sliderCount += delta;

 if (sliderCount > 100)
 delta = -1;
 if (sliderCount < 0)
 delta = 1;
 //NSLog(@”%i”, sliderCount);
}
@end

If you run this code and uncomment the NSLog line and view the console, you’ll see slider
Count cycling up and down.

Figure 13.1 shows the project nib file. It’s identical to the standard blank template, with an
added slider. Note that no outlets or links have been defined for the slider.

Figure 13.1

Adding a slider. You’ll use a binding to link the slider to the sliderCount property.

18_495896-ch13.indd 31618_495896-ch13.indd 316 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 317

To create a binding, select the slider in the Doc window and select the Bindings tab; it’s the one
with two green objects, third from the right. Figure 13.2 shows how the window appears when
no bindings are selected.

Figure 13.2

Displaying the slider’s bind-able properties

Before you create a binding, take a closer look at this pane. It’s displaying a list of some of the
slider object’s properties. If you review the NSSlider Class Reference, you’ll see these items in
the properties list. When you bind to one of these properties, you link it to a value in a different
object.

Outlets can connect to any property, but bindings only support a subset of object properties. If
a property doesn’t appear in this list, you can’t bind it.

To define the other object, select the slider’s value property. Click on the pop-up menu next to
the Bind to: check box. You’ll see a list of objects in the nib, as shown in Figure 13.3.

18_495896-ch13.indd 31718_495896-ch13.indd 317 8/31/10 2:50 PM8/31/10 2:50 PM

318 Going Deeper

Figure 13.3

Displaying a menu of possible objects to bind to

Select the Simple Bindings App Delegate, as shown. Select the Bind to: check box next to it.
This tells IB that you are binding the slider’s Value property to one of the properties of the app
delegate.

You select that property by typing its name into the Model Key Path pop-up menu, as shown in
Figure 13.4. In this example, there’s only one possible property to bind to — sliderCount —
so that’s what you type here.

There are two possible sources of confusion in this step. The first is that the Model Key Path
combo box usually defaults to self, which is meaningless, unhelpful, distracting, and just plain
wrong.

The second is that the pop-up menu doesn’t show a list of valid properties, even though it
could, and should. Bindings would be much less confusing if this feature were available. It
would underline the similarities with the outlet-method-linking system elsewhere in IB. Because
this feature isn’t available, you have to type in the name manually instead of selecting it from a
list of possible properties.

18_495896-ch13.indd 31818_495896-ch13.indd 318 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 319

Figure 13.4

Selecting a property in the object selected in Figure 13.3

Here’s a recap of the stages so far:

 1. Add an object to the nib.

 2. Select the Bindings pane. Pick the property you want to bind to. The list in the
Bindings pane is final and non-negotiable; if a property doesn’t appear here, you can’t
bind to it.

 3. Choose the object at the other end of the binding from the Bind to: pop-up.

 4. Select a property in that object by typing its name into the Model Key Path
combo box.

 5. Save the nib file, Build and Run.

 T I P
It’s useful to commit this sequence to memory, and then work through it over and over with other examples until it
becomes second nature. You’ll need this initial level of understanding to use controller objects, described later in this
chapter.

18_495896-ch13.indd 31918_495896-ch13.indd 319 8/31/10 2:50 PM8/31/10 2:50 PM

320 Going Deeper

Figure 13.5 shows the result. The slider moves from side to side, in an automated way.

Open the console window, and move the slider with the mouse. You’ll see that the value of
sliderCount automatically updates itself when you release the mouse.

The binding is bidirectional. When the code sets sliderCount, the slider follows it. When the
user moves the slider, sliderCount is updated with the new slider value.

In a typical application, sliderCount — or some other property — wouldn’t be set by a
timer. Bindings are valuable because the timerMethod could be replaced by a mouse track-
ing method, a disk monitor method reporting free space, or a value pushed from the Internet.
As long as there’s an accessor assignment, a binding can display it.

 T I P
See if you can use the delta value in the code, or an associated Boolean property, and the Enable binding to enable the
slider while the count is increasing and disable it while it’s decreasing.

Figure 13.5

The binding links the slider’s value property to sliderCount in Simple Bindings App Delegate.
As the count changes, the slider follows it.

18_495896-ch13.indd 32018_495896-ch13.indd 320 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 321

Working around keypath limitations
The model keypath feature suggests you should be able to access subproperties. For example,
the app delegate has a property called someThing of a class with an internal property called
aString, as shown in Figure 13.6. You might think someThing.aString would be a valid
model keypath.

It isn’t. This idiom is valid in some of the various object controllers, but it doesn’t work with sim-
ple bindings. If you want to bind to subproperties, you have to use KVO to copy a property
value to the top-level object after an update, and bind to the copy.

Figure 13.6

Working around keypath limitations. This is an ugly
hack, but the model keypath can’t usually bind to
subproperties directly.

App Delegate

*theString theString

OK

Not
allowed

App Delegate.theString

App Delegate.someThing.theString

App Delegate.copyString

theString

OK

App Delegate

*someThing someThing

*theString

[Observed with KVO]

theString

App Delegate

*someThing

*copyString

someThing

*theString

18_495896-ch13.indd 32118_495896-ch13.indd 321 8/31/10 2:50 PM8/31/10 2:50 PM

322 Going Deeper

Binding incompatible objects
The nib for a slightly modified version of the same project is shown in Figure 13.7. A text field
has been added and bound to the sliderCount property, as before.

Figure 13.7

An extended version of the SimpleBindings application, with a text field that can display the
slider value numerically.

The result is shown in Figure 13.8. The slider continues to move, and the text field displays its
value.

This looks like a trivial change, but a lot is happening behind the scenes. The string in the text
field is displaying an int value without code. Bindings don’t just link two properties; they can also
translate values between different data types.

Typically, converting an int to a string requires extra formatting code:

NSString *sliderString =
[NSString stringWithFormat: @”%i”, sliderCount];

Bindings perform a selection of the most useful translations automatically. There’s no need for
extra code or for explicit format specifications. Figure 13.9 illustrates this graphically.

18_495896-ch13.indd 32218_495896-ch13.indd 322 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 323

Figure 13.8

An extended version of the SimpleBindings application,
with a text field that can display the slider value numerically

Figure 13.9

Don’t think of bindings only as property links; they can also
interconvert data types.

int

sliderCount

(Automatic format

and type translation)

Binding

*stringValue

Text field

If you open the Console window, type a number into the text box, and press Return, you’ll see
that this binding is still bidirectional; it sets sliderCount and the slider position. The type
conversion is intelligent enough to work in both directions.

Using bindings to manage interactivity
You can use a combination of bindings and KVO to create semi-automated interfaces.
Sometimes UI properties depend on each other. For example, selecting one UI feature can dis-
able or enable others, or modifying a value can update its dependent values.

With care it’s possible to create UIs with mutual dependence; the user can change any element,
and all related elements update themselves automatically. Figure 13.10 shows a very simple
example: a two-way temperature converter micro-application. Typing a number into either text
field and pressing Return generates an updated value in the other.

18_495896-ch13.indd 32318_495896-ch13.indd 323 8/31/10 2:50 PM8/31/10 2:50 PM

324 Going Deeper

Figure 13.10

Tempverter: a very simple
temperature conversion
application, implemented
with KVO and bindings

It’s possible to solve this problem with outlets and the text field’s delegate methods, using
(id) sender to discover which text field was changed, and adding code to update the other.
Bindings not only make it easy to manage multiple dependencies, but they also simplify the
code. The two temperature values can be floats. Bindings convert floats into text for display,
and they convert text into floats for user input. There’s no need to add formatting code or sup-
porting intermediate values.

In a more complex application, this can be extended to create multiple propagating dependen-
cies with very little code. But to create a complex UI, you need to understand the key features of
a simple one.

The nib file for the project is shown in Figure 13.11. The nib is a standard content view with four
text fields. Two are static labels; the other two are used for temperature input and display.

 N O T E
Figure 13.11 includes a view of the Window Attributes. The window size is fixed by deselecting the Resize control.
Close and Minimize have also been disabled. Texture and Shadow effects are applied. These features don’t affect the
application’s operation, but they do improve its appearance.

The header file for the App Delegate is shown below:

#import <Cocoa/Cocoa.h>
@interface TextFieldAppDelegate : NSObject

<NSApplicationDelegate>
{
 NSWindow *window;
 float celsFloat;
 float fahrFloat;
}
@property (assign) IBOutlet NSWindow *window;
@property float celsFloat;
@property float fahrFloat;
@end

18_495896-ch13.indd 32418_495896-ch13.indd 324 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 325

Figure 13.11

The Tempverter nib file. There are four text fields.

Figure 13.12 illustrates how the bindings are assigned. As in the previous example, the bindings
select an object — the App Delegate — and the Model Key Path names a property in that
object.

This is enough to create a two-way link between the text field and celsFloat. If the user
types a number into the Celsius text field and presses Return, it’s converted into a float value
and is copied to celsFloat. If the application writes a new value to celsFloat, it’s con-
verted into a string and copied to the text field.

Adding a corresponding binding between the Fahrenheit text field and fahrFloat is almost
enough to create a simple application. There are still two features missing: the temperature
conversion code and KVO management to trigger dependent updates.

 N O T E
Internally, the bindings use the stringFromFloat: and floatValue methods built into NSString.
Text is interpreted as an error and produces a float value of 0.

18_495896-ch13.indd 32518_495896-ch13.indd 325 8/31/10 2:50 PM8/31/10 2:50 PM

326 Going Deeper

Figure 13.12

Binding the Celsius text field to the corresponding float in the App Delegate

Using KVO to manage bindings
Converting one number into another is almost easy. You add a KVO observer to both floats.
When the user types in a number, the binding updates the corresponding float. This triggers
the KVO observer method. You can do some simple arithmetic in the observer, and then write
the converted value to the other float … which triggers its KVO observer, which does some
arithmetic on the other value … and loses itself in an infinite loop.

It would be possible to enable and remove KVO selectively, ignoring each value as it’s being
updated. In this example you’ve created a blanket method that turns off KVO for both floats
whenever they’re being updated, and re-enables it when the update has completed.

A simple KVO switch would be useful, but Cocoa doesn’t have one. KVO can only be enabled
and disabled separately for each possible key. This puts some practical limits on KVO, which
can’t usually observe more than a few tens of properties. Trying to observe more results in code
can be difficult to debug and can also create a significant performance hit, because the technol-
ogy used to implement KVO isn’t fast or efficient.

18_495896-ch13.indd 32618_495896-ch13.indd 326 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 327

 N O T E
Behind the scenes, KVO works by using a trick called isa swizzling — a fancy way of saying that classes are
copied and modified on the fly, and updated versions impersonate the originals. This isn’t a speedy process.

So in this example, you explicitly enable and disable KVO for all properties with a method called
isObserving: in the App Delegate. The method is listed below:

#import “TempverterAppDelegate.h”
@implementation TempverterAppDelegate
@synthesize window, celsFloat, fahrFloat;
- (void)applicationDidFinishLaunching:(NSNotification *)

aNotification {
 self.celsFloat = 100.0;
 self.fahrFloat = 212.0;
 [self isObserving: YES];
}
- (void) isObserving: (BOOL) observing {
if (observing) {
 [self addObserver:self forKeyPath:@”celsFloat”

options:NSKeyValueObservingOptionNew context:NULL];
 [self addObserver:self forKeyPath:@”fahrFloat”

options:NSKeyValueObservingOptionNew context:NULL];
} else {
 [self removeObserver: self forKeyPath:@”celsFloat”];
 [self removeObserver: self forKeyPath:@”fahrFloat”];
 }
}
- (void) observeValueForKeyPath:(NSString *)keyPath ofObject:(id)

object change:(NSDictionary *)change
 context:(void *)context {
 NSLog(@”%Keypath:%@ Value: %@”, keyPath,
 [self valueForKey:keyPath]);
 [self isObserving: NO];
 if ([keyPath isEqual: @”celsFloat”])
 self.fahrFloat = 32+celsFloat*1.8;

 if ([keyPath isEqual: @”fahrFloat”])
 self.celsFloat = (fahrFloat-32)/1.8;

 [self isObserving: YES];
}
@end

18_495896-ch13.indd 32718_495896-ch13.indd 327 8/31/10 2:50 PM8/31/10 2:50 PM

328 Going Deeper

Key features of the code include:

 applicationDidFinishLaunching: sets initial defaults for both temperatures
and then turns on KVO.

 The isObserving: method takes a BOOL and adds and removes observers for the
two temperatures dynamically.

 The standard KVO observeValueForKeyPath: method is triggered when either
float changes — but only if KVO is enabled. It logs the trigger event, turns off KVO to
prevent a loop, updates one of the floats, running code chosen by testing the keyPath,
and turns KVO on again after the update.

It’s important to understand that bindings and KVO act independently. You can turn off KVO
without affecting bindings, because the bindings manager is a separate object. Behind the
scenes, out of sight of your code, it’s running its own KVO monitoring. It doesn’t care how you
use KVO elsewhere.

 N O T E
Don’t forget to prefix properties with self to make them visible to KVO and bindings.

Using formatters
The disadvantage of the automatic conversion in the bindings manager is that it doesn’t sup-
port format control. If you type values into the Fahrenheit box, you’ll see that the equivalent
Celsius value is often a recurring decimal. The text field truncates this visually. A wider text field
would show them.

NSNumberFormatter is a simple drop-in formatting object that can solve this problem. It’s
not directly related to bindings, but it’s often used to fine-tune the format of the strings pro-
duced by the bindings manager. Figure 13.13 illustrates how to add an NSNumberFormatter
to a text field.

 C A U T I O N
The formatter works on a text cell, so you must drop it on the NSTextFieldCell in the nib, not on the text field
itself.

18_495896-ch13.indd 32818_495896-ch13.indd 328 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 329

Figure 13.13

Adding a number formatter to a text field to tidy up the string representation of the bound float.

NSNumberFormatter has many options and can perform unusual tricks. For example, it can
convert numbers into text strings such as “ten” or “fifty three,” with associated local language
support. In this example, you’ll use the settings shown in Figure 13.14 to limit the text field to
two decimal places. The two Format text boxes near the top of the Number Formatter
Attributes pane set the format, and the number of hash signs after the decimal point sets the
number of decimal places. You must select the Mac OS X 10.4+ Custom Behavior at the top of
the pane to see the Format options.

To complete the application, add another formatter with the same settings to the Fahrenheit
text field.

18_495896-ch13.indd 32918_495896-ch13.indd 329 8/31/10 2:50 PM8/31/10 2:50 PM

330 Going Deeper

Figure 13.14

Setting two decimal places in the Format boxes. You can use a formatter to define scientific
and financial formats, with optional special characters, including currency signs.

 T I P
You can use the associated NSDateFormatter objects to control the format of date values.

Using Bindings with Controllers
Controller objects — NSObjectController, NSArrayController, NSDictionary
Controller, NSTreeController, and NSUserDefaultsController — add an extra
level of sophistication to bindings, and four or five extra layers of complexity. Controllers
become useful when bindings are used as data pipes. In the same way that simple bindings can
connect different properties without formatting or conversion code, controllers can connect
complex objects and translate data between them.

18_495896-ch13.indd 33018_495896-ch13.indd 330 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 331

You can use controllers to produce complex applications with very little code. For example,
NSTableView is the standard Cocoa object used to display and manage tables. It’s a complex
class with many features and delegate methods. To implement a TableView without bindings,
you must write glue code — code that connects two objects or features together and translates
data between them. For example, an array can be translated into a list of values. The code is
embedded in delegate methods that are called when the table needs to display, refresh, or
modify data. It can easily become very complex.

Controller objects can minimize the glue code. In some applications, they can eliminate it com-
pletely. To demonstrate, the example below demonstrates how you can create an application
that displays a list of running processes in OS X — with exactly one line of active code.

The App Delegate header file looks like this:

#import <Cocoa/Cocoa.h>
@interface TableBindingAppDelegate : NSObject

<NSApplicationDelegate> {
 NSArray *runningApps;
 NSWindow *window;
}
@property (assign) IBOutlet NSWindow *window;
@property (nonatomic, retain) NSArray *runningApps;
@end

It’s a copy of the standard template, with an added NSArray property called runningApps.

The App Delegate implementation looks like this:

#import “TableBindingAppDelegate.h”
@implementation TableBindingAppDelegate
@synthesize window, runningApps;
- (void)applicationDidFinishLaunching:
 (NSNotification *)aNotification
{
 self.runningApps =
 [[NSWorkspace sharedWorkspace] launchedApplications];

 NSLog(@”%@”, runningApps);
}
@end

This code doesn’t do much. It calls the NSWorkspace object and asks for a list of running
applications, which is copied to the array. An NSLog call lists the running apps to the console.
The logging is optional, but it’s very useful, as you’ll see next.

18_495896-ch13.indd 33118_495896-ch13.indd 331 8/31/10 2:50 PM8/31/10 2:50 PM

332 Going Deeper

Figure 13.15 shows the finished application. It has the following features:

 There are three independent columns of data showing values from the runnin-
gApps array.

 The table dividers can be moved.

 Rows can be selected by clicking on them, and there is an optional selection index
used to return information about the number of the current selection.

 Columns can be sorted by clicking on each column header to select ascending or
descending sorting.

The application has some limitations. It doesn’t auto-refresh the table; the array is loaded once
at launch, and isn’t updated. In its basic state, it’s a display-only app. There are no features for
starting and stopping apps, saving the list to a file, maintaining a log file, and so on.

But it’s doing a lot with very little code. And most of the intelligence is built into a controller
object, coupled to the array and the table view via bindings.

Figure 13.15

Filling a table view with bindings. Most of the active code is built into a controller
object and runs automatically.

Adding a controller object
Figure 13.16 shows the project nib file. The table view automatically adds a surrounding scroll
view. The default table view has two columns. Another column has been added by copying and
pasting it. Each column’s name — the text string that appears in the divider, at the top of the
header — is set in the Attributes pane in Inspector. The Size pane sets the default width and
optional width limits. Take some time to explore these features before continuing.

18_495896-ch13.indd 33218_495896-ch13.indd 332 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 333

Figure 13.16 shows the list of controller objects in the Library window. In this example, you’re
using an array as a data source, so you add an instance of NSArrayController to the proj-
ect by dragging it from the window.

Remember that adding an object to a nib automatically generates an instance in memory when
the nib loads. You don’t need to alloc/init the controller in your code — it’s already loaded from
the nib.

Optionally, you could subclass it to access its internal features, adding a supporting subclass —
perhaps called ArrayControllerSubclass — and using IB’s identity tab to reclass the
default controller as your subclass. You don’t need to do that here. Instead, you’ll discover how
to use the new controller.

 T I P
When you add a column, its default width may be so wide you can’t see it, because it has fallen off the right-hand
edge of the table. Setting the widths manually can recover it. Once a column is visible, you can set its width by drag-
ging it with the mouse. This is a tricky process: you’ll need to click on the header tab between two and four times,
depending on the table’s selection state.

Figure 13.16

Filling a table view with bindings. Most of the active code is built into a controller object and
runs automatically.

18_495896-ch13.indd 33318_495896-ch13.indd 333 8/31/10 2:50 PM8/31/10 2:50 PM

334 Going Deeper

Setting up the controller’s data source
Controllers act as a bridge object between a source of data and a view object. To use a control-
ler, you bind it twice. The first binding selects a data source for the controller. It defines the con-
troller input, although, unfortunately, Apple doesn’t call it that — controllers would be easier to
understand if this relationship were clearer.

The second binding links a view to the processed data generated by the controller — in other
words it displays the output, although again Apple’s naming scheme doesn’t make this
obvious.

Defining a controller data source is as easy as creating any other binding. You select a source
object, choose a property in that object, and type the property name into the Model Key Path
combo box.

A key source of confusion is the cryptic nature of controller properties. Controllers are general-
purpose objects, designed to work with a variety of data sources. The controller doesn’t care if
your array holds application statistics, ages, salaries, or a list of probabilities of Earth impact for
every major asteroid.

Instead, the controller properties generalize the data connection. So NSArrayController
has a property called Controller Content. This is a general wrapper object that holds the same
content as the data source. In the same way that File’s Owner is a placeholder for the object
that created a nib, think of Controller Content as a placeholder for your data source. When you
bind to the controller to display data from it, it becomes the data source. It’s then translated,
through binding magic, into a format that a compatible view object can display without code.
Figure 13.17 shows how this works.

 C A U T I O N
Controller Content is a property of the NSController superclass. All the controller objects support it. But in an
array controller, the content is an array. In a dictionary controller, it’s a dictionary, and so on.

Figure 13.17

Using a controller object as a two-way binding. The Controller Content
property is a placeholder for data from the source object.

NSArray
Binding

View object“Controller Content”
Binding

NSArrayController

Now that you’ve been introduced to the Controller Content property, it’s easy to see how to
connect the array data to the controller. Selecting the Controller Content tab, you bind it to
your data source: the runningApps array in the App Delegate, as shown in Figure 13.18.

18_495896-ch13.indd 33418_495896-ch13.indd 334 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 335

Figure 13.18

Binding to the Controller Content property of the controller, so that it uses the runningApps
array as a data source

Reading data from the controller into a view
Reading translated data from the controller is more difficult. Instead of following through with
the Controller Content metaphor, this side of the process uses different properties. Effectively,
you’re going to look inside the Controller Content object and pull out various slices through
the data.

The first — critical — point is that it’s only possible to pull data out of the array if its objects sup-
port key-value property access. Figure 13.19 shows a log of the contents of the runningApps
array. Usefully, this array is a collection of dictionary objects, one for each running app. It’s easy
to pick out the relevant keys from the log; for example, NSApplicationName is the applica-
tion name. However, not all objects support this kind of access. If they don’t, you can’t use bind-
ings to display their data.

18_495896-ch13.indd 33518_495896-ch13.indd 335 8/31/10 2:50 PM8/31/10 2:50 PM

336 Going Deeper

Figure 13.19

Understanding the format of the data in the runningApps array. Every
item is a dictionary.

When using bindings, this point is crucial. You must be able specify a keypath for each displayed
property, and it must return a useful value. If you want to use bindings with custom objects, you
must design them in a way that supports keypath value access. Dictionaries are ideal for this
because they explicitly implement key-value access.

You can’t, however, access a simple linear array of strings, because the strings won’t have an
associated key. An array index isn’t enough to support bindings, and bindings don’t support
index access. You can’t use someArray.0 as a keypath.

This complicates the design of applications, because typically you need to pack array data into a
dictionary before it can be accessed. Other workarounds are possible, but wrapping content
into a dictionary is often the simplest solution.

In this example, dictionaries are already available. So you can move on to the second part of the
problem: selecting the formatted data. Figure 13.20 shows the Controller Key combo box. This
is another element that seems mysterious, but it is quite simple in practice.

18_495896-ch13.indd 33618_495896-ch13.indd 336 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 337

Figure 13.20

Listing the possible Controller Key options to select how you want to view the data in the
source array

Understanding controller keys
In the same way that the controller abstracts data from the data source, it also abstracts its dis-
play. Each item in this combo box is one possible interpretation or view of the data copied to
the controller. Again, these items aren’t related to specific named properties in the original
data, and the controller takes no interest in what the data represents or how it’s named.

Instead, these Controller Keys select one particular summary or element of the data. Table 13.2
describes the more useful items in this list.

A key feature of all controller keys is that the data selected by these keys is determined by the
user’s actions. The datasource array doesn’t change, but the view of the data is modified as the
user interacts with the table view or other display object. Figure 13.21 illustrates the process
graphically.

18_495896-ch13.indd 33718_495896-ch13.indd 337 8/31/10 2:50 PM8/31/10 2:50 PM

338 Going Deeper

Table 13.2 Some common Controller Keys
Name Description

arrangedObjects An array holding a sorted copy of the source data. When the user changes the sort

options in the table view, this array is re-sorted and updated automatically.

Selection A copy of the current selected object, updated when the user selects an object. (Use

keypaths to extract values from it.)

selectionIndexes An NSIndexSet of currently selected objects, if there are multiple selections.

selectionIndex An NSUInteger index of the currently selected object. (Invalid for multiple

selections.)

selectedObjects An array of the objects that are currently selected.

Figure 13.21

When binding to visible objects in the UI, the controller can display various
interpretations of the data, including selected elements chosen by the user.

NSArray
Binding

Table ViewarrangedObjects
Binding 1

User actions modify the

selected/displayed items

selection

selectedObjects

selectionIndex

etc...

NSArrayController

TextView displaying a number
Binding 2

 T I P
Lower down the list, you’ll see keys like canInsert. You can use these to enable and disable editing features. Creating
an editable table is more of a challenge, and some extra code is needed. Typically you’ll subclass the data source array,
the controller, or both to implement full editing.

18_495896-ch13.indd 33818_495896-ch13.indd 338 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 339

Selecting controller keys
Now that you know what controller keys do, it’s easy to select the one you need to bind a table
column to a slice of data from the runningApps array. Figure 13.22 illustrates how to do this.
You select arrangedObjects to display a sorted list of apps in the array, and then choose the
NSApplicationName key to retrieve the name string of each app.

Figure 13.22

Selecting a Controller Key and an associated Model Key Path to copy values from the data source
array into a table view

When the application runs, the binding manager automatically accesses each running applica-
tion in turn, pulls out the value associated with the NSApplicationName key, and adds it to
the table column, creating the list shown previously in the left-hand column in Figure 13.15.

18_495896-ch13.indd 33918_495896-ch13.indd 339 8/31/10 2:50 PM8/31/10 2:50 PM

340 Going Deeper

You can repeat this for other properties in the other two columns. In this example, the middle
column displays the NSApplicationProcessIdentifier key, and the rightmost column
displays the NSApplicationPath key.

Here’s a review of the steps that created the finished application:

 1. You added code to initialize a data source with data.

 2. You added a controller object to the nib.

 3. You bound the controller object to the data source, copying data to its Controller
Content property.

 4. You added view objects to the nib.

 5. You bound the view objects to view content generated by the controller, select-
ing different possible view content with the Controller Keys.

 6. Finally, you selected the values that appear by typing a property name into the
Model Key Path.

 T I P
You can find two versions of this project on the Web site for this book at www.wiley.com/go/cocoadevref.
A slightly extended version adds an extra text field that you can experiment with. Try binding selection, selectionIndex,
and some of the Boolean values to the text box to see how they change as you select items in the table.

Implementing Preferences with Bindings
Among the controller objects used with bindings is NSUserDefaultsController. This is
a special object that takes its data from the application’s preferences. The controller is shared.
You can create multiple instances of it in multiple nibs, and every instance accesses the same
data. You don’t need to bind it to a data source, because it’s already bound to the preferences
system.

Bindings can simplify preferences in two ways:

 You can bind objects and views in a preferences pane directly to the
NSUserDefaultsController. The controller will save and load the application prefer-
ences automatically, so this pane will always be correct.

 You can bind objects in the main application nib to NSUserDefaultsController to
display them, or a modified version of them, in a different location. For example,
you may want to include a hint or reminder item in a toolbar that shows the current
value of a preference.

18_495896-ch13.indd 34018_495896-ch13.indd 340 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 341

A full preferences implementation should read settings from the code version of
NSUserDefaultsController, which is called NSUserDefaults, and is used like this:

NSUserDefaults *thePrefs = [NSUserDefaults standardUserDefaults];

You can then use key-value access to read the defaults. More creatively, you can also use Key-
Value Observing (KVO) to monitor changes to preferences, updating selected settings immedi-
ately. Poor implementations of preferences force the user to close and re-open an application
before changes are registered by the rest of the application. A more professional implementa-
tion can use KVO and bindings to respond to changes as they happen.

 C A U T I O N
If you’re using bindings and a separate preferences window, it’s best not to set the defaults by setting the values in
NSUserDefaults with code. Limit changes to the preferences UI and its bindings, and use code elsewhere in the
application to read values from NSUserDefaults, or track changes to them with KVO.

Understanding preferences
The Cocoa preferences system is unusual. Preference keys and values must be registered before
they can be used. Internally, the preferences system keeps a copy of the original registered val-
ues and only saves changes to them.

Initializing preferences
To register keys, run an initialize method inside a preferences method or in your application del-
egate. initialize — not to be confused with init — is the very first method run by every
class as the application loads. You can use it to run start-up code that initializes critical values. A
typical preferences method that uses NSUserDefaultsController looks like this:

+ (void) initialize {
 NSMutableDictionary *prefsDictionary =
 [NSMutableDictionary dictionary];

 [prefsDictionary setObject: <an object> for Key: <a key];

 [[NSUserDefaultsController sharedUserDefaultsController

setInitialValues: prefsDictionary]];
}

Add one setObject: line for every item in the preferences file.

 N O T E
initialize is a class method.

18_495896-ch13.indd 34118_495896-ch13.indd 341 8/31/10 2:50 PM8/31/10 2:50 PM

342 Going Deeper

Including this code defines the names and keys used in the preferences data. You can read and
write the keys elsewhere in your application.

Because preferences are objects, you must “objectify” them. Numbers must be packed into

[NSNumber numberWith<Type>: value];

Generic objects must be archived into an NSData object. For example, to include a color use

[NSData *thisColor =
[NSArchiver archivedDataWithRootObject: [NSColor whiteColor]];
[prefsDictionary setObject: thisColor forKey: <a key>];

Setting preference keys
It can be useful to define global, application-wide, preference key constants. Literal strings
won’t trigger a compiler error if you type them incorrectly. Explicitly defined constants will. This
is an optional extra feature, but it can help make an application more robust.

extern NSString * const AKey = @”A key name”;

to define the key constant.

You can then use AKey as a substitute for @”A key name” throughout your application.

Reading preferences values
To read a preferences value in your application, access the preferences dictionary with a stan-
dard valueForKey: method. It’s useful to initialize a pointer to the preferences dictionary
once at the start of the application and then refer to it thereafter.

NSUserDefaults *prefs;
…
prefs = [NSUserDefaults standardUserDefaults];
 <type> aPref = [prefs valueForKey: <a key>];

When you read an archived or “objectified” key to check its value in your application, you must
reverse the archiving or objectification process.

float aFloat =
[[prefs valueForKey: <a key which is a float>] floatValue];
NSColor *thePrefColor = [NSUnarchiver unarchiveObjectWithData:

[prefs valueForKey: <a key>];

18_495896-ch13.indd 34218_495896-ch13.indd 342 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 343

You can eliminate some of the conversions by binding variables to objects that display or con-
trol a preferences setting. For example, you can bind a slider directly to an NSNumber value in
the preferences without converting it.

Creating an application with preferences
Figure 13.23 shows a simple application with a preferences panel. KVO and bindings are used to
monitor changes to the panel and refresh the main application window.

Figure 13.23

When binding to visible objects in the UI, the controller can display various interpretations of
the data, including selected elements chosen by the user.

18_495896-ch13.indd 34318_495896-ch13.indd 343 8/31/10 2:50 PM8/31/10 2:50 PM

344 Going Deeper

The code for the Application Delegate is:

#import “PreferencesAppDelegate.h”

@implementation PreferencesAppDelegate
@synthesize window, preferencesController, theColorField;
NSUserDefaults *prefs;
- (void)applicationDidFinishLaunching:(
 NSNotification *)aNotification {
 prefs = [NSUserDefaults standardUserDefaults];
//Using KVO on the prefs values, we can trigger updates when the
//prefs change
 [prefs addObserver:self forKeyPath:CDRFavColorKey options:

NSKeyValueObservingOptionNew context:NULL];
 [prefs addObserver:self forKeyPath:CDRCommMediumKey options:

NSKeyValueObservingOptionNew context:NULL];
 [prefs addObserver:self forKeyPath:CDRDegOfAwesomeKey options:

NSKeyValueObservingOptionNew context:NULL];
 //Reload color from prefs on startup
 [self updateColor];
 //Automatically show the prefs window on load
 [self showPreferences:nil]; }
- (void) showPreferences: (id) sender {
//Create a new preferences controller object
 NSLog(@”Showing preferences”);
 if (!preferencesController)
 preferencesController = [[PreferencesController alloc] init];
 [preferencesController showWindow: self];
}
-(void) updateColor {
 //Get the curent color from the prefs and apply it
 NSColor *favoriteColor = [NSUnarchiver

unarchiveObjectWithData: [prefs valueForKey:CDRFavColorKey]];
 theColorField.backgroundColor = favoriteColor;
}

- (void) observeValueForKeyPath:(NSString *)keyPath ofObject:(id)
object

change:(NSDictionary *)change
context:(void *)context {
 if (object == prefs) {
 NSLog(@”%Keypath:%@ Value: %@”, keyPath, [object

valueForKey:keyPath]);
 if ([keyPath isEqual: CDRFavColorKey])
 [self updateColor];
 }
}
@end

18_495896-ch13.indd 34418_495896-ch13.indd 344 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 345

Key features of the application include:

 The Preferences item in the application menu triggers a showPreferences: method
in the App Delegate.

 The method allocates an instance of a custom Preferences Controller object.

 When the Preferences Controller is created, it uses a custom init method to load
and display the contents of a separate Preferences Panel nib file. The nib, shown
in Figure 13.23, includes some UI elements and an instance of NSUserDefaults
Controller. The UI elements are bound to the controller. The code initializes the
preferences. UI updates, saving, and loading are handled automatically by the control-
ler. No other code is needed.

 The main application window includes a couple of UI elements that are bound to
another copy of NSUserDefaultsController. (Because this is a shared object, every
copy accesses the same data.)

 Color data can’t be bound, so color updates are monitored with KVO. Observers
are initialized for every preferences key. The common observer method checks the key
and runs update code to change the background color of the main text view when the
color preference is updated.

 In a more complex application, code here could add further auto-refresh
features.

 One of the bound fields uses a value transformer, described below.

 N O T E
You can add an empty nib file to any project by right-clicking the Resources group in Xcode, choosing Add ➪ New File,
selecting the User Interface tab and Empty XIB, and then saving and naming the file in the usual way.

Figure 13.24 shows the preferences panel nib. Instead of an NSWindow, the panel uses an
instance of NSPanel to create a miniwindow suitable for preferences and other lightweight
display tasks. Otherwise, it’s a standard nib with a content view, some controls, and the Shared
Defaults controller.

To bind to values in NSUserDefaultsController, use the values Controller Key. In the
same way that NSArrayController offers arrangedObjects, selection, selectionIndex, and
other predefined keys, NSUserDefaultsController offers the simpler values controller.
As the name suggests, this is a simple list of its values. To access a value, type in its key name in
the Model Key Path.

18_495896-ch13.indd 34518_495896-ch13.indd 345 8/31/10 2:50 PM8/31/10 2:50 PM

346 Going Deeper

 T I P
NSUserDefaultsController is added to a nib automatically when you bind to it as a data source. You don’t
need to add it by hand.

Figure 13.24

Binding preferences objects. Selecting the Shared User Defaults Controller as the source makes it
possible to access values in the application’s preferences.

Creating and Using Value Transformers
The preferences panel for the application includes a radio button, whose setting is saved
as a numerical index. It’s possible to convert the index to a string in the application using a
switch statement, but it would be useful to create a binding that displays the correct string
automatically.

18_495896-ch13.indd 34618_495896-ch13.indd 346 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 347

Value transformers are a customizable extension to the transformation code built into bindings.
You can use them to convert a value from any object into any other object, or to process values
in more complex ways, such as performing math, changing data formats, or even sending val-
ues over the Internet to a remote server.

A value transformer is a subclass of the NSValueTransformer class. To create and use a
transformer, follow these steps:

 1. Create a new object in Xcode. Replace the header and the start of the implementa-
tion with the value transformer boilerplate code provided below.

 2. Add more boilerplate code to the App Delegate’s initialize method to register the
transformer.

 3. Type the transformer’s name into the Value Transformer box under the Model
Key Path.

When you save the nib file and build and run the application, the transformer processes the
value pulled from the data source and replaces it with a transformed value.

In this example, you’ll create a transformer called IndexToNameTransformer that takes a
radio button index and returns a corresponding string. The boilerplate to register the trans-
former is shown below. Add equivalent code to the App Delegate, replacing the name field
with the name of your own transformer object. You can allocate multiple transformers. Each
must have a unique name string.

+ (void) initialize {
 NSValueTransformer *transformer =
[[IndexToNameTransformer alloc] init];
[NSValueTransformer setValueTransformer:transformer

forName:@”IndexToNameTransformer”];
}

The transformer object header declares your custom subclass of NSValueTransformer,
which defines the transformer’s name.

#import <Cocoa/Cocoa.h>
#import <Foundation/Foundation.h>
@interface IndexToNameTransformer : NSValueTransformer
{}
@end

18_495896-ch13.indd 34718_495896-ch13.indd 347 8/31/10 2:50 PM8/31/10 2:50 PM

348 Going Deeper

Properties and other variables are declared in the implementation, listed here. A switch state-
ment converts the incoming int into a text string, which it returns.

#import “IndexToNameTransformer.h”

@implementation IndexToNameTransformer

//These two methods are boilerplate
+ (Class)transformedValueClass
{
 return [NSString class];
}
+ (BOOL)allowsReverseTransformation
{
 return NO;
}
//The transformer method signature is fixed, the code is

customizable
- (id)transformedValue:(id)aValue
{
 int thisIndex = [aValue intValue];
 switch (thisIndex) {
 case 1:
 return @”Radio”;
 break;
 case 2:
 return @”TV”;
 break;
 case 3:
 return @”Internet”;
 break;
 case 4:
 return @”Pigeon (RFC 1149)”;
 break;

 default:
 return @”Paper”;
 break;
 }
}
@end

18_495896-ch13.indd 34818_495896-ch13.indd 348 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 13: Using Preferences and Bindings 349

Figure 13.25 illustrates how to use the value transformer. Type the name manually into the
Value Transformer combo box under the Model Key Path. The result was shown in Figure 13.23:
the index was automatically converted into an associated string, which appeared in a text
box. Without the transformer, binding to the radio button preference would have displayed
a number.

 T I P
The bindings manager includes a selection of predefined transformers. The two most useful are
NSUnarchiveFromDataTransformerName and
NSKeyedUnarchiveFromDataTransformerName, which can convert archived preferences objects
back into objects. For an example, see the Favorite Color binding in the preferences application.

Figure 13.25

Setting a value transformer. Once the transformer is registered in code, you type the name into
the Value Transformer box to apply it to the data source selected in the Model Key Path.

18_495896-ch13.indd 34918_495896-ch13.indd 349 8/31/10 2:50 PM8/31/10 2:50 PM

350 Going Deeper

Summary
In this chapter, you learned how to use bindings. You began with a look at why bindings are
useful, and then explored some of their less well-known features. Next you looked at a practical
example of creating and using simple bindings that connected a UI control to a value set inside
an application, in both directions.

To show you how to create more sophisticated applications, you were introduced to controller
objects, and you learned about their features and functions and how they can be used to elimi-
nate glue code.

You discovered how to use bindings and KVO to create a complete preferences solution for
applications, with some sophisticated features. Finally, you learned about value transformers,
and you saw a simple sketch of a transformer class that you can customize and use in your
own projects.

18_495896-ch13.indd 35018_495896-ch13.indd 350 8/31/10 2:50 PM8/31/10 2:50 PM

In This Chapter

Using Core Data

Creating a Core Data
application visually

Understanding Core
Data’s objects and

programming model

Displaying search results

Core Data is a collection of classes designed to simplify the
editing and archiving of linked data that can be used as the
model in any application.

You use Core Data when your application needs to manage data col-
lections in which objects take some of their properties from other
objects. This can include user-oriented data collections such as music
playlists, EXIF (Exchangeable Image File Format) data managers from
photo collections, and contact databases. It can also include applica-
tion-specific data that is never accessed directly by users. For exam-
ple, you can use Core Data to store the complete project state for a
music sequencer or video editor, with all of its subelements.

You can implement simple linking with Cocoa’s data collection
objects, but Core Data offers the following features “free of charge”:

 Undo

 Data persistence without explicit archiving and
de-archiving

 Built-in support for bindings

 An automated UI generator in Interface Builder (IB)

 An abstracted interface that can report the edit/undo
state of objects

 Visual editing of object relationships

 C A U T I O N
Core Data isn’t a full relational database, and it doesn’t support some of the rela-
tionships and features that are standard in SQL and other database environments.
For certain features, work-arounds may be required.

For newcomers to Cocoa, Core Data can seem abstract and difficult
to understand. The programming model uses many unique classes
and introduces some new concepts. But if you can understand
Key-Value Coding (KVC), with some effort, you can use Core Data.

There are two approaches to Core Data development:

 Create an application visually, with Xcode’s Core Data
editor, and then add extra code. This is a good approach
for any record-based application that supports user editing,
and it is the one demonstrated in this chapter.

19_495896-ch14.indd 35119_495896-ch14.indd 351 8/31/10 2:50 PM8/31/10 2:50 PM

352 Going Deeper

 Define a data model and interfaces with code. Optionally, you can create a custom
UI. This is the more advanced approach and is often used for application-specific data.
Once you understand the key features of Core Data, you can use it in this general way.

 C A U T I O N
You will need to understand bindings from the previous chapter to follow the project in this chapter. You should know
how to bind a table view to an array controller and how to bind the controller to a data source array.

Creating a Core Data Application Visually
In this chapter, you’ll use Core Data to create a music database that links artists to albums, and
vice versa.

Xcode includes a Core Data editor and associated Core Data application templates. First, you
create a new application, as shown in Figure 14.1. Make sure the “Use Core Data for storage”
check box is selected. This is a small change, but it tells Xcode to initialize the project with the
standard Core Data template, which includes extra boilerplate that sets up Core Data features
and supporting objects. Save the project as CoreData.

Figure 14.1

Creating a Core Data project. The “Use Core Data for storage” check box selects
a project template with a generous helping of Core Data setup code.

19_495896-ch14.indd 35219_495896-ch14.indd 352 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 353

The template creates a project with an extra group, called Models, at the top of the Groups &
Files pane. Open Models and you’ll see an item called CoreData_DataModel.xcddatamodel.
Xcode loads a visual editor for the model, as shown in Figure 14.2.

There are three panes in the middle of this window.

 The Entity pane lists the items in the model. An entity is a data object. Use this pane
to view a list of entities, add new entities, and delete existing ones.

 The Property pane lists the properties in each entity. Properties are key-value pairs.
Each property has a name and an associated field that stores values. Use this pane to
list, add, and delete properties.

 The Inspector pane, on the right, lists the attributes and features of entities and prop-
erties as they’re selected. Use this pane to set the type of a property, define how it con-
nects to other entities and properties, and so on.

Figure 14.2

Loading the visual editor for the model. The graph-paper area at the bottom of the editor is
used to display and link the objects in the data model.

19_495896-ch14.indd 35319_495896-ch14.indd 353 8/31/10 2:50 PM8/31/10 2:50 PM

354 Going Deeper

Adding an entity
To add an entity, click the + (plus) icon at the bottom left of the Property pane, as shown in
Figure 14.3. A new entity appears in the graph at the bottom of the window.

Figure 14.3

Adding a new entity. You can also right-click in the graph area and select Add Entity from the
pop-up menu.

In the Inspector pane, type Album into the Name field. Press Return to apply the name, as
shown in Figure 14.4.

19_495896-ch14.indd 35419_495896-ch14.indd 354 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 355

Figure 14.4

Naming an entity. Note that the Inspector pane also lists the entity’s class. The
NSManagedObject class is a special wrapper class used by Core Data.

Adding properties
Next, you’ll add some properties to the Album entity. Click the + icon at the bottom left of the
Property pane, and select Add Attribute, as shown in Figure 14.5. Type Name into the name
field in the Inspector window. Deselect Optional. Select String from the Type pop-up menu. This
adds a new property called Name, which is a string, and must be present. Repeat the steps to
add another property. Name it Year. Set its Type to Date and deselect Optional.

19_495896-ch14.indd 35519_495896-ch14.indd 355 8/31/10 2:50 PM8/31/10 2:50 PM

356 Going Deeper

Figure 14.5

Adding a property. Use the Inspector pane to set the name and type. Deselecting Optional
means that the property must be set. (Note: This image is a composite showing both menus.)

Create another entity called Artist. Add a nonoptional property called Name. The model graph
should look like Figure 14.6.

Creating relationships
A relationship is a link between one entity and another. Relationships are used to pull data out
of associated entities. They define properties indirectly.

In this example, Albums are created by Artists, so there needs to be a relationship between the
Album and Artist entities. There should also be a relationship in the other direction, because
Artists can record more than one Album.

19_495896-ch14.indd 35619_495896-ch14.indd 356 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 357

Figure 14.6

Your model is starting to take shape, with two entities.

A relationship from one object to multiple objects is called a to-many relationship — one entity
is connected to many others. Unlike a full relational database, Core Data’s support for to-many
relationships is limited.

To illustrate this, you’ll create the Album ➪ Artist relationship as a to-one, and the Artist ➪
Album relationship as a to-many.

Select the Album entity, and click the + icon at the bottom left of the Property pane. Select Add
Relationship from the pop-up menu, as shown in Figure 14.7. Name the relationship Artist.
Deselect Optional. In the Destination pop-up, select Artist. The editor automatically adds an
arrow linking the two entities.

19_495896-ch14.indd 35719_495896-ch14.indd 357 8/31/10 2:50 PM8/31/10 2:50 PM

358 Going Deeper

Figure 14.7

Creating and defining a relationship. The arrow appears automatically.

 N O T E
Although the editor is visual, the layout of the model on the graph isn’t important. Names and properties are impor-
tant, and so is the fact that a relationship exists. But you can move entities to different locations on the graph without
affecting either.

Repeat the process for the Artist entity, creating a relationship to Album, as shown in Figure
14.8. Selecting Artist in the Inverse pop-up menu creates a two-way relationship and replaces
two arrows with a single arrow with arrowheads at both ends.

 T I P
The double arrowhead indicates a to-many relationship. The single arrowhead indicates a to-one relationship.

19_495896-ch14.indd 35819_495896-ch14.indd 358 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 359

Figure 14.8

Creating a reciprocal relationship. The two entities are now connected in both directions.

Generating a user interface
Interface Builder can take a Core Data entity and build an interface for it. This feature is very
easy to use and generates a default nib file that you can customize to taste. Bindings are
included to link objects in the UI to the objects managed by Core Data.

Open the Resources Group, and double-click MainMenu.xib. Open the Document window if
it isn’t already visible. Double-click the Window object to open its edit window. Press
Option+drag the Album entity and release it on the empty edit window. You’ll see the dialog
shown in Figure 14.9. Select the Master/Detail view option from the pop-up menu, and select all
the boxes. When the next dialog appears, leave the property boxes and select Finish.

 T I P
This is very much easier with two monitors. If you have a single monitor, you’ll have to resize Xcode and Interface
Builder to fit both onto the screen at the same time.

19_495896-ch14.indd 35919_495896-ch14.indd 359 8/31/10 2:50 PM8/31/10 2:50 PM

360 Going Deeper

Figure 14.9

Creating a Core Data interface in IB. The check boxes define the elements that appear
in the interface.

IB adds the UI shown in Figure 14.10 to the window. Any properties that are included in the
source entity will appear here as text fields. To-one relationships linked to other entities gener-
ate a pop-up. As you can see at the left, this is a standard nib file. You can move elements
around, add autosizing, and so on.

Make the window much wider to add another UI panel, and then press Option+drag the Artist
entity into the window. Make the same selections as before to create another Master-Detail
view showing the Artist properties. The finished UI is shown in Figure 14.11. You won’t see a
pop-up menu for albums, because the UI doesn’t support to-many relationships. This simple UI
isn’t intelligent enough to allow to-many editing.

19_495896-ch14.indd 36019_495896-ch14.indd 360 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 361

Figure 14.10

The auto-generated user interface for the project, with its associated nib.

 T I P
The new panel appears in the middle of the window, overlapping the original panel. If you mis-click while trying to
drag it, it can be difficult to select it again. The easy way to select it before moving it is to double-click the Box (Artist)
element in the Doc window.

Building the application
Once the UI is complete, save the nib file and Build and Run the application. No code is needed!
The completed application is shown in Figure 14.12. Click the Add button to add some artists,
then add some albums in the same way. Use the Artist pop-up menu to select the artist name
for each album. You can also click the entries under the Artist column directly.

19_495896-ch14.indd 36119_495896-ch14.indd 361 8/31/10 2:50 PM8/31/10 2:50 PM

362 Going Deeper

Figure 14.11

Adding another panel for the Artist entity. Repositioning this panel can be tricky.

Figure 14.12

The finished application with some sample data

19_495896-ch14.indd 36219_495896-ch14.indd 362 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 363

The design is rough around the edges, but it supports the following features:

 Input checking.

 Editing. You can change any entry.

 Sorting. Click the column headers.

 Searching. Type into the search bar.

 Save and reload. Choose File ➪ Save to save the data. Data is reloaded automatically.

 OS X standard undo.

This is impressive without code; but it does have some limitations:

 The date field shows the day, date, and time, when it should only show the year.

 Links are unidirectional. It would be useful to filter the albums by artist.

 C A U T I O N
Core Data can’t reload previously saved data if you change the model; if you try this, the application will crash. A fea-
ture called migration can repair entities programmatically, but migration is an advanced topic and is beyond the scope
of this book.

Exploring and Extending a Core Data
Application
You can improve on this application in two ways: by modifying the nib and by adding code to
implement custom features. Take a closer look at the application nib, shown in Figure 14.13.

The format is similar to the table view example from the previous chapter. The Album box
includes a table view with three column objects. Each is bound to a separate key in the Album
Array Controller object. This generates the three column views.

Each array controller is bound to the managedObjectContext in the App Delegate, as
shown in Figure 14.14. This is Core Data’s main data store. The managed object context binding
option includes features that search the store automatically, returning arrays of values and keys
that can be displayed by an array controller.

Expanding the Year column reveals that the Year field already includes a date formatter object.
A date formatter is similar to the NSNumberFormatter object introduced in the previous
chapter. You can use it to control how dates are displayed.

19_495896-ch14.indd 36319_495896-ch14.indd 363 8/31/10 2:50 PM8/31/10 2:50 PM

364 Going Deeper

Figure 14.13

Exploring the auto-UI, and discovering some of its bindings

Open the date formatter’s attributes, as shown in Figure 14.15, delete the existing format, and
replace it with the year formatter from the collection under the Format window, dragging and
dropping it.

This solves the format problem. The Year column should now display a single year correctly.
Modify the date formatter used to display the year in the year-entry text field in the same way.
It’s above the scroll view, inside the text field under the Static Text (Year:) label.

To solve the second problem, you’ll need to access the model data with code. While Core Data
supports generic filtering for data display, there isn’t a simple way to implement it here. It
would be possible to add a custom data transformer that checked an Artist string and filtered
results accordingly. But you’ll create the same result by searching the data directly and packing
a list of results into an array that can be displayed in a separate table. To do this, you’ll need to
look at Core Data’s classes and programming model.

19_495896-ch14.indd 36419_495896-ch14.indd 364 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 365

Figure 14.14

Exploring how the array controllers are bound to a single common data store, called a
managed object context

Figure 14.15

Modifying the date format to eliminate time, day, and date strings

19_495896-ch14.indd 36519_495896-ch14.indd 365 8/31/10 2:50 PM8/31/10 2:50 PM

366 Going Deeper

Understanding Core Data’s objects and programming
model
Core Data uses three objects to define its working environment, which are listed in Table 14.1. If
you use the Core Data template and Xcode editor for your project, the persistent store coordi-
nator and the managed object model “just work.” You do, however, need to access the man-
aged object context to read and write data.

Table 14.1 Core Data Environment Objects
Object Application

NSPersistentStoreCoordinator Archives and unarchives data, and keeps saved and live data synchronized.

You can ignore this object in the Core Data template. The boilerplate code

initializes it for you and it works automatically.

NSManagedObjectModel The collection of entities, properties, relationships, and other features

used in the data model. The managed object model defines how the data

is organized, but doesn’t store the data — it’s a template for the model.

Don’t change the model dynamically. It’s best to leave model

management to the model editor in Xcode.

NSManagedObjectContext The complete database, with data. The template creates a context auto-

matically. An application can use more than one context — but usually

one is enough.

The Core Data classes used to read and write data are shown in Table 14.2.

Table 14.2 Core Data Objects used for Editing and Searching
Object Application

NSManagedObject A wrapper for entity objects that plugs them into the archiving and editing features

built into Core Data. Sometimes you need to access a managed object directly. At

other times you access its associated entity description object. Supports Key-Value

Coding (KVC).

NSEntityDescription Defines the name, property list, and relationships of a named entity. A managed

object holds data; its entity description describes how it’s organized.

NSFetchRequest A wrapper for a search. The search request is sent to a context, which returns an array

of objects that match the search criteria.

NSPredicate A predicate object that defines the details of a search request. It holds the low-level

details of search strings or patterns, matching criteria, case sensitivity, and so on.

NSSortDescriptor An object that specifies how search results should be sorted. Optionally, it can be

passed to a predicate object before a search request.

19_495896-ch14.indd 36619_495896-ch14.indd 366 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 367

Creating fetch requests
To read data, create a fetch request and pass it to the managed context. Fetch requests can be
complex, and the code interface isn’t intuitive, but in outline, there isn’t any more to searching
than creating a request, setting its parameters, passing it to the context, and reading the results.

Sample code is shown below:

NSEntityDescription *albumEntity
= [NSEntityDescription entityForName:@”Album”
inManagedObjectContext:managedObjectContext];
NSFetchRequest *theRequest = [[NSFetchRequest alloc] init];
[theRequest setEntity:albumEntity];
returnArray = [managedObjectContext

executeFetchRequest:theRequest error:&error];

In the context of your model, this code runs the simplest possible search. returnArray
returns a list of all Album entities in the context; that is, a list of all albums. You can then process
the array further to extract values from it.

Using predicates
To narrow the search, you can add a predicate to the search request:

NSPredicate *thePredicate =
[NSPredicate predicateWithFormat:@”Name == ‘An Album Name’”];

[theRequest setPredicate:thePredicate];
//Run the search…

The predicate syntax is complex, but recognizably similar to regex matching, which it’s based
on. predicateWithFormat: allows substitutions with the usual withFormat: options.
Use this to insert search strings and other values dynamically.

NSPredicate *thePredicate =
[NSPredicate predicateWithFormat:@”Name == %@”, aString];

Table 14.3 shows some other examples. For more information about predicate programming,
see the Predicates Programming Guide in the Cocoa documentation.

19_495896-ch14.indd 36719_495896-ch14.indd 367 8/31/10 2:50 PM8/31/10 2:50 PM

368 Going Deeper

Table 14.3 Sample Predicate Search Strings
Object Application

like ‘string’ Searches for similar strings. A literal string must include single quotation marks.

contains[cd] ‘ey’ Finds all records with “ey,” ignoring case and diacritical characters; that is,

non-English characters with accent marks.

beginsWith ‘A’ Finds all records starting with “A.”

ANY salary < 20000 Returns the first found salary < 20,000. No quotation marks are needed for

numbers.

ALL salary > 1000000 Returns all salaries over a million currency units. (The units depend on the data and

the context.)

Using sort descriptors
Sort descriptors can sort the results into ascending or descending order with respect to named
key. Descriptors are passed in an array, so it’s possible — but not always useful — to specify
multiple descriptors.

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey: @”Artist” ascending: YES];

[theRequest setSortDescriptors:
[NSArray arrayWithObject: sortDescriptor]];

A fetch request must name an entity, and it may specify a predicate and a sort descriptor.

 T I P
One of the biggest challenges for newcomers is the absence of a simple query mechanism. There are no simple “Find
me an object with the following properties” methods. Instead, queries are handled with query objects, which have to
be assembled and packed for each query. You can make Core Data easier to work with by writing query wrappers to
simplify the code interface.

Creating to-many fetch requests
Often, you can use a simple predicate search to return an array of results. No more code is
needed.

Unfortunately, Core Data doesn’t support searches where the target is a to-many
relationship — that is, where one item can be linked to many others.

For example, if you want to filter albums by artist, it would be natural to assume that you can do
something like:

19_495896-ch14.indd 36819_495896-ch14.indd 368 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 369

NSEntityDescription *albumEntity
= [NSEntityDescription entityForName:@”Album”
inManagedObjectContext:managedObjectContext];
NSFetchRequest *theRequest = [[NSFetchRequest alloc] init];
[theRequest setEntity:albumEntity];
NSPredicate *thePredicate =
[NSPredicate predicateWithFormat:@”Artist == %@”, aString];

[theRequest setPredicate:thePredicate];

But this doesn’t work. The Artist key is a relationship, and the regex search code can’t follow
to-many relationship links.

A workaround is to create a list of album keys and values in a separate array, and search the
array for the Artist key. Instead of specifying a predicate, you request a list of all albums, and
then search the returned array.

Counterintuitively, this solves the problem, with only minor extra complications. The code for a
full solution follows. The search is packed into a refreshList: method that can be called
when the application should refresh the list of filtered albums.

- (void) refreshList: (id) sender {
 NSEntityDescription *albumEntity =
 [NSEntityDescription entityForName:@”Album”
 inManagedObjectContext:managedObjectContext];
 NSFetchRequest *theRequest = [[NSFetchRequest alloc] init];
 [theRequest setEntity:albumEntity];
 searchReturnArray = [NSMutableArray arrayWithCapacity:50];
 tempArray =
 [managedObjectContext executeFetchRequest:theRequest

error:nil];
 [tempArray enumerateObjectsUsingBlock:^(id obj,
 NSUInteger idx, BOOL *stop) {
 NSString *albumName = [obj valueForKey:@”Name”];
 NSString *artistName =
 [[obj valueForKey:@”Artist”] valueForKey:@”Name”];
 if ([artistName isEqual: selectedName.stringValue])
 [self.searchReturnArray insertObject:
 [NSDictionary dictionaryWithObject: albumName
 forKey:@”FilterName”] atIndex: 0];
 }] ;

 self.searchReturnArray = searchReturnArray;
 NSLog(@” %@”, searchReturnArray);
}

19_495896-ch14.indd 36919_495896-ch14.indd 369 8/31/10 2:50 PM8/31/10 2:50 PM

370 Going Deeper

Key features of the code include:

 A fetch request returns the full list of albums.

 The enumerateObjectsUsingBlock: method processes each object in turn.

 The processing block extracts an album name and an artist name for each album.

 The artist name is retrieved with valueForKey: to return a reference to an artist
object, and then extracts the name from the object with the Name key using
nested code.

 The name is compared with a string read from a text field in the UI. (Assume an
outlet and link to the UI have been created.)

 Matching results are packed into an array of dictionary objects, each containing a
name linked to a key — FilterName. This makes it possible for an array controller
to create a list of items with that key and bind it to a column in a table view.

 The search array is assigned with self to make it visible to a binding.

Displaying search results
There are various ways to display the results of the search. Figure 14.16 shows one solution. The
default UI has been rearranged, and an extra table view and associated array controller have
been added. The controller is bound to the searchReturnArray as its data source, which
has been added to the App Delegate header.

The single column in the new table view is bound to the FilterName key in the Array
Controller, via arrangedObjects, as shown in Figure 14.17.

A few extra niceties are needed to finish the code. It would be possible to add a separate search
button to create a filtered search, but it’s more intuitive for the user to see an updated list
whenever he or she selects a new artist. Key-Value Observing (KVO) could be used for this, but
the table view’s selector has been linked to the refreshLink: method, as shown in the list of
links to the App Delegate in Figure 14.18. An outlet to the text field that displays the artist name
has also been created.

When the user selects a new artist name in the list in the Artist panel, the following happens:

 1. The table view updates the name box under the list, via a binding that was built
into the original UI.

 2. The table view’s selector action triggers the refreshList: method.

 3. The method reads a list of all albums from the Core Data store and copies them to
a temporary array.

19_495896-ch14.indd 37019_495896-ch14.indd 370 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 371

 4. With some minor coding trickery, it reads the artist key from each album. If the
artist name matches the name box, it inserts the album name into the searchRe-
turnArray.

 5. It assigns the array to itself to trigger a KVO update.

 6. The array controller in the nib notices the updates, and sends them to a column
in the Albums table view to display them.

 7. The list appears.

Figure 14.16

Creating an improved interface and adding a table view to display a summary list of albums
for each artist, with a new array controller to bind the search results to the table

19_495896-ch14.indd 37119_495896-ch14.indd 371 8/31/10 2:50 PM8/31/10 2:50 PM

372 Going Deeper

Figure 14.17

Binding the new table to the custom FilterName property, which is used to tag
dictionary entries in the filtered search code

Figure 14.18

Links and bindings to the App Delegate for this application. The two key links are the
link to the outlet to the selectedName text box, which displays the current selected
artist name, and the refreshList: method, which is triggered by a new selection
in the Artist table.

19_495896-ch14.indd 37219_495896-ch14.indd 372 8/31/10 2:50 PM8/31/10 2:50 PM

 Chapter 14: Using Core Data 373

While this isn’t the most elegant solution, it solves the problem. The finished application is
shown in Figure 14.19.

As an exercise, try to extend the application so that the Album box displays the year as well as
the artist name.

 T I P
One final nicety is to add an auto-refresh feature on load. The finished application implements application
DidFinishLaunching:. A performSelector: withObject: afterDelay: method calls
refreshList: one second after start-up. This updates the album list after giving the application a short time
to settle.

Figure 14.19

Displaying albums automatically. Selecting a new artist lists that
artist’s albums in the adjacent text field.

19_495896-ch14.indd 37319_495896-ch14.indd 373 8/31/10 2:50 PM8/31/10 2:50 PM

374 Going Deeper

Summary
In this chapter, you learned about Core Data. You created a Core Data project using a template
built into Xcode, and you designed a data model using Xcode’s model editor.

You discovered how to convert the model into a simple application, using the conversion fea-
tures built into Interface Builder, and how to fine-tune elements of the interface to improve the
look and feel of the application.

Next, you learned about Core Data’s key objects, including the managed context, entities, and
fetch requests. You created a simple fetch request and used it to retrieve a list of entities. You
also explored the limitations of Core Data and looked at one possible way to work around them.

Finally, you created an extended version of the original application, with added search features
and an improved interface.

19_495896-ch14.indd 37419_495896-ch14.indd 374 8/31/10 2:50 PM8/31/10 2:50 PM

In This Chapter

Working with Text
and Documents

Using NSString

Using NSAttributed
String

Creating multi-document
applications

Implementing
undo and redo

Supporting other
languages

Cocoa includes classes that implement powerful multi-
language text features and drastically simplify the design
of documents that support styled and formatted text. An

associated Xcode template makes it easy to create an application
that supports multiple editing windows. Each window is an instance
of a customizable MyDocument class, which is a subclass of
NSDocument — Cocoa’s document object. You can define the
look and feel of this class, by customizing its associated nib, and
add custom code to implement saving and loading features for
customized and existing file formats.

Using NSString
NSString is Cocoa’s string-handling class. It supports a vast
library of methods that can initialize, convert, compare, split, com-
bine, and process string data.

NSString objects are read-only. You can create edited strings by
copying the output of one of the string-processing methods to a
new string. You can also use NSMutableString, which imple-
ments insert, delete, and replace methods.

Table 15.1 lists a small selection of useful NSString methods. The
full list in the NSString Class Reference is much longer.

20_495896-ch15.indd 37520_495896-ch15.indd 375 8/31/10 2:58 PM8/31/10 2:58 PM

376 Going Deeper

Table 15.1 Some Useful NSString Methods
Method Description

stringWithFormat: Takes a formatting string and a content string; applies standard C

formatting from the former to the latter.

stringWithContentsOfFile: Loads the string with the contents of a file from a filepath or a URL.

stringWithContentsOfURL: Loads the string with the contents of a URL, which can be a local file or

an online source. With a standard Web URL, this method downloads

the HTML from the specified Web page.

writeToFile/URL: Writes the string to a filepath or URL, with encoding options and error

trapping.

length: The string length in characters.

componentsSeparatedByString: Searches a string for a separator character or string, and splits it into

substrings. Can split filepaths (“/”) or extract words from text (“ “).

getLineStart:

getParagraphStart:
Finds the start and end of lines and paragraphs.

isEqualToString: Compares two strings for identity. Faster than isEqual:.

caseInsensitiveCompare: Compares two strings, ignoring case.

capitalizedString: Capitalizes the first letter of each word.

lowercaseString:
uppercaseString:

Creates lower- and uppercase copies of a string.

<type>Value: Converts text into a number or Boolean. Supports int, float,

double, integer, longlong, and Bool types.

stringByStandardizingPath: Filters a path string to remove invalid elements.

Using NSRange
Many string operations use a range — a struct with two integers that define a location in
the string and a length. Ranges are used to extract and edit strings. Some Cocoa classes, such
as NSTextView, return a range automatically when the user highlights a block of text.

You can create a custom range with

NSRange myRange = NSMakeRange(location, length);

Figure 15.1 illustrates how you can use a range and the subStringWithRange: method to
extract a substring from a string.

20_495896-ch15.indd 37620_495896-ch15.indd 376 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 377

Figure 15.1

Extracting a substring from the characters in aString to
a new bString with NSMakeRange();

aString 0:a 1: 2:s

NSString *bString = [aString subStringWithRange: NSMakeRange(5,3)];

bString 0:i 1:n 2:g

3:t 4:r 5:i 6:n

range.location = 5;

range.length = 3;

7:g

 C A U T I O N
A range is really just a pair of integers. It’s a structure, not an object. It doesn’t need a pointer, isn’t associated with
any one string, and isn’t part of a string’s properties.

Working with encodings
NSString supports a range of encodings, which make it possible to work with languages
that do not use Latin characters. The preferred encoding is UTF-8 (Unicode Transformation
Format-8), which is a byte-packed implementation of Unicode. Single-byte characters are
backward-compatible with ASCII. Multi-byte characters define the rest of the world’s written
languages. In theory, characters may use up to 6 bytes, but in practice, no language uses than
more 4 bytes per character.

Selecting a default encoding
It would be helpful if you could assume UTF-8 is the default encoding. Typically, your applica-
tion should save text using the NSUTF8StringEncoding constant.

[aString writeToFile: aPath
encoding: NSUTF8StringEncoding: error: &error];

But some Web sources, such as RSS (Really Simple Syndication) feeds, use other encodings
such as NSISOLatin1StringEncoding. Cocoa’s UTF-8 decoder is designed to be pedantic
rather than robust, and returns a null string if there is any ambiguity about the encoding,
making it incompatible with RSS feeds and other Web sources, including those that generate
plain ASCII.

20_495896-ch15.indd 37720_495896-ch15.indd 377 8/31/10 2:58 PM8/31/10 2:58 PM

378 Going Deeper

Various solutions are possible. You can write code that cycles through a list of possible encod-
ings, trying each in turn until it returns a possible match. A trickier solution is to download the
Web information into NSXMLDocument, and ask it to report the encoding with the character
Encoding method.

Whichever solution you choose, be aware that creating robust support for the encodings used
in Web text may not be a trivial problem, even without multi-language support.

Creating buffers for UTF-8 text
Each character in a UTF-8 string can have a variable length. If you need to convert a string into a
byte representation, don’t use the length property to set the buffer length because it assumes
all characters are a single byte.

The lengthOfBytesUsingEncoding: method returns the byte count needed for a given
string.

The maximumLengthOfBytesUsingEncoding: method returns the maximum possible
byte count, assuming every character uses the maximum number of bytes. This is rarely useful.

If you need an estimate for a string with a given length, irrespective of content, multiply
length by four and add 1 for the NULL terminator character.

Using NSAttributedString
By default, strings contain plain text with no styling or layout information. You can use
NSAttributedString to manage styled text. This class includes a standard NSString
object but adds a list of attribute records. Each record holds an NSRange and the attribute data
for that range, which can include the font, text size, justification, and so on.

NSMutableAttributeString supports attribute editing. For example, to change the font
style and size of the first three characters of a string, use

NSMutableAttributedString *theString =
[[NSMutableAttributedString alloc] initWithString: @”The

String”];
[theString addAttribute: NSFontAttributeName
value: [NSFont fontWithName: @”Myriad Pro” size: 40.]
range: NSMakeRange (0, 3)];

Repeat with other attributes and values to style the string. To remove attributes, use

[theString removeAttribute: NS<AttributeName>
range: NSMakeRange (location, length)];

There’s no direct way to remove all attributes in a range, but you can use setAttributes:
with an empty dictionary to delete all existing attributes.

20_495896-ch15.indd 37820_495896-ch15.indd 378 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 379

 C A U T I O N
There is a full list of supported attributes in the Documentation. It’s not in the Class Reference for either
NSAttributedString or NSMutableAttributedString. You’ll find it in the NSAttributedString
Application Kit Additions Reference Class Reference.

Understanding attributes
Attributes implement advanced editing and styling features that are a superset of those found
in standard text editors. Text attributes support the following:

 Font and size

 Underline in various weights and line styles

 Ligatures to support fonts that support joined characters such as œ

 Background, stroke, and strikethrough color

 Shadow effects

 Kerning control

 Hypertext linking

 Individual specialized character glyphs

Selected document attributes include:

 Author name

 Company name

 Document type

 Zoom and view mode

 Paper size and margins

 Copyright

Document types include plain text; RTF (Rich Text Format); RTFD, which combines an RTF text
file with a folder of associated image attachments; Mac legacy; HTML; Word Doc; Open Office;
and OpenDocumentText.

The type attribute is set when you save and load documents using one of the specialized meth-
ods listed next, but is otherwise ignored.

Saving and loading attributed strings
NSAttributedString supports initWith<type> methods for loading the following
document types:

 Plain text

 RTF

 RTFD

20_495896-ch15.indd 37920_495896-ch15.indd 379 8/31/10 2:58 PM8/31/10 2:58 PM

380 Going Deeper

 HTML

 MS Word

The MS Word importer isn’t guaranteed to support the latest MS Word format. You can pass an
optional dictionary pointer to an initWith<type> method to receive a list of document
attributes extracted from the file.

To save a file, convert it to an NSData object using one of the conversion methods listed
below, and then save the data object to disk. All formats support an optional dictionary of attri-
butes that defines the attributes included in the file:

 dataFromRange: is a generic converter that supports all valid attributes and is ideal
for Mac-only document saving.

 docFormatFromRange: creates an MS Word file, usually of a legacy type.

 RTFFromRange: creates an RTF file. For sample code, see the Nanopad example
later in this chapter.

 RTFDFromRange: creates a folder that contains an RTF file and associated image
attachments. This is a legacy format and isn’t widely used.

Drawing and using attributed strings
NSAttributedString supports direct drawing. You can draw a string at a point or inside a
RECT with the drawAtPoint: and drawInRect: methods. When your application has
more than one window, the string is drawn into the current top view.

//Draw a string at the bottom left
[attrString drawAtPoint: NSZeroPoint];

Potentially, you can use this feature to animate strings and create Flash-like effects.

Drawing text on a path
There is no easy way to draw text on a path. You must draw each glyph on a path separately,
applying size, rotation, and position transforms as needed.

The Documentation includes sample code for a project called CircleView that draws text on a
circular path. It uses Cocoa’s text storage, text layout, and text container classes, which are typi-
cally used to implement page design tools for desktop publishing and advanced PDF creation.

This approach isn’t any simpler or more efficient than a character-by-character solution; it sim-
ply wraps the character-by-character code inside container objects that your application may
not need.

Using attributed text in controls
Many controls support a setAttributedTitle: method. Use this method to label buttons
and other controls with attributed text; for example, to set the label text color or add a text drop
shadow.

20_495896-ch15.indd 38020_495896-ch15.indd 380 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 381

Creating Nanopad: A Rich Text Editor
Writing a text editor that supports attributes could be a significant challenge. Fortunately, you
don’t need to reinvent the wheel; the work has already been done for you in NSTextView. The
basic default application template not only allows rich text editing, but also includes support
for fonts, letter sizing, underlines and other attributes, and justification control.

To create an editor, drop an instance of NSTextView into the standard template’s nib file. You
already did this with the Picopad editor introduced in Chapter 10. If you reload the project and
open its nib file, you’ll see that the nib file includes a font manager, as shown in Figure 15.2. The
font manager provides attributed text support.

Figure 15.2

The default application template includes an instance of NSFontManager. It’s already linked to menu
items that display the manager’s font panel and generate attribute information for text editing.

Using NSFontManager
In the default template, the font manager is triggered by menu events. The default menu
includes prelinked entries that generate the required events. For example, the Show Fonts item
triggers the orderFrontFontPanel: method. When you run the application and send this
message to the font manager, the font panel appears. You can drag+select a range of text and
apply fonts and attributes from the manager.

20_495896-ch15.indd 38120_495896-ch15.indd 381 8/31/10 2:58 PM8/31/10 2:58 PM

382 Going Deeper

The font manager isn’t linked to the text view, so it’s not obvious how the text view knows
which fonts have been selected. When the user selects an attribute, the font manager sends a
message to the responder chain. In this example, the window automatically passes the message
down to the text view, which is the first object in the window’s hierarchy to respond to attribute
messages.

This means updates happen automatically, without linking, bindings, or Key-Value Observing
(KVO). If you place a text-aware object in the responder chain, font management “just works,” as
long as the object is first in line for attribute messages.

If you experiment with the editor, you’ll discover that undo and spell-checking are also built
into the text view, as shown in Figure 15.3. The application even supports the Mac speech syn-
thesizer and printing.

Figure 15.3

Applying fonts and attributes from the font manager. Spell check has noted that this isn’t how you spell
“Haettenschweiler.” Or “has.”

20_495896-ch15.indd 38220_495896-ch15.indd 382 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 383

Saving and loading rich text
If you save the text with this version of the editor, you’ll see that the styling information disap-
pears. When you reload the text, the application applies the last selected styling to the entire
file.

The original Picopad save/open code writes standard unattributed strings. To support
attributes, save and load the file as rich text as shown below.

The open and save methods use the block structure introduced in Picopad, but the RTFFrom
Range: method is used to generate an RTF stream in an NSData object, which is saved to a
file. The Open code is simpler. It uses the readRTFDFromFile: method to read the RTF data
back into the text view.

 C A U T I O N
Note that both methods run on the text view, not on a separate attributed string property of the text view. They’re the
same as methods used with NSAttributedString, but they’re part of the NSText class, which is Cocoa’s
default text container object. NSTextView is a subclass of NSText and inherits its methods.

@implementation TheWindow
@synthesize theTextView;
-(void) awakeFromNib {
//Nothing happens here.
//You could add auto-load of the last saved file…
}
-(void) saveTheDocument: (id) sender {
 NSSavePanel *savePanel = [NSSavePanel savePanel];
 savePanel.allowedFileTypes = [NSArray arrayWithObject:@”rtf”];
 [savePanel beginSheetModalForWindow:self

completionHandler:^(NSInteger result) {
 if (result == NSFileHandlingPanelOKButton) {
 NSData *theData = [theTextView RTFFromRange:
 NSMakeRange(0, [theTextView.string length])];
 [theData writeToURL: savePanel.URL atomically: YES];
 }
 }];
}
- (void) openADocument: (id) sender {
 NSOpenPanel *openPanel = [NSOpenPanel openPanel];
 openPanel.allowedFileTypes = [NSArray arrayWithObject:@”rtf”];
 [openPanel beginSheetModalForWindow:self

completionHandler:^(NSInteger result) {
 if (result == NSFileHandlingPanelOKButton) {
 [theTextView readRTFDFromFile: openPanel.URL.path];
 }
 }];
}
@end

20_495896-ch15.indd 38320_495896-ch15.indd 383 8/31/10 2:58 PM8/31/10 2:58 PM

384 Going Deeper

These few lines of code and the font manager create the core of a complete solution for editing,
saving, and loading attributed text in TheWindow subclass of NSWindow, which was originally
created in the Picopad example from Chapter 10.

 N O T E
Printing is implemented by calling the print: method in NSWindow, which automatically opens a page setup
pane, creates a print job, and manages pagination.

Three features are missing:

 File operations don’t trap errors.

 There’s no Save feature that re-saves the current file without showing the save pane.

 The Open Recent menu isn’t implemented.

The first two are relatively easy to add, so they’ll be left as reader challenges.

Implementing the Open Recent menu
To implement the Open Recent menu in an application with a single window, add the following
boilerplate to the file open code, positioned so that it runs after the open operation successfully
loads a file:

[[NSDocumentController sharedDocumentController]
noteNewRecentDocumentURL: openPanel.URL];

You’ll see that the application is now maintaining the Open Recent list, but it isn’t yet respond-
ing when the user clicks a recent file to reload it.

There are various ways to implement reloading, but the simplest is to add the following method
to the App Delegate:

- (BOOL)application:(NSApplication *)theApplication
openFile:(NSString *)filepath {

//Open code here
}

This method runs when a user selects an item in the Open Recent menu, passing the filepath as
a string. You can duplicate the detailed open code here, or — more efficiently — extract the
detailed open code from the open pane block and place it in a separate method. The active
open code can then be called by the block, or from this method in the App Delegate. Note that
this method is only called from the Open Recent menu. It doesn’t run when the user opens a file
by choosing File ➪ Open.

20_495896-ch15.indd 38420_495896-ch15.indd 384 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 385

 C A U T I O N
This method receives a string filepath. If your open code requires a URL, convert it with fileURLWithPath:.

Creating, Saving, and Loading Documents
Xcode includes an application template that outlines a multi-application document. You can
select it by selecting the Create document-based application when you create a new project, as
shown in Figure 15.4. Do this in Xcode and save the project as MultiDocument.

Figure 15.4

Creating a document-based application. The document template generates a project that uses the
NSDocument class as a content container. Each document contains an NSWindow, with a content
view.

20_495896-ch15.indd 38520_495896-ch15.indd 385 8/31/10 2:58 PM8/31/10 2:58 PM

386 Going Deeper

The project structure is shown in Figure 15.5. The MyDocument class defines the code used to
implement the document. Each document is a separate but — usually — identical instance. It
runs the same code and its UI is defined in the MyDocument nib.

Figure 15.5

The structure of a document. Choosing File ➪ New automatically creates a new instance of the
MyDocument class, which loads the associated nib.

 N O T E
There’s no App Delegate. If your application needs one, create an App Delegate subclass of NSObject for the code,
and add a corresponding subclassed NSObject to the MainMenu nib to create an instance. Link it to the delegate
outlet in File’s Owner or Application.

Build and run the application and choose File ➪ New a few times. You’ll see something
like Figure 15.6, with multiple identical document windows. Each window shows the
MyDocument nib.

20_495896-ch15.indd 38620_495896-ch15.indd 386 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 387

Figure 15.6

The document template is already set up to create a new window whenever you choose File ➪ New.

Some features are already implemented. The Window menu supports zooming, minimizing,
restoring, and Bring All To Front. The Format menu displays the font manager panel. Choosing
File ➪ Page Setup displays a printer options sheet. File options are active, but not yet supported
by code.

Creating a default nib file
You can change the UI of the documents by editing the MyDocument nib file. For example, to
create a simple multi-document version of Nanopad, add a scrolling text view, as shown in
Figure 15.7. Set Autosizing to track the window frame.

20_495896-ch15.indd 38720_495896-ch15.indd 387 8/31/10 2:58 PM8/31/10 2:58 PM

388 Going Deeper

Figure 15.7

Modifying the document nib. The nib defines the UI of every document created by the application.

Save the modified nib, then build and run the application again. It now loads multiple text
views. Add some text to a view, choose Format ➪ Font ➪ Show Font to display the font manager
pane, shown in Figure 15.8, and style the text.

Choose File ➪ New to create another document. Add some text and style it. You’ll see that the
font manager automatically applies its styling commands to the active document. You don’t
need to add code or links to make this happen — it happens automatically.

Setting document types
Saving and loading aren’t yet implemented. If you try to save a file, you’ll see a save pane, but
the file extension is set to question marks.

20_495896-ch15.indd 38820_495896-ch15.indd 388 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 389

Before you can save and load a document, you must define at least one supported file type. In
the Groups & Files pane, click the reveal triangle next to the Targets icon and right-click the
MultiDocument item inside it. You’ll see the dialog shown in Figure 15.9. Select the Properties
tab. In the Document Types subpanel, you’ll see a single default entry called documentType
(not shown here). Click on each column in turn to edit the entry until it matches the figure.

The most important change is the UTI (Universal Type Identifier) column, which must say pub-
lic.rtf. This tells the document that it is an editor for the standard system rtf file type. A UTI
holds information about each file extension used by the system. Apple predefines UTIs for stan-
dard file types, and you can also create your own for files with a customized extension. For
details, see the Introduction to Uniform Type Identifiers Overview in the Cocoa Documentation.

Figure 15.8

The font manager sends styling information to the current active document automatically.

20_495896-ch15.indd 38920_495896-ch15.indd 389 8/31/10 2:58 PM8/31/10 2:58 PM

390 Going Deeper

Figure 15.9

Assigning a standard system file type to the document

Adding a custom UTI is a labor-intensive process. You must define it in your application’s
info.plist file, which is an XML document with a variety of application settings. Xcode
includes a plist editor, but it’s easier to navigate to your project’s folder in Finder, open the plist
file in a text editor, copy the UTI boilerplate XML from Apple’s documentation, paste it into the
plist file, and make minor edits by hand. Sample XML to create a custom UTI that implements an
abcd file extension follows:

<key>UTExportedTypeDeclarations</key>
 <array>
 <dict>
 <key>UTTypeIdentifier</key>
 <string>com.myURL.applicationname</string>
 <key>UTTypeDescription</key>
 <string>My custom document format</string>
 <key>UTTypeConformsTo</key>
 <array>
 <string>public.data</string>
 </array>
 <key>UTTypeTagSpecification</key>
 <dict>
 <key>com.apple.ostype</key>
 <string>abcd</string>

20_495896-ch15.indd 39020_495896-ch15.indd 390 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 391

 <key>public.filename-extension</key>
 <array>
 <string>abcd</string>
 </array>
 </dict>
 </dict>
 </array>

Implementing save and open code
Code that creates a save and open sheet is already built into the template. When you choose
File ➪ Save, you’ll see a save sheet with your newly adopted file type.

To save or open a file, do not access a file directly. File access is implemented for you. Inside
MyDocument.m you’ll see two methods: dataOfType: and readFromData:. These meth-
ods are left empty. Your code must create an NSData object from the document data, and
recover document data from an NSData object.

Saving is straightforward. Your code is responsible for conversion, but the rest of the process is
automatic.

Opening is less straightforward. When readFromData: runs, the new document hasn’t yet
been created, so you can’t initialize its contents, because there’s nothing to initialize. The
solution is to save the document data to a temporary store in readFromData:. Then in the
windowControllerDidLoadNib: method, add code to copy data from the store to the
new document. This guarantees that the document is initialized correctly after it’s created, as
illustrated in Figure 15.10.

Figure 15.10

Understanding how the default save and open operations work, and how to add supporting code

File � Save As...
Save pane appears. dataOfType: typeName: error:

your implementation converts the

document to an NSData object

Automatic AutomaticYour codeUser

User specifies a file

path for saving.

System writes the

data object to the

selected file path

File � Open
Open pane appears. readFromData: typeName: error:

your implementation converts an

NSData object into document data

and saves it to a temporary store

Automatic AutomaticYour codeUser

User selects a

file to open.

System reads the file

as an NSData object.

awakeFromNib:

your implementation

initializes the document

content with the

stored data

20_495896-ch15.indd 39120_495896-ch15.indd 391 8/31/10 2:58 PM8/31/10 2:58 PM

392 Going Deeper

Sample code for the MyDocument class follows. If your application supports a single data type,
such as the rtf type used here, you can ignore the ofType parameter. For multiple data types,
add conditionals to read the type and select different conversion code for each.

@implementation MyDocument
@synthesize theTextView;
NSMutableAttributedString *theString;
NSMutableDictionary *aDictionary;
- (id)init
{
 self = [super init];
 if (self) {
 }
 return self;
}
- (void)windowControllerDidLoadNib:(NSWindowController *)

aController
{
 [super windowControllerDidLoadNib:aController];

 //Copy the loaded data to the new text view
 // text storage is the text view’s container object
 if (theString)
 [[theTextView textStorage] setAttributedString: theString];
}
- (NSData *)dataOfType:(NSString *)typeName
 error:(NSError **)outError
{
 if (outError != NULL) {
 *outError = [NSError errorWithDomain:NSOSStatusErrorDomain

code:unimpErr userInfo:NULL];
 }
 //Return the converted data as an NSData object
 return [theTextView
 RTFFromRange: NSMakeRange(0, [theTextView.string length])];
}
- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName

error:(NSError **)outError
{
 //The dictionary is optional. Use it check or list attributes.
 aDictionary = [[NSMutableDictionary alloc] init];
 //Convert the data into a temporary string variable
 theString =
 [[NSMutableAttributedString alloc] initWithRTF:data
 documentAttributes: &aDictionary];
 if (outError != NULL) {

20_495896-ch15.indd 39220_495896-ch15.indd 392 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 393

 *outError = [NSError errorWithDomain:NSOSStatusErrorDomain
 code:unimpErr userInfo:NULL];
}
 return YES; //Or NO if there was a problem
}
@end

When an application uses the document-based template, the Open Recent feature is imple-
mented automatically. When you choose File ➪ Open Recent, the application calls the same
open code defined previously.

Printing documents
The easy way to print a document is to design your document with a container view, and then
override the printDocument: method in NSDocument with a custom call to print:.

-(void) printDocument: (id) sender {
 [theContentView print: nil];
}

 N O T E
print: takes a nominal (id) sender parameter but ignores it.

This launches the default print dialog, manages automatic pagination and margins, and runs
the print job for you with very little code. You can also render a document to a single off-screen
view and run print: on the view. The default printer is the standard OS X printer, and it imple-
ments a print-to-PDF feature.

Occasionally you may need to print a document the hard way. Customized printing gives you
control over pagination, margins, and page scaling, and supports very long documents with
unlimited pages.

A complete customized printing solution can be moderately complex. The core print operation
code looks like this:

NSPrintInfo *printInfo;
NSPrintOperation *printOp;
printOp = [NSPrintOperation printOperationWithView: viewToPrint
 printInfo: [self printInfo]];
[printOp setShowPanels: NO]; //Optional
[printOp runOperation];

The printInfo object stores information about margins, paper size, orientation, and pagina-
tion. For example, you can set the pagination to clip, scale/fit in either dimension, or automati-
cally create a column of pages.

20_495896-ch15.indd 39320_495896-ch15.indd 393 8/31/10 2:58 PM8/31/10 2:58 PM

394 Going Deeper

Selecting [self printInfo] displays a panel that enables the user to define the print
options. You can disable this feature by setting showPanels to NO.

To create manual pagination, implement two methods in your printable view:

-(BOOL) knowsPageRange :(NSRange *) theRange {
 theRange -> location = 1;
 theRange -> length = <estimate number of pages here>
 return YES;
}
-(NSRect) rectForPage: (int) page {
return <page rect calculated for a given page number>
}

theRange is a pointer to a range struct, which is passed when the method is called and
contains returned values when the method completes.

Calculating the rect to return may require information about the paper size, required margins,
scaling and optional borders, crop marks, page numbers, header and footer strings, and so on.
There is no general solution; each application has different requirements. For very long docu-
ments, you can use a single rect as a buffer, and render the content for each page with
drawRect:.

Using NSUndoManager
The text view in the MultiDocument project implements undo automatically. This is a feature of
the text view, and not the document. To implement a full undo solution, you need to add extra
code to every editing operation.

NSDocument supports an NSUndoManager class that can maintain a separate undo/redo
stack for each document. If you initialize the undo manager correctly before each edit, this stack
is managed automatically for multiple levels of undo and redo.

To get a pointer to a document’s undo manager, use

NSUndoManager *theManager = [self undoManager];

There are two ways to implement undo. For simple operations, you can set the target/action
that the undo will perform, and the object that the undo will perform it on.

[undoManager
registerUndoWithTarget: targetObject
 selector: @selector(methodToImplementTheUndo:)
 object: objectThatWillBeRestored];

20_495896-ch15.indd 39420_495896-ch15.indd 394 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 395

targetObject is usually self. When the user selects Undo, the result is

[targetObject methodToImplementUndo: objectThatWillBeRestored];

Your code must implement the method and manage the object in a way that creates the undo.
It’s possible, with some effort, to create edit methods that embed this code and store the old
pre-edit value in the object. This is a good solution for simple objects, but it can become
unwieldy for complex multiple edits.

If object is a complex composite object such as a video sequence, it’s impractical to save a
backup copy of the complete object for each undo step. An alternative undo technique uses a
class called NSInvocation, which stores a complete message including the target object, the
message sent, and all parameters.

[[undoManager prepareWithInvocationTarget: targetObject
 aMethod: undoParameters];

Again, targetObject is usually self. When the user selects Undo, the result is

[targetObject aMethod: undoParameters];

Typically before each edit, you create an invocation that restores the pre-edit values of the
parameter or property that is about to be changed. Alternatively, you can create an invocation
that does the opposite of some edits; for example, decreasing a value that has just been
increased.

For a complex edit, the undo parameters are likely to include arrays and dictionaries of previous
values. Implementing a complete undo solution for every possible edit in an application
requires significant extra code.

Localizing Applications
For commercial projects, you can improve sales by adding multi-language support. Supporting
multiple languages is known as localization and is implemented in two complementary ways:
localized nib files and localized strings.

Creating a localized nib file
Right-click a nib file and select Get Info. Select the General tab if it isn’t already selected. Select
Add Localization at the bottom left of the window, and pick a language from the drop-down list
in the sheet that appears at the top of the window, as shown in Figure 15.11.

20_495896-ch15.indd 39520_495896-ch15.indd 395 8/31/10 2:58 PM8/31/10 2:58 PM

396 Going Deeper

Figure 15.11

Creating a localized nib file. The default selection of languages is limited.

This creates a new French nib, which joins the existing English nib. To localize the nib, replace
all static labels and titles with French text, as shown in Figure 15.12. When you build and run the
application and the user selects Français as her preferred language, the French nib is loaded
automatically. Repeat the process for the MainMenu nib.

To enter accented text, select the characters and insert them using the Character Viewer sheet.
This is a standard Mac feature and should appear under your usual language selection, as
shown in Figure 15.13.

Creating localized strings
Rarely, a localized nib may solve the localization problem. More typically, you must also add
localized strings to localize prompts and error messages. Localized strings are saved in the appli-
cation bundle. Each language has a separate file.

20_495896-ch15.indd 39620_495896-ch15.indd 396 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 397

Figure 15.12

Replacing static text

To create a file, right-click Resources and choose Add ➪ New File. Select Mac OS X Resource and
Strings File, as shown in Figure 15.14.

The file is saved as Localizable.strings, as shown in Figure 15.15. The filepath should be
English.lproj for an English file, French.lproj for a French file, and so on. This creates a
Localizable.strings item in Xcode with separate files for each language.

Before you edit a file with non-English text, convert it to the UTF-8 encoding. Right-click it,
select Get Info, and select the encoding from drop-down menu, as shown in Figure 15.16. Select
the Convert option at the alert.

You can edit each file in Xcode. Strings are stored in key-text pairs.

“key” = “localized text”;

20_495896-ch15.indd 39720_495896-ch15.indd 397 8/31/10 2:58 PM8/31/10 2:58 PM

398 Going Deeper

Figure 15.13

The Character Viewer is an optional feature built into most language selections.

Figure 15.13 showed part of a French Localizable.strings file. The key appears in the
code in your application. When the application runs, it selects the appropriate Localizable.
strings file for the user’s location, looks up the text for each key dynamically, and displays it.
Optionally you can make the key more recognizable by writing it in caps, prefixing a special
character, suffixing the word “key,” and so on.

To use the localized text, replace the usual string reference with the following:

NSLocalizedString(@”key”, @”default text”)

If the application finds a localized string that matches Key, it displays it. If not, it displays the
default text.

 N O T E
NSLocalizedString is a macro that runs localizedStringForKey: on [NSBundle main
Bundle]. You can ignore the macro and write your own implementation if you need to add special features to
the lookup, but typically, the macro solves the problem.

20_495896-ch15.indd 39820_495896-ch15.indd 398 8/31/10 2:58 PM8/31/10 2:58 PM

 Chapter 15: Working with Text and Documents 399

Figure 15.14

Creating a Localizable Strings file

Figure 15.15

Saving the file for a specific language

20_495896-ch15.indd 39920_495896-ch15.indd 399 8/31/10 2:58 PM8/31/10 2:58 PM

400 Going Deeper

Figure 15.16

Selecting UTF-8 encoding to support accented and non-Latin text

Summary
In this chapter, you learned about strings, attributed strings, and documents. You were intro-
duced to some of the key methods supported by NSString and NSMutableString, and
you learned how to create and edit rich text by using NSAttributedString and
NSMutableAttributedString.

You explored Xcode’s multi-document application template and discovered how to add power-
ful multi-document support to your application with very little code. You explored the
NSUndoManager and learned about the essential steps required to implement a full undo
solution.

Finally, you learned about localized strings and language-specific nib files, and you discovered
how to create an application that supports multiple languages and selects language string and
nib files automatically.

20_495896-ch15.indd 40020_495896-ch15.indd 400 8/31/10 2:58 PM8/31/10 2:58 PM

In This Part

Expanding the
PossibilitiesIII

III
Chapter 16

Managing Views and
Creating 2D Graphics

Chapter 17
Creating Animations

and 3D Graphics

Chapter 18
Debugging, Optimizing,

and Managing Code

Chapter 19
Developing for the

iPhone and iPad

21_495896-pp03.indd 40121_495896-pp03.indd 401 8/31/10 2:51 PM8/31/10 2:51 PM

21_495896-pp03.indd 40221_495896-pp03.indd 402 8/31/10 2:51 PM8/31/10 2:51 PM

In This Chapter

Managing Views and
Creating 2D Graphics

Understanding the
 view hierarchy

Handling mouse events

Understanding geometry
in Cocoa graphics

Creating and
drawing paths

Using CoreImage filters

Cocoa and Cocoa Touch have impressive graphics capabilities,
but from a developer’s point of view, the graphics frame-
works are a maze of semicompatible technologies with

inconsistent interfaces. The designers of each framework have rein-
vented fundamental concepts, such as size, position, and orienta-
tion, and packed them into incompatible data structures.

One of the most frustrating challenges in graphics programming is
the almost constant need to move data between objects and data
structures that should be “toll-free bridged,” but aren’t.

For example, Cocoa’s NSRect and Core Graphics’ CGRect struc-
tures define a rectangle with identical components: an origin, a
width, and a height. In spite of the similarities, you can only move
data between them by calling a pair of conversion functions:
NSRectToCGRect and NSRectFromCGRect.

Similarly, NSPoint and CGPoint — two data structures that
define an x, y coordinate — are incompatible, even though the
only difference between them is their name.

The function that packs two floats into a CGPoint is called
CGPointMake. The equivalent function that creates an NSPoint
is called NSMakePoint.

Image support is also inconsistent. Cocoa defines an NSImage
type for handling image data. The Core Graphics framework uses a
different CGImage type. CoreImage filters use yet another
CIImage type. Functionally, these data types are used in equiva-
lent ways. You can load them with data from a file or other data
source and draw the data into a view, but their contents aren’t
compatible or interchangeable.

One final source of confusion is that Cocoa’s graphics system com-
bines data structures and objects. NSRect is a data structure.
NSBezierPath, used to define paths and shapes, is an object.
You don’t need to alloc/init an NSRect, but you do need to
allocate and initialize an instance of NSBezierPath. Inevitably,
this creates confusion.

22_495896-ch16.indd 40322_495896-ch16.indd 403 8/31/10 2:51 PM8/31/10 2:51 PM

404 Expanding the Possibilities

Unfortunately these inconsistencies are unavoidable and there is no way to work around them.
The graphics frameworks do not support low-level access to useful values; for example, there is
no equivalent of a point, line, or rectangle plot with literal float or int values. To use the
frameworks, you must pack values into data structures and objects, and then pass the packed
data to a function or method.

While it’s possible — barely — to solve many problems exclusively with Cocoa’s own graphics
features, more typically you’ll use a combination of frameworks. To do this successfully, you
must understand the different data structures and objects that are used, and you must be famil-
iar with the many data packing, conversion, and translation helper functions that are available.
You must also understand how the frameworks use the basic graphics canvas: the view object.

Understanding Windows and Views
The typical structure of a Cocoa UI is shown in Figure 16.1. The window is the master container.
It handles window-specific messages, such as window drag events and minimize, open, and
close operations.

You can design an application by adding visible objects to a window. More typically, you use a
content or container view, and place the objects inside the container. This is optional for very
simple applications with a single window and a very minimal feature set. In more complex
applications, it simplifies event handling and makes it possible to fill the view with custom
graphics and animation effects, drawn with methods and functions that aren’t supported in
NSWindow.

Figure 16.1

A typical UI structure, with a content view inside a window.
This structure is created automatically when you create a
new project from the blank template.

22_495896-ch16.indd 40422_495896-ch16.indd 404 8/31/10 2:51 PM8/31/10 2:51 PM

 Chapter 16: Managing Views and Creating 2D Graphics 405

The container view is usually subclassed so that you can add code to it to handle mouse and
other events. Optionally, you can also create custom graphics and animation effects. Sometimes
it’s useful to subclass the main window object as well, but this is done less frequently.

The container view holds a tree structure of subviews, as shown in Figure 16.2. It may also
include other custom graphics. Subviews typically manage the UI and allow user interaction.
Custom graphics can include image files loaded from disk or from the Internet and dynamically
generated shapes with colors, textures, and gradients.

Figure 16.2

An example of the view structure from a real application: the
Twirl Filter project described later in this chapter. The main
view has been subclassed and it contains a selection of interface
objects that create a UI. It also contains another subclassed view
that generates custom graphics: a filter effect applied to an image.

Table 16.1 summarizes the different objects associated with views.

Table 16.1 Window and View Objects and Their Applications
Object Application

NSWindow Sets the application title, handles open/close/minimize/maximize events. Can handle mouse

events, but usually doesn’t, except in very simple applications.

NSPanel A special simplified floating auxiliary window for application panes and panels. Can be used for

pop-up alerts.

NSView The main view objects. Usually subclassed. Handles mouse events and other UI events. Includes a

drawRect: method that can draw custom graphics. Can include other view objects to

create a view hierarchy that can be modified dynamically.

continued

22_495896-ch16.indd 40522_495896-ch16.indd 405 8/31/10 2:52 PM8/31/10 2:52 PM

406 Expanding the Possibilities

Table 16.1 Continued
Object Application

NSControl A superclass of objects that create user controls, including buttons, sliders, and other UI objects.

Controls are placed “inside” the view hierarchy. They generate user events that are handled by

the view.

NSViewController An optional invisible container object for views. Used to switch views, often by loading them from

a nib on demand. Setting a controller’s view property makes a view visible. Also used to

implement advanced page and print effects in document-based applications.

NSResponder An abstract class that defines the messages and events that any view can handle. Implements

message handling by adding NSResponder method signatures to a view and filling them

out with custom code.

Understanding the view hierarchy
The nib structure illustrates how the view hierarchy is assembled. When you place an object
“inside” a view, it’s added to a tree structure. The main view object is the root of the tree. Other
objects, called subviews, are placed lower down the tree.

When you load a nib, you load this structure and it appears in the application’s window. But it
can be modified dynamically to add and remove objects. Views can also be repositioned and
resized dynamically. To add code that can implement these features, you must subclass the root
view.

Subclassing the root view
To subclass the root view, begin by creating a new project. Save it as EmptyView. By default, it
has the nib structure shown in Figure 16.1. Ignore the MainMenu item — in this chapter you’ll
concentrate on the contents of the window.

To subclass it, right-click the Classes group and choose Add ➪ New File. Select the Mac OS X
Cocoa Class option, and then select NSView in the pop-up menu in the middle of the window,
as shown in Figure 16.3. Save it as NewView.

Figure 16.4 shows the result. The NSView template includes a couple of extra methods that
aren’t included in the file when you subclass NSObject. The initWithFrame: method is
called when a new instance of the view is allocated.

22_495896-ch16.indd 40622_495896-ch16.indd 406 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 407

Figure 16.3

Creating a subclass of NSView. Selecting the NSView template generates a
file with extra features that aren’t included in the standard blank NSObject
template.

 N O T E
Because you never — or hardly ever — generate more than one instance of a root view subclass, the initWith
Frame: method is never called. This code block isn’t notable for its usefulness, although it sometimes holds initial-
ization code in a multi-document application.

The drawRect: method is a fundamental feature of NSView, and it is used as a wrapper for
custom graphics code. The method is triggered automatically to refresh the view when the sur-
rounding window is moved, opened, or resized. You can also trigger it on demand when you
need to refresh the graphics for some other reason, such as a user event.

 T I P
You can create animations by triggering drawRect: repeatedly using a timer. For more on this, see the next
chapter.

22_495896-ch16.indd 40722_495896-ch16.indd 407 8/31/10 2:52 PM8/31/10 2:52 PM

408 Expanding the Possibilities

Figure 16.4

The result

The template doesn’t include two other methods that are used in almost every application. You
must add these methods by hand. Other methods are optional, but almost all projects use
awakeFromNib: and mouseDown:.

mouseDown: is triggered by mouse events. The complete signature is

- (void) mouseDown: (NSEvent *) theEvent;

theEvent is an instance of NSEvent and includes information about mouse position and
button status. The equivalent for mouse drag events is mouseDragged:. The signature is simi-
lar. Information on extracting position information from mouse events appears a little later in
this chapter.

awakeFromNib is triggered when the view loads. Use it to run initialization code when the
application starts. There are no parameters and the signature is

- (void) awakeFromNib;

22_495896-ch16.indd 40822_495896-ch16.indd 408 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 409

To finish subclassing a view, open Interface Builder (IB), select the view object, select the
Identity tab in the Inspector window, and choose your new class name from the pop-up menu,
as shown in Figure 16.5. This tells the application to run the code in the new files. Your new
view can now respond to events, and you can also add code that manages the view hierarchy
or generates custom graphics.

Figure 16.5

Assigning the subclass in IB. This step was introduced in Chapter 7, but it’s worth repeating it here;
it’s easy to forget, but your subclass won’t work without it.

Adding and removing views from the view hierarchy
The view hierarchy is immensely powerful. Figure 16.6 shows an alternative view of one possi-
ble view hierarchy, illustrating the tree structure. You can load a nib and leave the hierarchy
unchanged. But you can also redefine the hierarchy at runtime, creating completely dynamic
context-dependent interfaces.

22_495896-ch16.indd 40922_495896-ch16.indd 409 8/31/10 2:52 PM8/31/10 2:52 PM

410 Expanding the Possibilities

Figure 16.6

Exploring the tree structure of a view hierarchy. You can create a
structure like this in IB and save it in a nib, or you can generate it
dynamically to populate an empty view. Any item can be subclassed
as needed. An item above another on a given branch is called a
superview. An item below another on a branch is called a subview.

NSWindow

(May be subclassed)

NSView

(Is usually subclassed)

A subview

Another subview Another subview

Another subview

Another subview

Another subviewAnother subview

NSViewController

(Optional on OS X,

obligatory on the iPhone)

(May be subclassed)

Most applications take the first approach, and the UI is loaded as is from a nib. The second
approach is more powerful and can create some unique effects, such as dynamic, floating, ani-
mated menu items, reconfigurable button panels, and grids with a variable cell count.

Manipulating the hierarchy is simple. To create a new subview, use alloc/init to create a
new view object. Add code to set a selection of default properties.

Alternatively, you can create a separate nib file for each object, saving it with default settings.
Using a nib makes it possible to load an existing hierarchy as a composite object and insert it
into the root view in a single operation.

22_495896-ch16.indd 41022_495896-ch16.indd 410 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 411

 T I P
You can think of each level in the hierarchy as a new root object. It’s possible to add and remove items at every level.

To insert a subview and make it appear inside the container view in the window, use

[rootView addSubview: newSubview];

To remove a subview, use

[subview removeFromSuperview];

To remove a subview and replace it with a new view, use

[rootView replaceSubview: oldView with: newView];

To traverse the hierarchy, use a subview’s superview property to return the object one level
up, and use the subviews method to return an array of the objects one level down, or nil if
the subview is at the end of a branch. Looking at Figure 16.6, you can see that these methods
move you up and down the tree.

 C A U T I O N
When using superview, keep a separate record of the root view to make sure you don’t try to find the superview
of the root. If you do, you’ll superview yourself right out of the hierarchy into unprotected memory.

For a demonstration, see the MultiButtons project available on this book’s Web site at www.
wiley.com/go/cocoadevref. The project loads an empty content view from a nib and
populates it dynamically with a selection of randomly placed buttons. Each button is num-
bered, and the button style is set to a useful default. The buttons are stored in an array.
Randomizing the buttons removes the old button array and creates and displays a new one.

The code for the subclassed view is:

#import “ButtonsView.h”
NSButton *newButton;
NSButton *thisButton;
NSRect targetRect;
float buttonWidth = 60;
float buttonHeight = 30;
int buttonCount = 10;
@implementation ButtonsView
-(void) awakeFromNib {
//Seed the random number gen
 srand([[NSDate date] timeIntervalSince1970]);
//Find the target rectangle, allowing for the button anchor
//which is at the lower left

22_495896-ch16.indd 41122_495896-ch16.indd 411 8/31/10 2:52 PM8/31/10 2:52 PM

412 Expanding the Possibilities

targetRect = NSMakeRect(0, 0, self.bounds.size.width-buttonWidth,
self.bounds.size.height-buttonHeight);

[self drawSomeButtons];
}
-(void) mouseDown: (NSEvent *) theEvent {
[self removeTheButtons];
[self drawSomeButtons];
}
-(void) drawSomeButtons {
 for (int i = 0; i < buttonCount; i++) {
 //Create a button at a random point
 CGPoint thisPoint = CGPointMake(arc4random() %(int)targetRect.

size.width, arc4random() % (int)targetRect.size.height);
 newButton = [[NSButton alloc]
 initWithFrame:NSMakeRect(thisPoint.x, thisPoint.y,

buttonWidth,buttonHeight)];
 //Define the button style and set the title string
 [newButton setButtonType:NSMomentaryPushInButton];
 [newButton setBezelStyle: NSRoundedBezelStyle];
 [newButton setTitle: [NSString stringWithFormat:@”%i”, i+1]];
 //Set a target/action method that
 //is triggered when the button is clicked
 [newButton setAction: @selector(buttonWasPressed:)];
 [newButton setTarget:self];
 //Add the button to the container view
 [self addSubview:newButton];
 }
}
-(void) removeTheButtons {
//Get an array of subviews
 NSArray *theSubviews = [NSArray arrayWithArray:[self

subviews]];
//Remove them all with a single line of code
[theSubviews
 makeObjectsPerformSelector:@selector(removeFromSuperview)];
}
-(void) buttonWasPressed: (id) sender {
 //When a button is pressed, log the title
 thisButton = (NSButton *) sender;
 NSLog(@”Pressed: %@”, thisButton.title);
}
- (void)drawRect:(NSRect)dirtyRect {
 // Not used in this example - we’re not drawing custom graphics
}
@end

22_495896-ch16.indd 41222_495896-ch16.indd 412 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 413

Figure 16.7 shows the modified view. When you click a button, a single common method logs
its title string — which also happens to be its number — to the console. When you click else-
where in the view, the button positions are randomized.

Figure 16.7

A view with random buttons. Click in the view to change the arrangement. The console logs
the button number when a button is clicked.

Key points in the code include:

 Calling the removeFromSuperview method on any object removes it from the
view hierarchy. It also releases its memory and removes it from the display.

 Calling the addSubview: method on the root view passing an object as a parameter
adds the object to the hierarchy and displays it.

 Buttons are created with alloc/init followed by extra initialization code. They’re
added to the view by calling addSubview: on them.

 The buttons are live. Setting a target and an action for every button links it to a
method called buttonWasPressed: that is triggered when the user clicks a button.
It’s possible to read the button number from the button title text.

22_495896-ch16.indd 41322_495896-ch16.indd 413 8/31/10 2:52 PM8/31/10 2:52 PM

414 Expanding the Possibilities

 Running the makeObjectsPerformSelector: method on the buttons in the
array removes them all with a single line of code. No enumeration is needed.

 The geometry structures NSRect and CGPoint represent a rectangle and a point,
respectively. These structures are explained in more detail next.

 T I P
This application doesn’t try to avoid button collisions; sometimes buttons overlap. Try to modify the project so that
buttons can never appear on top of each other. Various solutions are possible. Some enumeration may be needed.

Handling mouse events in views
It’s often useful to find the mouse position, either during a click or a drag event, or by following
the cursor within a view. NSView supports a variety of mouse-tracking methods. Most are
defined in NSResponder. To add them to a project, implement them with custom handlers
as shown here. You can also download the mouse handler project from the Web site (www.
wiley.com/go/cocoadevref) to see worked examples.

mouseDown: events are captured automatically. You can retrieve the coordinates within the
window with

- (void) mouseDown: (NSEvent *) theEvent {
NSPoint mouseLocation = [theEvent locationInWindow];
NSLog (@”Mouse position: %.0f, %.0f”, mouseLocation.x,

mouseLocation.y);
}

It’s often useful to translate the coordinates to those of a subview and to limit clicks so that the
application ignores them when they’re outside the subview. To translate coordinates, use

NSPoint mousePositionInPanel =
[self convertPoint: mouseLocation toView: aTargetSubview];

After the translation, clicking at the bottom left of aTargetSubview returns 0,0.

To hit test the subview, use the mouse: inRect: method:

NSRect targetBounds = [aTargetSubview bounds];
if ([self mouse: mousePositionInPanel inRect: targetBounds]) {…

The code in the conditional runs if the mouse is clicked inside the subview. Clicks outside the
subview are ignored.

Use mouseDragged: to receive left-button drag events. You can read the mouse position
using the same code as shown previously.

22_495896-ch16.indd 41422_495896-ch16.indd 414 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 415

 C A U T I O N
mouseDragged: events continue to arrive even if the mouse is dragged out of the window frame. Hit testing
becomes more critical for drag events; otherwise, you can drag values and objects all over the screen, even when you
don’t want to.

Use mouseMoved: events to capture the mouse cursor position when the left button isn’t
pressed. mouseMoved: tracking is not enabled by default. To enable it, add the following code
to the view’s awakeFromNib: method:

- (void) awakeFromNib {
[[self window] setInitialFirstResponder: self];
[[self window] makeFirstResponder: self];
[[self window] setAcceptsMouseEvents: YES];
}

This tells the root window object to pass mouse moved messages to the view for processing.
mouseMoved: tracking is active across the entire screen, and you should hit test the window
bounds to limit the mouse action.

This is a small selection of the available mouse methods. The full list is defined in the
NSResponder and NSView Class References. Other useful methods include:

 mouseUp: Sent when the left button is released.

 mouseEntered: Sent when the cursor enters a tracking area.

 mouseExited: Sent when the cursor exits a tracking area.

Use the NSTrackingArea class to define tracking area objects.

Understanding the Cocoa Graphics System
To create Cocoa graphics, you must understand:

 How points, rectangles, and other basic data are packed into data structures, and how
to set and read data from them

 How points and other elements are combined to create shape objects

 How shape objects are drawn into a view

 How colors and gradients are created and managed

 How images are loaded and drawn into a view

The rest of this section introduces these basic techniques and concepts.

22_495896-ch16.indd 41522_495896-ch16.indd 415 8/31/10 2:52 PM8/31/10 2:52 PM

416 Expanding the Possibilities

Understanding and defining basic geometry
In Cocoa, geometric data is formal and structured. There’s no equivalent of plot (x,y), line
(x1, y1, x2, y2) or other simple graphics primitives found in simpler languages. Point and
rectangle — “rect” — values are wrapped in data structures, and the structures are used in
methods and functions. All components are floats. Cocoa coordinates use a bottom-left origin.
Table 16.2 introduces Cocoa’s key graphics data structures. Note that these are not classes or
objects — they are standard C structs or object properties.

Table 16.2 Useful data structures
Data structure Description

NSPoint An x,y coordinate pair. Use point.x and point.y to access the individual coordinates.

NSSize Defines a rectangle’s size. Use size.width and size.height to access the

components.

NSRect A rectangle with an NSPoint origin and an NSSize. Use rect.origin.x/y

to access the origin, and use rect.size.width/height to access the size

components.

Frame An NSRect with the origin defined with respect to the object’s superview. Changing

origin moves the object’s bottom-left anchor in the superview.

Bounds An NSRect with the origin set to 0,0. Use bounds to access a subview’s internal coordi-

nates. frame and bounds rects usually have the same size. Changing the frame

stretches the content.

 N O T E
There is no NSLine structure, because there is no direct way to draw lines in Cocoa. Lines are defined using the
more complex NSBezierPath object, which can build arbitrary shapes from line segments, arcs, and complex
curves.

Using geometric data structures
A standard problem is getting the NSRect of a view. To return the size, use

NSRect boundsRect = view.bounds;

You can then access the components of boundsRect to find the width and height.

You can also access components directly.

float thisWidth = view.bounds.size.width;

To return the position in the superview with respect to a rect’s lower-left point, use

NSPoint thisOrigin = view.frame.origin;

22_495896-ch16.indd 41622_495896-ch16.indd 416 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 417

Note that because NSPoint, NSSize, and NSRect are data structures and not objects, no
pointer star is required.

Using Foundation Constants
A number of constants are predefined:

 NSZeroPoint Equal to 0,0

 NSZeroSize Width and height are both zero

 NSZeroRect A rect of zero size at 0, 0

You can use these wherever you need the equivalent NSPoint, NSSize, or NSRect.

Using Foundation Functions
A collection of helper functions is included in Cocoa’s Foundation Functions. For a complete list,
see the Foundation Functions Reference. You must review this reference before you start work-
ing with Cocoa graphics. These functions are essential timesavers. It can be helpful to print
them out and pin them somewhere close and visible.

Table 16.3 lists a selection of the more commonly used functions. Equivalent functions for
NSSize are listed in the Foundation Functions Reference.

Table 16.3 Selected Foundation Functions
Function Description

NSMakePoint Packs two floats into an NSPoint

NSMakeRect Packs four floats into an NSRect

NSEqualPoints Returns YES if two points are identical

NSEqualRect Returns YES if two rects are identical

NSIntersectionRect Returns the rect where two input rects overlap

NSUnionRect Returns the smallest rect that encloses two input rects

NSMidX and NSMidY Returns the X or Y center of a rect

NSPointInRect Returns YES if a point is inside a rect

 C A U T I O N
Because the basic data element is a float, be careful when comparing points, rects, and sizes. Rounding errors may
mean that similar values aren’t identical, and comparisons may fail because of a difference in the nth decimal place.
This can become a problem when you multiply points and rects to scale them. You can use NSIntegralRect to
round float values up to integers in a rect.

22_495896-ch16.indd 41722_495896-ch16.indd 417 8/31/10 2:52 PM8/31/10 2:52 PM

418 Expanding the Possibilities

Creating shapes and colors in drawRect:
The Cocoa graphics system takes points, sizes, and rects and assembles them into shapes.
Typically, you add code to a view’s drawRect: method to call functions and methods that
define shapes with NSBezierPath objects. Optionally, you can manipulate them to stretch
them, move them, and rotate them.

Path objects are invisible. You can draw them into the view by stroking them — drawing their
outlines in a color or line style — or filling them, which fills the outline with a solid or variable
color. Table 16.4 introduces the key concepts and objects.

Table 16.4 Key Graphics Features
Feature Description

NSGraphicsContext A canvas for graphics. Can be used online for instant display, offline for off-screen rendering,

or print-ready for PDF creation and paper print. Optional when drawing into a view.

NSBezierPath A collection of points that define a shape, connected by arbitrary curves. Curvature can be

controlled to create straight lines, circles, or arbitrary combined shapes.

[path stroke]; Paths are invisible until painted. Stroking a path traces its outline with visible colors and

lines.

[path fill]; Filling a path fills its area with color.

NSAffineTransform An object that shrinks/stretches, rotates, or moves a path or image. Transforms use matrix

math. Helper methods simplify the implementation; matrix expertise isn’t essential.

NSColor A color object. Encapsulates color information with respect to a color space. Use the set

method to set fill and stroke colors.

NSColorSpace Implements color calibration. Adjusts color values to allow for device variations or allows

device-independent absolute color values.

NSGradient A composite color objects that supports color gradient fills — colors that blend into each

other.

NSImage An image object, loaded from a file or generated dynamically.

Creating path objects
You can use NSBezierPath in two ways. For simple shapes, including rectangles, rounded
rectangles, and ovals or circles, you can use convenience methods to create a path object:

NSBezierPath *myRectPath =
[NSBezierPath bezierPathWithRect: aRect];
NSBezierPath *myOvalPath =
[NSBezierPath bezierPathWithOvalInRect: aRect];
NSBezierPath *myRoundRect =
[NSBezierPath bezierPathWithRoundedRect: aRect
xRadius: aFloat yRadius: anotherFloat];

22_495896-ch16.indd 41822_495896-ch16.indd 418 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 419

The oval path returns an oval or circle that touches the edges of the surrounding rectangle. If
the height and width are equal, the path is circular.

For more complex shapes, you can define the path in sections. The number and order of sec-
tions are arbitrary, and they do not have to be contiguous. Useful methods include

 moveToPoint: Moves the drawing position to an arbitrary point without creating
a mark.

 lineToPoint: Moves the drawing position to a point, creating a line.

 closePath: Moves the drawing position to the start of the path, creating a closed
shape.

relativeMoveToPoint: and relativeLineToPoint: convenience methods are avail-
able. They take relative rather than absolute coordinates to simplify certain path calculations.

Creating Bezier paths with control points
curveToPoint: controlPoint1: controlPoint2: draws a curve from the current posi-
tion to a point using two control points to define a Bezier curve, as shown in Figure 16.8. The con-
trol points are invisible, but they define the shape of the curve. Bezier curves are used to define
glyph shapes in fonts, but you can use them in any application that requires arbitrary line shapes.

Figure 16.8

A Bezier curve defined by two control points. The points are
invisible “handles” that define the curvature of the path. They
can be placed anywhere to create an almost infinite range of
curves.

Control point 1

Control point 2

Start point

Endpoint

Creating composite Bezier paths
You can join paths to create complex composite paths. Use appendBezierPath: to join one
path to another. Variations include

 appendBezierPathWithPoints: Takes an array and interprets the elements as
points joined by line segments.

 appendBezierPathWithArcFromPoint: to Point: Creates an arc between two
points.

 appendBezierPathWithGlyph: InFont: Adds a font glyph from a selected font.

22_495896-ch16.indd 41922_495896-ch16.indd 419 8/31/10 2:52 PM8/31/10 2:52 PM

420 Expanding the Possibilities

 N O T E
You must use the appendBezierPath: methods to create arcs. You can only append arcs to a path; you can’t
initialize or create a path with an arc.

Stroking and filling paths
Once you have a path object, you can draw it by calling the stroke and fill methods on it.
Optionally, you can set a color, line type, and line width for these methods. The default color is
black, the default line type is unbroken, and the default width is 1 pixel.

Additionally, you can define line end caps to create arrow heads or lines with curved termina-
tions. You can also specify line mitres to create butt-end or sharpened line joins. See the
NSNBezierPath Class Reference for details. Color is global, but line features are properties of a
path object.

As a very simple example, you’ll create a rectangle offset from the edges of a container view.
Rect calculations can become complex because the bottom-left origin complicates size and
position calculation. It’s often useful to center objects, but this is only possible by calculating
the size and position manually.

Start by creating a new blank project. Create a new NSView subclass called RectsView. Open
IB and assign the subclass to the container view. Add the following code to the drawRect:
method in the new view:

- (void)drawRect:(NSRect)dirtyRect {
float rectOffset = 30;
 NSRect boundsRect = self.bounds;
 NSRect newRect = NSMakeRect(boundsRect.origin.x+rectOffset,
 boundsRect.origin.y+rectOffset,
 boundsRect.size.width-2*rectOffset,
 boundsRect.size.height-2*rectOffset);
 NSBezierPath *newPath =
 [NSBezierPath bezierPathWithRect:newRect];
 [newPath stroke]; //Draw the path
}

Save the file and nib. Build and Run the project. Figure 16.9 shows the result.

Change [newPath stroke] to [newPath fill]. Build and Run the project. You’ll see that
the rectangle is now filled with solid black, as shown in Figure 16.10.

Using colors
In Cocoa, NSColor defines a color object. Call the set method on the color object to set fill and
stroke colors. Convenience methods are available for various predefined colors. See the NSColor
Class Reference for a list.

22_495896-ch16.indd 42022_495896-ch16.indd 420 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 421

Figure 16.9

Drawing a centered rect inside a view, with the edges offset by a constant. Try resizing the window.
The drawRect: method is called automatically, and the rectangle follows the window dimensions.

For example, to use the predefined blue color to fill or stroke a path, use

[[NSColor blueColor] set];

To define a color with specific components, use

[[NSColor colorWithDeviceRed: rFloat green:
 gFloat blue: bFloat alpha: aFloat] set];

or

[[NSColor colorWithDeviceHue: hFloat saturation: bFloat
brightness: brFloat alpha: aFloat] set];

Each component is a float in the range 0 to 1. The alpha parameter sets transparency. 0 is
invisible, 1 is solid.

The color is written to the graphics context and applied globally, until set is called again. Paths
don’t have a separate color property.

22_495896-ch16.indd 42122_495896-ch16.indd 421 8/31/10 2:52 PM8/31/10 2:52 PM

422 Expanding the Possibilities

Figure 16.10

Replacing stroke with fill fills the rectangle with a solid color.

Using calibrated colors
Color is an unexpectedly complex topic. Cocoa color is designed to support calibration — a
mapping process that eliminates imperfections in color hardware. Monitors and printers often
have poor calibration, so there is no guarantee that a given shade of blue or red will appear the
same on two different devices.

A full discussion of calibration is outside the scope of this book, but you can use the color
WithCalibratedHue: and colorWithCalibratedRed: green: blue: alpha:
methods to create calibrated color objects. These methods use the calibration features built
into OS X to create colors that take into account existing calibration maps.

Creating and drawing gradients
Gradients are not defined and used in the same way as color objects. An NSGradient object
takes two or more colors and defines a smooth blend between them, as shown in Figure 16.11.

NSGradient *this Gradient = [[NSGradient alloc]
initWithStartingColor: aColor
endingColor: anotherColor];

22_495896-ch16.indd 42222_495896-ch16.indd 422 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 423

Gradients are then drawn separately, either filling a rect with

 [thisGradient drawInRect: aRect withAngle: angleInDegrees];

or filing a path with

[thisGradient drawInBezierPath: aPath angle: angleInDegrees];

The angle parameter rotates the gradient. There is no set method for a gradient.

 C A U T I O N
Most graphics methods and functions take parameters in radians. The gradient drawing functions take an angle
parameter in degrees.

Figure 16.11

Filling a rect with a gradient. The angle parameter rotates the gradient. Note that the rotation
is around the bottom-left corner of the rect.

22_495896-ch16.indd 42322_495896-ch16.indd 423 8/31/10 2:52 PM8/31/10 2:52 PM

424 Expanding the Possibilities

Transforming paths
Unless you’re a math expert, the matrix calculations used in affine transforms aren’t trivial.
Fortunately it’s easy to use affine transforms without understanding how they do what they do.
To transform a path, create a transform object:

NSAffineTransform *aTransform = [NSAffineTransform transform];

This slightly unusual syntax creates a default null transform that does nothing when it’s applied
to an object. You can then use scale methods to create a transform that resizes a path, rotate
methods to rotate a path, and translate methods to move a path.

For example

[aTransform rotateByDegrees: 45];

creates a transform that rotates an object by 45 degrees. Similarly,

[aTransform translateXBy: xFloat yBy: yFloat];

creates a transform that moves an object; and

[aTransform scaledXBy: xFloat yBy: yFloat];

creates a transform that scales an object.

Transforms are cumulative, so you can scale, rotate, and then translate. The order is important:
scaling and rotation happen around the bottom-left origin. Keeping track of the relative origin
can be challenging. Typically you translate objects to the origin to scale and rotate them, and
then translate them back to their original position, or to some other point in the view. A com-
plex path may not have a well-defined center.

To apply the transform to a path, use

NSBezierPath *newPath =
[aTransform transformBezierPath: anOldPath];

When you stroke or fill newPath, it appears in its translated location, scaled and rotated.

Loading images
To load an image, create an NSImage object and initialize it with image data from a file. You
can specify an arbitrary filepath, or you can include the image in the application bundle and
load it directly from the bundle. Use the former approach for image editing, and the latter for
defining images that are loaded and displayed automatically. For example, to include an image
in the bundle, right-click the Resources group and choose Add ➪ Existing Files. Navigate to the
file, select it, and copy it into the project, selecting the Relative to Enclosing Group reference
type, as shown in Figure 16.12.

22_495896-ch16.indd 42422_495896-ch16.indd 424 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 425

Figure 16.12

Bundling a file with a project. Don’t forget to select the Relative to Enclosing Group Reference
Type; otherwise, your bundled file won’t be bundled correctly.

You can load an image each time it’s drawn, but this is usually very inefficient. It’s more efficient
to load it once in awakeFromNib and reference it as needed. For example:

NSImage *sourceImage;
- (void) awakeFromNib {
 NSString *sourceImagePath =
 [[NSBundle mainBundle] pathForResource:@”b1” ofType:@”jpg”];

 NSURL *sourceImageURL =
 [NSURL fileURLWithPath: sourceImagePath];
 sourceImage =
 [[[NSImage alloc] initWithContentsOfURL: sourceImageURL]

retain];
}

22_495896-ch16.indd 42522_495896-ch16.indd 425 8/31/10 2:52 PM8/31/10 2:52 PM

426 Expanding the Possibilities

This creates a URL to a named file from a path that accesses the application bundle. The init
WithContentsOfURL: method loads the image data into an instance of NSImage.

 N O T E
You can access image files elsewhere on disk via a conventional string filepath. Files in the application bundle must be
accessed via a URL. This isn’t very consistent, but it’s the law.

Drawing images
You can draw an image object at any point in a view. Technically the image isn’t drawn; it’s
composited, combining the image data with the existing pixel values in the view.

If you’ve used an image-editing package, you’ll already be familiar with compositing. It’s some-
times known as layer blending. Cocoa supports various compositing options. You can composite
the image as is, you can extract maximum and minimum pixel values after composition, or you
can XOR the image to create excessively garish psychedelic effects. Opacity — transparency —-
is controllable with a separate parameter, also known as alpha.

To draw an image, call the drawInRect: method on it. The full method signature specifies a
destination rect, a source rect, an operation parameter that takes one of Cocoa’s predefined
compositing modes, and a fraction parameter between 0 and 1 that defines opacity/alpha.

 T I P
Specifying NSZeroRect for the source rect is a quick way to specify the entire image. For example:

[sourceImage drawInRect:newRect fromRect:NSZeroRect
operation:NSCompositeSourceOver fraction:0.5];

The compositing mode constants are defined in the NSImage Class Reference.

Figure 16.13 shows the result of combining an image with an underlying gradient and drawing
it with an opacity of 50 percent.

 T I P
When an image is resized, it’s automatically interpolated — that is, the original pixel information is expanded or
made smaller to fit the new size. You can set the interpolation quality by including

[[NSGraphicsContext currentContext]
setImageInterpolation:NSInterpolationHigh];

at the start of drawRect:.

22_495896-ch16.indd 42622_495896-ch16.indd 426 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 427

Figure 16.13

Loading and compositing an image. Selecting the newRect rect as a destination automatically
resizes the image as the window is resized. Setting the opacity to 50 percent allows some of the
underlying gradient to show through.

Combining Quartz, Core Graphics, and Cocoa graphics
The Cocoa graphics system is a wrapper for an underlying C-based framework called Quartz 2D.
The functions and data structures used in Cocoa have Quartz equivalents, prefixed with CG
instead of NS. Operationally, the frameworks are recognizably similar. Quartz uses paths, colors,
points, gradients, and rects in almost identical ways, with the difference being that Quartz fea-
tures are accessed via function calls rather than methods. Quartz provides lower-level support
for graphics, and also makes it possible to draw images off-screen and to repeat them as tex-
tures. It may also be significantly faster than Cocoa drawing code, although this can be very
application dependent.

22_495896-ch16.indd 42722_495896-ch16.indd 427 8/31/10 2:52 PM8/31/10 2:52 PM

428 Expanding the Possibilities

Quartz is used on the iPhone because Cocoa graphics aren’t available. For more details, see
Chapter 19.

It’s possible to combine Quartz and Cocoa features and to interconvert data between them. For
example, you can convert an NSPoint to and from the equivalent CGPoint with
NSPointToCGPoint and NSPointFromCGPoint.

For more information about Quartz 2D, see the Quartz 2D Programming Guide in the
Documentation.

Creating a simple project: MultiBezier
A simple supporting project that combines all the key features of views and graphics, including
colors, Bezier paths, mouse events, and draw-Rect:, is available on the Web site (www.
wiley.com/go/cocoadevref). The drawRect: method is listed here. (The Web site ver-
sion includes optional code that demonstrates transforms.)

- (void)drawRect:(NSRect)dirtyRect {
 NSGraphicsContext *thisContext =
 [NSGraphicsContext currentContext];
 for (int i=0; i < maxLines; i++) {
 float thisHue = (float)0.001*(arc4random() % 1000);
 [[NSColor colorWithDeviceHue:
 0.1+thisHue*0.55 saturation:1.0
 brightness:1.0 alpha:1.0] set];
 c1Point = NSMakePoint(arc4random() %
 (int)self.bounds.size.width, arc4random() %
 (int)self.bounds.size.height);
 c2Point = NSMakePoint(arc4random() %
 (int)self.bounds.size.width, arc4random() %

(int)self.bounds.size.height);
 NSBezierPath *newPath = [NSBezierPath bezierPath];
[newPath moveToPoint:startPoint];
[newPath curveToPoint:endPoint
 controlPoint1: c1Point controlPoint2: c2Point];
[newPath setLineWidth:1.5];
[newPath stroke];
}

This code creates maxLine Bezier paths with random control points and random colors, join-
ing two points defined with mouse clicks. Clicking again creates a new set of curves. The result
is shown in Figure 16.14.

22_495896-ch16.indd 42822_495896-ch16.indd 428 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 429

Figure 16.14

A simple application that creates random multiple Bezier paths
between two points, in a range of attractive colors

 N O T E
The window background has been set to black in the application delegate.

Using CoreImage Filters
CoreImage filters are a collection of prewritten image filtering plug-ins that you can apply to
the content or background of any view. The filters are listed by name in the Core Image Filter
Reference in the Documentation, which also includes preview images. If you have Adobe
Photoshop experience, many of the effects will be familiar, but the full list of filters includes
novel effects that haven’t — yet — been made available in industry-standard image editors.

There are three ways to use filters:

 You can add them to any view by clicking the view’s Effects tab in the Inspector win-
dow in Interface Builder.

 You can trigger them from code in a subclassed implementation of drawRect:.

 You can write Objective-C code that combines existing filters or defines completely
new effects.

22_495896-ch16.indd 42922_495896-ch16.indd 429 8/31/10 2:52 PM8/31/10 2:52 PM

430 Expanding the Possibilities

Creating and combining filters are advanced topics and are outside the scope of this book. They
won’t be covered here. The first option is very accessible and you can use it to add special
effects to any UI with very little effort. The second is more challenging, but can be implemented
with relatively simple boilerplate code.

 N O T E
CoreImage effects are processor-intensive and aren’t yet available on the iPhone or iPad.

Adding CoreImage effects in Interface Builder
As a demonstration of view-based CoreImage effects, you’ll extend the MultiBezier project to
include them. Adding effects is a trivial process.

Select the BezierView in the Doc window. If the Inspector window isn’t visible, open it by choos-
ing Tools ➪ Inspector. Select the Effects tab, which is second from the left. Find the Content
Filters pane, as shown in Figure 16.15.

Figure 16.15

Finding the Content Filters pane, which applies one or more filters to the contents of a view

22_495896-ch16.indd 43022_495896-ch16.indd 430 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 431

Click the + button. You’ll see the pane shown in Figure 16.16. Select Blur and then Gaussian
Blur. Click OK to add the filter to the view.

Figure 16.16

Selecting and adding a filter from the list. The filters are grouped by function. To see a complete
list, select the All group.

Figure 16.17 shows the result. Select the check box next to Bezier View to enable the effects. In
the Details tab, you can change the filter’s settings. Change the Radius to a value around 4. The
slider isn’t calibrated to precise values, but any value between 3 and 5 is acceptable.

 N O T E
Technically CoreImage is part of the CoreAnimation system, which is why the prompt at the top of the window asks
you to Enable CoreAnimation rendering. Click the check box next to the top view to enable CoreAnimation.

22_495896-ch16.indd 43122_495896-ch16.indd 431 8/31/10 2:52 PM8/31/10 2:52 PM

432 Expanding the Possibilities

Figure 16.17

Setting the filter details — the specific values that control each filter property. The Gaussian Blur
filter has a single Radius property. Some filters have no properties at all. Others have six or more.

Save the nib file. Build and run the application. Figure 16.18 shows how the content is pro-
cessed through the blur filter. You can now experiment with the other filters, or you can create
combination effects by adding multiple filters. Use the – button to remove a filter. You can
change the order of the filter effects by dragging and dropping them.

Follow analogous steps to set up filter effects for a view’s background. Aqua’s menu system
uses this feature to blur the content behind a menu, creating a floating translucent effect.

Setting up filters for processing
The Twirl Filter project supplied with this book demonstrates how to apply a filter to the con-
tents of a context. In this example, the code loads an image from the application’s bundle, pro-
cesses it, and draws it into a view. The result is the same as applying a filter to the view in IB. But
you can use a similar technique to apply filters to an off-screen context that isn’t visible; for
example, to implement batch processing of images.

22_495896-ch16.indd 43222_495896-ch16.indd 432 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 433

Figure 16.18

With the filter running, the sharp lines of the Bezier paths are
replaced with wispy blurs. The Radius parameter controls the
amount of blur. This is the output of a single filter, but you can
combine filters almost indefinitely to create sophisticated
multiple effects.

Figure 16.19 shows the application’s nib and UI. The Filter Browser View and the Filter View are
both subclasses of NSView. The Browser View manages the interface. It responds to mouse
Down: events within the application window and implements two sliders that are linked to two
filter parameters. This view exists to manage the UI, and its drawRect: method isn’t used.

The Filter View receives its settings from the UI, and implements the filter. A filter object is cre-
ated with a call to CIFilter using the filterWithName: method:

CIFilter *thisFilter =
[CIFilter filterWithName: @”CITwirlDistortion”];

CIFilter parameters are accessed through key value coding:

[thisFilter setValue: [NSNumber numberWithFloat: 50]
forKey: @”inputRadius”];

22_495896-ch16.indd 43322_495896-ch16.indd 433 8/31/10 2:52 PM8/31/10 2:52 PM

434 Expanding the Possibilities

Figure 16.19

The nib and view structure of the Twirl Filter application. It’s a standard content view with an
extra filter view and a pair of sliders.

Finding filter keys
Each filter has a different set of keys listed in the Core Image Filter Reference Guide. In the Twirl
Filter project, the keys are hardwired into the code and are controlled from another view. You
can also read the keys for any filter in the code with the inputKeys method. It generates an
array of key names as strings:

NSArray *keyNames = [thisFilter inputKeys];

This list isn’t enough to create a useful UI, because it doesn’t tell you the maximum or minimum
range of each key value. To retrieve that information, use the attributes method to return a
dictionary:

NSDictionary *filterAttributes = [thisFilter attributes];

22_495896-ch16.indd 43422_495896-ch16.indd 434 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 435

The dictionary lists:

 The categories the filter belongs to. Categories are functional groups of filters; for
example, distortion, video, still image, and so on. Category names are defined in the
Reference Guide.

 The filter name.

 A list of key names.

 A list of attributes for each key, including the maximum and minimum acceptable val-
ues and the value type.

Creating filter controller interfaces
In theory, you can use this information to create a completely general filter wrapper. In practice,
the dictionary format is complex, and creating a general automated UI is a challenging project.

A simpler solution is available. Running the viewForUIConfiguration: method on any fil-
ter generates a complete controller view automatically, with the appropriate sliders, color pick-
ers, and other UI features. You can specify various sizes of controller view, and you can also
exclude specific parameters; for example, you may choose to implement an image source
picker separately. Slot the controller view into a container view with addSubview: or
replaceSubview:.

Figure 16.20 shows a simple prototype example. The UI controls appear at the bottom right.
The UI design is more functional than stylish, and you must use bindings to link the UI elements
to filter parameters. But you can use this method to auto-generate filter controls with relatively
little coding effort.

Figure 16.20

Using viewForUIConfiguration: to create a filter interface.
The auto-generated view appears at the bottom right of the window.

22_495896-ch16.indd 43522_495896-ch16.indd 435 8/31/10 2:52 PM8/31/10 2:52 PM

436 Expanding the Possibilities

Applying filters to an image
The drawRect: method in the Twirl Filter example demonstrates how to set the filter’s
input and output values and how to apply the filter. The input image is set with the
inputImage key.

The image object must be a CIImage — a special image type unique to CoreImage. In this
example, the image data is loaded from a file via a URL path.

For a more general solution, convert the source image into a bitmap or NSData object and
load the CIImage object with the imageWithBitmap: or imageWithData: method.

The simplest way to process data from a view — without adding the filter to the view in IB — is
to read it from a CGLayer object.

These conversion options can be messy in practice. In some applications, you will need to con-
vert images through various intermediate data types. But they make it possible to filter images
generated by the other graphics frameworks.

The drawRect: method that runs the filter follows:

- (void)drawRect:(NSRect)viewRect {
 thisContext = [[NSGraphicsContext currentContext] CIContext];
 preFilterImage =
 [CIImage imageWithContentsOfURL:sourceImageURL];
 [thisFilter setValue: preFilterImage forKey: @”inputImage”];
 thisCenter =
 [CIVector vectorWithX: filterCenter.x Y: filterCenter.y];
 [thisFilter setValue:thisCenter forKey:@”inputCenter”];
 [thisFilter setValue:
 [NSNumber numberWithFloat: filterSize]

forKey:@”inputRadius”];
 [thisFilter setValue:
 [NSNumber numberWithFloat: filterAngle]

forKey:@”inputAngle”];
 postFilterImage = [thisFilter valueForKey:@”outputImage”];
 CGRect preRect = [preFilterImage extent];
 CGPoint anImageOrigin =
 CGPointMake(viewRect.size.width*.5 - preRect.size.width*.5,
 viewRect.size.height*.5 - preRect.size.height*.5);
 [thisContext drawImage: postFilterImage
 atPoint:anImageOrigin
 fromRect:preRect];
}

22_495896-ch16.indd 43622_495896-ch16.indd 436 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 16: Managing Views and Creating 2D Graphics 437

Key points of the code include:

 The filterAngle, filterCenter, and filterSize values are supplied from
the controller view.

 Filter output is managed by a special CIContext object. This works like CGContext
or NSContext, but includes a special drawImage: method that draws the output
into the context and, from there, into the surrounding view.

 A CIVector data type is used to define a point. Filters cannot use NSPoint or
CGPoint.

 The input and output image data is stored in two CIImage objects, called preFilter
Image and postFilterImage.

 The filter is run by triggering the drawImage: method in the last line. No filtering is
done until this method is called. This method runs the filter and then writes the data
into the context at the specified point, which, with almost complete inconsistency, is
specified as a CGPoint and not as a CIVector.

The application is shown in Figure 16.21. Clicking in the filter view sets the filter center, and the
sliders control the filter parameters. You can use similar code to implement any other
CoreImage filter, setting different keys and values and adding or removing parameter sliders
from the controller as needed.

Figure 16.21

The finished Twirl Filter. Creating this simple filter effect isn’t
an entirely trivial challenge.

 C A U T I O N
CoreImage isn’t robust. If a filter crashes because you supply it with invalid values or keys, the entire framework stops
working and all filter effects stop with it. The only way to restart it is to reboot your application. You must debug code
carefully to avoid crashing CoreImage.

22_495896-ch16.indd 43722_495896-ch16.indd 437 8/31/10 2:52 PM8/31/10 2:52 PM

438 Expanding the Possibilities

Summary
In this chapter you were introduced to the view hierarchy and discovered how to add and
remove objects dynamically. You explored the data structures used in the Cocoa graphics
frameworks and learned how to define, stroke, and fill paths. You experimented with colors and
gradients and discovered how to draw images in a view. Finally, you were introduced to the key
points of the CoreImage framework and learned how to add CoreImage to views and to custom
drawing code.

22_495896-ch16.indd 43822_495896-ch16.indd 438 8/31/10 2:52 PM8/31/10 2:52 PM

In This Chapter

Creating Animations
and 3D Graphics

Creating direct property
animations

Using animators

Creating custom
animation objects

Creating a simple
OpenGL animation

in Cocoa

Animations are often associated with games, but Cocoa
makes it easy to animate almost any element in a user inter-
face. Objects can move smoothly, pulse with color or bright-

ness, jiggle, or change their size with one click or mouse over. Aqua
includes standard animated effects, such as slide-out panes and
pulsing buttons. In part, these are automatic. When you create a
file open/save pane, the animation is embedded in the class and
runs without further code.

You can add further animations to improve the look and feel of
your application, make it more professional, and add value by sub-
tly highlighting important features.

It’s also possible to create animated transitions when replacing one
object with another. View swapping of this type is a key skill in
iPhone app design, where swapped views replace the windows,
panels, and panes of a desktop application.

 C R O S S R E F
For a practical example of view swapping, see Chapter 19.

To use animations effectively, you must become familiar with
Cocoa’s different animation classes and features. Many applications
underutilize animations or add them in an unimaginative way. A
key design goal is to use animations to create a genuine user bene-
fit. A successful animation should do more than look impressive; it
should also offer visual hints to the user to help him or her under-
stand the application and use it in a more intuitive way.

For example, on the iPhone, views are swapped by finger move-
ments accompanied by matching animations. The animation sug-
gests a metaphor, such as a page curl, pop-up, swipe, or twirl, that
implies something about the organization of the app. An app that
swipes into a view but returns with a page curl feels inconsistent.

Cocoa includes a selection of classes and techniques that support
animation. In outline, there are three options: direct property
access; Core Animation, which is Cocoa’s main animation frame-
work; and OpenGL, which is a complex low-level language that sup-
ports 3D scene rendering.

23_495896-ch17.indd 43923_495896-ch17.indd 439 8/31/10 2:52 PM8/31/10 2:52 PM

440 Expanding the Possibilities

A key feature of OS X animation is that you have a lot of choices about how you use it. There are
easy ways to add limited predefined Core Animation effects with hardly any code, and more
complex options that offer full control over customized animations assembled from groups of
animation objects. There’s a natural progression from simple to complex, and part of the chal-
lenge of animation is in implementing the simplest possible solution.

This chapter introduces a selection of some of the animation features and techniques built into
Cocoa. It doesn’t demonstrate every feature or every code interface, but it does summarize the
essential features you can use to create effective animations.

 T I P
Apple’s documentation and other sources of information about Core Animation sometimes imply that Cocoa anima-
tion always requires customized animation objects, complicated keypaths, animatable layers, and delegate methods.
This is misleading and untrue. Sometimes, you may need these features to build complex animations, but you can cre-
ate useful and impressive Core Animation effects without them.

Table 17.1 outlines the animation options in Cocoa.

Table 17.1 Available Animation Types
Animation type Description

Direct property animation Can animate any settable property, but is limited to simple timed animations managed with explicit code.

Default animator

animation

Creates simple smooth automated transitions between property values. Can be implemented with

barely any code, but offers very limited control.

Customized animator

animation

Can set the duration, timing, and keyframed path of any property animation.

Customized Core Animation

effect

A more advanced option that supports abstracted and linked animations. Animation delegation,

which triggers messages when an animation begins and when it ends, is also available.

OpenGL A 3D scene-rendering engine, with hardware acceleration. Often used in games; occasionally used to

create 3D interfaces. OpenGL is a challenging and complex environment with a steep learning curve.

Using Direct Property Animation
Direct property animation is crude, simple, and often underappreciated. You create animation
effects by initializing an animation timer and recalculating properties and values on each timer
tick. In Cocoa, this means placing the animation code inside a timer method.

Core Animation relies on Key-Value Coding (KVC). If a parameter or property doesn’t support
KVC, Core Animation can’t work with it. Direct property animation is unrestricted. You can use it
to animate almost any feature of an application.

Direct property animation is also slow and inefficient. This makes it ideal for simple and unusual
animation effects that may not be possible in Core Animation. But re-creating some of the
advanced animation built into Core Animation “for free” is a challenge and may not be worth
the development effort.

23_495896-ch17.indd 44023_495896-ch17.indd 440 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 441

Creating a timer for animation
An animation timer is simply a timer that runs a dedicated animation method. There are no spe-
cial animation timers in Cocoa. To create a timer, use the standard NSTimer object. The target
is often self, but can be a different object.

NSTimer *theTimer = [NSTimer scheduledTimerWithTimeInterval:
float

 target: anObject
 selector: @selector(theAnimationMethod:)
 userInfo: anOptionalObject
 repeats: YES];

Implement the animation timer method in the target object:

-(void) theAnimationMethod: (NSTimer *) theTimer {
 //Do something to a property here
}

Figure 17.1 illustrates a simple example. The view includes a single button. The code moves the
button in a stately circle around the center of the view and modifies its size dynamically. The
button is always active: if you can catch it, you can click it. It could be connected to a selector
action in the usual way.

Figure 17.1

The flying button, an unusual UI design you’re unlikely to see in a
finished application

23_495896-ch17.indd 44123_495896-ch17.indd 441 8/31/10 2:52 PM8/31/10 2:52 PM

442 Expanding the Possibilities

Creating property animation code
With direct property animation, you have complete freedom over how you implement the ani-
mation features. The key section of code for this example follows:

@synthesize window, theButton;
float bOffX, bOffY, currX, currY, centerX, centerY, timeCount,

radius, theta;
NSPoint currPoint;
- (void)applicationDidFinishLaunching:
(NSNotification *)aNotification {
 NSTimer *aTimer =
 [NSTimer scheduledTimerWithTimeInterval:0.017
 target: self selector: @selector(timerMethod)
 userInfo: nil repeats: YES];
}
-(void) timerMethod {
 timeCount +=0.1;
 theta = timeCount/6.283;
 bOffX = NSMidX(theButton.bounds);
 bOffY = NSMidY(theButton.bounds);
 centerX = window.frame.size.width/2;
 centerY = window.frame.size.height/2;
 radius = centerY*0.6;
 currX = centerX+radius*cos(theta)-bOffX;
 currY = centerY+radius*sin(theta)-bOffY;
 currPoint = NSMakePoint(currX, currY);
 [theButton setFrameOrigin:currPoint];
 [theButton setFrameSize:
 NSMakeSize(50+25*cos(2*theta), 50+25*cos(3*theta))];
}

The timer method updates the position counter, calculates the center of the view, and then
uses simple trigonometry to create a circular path for the button. The button is repositioned by
updating its frame origin with setFrameOrigin:, and it is resized by updating the frame size
with setFrameSize:. An offset term corrects for the lower-left origin of the button’s frame
and moves the draw point to the center of the button.

This is moderately complex code for a simple effect. It’s also heavily load dependent. If your Mac
is busy, the button will stutter. This approach also makes it difficult to manage multiple simulta-
neous animations. It’s a good solution when you need to animate a small number of related
properties, but it’s difficult to work with if you have more than one independent animation hap-
pening at once. You can create a separate timer for each animation, but this approach soon
starts to become unwieldy.

 T I P
When animating position and size, set an object’s frame property, not its bounds. This also applies to rotation. A
full rotation solution requires a backing layer, which is described later in this chapter.

23_495896-ch17.indd 44223_495896-ch17.indd 442 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 443

Using drawRect:
You can use a similar technique to create customized animated 2D graphics, using the paths
and drawing objects described in the previous chapter. Use the timer method to initialize rele-
vant path and object values for each update, and end the timer method with

 [theView setNeedsDisplay];

 N O T E
If the view is refreshing itself, replace theView with self.

This generates an indirect call to the view’s drawRect: method and refreshes the view. The
drawRect: code can read the updated values to create a refreshed view for each timer
update. You can use this technique to create complex effects. It’s fast enough for simple games,
but can stutter when the drawing code is dense and is updated at typical game refresh rates.

For more complex effects, you can get smoother results using one of Cocoa’s other animation
options.

Using Animators
You can create very simple animation effects by adding a proxy — a simple drop-in animation
controller that automatically adds an animation object, initializes it with useful default values,
and runs the animation. Core Animation’s proxy option gives you a lot of animation power for
very little code. You can customize the animations with extra code, but a minimal implementa-
tion adds almost no code at all.

For example, to animate the position update for a button, replace

[theButton setFrameOrigin: newPosition];

with

[[theButton animator] setFrameOrigin: newPosition];

The animator creates a smooth change from the current position to the new position, with a
default duration of 0.25 seconds.

Creating a simple proxy animation
Figure 17.2 shows the nib from a very simple application that demonstrates proxy animation,
using a button as a convenient animatable object.

23_495896-ch17.indd 44323_495896-ch17.indd 443 8/31/10 2:52 PM8/31/10 2:52 PM

444 Expanding the Possibilities

Figure 17.2

The nib file for a simple animator demonstration application, with a subclassed view containing
a button

TheView is a subclass of NSView and includes the code shown below. When the user clicks the
mouse, the mouseDown: handler reads the position and moves the button to the click position.
Without an animator, the position of the button changes instantly. With an animator, the
button glides between the old and new positions.

The code is straightforward. As in the previous example, an offset term corrects for the lower-
left frame origin of the button; otherwise, the code reads the window coordinates of the mouse
click, corrects for the offset, and sets the button’s position with the animator.

#import “TheView.h”
#import <QuartzCore/QuartzCore.h>

@implementation TheView
@synthesize theButton;
NSPoint oldPosition;
float bOffX, bOffY;

23_495896-ch17.indd 44423_495896-ch17.indd 444 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 445

-(void) mouseDown: (NSEvent *)theEvent {
 NSPoint mousePosition = [theEvent locationInWindow];
 bOffX = NSMidX(theButton.bounds);
 bOffY = NSMidY(theButton.bounds);
 mousePosition.x = mousePosition.x-bOffX;
 mousePosition.y = mousePosition.y-bOffY;
 [[theButton animator] setFrameOrigin: mousePosition];
}

 C A U T I O N
Animation effects require the QuartzCore framework. To add this framework to your project, right-click the
Frameworks folder, choose Add ➪ Existing Frameworks, scroll down the list to find the QuartzCore.framework item,
select it, and click the Add button.

The animation time is fixed, so the button velocity depends on the distance it has to cover.
Figure 17.3 gives a hint of the result.

Figure 17.3

Click the mouse anywhere, and the button follows eventually.

Note that you don’t use animator as a class or an object. It’s a wrapper for a more complex
animation object, and you can’t access that object’s properties directly. It’s best to think of
animator as a unique modifier. There’s nothing quite like it anywhere else in Cocoa.
Functionally, it means you can create animations without object creation and setup code. You
have the option to bypass animator and add that code when you need it, but for many
effects animator is simpler and can be almost as flexible.

23_495896-ch17.indd 44523_495896-ch17.indd 445 8/31/10 2:52 PM8/31/10 2:52 PM

446 Expanding the Possibilities

Setting the animation duration
To change the default animator duration, wrap it in NSAnimationContext calls.

[NSAnimationContext beginGrouping];
[[NSAnimationContext currentContext] setDuration 2.0];
[[theButton animator] setFrameOrigin: mousePosition];
[NSAnimationContext endGrouping];

Technically, this creates a wrapper object with a modified duration value that is fed through to
the underlying animation object. In practice, you can use this code as boilerplate. You can also
use it to group multiple animator effects together, giving them a common duration and trig-
gering them at the same moment.

 C R O S S R E F
The second FollowButton project on the Web site for this book (www.wiley.com/go/cocoadevref) dem-
onstrates a simple modification that animates both button size and target position.

Customizing the animation object
By default, animator works in an opaque way. It contains an animation object, but you can’t
modify its properties. However, you can create a new custom animation object, set its proper-
ties as needed, and plug it into an animator, replacing the default animation. To do this, create
an instance of one of Core Animation’s animation manager classes.

Core Animation is a powerful but somewhat disorganized framework. Instead of one animation
object, there are many subclasses of a class called CAAnimation. Table 17.2 summarizes the
most useful subclasses and their typical applications.

Table 17.2 Key Core Animation Classes
Class Description

CAAnimation Root class, rarely used directly. Creates animation objects, supports

animationDidStart: and animationDidEnd: delegate

methods. Also implements removedOnCompletion: to auto-delete

animations after they run, and the timingFunction: property to control

the development of the animation over time.

CAPropertyAnimation keyPath property defines the keypath of the animated property, and

cumulative defines whether the animation adds to or replaces the current

value of that property. Rarely used.

CABasicAnimation The most useful object. Implements all the previous properties, and adds

fromValue: and toValue: properties that define the animated value

numerically. Includes an optional byValue: property that the animation

sequence will pass through, if it’s defined.

23_495896-ch17.indd 44623_495896-ch17.indd 446 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 447

Class Description

CAKeyframeAnimation An alternative to CABasicAnimation that animates the target value with

a sequence of discrete steps called keyframes, defined by an array of points or a path.

Includes an option to pace animations and force a fixed duration on the sequence of

steps.

CAGroupAnimation A wrapper for an array of animation objects that can be used together.

CAMediaTiming A protocol implemented by all Core Animation objects that makes it possible to repeat

animations, delay them, and apply autoreverse so that they run forward and then

backward. Also defines how the final property value is defined after the animation.

CAMediaTimingFunction Not a subclass of CAMediaTiming. This is a separate class that defines the

animation timing curve with either one of four presets or a custom timing Bezier curve.

The curve is an object that plugs into the timingFunction: property.

You can simplify this nest of classes with the following hints:

 You’ll rarely, if ever, use CAAnimation and CAPropertyAnimation directly.

 For a simple from-to animation, create a CABasicAnimation.

 For a complex path animation that follows a list of defined points, create a
CAKeyframeAnimation.

 Optionally, define an instance of CAMediaTimingFunction to control time devel-
opment. For most animations, the preset timing functions create a good result. Use a
custom function for special effects.

 Optionally, set up repeat and autoreverse effects with an instance of
CAMediaTiming.

 Plug your chosen timing function and timing settings back into your animation object.

 Optionally define a delegate and implement the animationDidStart: and
animationDidEnd: methods. For example, you can use animationDidEnd: to
run another animation object, creating complex chained animation sequences; or it
can just log a message for debugging.

 To replace the default animator, bundle the new animation object into a dictionary
and assign the dictionary to the target object’s animations property.

This looks like a lot of work, but most of it is optional. Some sample code that adds a timing
function to the follow-button example follows:

-(void) awakeFromNib {
 oldPosition = theButton.frame.origin;
 //Create a basic animation object
 moveAnimation = [CABasicAnimation animation];
 moveAnimation.duration = 2.0;
 //Preset ease-in/out curve

23_495896-ch17.indd 44723_495896-ch17.indd 447 8/31/10 2:52 PM8/31/10 2:52 PM

448 Expanding the Possibilities

 moveAnimation.timingFunction = [CAMediaTimingFunction
functionWithName: kCAMediaTimingFunctionEaseInEaseOut];

 //Extreme custom timing function - pauses before moving
 //moveAnimation.timingFunction = [CAMediaTimingFunction

functionWithControlPoints:0.99 :-1.0 :0.01 :5.0];
 theButton.animations = [NSDictionary dictionaryWithObject:

moveAnimation forKey: @”frameOrigin”];
}
-(void) mouseDown: (NSEvent *)theEvent {
 NSPoint mousePosition = [theEvent locationInWindow];
 bOffX = NSMidX(theButton.bounds);
 bOffY = NSMidY(theButton.bounds);
 mousePosition.x = mousePosition.x-bOffX;
 mousePosition.y = mousePosition.y-bOffY;
 [[theButton animator] setFrameOrigin: mousePosition];
}

This code creates the custom animation object in awakeFromNib: and plugs it into the
animations property after wrapping it inside a dictionary. The dictionary makes it possible
to set different animation objects for different properties.

In this context, the animation key name must match the animated property. If animator can’t
find a matching animation key, it falls back to its default animation object. You can, of course,
fill the dictionary with the same animation object assigned to different keys.

Using timing functions
Timing functions are objects created by the CAMediaTimingFunction function to return an
instance of a timing function object. Table 17.3 lists the preset timing functions, with some pos-
sible applications.

Table 17.3 PRESET Core Animation Classes
Class Description

kCAMediaTiming
FunctionLinear

The default value — a linear animation at a constant speed. Can seem unpolished

when animating movement, but is ideal for colors and other non-moving properties.

kCAMediaTiming
FunctionEaseIn

The animation starts slowly and slams to a stop when it completes. Urgent and

frantic.

kCAMediaTiming
FunctionEaseOut

The animation starts suddenly and slows down as it completes. Relaxed and

unhurried.

kCAMediaTimingFunction
EaseInEaseOut

The animation starts slowly, accelerates, and slows again before stopping. This is a

sophisticated and natural-looking animation that suggests a physical object moving

with inertia.

23_495896-ch17.indd 44823_495896-ch17.indd 448 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 449

Creating custom timing functions
The Bezier curve used by the CAMediaTimingFunction functionWithControl
Points: method can seem unintuitive and difficult to work with, but there is an easy way to
use its features.

To control timing, set the two cx values so they total 1.0. They then approximate proportions/
percentages that define the timing of the initial and final phases of the curve.

The two cy values are the “active” values that approximate the animated value. For example,
0.1 is equivalent to 10 percent of the interpolated value, while 0.9 is equivalent to 90 percent,
and so on. For example:

0.9 : 0.0 : 0.1 : 1.0

creates a timing function that pauses for 90 percent of its duration and snaps to its final value in
the remaining 10 percent of the time. Because the curve is a Bezier, the control points are inter-
polated smoothly, which is why this technique is approximate. But you can use it to gain an
insight into a function that’s difficult to visualize otherwise.

In OS X, the cy values are clamped to 0.0 and 1.0. In iOs, they’re left unclamped, and you can
specify values outside these limits to define overshoots. You can use this trick to create bounce
effects. If cy2 is greater than 1.0, the animated overshoots and then settles back to 1.0 when
the animation ends.

Creating and using animation paths
When you need more sophisticated control over the time development of an animation, use
CAKeyFrameAnimation. You can define keyframes in two ways.

Creating a values/keytimes animation
To create an abstract set of keyframes that can be applied to any animation sequence, create an
array that holds a sequence of NSNumber objects and pass it to the values property. The ani-
mation steps through the array and uses the number values to control the target object, with
optional interpolation.

Timing is controlled with either the keyTimes array or the timingFunctions array.
keyTimes uses NSNumber objects to define the duration of each step. The calculation
Mode property defines the interpolation between each step, which can be linear, discrete —
that is, stepped — or paced, producing smooth changes throughout the animation.

timingFunctions takes a series of CAMediaTimingFunction objects, providing very
fine control over the interpolation between points. This can be useful in complex media appli-
cations such as video editors, audio sequencers, and games, but it’s excessively detailed for sim-
ple UI animations.

23_495896-ch17.indd 44923_495896-ch17.indd 449 8/31/10 2:52 PM8/31/10 2:52 PM

450 Expanding the Possibilities

Creating a path animation
The path property is ideal for defining movement paths. It takes a Core Graphics path, which is
very similar to a Cocoa path, defined in the previous chapter. Core Graphics is a lower-level
framework and uses functions to define path segments. You can set the path’s initial starting
point, and then add arcs, rectangles, and other shapes. When the animation runs, the object
traces the path. Optionally, you can enable rotation.

Points on the path are relative to the animated object’s superview origin, which is a compli-
cated way of saying that you can use either view or window coordinates. Depending on the
application, you may need to recalculate the path whenever the object moves. In either case,
path points are relative to the surrounding view and not the current object position.

Sample code for a keyframed path animation follows:

CAKeyframeAnimation *moveAnimation;
CGPathRef aPath;
-(void) awakeFromNib {
 oldPosition = theButton.frame.origin;
 //Create the animation object
 moveAnimation = [CAKeyframeAnimation animation];
 moveAnimation.duration = 1.0;
 //Set the pacing
 moveAnimation.calculationMode = kCAAnimationPaced;
 //Set the timing function, which is applied to the path
 moveAnimation.timingFunction = [CAMediaTimingFunction

functionWithName: kCAMediaTimingFunctionEaseInEaseOut];
theButton.animations = [NSDictionary dictionaryWithObject:

moveAnimation forKey: @”frameOrigin”];
}
-(void) mouseDown: (NSEvent *)theEvent {
NSPoint mousePosition = [theEvent locationInWindow];
 bOffX = NSMidX(theButton.bounds);
 bOffY = NSMidY(theButton.bounds);
 mousePosition.x = mousePosition.x-bOffX;
 mousePosition.y = mousePosition.y-bOffY;
 //Create a path
 aPath = CGPathCreateMutable();
 //Set the starting point
 CGPathMoveToPoint(aPath, NULL, oldPosition.x, oldPosition.y);
 //Creates a simple moveto path
 //CGPathAddLineToPoint(aPath, NULL, mousePosition.x,

mousePosition.y);
 //A more complex path
 CGPathAddCurveToPoint(aPath, NULL, oldPosition.x-80,

oldPosition.y-80, mousePosition.x+80, mousePosition.y+80,
mousePosition.x, mousePosition.y);

 //Set the path
 moveAnimation.path = aPath;
 [[theButton animator] setFrameOrigin: mousePosition];
 oldPosition = mousePosition;
}

23_495896-ch17.indd 45023_495896-ch17.indd 450 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 451

Key features of the code include:

 The code is still using an animator.

 The default animation object is replaced by an instance of CAKeyFrameAnimation.

 The calculationMode property is used to pace the animation, creating a more nat-
ural look.

 A timing function is applied to the path as a whole. The animation code automatically
applies the timing function as it calculates each point on the path.

 The path is created with the Core Graphics CGPathCreateMutable() function.

 The starting point is set with CGPathMoveToPoint(), which takes a path pointer,
an optional transformation matrix which isn’t used here, and two points.

 A curve segment is added with CGPathAddCurveToPoint(), which takes four
control points and is very similar to NSBezierPath.

 The path is recalculated for each mouse click, using the current and previous mouse
values.

 The path is assigned to the animation object’s path property.

The complex path adds a wiggle to the animation, illustrated in Figure 17.4.

Figure 17.4

An animation with a custom path. The animated object
wiggles its way from the starting point to the destination.
This simple path is created with a single curved path
segment. But it could be made arbitrarily complex, with
many subpaths.

23_495896-ch17.indd 45123_495896-ch17.indd 451 8/31/10 2:52 PM8/31/10 2:52 PM

452 Expanding the Possibilities

The path can be made as simple or as complex as it needs to be by adding more path segments.
It can also be made noncontiguous for special effects. For a full list of CGPath functions, see
the CGPath Reference in the Documentation.

Creating Animations with CALayer
You now have most of the tools you need to create completely customized animations without
using the animator system. An animator is a convenient way to encapsulate an animation
object. You can run arbitrary animations by replacing the animator with a more flexible anima-
tion component called a layer.

Internally, Core Animation creates a hierarchy of animation object components that is similar to
the view hierarchy. Instead of views, each item in the hierarchy is a layer, an instance of the
CALayer class.

A layer is like a view, but it has more properties and is optimized for animation. Technically, it’s
also a wrapper for the contents of the view. Layers are more flexible than views, and you can
use them to create impressive static effects and animations.

A view with a layer is said to be layer-backed. By default, views don’t have layers. You can add a
layer in two ways. In code, use

CALayer *theLayer = [theView makeBackingLayer];

This creates a layer and returns a pointer to it. You can also create layers in Interface Builder. In
the Wants Core Animation Layer pane in the Effects tab, select the check box next to the top
view, as shown in Figure 17.5. If the view is a container view with multiple objects, you don’t
need to select every box; it’s enough to select the top one. Layers for subviews are created
automatically.

 C A U T I O N
If you try to apply animations to a view that isn’t layer-backed, your application may sometimes crash. Officially, you
must create a layer. Unofficially, simple animator animations seem to work without one. But it’s not a good idea
to rely on this, so remember to create a layer whenever you use animations.

Using layers for animation
There’s surprisingly little difference between the code used to create an animator and the
code used to create and run a layer-backed animation. The main differences are as follows:

 You must use the layer method to return a view’s layer object.

 You must use the addAnimation: method to run an animation on a layer.

 You can give the animation object a name and use the name as a key string.

 Instead of running the animation on a property, you can specify a keypath for the
property when you create the animation.

23_495896-ch17.indd 45223_495896-ch17.indd 452 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 453

Figure 17.5

Making a view layer-backed to enable animation and other layer features

In outline, the differences can be summarized with one word — keypath. With layer animation,
the keypaths are explicit.

As an example, you’ll use a modified version of the Twirl Filter project from the previous chap-
ter, replaceing the twirl filter with a torus lens distortion filter and animating the filter so that
the distortion appears to spread out from a mouse click.

Creating an animatable filter
In the last chapter, you looked at the Core Image filters that can be applied to the background
or the contents of any view or that can be used to composite — blend — two views together. In
this section, you’ll create a different implementation and make it animatable.

You can apply static filters to a view in Interface Builder by adding them in the Effects tab, or
you can implement them with customized drawing code that initializes and runs a filter directly.
A third option is to create and initialize a filter and add it to the backgroundFilters or
contentFilters properties of a view. As you’d expect, this is the code equivalent of adding
the filter in Interface Builder.

23_495896-ch17.indd 45323_495896-ch17.indd 453 8/31/10 2:52 PM8/31/10 2:52 PM

454 Expanding the Possibilities

 T I P
You can use the Color Monochrome and Color Controls filters to change, and optionally to animate, the background
color of a button. This breaks any number of Aqua design guidelines, but sometimes a pulsing or color-cycling button
is exactly what an application needs.

This sample code creates a filter in a view’s awakeFromNib method and updates its input
Center key when the user clicks with the mouse:

-(void) awakeFromNib {
 //Load the demo image from the bundle
 myBundle = [NSBundle mainBundle];
 sourceImagePath =

[myBundle pathForResource:@”b1”ofType:@”jpg”];
 sourceImageURL =

[NSURL fileURLWithPath: sourceImagePath];
 sourceImage = [[NSImage alloc] initWithContentsOfURL:

sourceImageURL];
 self.image = sourceImage;
 self.imageScaling = NSScaleToFit;
 //Set a default filter center in the middle of the view
 boundsRect = [self bounds];
 filterCenter = NSMakePoint(boundsRect.size.width*.5,

boundsRect.size.height*.5);
 //Create and initialize the filter
 thisFilter =
 [CIFilter filterWithName:@”CITorusLensDistortion”];
 [thisFilter setDefaults];
 thisCenter = [CIVector vectorWithX: filterCenter.x Y:

filterCenter.y];
 [thisFilter setValue: thisCenter forKey: @”inputCenter”];
 [thisFilter setValue:[NSNumber numberWithFloat:0]

forKey:@”inputRadius”];
 [thisFilter setValue:[NSNumber numberWithFloat:200]

forKey:@”inputWidth”];
 [thisFilter setValue:[NSNumber numberWithFloat:1.5]

forKey:@”inputRefraction”];
 thisFilter.name = @”torus”;
 [self setContentFilters:
 [NSArray arrayWithObjects:thisFilter, nil]];
}
-(void) mouseDown: (NSEvent *) theEvent {
 //Get the click location, using superview coordinates
 clickedPoint =
 [self.superview convertPoint:
 [theEvent locationInWindow] toView: self];
 //Change the filter center

23_495896-ch17.indd 45423_495896-ch17.indd 454 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 455

 if ([self mouse: clickedPoint inRect: [self bounds]]) {
 filterCenter = clickedPoint;
 thisCenter =
 [CIVector vectorWithX: filterCenter.x Y: filterCenter.y];
 [self setValue: thisCenter forKeyPath:
 @”contentFilters.torus.inputCenter”];
 //[self animateFilter];
 }
}

This is pure setup and update code for the filter. There’s no animation — yet. The code so far:

 1. Loads an image into self, which is a subclassed NSImageView.

 2. Finds the center of the view.

 3. Creates a filter object of the CITorusLensDistortion type.

 4. Sets initial values for the value, including the default center point.

 5. Names the filter. The name will be used for keypath access.

 6. Creates a filter array with the filter as the only object, and assigns the array to the
view’s contentFilters property.

 7. Uses a mouseDown: method to respond to mouse clicks by converting the mouse
position into a CIVector and updating the filter’s inputCenter property.

Most of this code is straightforward, but a couple of lines need further explanation. The default
inputRadius is set to 0, which means that if you run this code as is, the filter has no obvious
effect. This is irrelevant because you’ll be animating this property. But if you want to test this
code to create a static filter effect, change the radius to a larger value, such as 200.

The line

[self setValue: thisCenter
forKeyPath: @”contentFilters.torus.inputCenter”];

uses KVC to set the filter’s inputCenter property. The keypath selects the filter with the
matching name — torus — and then accesses the specified property.

You must use KVC in this way to update filter values. If you try to change the inputCenter
property directly with

[thisFilter setValue: aCenter forKey: @”inputCenter”];

nothing happens. You might think setValue: would be enough to trigger a setter method,
but it isn’t. Once the filter is active, you must use the view’s accessors to set properties indi-
rectly; the filter’s own accessors no longer work.

23_495896-ch17.indd 45523_495896-ch17.indd 455 8/31/10 2:52 PM8/31/10 2:52 PM

456 Expanding the Possibilities

 C A U T I O N
There’s some inconsistency in the filter keypaths, as you’ll see below.

Although this code implements a torus refraction filter, it’s a general solution you can use with
any Core Image filter. It’s less complex than the code in the previous chapter, and it’s easy to
animate. The low-level code in the previous chapter works on the image data directly, making it
a better solution when you need to copy the results of the image processing and re-use them in
a different context, save them to a file, or batch process images. This version is better suited to
display effects.

Animating the filter
To animate the filter, follow these steps:

 1. Create an animation object that works on a filter property via a keypath.

 2. Initialize from/to values or create keyframes.

 3. Set the duration, timing function, and other essential parameters.

 4. Run the animation by calling addAnimation: on the view’s layer. This method
automatically runs the animation as soon as it’s called.

Sample code follows:

-(void) animateFilter {
 animation =
 [CABasicAnimation animationWithKeyPath:

@”filters.torus.inputRadius”];
 animation.fromValue = [NSNumber numberWithFloat:0];
 animation.toValue =[NSNumber numberWithFloat: 1000];
 animation.duration = 3.0;
 animation.delegate = self;
 animation.timingFunction = [CAMediaTimingFunction

functionWithName: kCAMediaTimingFunctionLinear];
 [[self layer] addAnimation:animation forKey:@”torus”];
}

Most of this code is similar to the animations you’ve already seen. The critical difference is the
target keypath. You must set the keypath correctly; otherwise the animation runs without mod-
ifying values. Because you’re setting a content filter, you might expect the keypath to be

@”contentFilters.torus.inputRadius”

23_495896-ch17.indd 45623_495896-ch17.indd 456 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 457

It isn’t, even though you can use this keypath to access filter values without animation. The
correct keypath is

@”filters.torus.inputRadius”

However, if you wanted to add the filter to the view’s background filter set and animate it, the
correct keypath would be

@”backgroundFilters.torus.inputRadius”

You can find the correct keypaths for other animatable properties in the Animatable Properties
list in the Core Animation Programming Guide. Some of the keys have slightly random names.
It’s useful to double-check them before adding them to your code.

To run the animation, trigger the animateFilter method. In the previous code, I added it to
the mouseDown: method, but left it commented out. Uncommenting it will run it when the
user clicks the mouse. Potentially, you could trigger the effect as a result of other user actions, a
slow timer, or even incoming Internet traffic. Figure 17.6 shows the finished application.

Figure 17.6

Creating an animated filter effect, triggered by mouse clicks

23_495896-ch17.indd 45723_495896-ch17.indd 457 8/31/10 2:52 PM8/31/10 2:52 PM

458 Expanding the Possibilities

 T I P
The example sets the animation radius to a fixed to-value of 1000. For a more sophisticated effect, try setting the to-
value to a number related to the view’s bounds. This guarantees that when the view is resized on a large monitor, the
animation won’t stop suddenly before it reaches the edges of the view.

One final nicety is the use of a delegate. The sample code for this example on the Web site
for this book (www.wiley.com/go/cocoadevref) has minimal implementations of the
animationDidStart: and animationDidEnd: finished: methods that log a mes-
sage to the console. In a more complex application, you can use them to trigger associated
features, including other animations, as each animation starts and ends. With expanded code,
it’s possible to animate many filters simultaneously, creating extremely rich visual effects.

 N O T E
You can use similar code to animate any animatable property. Conventional properties have much simpler keypaths.
Typically you use the property name — there’s no need to create a custom filter or name it. However, you can use this
more complex code to experiment with animating other Core Image filters.

Using OpenGL
OpenGL is designed for stand-alone 3D scene rendering. It’s a separate animation technology
and isn’t directly connected to Core Animation.

 N O T E
Behind the scenes, Core Animation creates its effects with OpenGL calls, but there’s no API (Application Programming
Interface) for the connection between the two. You can use Core Animation or OpenGL, but you can’t work with the
interface between them.

OpenGL is powerful, but complex and challenging, and has a very steep learning curve. A full
introduction is outside the scope of this book, but the rest of this chapter is an introduction to
Cocoa’s NSOpenGLView class, which provides a simple wrapper for OpenGL code that runs in
an OpenGL context.

NSOpenGLView is a hybrid view class with most of the features of NSView and three unique
methods. The reshape method is called when the view is resized. drawRect: is called to
render a scene into the view. Both methods support OpenGL code as well as standard Cocoa
objects and features. The remaining method is openGLContext, which runs on the
NSOpenGLContext class and returns a context for the drawing code.

Optionally, you can optimize an application by creating another body of code that is used to set
up the key features of an OpenGL scene. Typically, you implement this with a custom method
with a suitable name, such as setUp. setUp is run once, when the application loads. It sets the
background color of a scene, creates and initializes lights, and so on. This method isn’t obliga-
tory. You can — and sometimes have to — re-run the same setup code for each refresh; but it’s
efficient to split run-once code from run-often code.

23_495896-ch17.indd 45823_495896-ch17.indd 458 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 459

Introducing OpenGL
OpenGL code is a list of functions and parameters. Functions are grouped into categories that
define shapes, manage lighting, define textures and colors, control the virtual viewport, and so
on. For example,

glEnable(GL_LIGHTING);

turns on the lights in a scene, assuming that some lights have been defined. Parameters are
typically passed as predefined constants such as GL_LIGHTING, float literals, or pre-packed C
arrays.

Shapes are defined with polygons in 3D space. If the polygons are small enough, it’s possible to
create surfaces that appear to be smooth and curved. OpenGL offers various ways to define
arbitrary shapes, but the simplest — and least flexible — is to call on a set of optional functions
in a library called GLUT (OpenGL Utility Toolkit) that can add predefined shapes to a scene. In
this example, you’ll use the GLUT library to add a standard teapot.

 N O T E
The original teapot model was created in 1975 at the University of Utah by Martin Newell. Since then it has become a
standard 3D test shape. The model was digitized from a German Melitta teapot, which is currently owned by the
Computer History Museum in Mountain View, California. It is no longer used for tea.

Shapes are rendered with materials, which are lit by at least two different kinds of light sources.
Materials can be very simple or extremely complex. Materials have no physical properties such
as mass or elasticity. In OpenGL, they’re defined by how they reflect light. In this example, you’ll
use an extremely simple single-color material, ambient background lighting, and a single light
with both specular (highlight) and diffuse light components.

Once a scene is defined and lit, it’s processed through various matrix transformations to create
the final view. The transformations define a virtual camera in the scene, with a variable field of
view, pointing in a specific direction. Perspective and field-of-view effects are both imple-
mented. The reshape method recalculates the matrices when the view is resized.

Objects are placed in the 3D world with reference to a virtual drawing matrix. Initially the matrix
is at the origin with unity scaling and no rotation. But it can be translated (moved), scaled, or
rotated as needed. In this example, you’ll learn how to offset the teapot slightly and add an ani-
mated rotation effect.

Creating an OpenGL animation
To animate an OpenGL scene, use a timer that calls [self setNeedDisplay]; to trigger a
drawRect: redraw of the scene on each timer tick. In a complex animation, the position, ori-
entation, size, and sometimes also the texture and lighting of the scene are recalculated at each
timer tick. drawRect: then uses the recalculated positions when it refreshes the scene.

23_495896-ch17.indd 45923_495896-ch17.indd 459 8/31/10 2:52 PM8/31/10 2:52 PM

460 Expanding the Possibilities

If the timer ticks more than 25 times a second, the scene animation appears smooth. In this
example, you use the timer to update a variable that defines the rotation of the scene.

An OpenGL scene is defined by a long list of functions. Typically the code does the following:

 1. Initializes lights and materials

 2. Defines the viewport and camera position

 3. Places objects in the scene

 4. Calls glFinish() to render the scene

The glFinish() function compiles the scene code and runs it, creating the finished view.
Sample code for the teapot example is as follows. The code uses the openGL and GLUT libraries,
so you must add these to your project, with their headers.

-(void) timerMethod {
//Increment the rotation value, and refresh the display
 rotationCount +=rotationStep;
 [self setNeedsDisplay: YES];
}
- (void)drawRect:(NSRect)dirtyRect {
 //Setup a context
 NSOpenGLContext *glContext = [self openGLContext];
 [glContext makeCurrentContext];
 //Basic setup
 glEnable(GL_LIGHTING);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LEQUAL);
 glClearDepth(1.0);
 glEnable(GL_CULL_FACE);

 //Ambient light
 GLfloat ambientLight[] = {ambientBrightness,

ambientBrightness, ambientBrightness, 1.0};
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientLight);
 //Add a diffuse white light
 GLfloat diffuseLight[] = {diffuseBrightness,

diffuseBrightness, diffuseBrightness, 1.0};
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseLight);
 //Some specular highlights, same value as the diffuse light
 GLfloat specularLight[] = {diffuseBrightness,

diffuseBrightness, diffuseBrightness, 1.0};
 glLightfv(GL_LIGHT0, GL_SPECULAR, specularLight);
 //Turn on the light
 glEnable(GL_LIGHT0);

23_495896-ch17.indd 46023_495896-ch17.indd 460 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 461

 //The material is sort of blue-ish
 GLfloat theMaterial[] = {0.25, 0.8, 1.0, 1.0};
 glMaterialfv(GL_FRONT, GL_AMBIENT, theMaterial);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, theMaterial);
 glMaterialfv(GL_FRONT, GL_SPECULAR, theMaterial);
 //Background color is black
 glClearColor (0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 //Set the projection view matrix
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(fieldOfView, baseRect.size.width/baseRect.size.

height, 0.1, 10);
 //Set the model view matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 //’Eye’ position - looking straight ahead
 gluLookAt (0,0,zEye,
 0,0,0,
 0,1,0);
 //Position the light
 GLfloat lightPosition[] = {diffuseX, diffuseY , diffuseZ};
 glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
 //***Object drawing code***
 //Center the drawing position
 glTranslatef(0.0, 0.0, 0.0);
 //Include some rotation
 glRotatef(rotationCount, 0, 1, 0);
 //Move one step to the right
 glTranslatef(1.0, 0.0, 0.0);
 //Draw the teapot
 glutSolidTeapot(1.0);
 //Render the scene
 glFinish();
}
-(void) reshape {
 //Resize the viewport to support the new view rect
 baseRect = [self convertRectToBase:[self bounds]];
 glViewport(0, 0, baseRect.size.width, baseRect.size.height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(fieldOfView, baseRect.size.width/baseRect.size.

height, 0.1, 10);
}

The finished scene is shown in Figure 17.7.

23_495896-ch17.indd 46123_495896-ch17.indd 461 8/31/10 2:52 PM8/31/10 2:52 PM

462 Expanding the Possibilities

Figure 17.7

Rotating a teapot. The teapot rotates about its handle, so it’s offset
from the center of the view.

Controlling an OpenGL animation
It would be useful to have some control over the parameters that define the scene. In this
example, the code includes variables for some of the key values, such as the position of the
light, the brightness of the ambient and diffuse light options, and the camera location. You can
insert float variables directly into OpenGL code. In a more complex project, you can use variable
arrays to modify shapes and materials in real time.

To set the variables, create a controller class that manages a collection of sliders in a separate
pane. The controllers write values to the application’s preferences, using the technique and
code introduced in Chapter 13. The view reads values from the preferences using Key-Value
Observing, and passes them to scene variables whenever the user moves a slider. Passing val-
ues through preferences means that the scene automatically saves the current slider state when
it quits, and reloads it when it restarts.

The full code listing is long, somewhat repetitive, and almost identical to the code in Chapter
13. It isn’t repeated here, but the full project is available for download from the Web site for this
book (www.wiley.com/go/cocoadevref).

The completed application is shown in Figure 17.8.

23_495896-ch17.indd 46223_495896-ch17.indd 462 8/31/10 2:52 PM8/31/10 2:52 PM

 Chapter 17: Creating Animations and 3D Graphics 463

Figure 17.8

Controlling scene parameters with a separate controller pane — one of many possible ways to
control an OpenGL scene.

As an exercise, you can try to improve the project. In this version, the timer animation stops
when the user moves a slider. Try to move the timer and the drawRect: method to a sub-
thread so that they run independently of the UI. Chapter 11 has some hints about thread
management.

You can also create a more sophisticated OpenGL view by adding extra lights, customizing the
texture, and improving the depth culling that controls the order in which the visible surfaces
are drawn.

 T I P
A useful series of unofficial tutorials is available at http://nehe.gamedev.net. The Cocoa versions of the
projects are out of date now, but you can extract the code from the Web site examples and copy it into the OpenGL
project sample code. Official documentation is available at www.opengl.org.

23_495896-ch17.indd 46323_495896-ch17.indd 463 8/31/10 2:52 PM8/31/10 2:52 PM

464 Expanding the Possibilities

Summary
In this chapter, you learned how to create simple timer-driven property animations by using a
timer method to update property values. You were introduced to animator objects and saw
how they could add simple animation effects with very little code.

Next, you discovered how to customize an animator by replacing its default animation object
with one that you created and defined yourself. As a natural next step, you learned how to
replace an animator with a layer object and discovered how to create a more complex anima-
tion effect that could be applied to a Core Image filter.

Finally, you were introduced to OpenGL and learned about the fundamentals of OpenGL scene
animation. You explored the NSOpenGLView view class and used it to create a simple ani-
mated scene, with variable parameters set from an associated control panel.

23_495896-ch17.indd 46423_495896-ch17.indd 464 8/31/10 2:52 PM8/31/10 2:52 PM

In This Chapter

Debugging, Optimizing,
and Managing Code

Using the console
and NSLog

Debugging with
breakpoints and the

Debugger window

Using instruments

Managing code
with Snapshots

and Source Control

Xcode includes a powerful suite of tools for profiling, testing,
and debugging code. You can test your application in three
ways:

 Logging messages to the console.

 Setting breakpoints, single-stepping through code and
checking property values in a debugging window.

 Using instruments — a collection of test tools that can
report on memory use, thread states, application perfor-
mance, object allocations, and memory leaks.

By default, Xcode supports two different build configuration
options for both OS X and iPhone OS projects: Release and Debug.
You can select these using the build drop-down menu at the top
left of the Xcode window, as shown in Figure 18.1.

The Debug option creates a supporting symbol table. The Release
build doesn’t create this table, producing a much smaller binary.

On OS X, you can use the Release build as a final distribution ver-
sion. On the iPhone, the default Release settings don’t create a
build for the App Store; they simply remove the symbol table. For
information about creating a valid App Store release build, see
Chapter 19.

24_495896-ch18.indd 46524_495896-ch18.indd 465 8/31/10 2:52 PM8/31/10 2:52 PM

466 Expanding the Possibilities

Figure 18.1

Selecting Debug and Release builds in Xcode. You can use the default Debug build settings
for basic debugging. For more advanced techniques, you may need to modify the Debug
configuration by hand.

Using the Console and NSLog
You’ll learn about debugging using the counter application from Chapter 8: it’s easy to modify
but complex enough to introduce the theory and practice of profiling and debugging. Reload
the application into Xcode, and click CounterAppDelegate.m. You’ll use this code as a testbed
for the debugging and performance reporting tools built into Xcode.

Getting started with NSLog
You’ve already worked with NSLog, but in this chapter you’ll use it in a structured way as a
debugging aid. NSLog writes strings to the application’s console. The console is hidden in most
Cocoa applications, but you can display it in Xcode while testing an application, and you can
generate NSLog strings in the code to report variable values and application events.

24_495896-ch18.indd 46624_495896-ch18.indd 466 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 467

The console is a terminal attached to stdout, and you can also write to it using the many vari-
ants of printf and their associated formatting options. NSLog is optimized to support Cocoa
objects. printf is better suited for logging C-language strings and values. You can use either
or both in an application.

To display the Console window, choose Run ➪ Console in Xcode. The window includes a subset
of Xcode’s standard toolbar and a Clear Log button that deletes the current log. Click the Build
and Run button to build and run an application in the usual way, and click the Restart button to
restart an application after a crash. You can also click the Pause button to pause the application
temporarily. This displays a command line prompt, which you can use for command line control
of debugging and logging.

The Console window and the Debugger window, which are described later in the chapter, are
both wrappers for the underlying gdb (GNU Project Debugger) debugging environment. If
you’re a gdb expert, you can use gdb’s command line options in the Console window to access
gdb’s advanced features.

gdb is a complex and powerful tool with some very sophisticated features. Xcode’s debugging
features barely scratch the surface of what it can do. But it’s a command-line oriented environ-
ment and isn’t very friendly or accessible. You can successfully debug most applications with-
out accessing it directly.

A full discussion of gdb’s features is outside the scope of this book. Apple’s gdb manual is avail-
able at http://developer.apple.com/mac/library/documentation/
DeveloperTools/gdb/gdb/gdb_toc.html.

Using NSLog to report events
Event logging is the simplest of all possible debugging options, but it can be powerful and use-
ful, even in complex applications. NSLog is simple and easy to work with. With a few edits you
can automatically generate a list of application events and create a record of the methods that
are being triggered. Use this to test that methods are being triggered when they should be. For
example, you can check that the correct method is being triggered by a user action. Typically,
the log message is added to the top of the method, but it can also be embedded in conditional
code for more selective reporting.

To demonstrate the first option, edit the applicationDidFinishingLaunching:
method in the App Delegate to include an NSLog statement:

- (void)applicationDidFinishLaunching:
 (NSNotification *)aNotification {
 NSLog(@”Application launched”);
 timerCount = 0;
}

Build and Run the application. Figure 18.2 shows the result. The code logs a message when
applicationDidFinishLaunching: is triggered. In the sample application for this chap-
ter, logging is added for all methods so that you can monitor when they’re triggered. The date/
time string and the hex addresses are generated automatically.

24_495896-ch18.indd 46724_495896-ch18.indd 467 8/31/10 2:53 PM8/31/10 2:53 PM

468 Expanding the Possibilities

Figure 18.2

Using NSLog to report application events. Add an NSLog statement to the beginning of every
method that you want to monitor. You can use the same technique within conditionals and switch
statements to monitor program flow.

Using NSLog to report values
You can add a format string to NSLog to report values. The format string options are
C-standard. The format string must be “objectified” with a prefixed @ to prevent crashes. Table
18.1 shows a selection of useful format options.

Table 18.1 Useful NSLog Format Options
Option Used for

%i or %d signed int

%u unsigned int

%f float/double

%x or %X int as hexadecimal

24_495896-ch18.indd 46824_495896-ch18.indd 468 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 469

Option Used for

%p memory address (similar to %x, with a standard 0x prefix)

%zu size_t

%@ object

\r new line

For example, to log the value of an int called anInt use:

NSLog(@”Int value is: %i”, anInt);

When the format string doesn’t match the item to be logged, NSLog produces garbage.
Technically, it attempts to read sequential memory locations and assemble them into a string,
but the results are useless, unpredictable, or crash-prone, depending on the context.

Objects are treated in a special way. The standard idiom for logging any object is

NSLog(@”%@”, anObject);

Because there’s no standard format description for an object or its contents, different objects
respond to logging requests in different ways. The default output is the class name and the
object’s memory address:

<ClassName: 0x123456>

It’s sometimes useful to log addresses while debugging. If you need to check a selection of dif-
ferent object addresses and their properties, it’s easier to do it with Xcode’s debugging tool,
which includes powerful features for viewing objects and their values.

If a class implements a method called description, this method is triggered by logging, and
it returns a description string. For NSString, this generates the string value. For NSArray,
NSDictionary, and NSSet, the method attempts to dump the contents of the collection
into a readable string. Certain image-handling objects also support this feature. The results may
be useful or completely unhelpful, depending on the application.

As a shortcut, it’s possible to pass string objects to NSLog directly — no format string is
needed. This idiom generates a compiler warning but usually works correctly:

NSString *aString = @”Some characters”;
NSLog(aString);

This is only true for NSString objects. Other objects will cause a crash.

24_495896-ch18.indd 46924_495896-ch18.indd 469 8/31/10 2:53 PM8/31/10 2:53 PM

470 Expanding the Possibilities

 C A U T I O N
It’s possible — rarely — to crash NSLog with strings that contain escape characters, especially those used for URL
and network objects. You can sometimes fix this problem by prefixing the string with the @”%@” format specifier.

Using NSLog to report line numbers and function names
Xcode defines a number of build and debug variables. You can reference them to report debug-
ging information. For example,

NSLog(@”%s %d %s”, __FILE__, __LINE__, __PRETTY_FUNCTION__);

logs the filepath of the source file, the line number in the file, and the function name, which is a
combination of an object name and the method within the object. PRETTY_FUNCTION is
used to improve the formatting of this feature. The sample code for this chapter includes an
example with added newline characters to split the result across multiple lines. Sample output
is shown in Figure 18.3.

Figure 18.3

Logging line, file, and function information. The information is listed above the Application
launched string. In this example, extra newline characters — visible in the code window —
have been added to improve the formatting.

24_495896-ch18.indd 47024_495896-ch18.indd 470 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 471

 N O T E
The prefixes and suffixes for these special features are double underscores, created by typing an underscore character
twice.

Selectively enabling NSLog
NSLog is slow and expensive, and it can destroy the performance of applications, especially if it
appears in a critical loop. This is particularly obvious on the iPhone. If the loop is driven by a
timer — for example, a screen refresh loop — you can sometimes simplify debugging by tem-
porarily dropping the timer rate, giving NSLog time to work.

More typically you’ll want to generate NSLog messages while debugging but remove them
from release code. It’s possible to do this manually, creating a special release build with selected
code disabled or removed. In a typical application, you’ll add NSLog events to multiple meth-
ods in multiple objects. Commenting them out by hand is a time-consuming and error-prone
solution.

Intuitively, you might expect that it would be possible to solve the problem with a conditional
definition:

#ifdef DEBUG
 NSLog(@”A message”);
#endif

This is inefficient — adding extra conditional code for every log statement is wasted extra
effort — and it doesn’t work. Although there are separate debug and release modes, by default
Xcode doesn’t implement a DEBUG flag. You can define one of your own, but a quicker and
simpler solution is to redefine NSLog as a blank value in the application’s _Prefix.pch file:

#define NSLog

This simple one-line directive, shown in Figure 18.4, defines NSLog as a blank function and
eliminates all NSLog output. You can either comment out this line while debugging or add it
before a release build.

More complex solutions are possible. Entire alternative logging classes and frameworks are
available online. A popular solution uses macros to create a lightweight customizable replace-
ment. Again, the code is added to the application’s _Prefix.pch file:

#define MY_DEBUG_MODE
#ifdef MY_DEBUG_MODE
 #define MyLog(s, ...) NSLog(@”<%p %@:(%d)> %@”, self,

[[NSString stringWithUTF8String:__FILE__] lastPathComponent],
__LINE__, [NSString stringWithFormat:(s), ##__VA_ARGS__])

#else
 #define MyLog(s, ...)
#endif

24_495896-ch18.indd 47124_495896-ch18.indd 471 8/31/10 2:53 PM8/31/10 2:53 PM

472 Expanding the Possibilities

Figure 18.4

The easy way to disable output from NSLog. This is a quick hack and it isn’t guaranteed, but
it’s very efficient and it usually does the job.

Instead of NSLog, call MyLog. This sample code logs the address, filename, and line number of
each statement as a prefix to the standard NSLog output. You can customize this feature as
needed, adding or removing logging features. You can also define multiple log types and
modes so that debugging logs are stripped in release code, but occasional critical log events
can be retained. Comment out MY_DEBUG_MODE for a release build.

 T I P
It’s good practice to give the custom debug option a unique or even a personalized name. Don’t call it DEBUG or
DEBUG_MODE. If you import a framework or library created by another developer, these definitions may already exist.

24_495896-ch18.indd 47224_495896-ch18.indd 472 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 473

Debugging with Breakpoints
and the Debugger Window
Xcode’s Debugger window is shown in Figure 18.5. It includes the following features:

 Breakpoints

 Single-stepping

 Crash dumps

 Variable review

Figure 18.5

The Xcode debugger is based on the standard GNU debugger, with a customized Mac interface.

Xcode’s debugging features are simple but powerful. Debugging options are closely integrated
with the code editor. It’s possible to review variables and step through code in the code editor
without opening the separate optional Debugger window, which can provide extra detail
about code paths and object contents.

24_495896-ch18.indd 47324_495896-ch18.indd 473 8/31/10 2:53 PM8/31/10 2:53 PM

474 Expanding the Possibilities

Enabling debugging
The debugger environment runs in a special debug mode, which enables breakpoints. Note
that selecting a Debug configuration or creating a debug flag does not enable the debugger —
it creates a binary that the debugger can work with, but it doesn’t run the debugging
environment.

To run it, click the Breakpoints button on the main Xcode toolbar. The button changes state,
and the Build and Run button is replaced with Build and Debug, illustrated with a stylized spray
can, as shown in Figure 18.6. Alternatively, you can add a breakpoint to the code, as described
below — this automatically enables debugging.

Figure 18.6

Xcode in debug mode. The Breakpoints button is selected, and the Build and Run button is
replaced by the Build and Debug button. Note that the separate Debugger window doesn’t
appear automatically when Debug mode is selected.

24_495896-ch18.indd 47424_495896-ch18.indd 474 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 475

Setting and using breakpoints
To set a breakpoint, select a line of code in Xcode’s code editor and then choose Run ➪
Manage Breakpoints ➪ Add Breakpoint at Current Line. An arrow icon appears in the margin
to the left of the line. Figure 18.7 shows the result of adding a breakpoint at the start of the
startCount: and stopCount: methods.

Figure 18.7

Adding breakpoints: the code window displays a blue arrow icon in the margin next to each
breakpoint. Here breakpoints have been added at two NSLog calls, but you can add a
breakpoint on any line.

Click Build and Debug, and the application builds and runs with added breakpoint information.
When the code reaches a breakpoint, it pauses and the arrow icon displays a smaller extra
brown arrow. The line with the breakpoint is highlighted, as shown in Figure 18.8.

You can do three things at a breakpoint:

 Review variables and properties

 Single-step through a method

 Continue execution

24_495896-ch18.indd 47524_495896-ch18.indd 475 8/31/10 2:53 PM8/31/10 2:53 PM

476 Expanding the Possibilities

Figure 18.8

Stopping at a breakpoint. The breakpoint line is highlighted in blue, and you can hover over
objects and variables to explore their values. The values appear in floating overlay views.

If you hover the mouse over any object or variable in the method around the breakpoint, you’ll
see a floating overlay. When you hover over a simple variable, the overlay displays the item’s
address and its value. Objects are more complex. You can drill down through the object’s struc-
ture to view its contents. Hover over each item’s reveal triangles to display further overlays.

Cocoa objects are very complex, and it’s not always easy to find specific values within them. The
overlay review feature is a good way to check the values of simple C variables, but objects can be
more challenging. You may find it’s easier to check method properties with extra debugging code
that logs their values or by adding extra dummy assignments that you can breakpoint as needed.

The review feature has limited but incomplete support for dot syntax properties. It’s sometimes
possible to review a specific property by hovering over it — for example, holding the mouse
over aProperty in a line that includes anObject.aProperty. This doesn’t always work, so
you’ll need to experiment to check if it’s available at any specific breakpoint.

24_495896-ch18.indd 47624_495896-ch18.indd 476 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 477

Controlling breakpoint execution
The icons above the code editing window in Xcode control execution after a breakpoint and
provide quick links to the Console and the Debugger window. The toolbar is shown in Figure
18.9. From left to right you can:

 Toggle breakpoints

 Continue execution to the next breakpoint, if there is one

 Step over a method or function

 Step into a method or function

 Step out of the current method or function

 Open the Debugger window

 Open the Console window

The step-over and step-into options single-step through code. Stepping out of a method
or function “disappears” the execution marker when execution continues within OS X.
(Unsurprisingly, you’re not allowed to view the OS X source code.) In your own code, execution
may continue in another object.

Figure 18.9

The debugging toolbar.
The execution icons are
only active while single-
stepping after a breakpoint.

Setting conditional breakpoints
There are two ways to set conditional breakpoints. The first is to define them in the Breakpoints
window, shown in Figure 18.10. There is no menu option for this window in Xcode. It can only
be opened by pressing Ô+Alt+B on the keyboard.

If you’re familiar with gdb-compatible conditionals, you can double-click under the Condition
tab to enter them next to a selected breakpoint. In practice, this approach may be too clumsy to
be useful. gdb’s conditional parser is limited, and conditional statements that test properties
can become very complex. It’s often easier to use an alternative approach: add the conditional
tests as temporary test code and bury a conventional static breakpoint inside them.

24_495896-ch18.indd 47724_495896-ch18.indd 477 8/31/10 2:53 PM8/31/10 2:53 PM

478 Expanding the Possibilities

Figure 18.10

The Breakpoints window. You can selectively enable and disable
breakpoints without removing them by clicking the check boxes
in the second column.

Deleting breakpoints
To remove a single breakpoint, click on its line in Xcode and choose Run ➪ Manage
Breakpoints ➪ Remove Breakpoint at Current Line. You can also press Ô+\ as a keyboard
shortcut.

Breakpoints tend to spread, so it can be useful to delete them all in a single operation. The sim-
plest way to remove all breakpoints is to pause the application in the Console window and type
delete breakpoints at the (gdb) prompt. Counterintuitively, this does not delete the breakpoints;
it deactivates them. The effect is similar — they no longer do anything — but the breakpoints
are still visible in the code.

To delete all breakpoints, open the Breakpoints window and press Ô+A to select all of them.
Press the Delete key to delete them. There is no menu option for this feature.

Using the Debugger window
Often, you can debug directly in the code editor pane. The floating overlays and execution
options give you enough information to find and fix simple problems. The Debugger window,
shown again in Figure 18.11, is useful for more advanced problems, such as tracking crashes
and monitoring object properties.

24_495896-ch18.indd 47824_495896-ch18.indd 478 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 479

You can open the Debugger window three ways. The slow way is to choose Run ➪ Debugger
from the main Xcode menu. A faster way is to use the Shift+Ô+Y keyboard shortcut. The fastest
and simplest way is to click the Debugger window icon in the Edit window toolbar, shown pre-
viously in Figure 18.9.

Figure 18.11

The Debugger window. The pane at the top left lists the execution stack. The pane at the top
right lists every variable and data structure in the current object, and it can also list global
values and the contents of the processor’s registers.

Using the stack trace
The execution stack appears in a pane at the top left. The stack lists the order in which methods
and functions are called. After a crash, the item at the top of the stack caused the crash. This
may be — and often is — an internal Cocoa object or function.

This pane doesn’t distinguish between Cocoa internals and your code. Typically most of the
items in this list are internals. But you can look down the list to find the object, method, or func-
tion in your code that is likely to have caused a crash by feeding Cocoa invalid values.

24_495896-ch18.indd 47924_495896-ch18.indd 479 8/31/10 2:53 PM8/31/10 2:53 PM

480 Expanding the Possibilities

Using the object explorer
The pane at the top right lists all the values in the current object. It’s an extended version of the
pop-up overlays that list values, and it suffers from the same limitation — internally, objects are
so complex it’s difficult to find specific properties. But you can use this feature to review pointer
values. It’s also possible to use it to view properties, but there’s no way to search for a named
property. Usually you must expand the various reveal triangles by hand until you find it.

Debugging with machine code
Optionally, you can review global values and processor registers here. When you step out of a
method defined in your code into OS X, the bottom window displays the compiled machine
code. You can single-step through this, reviewing address literals and pointers and their associ-
ated processor registers, as shown in Figure 18.12. This is advanced debugging information and
is rarely useful — unless you’re writing x86 machine code.

Figure 18.12

Using the Debugger window’s machine code view and register listing. Experts sometimes find
this information helpful, but you can debug most projects without it.

24_495896-ch18.indd 48024_495896-ch18.indd 480 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 481

Using Instruments
Xcode includes a suite of performance tools that can report on almost every aspect of applica-
tion performance. The tools are listed separately, but they run as a single tool with multiple
snap-in options. To run a tool, choose Run ➪ Run with Performance Tool in Xcode. Xcode
launches your application and launches the tool at the same time, linking the two so that the
tool automatically starts collecting information. Figure 18.13 shows the instruments available
in OS X. Figure 18.14 shows the smaller list available to iPhone developers.

 T I P
You can combine options to create a customized tool that displays any combination of performance metrics. Choose
Instrument ➪ Build New Instrument. Each probe is a separate metric. Choose the metrics from the “of type” menu.
Advanced developers can add customized scripting for each probe.

Figure 18.13

The instruments available to OS X developers. OS X developers can monitor threads, crashes,
and multicore performance.

24_495896-ch18.indd 48124_495896-ch18.indd 481 8/31/10 2:53 PM8/31/10 2:53 PM

482 Expanding the Possibilities

Figure 18.14

The instruments available to iPhone OS developers. Both platforms support Leaks, Object
Allocations, the CPU Sampler, and the Activity Monitor. Both also support Shark, which is an
independent performance profiler.

The generic Instruments tool runs as an event and value recorder. The top lane, or lanes, display
a time trace of the metrics that are being monitored. Figure 18.15 shows a run of the Activity
Monitor instrument, which tracks the performance and resource requirements of every process
on a Mac.

All instruments use the same principle: the traces at the top of the window are graphed as the
application runs. At the same time, the area under the trace lists numerical estimates of each
feature.

You can save each run by choosing File ➪ Save. You can’t replay a timeline, but you can drag the
cursor along it manually to review metric values at specific times. This is only occasionally use-
ful. Typically, you look at metrics in real time and watch how they develop as you interact with
the application.

24_495896-ch18.indd 48224_495896-ch18.indd 482 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 483

Figure 18.15

The Activity Monitor illustrates a typical timeline view generated by the Instruments wrapper. The row
of icons under the main window shows or hides extra context-dependent information, which is differ-
ent for each instrument.

There are many instruments, and some are more useful than others. On the Mac, the Time
Profiler profiles the performance of each active element in the application and displays the total
processor load. By default, this instrument shows every function and method in an application,
including those that are internal to OS X. To filter the list to view the methods in your code,
select the Hide System Libraries and Show Obj-C Only check boxes in the Call Tree list at the left,
as shown in Figure 18.16. Other useful instruments are introduced in Table 18.2.

Table 18.2 Useful OS X InStruments
Instrument Used for

Time Profiler Checking method performance

Sudden Termination Reviewing crash dumps

Multicore (Includes Threads) Reviewing active threads and multicore despatch

File Activity Reviewing all file operations and file states (Note: Shows the full system-wide list)

24_495896-ch18.indd 48324_495896-ch18.indd 483 8/31/10 2:53 PM8/31/10 2:53 PM

484 Expanding the Possibilities

Figure 18.16

Most instruments include filtering features. For the Time Profiler, the Call Tree options at the
left can cut down a very long and cluttered list of OS X internals and force the instrument to
show only the methods in your code.

On the iPhone, memory management is one of the core problems, and the most useful instru-
ments report object allocations and memory leaks. Object Allocations, shown in Figure 18.17, is
perhaps the single most useful instrument for iPhone development. It displays a list of all allo-
cated objects and the application’s total memory footprint.

To check for leaks, view the Live Bytes total for All Allocations. If it increases steadily as the
application runs, or if it increases and doesn’t return to its original value after a user action, your
application is leaking memory and will eventually crash. To find a leak, view the list of items
under the # Living column. If this number is increasing, the object or function is leaking mem-
ory. Some leaks are built into iPhone OS and can’t be resolved. But this instrument can give you
instant feedback about leaks in your code, saving you hours of development time.

24_495896-ch18.indd 48424_495896-ch18.indd 484 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 485

Figure 18.17

On the iPhone, Object Allocations is often the most useful instrument of all. It displays the
total memory used and breaks it down by object and function.

Using Shark
Shark, shown in Figure 18.18, is an alternative profiling tool available for both OS X and iPhone OS
development. To use Shark effectively, close all open applications, including Xcode. Run your
application independently by double-clicking its app file in its build folder. You can find Shark in
the Applications Directory in the Developer Folder. Launch it by double-clicking Shark.app.

Then, you wait. Shark takes a while to load and appears to do nothing for 30 seconds. During
this time, it samples the selected application. Then it analyzes the samples. This can take a few
seconds for a simple application, or a few minutes for a complex application with many threads
and features. A progress indicator at the bottom right indicates the status of the analysis. When
the analysis completes, Shark tables the relative time the application spends in each of the
listed methods and functions.

24_495896-ch18.indd 48524_495896-ch18.indd 485 8/31/10 2:53 PM8/31/10 2:53 PM

486 Expanding the Possibilities

Figure 18.18 shows Shark profiling the performance of the Firefox Web browser. Shark doesn’t
include filters that distinguish between custom code and processes that are internal to OS X, so
you must pick through this list by hand.

Shark works best for simple projects with relatively small numbers of competing processes. As
the process and event count increases, the profiling becomes diluted and less useful.

Figure 18.18

Shark versus Firefox. Shark is only sporadically useful. In this example, Firefox was suffering
from processor spiking, but it’s not easy to find the culprit from this trace.

Managing Code with Snapshots and
Source Control
It’s often useful to create multiple versions of a project while debugging. It’s easier to remove
temporary debugging code by reverting to an older version than by manually removing the
additions.

24_495896-ch18.indd 48624_495896-ch18.indd 486 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 487

Xcode supports two source control features. Snapshots provide a simple and quick way to save
and restore project states. Source Control provides a much more sophisticated toolset for man-
aging projects, collaborating on projects with other developers, logging changes, comparing
files, and so on. You can also copy project folders manually by using Finder.

Copying projects and creating
snapshot versions manually
As explained in Chapter 4, it’s not always possible to copy or move a default project without
breaking it. Figure 18.19 illustrates why. Right-click any group in the Groups & Files pane and
select Get Info and the General tab. You’ll see the dialog in Figure 18.19.

Figure 18.19

Selecting group path types. To create a portable project, every element in the project must
have a path type relative to the project or to the enclosing group.

24_495896-ch18.indd 48724_495896-ch18.indd 487 8/31/10 2:53 PM8/31/10 2:53 PM

488 Expanding the Possibilities

Xcode’s symbolic links are defined relative to a path anchor. The path type defines the path
anchor, which is one of the following:

 The enclosing group

 The project folder

 An absolute filepath

 The a build product path

 The Xcode folder

 The current SDK folder

Some options are relative, while others are absolute. If you copy or move a project with abso-
lute paths, the symbolic links will point to items that are no longer available.

Conversely, when you set up project path types correctly, you can

 Make the project available for download on a Web site.

 Use Finder to make snapshot copies of each version as the project evolves, while keep-
ing old versions as a backup by duplicating the project folder and giving it a new
name.

 Make backup copies to a different disk or different Mac. You can also build them in
place, if you need to.

The safest option is to define every path relative to the project folder or to an enclosing group.
There is no easy way to do this globally in Xcode. The most efficient solution is to select every
item in a group and use the dialog in Figure 18.19 to change the path type. Repeat this for every
group. The group “folders” have an equivalent path specification, so you must set their path
types, too.

When you create a new item or add an existing project, remember to set the path specification
in the drop-down menu in the equivalent dialog, shown in Figure 18.20. You must do this
because, by default, Xcode makes all paths relative to the Xcode folder — which is wrong.

Forgetting to change this setting can literally have disastrous consequences if you copy or
move a project folder. Xcode allows you to edit the file in an old project while ignoring the new
copy. This can trash an old project as you make no progress on a new one.

 C A U T I O N
Xcode sometimes gets its links confused, creating a perplexing bug. Edits to a modified file appear to be ignored, while
the symbolic links appear to be correct. Typically the compiler can’t find new object and method definitions, even
when they’re in the code. When this happens, check that the links aren’t broken and that Xcode isn’t editing a file in a
different folder or project.

24_495896-ch18.indd 48824_495896-ch18.indd 488 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 489

Figure 18.20

Don’t forget to select the group path types when creating or adding files. The default anchors
items to a fixed path, which is not a helpful feature.

Using Snapshots
Xcode includes an automated Snapshots tool for simple version management. The tool is sim-
ple but effective, and it is very easy to use. To experiment with it, create a new blank project in
Xcode. Give it any name. Choose File ➪ Make Snapshot to save the initial state of the project.

In the code editor, add one or more lines of new code; for example, a new NSLog message.
Make another snapshot to save the new state of the project. Choose File ➪ Snapshots to open
the Snapshots window, shown in Figure 18.21.

24_495896-ch18.indd 48924_495896-ch18.indd 489 8/31/10 2:53 PM8/31/10 2:53 PM

490 Expanding the Possibilities

Figure 18.21

A first look at the Snapshots window

You can now do three things:

 To restore the previous version, select the first snapshot and click Restore. The original
source replaces your changes. A new pre-restore snapshot is added automatically in
case you change your mind.

 To delete a snapshot, click the Delete button.

 You can use the Show Files feature to review the differences between files.

To review the changed files, click the Show Files button and select a file from the list. In this sim-
ple example, you’ll see a single file. A more complex project may list multiple files. You’ll see the
window shown in Figure 18.22. It literally highlights the differences between the two snapshots.

The Snapshots feature doesn’t make copies of the project. Instead, it saves file differences in a
separate location. Occasionally Xcode loses this location and Snapshots reports an error, com-
plaining that it can’t parse the project file.

24_495896-ch18.indd 49024_495896-ch18.indd 490 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 18: Debugging, Optimizing, and Managing Code 491

Figure 18.22

Selecting Show Files and selecting a file displays the differences in the code
between the two snapshots. This feature also lists differences in the project’s
support files. Support files are more difficult to understand — they’re not
designed to be read as text — but the differences are still clearly visible.

You can rescue the snapshots file by looking in

~/Library/Application Support/Developer
/Shared/SnapshotRepository.sparseimage

Close Xcode and mount the image file in Disk Utility. The Snapshots should now work again.

 N O T E
As usual in OS X, the ~ character expands to Users/<yourUserName/.

Using SVN source control
Xcode supports a full implementation of Subversion (SVN) source control. You can run svn
from the command line in Terminal to check out projects manually, and you can also integrate
it into Xcode to allow check outs, edits, and commits to support versioning and collaborative
development.

24_495896-ch18.indd 49124_495896-ch18.indd 491 8/31/10 2:53 PM8/31/10 2:53 PM

492 Expanding the Possibilities

Source control is a complex topic with many variations and advanced requirements. The details
are beyond the scope of this book. It’s also not essential for solo development; Snapshots and
manual copying are enough to manage most solo projects. SVN source control becomes obliga-
tory on collaborative projects where source code is hosted and shared on a remote server. For
an introduction, see Apple’s documentation at http://developer.apple.com/mac/
articles/server/subversionwithxcode3.html.

Summary
In this chapter, you were introduced to Xcode’s debugging, profiling, and code management
features. You learned how to use NSLog to report method triggers and property values and
how to remove NSLog calls from release code to maintain its performance.

Next, you explored Xcode’s breakpoint features, and you discovered how to use them in the
code editor window and how to explore further features in a separate Debugger window.

Instruments were introduced in the next section, and you learned how to run code with instru-
ments, and which instruments were most useful for OS X and iPhone development.

Finally, you explored the Snapshots and manual code backups, and you were introduced briefly
to Subversion, a formal online source control tool supported in Xcode.

24_495896-ch18.indd 49224_495896-ch18.indd 492 8/31/10 2:53 PM8/31/10 2:53 PM

In This Chapter

Developing for the
iPhone and iPad

Introducing the iPhone,
iPod touch, and iPad

Moving to iOS from OS X

Understanding iOS views
and UI designs

Developing for iOS in
Xcode

Building a simple
application

Selling in the App Store

If you can create a Cocoa app, you can develop an iPhone app —
and if you can develop an iPhone app, you can sell it in the App
Store. Making the transition from Cocoa code on OS X to the

iPhone’s Cocoa Touch technology is easy, but the business model,
the development environment, and the design goals are different.
To create a successful app, you must change your aims and learn
to work with the smaller screen and touch interface shown in
Figure 19.1.

Figure 19.1

The famous iPhone home screen, showing some
of the hundreds of thousands of apps that are
available

25_495896-ch19.indd 49325_495896-ch19.indd 493 8/31/10 2:53 PM8/31/10 2:53 PM

494 Expanding the Possibilities

Introducing the iPhone,
iPod touch, and iPad
Apple’s mobile devices have created a popular, huge, and lucrative market for content and
application developers. The three different iOS devices offer a core set of frameworks and
classes for all mobile devices. All devices offer a different mix of hardware features, and there
are further minor differences between different models.

The iPod touch is primarily a music and video content platform, but it can also run applications
and is a popular choice for games. It is lighter and cheaper than an iPhone and can be bought
and used without a contract. It remains popular with buyers and developers. Approximately 90
percent of all apps run on both the iPod touch and the iPhone.

The iPhone adds location sensing, a camera, and cellular voice and data. Unless an app uses
these extra hardware features, iPod touch and iPhone apps are literally identical. Code can be
compiled for a single target and runs on both platforms without changes.

There are minor but significant differences between the different models in the iPod touch and
iPhone ranges. At the time of writing, the entry-level 8GB iPod touch is equivalent in power and
performance to an iPhone 3G. The 16GB and 32GB models are equivalent to the iPhone 3GS
and include a faster processor and slightly more advanced graphics acceleration. The perfor-
mance differences are obvious in games and processor-intensive music and media apps. They
are almost invisible in simpler apps. There is as yet no direct iPod equivalent of the iPhone 4.

The iPad, shown in Figure 19.2, was added to the range at the beginning of 2010. It has been
criticized as a giant iPod touch, but the faster processor, larger screen, and extended operating
system make it a distinct new product. On the iPhone and iPod touch, you develop user inter-
faces using the UIKit framework — a collection of fixed prewritten classes that can be added to
views. On the iPad, UIKit has been extended with new UI classes that can improve the user
experience on the larger screen. Some of the iPad UI features can be customized and extended
to create more complex user experiences; for example, you can extend the standard pop-up
keyboard with custom symbols and options.

For backward compatibility, the iPad includes an emulation window that runs existing iPhone
apps without changes. It includes a 1.5X zoom option that can expand an app to fill the iPad’s
screen. This is a cosmetic effect. It does not change the original native resolution or make it pos-
sible for the app to use any of the OS extensions available on the iPad.

Apps can be universal, running the same code on both platforms with dual nib files. However,
because of the physical differences between the iPhone and iPad, the different UI options, and
the different markets and design goals, users often prefer distinct apps that capitalize on the
strengths of each platform. It’s possible to convert an iPhone project to an iPad project in Xcode
with a couple of mouse clicks, using the original code as the foundation for a more complex
app with an expanded UI and extra features.

25_495896-ch19.indd 49425_495896-ch19.indd 494 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 495

Figure 19.2

The iPad introducing itself in the Safari browser

 T I P
iOS applications on all platforms typically have little in common with OS X applications and are unlikely to share code.
The most successful iPhone and iPad apps are developed from scratch to satisfy new user needs, creating experiences
that highlight the strengths and unique features of these smaller platforms, while downplaying their weaknesses. If
you are moving to iOS from OS X, think small, clever, and beautiful.

Comparing iOS and OS X applications
iPhone apps are written in Objective-C and use the familiar Cocoa framework model. However,
there are significant differences between apps for each platform.

 iOS apps are smaller and simpler than OS X applications. They are more self-
contained, with limited access to external data.

 User interaction is managed through simpler, leaner views built from the UKIt
framework. User interfaces are smaller and less complex.

25_495896-ch19.indd 49525_495896-ch19.indd 495 8/31/10 2:53 PM8/31/10 2:53 PM

496 Expanding the Possibilities

 Many frameworks, features. and data controllers in OS X are not available in iOS.
For example, there is no way to create bindings in Interface Builder (IB). Core Data
remains available, but the iOS environment is not ideal for large volumes of data or
complex databases. Custom graphics are created with the Quartz 2D framework.
Cocoa’s graphics classes are not available.

 Support for extra hardware features — including the multi-touch interface and
sensing of tilt, shake, and rotation — has been added to create a more tactile and
intuitive experience.

Because of the differences, iOS can feel constrained. However, the limitations make it easier to
concentrate on creating a strong and tightly focused user experience. A typical app is not over-
loaded with features but does one or two simple things with style. Apps should be as intuitive
as possible. Help and instructions should be unnecessary or minimized. Apps that use clever or
innovative software technologies are often popular and are more likely to be successful.

In spite of the limitations, iOS is not a crippled version of OS X. It is more useful to think of it as a
spin-off, designed to create a different experience for users in a different computing context.
For example, apps with location features, illustrated in Figure 19.3, can give users information
related to their surroundings. This can include information about shops and local transport,
routes to other locations, or new kinds of games.

iOS includes some new features that are not — yet — standard on desktop and laptop comput-
ers, including:

 Location sensing. All devices include a framework called Core Location that returns
position updates. The iPhone 3G, 3GS, and 4 and the iPad include a GPS (Global
Positioning System) receiver that can provide very accurate position information.
Other devices use a combination of cellular triangulation and WiFi transmitter tagging
to report much less accurate position fixes. Location data can be used to offer users
information about their surroundings, with optional enhanced reality features. The
iPhone 4 and 3GS and the iPad also include a magnetic compass.

 Multi-touch screen control. All devices support a multi-touch screen that can track at
least five fingers simultaneously. This allows gestural control, as described next, but
also makes it possible for apps to link features to other kinds of touch tracking; for
example, three simultaneous touches can trigger a unique response, or two touches
followed by a third can implement a unique drag option. Applications can use the
multi-touch screen to create unique and novel touch interfaces.

 Gestural control. iOS 3.2 includes a new UIGestureRecognizer class, with pre-
defined subclasses that can recognize taps, pinches, stretches, pans and drags, swipes,
rotations, and a touch-and-hold gesture, known as a long press. Action methods are
triggered as each gesture is recognized. Although custom gestures such as circle,
check mark, or spiral movements can be recognized with extra code, users expect at
least some of the standard UIGestureRecognizer events to be implemented.
Unlike custom multi-touch support, gestural control is standardized.

 Orientation sensing. iOS includes hardware and messages that can monitor device
orientation. As the user rotates the device, apps can switch automatically between
portrait and landscape views. Orientation messages can also be used to trigger other
types of responses, such as sounds, page updates, view swaps, or game events.

25_495896-ch19.indd 49625_495896-ch19.indd 496 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 497

Figure 19.3

Built-in mapping and location sensing make it
possible to create iPhone apps that tell users
where they are, where they’ve been, or where
they’re going.

 Tilt and motion sensing. An accelerometer is built into all iOS devices. It controls ori-
entation sensing, and data from it can also be read directly to monitor tilt and motion
events. Tilt information reports the angle each device axis makes with the pull of grav-
ity. Tilt control is popular in games, but it can be used in more creative ways; for exam-
ple, to create a source of random noise source from the least significant bits of the
sensor stream. Motion sensing can also be used to report separate shake events. When
combined with the compass, where available, applications can use tilt measurements
to calculate absolute device orientation with respect to magnetic North. iPhone 4
models include a gyroscope, which makes it possible for applications to monitor six
axes of orientation and rotation.

25_495896-ch19.indd 49725_495896-ch19.indd 497 8/31/10 2:53 PM8/31/10 2:53 PM

498 Expanding the Possibilities

 Mobile camera input. Camera support is patchy on iOS devices. The iPhone 3G has a
2MP low resolution still camera. The 3GS camera features improved 3MP resolution
and supports video. The iPhone 4 camera is improved further with 5MP resolution and
a built-in LED flash. The iPad has no camera at all, but supports external camera hard-
ware. Where available, developers have used the camera in inventive ways, taking full
advantage of its portability. Sample applications include barcode scanning, text recog-
nition, font recognition, and even the scanning and re-creation of Sudoku puzzles and
crosswords.

 Built-in applications. Some or all of the data and features included in the Maps, iPod,
Contacts, and Settings applications can be accessed via APIs built into Cocoa Touch.
You can build customized versions of the applications into your apps, adding new fea-
tures as needed or accessing their data sources. Currently there are no APIs for the
Weather, Stocks, or Calculator apps.

 App switching. Your application can terminate itself and launch Web-based or online
applications including Safari, YouTube, the App Store, SMS, and Email by calling on a
URL-based interface feature that allows selected and limited data transfer; for exam-
ple, your app can launch Safari with a specific URL or preload the Mail app with a spe-
cific address and e-mail text. Apps can also launch other apps, with limited data
sharing.

 Multitasking. iOS 4 supports multitasking on the iPhone 4 and 3GS, the iPod touch
16/32GB, and — from November 2010 — the iPad. Multitasking is largely automatic.
When the user launches a new app, the existing app is placed in a low-priority back-
ground queue. This supports fast start-up, but queued apps must save their state
before disappearing, because they can be removed from the queue without notice.
Other requirements may apply — for example, an app can specify that it is playing
audio in the background, and that it requires the resources needed to do this without
stuttering or quitting suddenly.

Understanding the mobile app business model
Many apps are developed for profit and sold through the App Store. Because the app market is
large and the development cycle can be very short, it is much easier to become a full-time inde-
pendent iPhone developer than it is to create a career as a solo Mac developer. However, the
commercial benefits of iPhone development are sometimes exaggerated. Some developers do
exceptionally well, and many do fairly well, but a large number of developers get little or no
income from their apps.

There is no simple formula for a top-selling app, although games remain consistently popular.
For other apps, impressive graphic design, a sense of humor and lateral thinking, and strong
promotion and marketing are as important as coding skills.

25_495896-ch19.indd 49825_495896-ch19.indd 498 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 499

Making money from iPhone and iPod touch development
The iPhone app market is vast. By Q2 2010, total sales of the iPhone and iPod touch were
approximately 40 million. Owners are typically students and affluent professionals in their 20s
and 30s, although some are older. Many are regular users of social networking and are comfort-
able using online tools to manage and enhance their social lives.

The typical entry-level iPhone app is visually sophisticated but may have very simple features.
Graphic design is extremely important. A visually appealing app with limited features can be
more successful than a complex app with mediocre styling.

Because iPhone apps are simple, almost anyone with minimal developer skills can create them.
Developers with a background on other platforms can typically produce a saleable app within
two or three months. Previous OS X and Cocoa experience can reduce this to a few weeks. The
QuoteMonster app shown in Figure 19.4 was created in less than a week.

Commercial developers often aim for volume sales at low prices. iPhone apps are priced in tiers
(standard price bands) that start at 99 cents. Although it is possible to sell apps for $999, most
are priced at the lowest 99 cent and $1.99 tiers. A small minority are priced at $5 or more. A
handful of niche apps are much more expensive but are aimed at unusually affluent users and
typically offer very obvious professional benefits.

 C A U T I O N
Apple divides App Store income into seven territories: the United States and Latin America; the European Union,
including Switzerland and Norway; the United Kingdom; Japan; Australia and New Zealand; and All Remaining. Apple
pays developers separately for each territory. If income does not cross a $150 threshold for a territory during an
accounting period, Apple retains the income until total future sales cross the threshold. If the threshold isn’t crossed
within an accounting year, Apple pays the developer in full at the end of the year.

Although the iPhone market continues to grow, the app market has started to saturate, making
it more difficult for newcomers to profit with relatively simple projects. Popular games, such as
Trism, shown in Figure 19.5, have been developed by part-time coders. But more recent game
apps are becoming more complex and moving beyond the reach of solo developers. Niche
apps with minimal marketing support may sell just a handful of copies.

Games and simple novelty applications with mass appeal offer the best chances of success.
More complex apps with unique features are riskier: some will trigger a wave of user interest,
but many will not. Marketing skills are as important as programming talent. Getting an app
accepted by the App Store is not enough. Business-minded developers must spend time on
viral and direct advertising, using social networking tools such as Facebook, Twitter, and
MySpace.

25_495896-ch19.indd 49925_495896-ch19.indd 499 8/31/10 2:53 PM8/31/10 2:53 PM

500 Expanding the Possibilities

Figure 19.4

A typical iPhone app is closer to a dashboard
widget than a full OS X app and has a simple
function controlled by a minimal streamlined
interface. Once a developer has mastered the
essentials of app design, the development
cycle can become very fast.

Figure 19.5

The Trism game app earned more than $250,000
in its first two months in the App Store, but it
may be more difficult to repeat this success now.

Some developers use ad revenue as a separate income stream. Services such as Medialets
(www.medialets.com) allow developers to dedicate screen space to an external ad server
that pays them automatically for each ad click.

With iOS 4, Apple introduced its own competing ad service called iAd with a supporting
framework. Ad revenue can provide a useful income stream from simple entertainment or
novelty apps that can be given away for free on the iPhone and the iPad.

25_495896-ch19.indd 50025_495896-ch19.indd 500 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 501

Making money from iPad development
The iPhone and iPad share a similar programming model, but they have a very different busi-
ness model. The iPad market is smaller — total sales are expected to be around 6 million by the
end of 2010, rising to 10 to12 million by the end of 2011 — and the user profile is different, split
between the traditional younger iPhone demographic and the older less-experienced com-
puter users who are looking for a simplified experience of e-mail, the Web, games, and other
entertainment computing.

Because the iPad uses a faster processor and bigger screen, it can be tempting to keep adding
features to apps, extending the development cycle. But the app market is still relatively small,
and extra sophistication may not mean more user interest. Niche apps with complex specialized
features are likely to have a tiny potential audience with even tinier sales. Longer development
times can justify higher app prices, but total sales are likely to remain smaller. Figure 19.6 shows
a binary clock application that uses the iPad’s larger screen to create a simple app that can be
left running permanently, converting the iPad into a domestic accessory.

Figure 19.6

This minimalist binary time display app relies on the large physical size of the iPad. It is designed
to run when the iPad is in a cradle or stand, creating an unusual desk clock.

25_495896-ch19.indd 50125_495896-ch19.indd 501 8/31/10 2:53 PM8/31/10 2:53 PM

502 Expanding the Possibilities

One way to avoid niche limits is by developing games; the iPad has obvious appeal as a hand-
held gaming platform. It can also be inspiring to think of the iPad more as a content reader and
a player for entertainment and education. Content container apps can be developed quickly,
easily, and cheaply. The iPad is ideally suited for displaying Web content, Web apps, and sub-
scription services. For a content delivery app, you can use Web technologies — you may not
need to use Xcode at all.

A subscription or content purchase scheme can create regular income in ways that apps can-
not, and simple Web apps with compelling regular content updates are likely to be at least
as successful as traditional iPhone-style apps. Traditional apps can still sell well, but for the
moment the iPad is a riskier commercial prospect for solo developers than the iPhone, although
success can be more rewarding.

 T I P
You can use the Top Charts feature in the App Store to find the most popular and successful apps. Checking the charts
regularly and testing the top free and paid-for apps can give you useful insights into the design and features of best-
selling apps.

Moving to iOS from OS X
iOS is recognizably similar to OS X. Many of the design patterns are identical. iPhone apps use
Model-View-Controller, target/action, key value coding and observing, blocks and threads, the
responder chain, and notifications in an identical way. The nib system is also similar, with some
simplifications and omissions.

But iPhone apps and Mac applications have different design goals and run on different hard-
ware. Because of the hardware differences and the pared-down classes in iOS, the development
environment is less complex.

Getting started with the iPhone SDK
The iPhone has its own developer center and associated developer program, shown in Figure
19.7. From Q1 2010, iOS and OS X developers use the same SDK, which supports both platforms.
Both programs are accessed through separate pages on Apple’s site, and both offer free and
paid-for access with enhanced support and other features.

 C R O S S R E F
For more information about signing up to the iPhone Developer Program and downloading and installing the Xcode
SDK, see Chapter 4.

25_495896-ch19.indd 50225_495896-ch19.indd 502 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 503

Figure 19.7

As with the Mac Developer Program, signing up for paid access to the iPhone Developer Program
allows developers to download beta seed versions of forthcoming OS updates.

Understanding iOS app design goals
Similarly, the user experience is also streamlined and simplified. Key design goals include:

 Instant on, instant off. iOS apps should load and quit as quickly as possible. Long
load times are strongly discouraged. Long shut-down times are not allowed at all.
Apps that take more than a couple of seconds to save and quit may be terminated by
the operating system.

 Full-screen operation. Apps do not share the screen with other apps and do not sup-
port floating windows. This restriction is rigid on the iPhone but has been relaxed
slightly on the iPad, which allows modal and partial views that can be made to pop up
or appear attached to other views.

 Loss of focus without notice. On the iPhone, incoming calls force an app into the back-
ground and bring the built-in Phone application to the foreground. Apps may be paused
in the middle of an operation without notice or may be terminated, such as when an SMS
message arrives with a Web link and the user taps it to view it with the Safari browser.

25_495896-ch19.indd 50325_495896-ch19.indd 503 8/31/10 2:53 PM8/31/10 2:53 PM

504 Expanding the Possibilities

 Restricted battery life. Battery life is extremely limited on the iPhone, slightly less lim-
ited on the iPod touch, and reasonably long-lasting on the iPad. iPhone applications
must do everything possible to conserve power, dynamically disabling hardware when
it is not needed or powering it up and powering it down again on a regular polled
cycle.

 No explicit data save and restore. Apps should always save and reload their states
automatically. Apple’s design guidelines suggest that file operations should be invisi-
ble where possible. File save and load features should only be visible to users when
there is no other way to manage application data.

 Constrained data sharing. Apps have access to their own file area, but they cannot
easily share files with other apps or with a desktop computer. This restriction is relaxed
slightly in iOS 3.2, but the file system can be challenging to work with.

iOS mobile devices are an ideal platform for handheld gam-
ing. The touch screen and tilt sensing can create a very tac-
tile and immersive experience; for example, a driving game
or space shoot ’em up can link tilt motions to steering and
navigation. Complexity is not essential. Simple, easy-to-
play games can be as popular and profitable as complex,
animated, shared-world adventures.

Apps can use three different technologies for games. Simple
puzzle games can use UIKit to handle view management,
interfaces to the tilt and orientation features, touch screen
support, and simple animation effects. UIKit is ideal for
puzzle and grid games with simple animations, and it runs
fast enough to make surprisingly complex effects possible.

For more open-ended graphics, the Quartz Core framework,
which is a simplified version of the equivalent framework in
OS X, is a good choice. The essential drawing and animation
features and concepts are similar, but filters are not sup-
ported. 3D and 2D affine transforms, layered graphics, and
keyframed animations are all available.

The most sophisticated effects are possible with OpenGL ES
graphics acceleration, which is ideal for games with ani-
mated 3D environments, characters, and objects. 2D graph-
ics are also possible, but OpenGL ES can be a challenging
environment for newcomers, and the simpler frameworks
are a better solution for apps with simpler requirements.
Adventurous developers can use OpenGL to bypass UIKit and
create completely customized animated interfaces.

OpenGL code is not identical to OpenGL ES code. OS X games
that use OpenGL cannot run on iOS without changes. The
iPhone’s graphic acceleration hardware has limited texture
memory, and apps also have strictly limited memory, so
complex textures and models may need to be simplified.
The advantage of OpenGL ES is cross-platform support.
Other mobile platforms also use OpenGL ES, and an iPhone
game can often be ported to a different platform relatively
simply.

Two versions of OpenGL ES are used on iOS devices. The
iPhone 3G and 8GB iPod touch support OpenGL ES 1.1. The
iPhone 3GS, 16/32GB iPod touch, and the iPad support the
newer and more sophisticated OpenGL ES 2.0 specification,
but can also run apps that use the older technology. The 2.0
specification includes support for software shaders — cus-
tomized dynamic texture and animation code — but is rec-
ognizably similar otherwise.

Games can use the GameKit framework, which implements
Bluetooth discovery and data sharing across two or more
devices. GameKit can be extremely rewarding: apps can
share data and game events with relatively little program-
ming effort. GameKit features can also drive sales in the App
Store, because users are more likely to encourage friends
and family to buy apps so they can play together; this is
most likely for games that include live sharing but also
include a solo mode so that combined play is not essential.
Live voice chat is also supported.

Games and OpenGL on iOS

25_495896-ch19.indd 50425_495896-ch19.indd 504 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 505

Understanding key iOS coding differences
Although Objective-C code for iOS and OS X uses the same coding principles and many of the
same design patterns, the programming model is significantly modified. Some differences include:

 Different classes and frameworks. For example, UIKit is only loosely related to
Application Kit, and it offers a much smaller selection of classes.

 Limited memory, with no swap file. Memory is not paged in iOS. When an application
receives a memory error message from the OS, there is no more memory available. It
must release some or all of its memory, and it may even be shut down without notice.

 Limited memory management. iOS uses retain/release memory management and
does not implement garbage collection. Reference counting is simple in theory but
challenging in practice. Apps often need additional testing to eliminate leaks and to fix
crashes caused by pointer release errors; therefore, it is not unusual for apps to be
released with leaks.

Considering iOS and hardware compatibility
As iOS has evolved and the range of mobile devices has increased, incompatibilities have
started to influence app design. iOS 3.1 runs exclusively on iPhone devices, but apps can also
run on the iPad in a backward-compatibility mode. OS 3.2 runs exclusively on the iPad. OS 3.2
apps cannot run on an iPhone.

iOS 4 supports multitasking. Soon both the iPad and a new iPhone 4G handset will be able to
run OS 4. Limited backward compatibility is supported. Older devices, including the iPhone 3G
and iPod Touch 16MB, can also run OS 4. But selected features, including the multitasking, are
not available.

This leaves developers with a problem: Should they try to maximize sales by creating apps
that can run on older hardware, or should they create more adventurous apps with limited
compatibility?

A practical answer depends on the likely user and sales profile, which will be different for every
app, but the question can have a significant influence on likely sales and needs to be considered.

Understanding iOS Views and UI Design
Views and UI design are a fundamental part of every app. The iOS view classes are recognizably
similar to those used in OS X. However, views are used differently, and you must learn new tech-
niques to create user experiences that follow Apple’s mobile design guidelines.

Working with Windows and views on the iPhone
An iOS includes a single instance of UIWindow. Multiple floating windows are not supported.
The window does not include scroll bars or other screen furniture, and it remains invisible, act-
ing as a placeholder and frame for various view elements.

25_495896-ch19.indd 50525_495896-ch19.indd 505 8/31/10 2:53 PM8/31/10 2:53 PM

506 Expanding the Possibilities

Views are typically loaded as nib files, via a view controller. A view always fills the screen; views
do not float or overlap. There is some support for content scrolling within views for text, Web
pages, PDF files, and static images.

The iPhone screen is too narrow to support drop-down menu feature selection. Instead, views
are swapped. UIKit includes a selection of preset navigation controllers that can be built into
applications to allow users to trigger view swaps and other events. Swaps can be animated to
create special effects, such as cross fades, pushes, spins, and overlays, as well as page curls,
shown in Figure 19.8.

Figure 19.8

Page curls and other animation effects are built
into iOS and can enhance the look and feel of
any project.

25_495896-ch19.indd 50625_495896-ch19.indd 506 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 507

Controllers that implement navigation through view swapping are typically added to the appli-
cation’s main window nib file. Views are swapped in and out behind them, so the controllers
remain visible. More complex configurations are possible, but the standard design pattern
shown in Figure 19.9 is used in many applications.

Figure 19.9

Anatomy of an iPhone application:
The master/root view controller remains
permanently loaded. Other view controllers
can be loaded from nib files and released
as needed. To make them visible, their
views are swapped into the master
controller’s .view property.

App Delegate

UIWindow

Subview

UIViewController

UIViewController.view

UIView

Views, view controllers, and nib files in iOS are similar to
those in OS X. You can assemble view designs, link them to
outlets and actions, and save them to nib files in the same
way — with three differences.

The Bindings and Effects panes are not available in the iOS
version of Interface Builder. You can add animation effects
to your code manually, but filters are not supported and tool
tips are not available. You can emulate bindings with Key
Value Observing in your code, but you cannot create and
change them in Interface Builder.

In Cocoa, views in windows are relatively static. When an
application needs to display a new interaction area, it usu-
ally loads it into a new floating window. iOS only supports a

single window on the iPhone and iPod touch, and a pair of
windows on the iPad. Windows are invisible container
objects. Views are swapped into these windows dynamically
and unloaded when no longer needed. Managing view
swaps is an essential iPhone design skill, and view swapping
code is central in almost all apps.

View swaps are managed by UIWindow, UIView, and
UIViewController . A typical app includes an
instance of UIWindow declared as a property of the app
delegate. To display a view, call the addSubview:
method on the window, passing it a UIView. The view
appears in the window.

continued

Understanding Views, View
Controllers, and nib Files

25_495896-ch19.indd 50725_495896-ch19.indd 507 8/31/10 2:53 PM8/31/10 2:53 PM

508 Expanding the Possibilities

continued

The simplest way to manage view swaps is through a sub-
classed instance of UIViewController. Instead of
passing a UIView directly to the window, pass it indi-
rectly through the controller. Boilerplate code is included in
the Xcode templates:

[window addSubview:
aViewController.view];

[window makeKeyAndVisible];

To display a different view, update a V i e w
Controller.view with a pointer to a UIView.

Views can be swapped semiautomatically. Navigation con-
trollers and tab bar controllers implement standardized navi-
gation solutions, swapping view controllers and their
associated views as needed. Views can also be swapped
manually with custom code managed by a view controller.
Swaps can be triggered by almost any OS event. In many
applications, views are swapped after a button tap. More
complex effects are possible; for example, a location-aware
app can display a new view when the user gets close to a
geographical location. Subviews in a view are stored in an
NSArray. UIView includes methods for inserting and
removing views from the array and rearranging their order.

Because view swapping and controller subclassing is a key
iOS design pattern, Xcode includes a convenient
UIViewController subclass file template, with an
associated nib file. To create new views in your app, create
as many different subclasses of UIViewController
as you need, and swap their views in as required. You can
populate the nib files with user options — buttons, labels,
graphics and contexts, text editable text fields, among oth-
ers — and then add code to the view controller subclass to
manage each item, linking outlets and actions as needed.
For more on outlets, actions, and links, see Chapter 7.

index:0 of the UIView array is the root view. To imple-
ment a manual view swap, allocate an instance of the incom-
ing view controller and load its nib using the
initWithNibName: method. Alternatively, you can
alloc and init instances of UIView dynamically in
your code, adding features and setting options as needed. You
can then swap in the new view by calling the insert
Subview: atIndex:0 method on the currently visible

view. To remove and release a view, call the remove
FromSuperview: method on the visible view.

Optionally, you can preload the new controller with data or
link it to a data source so that it automatically loads and dis-
plays the data when it appears. Data is often processed for
display in the viewDidLoad method in the new con-
troller, which is triggered as soon as the view loads. You can
also use the loadView method to populate the view
dynamically from your code, or by loading a nib at runtime.

Modal views pop up or slide in temporarily — for example,
to display app credits or contact information — and disap-
pear when dismissed, revealing the original view. You can-
not use modal views for navigation. To display a modal
view, allocate an instance of the new view controller and
call presentModalViewController: in the
main view, passing the new controller as a parameter. To
dismiss the modal view, call dismissModalView
Controller: in the main view.

All view swaps can be animated. Modal view swaps offer a
small selection of preset animation, controlled by a constant
loaded into the modalTransitionStyle property
of the main view controller. Non-modal view swaps can be
animated with a custom animation block that selects a pre-
set animation effect, such as a page curl or cross fade, and
sets an animation duration.

Because views can be swapped, they must be able to exchange
messages and data with each other. Your app can use the pro-
tocol/delegate design pattern to implement message passing,
or it can make direct connections between objects in the inter-
face and a root controller using the responder chain.

The view system can seem complex, but it does not have to
be difficult to work with. To avoid confusion, remember that
the instance of UIViewController included in the
app delegate sets which view is visible. Other instances of
UIViewController can be loaded and released
from memory. They can handle events, but their views
remain invisible unless they are linked into the master con-
troller’s .view property.

Apps typically use boilerplate code to implement view
swapping. An example of this appears later in this chapter in
the section on building a simple application.

25_495896-ch19.indd 50825_495896-ch19.indd 508 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 509

Managing orientation
All mobile devices include orientation sensing. As the user rotates a device, an app can rotate
the view so that the content remains vertical. Figure 19.10 shows how Safari autorotates its con-
tents when the iPhone is horizontal.

Figure 19.10

Autorotation in Safari. Rotating the iPhone automatically rotates the browser and its contents.

On the iPhone and iPod touch, orientation support is optional. Apple suggests that the portrait
upside-down orientation is not supported because users may find it confusing, particularly if
the phone is upside down when a call arrives. On the iPad, apps must support every orientation.

Orientation support is managed by each view controller. Simple apps can implement autorota-
tion by including the shouldAutorotateToInterfaceOrientation: method, return-
ing YES for each supported orientation. To allow rotation to every orientation, use:

- (BOOL) shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation) interfaceOrientation {

 return YES;
}

25_495896-ch19.indd 50925_495896-ch19.indd 509 8/31/10 2:53 PM8/31/10 2:53 PM

510 Expanding the Possibilities

If you include this code in a view controller, iOS automatically rotates the view. Items in the
view should have autosizing disabled in Interface Builder, as shown in Figure 19.11, to keep
them positioned and sized correctly in the view as it rotates.

Figure 19.11

To disable autosizing, click the lines in the Autosizing box. All lines should be dashed, not solid.
Use the rotation preview feature in IB to test the view before saving it.

 T I P
You can preview rotations in Interface Builder. To rotate a view, click the curved arrow icon at the top right of the View
window. You can use this feature to check that subviews are anchored correctly.

It is not always possible to create views that autorotate correctly; for example, items in busy
views may overlap after rotation. To customize rotation effects, you can also create two or more
views to support different orientations and swap them in as needed.

25_495896-ch19.indd 51025_495896-ch19.indd 510 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 511

A willRotateToInterfaceOrientation: message is sent to a view controller just
before rotation. For more complex effects, the rotation process can be split into two stages. A
didAnimateFirstHalfOfRotationToInterfaceOrientation: method is triggered
just before the second stage. You can place view switching code, described later in this chapter,
in either method to swap views to match the new orientation.

 C A U T I O N
Orientation handling is not completely reliable. To work around this, you can add code to monitor the accelerometer
independently, creating rotation events as needed. This is not a simple project, but it can be more reliable and
smoother than the standard OS approach. You can also use it to bypass the default rotation animations and replace
them with alternative more complex effects, such as cross fades or spin-out/spin-in movements.

Adding navigation and control features
UIKit includes a selection of standard classes to manage in-app navigation. Apps typically
include one or two of these classes. Navigation options should be clearly visible and kept as
simple as possible.

Tab bars, shown in Figure 19.12, implement modal view switching. When the user taps one of
the items on the bar, it automatically selects a preassigned view controller, loads its view from a
nib file, and displays it. Users can customize the tab bar, adding items from a preset list, reorder-
ing them, and removing them.

You can use tab bars in a very simple way by adding a list of tab bar items to the tab bar in
Interface Builder and presenting a view controller class within Interface Builder. Tapping a bar
item selects and loads a view controller class, automatically loading and displaying its view
from the associated nib. The view switching and class selection are built into the tab bar and do
not need extra code.

Tab bars can also create more complex effects, loading other classes such as table views, which
display lists of selectable and editable items, or image pickers, which are prebuilt photo selec-
tion classes that access images in a device’s photo library. Optionally, tab bar items can be
badged to display a number or very short string in a red oval to indicate items that need atten-
tion or to offer users extra information.

Toolbars, illustrated in Figure 19.13, offer a selection of items that can be tapped to trigger
application features, such as play/pause features in a media player or general done/cancel
selections. Toolbar items are independent and do not interact. They highlight momentarily
when tapped, and they use target/action selection to trigger selected methods in an app.

25_495896-ch19.indd 51125_495896-ch19.indd 511 8/31/10 2:53 PM8/31/10 2:53 PM

512 Expanding the Possibilities

Figure 19.13

Xcode does not include a toolbar template, but
toolbars are used for navigation in many of the
iPhone’s built-in apps, such as the iPod app
shown here.

Figure 19.12

A tab bar template is included in Xcode and
demonstrates how to swap between two
views without extra code.

Although toolbars can implement view switching and navigation, they are more usually used
for features that create a visible response within a view without swapping it. The list of com-
patible bar button items includes fixed and flexible spacers that control the horizontal layout
of buttons on the bar. Adding spacers automatically positions buttons on the bar so they fill
the space in the most elegant way.

Both toolbars and tab bars include a small list of graphic identifiers — preset text and icons
included to support common app features. For example, selecting the Favorites identifier
adds a “Favorites” label to a tab bar item and displays a star icon.

25_495896-ch19.indd 51225_495896-ch19.indd 512 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 513

The navigation controller class implements hierarchical view switching and is often used to sim-
ulate drop-down list navigation. The controller implements a navigation stack — a linked list of
view controllers. As users drill down into the hierarchy, controllers are pushed onto the stack
and a back button automatically appears on the controller bar. As users move back up through
the hierarchy, controllers are popped and released. The back button is created and named
automatically. It pops the previous controller from the stack and triggers an associated view
switch when tapped. The iPad example shown in Figure 19.14 illustrates a split view with two
navigation controllers: Settings and Keyboard. The Settings bar is decorative and is used as a
large title bar for the combined view. The iPhone equivalent, illustrated later in Figure 19.16,
displays a single controller at the top of the view.

 N O T E
You must add a navigation bar to a view to implement navigation and add a Navigation Item subview to display a title
on the bar. The Navigation Item includes four empty placeholders: the title view, and separate back, left, and right
buttons. The back button is allocated and released automatically. You can allocate and link a right button to add extra
features. The title view is a generic view and by default displays a label. You can set the label text from within your
code using its title property, or give it a fixed title within Interface Builder.

Figure 19.14

The iPad’s split view feature works well with two navigation bars and a table view, illustrating
how navigation flows naturally from left to right and how table view cells can be customized
with images, active subviews, and display groups.

25_495896-ch19.indd 51325_495896-ch19.indd 513 8/31/10 2:53 PM8/31/10 2:53 PM

514 Expanding the Possibilities

To simulate a drop-down list, navigation controllers are often used with table views, which dis-
play a scrollable vertical list of options. Table views are sophisticated and have many features.
When used for navigation, they are typically shown with extra chevron views to indicate that
tapping on a table cell will view switches and take a user to the next level in the hierarchy. They
also have other applications; cells can be displayed with thumbnail photos or icons, switches,
sliders, labels, and other standard features. They can also be completely customized and loaded
from a nib file. Navigation, control, and display features can be mixed in a single table.

 C A U T I O N
The navigation controller stack manages a list of view controllers. Do not confuse it with the view array. The view
array is part of the nib system and is included in every app. The navigation stack is a separate list of controllers, used to
implement forward/back navigation. It is only implemented when the app includes a navigation controller.

Custom switching options include view switching through rotation events, tilt and shake events,
touch events, or even sound, speech, or music recognition. In iOS, view switching features are
not tied to specific classes or selection events; they can be triggered by any of the features in
Cocoa Touch. In theory, similar flexibility is possible in Cocoa, but the touch screen and other
hardware features built into mobile devices encourage experimentation and can create experi-
ences that would be difficult or impossible to include in a Cocoa application.

A key feature of app design is that views and their controller classes are very closely linked and are
often designed anew for each application. Each view implements a small number of cleanly
defined features. The associated code in the controller class preloads a view with content from the
application’s model and data source and manages the user interactions that trigger each feature.

This makes it possible to develop complex applications with a small number of controller
classes; for example, a mini-encyclopedia might use only two or three different view controller
classes to display and navigate through hundreds of pages of content.

 T I P
Custom view controller classes can proliferate uncontrollably in iPhone apps. Do not reinvent the wheel by creating a
new class for every view.

Handling touch events
Instead of a mouse, iOS apps generate touch events, which are processed by an application’s
responder chain. From OS 3.2 onward, you can use the UIGestureRecognizer class to trig-
ger actions automatically whenever the OS recognizes one of the standard gestures. This dra-
matically simplifies touch processing and makes it easier to include a range of touch features.

Some apps still require custom touch handling. Manual touch processing is moderately com-
plex. Touch events trigger four methods: touchesBegan: when a new touch is registered;
touchesMoved: when movement is registered; touchesEnded: when a touch ends; and
touchesCancelled: when the OS deletes existing touches so that it can respond to an
external event, such as an incoming phone call.

25_495896-ch19.indd 51425_495896-ch19.indd 514 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 515

Touches arrive as an NSSet of touch objects, with an associated instance of UIEvent that can
supply optional timing information. Counting the items in the NSSet returns the number of
touches. To extra individual objects, copy the NSSet to an NSArray and read touch items at
each index. Each touch can return a position coordinate relative to its view. For example:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 NSUInteger numTaps = [touch tapCount];
 CGPoint pt = [touch locationInView:self];
}

This sample code implements a single touch handler. The touch object is a placeholder used
to read touch information passed to the method. numTaps returns the current number of taps,
and pt is a CGPoint that holds the touch coordinates in the view. Equivalent code for a
touchesMoved: implementation is identical. To track a touch, read pt in touchesMoved:
and update your app as it changes. For a multi-touch handler, replace UITouch *touch with
NSArray *allTouches and enumerate through the UITouch items in the array to read
each position.

To recognize gestures manually, track touch movements and compare them with a model of
the gesture. This is a simple problem; for pinch and stretch, gestures save the initial distance
when touchesBegan: registers two touches and compare it with the current distance calcu-
lated in touchesMoved:. Optionally, you can use the time stamps in each UIEvent to track
touch velocity and filter out very slow or very fast movements. More complex gestures require
more complex modeling; for example, to recognize a spiral, you must save the initial angle as
well as the initial distance, and track changes in both.

Working with windows and views on the iPad
The iPad OS includes all the view controller and event types available on the iPhone. Views,
view controllers, user events, and touch methods are identical, but extra classes are available to
enhance the larger screen. Split views offer two side-by-side views, with fixed widths of 320 and
704 pixels. Split views are only active in landscape orientations. In portrait orientations, only the
rightmost view is visible. The split view controller automatically hides the leftmost view. Apple’s
UI guidelines recommend using split views for master/detail content, typically using a master
list of items in a table view at the left, to select more information, and further options at the
right. However, either view can be a standard nib-loaded view, with an associated controller; for
example, the left view can show a game control panel, while the right view displays a play area.

Popovers can display temporary pop-up views of any size. The position is fixed — the popover
cannot be dragged — but it provides a container for any type of view. Possible applications
include history lists, palettes of options, high score or other tables, or zoomed previews/over-
views.

25_495896-ch19.indd 51525_495896-ch19.indd 515 8/31/10 2:53 PM8/31/10 2:53 PM

516 Expanding the Possibilities

 C A U T I O N
Toolbars and tab bars do not work well with split views and popovers, especially when they are placed at the bottom
of the screen. Apple’s guidelines suggest that apps should not use them. However, you can add two separate naviga-
tion bars to the views in a split view layout. This improves the appearance of an app, even if the navigation bar is cos-
metic and does nothing.

Developing for iOS in Xcode
The iPhone Simulator and its target devices support a subset of the standard Xcode debugging
tools. Interface Builder is also simplified. The Library lacks many of the standard objects avail-
able in OS X, including menu trees and the various data controller types. UIKIt objects replace
the view design objects available in OS X. To support the different frameworks in iOS, the
SDK includes alternative documentation, new code samples, and a different set of iOS project
templates to match various possible app types. Template details are listed a little later in
this chapter.

Using the Xcode Simulator
The Xcode Simulator is adequate for basic testing, and it can emulate display rotation and
shake events. However, the Simulator is not a perfect model of the target devices. Code runs
much more quickly in the Simulator, so it cannot be used for performance testing. There may
also be minor differences between the simulated SDK and the iOS running on a real device.
Code that works in the Simulator may occasionally crash on hardware and vice versa.

 C R O S S R E F
For information about downloading and installing Xcode and the iPhone Simulator, see Chapter 4.

The Simulator can emulate an iPhone and an iPad. To test iPhone apps on the iPad, choose the
iPad Simulator as the Active Executable in the Build selector drop-down menu in Xcode. This
runs the app inside the iPad’s emulation window.

To convert an iPhone project to an iPad project, make a safety copy outside Xcode. Load the
copy into Xcode, right-click a compiled target, and choose Upgrade Current Target for the iPad.
This modifies the nib file and makes it possible to run the app as a full-screen native iPad app.
There is no way to downgrade an iPad project back to the iPhone.

 T I P
In spite of its limitations, you should use the Simulator for most of your development cycle. Compiling and loading an
app into a hardware device take an extra minute or two, which slows down development. It can also clutter devices
with unwanted, half-finished apps.

25_495896-ch19.indd 51625_495896-ch19.indd 516 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 517

The accelerometer and compass are absent in the Simulator. Core Location returns a single
position fix for the location of Apple’s headquarters in Cupertino. Camera features are not avail-
able, even on Macs with a camera, and the photo, video, and iPod libraries are not fully imple-
mented. To fully test code that accesses these features, you must run your app on a real device.

 N O T E
You must use the USB connector to load apps into a device. Bluetooth and wireless downloading are not supported. To
use the live debugging tools, you must run apps with the cable connected. Once an app has been installed, you can dis-
connect the cable and test it away from your Mac, but you cannot debug it without the cable link. Installed apps can
be docked, deleted, and rearranged on Springboard like other apps.

Introducing the Xcode templates
As with OS X, Xcode includes a set of application templates for iPhone and iPad projects, shown
in Figure 19.15. They include barebones app skeletons that you can flesh out with your own
code. A selection of relevant useful methods is included in each file, but most are commented
out. The included methods are not comprehensive (many more are listed in the class reference
documentation) but are a convenient reminder of the most widely used features in each class.

Figure 19.15

A first view of the templates included in the 3.2 iOS SDK. Use the Product drop-down list to
choose either an iPad or iPhone project.

25_495896-ch19.indd 51725_495896-ch19.indd 517 8/31/10 2:53 PM8/31/10 2:53 PM

518 Expanding the Possibilities

The Navigation-based Application template shown in Figure 19.16 creates an empty table view
with a navigation controller. You must add your own code to populate the table from a data
source, implementing optional features for each cell as needed. Code to switch views by push-
ing a new controller onto the navigation stack is included but commented out.

 T I P
To create a hierarchical multi-view application using the Navigation-based application, add one or more new table-
view-based classes. Classes either display another menu-like selection list or a final view that displays information and
control options.

Figure 19.16

In the Navigation-based Application template, the Navigation Controller remains permanently
visible and the RootViewController swaps views behind it. The default nib includes an instance
of UITableView.

25_495896-ch19.indd 51825_495896-ch19.indd 518 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 519

The OpenGL ES Application template illustrated in Figure 19.17 creates an OpenGL view, with a
special EAGLView view subclass that provides a context for OpenGL code. There are two ren-
dering classes: ES1Render and ES2Render. The first supports OpenGL ES 1.1 code, the sec-
ond supports OpenGL ES 2.

EAGLview.m includes an initWithCoder: method that automatically picks a renderer by
selecting between these two classes. If the OpenGL ES 2 renderer is not available on the target
device, the method falls back to the ES1Render class.

 T I P
By default you must include code for both renderers, which effectively means writing your OpenGL ES code twice. If
your app does not use any of the software shaders or other advanced features in OpenGL ES 2, you can simplify it by
editing the conditional test in initWithCoder: to force selection of the ES1Render class. You can then
add your code to ES1Render.m — and ignore ES2Render.m because it is never referenced.

Figure 19.17

The OpenGL ES Application template includes sample code to create and animate a colored
square. The Shader files included in the template contain very simple color and animation
code used with the ES2Renderer.

25_495896-ch19.indd 51925_495896-ch19.indd 519 8/31/10 2:53 PM8/31/10 2:53 PM

520 Expanding the Possibilities

The Split View-based template shown in Figure 19.18 is only available on the iPad. It creates a
split view display with a table view at the left and a blank view at the right. A split view control-
ler manages both views. The table view is allocated and initialized dynamically and is not
loaded from a nib file. You can customize this template to load a view of your choice — with a
custom nib — by replacing the table view creation code with code to load and display a custom
view controller class.

Figure 19.18

The table view that appears at the left of the Split-view template is not included in the project
nib files; it is added dynamically in the code when the app runs.

 C A U T I O N
When you create a new view controller class for the iPad with a nib, the nib is a standard size and covers the full
screen. You cannot edit this size in Interface Builder, but you can resize a view dynamically in code after it loads. For a
split view, the size is irrelevant; the rightmost detail view covers it automatically, leaving a visible 320 pixel width at
the left.

25_495896-ch19.indd 52025_495896-ch19.indd 520 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 521

The Tab Bar Application template illustrated in Figure 19.19 creates an app with two tab bar
items that switch between two views. To add more views, or to change the type of view
selected by the tabs, open the MainWindow.xib file in Interface Builder, select the Tab Bar
Controller, and edit the list of the View Controllers visible in the Attributes pane to add or
remove controllers or change their type. Add a new view controller class — customized, as
needed — for each new list entry. Add a Tab Bar Item subview to each controller. When you
arrange the hierarchy like this, the main Tab Bar Controller automatically switches views when
each tab bar item is tapped.

Figure 19.19

The two views in the Tab Bar Application template are switched automatically by the Tab Bar
Controller. No code is needed.

The Utility Application template shown in Figure 19.20 creates a two-view application. The first
view is empty with a single information button at the lower right. Tapping the button spins the
view to reveal a modal flipside view, with a Navigation bar that shows a title and includes a
Done button. Tapping the Done button spins the view again to reveal the original.

25_495896-ch19.indd 52125_495896-ch19.indd 521 8/31/10 2:53 PM8/31/10 2:53 PM

522 Expanding the Possibilities

The template is designed for a very simple two-view app. Apps rarely are this simple, and it is
more useful as an example of two techniques: switching views with the presentModal
ViewController: method and using protocol/delegate communication between views.
The flipside view includes a delegate property, used as a link to the main view controller. When
the user requests a return, the flipside view triggers a custom flipsideViewController
DidiFinish: method in the delegate. In the delegate — which is the main controller — this
method calls the dismissModalViewControllerAnimated: method, and the modal
view disappears and is replaced by the main view. You can populate both views with further
features as needed.

 T I P
The Done button and the Navigation bar on the flipside view are large and distractingly visible. A more typical app
might implement the Done feature with a button, a segmented switch, or one of the touch methods. To simplify the
flipside view, open its nib file, delete the Navigation bar, and replace it with an alternative return method.

Figure 19.20

The main view in the Utility Application template uses a light info button graphic to swap
views. The flipside view includes a less subtle navigation bar and Done button.

25_495896-ch19.indd 52225_495896-ch19.indd 522 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 523

The View-based Application template shown in Figure 19.21 is minimal but versatile. It includes a
window that loads a separate view controller with an associated nib that displays an empty
gray view. The view is blank, but the controller code includes a minimal list of useful methods
that have been commented out, including viewDidLoad.

To create a more complex app, assemble an interface from subviews in the nib file in the usual
way and link them to new custom methods in the view controller. To create an app with more
views, add one or more new controller classes to the project and include view switching code in
each. You can also use this template to create apps with navigation controller or tab bar switch-
ing. Add these items to the main window nib, not the view controller nib. You can then use
them to load further view controllers, as needed.

Figure 19.21

The View-based Application template is the classic app configuration, with a subclass of
UIViewController loading its view from the associated nib.

25_495896-ch19.indd 52325_495896-ch19.indd 523 8/31/10 2:53 PM8/31/10 2:53 PM

524 Expanding the Possibilities

The Window-based Application template shown in Figure 19.22 includes a single app delegate
with an associated nib file that includes an instance of UIWindow. This template is the most
skeletal and lacks a view controller. You can use it to build a micro-app that uses as little mem-
ory as possible, adding extra features, outlets, and action methods directly to the app delegate.

You can also use this template as a starting point for apps that use a navigation controller or a
tab bar. Generally, it is easier to start from the other prebuilt templates for these app types, but
if your app has unique navigation requirements, it can be simpler to build them from scratch.

Figure 19.22

The Window-based Application template is similar to the View-based Application template
without the extra controller — and without it, there is no way to swap views.

Building a Simple Application
Now that you have been introduced to the key features of iOS, you can create your first app.
This app is more complex than a hello world app; it demonstrates how to build views with sim-
ple features and how to implement view swapping.

25_495896-ch19.indd 52425_495896-ch19.indd 524 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 525

Begin by creating a new project in Xcode using the View-based Application template and
selecting the iPhone as a target in the drop-down list in the center of the template window.
Save the project as FirstApp. Select the Simulator as a build target using the drop-down list at
the top left of the Xcode window. Check that the Target SDK is available, as shown in Figure
19.23. From the same menu, set the Active Executable to iPhone. Build and Run the template.

 C A U T I O N
In some versions of the SDK, you must set the base SDK manually in the Project Info dialog before you can select it in
the Configuration drop-down list. It may be set to a default that does not support the iPhone SDK.

Figure 19.23

If the target SDK is missing, open the Project Info window, choose Build ➪ Architectures ➪
Base SDK to display a menu that can add it to the project. You can then choose it in the
Configuration drop-down menu and set it as an Active Executable.

The app loads in the iPhone Simulator. If it appears in the iPad Simulator, double-check that you
set the Active Target option correctly. You may need to set it again whenever you quit and
restart Xcode.

25_495896-ch19.indd 52525_495896-ch19.indd 525 8/31/10 2:53 PM8/31/10 2:53 PM

526 Expanding the Possibilities

Adding view controller subclasses
The empty gray view isn’t very exciting, but you’re about to change that. Your new app will
have two views, with buttons that switch between them. Start by making two new subclasses
of UIViewController to hold the extra views. Many apps use a subclass of UIView
Controller, so it is included in the list of file templates in Xcode, with an option to create
a new nib file with the new class files.

Right-click the Classes folder and choose Add ➪ New File. Choose Cocoa Touch Class at the top
left, and click the UIViewController subclass file template. Make sure the With Xib for user
interface option is selected.

Click Next, and save the new class as AViewController. Xcode adds it to the project, with a nib
file. Repeat this sequence to add another new class called BViewController, with its own sepa-
rate nib.

The app now has three view controllers and three nib files — the original controller with a blank
view generated by the template, and two new view controllers, as shown in Figure 19.24. Three
controllers may seem overkill for a two-view app, but it simplifies the project. Advantages
include:

 Simplified memory management. View controller classes cannot hold pointers to
themselves or their properties after they have been released. A root controller acts as a
convenient pointer store while managing other views, making it possible to release
them safely.

 Simplified event handling. You can include code to manage user events in their view
controller, or you can let the responder chain pass them up to the root controller. This
can simplify event handling; it is easier to code than an explicit delegate, and it “just
works.”

 Simplified data storage. Although it is not quite official Model-View-Controller
(MVC), you can add a data store, or an interface to a data store, to the root controller to
manage all of the app’s data needs.

Implementing the view controllers
With this design pattern in mind, you can start coding the app. Begin by defining the extra view
controllers as properties in the root by adding them to the header file. Include an action
method called showBView: that triggers the initial view swap.

@class AViewController;
@class BViewController;
@interface FirstAppViewController : UIViewController {
 AViewController *aViewController;
 BViewController *bViewController;
}
@property (nonatomic, retain) AViewController *aViewController;
@property (nonatomic, retain) BViewController *bViewController;
-(IBAction) showBView: (id) sender;
@end

25_495896-ch19.indd 52625_495896-ch19.indd 526 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 527

Figure 19.24

The complete class and resource list for the app includes an app delegate, three view controller
classes, and four nib files. Many apps use a similar design, so you may want to save this project
for re-use.

In the implementation file, add start-up code that releases the original empty gray view and
replaces it with the contents of AViewController.xib. This code goes into the viewDid
Load method in the root controller, which is broadly equivalent to awakeFromNib in a Cocoa
project.

#import “FirstAppViewController.h”
#import “AViewController.h”
#import “BViewController.h”
@implementation FirstAppViewController
@synthesize aViewController, bViewController;
- (void)viewDidLoad {
 //Load the first view to replace the default view in the root
 //controller nib
 self.aViewController = [[AViewController alloc]
 initWithNibName: @”AViewController” bundle: nil];
 [self.view release];
 [self.view insertSubview:aViewController.view atIndex:0];
}

25_495896-ch19.indd 52725_495896-ch19.indd 527 8/31/10 2:53 PM8/31/10 2:53 PM

528 Expanding the Possibilities

This code is simple, but there is a lot going on. It loads an instance of the AViewController
and initializes it with its nib. Then it plugs a pointer to this new controller into the correspond-
ing property in the root view, saving it for later.

The next line releases the default gray view from memory. This is slightly risky: this code may
crash if the OS tries to refresh or reference the view. In this example, the view is not being
redrawn or refreshed, so it works reliably. Finally, the insertSubview: method adds the
view loaded from AViewController.xib into the app’s view hierarchy, displaying it.

Creating views
You can now edit the AViewController.xib file. The example view shown in Figure 19.25
includes a large label and a smaller round rect button. The button triggers the swap to the
BView.

Figure 19.25

The first view, with a label and a button. You can customize the button graphic by loading it
with your own PNG files in the Inspector. This example uses the default.

25_495896-ch19.indd 52825_495896-ch19.indd 528 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 529

If you save the new nib and build and run the app, it will load and display the AView nib design,
as shown in Figure 19.26.

Figure 19.26

Running the app loads the new nib and displays it.

The new button remains unlinked. It flashes when tapped, but does nothing. To fix that, add a
showBView: method to FirstAppViewController.m with code to load and display the
B view.

-(IBAction) showBView: (id) sender
{
 self.bViewController = [[BViewController alloc] initWithNibName:

@”BViewController” bundle:nil];
 [aViewController.view removeFromSuperview];
 [self.view insertSubview:bViewController.view atIndex:0];
}

This is almost identical to the code in viewDidLoad. It loads the BViewController nib file,
then calls removeFromSuperview to unlink the previously visible view from the view array
and release it. The last line inserts the B view into the hierarchy to display it.

25_495896-ch19.indd 52925_495896-ch19.indd 529 8/31/10 2:53 PM8/31/10 2:53 PM

530 Expanding the Possibilities

Save the file and choose File ➪ Reload All Class Files in Interface Builder to add the new show
bView: method as a linkable action. Click the round rect button in the view to select it. Click
the Connections tab in the Inspector window to reveal a list of events. Link the button’s Touch
Down event to the First Responder object, as shown in Figure 19.27. Select the showBView:
method from the floating pop-up menu when it appears.

Figure 19.27

Linking a button event to First Responder, which bypasses the class controller and sends it to
the app’s root view controller.

 C A U T I O N
The list of user events is a standard feature in UIKit. Objects display the full list in IB, but most generate only some of
the events; for example, round rect buttons do not support editing, so they never send the Editing Changed event.
Text fields do not generate Touch Down events. If your view is not generating events as it should, double-check the
events you have linked here.

25_495896-ch19.indd 53025_495896-ch19.indd 530 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 531

Handling events with the Responder Chain is a tricky linking technique — linking to First
Responder bypasses AViewController and sends Touch Down events directly to showB
View: in the root controller. You can use this trick to handle almost any event type in any con-
text, but it is not MVC-approved and you should save it for view swap events handled by a root
controller. If you extend AViewController with more features — buttons, sliders, and so
on — add the code to handle them to the AViewController.m file in the usual way.

You can now edit the B view nib to show a large label and another round rect button, as shown
in Figure 19.28. Leave the button unlinked for now.

Figure 19.28

Designing the B view, which is very similar to the A view, with minor labeling changes

Save the edited nib, and build and run the application. Tap the button in the A view, and the B
view appears, as illustrated in Figure 19.29.

25_495896-ch19.indd 53125_495896-ch19.indd 531 8/31/10 2:53 PM8/31/10 2:53 PM

532 Expanding the Possibilities

Figure 19.29

Testing that the button in the A view displays the B view

Handling events with protocol messaging
Next, add code to the B view to swap back the views; until you do this, the button in the B view
remains inactive. You could repeat the previous steps to add a showAView: method in the
root controller, modifying the code slightly so it loads the A view nib and linking it to the button
in the B view via First Responder. This is the simplest solution and it would work perfectly.

This example demonstrates how to solve the problem by creating a delegate protocol. Unlike
the simpler option, the protocol can pass parameters between the view controllers. Begin by
adding a new delegate protocol to the interface of the root view controller. Change the declara-
tion in FirstAppViewController.h to:

@interface FirstAppViewController : UIViewController <BViewControllerDelegate>{…

25_495896-ch19.indd 53225_495896-ch19.indd 532 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 533

Now you can define the details of this protocol in BViewController.h, adding other class
features to create a delegate property and an action method.

@protocol BViewControllerDelegate;
@interface BViewController : UIViewController {
id <BViewControllerDelegate> delegate;
}
@property (nonatomic, assign) id <BViewControllerDelegate>

delegate;
- (IBAction)showAController;
@end
@protocol BViewControllerDelegate
- (void)BViewControllerDidFinish:(NSString *)aString;
@end

The header includes a separate showAController method to handle button taps from the
button in the view. Implement this method in BViewController.m so that it calls the
BViewControllerDidFinish: method on the delegate object.

@implementation BViewController
@synthesize delegate;
-(IBAction) showAController {
 [self.delegate BViewControllerDidFinish:@”Back to View A…”];
}

In IB, reload all class files and link this method to the button in the B view.

To finish the app, add an implementation of BViewControllerDidFinish: in
FirstAppViewController.m. If this implementation is missing, the app will crash with a
selector error when the return button is tapped in the B view. Here is a simple version:

- (void)BViewControllerDidFinish:(NSString *)aString {
 NSLog(aString);
 self.aViewController = [[AViewController alloc] initWithNibName:

@”AViewController” bundle:nil];
 [bViewController.view removeFromSuperview];
 [self.view insertSubview:aViewController.view atIndex:0];
}

It is almost identical to the previous view swapping code fragments: it allocates and initializes
the A view controller, removes the B view, and replaces it with the A view.

25_495896-ch19.indd 53325_495896-ch19.indd 533 8/31/10 2:53 PM8/31/10 2:53 PM

534 Expanding the Possibilities

One final step is missing: there is no delegate defined for the B view controller. To set one, add a
line to the showBView: method on FirstAppController.m, nominating the root con-
troller as the delegate.

-(IBAction) showBView: (id) sender
{
 self.bViewController = [[BViewController alloc] initWithNibName:

@”BViewController” bundle:nil];
 self.bViewController.delegate = self;
 [aViewController.view removeFromSuperview];
 [self.view insertSubview:bViewController.view atIndex:0];
}

Build and run the app, and test it by tapping the buttons to swap the views. An NSLog call lists
the string to the console, so that you can confirm that data is being passed to the root view
controller from the B view, as shown in Figure 19.30.

Creating an animated view swap
The instant view swap effect works, but is unimpressive. You can improve your app’s produc-
tion values by animating it. iOS animation code is similar to OS X animation code, which
was introduced in Chapter 17. Adding animation code around the view swap creates longer
versions.

- (void)BViewControllerDidFinish:(NSString *)aString {
 NSLog(aString);
 self.aViewController = [[AViewController alloc] initWithNibName:

@”AViewController” bundle:nil];
 //Start of the animation code
 [UIView beginAnimations:@”An Arbitrary Transition Name”

context:nil];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseOut];
 [UIView setAnimationDuration:1];
 UIViewAnimationTransition transition;
 //Create and load a transition type
 transition = UIViewAnimationTransitionFlipFromRight;
 [UIView setAnimationTransition: transition forView:self.view

cache:YES];
 [bViewController.view removeFromSuperview];
 [self.view insertSubview:aViewController.view atIndex:0];
 [UIView commitAnimations];
}

25_495896-ch19.indd 53425_495896-ch19.indd 534 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 535

Figure 19.30

The finished app. Choose Run ➪ Console to confirm that the B view is passing a string
parameter back to the root view controller when its button is tapped.

In this example, a beginAnimations: method marks the start of an animation block, and a
commitAnimations method ends it and also triggers the animation. The transition
property selects an animation type; here, a flip effect, shown in Figure 19.31. The animation
Curve constant defines how the animation develops over time. To animate the first view swap,
add equivalent animation code to the showBView: method. For more details about animation
properties and constants, see the UIView class documentation.

25_495896-ch19.indd 53525_495896-ch19.indd 535 8/31/10 2:53 PM8/31/10 2:53 PM

536 Expanding the Possibilities

Figure 19.31

The B view in motion. The view is automatically
darkened as it spins to enhance the effect. The
UIWindow background color attribute has also
been set to black in IB to contrast the white views
with a black background.

Selling in the App Store
Anyone who has qualified for the $99 Standard Developer Program annual fee can submit an
app to the App Store. Not all apps are accepted. According to Apple, approximately 95 percent
of submitted apps pass certification, with an average approval time of two weeks. Apps may be
refused because of one or more of the following reasons:

25_495896-ch19.indd 53625_495896-ch19.indd 536 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 537

 Bugs and limited functionality. If the app crashes during testing or its features do
not match its description, it is refused.

 Unacceptable content. Apple rates apps and uses an approval grid to check for adult
features, representations of real or simulated violence, and other criteria. Access for
minors is controlled. Apps that cannot be rated are not accepted.

 Unacceptable commercial features. Apps that use excessive cellular bandwidth or
conflict with the current or future plans of Apple and its mobile partners are not
accepted.

 Unacceptable software features. Apps that use undocumented API (Application
Programming Interface) calls or non-Apple frameworks are not allowed.

There is no way to buy, sell, or load apps independently without jailbreaking — downloading a tool
to hack the security of — an iPhone. Jailbreaking is inherently risky and may brick (lock) a phone
permanently. An alternative developer network exists for jailbroken phones, with its own alterna-
tive app market, but it is much smaller than Apple’s App Store and is not officially supported.

Figure 19.32 shows the Developer Program Web site.

Figure 19.32

The Developer Program Web site includes links to iTunes Connect for App Store uploads and
the Developer Program Portal for security and provisioning at the top right of the page.

25_495896-ch19.indd 53725_495896-ch19.indd 537 8/31/10 2:53 PM8/31/10 2:53 PM

538 Expanding the Possibilities

 C A U T I O N
Jailbroken phones are relocked by each new official iOS update, wiping existing unofficial apps. There are advantages
to jailbreaking, including open app development and simple Unix shell access to the iPhone’s file system, but jail-
breaking remains more of a hobbyist and enthusiast interest and has had a minimal impact on the main app market.

Understanding certificates, provisioning
profiles, and permissions
Before you can submit an app to the App Store, you should test it on hardware and then create
a special App Store distribution build. Testing and distribution are controlled with code signing
technology. Apps run on the Simulator without code signing, but can only be tested on hard-
ware devices after a complex certification process. This gives Apple more control over the app
market — permission to test and sell apps can be revoked without notice — but it also compli-
cates development.

You can manage code signing permissions and files in the iPhone Developer Program Portal,
which is listed as a link on the main iPhone Dev Center Web page. Creating a full set of permis-
sions isn’t simple, but most of the steps are a one-time requirement.

The full set of permissions includes:

 A Developer Certificate. Needed to test apps on hardware.

 A Distribution Certificate. Used to create a distribution build of an app, ready for
uploading to the App Store.

 N O T E
Developer and Distribution Certificates are mutually exclusive — an app can only be signed with one or the other.
When you create a distribution build for the app store and sign it with a Distribution Certificate, you cannot run that
build on a device. The only way to run a distribution build is to buy it from the App Store. Fortunately, promotional
certificates are available in iTunes Connect, and you can use them to “purchase” your own apps for free. Unfortunately,
they are only valid in the U.S. iTunes Store.

 An App ID. A short identification string. A single wildcard App ID can be used as a
placeholder for an app’s Bundle Identifier in Xcode, and you can use the same ID in all
of your apps.

 N O T E
If you use Apple’s Push Notification or In-App Purchase services, which allow users to buy content from an online store
in their apps or receive event notifications from a Web server, you must create a unique ID for each app.

 A Device List. Keeps a list of your test devices. You can add up to 100 devices per year.
Figure 19.33 illustrates how to find and copy a device ID in Xcode.

 A Provisioning Profile. A temporary key imported into Xcode and installed on your
hardware devices. It includes a copy of the ID in your Developer Certificate and a list of
your devices. When the two match, Xcode allows you to install your app on a hardware
device, and the device allows you to run it. A Provisioning Profile expires after three
months. Apps built with it stop working.

25_495896-ch19.indd 53825_495896-ch19.indd 538 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 539

Figure 19.33

Highlighting a device ID to copy it when you create a device list. When the online wizard creates
a provisioning profile, download it and drop it onto the Provisioning Profiles item in the left-
hand pane.

Generating and using certificates and permissions
Apple has now automated this process and created an online Assistant that takes you through
it step by step, as shown in Figure 19.34. When the Assistant completes, you can download a
profile to your desktop.

Xcode projects include a Code Signing selection feature in the Project Properties dialog. Choose
your Developer Certificate here, while you are creating a project, and your Distribution
Certificate before the final App Store build. Xcode reads the certificates from your keychain and
builds your user keys into each app.

To install a Provisioning Profile in Xcode, choose Window ➪ Organizer. Drag and drop the
provisioning profile file from the desktop onto the Provisioning Profiles item under IPHONE
DEVELOPMENT. When an app builds for a device target, Xcode automatically tags it with the
profile.

25_495896-ch19.indd 53925_495896-ch19.indd 539 8/31/10 2:53 PM8/31/10 2:53 PM

540 Expanding the Possibilities

Figure 19.34

The online Assistant

To install a profile on a device, choose Provisioning Profiles to see a list of your profiles. Attach a
device, wait for it to be recognized, and drag a profile from the list at the top to the device
under the DEVICES divider.

Before you can run the app on the device, you must select a profile by choosing
Settings ➪ General ➪ Profile on the device. This is a one-time requirement. When the profile
expires, repeat Step 12 to create a new profile, install it in the Organizer to load it into Xcode,
and select the new profile on the device. You can use the same profile for every device you have
listed on the Developer Program Portal.

After completing these steps, choose the Device build target in Xcode to build, install, and run
an app on a device.

 N O T E
You can use the ad hoc distribution option on the Developer Program Portal to create and share profiles and test builds
among beta testers without using the App Store. Testers can install the profile and app via iTunes. For details, choose
Distribution ➪ Ad Hoc on the Portal.

25_495896-ch19.indd 54025_495896-ch19.indd 540 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 541

Packaging an app for the App Store
Although Xcode includes a Release build target, this simply removes debugging information
from the build. It is not suitable for App Store submissions. Packaging an app for distribution
requires an extra step that installs a Distribution Certificate, as shown in Figure 19.35. If you do
not have a Distribution Certificate, follow the steps in the previous section to create one before
you start.

 1. In Xcode, right-click the project and choose Get Info from the pop-up list. Click
the Configurations tab. Click the Release configuration and then click Duplicate. When
the copy appears, give it a new name, such as Distribution.

 2. Click the Build tab to reveal the build settings. Find the Code Signing Identity sec-
tion. Click the Code Signing Identity triangle, right-click iPhone Developer, and choose
iPhone Distribution from the pop-up list. Close the window.

Figure 19.35

Selecting the Distribution Certificate before building for distribution. The Automatic Profile
Selector feature makes a best guess about the most appropriate certificate — and usually
gets it right.

25_495896-ch19.indd 54125_495896-ch19.indd 541 8/31/10 2:53 PM8/31/10 2:53 PM

542 Expanding the Possibilities

 3. Right-click the build target, under the Targets header. Choose Get Info from the
pop-up list. Click the Properties tab and replace the generic identifier with a unique
app name. Fill in the app’s icon file and version number.

 N O T E
The icon file is a 57 × 57 pixel PNG and identifies the app in Springboard. Springboard automatically adds glassy high-
lights; do not try to add your own.

 4. Select the new Distribution configuration and choose Build ➪ Build to build it.

 5. Click the build product in the Products folder. Choose Reveal in Finder from the
drop-down tools list. In Finder, right-click the .app file and choose Compress <file
name> from the pop-up list. This creates the distribution file, ready for upload.

Uploading an app to the App Store
App uploads, financials, sales reports, and tax and banking information are managed using
iTunes Connect, accessible from a link at the top right of the iPhone Developer Program page.
Before you upload an app, choose Contracts, Tax and Banking to enter your bank details and
accept the standard iTunes Connect contract. You must also define your tax status for the terri-
tories in which your app will be sold.

 C A U T I O N
International taxation details are complex and outside the scope of this book. iTunes Connect includes digital paper-
work to minimize international tax issues, but you may still need to supply proof of status and correspond with
national taxation agencies; otherwise a proportion of your income may be withheld in certain territories. For informa-
tion and advice, consult a professional accountant.

Before uploading an app, collect the following:

 The compressed distribution build file.

 At least one but no more than five PNG screenshots to illustrate your app in the App
Store.

 A 512 × 512 PNG version of the app’s icon file

 A SKU number (an arbitrary product ID code of your choice). The code must be differ-
ent for every app.

 A sales description. The maximum is 4,000 characters.

 A list of keywords. The maximum is 100 characters.

25_495896-ch19.indd 54225_495896-ch19.indd 542 8/31/10 2:53 PM8/31/10 2:53 PM

 Chapter 19: Developing for the iPhone and iPad 543

App upload is simple. In iTunes Connect, choose Manage Your Applications and click Add New
Application. Follow the prompts to define the app’s listing in the App Store and upload the files.
You must define your app’s rating on a content grid, shown in Figure 19.36, that flags mature
content. After a successful upload, you will receive a notification e-mail when the app is listed in
the App Store.

Figure 19.36

The App Store ratings grid. Apps that require a check mark in the Frequent/Intense column
are unlikely to be accepted.

Summary
In this chapter, you were introduced to the iOS device range and the key differences between
Apple’s mobile products. You learned how to understand the App Store business model, and
you discovered the commercial differences between iPhone and iPad development. You were
introduced to design hints to help you create apps that have the greatest chance of success in
the App Store, concentrating on popular app types, and avoiding specialized, niche-oriented,
and time-consuming projects.

25_495896-ch19.indd 54325_495896-ch19.indd 543 8/31/10 2:53 PM8/31/10 2:53 PM

544 Expanding the Possibilities

Next, you learned about the differences between the OS X and iOS development models and
were introduced to the limitations and design opportunities of the mobile platform. You
explored some of the key features of the iOS programming model and discovered the impor-
tance of views and view controllers in app design. You also explored the properties of the iOS
templates in Xcode, and you examined in detail the code and view designs of a simple view-
switching app with two different approaches to view control and event handling.

Finally, you were introduced to the iOS security model and discovered how to acquire the cer-
tificated and provisioning profiles needed to test apps on physical devices, how to install them
in Xcode, and how to build apps for testing and distribution. You were also introduced to the
iPhone Developer Program Portal and iTunes Connect, and you learned how to prepare, pack-
age, and upload an app to the App Store and how to set up contracts, tax information, and
bank details to receive income from your app.

25_495896-ch19.indd 54425_495896-ch19.indd 544 8/31/10 2:53 PM8/31/10 2:53 PM

In This Part

AppendixesIV

IV
Appendix A

Building Dashboard
Widgets

Appendix B
Maximizing Productivity

and Avoiding Errors

26_495896-pp04.indd 54526_495896-pp04.indd 545 8/31/10 2:54 PM8/31/10 2:54 PM

26_495896-pp04.indd 54626_495896-pp04.indd 546 8/31/10 2:54 PM8/31/10 2:54 PM

In This Appendix

Building Dashboard
Widgets

Introducing Dashboard

Profiting from widgets

Understanding widget
technology

Introducing Dashcode

Building a widget
in Dashcode

Widgets were introduced in 2005 in OS X 10.4 Tiger. Like
iPhone apps, widgets offer users a simple, accessible ben-
efit in a stylish wrapper. Some widgets provide unit or

currency conversions or utilities such as clocks, calculators, and
countdown timers. Others package entertainment — cartoons are
a popular choice — or Web information, such as traffic reports or
weather. And widget games are always popular.

Users continue to find widgets fascinating because they make it
easy to customize a Mac with a unique collection of attractively
packaged micro-applications.

The look and feel of widgets is based very loosely on Yahoo!’s
Konfabulator project, which was formerly sold as a separate OS X
application. Internally, widgets use JavaScript, HTML, and CSS, but
include links to elements of Cocoa, and can be extended with plug-
ins written in Objective-C.

Introducing Dashboard
Widgets load and run automatically within Dashboard — the wid-
get manager application. Dashboard, shown in Figure A.1, runs
permanently as an OS X background task. It remains hidden until
the user activates it by typing a function key or moving the mouse
cursor to one of Exposé’s hot corners.

To the user, Dashboard is somewhat like an alternative desktop. A
selection of widgets appears in the Dashboard area, where they
can be repositioned by clicking and dragging.

Clicking the Open (+) button at the bottom left of the Dashboard
area displays a dock-like menu that lists all installed widgets.
Choosing a widget in the dock copies it to the Dashboard “desk-
top” and installs it with an attractive ripple-like animation, illus-
trated in Figure A.2.

27_495896-bapp01.indd 54727_495896-bapp01.indd 547 8/31/10 2:54 PM8/31/10 2:54 PM

548 Appendixes

Figure A.1

Introducing Dashboard, with a selection of Apple standard, downloaded, and homebrewed
widgets. All widgets can potentially pull data from the Web and display it inside a custom frame.

Dashboard is used modally — it dims the background when it appears, and widgets zoom in
from the top of the screen. Background applications remain running, but widgets are the focus
as long as the Dashboard is visible. To dismiss Dashboard, a user can type a preset function key,
trigger an Active Screen Corner action, set up the Exposé and Spaces System Preferences panel,
or click anywhere on Dashboard’s background.

 T I P
Widgets can continue running as background processes when Dashboard is hidden, but they should only use processor
cycles when they need to. It’s good practice to include code that halts or pauses a widget when Dashboard isn’t visible.
The ideal widget pauses when Dashboard is dismissed and quickly updates itself when Dashboard appears. Apple’s
widget templates include code for handling the various possible Dashboard states.

27_495896-bapp01.indd 54827_495896-bapp01.indd 548 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 549

Figure A.2

Installing a new widget creates a ripple animation. The cross icons are added automatically in
edit mode. Clicking these icons closes the widgets, removing them from the main Dashboard
view, but not uninstalling them permanently.

Profiting from Widgets
Although iPhone apps and widgets use different technologies, they offer similar user benefits.
When widgets first appeared, they created a new market for developers and sparked a small
gold rush. Widgets are simpler and easier to build than iPhone apps, and they can be sold
directly from a Web site without Apple approval. Optionally, they can also be submitted for an
official listing in Apple’s widget “store” at www.apple.com/downloads/dashboard.

27_495896-bapp01.indd 54927_495896-bapp01.indd 549 8/31/10 2:54 PM8/31/10 2:54 PM

550 Appendixes

However, when the iPhone’s App Store was founded, it immediately eclipsed the widget mar-
ket. Currently, most widgets are listed as freeware, and opportunities for direct widget sales are
very small. Although only a small number continue to sell well, widget development still has
commercial potential, and custom widget creation remains a small but potentially lucrative
market for designers and consultants. Some of the advantages to widgets are as follows:

 Although widgets can appear toy-like and simple, they can be powerful. For
example, they can process and summarize Web and server data, create secure in-
house communications tools, or provide continuous news and information updates.
Widgets can use polling or push technology to display information as it changes.

 Widgets can support ad sales and donation boxes. Adding an ad banner space to a
widget and linking it to an ad server is relatively easy. Adding a donation box to the
widget itself or to a download page is even simpler. A widget can display a new ad
every time Dashboard is loaded or on a regular timed update cycle. Unlike ads on Web
pages, widget content can’t be blocked with an ad filter.

 Widgets can support mobile apps and provide a front end to a commercial Web
service. For example, widgets for Twitter and Facebook remain very popular. Even
though stand-alone applications may have more features, widgets offer instant-on
convenience.

 T I P
Users are often unenthusiastic about ad-based products. If a widget is too gaudy or intrusive, users will uninstall it.
But if the widget’s features are interesting enough, and ads are carefully targeted or made simple and unobtrusive —
for example, as short understated text messages, rather than as garish animated banners — widgets can be an effec-
tive marketing medium for services, content, news, apps, and other products.

 Widgets are popular and accessible. They may appear in the future on platforms
such as the iPad, or even the iPhone, and if a version of Dashboard appears on a
mobile platform, developers can expect another gold rush.

Understanding Widget Technology
Internally, a widget is a scripted Web page in a custom wrapper. The wrapper provides a graphi-
cal frame and includes parts — placeholder objects that contain text, images, animations, video
files, and other information. The widget’s code reads or generates content and writes it to the
placeholders. It is possible to build very simple widgets with plain HTML and no scripted fea-
tures, but code is usually added to create a richer and more interactive user experience.

Although widgets can have any dimensions, 640 × 480 is a realistic maximum size. Widgets
should be simple and should be able to share the Dashboard “desktop” with other widgets. Do
not design them as complex independent applications with an extended feature set. Widgets
should do one or two things elegantly in a small screen area.

27_495896-bapp01.indd 55027_495896-bapp01.indd 550 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 551

Disassembling widgets manually
The .wdgt file type is a plain zipped file. Widgets are stored in two locations. The default Apple
widgets are in <Macintosh HD>/Library/Widgets. User-downloaded widgets are
installed in <user name>/Library/Widgets. To view the contents of a widget, select it in
Finder, right-click it, and choose Show Package Contents. You’ll see a directory listing similar to
Figure A.3.

Figure A.3

Disassembling a widget reveals its component files. All files inside a widget can
be opened, copied, and edited.

Widgets are built from a collection of standard components, with optional additions. The list for
a minimal widget includes:

 An .html file with basic Web elements and content placeholders within HTML div
tags.

 A .css (Cascading Style Sheet) file that controls the styling and position of the div
elements.

 At least one .js (JavaScript) file with the widget’s code.

 One Default.png file with the widget’s background graphics. The default file can
have any reasonable dimensions and may include alpha transparency. The D in
“Default” must be capitalized.

27_495896-bapp01.indd 55127_495896-bapp01.indd 551 8/31/10 2:54 PM8/31/10 2:54 PM

552 Appendixes

 An Icon.png file. The icon file is the widget’s icon in Dashboard’s dock. It has a
square aspect ratio and should be 85 × 85 pixels. Content should be limited to an area
of 74 × 74 pixels. The I in “Icon” must be capitalized.

 An info.plist file with bundle and version information, including the widget’s
name, identifier, and dimensions. This file also names the .html and .js files in the wid-
get. Dashboard reads these references when the widget loads.

 A version.plist file with version numbering information, for Dashboard’s internal
use only.

Optionally, widgets can be localized with separate <language_name>.lproj folders,
each of which includes an infoPlist.strings file with UTF-8 (Unicode Transformation
Format-8) strings for each supported language. Many widgets include an extra /Images folder
that holds graphics files.

A key feature of widgets is that the components are unprotected. Code, HTML, and graphics can
be opened in any editor, copied, and changed by anyone with a basic understanding of widget
technology, as shown in Figure A.4. Mac users typically lack the skills to disassemble widgets,
but as a developer you must assume that other developers will be able to read and copy your
code.

 C A U T I O N
Although the JavaScript files in a widget can be read by anyone, most widgets aren’t formally open sourced and are
rarely developed collaboratively with an open license. You should consider all code private and proprietary unless
the developer includes a license explicitly stating otherwise. If you release a widget that includes a direct copy of
code by another developer without his permission, the other developer may well find out — and there might be
consequences.

Many popular widgets provide front-ends for Web services such as Twitter, bit.ly, and Facebook.
Although you do not have legal rights to reuse code from other widgets directly, widget scripts
can be an excellent way to discover how other developers use public application programming
interfaces (APIs). Even if you don’t plan to develop widgets, this is one of the most useful fea-
tures of widget technology. Attempting to master an API without good sample code can be dif-
ficult. Widgets can provide you with this code.

 N O T E
Although widgets are written in JavaScript and not Objective-C, these languages are similar enough to be easy to
translate in either direction — even if you’re not perfectly fluent in both.

Assembling widgets manually
You can assemble a minimal widget by hand using a text editor to create the HTML, CSS, and
JavaScript, an image editor to create the graphics, and the OS X plist editor to assemble the plist
files. This is a practical option for very simple widgets, and it offers the advantage of the small-
est possible bundle sizes. If your widget includes the essential elements and is zipped into a
folder and renamed with the .wdgt extension, it can be installed in Dashboard.

27_495896-bapp01.indd 55227_495896-bapp01.indd 552 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 553

Figure A.4

A widget’s HTML and CSS files include standard Web content. Optionally, advanced widgets
can include a standard Apple widget code library that manages animations and button events.

There are many disadvantages to manual assembly; debugging is almost impossible, function-
ality is limited, and graphic design is laborious. More fundamentally, widgets use Apple-specific
CSS and HTML extensions that are not part of the W3C standard. To include these features in
your projects, you must use Dashcode — the widget and Web kit editor bundled with the OS X
SDK.

Introducing Dashcode
Dashcode, shown in Figure A.5, is a sophisticated tool that combines many of the features of
Xcode and Interface Builder. It includes a range of prewritten widget templates, an environ-
ment for graphic design and prototyping, a Library of widget parts, and sample code snippets
that support them. It also includes a runtime environment for widget testing and debugging,
and an import feature that can load any existing widget and make its components available for
editing.

27_495896-bapp01.indd 55327_495896-bapp01.indd 553 8/31/10 2:54 PM8/31/10 2:54 PM

554 Appendixes

Figure A.5

Dashcode’s window areas are similar to Xcode’s panes, with parts rather than classes at the top
left, resources under the parts window, and a separate source code view.

You can find Dashcode in /Developer/Applications. If you are familiar with Xcode and
Interface Builder, you should find it easy to work in Dashcode. The arrangement of features and
windows is similar to Xcode’s, and many of the idioms and concepts used in Dashcode are rec-
ognizable. However, there are important differences. You can make development feel simpler
and go smoother by familiarizing yourself with them before beginning your first widget.

Exploring the Dashcode interface
Parts of the Dashcode interface, illustrated in Figure A.6, are relatively self-explanatory, such as
the graphic preview window used to design and lay out widget graphics and the source code
window. Unfortunately, two other key elements described below are presented in a much
less intuitive way. Dashcode can be difficult to work with until you identify and master these
features.

27_495896-bapp01.indd 55427_495896-bapp01.indd 554 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 555

Figure A.6

The View drop-down menu holds some of Dashcode’s useful secret features and has no
equivalent in Xcode.

The View drop-down menu at the top left of the Dashcode window is Dashcode’s master view
selector. Use it to select the contents that appear in each of Dashcode’s main panes; for exam-
ple, you can display a Run Log in the pane usually used for graphic editing. You can also replace
the source code pane with a Code Evaluator for instant calculations or for direct interaction
with a widget’s part properties.

The row of icons at the bottom left of the Dashboard window, shown in Figure A.7, is an alterna-
tive key view selector. The icons are labeled with minimal tool tips and are easy to miss, but
they are a critical part of the Dashboard interface.

27_495896-bapp01.indd 55527_495896-bapp01.indd 555 8/31/10 2:54 PM8/31/10 2:54 PM

556 Appendixes

Figure A.7

The bottom left icon series selects the
elements that appear in the lower-left
pane. The Files view is usually the most
useful.

From left to right, the icons are as follows:

 File Controller. Use this icon to add new files to the project.

 Files. Use this icon to show and hide a Files pane, with a list of the files in a project.
This is one of the key icons in Dashcode, and you should familiarize yourself with it
before you begin editing.

 Data Sources. Use this icon to add a data source — a URL that points to a JSON
(JavaScript Object Notation) or XML (extensible markup language) feed — to the proj-
ect. A full discussion of JSON and XML is beyond the scope of this book. You can find
an introduction at www.json.org.

 Workflow. Use this icon to display the Workflow Steps pane. (This is one of the less
useful features of Dashcode.)

 T I P
When it first loads, Dashcode displays the Workflow Steps pane. It’s likely you’ll want to switch this view so it shows
the project file list. It can be helpful to get into the habit of clicking the Files icon to replace the Workflow Steps list as
soon as Dashcode loads.

Working with parts and the Library
Choose Window ➪ Show Library to reveal the Parts list, shown in Figure A.8. You can also click
the Library icon near the top right of the Dashcode window. Parts are similar to Interface
Builder’s objects, but can’t be subclassed. They are designed to be dropped into a widget
design as is, and then linked to event handlers in the code. To add a part to a widget, drag and
drop it onto the widget’s front or back image.

The Library is complex and rich, and it includes special-effect parts such as a Quartz Composer
frame, a navigation stack, and a customizable list. Although widgets should be simple, they do
not have to be crude. You can use parts in an adventurous way to create unique and original
widgets that offer unusual user experiences.

Click the Code tab in the Library window to see a list of code snippets. You can copy this code,
paste it into your widget’s source code window, and modify it as needed. Code and parts are
independent — the code snippets can be used anywhere in your script. They are not designed
to work with any particular part.

27_495896-bapp01.indd 55627_495896-bapp01.indd 556 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 557

Figure A.8

Dashcode’s parts list includes 41 widget objects that you can add to a
background frame. You can also view code snippets and click Photos
in the top tab to include a custom photo or video in a widget.

Using the Inspector
Choose Window ➪ Show Inspector to reveal the Inspector. You can also click the Inspector icon
near the top right of the Dashcode window, as shown in Figure A.9. The Inspector window dis-
plays and edits the properties of parts and objects. Properties include settings that control the
visible appearance of a part and also define data links and event triggers to widget code and
external sources of information. The six panes are:

 Attributes. Holds information about the ID and class of each part and the settings for
localization.

 Fill & Stroke. Sets fill and stroke effects for a part, and includes graphic effects such as
rounded corners, gradient fills, glass stylings, and recessed bevels.

 Metrics. Controls the position and size of the part, its resizing options, and its size
constraints.

 Text. Sets the font, color, shadow, font size, and alignment for parts that use text strings.

 Bindings. Binds part properties to a data source, with optional transformations.

 Behaviors. Displays a list of part events, with optional links to handler functions in the
code.

27_495896-bapp01.indd 55727_495896-bapp01.indd 557 8/31/10 2:54 PM8/31/10 2:54 PM

558 Appendixes

Figure A.9

Although the Attributes window
in the Inspector appears simple,
the ID field is one of the key
properties for each part included
in a widget.

 T I P
As in Interface Builder, the Library and the Inspector windows often disappear behind other objects. You can reveal
them by choosing Window ➪ Bring All To Front.

Building a Widget in Dashcode
To create a new widget, choose File ➪ New to display Dashcode’s standard list of templates,
shown in Figure A.10. You can see a description of each template by clicking it. Many of the
templates are unlikely to serve your needs, but the RSS (Really Simple Syndication) and Custom
templates are reliably useful. For a minimal template with a rounded box with a gradient fill and
a single line of text, select Custom.

Creating widget graphics
To modify the look of the background graphics, select the frontimg part in the Parts pane at
the top left of the Dashcode window. You may need to click the triangle next to the front part
to reveal its contents.

Dashcode includes glass-effect and gradient tools in the Fill & Stroke pane in Inspector.
Experiment with the Gradient fill effect in the Style pane, adding optional corner roundness,
reflection, and opacity. In the Effects pane, you can add Glass and Recess — inset — effects.

27_495896-bapp01.indd 55827_495896-bapp01.indd 558 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 559

Figure A.10

Unfortunately there’s no template for displaying or updating an image from
a Web source. Adobe Flash elements are not supported at all.

 T I P
You can use the graphics editor as a convenient tool for creating glass-effect graphics for other projects. When you
save a widget project, image files are included in the project folder. You can read these files with any image editor.
This is a convenient and fast way to create custom glassy buttons for any iPhone or OS X project.

Using JavaScript in widgets
JavaScript is a complex object-oriented language with many features, but you can create work-
ing widgets without becoming a JavaScript expert. A full description of JavaScript is outside
the scope of this book, but you can use the hints in this section to get started with widget
programming.

Understanding DOM object access
JavaScript uses the Document Object Model (DOM) to manage object access. Every part in a
widget has its own distinct ID, and you can access the object’s properties by referencing the ID.
For example, to access the front view of a widget use

var front = document.getElementById(“front”);

27_495896-bapp01.indd 55927_495896-bapp01.indd 559 8/31/10 2:54 PM8/31/10 2:54 PM

560 Appendixes

You can then access the front object’s properties using standard dot syntax. To set a custom ID
for a part, type the ID name into the ID field in the Attributes pane in the Inspector. Each part
includes a fixed list of accessible properties via DOM. Some, but unfortunately not quite all,
properties are listed and described in the Dashcode User Guide. To view the User Guide, choose
Help ➪ Dashcode User Guide.

DOM is an essential part of widget management. Use it to change basic properties, such as text
strings, or to swap objects in and out of visibility. Some parts, such as the Canvas, have more
sophisticated interfaces; for example, you can draw into a Canvas using JavaScript versions of
standard canvas functions.

Working with Events and Handlers
As in an Objective-C application, visible parts in a widget can be connected to handler functions
that are triggered when the user clicks with a mouse, drags an object, and so on. For example, a
part’s onclick event is triggered when the user clicks the object. The list of events for each
object or part is visible in the Behaviors pane in the Inspector.

To assign a Handler, select an event and double-click in the area under the Handler header to its
right. An empty box appears. To finish the assignment, type the name of the handler routine
into the box, as shown in Figure A.11. There is no hinting, and no menu or list of possible han-
dlers — you must type the name in manually. You can check that your assignment is correct by
clicking the arrow to the right of the handler name; the corresponding code routine is high-
lighted in light blue.

Figure A.11

Because the Handler field is dumb,
you must type in the function name
manually. If you get it wrong, the
Event won’t trigger correctly.

27_495896-bapp01.indd 56027_495896-bapp01.indd 560 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 561

Working with widget events
Widget templates typically include code to create a spin effect triggered by clicking the Info
part, typically in the showFront(event) and showRear(event) routines. You won’t usu-
ally need to change this code, but you can add parts to the reverse of the widget with custom
handlers of your own design — for example, to ask for a donation with a link to your Web site.

At the bottom of every template is a boilerplate conditional:

if (window.widget) {
 widget.onremove = remove;
 widget.onhide = hide;
 widget.onshow = show;
 widget.onsync = sync;
}

This assigns custom handler functions — hide, remove, show, sync — to standard widget
events that are triggered when Dashcode changes state. Stubs for each custom handler are
included at the top of the template scripts. You can add extra code to these stubs to enable or
disable widget features as needed for each state.

Working with time
Many widgets use timers, but JavaScript lacks a simple drop-in equivalent for NSTimer. To cre-
ate a timer, use:

aTimer = setInterval(aFunctionCalledWhenTheTimerExpires,
aTimeInMilliseconds);

This calls aFunctionCalledWhenTheTimerExpires after aTimeInMilliseconds.
Timer functions can call themselves for repeated timing events. To stop a timer and delete it,
use

clearInterval(aTimer);
aTimer = null;

To get the current time, use the Date() function:

var currentTime = new Date();
var currentHours = currentTime.getMinutes();
var currentSeconds = currentTime.getSeconds();

Loading images
Images can be preloaded for speed with

(new Image()).src = “/Images/anImage.png”;
var anImage = new Image (width, height);
anImage.src = “/Images/anImage.png”;

You can then write or link anImage into any part in the widget or draw it to a canvas.

27_495896-bapp01.indd 56127_495896-bapp01.indd 561 8/31/10 2:54 PM8/31/10 2:54 PM

562 Appendixes

Deploying and importing widgets
To deploy a widget, choose File ➪ Deploy. This compresses it into a Zip file, renames it with the
.wdgt extension, copies it to your Mac’s widgets directory, and loads it into Dashboard. You can
confirm or cancel installation in Dashboard, as shown in Figure A.12. To deploy the widget else-
where, for example on a Web site, navigate to the widgets directory and copy or move the new
.wdgt file, as needed.

Figure A.12

Deploying a widget adds it to Dashboard automatically. You can choose to delete the new widget
if you change your mind.

To import and disassemble a third-party widget, copy it or install it to your Mac, and select
File ➪ Import Widget in Dashcode. Navigate to the .wdgt file and click Open. Dashcode
uncompresses the widget and loads its contents, ready for editing.

 N O T E
You can find code and graphics for a sample Binary Clock widget on the Web site at www.wiley.com/go/
cocoadevref.

27_495896-bapp01.indd 56227_495896-bapp01.indd 562 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix A: Building Dashboard Widgets 563

Summary
In this appendix you learned about widgets and discovered how to install them and work with
them in Dashboard. You were introduced to the Dashcode widget editing and creation tool,
and you were given a brief tour of some of the more useful elements of JavaScript you can use
in widget creation. Finally, you discovered how to deploy a completed widget and how to dis-
assemble an existing widget created by a different developer.

27_495896-bapp01.indd 56327_495896-bapp01.indd 563 8/31/10 2:54 PM8/31/10 2:54 PM

27_495896-bapp01.indd 56427_495896-bapp01.indd 564 8/31/10 2:54 PM8/31/10 2:54 PM

In This Appendix

Maximizing Productivity
and Avoiding Errors

Managing projects
successfully

Getting help

Solving impossible
problems

Software development can be rewarding, but it can also be
frustrating. Most developers have the experience of code that
refuses to work for days or weeks as various possible solu-

tions are tried and discarded.

Many solo projects are improvised rather than developed in a
structured way. The reliability of formal project management in
commercial software engineering is inconsistent, and no technique
or process can guarantee that a project will be completed on time
or on budget. But as a solo developer, you can use simple check-
lists and hold discussions with other developers to make your proj-
ects less stressful, more productive, and less time consuming.

Managing Projects
Successfully
Three simple project management techniques can dramatically
improve your productivity:

 Use source code management and version control.
Even the simplest projects can benefit from the version
control features built into Xcode and introduced in
Chapter 3 of this book. You can use them to roll back
major coding or design mistakes, without losing other
work.

 Produce reference documentation as you go.
Reference documentation, including notes and object
diagrams, takes almost no time to produce but is a tested
and proven way to clarify design ideas. If your ideas are
clear, your code is more likely to be correct, and the appli-
cation is more likely to work as you want it to. With a free
tool such as doxygen — from www.doxygen.org and
illustrated in Figure B.1 — you can build reference docu-
mentation as you code by writing it directly into comment
fields.

28_495896-bapp02.indd 56528_495896-bapp02.indd 565 8/31/10 2:54 PM8/31/10 2:54 PM

566 Appendixes

 Eliminate compiler errors with a checklist of standard solutions. Many errors are
caused by a small number of simple mistakes. You can eliminate them by working
through a formal error checklist.

Figure B.1

Doxygen was developed to simplify documentation, and it can
translate comments and notes into a variety of document formats.

Solving common problems
Tables B.1 and B.2 list some of the more common syntax and build errors. If you find yourself
making other repetitive errors, add them to a list. Many developers repeat the same mistakes; if
you list yours, it can help condition you to avoid them.

28_495896-bapp02.indd 56628_495896-bapp02.indd 566 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix B: Maximizing Productivity and Avoiding Errors 567

Table B.1 Common Syntax Errors
Error type Description

Missing semicolon This is common, but it’s easy to spot. Xcode flags it on the next line with an Expected

‘;’… error.

Missing or extra curly bracket Xcode’s bracket balancing doesn’t always catch this error, which typically causes multiple

error messages in a single file. Look for Expected declaration or

statement at end of input at the end of a file and work back to find the

first undeclared method. The missing bracket is usually in the method above it.

Missing or extra square bracket This is another simple mistake that can cause multiple error messages. Look for

Expected ‘]’… on the line with the missing bracket.

Missing or extra capitalization This is one of the most common errors in Objective-C, and it can be very easy to miss. Look

for properties, variables, and methods that appear correct but aren’t recognized by the

compiler. Triple-check capitalization around the error. Check again wherever the word

view, or one of its compounds, such as Superview, appears; they’re often

wrongly capitalized in method names.

Missing or extra colon in a method

name

Remember that aMethod: and aMethod are unrelated and distinct. Avoid

declaring methods with easily confused names. Look for crashes and console messages

warning that a selector wasn’t found.

Missing or extra parameters in

method calls

A popular mistake is to create a custom method based on a system method with added

extra parameters in a class prototype, and then call the original unaltered method in the

class implementation. Avoid this by creating a formal category.

[anObject =

aMethod[etc]];
Assignments within square brackets are usually syntax errors. Avoid them even where

they’re nominally correct by breaking out the assignment onto a separate line.

if (a = b)… Everyone does this — usually more than once.

If (aString ==

bString)…
Use isEqual, or one of its typed equivalents, when comparing objects. The standard

comparison compiles and runs without errors, but compares pointer addresses instead of

object content.

Incomplete subproperty lists Common for complex object with many subproperties — for example, window.
width instead of window.frame.size.width. Look for the famous

Request for member ‘property’ in something not a

structure or union message.

 T I P
You can avoid subproperty errors by creating a reference list of common objects and their subproperties. It can be diffi-
cult to remember complete subproperty lists — a reference can save you hours of time.

28_495896-bapp02.indd 56728_495896-bapp02.indd 567 8/31/10 2:54 PM8/31/10 2:54 PM

568 Appendixes

Table B.2 Common Build and Design Errors
Error type Description

Forgotten links or bindings in Interface Builder When you add new features to a view, don’t forget to link their outlets and

actions in Interface Builder or to add bindings — and don’t forget to save the nib

file after editing.

Missing delegate features If a class feature isn’t working, check for and implement any compulsory delegate

methods.

Missing focus or First Responder status Some App Kit classes may not work without window focus or First Responder

status. Check that you’re handling these features correctly.

Broken or misleading Xcode links If you import files to a project or add classes to it, remember to set the Path Type

to Relative to Enclosing Group. If you leave it set to

Default you may find yourself editing files across a mix of project folders.

Xcode doesn’t warn you when you do this.

 T I P
Simple mistakes can waste time, but don’t let them sap your confidence or raise your stress levels. Even experienced
developers regularly make basic errors.

Managing classes and files
Xcode doesn’t include automated support to help you manage classes, properties, and files.
Managing them manually makes them error prone. Use these checklists to avoid the most com-
mon errors. The steps may seem obvious, but it’s easy to miss them when you’re concentrating
on some other aspect of a project.

Including other classes in a class header
 Add #import directives for other classes that are referenced.

 Add @class directives for each class.

 Add #import directives for framework headers, as needed.

Creating a new subclass
 After you create the file, change the subclass name in the interface.

 Add any delegate protocols, as needed.

28_495896-bapp02.indd 56828_495896-bapp02.indd 568 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix B: Maximizing Productivity and Avoiding Errors 569

Adding new properties or methods
 In the header file, add the property or method between the prototype angle brackets.

 Add a property declaration in the area below the angle brackets.

 In the implementation file, synthesize the new property or add a method stub.

 In Interface Builder, add new links and bindings.

 T I P
If you rename a method or property, use Xcode’s global Replace All feature to rename every instance in the code. Don’t
try to rename features manually — you’re unlikely to spot every instance. To use the Replace All feature, choose
Edit ➪ Find ➪ Replace All.

Working in Interface Builder
 Reload classes whenever you add or edit a class.

 Create links and add bindings as soon they’re needed — you may forget later.

 Check that links are connected to the correct object; for example, to First Responder
rather than File’s Owner, as needed.

 Save the nib file before building.

Adding frameworks
 Remember to add frameworks to the project when you use framework-specific

features.

 Remember to #import the framework headers.

Getting Help
With an almost endless proliferation of blogs, message boards, discussion groups, tutorials, and
worked solutions, the Internet is the most useful developer resource. Comments from other
developers can help shift a stuck project, and complete worked solutions may be available
online. Helpfulness varies; a minority of developers may be more interested in telling you to
RTM, and most message boards have a selection of posted problems with no comments or
replies. While the Internet is sometimes noisy and never infallible, it remains the go-to source
for help, feedback, and solutions for developers at every level of experience.

28_495896-bapp02.indd 56928_495896-bapp02.indd 569 8/31/10 2:54 PM8/31/10 2:54 PM

570 Appendixes

 T I P
Searching for “OS X” or even “Cocoa” brings up many, many pages of user-level information, which is unlikely to be
useful. To target searches more effectively, add “dev” or “developer” to the start of your search strings.

Resources include:

 Blogs. Many developers keep blogs, posting solved problems and sample code snip-
pets. The iPhone developer community is particularly active, but you can also find
Cocoa and general OS X blog content.

 Official developer forums. Apple’s developer forums, illustrated in Figure B.2, are a
useful resource, but they are only accessible to developers who are enrolled in an offi-
cial developer program. The official developer community is still growing. For the
moment, the forums are best considered a useful extra rather than a definitive source
for solutions.

Figure B.2

Apple’s forums remain slightly experimental, but they are likely to
become more popular and useful as the iPhone and Mac developer
programs continue to grow.

28_495896-bapp02.indd 57028_495896-bapp02.indd 570 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix B: Maximizing Productivity and Avoiding Errors 571

 Unofficial developer forums. There are tens or even hundreds of unofficial forums,
and new forums appear regularly. CocoaDev (www.cocoadev.com), shown in Figure
B.3, is a popular center, with an excellent collection of open-source projects. Don’t
limit yourself to a single forum — you’ll typically get better results from a general
Internet-wide topic search than by following postings in a single location.

 Mailing lists. Although eclipsed by forums and blogs, lists continue to offer useful
help and content. The Apple cocoa-dev list, shown in Figure B.4, has been running for
ten years now; see http://lists.apple.com/mailman/listinfo/cocoa-
dev for details.

 Usenet/Google groups. Usenet/Google groups no longer have the prominence they
once did and can be prone to spam, but they continue to be helpful. iPhone groups
are more prominent than Cocoa groups, but cocoa-dev, shown in Figure B.5, is a useful
resource for Cocoa help.

Figure B.3

CocoaDev is a popular and useful online forum among the many
other popular and useful forums available online.

28_495896-bapp02.indd 57128_495896-bapp02.indd 571 8/31/10 2:54 PM8/31/10 2:54 PM

572 Appendixes

Figure B.4

According to Apple, the first archived post to the cocoa-dev list was
made in 1969. Most posts are more recent and often more useful.

Figure B.5

Google groups have moved closer to the Yahoo! groups model and
away from their Usenet origins. You can use the Google groups pages
to find archives for both types.

28_495896-bapp02.indd 57228_495896-bapp02.indd 572 8/31/10 2:54 PM8/31/10 2:54 PM

 Appendix B: Maximizing Productivity and Avoiding Errors 573

Solving Impossible Problems
If you spend more than a couple of days on a problem without making any progress, and you’ve
exhausted the official documentation and all possible Internet resources, you may be dealing
with an Impossible Problem. Not all Impossible Problems are truly impossible — sometimes
sustained effort can lead to a simple solution. But they can divert a project into an unproductive
dead end, and waste time that might be spent more usefully.

When trying to solve an Impossible Problem, it can be useful to step back and consider project
strategy rather than coding tactics. Strategy defines design goals, and tactics define how they’re
implemented. Many Impossible Problems are tactical: thinking strategically can sometimes help
you sidestep them and keep the project moving. Consider these questions:

 Does the problem need to be solved? Impossible Problems often develop a momen-
tum of their own, monopolizing your attention. You can minimize this by considering
the problem from a user’s point of view. How essential is the feature that’s being
implemented? If a user won’t miss it if it’s not included, leave it out or move it to the
feature wish list for later versions.

 Does the problem need to be solved now? Leaving a problem unsolved can feel
very unsatisfying, but it may be the only way to move a project forward. Putting a
problem to one side may move a project in a new direction, making the problem irrel-
evant or solving it in an unexpected way.

 Is there another way to achieve the same result? When the final aim is a specific
user benefit, there may be a simpler way to offer it.

 Can the problem be solved? Some problems are truly impossible for either formal or
informal reasons; for example, they may be mathematically intractable, or they may
require too many processor cycles.

 Has the problem already been solved? Many problems are easy to solve in theory,
but too difficult or time-consuming to code in practice. A satisfying solution is to use
code or a framework created by another developer. Because so much code is either
formally open sourced or available online, common problems are likely to have at least
one ready-made solution, such as the iPhone Exif handling framework, shown in
Figure B.6, which is a solution for a complex problem that would otherwise require
days or weeks of independent effort.

 T I P
Open source code may include licensing restrictions; for example, you may be expected to open source your own proj-
ect if you include code released under the General Public License (GPL). There is a distinction between using code as is
and reverse engineering it. Taking concepts from an existing solution without copying and pasting code is one possible
way to avoid licensing restrictions.

28_495896-bapp02.indd 57328_495896-bapp02.indd 573 8/31/10 2:54 PM8/31/10 2:54 PM

574 Appendixes

Figure B.6

Code repositories such as Source Forge (http://sourceforge.net),
GitHub (http://github.com), and Google Code (http://code.
google.com) have hundreds of prewritten frameworks you can drop into
a project, such as the EXIF framework shown here.

Summary
In this appendix you were introduced to some simple but effective project management tech-
niques, you explored checklists of common errors with likely solutions, and you looked at
resources for online help. Finally, you were given hints for keeping a project moving when
faced with problems that appear impossible — but often aren’t.

28_495896-bapp02.indd 57428_495896-bapp02.indd 574 8/31/10 2:54 PM8/31/10 2:54 PM

Index

SPECIAL CHARACTERS
!= conditional, 310
* (asterisk), 37–38
: (colon), 126, 567
; (semicolon), 111, 567
@ character, 38
[] (square brackets), 40, 127, 567
^ (caret), 277, 278
{ } (curly brackets), 111, 141, 277, 567
‘ (apostrophe), 277

A
Ableton’s Live, 9–10
aBlock, 281
Abstract classes, 113
accelerometer, 497
accessors, 97
actions

creating direct links to, 191–192
defining in implementation, 188
defining in interface, 185–187
description, 184
placing, 202–203

ActionScript, 48, 53
Active Executable, 525
Active Screen Corner, 548
Activity Monitor, 483
ad banners, 550
ad hoc distribution, 540
addAnimation: method, 452
addOne: method, 219–220
addOperation:, 281
Address Book, 96, 117
addSubview: method, 413, 435
Adobe Creative Suite, 9
aesthetics in design, 19
aFile.ext, 236
aFrame, 129
aFunctionCalledWhenTheTimerExpires, 561
AKey, 342
Align Horizontal Center button, 182
Alignment button, 183
allMatches, 237
alloc message, 103

alloc method, 37
alloc/init code, 154, 410, 413
aLongMethod, 269
alpha, 426
Amazon, 11, 247
aMethod, 215
anImage, 561
AnImaginaryProtocol, 135
animatable filter, 453–456
animated view swaps, creating, 534–535
animationCurve, 535
animationDidEnd:, 446, 447, 458
animationDidStart:, 446, 447, 458
animations

creating property animation code, 442
creating timer for, 441
overview, 439
types, 440
using animator

creating path animation, 450–452
creating simple proxy animation, 443–445
creating values/keytimes animation, 449
customizing animation object, 446–449
setting duration, 446
timing functions, 448–449

using CALayer
animatable filter, 453–456
animating filter, 456–458
using layers for animation, 452–453

using drawRect:, 443
using OpenGL, 458–463

animator

animatable filter, 453–456
animating filter, 456–458
creating path animation, 450–452
creating simple proxy animation, 443–445
creating values/keytimes animation, 449
customized animation, 440
customizing animation object, 446–449
default animation, 440
setting duration, 446
timing functions, 448–449

anInstance, 99
anObject, 215
anotherInstance, 99

29_495896-bindex.indd 57529_495896-bindex.indd 575 8/31/10 2:55 PM8/31/10 2:55 PM

576 Index

aNotification, 139
Ansca Corona, 76
aParameter, 112
Aperture, 4
APIs (application programming interface)

creating asynchronous Web requests, 258–260
creating long URL, 252–253
creating XML requests, 255–256
parsing XML returns as text, 257–258
selecting XML format, 256–257
sending URL request, 253–255
using, 247–248

apostrophe (‘), 277
App Delegate, 304
.app file, 48, 88
App ID, 538
App Store

certification process, 538–540
income territories, 499
online assistant, 539–540
packaging apps for, 541–542
permissions, 538–540
ratings grid, 543
reasons for refusing apps, 536–537
selling in, 82, 536–537
uploading apps to, 542–543

app switching, 498
AppDelegate suffix, 118
appendBezierPath:, 419
appendBezierPathWithArcFromPoint:toPoint:, 419
appendBezierPathWithGlyph:InFont:, 419
appendBezierPathWithPoints:, 419
AppKiDo, 57, 59
Apple Developer Convention, 80
Apple Developer Forums, 80
Apple Human Interface Guidelines, 20, 60
Apple ID, 80
Application Delegate

code for, 344
key features, 344
link destinations, 189

application delegates
converting notifications to, 230–231
description, 118–121
errors, 568
messages, 138–139
methods, 139–142

notifications and, 230–231
receiving message from OS X with, 134–137

Application Framework layer, 22
application frameworks, 24–25
Application Kit Functions Reference, 131
application programming interface. See APIs
applicationDidChangeScreenParameters:, 138
applicationDidFinishLaunching:

auto-refresh, 373
delegation, 138
description, 120
event logging, 467
Key-Value Observing, 328
object status, 33
Protocol Reference, 137
receiving message from OS X, 134
timer method, 196

applications
adding navigation and control features to, 511–514
application delegates, 118–121
application frameworks, 24–25
building simple application

adding view controller subclasses, 526
creating animated view swap, 534–535
creating new project in Xcode, 525
creating views, 528–532
handling events with protocol messaging, 532–534
implementing view controllers, 526–528

business model
making money from iPad development, 501–502
making money from iPhone and iPod touch

development, 499
Carbon, 25
C-language features, 129–132
class references, 121–125
code layers, 25
Code Sense, 126–127
Core Data

adding code, 363–364
adding entity, 354
adding properties, 355–356
building the application, 361–363
creating fetch requests, 367
creating relationships, 356–359
displaying search results, 370–373
generating user interface, 359–361
modifying nib, 363–364

29_495896-bindex.indd 57629_495896-bindex.indd 576 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 577

project template, 352–353
sort descriptors, 368
to-many fetch requests, 368–370
using predicates, 367–368

creating category on NSWindow, 149–150
custom switching, 514
delegate, 118–121
design goals

constrained data sharing, 504
full-screen operation, 503
instant on, instant off, 503
loss of focus without notice, 503
no explicit data save and restore, 504
orientation sensing, 509–511
restricted battery life, 504

developing features across layers, 25
elements, 22–23, 117–118
expanding search to related classes, 133–134
frameworks, 27–29
handling touch events, 514–515
iOs vs. OS X apps, 30, 495–496
iPad apps, 30
iPhone apps, 30
layers, 22–23, 27–29
vs. Mac apps, 13
market, 499
master/root view controller, 507
multiple classes, 128
prices, 499
profiting from, 12–14
receiving message from OS X delegate

delegate methods, 139–142
overview, 134
protocol, 135–136
Protocol Reference page, 137–138

receiving message from OS X with NSResponder,
142–144

selling in App Store
certification process, 538–540
income territories, 499
online assistant, 539–540
packaging apps for, 541–542
permissions, 538–540
ratings grid, 543
reasons for refusing apps, 536–537
selling in, 82, 536–537
uploading apps to, 542–543

signatures, 125–126

subclassing NSWindow, 144–149
“toll-free bridged” layers, 25
uploading to App Store, 542–543
user experience, 23–24
workflow, 29
X-code only policy for, 76

Applications folder, 82
applicationShouldTerminate:, 138
applicationWillHide:, 139, 141
applicationWillUnhide:, 138, 141–142
Aqua

default graphics features, 24
design guidelines, 20–21
user experience, 23–24
using with Cocoa, 21–22

archiving, 44, 214, 300–301
argc parameter, 116
argv parameter, 116
arrangedObjects, 338
ArrayControllerSubclass, 333
arrays, without using NSArray, 295
articles, 61–62
Assembler, 54
assignments, KVO-compliant, 226–227
asterisk (*), 37–38
aStructWrapper, 291
asynchronous requests, 258–260
aThread, 269
atomically parameter, 238
attributed strings

drawing text on path, 380
loading, 379–380
saving, 379–380
using, 380

attributes
description, 180–181
document, 379
text, 379

Attributes pane, 557
Attributes tab, Inspector window, 164
Audio Toolbox, 27
autocompletion feature, 126–127, 237–238
Automator, 10
autorotation, 509
AViewController.m file, 531
AViewController.xib, 526–528
awakeFromNib, 408, 425, 448, 526
aWindow, 36

29_495896-bindex.indd 57729_495896-bindex.indd 577 8/31/10 2:55 PM8/31/10 2:55 PM

578 Index

B
backgroundFilters, 453
BackgroundTask class, 272
BaseInBaseOut, 448
battery life, 504
beginAnimations: method, 535
Behaviors pane, 557
Berners-Lee, Tim, 7
beta updates, 81
Bezier paths, 419
bindings. See also preferences

creating, 315–320
description, 163
errors, 568
facts and fictions, 314
formatters, 328–330
implementing preferences with, 340–346

creating application with, 343–346
initializing, 341–342
reading values, 342–343
setting keys, 342

incompatible objects, 322–323
managing interactivity with, 323–326
managing with KVO, 326–328
overview, 313
requirements, 314
simple, 315–320
uses for, 314
using with controllers

adding controller, 332–333
data source, 334–335
reading data from controller, 335–340
selecting controller keys, 339

working around keypath limitations, 321
Bindings pane, 557
Bindings tab, Inspector window, 166–167
bit.ly

API, 251–252
app delegate header, 248
creating application, 248–249
getting key, 250
getting text from text field, 249–250
overview, 248
site, 250

blank application template, 169
block directive, 277
blockOperationWithBlock:, 280, 281

blocks. See also threads
code, 277
description, 267
NSBlockOperation, 279–281
overview, 277
pointer, 277
syntax, 277–278
values, 278–279
variables, 278–279

blogs, 570
Bonjour, 45
Bounds, 416
boundsRect, 416
boxing, 51
breakpoints. See also debugging

conditional, 477
controlling execution, 477
deleting, 478
setting, 475–476
using, 475–476

browser, using MVC in, 212
Build and Run button, 88, 141
build errors, 568
built-in applications, 498
bundles

description, 48
path, 236–237

Button, ActionScript, 53
buttonWasPressed: method, 413
BViewControllerDidFinish:, 533
BViewController.h, 533
BViewController.m, 533
BWToolkit, 173
byValue: property, 446

C
C array, 285
C main() function, 118
C programming language, 54, 129–130
C# programming language, 50–51
CAAnimation, 446
CABasicAnimation, 446
CAGroupAnimation, 447
CAKeyframeAnimation, 447
CalculationMode property, 449
calibrated colors, 422
CAMediaTiming, 447

29_495896-bindex.indd 57829_495896-bindex.indd 578 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 579

CAMediaTimingFunction, 447, 449
canPerformSelector, 221
capitalization error, 567
capitalizedString: method, 376
CAPropertyAnimation, 446
Carbon, 24, 25
Carbonization, 25
caret (^), 277, 278
caseInsensitiveCompare: method, 376
casts, 38, 201
@catch directive, 233–234
category, creating, 149–150
cell objects, selecting, 181–182
celsFloat, 325
center method, 124
CFMutableDictionary, 39
CFString, 27
CGContext, 437
CGGeometry, 131
CGLayer, 436
CGPoint, 403, 428
CGPointMake, 403
CGRect, 403
Character Viewer, 398
characterEncoding method, 378
Cheetah, 7
CIContext, 437
CIFilter, 433
CIImage, 403, 436
CITorusLensDistortion, 455
CIVector, 437, 455
class checking, 201–202
@class directives, 568
class implementation, 110–111
class methods, 97, 104
Class Methods section, 65
class references

description, 64–65
exploring, 123
finding and using, 121–126

classes. See also objects
creating, 107–112
creating with NSCoder, 302–304
defined, 97
expanding search to, 133–134
getters, 109
implementation, 110–111
including in class header, 568

interface, 107–109
multiple, 128–129
naming, 101
public methods, 111–112
public properties, 111
self, 110
setters, 109
setting, 170–172

Classes tab, Library window, 161–162
className, 201
closePath: method, 419
Cocoa

application networks and, 24–25
application type, 24
archiving, 44
bundles, 48
code layers, 25–26
creating media projects with, 14
data objects

comparing, 40
copying, 39–40
description, 38–39, 286–287
key-value pairs, 41

designing for, 19–20
developing iPhone applications with, 12–14
developing Mac applications with, 9–11
file management

archiving, 44–45
file paths, 45
URLs, 45
using NSCoder, 45

file paths, 45
frameworks, 29
history, 3–8
messaging and notifications, 36
Model-View-Controller, 46–48
moving to, 31
network support, 45
vs. other platforms

abstraction, 48–49
Assembler, 54
C programming language, 54
Flash, 52–53
Java, 53–54
object orientation, 48–49
setup and teardown, 48–49
Windows, 50–52

overview, 3

29_495896-bindex.indd 57929_495896-bindex.indd 579 8/31/10 2:55 PM8/31/10 2:55 PM

580 Index

Cocoa (continued)
plists, 48
profiting from, 9–11
URLs, 45
user experience, 23–24
using Aqua with, 21–22
views, 45–46
windows, 45–46

Cocoa Application template, 86
Cocoa applications

application delegates, 118–121
application frameworks, 24–25
Carbon, 25
C-language features, 129–132
class references, 121–125
code layers, 25
Code Sense, 126–127
creating category on NSWindow, 149–150
developing features across layers, 25
elements, 22–23, 117–118
expanding search to related classes, 133–134
frameworks, 27–29
iPad apps, 30
iPhone apps, 30
layers, 22–23, 27–29
multiple classes, 128
receiving message from OS X delegate

delegate methods, 139–142
overview, 134
protocol, 135–136
Protocol Reference page, 137–138

receiving message from OS X with NSResponder,
142–144

signatures, 125–126
subclassing NSWindow, 144–149
“toll-free bridged” layers, 25
user experience, 23–24
workflow, 29

Cocoa documentation
articles, 61–62
download site, 57
Featured, 61
flowchart, 73
Getting Started, 60, 62–63
guides, 63–64
references, 64–65
release notes, 66
Required Reading, 60
sample code, 66–67

sorting, 71
source code, 72
technical notes, 67–68
technical Q&As, 68–69
Topics breakdown, 69–70

Cocoa Layer, 25, 28, 29
Cocoa Touch, 30
CocoaDev, 571
Cocos2D, 53, 76
code management

copying projects, 487–489
creating snapshots manually, 487–489
using Snapshots, 489–491
using Subversion source control, 491–492

Code Sense, 126–127
code signing, 538
Code tab, 556
colon (:), 126, 567
colors

calibrated, 422
creating, 418
using, 420–421

colorWithCalibratedHue:, 422
commitAnimations: method, 535
compatibility testing, 82
Compatibility Testing labs, 80
compilation, 76, 88
componentsSeparatedByString: method, 376
composite Bezier paths, 419
conditionals, 44
Conforms to field, 106
connection:didFailWithError: method, 260
connectionDidFinishLoading: method, 259, 260
connection:didReceiveData: method, 260
connection:didReceiveResponse: method, 260
Connections tab, Inspector window, 167, 168
constants, 101
constructors, 102–103
container view, 404–405
Content Filters pane, 430
Content View, 156
content view, 404–405
contentFilters, 453, 455
Contents page, 124
Controller Content, 334–335
controllers

adding, 332–333
benefits of, 210
creating, 213

29_495896-bindex.indd 58029_495896-bindex.indd 580 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 581

data source, 334–335
glue code, 48
keys, 337–338
reading data from, 335–340
selecting controller keys, 339
using bindings with, 330–340
using MVC with, 212–213

controls, 46
controlTextDidEndEditing: method, 282
copyright, 117
copyWithZone: method, 40
Core Animation

description, 221
independent timers, 268
layer animation, 27, 452
library, 101

Core Audio, 27
Core Data

approaches to development, 351–352
creating application

adding code, 363–364
adding entity, 354
adding properties, 355–356
building the application, 361–363
creating relationships, 356–359
generating user interface, 359–361
modifying nib, 363–364
project template, 352–353

defined, 351
description, 214
displaying search results, 370–373
features, 351
objects

for editing and search, 367
environment, 366

programming model
creating fetch requests, 367
creating to-many fetch requests, 368–370
using predicates, 367–368
using sort descriptors, 368

Core Foundation, 27, 253
Core Foundation framework, 39
Core Foundation Time Utilities library, 101
Core Graphics, 27, 427–428, 450
Core Location, 496
Core OS Layer, 26
Core Services Layer, 26
CoreAnimation, 268, 431, 439–440
CoreAudio, 101

CoreImage

adding effects in Interface Builder, 430–432
applying filters to image, 436–437
creating filter controller interfaces, 435–436
data type, 403
filter keys, 434–435
filters, 429–430
setting up filters for processing, 432–434

count method, 299
Counter App Delegate object, 189
CounterAppDelegate.m, 188
Counterpart icon, 92
countText, 196
Cox, Brad, 4
crashes, 104
Create a New Xcode Project button, 84–85
.css file, 551
curly brackets ({}), 111, 141, 277, 567
custom objects, 35
custom switching, 514
Customize Toolbar, 93–94

D
Darwin, 23
Dashboard

application type, 24
description, 543
using modally, 548

Dashboard widgets
adding ad banner space to, 550
adding donation boxes to, 550
adding mobile apps to, 550
advantages, 550
assembling manually, 552–553
building in Dashcode

creating widget graphics, 558–559
using JavaScript, 559–561

components, 551–552
deploying, 562
description, 543
dimensions, 550
disassembling manually, 551–552
displaying, 24
importing, 562
installing, 549
profiting from, 549–550
running as background processes, 548
wrapper, 550

29_495896-bindex.indd 58129_495896-bindex.indd 581 8/31/10 2:55 PM8/31/10 2:55 PM

582 Index

Dashcode
description, 553–554
icons, 556
interface, 554–556
location of, 554
panes, 555
using Inspector, 557
view drop-down menu, 555
window areas, 554
working with Library, 556–557
working with parts, 556–557

data collection, 285
data collection objects. See also objects

archiving, 299–300, 304–306
arrays, 295
de-archiving, 299–300, 304–306
defining, 214
enumeration

counting items, 299
mutable collections, 299
performance considerations, 299
using fast enumeration, 298
using implicit enumeration, 298
using NSEnumerator, 297

features, 286
key-value observing, 288–290
NSArray, 291–292, 293–295
NSCoder, 300–306
NSData, 300
NSDictionary, 296
NSMutableArray, 292–295
NSMutableSet, 297
NSNumber, 288–290
NSSet, 297
NSValue, 288–290
objects and values, 287
setValue:forKey: method, 287–288
using id with, 200

data formatter, 363
Data layer, 23
Data Management layer, 23
data model, defining, 214
data objects

comparing, 40
copying, 39–40
description, 38–39, 286–287
key-value pairs, 41

data source, 334–335
Data Sources icon, Dashcode, 556
data storage, 526
data structures, 416
data types, 130
database management, using MVC in, 211
dataFromRange: method, 380
dataOfType: method, 391
dealloc method, 310
Debug folder, 88
Debugger window

debugging with machine code, 478
features, 473
object explorer, 478
opening, 479
overview, 478
stack trace, 478

debugging
breakpoints

conditional, 477
controlling execution, 477
deleting, 478
setting, 475–476
using, 475–476

Debug folder, 88–89
Debugger window

debugging with machine code, 478
features, 473
object explorer, 478
opening, 479
overview, 478
stack trace, 478

enabling, 474
overview, 465
using instruments, 478–485
using NSLog

Console window, 467
format options, 468–469
overview, 466–467
reporting events with, 467–469
reporting line numbers and function names with,

470
reporting values with, 468–469
selectively enabling, 471–472

using Shark, 485–486
decode: method, 300, 303
decodeWithCoder: method, 300

29_495896-bindex.indd 58229_495896-bindex.indd 582 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 583

Default.png file, 551
delegates

converting notifications to, 230–231
description, 118–121
errors, 568
messages, 138–139
methods, 139–142
notifications and, 230–231
receiving message from OS X with, 134–137

delegation
description, 113
question-response messaging and, 34

description method, 469
descriptive names, 100
descriptors, 368
design elements, 19
design errors, 568
design patterns, 31
developer, registering as, 77–80
Developer Certificate, 538
Developer directory, 82, 84
developer forums, 570–571
developer name, 117
Developer Program, 537
device list, 538
dictionary, writing to disk, 44
didAnimateFirstHalfOfOrientation

ToInterfaceOrientation: method, 511
didEndEditing: method, 249
DigiDNA, 12–13
direct property access, 41
direct property animation. See also animations

creating property animation code, 442
creating timer for, 441
description, 440

dismissModalViewController: method, 508
dismissModalViewControllerAnimated: method,

522
Display PostScript, 6
Distribution Certificate, 538, 541
docFormatFromRange: method, 380
Dock, 20
Document Object Model (DOM), 559–560
document types, setting, 388–391
Document window, Interface Builder

adding objects to nib, 176
creating links, 189
description, 156–159
opening, 173

documentation
articles, 61–62
download site, 57
Featured, 61
flowchart, 73
Getting Started, 60, 62–63
guides, 63–64
references, 64–65
release notes, 66
Required Reading, 60
sample code, 66–67
sorting, 71
source code, 72
technical notes, 67–68
technical Q&As, 68–69
Topics breakdown, 69–70

documents
default nib file, 387–388
implementing save and open code, 391–393
printing, 393–394
setting types, 388–391
structure, 386
template, 385

donation boxes, 550
doSomething method, 36
downButton, 219
Download Sample Code link, 67
dragImage: method, 36
drawAtPoint: method, 380
drawImage: method, 437
drawInRect: method, 380, 426
drawRect: method, 105, 428, 436, 443
Driver layer, 23, 26
drop shadow, 36
dual-monitor system, 77
DUNS number, 82
dynamic loading, 100, 112

E
EAGLview.m, 519
Edit window, Interface Builder

adding objects to view in, 176
description, 159–160
opening, 173

Edit Window, XCode, 92
editable files, selecting, 92
Effects tab, Inspector window, 164–165

29_495896-bindex.indd 58329_495896-bindex.indd 583 8/31/10 2:55 PM8/31/10 2:55 PM

584 Index

elements
spacing of, within windows, 21
standard, 20

encode: method, 300, 303
encodeObject: method, 306
encodeWithCoder: method, 300
encoding

creating buffers for UTF-8 text, 378
default, 377–378
description, 300–301
UTF-8, 377, 400

encoding parameter, 238
Enterprise iPhone program, 82
entities

adding, 354
defining, 214

Entity pane, 353
enumerateObjectsUsingBlock: method, 370
enumeration

counting items, 299
fast, 298
implicit, 298
mutable collections, 299
performance considerations, 299
using NSEnumerator, 297

errors
build, 568
checklist, 566
converting into NSAlert, 232–233
design, 568
handling, 232–233
NSError, 232
NSException, 233–234
syntax, 567

ES1Render, 519
ES2Render, 519
ES2Renderer, 519
escaped characters, 253
estimatedProgress method, 264
Event, ActionScript, 53
events

handling, 33, 526, 532–534
reporting with NSLog, 467–469
warning before, 33
in widgets, 560

exceptions, handling, 233–234
EXIF (Exchangeable Image File Format), 351
explicit instances, 100
explicit object creation, 112

Exposé and Spaces System Preference panel, 548
extra capitalization, 567
extra colon, 567
extra curly bracket, 567
extra parameter, 567
extra square bracket, 567

F
Facebook, 11, 247, 550
fahrFloat, 325
fast enumeration, 298
features, naming, 101
fetch requests, 367
File Activity instrument, 483
file attributes, 296
File Controller icon, Dashcode, 556
file handles, 238–239
File List, 92
file management

Cocoa archiving, 44–45
description, 44
file paths, 45
URLs, 45
using NSCoder, 45

File Manager, 239
file paths

autocompletion feature, 237–238
bundle, 236–237
creating with NSString, 236
standard directories, 237
URLs and, 45
using, 238

File Selector sheet, 85
FileManager, 239
fileReferenceURL: method, 240
Files icon, Dashcode, 556
File’s Owner, 168, 170
fileURLWithPaths, 385
Fill & Stroke pane, 557
fill method, 420
filterAngle, 437
filterCenter, 437
FilterName property, 372
filters

animating, 456–458
applying to image, 436–437
controller interfaces, 435–436
keys, 434–435
setting up, 432–433

29_495896-bindex.indd 58429_495896-bindex.indd 584 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 585

filterSize, 437
filterTypes, 238
filterWithName: method, 433
@finally directive, 233–234
Find Text in Documentation, 123, 129
Finder, renaming or moving project folder with, 92
Finder application, 10
finishEncoding: method, 306
Firefox, 486
First Responder

description, 168
error, 568
linking button event to, 530
methods, 204
viewing action methods, 203

FirstAppDelegate.m, 119
FirstAppViewController.h, 532
FirstAppViewController.m, 529, 533
First-info.plist, 152
FirstNewWindow class, 172
Flash, 48, 52–53
Flash for iPhone, 76
flipButton action, 219–220
flipsideViewControllerDidFinish: method, 522
floating windows, 128
floatValue method, 325
flying button, 441
font manager, 381–382, 389
FontManager, 169
fonts

setting, 178–179
size, 178–179
standardization of, 21

forKey statement, 41
format translation, 210
Foundation constants, 417
Foundation Framework, 39
Foundation Framework Reference, 101
Foundation Functions, 130–132, 417
frame, 128
Frame, 416
frame method, 133
frameworks, 24–25, 130–132, 569
fromValue: property, 446
frontimg, 558
function names, 470
FunctionBaseIn, 448
FunctionBaseOut, 448
FunctionLinear, 448

G
game object, 96
game playing field, 96
GameKit framework, 504
games

on iOS, 504
using MVC in, 211

garbage collection, 43–44, 307–308
Gaussian Blur filter, 431–432
GCC (GNU Compiler Collection), 76
GCD (Grand Central Dispatch), 281
gdb (GNU Project Debugger), 467
generic object, 96
gestural control, 496
get method, 98
GetInfo, 272
getLineStart: method, 376
getParagraphStart: method, 376
getters, 109
Getting Started, 60, 62–63
Global Positioning System (GPS), 496
glue code, 48
GNU Compiler Collection (GCC), 76
GNU Project Debugger (gdb), 467
GNUstep, 76
Google, 11, 247
Google groups, 571–572
GPS (Global Positioning System), 496
gradients, creating, 422–423
Grand Central Dispatch (GCD), 281
graphic identifiers, 512
graphics

combining Cocoa and Core Graphics, 427–428
combining Cocoa and Quartz graphics, 427–428
combining Core Graphics with, 427–428
combining Quartz graphics with, 427–428
CoreImage

adding effects in Interface Builder, 430–432
applying filters to image, 436–437
creating filter controller interfaces, 435–436
data type, 403
filter keys, 434–435
filters, 429–430
setting up filters for processing, 432–434

creating and drawing gradients, 422–423
creating Bezier paths with control points, 419
creating path objects, 418–419
creating shapes and colors, 418–428

29_495896-bindex.indd 58529_495896-bindex.indd 585 8/31/10 2:55 PM8/31/10 2:55 PM

586 Index

graphics (continued)
drawing images, 426
Foundation constants, 417
Foundation functions, 417
loading images, 424–426
MultiBezier project, 428–429
overview, 415
stroking and filling paths, 420
transforming paths, 424
using calibrated colors, 422
using colors, 420–421
using geometric data structures, 416–417

Graphics and Media Layer, 23, 25
groups, 90
Groups & Files pane

groups in, 90
links to files on disk, 91
overview, 90

Growl, 11
GUI window object, 96
guides, 63–64

H
.h extension, 107
handlers, 560
help. See also project management

blogs, 570
Google groups, 571–572
mailing lists, 571
official developer forums, 570
overview, 569
resources, 570
unofficial developer forums, 571
Usenet groups, 571–572

help files, 21
hide function, 561
History list, 92–93
HTML document, 379
.html file, 551

I
iAd, 500
IB. See Interface Builder
IBAction directive, 185
IBOutlet, 119, 121, 184–185, 315
Icon Factory, 12
Icon.png file, 551–552

id

data collections, 200
sender, 200

using to identify objects, 202
using with casts, 201
using with class checking, 201–202

using, 200
Identity tab, Inspector window, 167, 169
image pickers, 511
images. See also graphics

compositing, 427
drawing, 426
loading, 424–426, 427

imageWithBitmap: method, 436
imageWithData: method, 436
implementation

defining, 110–111
defining actions in, 188
defining outlets in, 188
description, 107

@implementationFirstAppDelegate, 120
implicit enumeration, 298
implicit instances, 100
implicit object creation, 112
implicit question-response, 35
#import directive, 110–111, 568
#import “FirstAppDelegate.h”, 120
#import<Cocoa/Cocoa.h>, 119
impossible problems, solving, 573
IndexToNameTransformer, 347
indirect property access, 41–42
-info.plist, 116
info.plist file, 153, 390, 551–552
InfoPlist.strings, 116
inheritance, 105–107
init method, 103–104, 272, 309
initialize method, 341
initWith: method, 272
initWith<type> method, 380
initWithCalibrated: method, 50
initWithCoder: method, 300, 519
initWithContentsOfFile: method, 235, 238
initWithContentsOfURL: method, 235, 425
initWithData: method, 37
initWithFrame: method, 406–407
initWithString: method, 240
inputCenter key, 454, 455
inputRadius, 455

29_495896-bindex.indd 58629_495896-bindex.indd 586 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 587

inRange: parameter, 294
Inspector pane, 353
Inspector window, Interface Builder

Attributes tab, 164
Bindings tab, 166–167
Connections tab, 167, 168, 189
description, 156
Effects tab, 164–165
functions, 163
Identity tab, 167, 169
opening, 173
Size tab, 166
using in Dashcode, 557

instance methods, 65, 104
instance variables, 108
instances, 97, 99

creating, 100
explicit, 100
implicit, 100
naming, 101

instruments, 478–485
int, 101
interface, 5, 98
Interface Builder (IB)

adding CoreImage effects in, 430–432
creating links in

to actions, 191–192
to outlets, 190–191
using selector, 192–194
windows, 189

defining outlets and actions
in implementation, 188
in interface, 184–187

designing project in
adding objects to nib, 176–178
aligning objects, 179–181
centering and aligning objects, 182–183
selecting cell objects, 181–182
setting fonts and font sizes, 178–179
windows, 173
workflow, 174–175

File’s Owner, 168–170
First Responder, 168–170
launching, 154
nib files

adding objects to, 176–183
editing, 154
locating objects from, 153–154

overview, 16–17, 18
previewing orientation in, 510
project management, 569
setting classes in, 170–172
using IBOutlet and IBAction, 184–185
using NSTimer

start and stop button methods, 197–198
timer method, 195–196

UT techniques
id sender, 200–202
loose typing, 200–202
placing outlets and actions, 202–205

views, 46
windows

Document, 156–159
Edit, 159–160
Inspector, 156, 163–168
Library, 156, 160–163
Main, 156
overview, 155–156

workflow, 174–175
@interface directive, 107–109
interface file, 107–109
@interfaceFirstAppleDelegate, 119
international taxation, 542
internationalization, support for, 20
ints, 98
invalidate method, 195
iOS

adding navigation and control features, 511–514
app design goals, 503–504
app switching, 498
building simple application

adding view controller subclasses, 526
creating animated view swap, 534–535
creating new project in Xcode, 525
creating views, 528–532
handling events with protocol messaging, 532–534
implementing view controllers, 526–528

built-in applications, 498
coding differences, 505
developing for

Xcode Simulator, 516–517
Xcode templates, 517–524

frameworks, 30
games on, 504
gestural control, 496
handling touch events, 514–515

29_495896-bindex.indd 58729_495896-bindex.indd 587 8/31/10 2:55 PM8/31/10 2:55 PM

588 Index

iOS (continued)
hardware compatibility, 505
location sensing, 496
managing rotation, 509–511
mobile camera input, 498
moving from OS X, 502–505
multitasking, 498
multi-touch screen control, 496
nib file, 507–508
OpenGL on, 504
orientation sensing, 496
project templates, 86
tilt and motion sensing, 497
view controllers, 507–508
views, 507–508
windows and views on iPad, 515
windows and views on iPhone, 505–508

iOS 3.2, 505
iOS 4, 505
iOS apps, vs. OS X apps, 495–496
iPad

app design goals, 503–504
app development, 501–502
app market, 501
backward compatibility, 494
Cocoa on, 30
description, 494
navigation controllers, 513
popovers, 515
simulating, 516–517
split views, 513, 515
total sales, 501
views, 515
windows, 515

iPad Simulator, 525
iPhone

camera, 498
description, 494
features, 494
home screen, 493
iOS 4 compatibility, 505
models, 494
navigation controllers, 513
orientation sensing, 509–511
simulating, 516–517
total sales, 499
using standard event messages on, 204–205
views, 505–508
windows, 505–508

iPhone apps
adding navigation and control features to, 511–514
building simple application

adding view controller subclasses, 526
creating animated view swap, 534–535
creating new project in Xcode, 525
creating views, 528–532
handling events with protocol messaging, 532–534
implementing view controllers, 526–528

business model, 498–502
custom switching, 514
design goals

constrained data sharing, 504
full-screen operation, 503
instant on, instant off, 503
loss of focus without notice, 503
no explicit data save and restore, 504
orientation sensing, 509–511
restricted battery life, 504

handling touch events, 514–515
vs. Mac apps, 13
market, 499
master/root view controller, 507
vs. OS X apps, 30, 495–496
packaging for App Store, 541–542
prices, 499
profiting from, 12–14
selling in App Store

certification process, 538–540
income territories, 499
online assistant, 539–540
packaging apps for, 541–542
permissions, 538–540
ratings grid, 543
reasons for refusing apps, 536–537
selling in, 82, 536–537
uploading apps to, 542–543

uploading to App Store, 542–543
X-code only policy for, 76

iPhone Developer Program, 81, 503, 538
iPhone OS. See iOS
iPhone OS 4, 75
iPhone OS Reference Library, 58
iPhone Program, 82
iPhone SDK, 502
iPhone Simulator, 525
iPhone templates, 85

29_495896-bindex.indd 58829_495896-bindex.indd 588 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 589

iPod Touch
description, 494
models, 494
orientation sensing, 509–511
total sales, 499

isEqual: method, 40
isEqualToArray: method, 40
isEqualToString: method, 40, 376
isfileReferenceURL method, 240
isfileURL method, 240
isObserving: method, 327–328
iTunes, 25
iTunes Connect, 543
ivars, 108

J
jailbreaking, 537
Java, 53–54
JavaScript

DOM object access, 559–560
loading images, 561
working with events and handlers, 560
working with time, 561
working with widget events, 561

JavaScript Object Notation (JSON), 255, 257, 556
jEdit code editor, 54, 76
Jobs, Steve, 5, 7
JSON (JavaScript Object Notation), 255, 257, 556

K
Kay, Allan, 4
kCAMediaTiming, 448
kCAMediaTimingFunction, 448
Kernel layer, 23, 26
keyboard events, 49
keypath limitations, 321
keyPath property, 446
Key-Value Coding. See KVC
Key-Value Observing. See KVO
key-value pairs, 41–42
KVC (Key-Value Coding)

avoiding sources, 224
data access, 214
description, 41
issues, 222

objectifying values, 222–223
using nil, 224
using NSNull, 224
using NSNumber, 223

KVO (Key-Value Observing)
implementing, 288–290
limitations, 228
making assignments compliant, 226–227
managing bindings with, 326–328
monitoring changes to preferences with, 341
nil/null values, 228
overview, 224–225
supported constants, 289
using, 227–228

L
layers

animating with, 452–453
Application Framework, 22
blending, 426
code-level overview, 26
developing features across, 26
toll-free bridged, 27
User Experience, 22

length: method, 376
Library window, Interface Builder, 156, 160–163, 173, 556
line numbers, 470
lineToPoint: method, 419
linking, 65
links

creating, 189–195
to actions, 191–192
to outlets, 190–191
using selector, 192–194

description, 184
errors, 568

localization
defined, 395–398
nib file, 395–396
strings, 396–399

location sensing, 496
looping, 35
loops, creating objects inside, 43
Love, Tom, 4
lowercaseString: method, 376

29_495896-bindex.indd 58929_495896-bindex.indd 589 8/31/10 2:55 PM8/31/10 2:55 PM

590 Index

M
.m extension, 107
Mac Dev Center, 77–78
Mac Developer Program, 80–81
Mac legacy, 379
Mac OS X Reference Library, 58
Macs, market share, 9
mailing lists, 571
main method, 272
mainFrame property, 264
main.m, 116, 117
MainMenu.xib file, 120, 154–155
MainWindow.xib file, 521
makeObjectsPerformSelector: method, 298, 414
managed object context, 365
managedObjectContext, 363
manual pagination, creating, 394
maximize method, 149–150
maxLine Beizer paths, 428
Media Layer, 23, 27
Media tab, Library window, 161–163
Medialets, 500
memory leaks, 104
memory management

code, 309
creating standard init method, 309
creating standard setter method, 310
garbage collection, 307–308
heuristics, 311
implementing, 308–311
in iOS coding, 505
methods, 308
in Objective-C, 43–44
using dealloc, 310
with view controllers, 526

messages
forwarding, 33
loose links between object and, 113
nested, 37
receiving message from OS X with NSResponder,

142–144
selectors, 113

messaging
Cocoa messaging and notifications, 36
in Objective-C, 32–33
question-response, 34

method code, 100
method interface, 100

methods
adding, 569
description, 97
implementing, 139–141
naming, 101
objects and, 96

Metrics pane, 557
migration, 363
missing capitalization, 567
missing colon, 567
missing curly bracket, 567
missing parameter, 567
missing semicolon, 567
missing square bracket, 567
mobile apps

adding navigation and control features to, 511–514
building simple application

adding view controller subclasses, 526
creating animated view swap, 534–535
creating new project in Xcode, 525
creating views, 528–532
handling events with protocol messaging, 532–534
implementing view controllers, 526–528

business model
making money from iPad development, 501–502
making money from iPhone and iPod touch

development, 499
custom switching, 514
design goals

constrained data sharing, 504
full-screen operation, 503
instant on, instant off, 503
loss of focus without notice, 503
no explicit data save and restore, 504
orientation sensing, 509–511
restricted battery life, 504

handling touch events, 514–515
vs. Mac apps, 13
market, 499
master/root view controller, 507
vs. OS X apps, 30, 495–496
packaging for App Store, 541–542
prices, 499
profiting from, 12–14
selling in App Store

certification process, 538–540
income territories, 499
online assistant, 539–540

29_495896-bindex.indd 59029_495896-bindex.indd 590 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 591

packaging apps for, 541–542
permissions, 538–540
ratings grid, 543
reasons for refusing apps, 536–537
selling in, 82, 536–537
uploading apps to, 542–543

uploading to App Store, 542–543
X-code only policy for, 76

mobile camera input, 498
modal view swaps, 508
modal views, 508
modalTransitionsStyle property, 508
Model Key Path, 349
Model-View-Controller. See MVC
Mono, 51–52, 76
MonoDevelop environment, 51
motion sensing, 497
mouse events, 414–415
mouse: inRect: method, 414
mouseDown: method, 148, 414, 444
mouseDragged: method, 408, 414–415
mouseEntered: method, 415
mouseExited: method, 415
mouseMoved: method, 415
mouseUp: method, 415
moveToPoint: method, 419
MovieClip, ActionScript, 53
MS Word importer, 380
MSMakeRange(), 377
MSMutableSet, 286
multi-alphabet support, 20
MultiBezier, 428–429
MultiButtons project, 411
Multicore instrument, 483
MultiDocument

default nib file, 387–388
document structure, 386
implementing save and open code, 391–393
printing documents, 393–394
setting document types, 388–391
template, 385

multi-language support, 20
multiple classes, 128–129
multiple users, 20
multiple windows, 20–21
multitasking, 498
multi-touch screen control, 496
mutable collections, 299

MVC (Model-View-Controller)
controller layer, 210
creating custom controllers, 213
description, 46–48
outline form, 210
overview, 209
using

in browser, 212
with Cocoa controller objects, 212–213
in database management, 211
in games, 211

MyDocument class, 386
MyLog, 472
MyNewClass class, 108
myObject, 37

N
names

changing, 86
convention, 101–102, 145
descriptive, 100
saving, 85

Nanopad text editor
creating, 381–384
implementing Open Recent menu, 384
saving and loading rich text, 383–384
template, 381
using NSFontManager, 381–382

navigation controllers, 508, 513–514, 518
Navigation-based Application template, 518
nesting, 103–104
.Net, 50
network support, 45
new_hash field, 256
newRect, 427
nextObject method, 297
NeXTStep, 5–7, 29
nib files

adding objects to, 176–178
creating, 387–388
default, 387–388
defined, 46, 151
description, 116
editing, 154
iOS, 507–508
key features, 152
loading, 151–153

29_495896-bindex.indd 59129_495896-bindex.indd 591 8/31/10 2:55 PM8/31/10 2:55 PM

592 Index

nib files (continued)
loading objects from, 100, 153–154
loading options, 153
localized, 395–396
for Picopad, 244
for simple animation, 444

nil, 224, 229, 311
nodeForXPath, 261
non-modal view swaps, 508
notifications

aNotification, 139
Cocoa messaging and, 36
delegates and, 230–231
flowchart, 229
overview, 228
posting, 230
registering object for, 229
triggering events with, 229

NSAffineTransform, 418
NSAlert, 232–233
NSAnimationContext, 446
NSApplication, 104, 169
NSApplicationDelegate, 119, 135, 137
NSApplicationDirectory, 237
NSApplicationName key, 339
NSApplicationPath key, 340
NSApplicationProcessIdentifier key, 340
NSArray

data sources, 291
description, 38, 286, 298
features, 285
id data type, 200
searching, 293–294
setValue:forKey, 289
sorting, 294–295
using, 291–292

NSArrayController

adding, 333
Controller Content property, 334
description, 330
predefined keys, 345
using MVC with, 212

NSASCIIStringEncoding, 238
NSAttributedString, 378–379
NSBezierPath, 403, 418
NSBlockOperation

passing parameters to, 280–281
using, 279–280

NSBundle, 153
NSButton, 53, 106–107
NSButtonCell objects, 185–186
NSCell, 162
NSClass, 37
NSCoder

conversion methods, 300
creating class with, 302–304
description, 45
implementation methods, 300
saving and loading composite objects to disk, 301
uses for, 235, 242

NSColor, 49–50, 420–421
NSColorSpace, 418
NSContext, 437
NSControl, 406
NSCopying method, 40
NSData, 259, 300, 380
NSDate, 97, 104, 268
NSDesktopDirectory, 237
NSDictionary

accessing file attributes, 296
description, 38, 298
key-value pairs, 39
using, 296
using ID with data collections, 200

NSDictionaryController, 212, 330
NSDocument, 153, 385, 394
NSDownloadsDirectory, 237
NSEntityDescription, 367
NSEnumerator, 297
NSEqualPoints, 417
NSEqualRect, 417
NSError, 232
NSEvent, 408
NSException, 233–234
NSFetchRequest, 367
NSFileHandle, 239, 281
NSFontManager, 381–382
NSForm, 302, 305
NSGradient, 418, 422–423
NSGraphicsContext, 418
NSHomeDirectory() function, 236
NSImage, 403, 418, 424–426
NSIndexSet, 287, 338
NSInteger, 101, 294–295
NSIntegralRect, 417
NSIntersectionRect, 417

29_495896-bindex.indd 59229_495896-bindex.indd 592 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 593

NSInvocation, 221
NSISOLatin1StringEncoding, 377
NSKeyedArchiveFromDatraTransformerName, 349
NSKeyedArchiver, 300, 306
NSKeyValueChangeInsertion constant, 289
NSKeyValueChangeRemoval constant, 289
NSKeyValueChangeReplacement constant, 289
NSLog. See also debugging

Console window, 467
format options, 468–469
implementing delegation method, 140
listing running apps, 331
overview, 466–467
reporting events with, 467–469
reporting line numbers and function names with, 470
reporting values with, 468–469
selectively enabling, 471–472

NSMakePoint, 403, 417
NSMakeReact, 130, 417
NSManagedObject, 367
NSManagedObjectContext, 366
NSManagedObjectModel, 366
NSMidX, 417
NSMidY, 417
NSMutableArray

description, 286
searching, 293–294
sorting, 294–295
using, 292–293

NSMutableAttributedString, 379
NSMutableData, 300, 306
NSMutableDictionary

description, 286, 298
key-value pairs, 39
setValue:forKey: method, 288

NSMutableSet, 297
NSMutableString, 39
NSNib, 153
NSNotFound, 294
NSNull, 224
NSNumber, 223, 270, 287, 290–291
NSNumberFormatter, 328–330
NSObject

as blank generic subclass, 146–147
description, 105
key-value observing, 225
performSelector: in, 268

running on delegates, 120
subclass hierarchy, 106
subclassing, 108, 119, 304, 386, 406
uses for, 97

NSObjectController, 330
NSOpenGLContext, 458
NSOpenGLView, 458
NSOpenPane, 240, 241, 245
NSOperation

advantages, 271–272
creating new object, 272–273
disadvantage, 277
Grand Central Dispatch, 281
running object, 274
using, 275–276

NSOperationQueue, 274–277, 280, 281
NSOrderedAscending, 294–295
NSOrderedDescending, 294–295
NSOrderedSame, 294–295
NSPanel, 345, 405
NSPersistentStoreCoordinator, 366
NSPoint, 290, 403, 416, 428
NSPointFromCGPoint, 428
NSPointInRect, 417
NSPointToCGPoint, 428
NSPredicate, 367
NSRange, 291, 376–377
NSRect, 129–130, 291, 403, 416
NSRectFromCGrect, 403
NSRectToCGrect, 403
NSResponder

description, 406
handling keyboard events, 49
handling mouse events, 414–415
placing events in OS X, 204
receiving message from OS X, 142–144

NSSavePane, 240, 242, 243, 245
NSScreen, 133
NSScrollView, 243, 244
NSSet

adding to nib, 162
description, 38, 286, 298
id data type, 200
methods, 297
touch events, 515

NSSize, 291, 416
NSSlider, 317

29_495896-bindex.indd 59329_495896-bindex.indd 593 8/31/10 2:55 PM8/31/10 2:55 PM

594 Index

NSSortDescriptor, 367
NSString

creating paths with, 236
description, 39
methods, 235, 376
overview, 375

NSStringstringWithFormat: method, 196
NSTask, 281–283
NSTextField, 185, 196
NSTextFieldDelegate protocol, 249
NSTextView, 243, 244, 302, 381
NSThread

description, 270
handling UO and thread interactions, 271
managing thread memory, 271
pausing thread, 270

NSTimeInterval, 267
NSTimer, 195–199, 221, 267–268, 441
NSTrackingArea, 415
NSTreeController, 330
NSUInteger, 338
NSUnarchiveFromDataTransformerName, 349
NSUndoManager, 394–395
NSUnionRect, 417
NSURL, 240
NSURLConnection object, 260
NSURLRequest object, 260
NSUserDefaults, 341
NSUserDefaultsController, 330, 340–341, 345–346
NSUTF8StringEncoding, 238, 377–378
NSValue, 39, 287, 290–291
NSValueTransformer, 347
NSView

description, 46, 405
drawInRect: method, 105–106
handling mouse events, 414–415
subclassing, 108
template, 406

NSViewController, 153, 406
NSWindow

application, 405
class references, 121–122
creating category on, 149–150
in document-based application, 385
extending with maximize method, 149–150
guide, 129
setting classes and subclasses, 170–172
subclassing, 144–149

NSWindow window object, 36
NSWindow*window;, 119
NSWindowController, 153
NSWorkspace, 331
NSXMLDocument, 261, 378
NSXMLElement, 260
NSXMLNode, 260
NSXMLParse, 261
NSZeroPoint, 416
NSZeroRect, 416, 426
NSZeroSize, 416
null, 229
numTaps, 515

O
Object, ActionScript, 53
Object Allocations, 484–485
object explorer, 478
object names, finding, 186
object property, 32
<object>WithContentsOfFile: method, 238
objectAtIndex: method, 294
objectForKey, 287–288
Objective-C

asterisks in, 37–38
blocks

code, 277
description, 267
NSBlockOperation, 279–281
overview, 277
pointer, 277
syntax, 277–278
values, 278–279
variables, 278–279

classes
description, 97–98
getters, 109
implementation, 110–111
interface, 107–109
public methods, 111–112
public properties, 111
self, 110
setters, 109

Cocoa messaging and notifications, 36
features, 112
history, 4–5
implicit question-response, 35

29_495896-bindex.indd 59429_495896-bindex.indd 594 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 595

instances, 98–100
memory management, 43–44
messaging, 32–33
moving to, 31
objectification with @ character, 38
objects

constructors, 102–103
designing, 100–107
inheritance, 105–106
naming, 101–102
overview, 31–32
pointers, 102–103
subclassing, 105–106

question-response messaging, 34
subclassing in, 32
syntax, 36
using objects in, 113–114

object-oriented architecture, 112
object-oriented programming, 95–96
objects

abstraction, 95
adding to nib, 176–178
aligning, 179–181, 182–183
applications, 96
archiving, 304–306
cell, selecting, 181–182
centering, 182–183
changing class of, 170–172
conditionals and, 44
constructors, 102–103
creating, 33
data dependency management, 95
de-archiving, 304–306
designing, 100–107
encapsulation, 95
event management, 95
finding names of, 186
flow control, 95
getting property, 32
initializing, 33
looping, 95
loose links between messages and, 113
naming, 101–102
Objective-C, 31–32
path, 418–419
pointers, 102–103
posting, 230
posting status of, 33

private features, 98
receiver, 99
registering for notifications, 229
releasing, 33
setting property, 32
using, 230–231
using id sender to identify, 202
using in Objective-C, 113–114
vs. values, 287

Objects tab, Library window, 160–161
ObjectToWatch, 225
observedProperty key, 225
observeValue method, 226
observeValueForKeyPath: method, 225, 328
onclick message, 34
online assistant, 539–540
onload message, 34
opacity, 426
opaque objects, 5
Open Office documents, 379
Open Recent menu, 384
openADocument: method, 244
OpenDocumentText, 379
OpenGL. See also animations

controlling animation, 462–463
creating animation, 459–462
description, 439, 440
functions, 459
overview, 457–458
Utility Toolkit, 459

OpenGL ES, 504
OpenGL ES Application template, 519
OpenStep, 6
orderFrontPanel: method, 381
orientation sensing, 496, 509–511
OS Layer, 28
OS X 10.0, 7
OS X application

creating, 29
vs. iOS apps, 495–496

OS X documentation
articles, 61–62
download site, 57
Featured, 61
flowchart, 73
Getting Started, 60, 62–63
guides, 63–64
references, 64–65

29_495896-bindex.indd 59529_495896-bindex.indd 595 8/31/10 2:55 PM8/31/10 2:55 PM

596 Index

OS X documentation (continued)
release notes, 66
Required Reading, 60
sample code, 66–67
sorting, 71
source code, 72
technical notes, 67–68
technical Q&As, 68–69
Tools & Languages section, 70
Topics breakdown, 69–70

OS X layers, 28
OS X project

creating, 84–89
naming, 85
renaming, 86
saving, 87
selecting items for editing, 92
windows

resizing, 87
switching between, 88
tiling, 88

Other References group, 101
outlets, 184

creating links to, 190–191
defining in implementation, 188
defining in interface, 185–187
placing, 202–203

outputArray, 237

P
Palo Alto Research Center, 4
parameter errors, 567
parameters lists, defining, 112
parts, 556
path animation, 450–452
path objects. See also graphics

Bezier paths with control points, 419
composite Bezier paths, 419
creating, 418–419
filling, 420
stroking, 420
transforming, 424

paths
autocompletion feature, 237–238
bundle, 236–237
creating with NSString, 236
standard directories, 237
URLs and, 45
using, 238

PCs (personal computers), 9
performSelector:

description, 215, 221
implement pause method, 269
messaging across threads, 269
running selector in separate thread, 269
using, 268

performSelectorInBackground: method, 269
performSelectorOnMainThread: method, 269,

271, 275
performSelector:withObject:afterDelay:

method, 373
personal computers (PCs), 9
Picopad

nib files for, 244
saving files for, 247

ping, 281
Placement buttons, 183
platform comparison

abstraction, 48–49
Assembler, 54–55
C programming language, 54
Flash, 52–53
Java, 53–54
object orientation, 48–49
setup and teardown, 48–49
Windows, 50–52

plists, 48
.png files, 551–552
pointers, 102–103
popovers, 515
POSIX, 24
postFilterImage, 437
pre-defined keys, 42
predicates, 367–368
predicateWithFormat:, 367–368
preferences. See also bindings

creating application with, 343–346
implementing with bindings, 340–346
initializing, 341–342
reading values, 342–343
setting keys, 342

Preferences Controller, 345
preFilterImage, 437
Prefix.pch file, 117, 118
presentModalViewController: method, 508, 522
preset keyboard shortcuts, 20
print: method, 384
printDocument: method, 393–394

29_495896-bindex.indd 59629_495896-bindex.indd 596 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 597

printf, 140
printInfo, 393–394
problem solving, 566–568, 573
project management

adding frameworks, 569
adding new properties or methods, 569
creating new subclass, 568
error checklist, 566
help resources, 569–572
including other classes in class header, 568
reference documentation, 565
solving problems, 566–568, 573
source code management in, 565
techniques, 565–566
version control in, 565
working in Interface Builder, 569

project windows
closing, 89
hiding, 89
position, 89
resizing, 87
restoring, 89
size, 89
switching between, 88
tiling, 88

projects
copying, 487–489
creating snapshots manually, 487–489
designing in Interface Builder

adding objects to nib, 176–178
aligning objects, 179–181
centering and aligning objects, 182–183
selecting cell objects, 181–182
setting fonts and font sizes, 178–179
windows, 173
workflow, 174–175

naming, 85
renaming, 86
saving, 87
selecting items for editing, 92

Projects folder
adding to Developer directory, 84
creating, 83

properties, 96
Properties section, 65
@property, 119
property

access, 41–42
adding, 355–356, 569

Core Data, 355–356
defined, 97
getting, 33
naming, 101

@property directive, 108
Property pane, 353
protocol messaging, 532–534
Protocol Reference page, 137–138
protocols, 135–136
protocols field, 108
Provisioning Profile, 538–539
pseudo-properties, 42
public method, defining, 111–112
public properties, defining, 111
Pure Data audio synthesizer, 15

Q
quad-monitor system, 77
Quartz 2D, 427–428
Quartz 2D graphics library, 131
Quartz Composer, 53
QuartzCore, 445, 504
question-response messaging, 34
Quick Start page, 122

R
range, 376–377
rangeOfString: method, 258
readFromData: method, 391
receiver, 99
RectsView, 420
reference counting, 43–44
reference documentation, 565
references, 64–65
refreshLink: method, 370
refreshList: method, 369, 372
registerAsObserver: method, 225
registering as developer, 77–80
relationships

creating, 356–359
reciprocal, 359
to-many, 357

RelativeLineToPoint: method, 419
RelativeMoveToPoint: method, 419
Release Notes, 66
reminder field, setting, 126
remove function, 561

29_495896-bindex.indd 59729_495896-bindex.indd 597 8/31/10 2:55 PM8/31/10 2:55 PM

598 Index

removeAllObjects, 296
removedOnCompletion:, 446
removeFromSuperview: method, 413, 508, 529
removeObjectForKey, 296
removeObjectsForKeys, 296
repeating counter, creating, 196
replaceSubview: method, 435
resetCount: method, 191, 198
Resources group, 154–155
responder chain, 33, 531
Return key, 126
return values, defining, 112
returnXML, 255, 256
rich text, 383
rich text editor. See Nanopad text editor
Rich Text Format (RTF), 379
root class, 107
root view, 406–409
RootViewController, 518
RTF (Rich Text Format), 379
RTFD files, 379
RTFDFromRange: method, 380
RTFFromRange: method, 380
runningApps array, 334–336
runningApps property, 331

S
Safari

layout, 21
overview, 17

Safari Developer Program, 17
Sample Code, 66–67
saveRecord: method, 304
saveTheDocument: method, 244
screen method, 133
searchReturnArray, 370, 371
seconds counter, creating, 196
SEL variable, 216
selectedName text box, 372
selectedObjects, 338
Selection, 338
selectionIndex, 338
selectionIndexes, 338
selector data type, 113
selectors

applications, 221
creating links, 192–194
defining, 215–216
defining in Interface Builder, 217–218

limitations, 216–217
running in separate thread, 269
using, 216

self, 110
self-messaging, 113
semicolon (;), 111, 567
Services Layer, 28, 29
set method, 98
setArguments: method, 282
setAttributedTitle: method, 380
setDictionary: method, 296
setEnabled: property, 198
setFrame:, 128
setFrameOrigin:, 128, 442
setFrameSize:, 442
setObject: method, 341
setters, 109, 310
setTitle: link, 124
setTitle: method, 125
setValue: forKey: method, 287–288, 289
shared property, 275
SharedInstance property, 275
Shark, 485–486
shouldAutorotateToInterfaceOrientation:

method, 509
show function, 561
showAController method, 533
showBView: method, 526, 529, 534, 535
showFront(event) routine, 561
showPanels, 394
showPreferences method, 345
showRear(event) routine, 561
signatures, 109, 125–126
sign-up page, 79
Size tab, Inspector window, 166
size_t integer, 104
Sizing Windows task, 128
sleepUntilDate: method, 270
sliderCount property, 315–316, 320
Smalltalk, 4
Smoaktalk, 6
Snapshots, 487, 489–491
Snow Leopard, 8
sort descriptors, 368
source code, 72
source code management, 565
Source Control, 487, 491–492
sourceURL, 249
Split icon, 92

29_495896-bindex.indd 59829_495896-bindex.indd 598 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 599

Split View-based template, 520
square brackets ([]), 40, 127, 567
stack trace, 478
standard directories, finding, 237
Start button, 197–198
startCount: method, 191
start-up screen, 85
stdio, 281
StepStone, 5
Stop button, 197–198
stopButton, 198
stopCount: method, 198
string encoding, 238
string method, 240
stringFromFloat method, 325
strings

attributed
drawing text on path, 380
loading, 379–380
saving, 379–380
using, 380

creating buffers for UTF-8 text, 378
default encoding, 377–378
localized, 396–399
NSAttributedString, 378–380
NSRange, 376–377
NSString, 375–376

stringValue parameter, 196
stringValue property, 250
stringWithContentOfURL: method, 376
stringWithContentsOfURL: method, 258
stringWithFormat: method, 376
stroke method, 420
structs, 96
subclasses

creating, 568
description, 107
setting, 170–172

subclassing
description, 32
inheritance and, 105–107
NSWindow, 144–149
root view, 406–409
views, 411–414

subpath, 237
subStringWithRange: method, 258, 376–377
subtractOne: method, 219–220
Subversion source control, 491–492
subview, 411

Sudden Termination, 483
super variable, 107
superclasses, 107
superview, 411
suspend method, 274
swap file, 505
Symbol list, 92–93
sync function, 561
synchronizeFile method, 239
synchronous requests, 258
syntax errors, 567
@synthesize directive

adding pointers to, 188
class implementation, 110–111
creating setter and getter code with, 32, 310
description, 109
uses for, 97

@synthesizewindow;, 120

T
Tab Bar Application template, 521
tab bar controllers, 508
tab bars, 511, 512
Tab key, 126
table objects, 35
table views, 511
target property, 195
target-action

defining selectors, 215–216, 217–218
description, 214–215
example application, 219–221
limitations of selectors, 216–217
using selectors in code, 216

targetObject:, 268, 394
Tasks section, 64
taxation, 542
Technical Notes, 67–68
Technical Q&As section, 68–69
template window, 85
templates, Xcode

Navigation-based Application, 518
OpenGL ES Application, 519
overview, 517
Split View-based, 520
Tab Bar Application template, 521
Utility Application, 521–522
View-based Application, 523
Window-based Application, 524

29_495896-bindex.indd 59929_495896-bindex.indd 599 8/31/10 2:55 PM8/31/10 2:55 PM

600 Index

Tempverter, 324–325
testPath, 237
text. See also documents

attributed strings
drawing text on path, 380
loading, 379–380
saving, 379–380
using, 380

creating buffers for UTF-8 text, 378
default encoding, 377–378
localized, 396–399
NSAttributedString, 378–380
NSRange, 376–377
NSString, 375–376

text editor. See Nanopad text editor
Text pane, 557
text parsing, 257–258
text strings, 38
theEvent, 408
theIndex, 294
theOptionalObject, 270
theRange, 394
theText, 219
TheView, 444
TheWindow, 244–246
this, ActionScript, 53
thisScreen, 134
threads. See also blocks

memory management, 271
pausing, 270
user interface and, 271

3D graphics
creating property animation code, 442
creating timer for, 441
overview, 439
types, 440
using animator

creating path animation, 450–452
creating simple proxy animation, 443–445
creating values/keytimes animation, 449
customizing animation object, 446–449
setting duration, 446
timing functions, 448–449

using CALayer
animatable filter, 453–456
animating filter, 456–458
using layers for animation, 452–453

using drawRect:, 443
using OpenGL, 458–463

tilt and motion sensing, 497
Time Profiler, 483–484
timer method, implementing, 195–196
timerMethod, 195, 320
timers, 267–268
timing functions, 448–449
timingFunction:, 446
toll-free bridged layer, 27
to-many fetch requests, 368–370
to-many relationship, 357
toolbar

customizing, 93–94
graphic identifiers, 512
UIKit, 511–512

Tools & Languages section, 70
Topics breakdown, 69–70
touch events, 514–515
touch object, 515
touchesBegan: method, 514–515
touchesCancelled: method, 514
touchesEnded: method, 514
touchesMoved: method, 514–515
tracerroute, 281
transforms, 424
transparency, 426
triple-monitor system, 77
Trism game app, 500
@try directive, 233–234
Twitter, 11, 247, 550
Twitterific, 11, 12
2D graphics

combining Core Graphics with, 427–428
combining Quartz graphics with, 427–428
CoreImage

adding effects in Interface Builder, 430–432
applying filters to image, 436–437
creating filter controller interfaces, 435–436
data type, 403
filter keys, 434–435
filters, 429–430
setting up filters for processing, 432–434

creating and drawing gradients, 422–423
creating Bezier paths with control points, 419
creating path objects, 418–419

29_495896-bindex.indd 60029_495896-bindex.indd 600 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 601

creating shapes and colors in drawRect:, 418–428
drawing images, 426
loading images, 424–426
MultiBezier project, 428–429
overview, 415
stroking and filling paths, 420
transforming paths, 424
using calibrated colors, 422
using colors, 420–421
using Foundation constants, 417
using Foundation functions, 417
using geometric data structures, 416–417

<type>Value: method, 376

U
UI. See user interface (UI)
UIEvent, 515
UIGestureRecognizer, 496, 514–515
UIKit

framework, 494, 504, 506
lit of user events, 530
tab bars, 511
toolbars, 511

UITableView, 518
UIView, 105, 507–508
UIViewController, 507–508, 523, 526
UIWindow, 505–515, 524, 535
Universal Type Identifier (UTI), 389
UNIX Development box, 82
upButton, 219
updates, 81
uppercaseString: method, 376
<url> tags, 258
URLs

creating, 240
file paths and, 45
long, 252–253
paths, 240
reading and writing data with, 240
references, 240
sending request, 253–255

URLWithString: method, 240
“Use Core Data for storage” check box, 352
Usenet groups, 571–572
user control, 210
user experience, 23–24
User Experience layer, 22

user interface (UI)
Core Data, 359–361
creating, 199
generating, 359–361
id sender, 200
loose typing, 200
using id with data collections, 200

userInfo property, 268
<usr>, 82
UTF-8 encoding, 377, 400
UTI (Universal Type Identifier), 389
Utility Application template, 521–522

V
Value Transformer box, 349
value transformers

creating, 347–348
defined, 347
setting, 349

valueForKey: method, 287–288, 342, 370
valueForUndefinedKey: method, 224
values

getting, 33
key-value pairs, 41, 287
of preferences, 342–343

version control, 565
version.plist file, 551–552
view controllers

adding, 526
description, 507–508
implementing, 526–528

view swaps, 508, 534–535
View-based Application template, 523
viewDidLoad method, 508, 523, 526
viewForUIConfiguration, 435
views

Cocoa, 45–46
container, 404–405
creating, 528–532
handling mouse events in, 414–415
hierarchy

adding from, 409–414
description, 406
removing from, 409–414
tree structure, 410

Interface Builder, 46
iOS, 507–508

29_495896-bindex.indd 60129_495896-bindex.indd 601 8/31/10 2:55 PM8/31/10 2:55 PM

602 Index

views (continued)
iPhone, 505–508
layer-backed, 452
objects, 405–406
with random buttons, 413
root, 406–409
subclassing, 411–414
subclassing root view, 406–409
subviews, 410–412

visibleFrame, 133–134
Visual Basic, 50
Visual Basic for Applications, 50
-(void), 120

W
.wdget file, 551–552, 562
Web APIs

creating asynchronous Web requests, 258–260
creating long URL, 252–253
creating XML requests, 255–256
parsing XML returns as text, 257–258
selecting XML format, 256–257
sending URL request, 253–255
using, 247–248

WebKit, 24, 262
WebView, 261–264
WebViewAppleDelegate.h file, 262
WebViewAppleDelegate.m file, 263
widgets

adding ad banner space to, 550
adding donation boxes to, 550
adding mobile apps to, 550
advantages, 550
assembling manually, 552–553
building in Dashcode

creating widget graphics, 558–559
using JavaScript, 559–561

components, 551–552
deploying, 562
description, 543
dimensions, 550
disassembling manually, 551–552
displaying, 24
importing, 562
installing, 549
profiting from, 549–550
running as background processes, 548
wrapper, 550

willRotateToInterfaceOrientation: method, 511
Window (First) object, 170–172
Window Programming Guide for Cocoa, 128
Window-based Application template, 524
windowControllerDidLoadNib: method, 391
windows

Cocoa, 45–46
container, 404–405
Interface Builder

Document, 156–159
Edit, 159–160
Inspector, 156, 163–168
Library, 156, 160–163
Main, 156
overview, 155–156

iPhone, 505–508
objects, 405–406
Xcode

Edit, 92
Groups & Files, 90
template, 85

Windows operating system, 51
withObjCType: parameter, 291
WordDoc, 379
Workflow icon, Dashcode, 556
Workflow Steps pane, 556
writeData: method, 239
writeToFileURL: method, 376

X
X11, 24
Xcode

alternatives to, 76
customizing toolbar, 93–94
developing for iOS in

using Xcode Simulator, 516–517
Xcode templates, 517–524

installing, 82–84
iPhone Developer Program, 80–82
Mac Developer Program, 80–82
overview, 16–17, 75
registering as developer, 77–80
start-up screen, 85
windows

Edit, 92
Groups & Files, 90
template, 85

Xcode 3 vs. Xcode 4, 153

29_495896-bindex.indd 60229_495896-bindex.indd 602 8/31/10 2:55 PM8/31/10 2:55 PM

 Index 603

Xcode 4, 84, 153
Xcode project

creating, 84–89
naming, 85
renaming, 86
saving, 87
selecting items for editing, 92
windows

resizing, 87
switching between, 88
tiling, 88

Xcode SDK
download site, 57
file size, 75
sample code, 66–67

Xcode Simulator, 516–517
Xcode templates

Navigation-based Application, 518
OpenGL ES Application, 519
overview, 517
Split View-based, 520

Tab Bar Application template, 521
Utility Application, 521–522
View-based Application, 523
Window-based Application, 524

Xcode.mpkg file, 76, 82
XML

classes, 260–261
format, selecting, 256–257
parsing returns as text, 257–258
requests, creating, 255–256

XPath, 260

Y
Yahoo, 247
Yellow Box, 51

Z
Zettaboom app, 30
Zip file, 562

29_495896-bindex.indd 60329_495896-bindex.indd 603 8/31/10 2:55 PM8/31/10 2:55 PM

Whether you are a seasoned developer or just getting into the Apple platform, Wiley’s Developer Reference series is
perfect for you. Focusing on topics that Apple developers love best, these well-designed books guide you through
the most advanced and very latest Apple tools, technologies, and programming techniques. With in-depth coverage
and expert guidance from skilled authors who are proven authorities in their fields, the Developer Reference series will
quickly become your indispensable Apple development resource.

 Everything You Need to Craft
Killer Code for Apple Applications

The Developer Reference series is available wherever books are sold.

30_495896-badvert01.indd 60430_495896-badvert01.indd 604 8/31/10 2:55 PM8/31/10 2:55 PM

Learn Cocoa — for fun and
for business
Cocoa is the programming environment for Apple development, and this information-packed
developer’s guide is your key to the Cocoa libraries and the Apple developer tools. Written for
developers by an experienced Mac expert and iPhone developer, this book shows you how to
learn and use Xcode and Objective-C, design user interfaces, optimize your code, manage data,
create animations and special eff ects, and package apps for the App Store.

• Master and understand the Xcode® SDK, Objective-C®, and the Cocoa API

• Create, use, profi le, and debug custom objects and subclasses

• Design user interfaces with Interface Builder

• Streamline your code with design patterns such as Model-View-Controller (MVC)

• Work with text, PDFs, Web data, and Apple’s Core Data API

• Create simple and advanced animation eff ects with Core Animation and Core Image

• Learn to develop apps for Mac OS® X and Apple devices

Access the latest information on Apple development
Visit www.wileydevreference.com for the latest on tools and techniques for Apple development,
and download source code for the projects in this book.

Richard Wentk is a developer with more than fi fteen years of experience in publishing, and is one of the UK’s most
reliable technology writers. He covers Apple products and developments for MacWorld and MacFormat magazines, and
also writes about technology and business strategy for publications such as Computer Arts and BBC Focus.

Wentk

Reader Level: Intermediate to Advanced

Shelving Category: COMPUTERS / Programming /
Apple Programming

$49.99 USA • $59.99 CANADA

Developer
Reference

Cocoa®

www.wileydevreference.com

Developer Reference

Richard WentkCocoa
®

	Cocoa
	About the Author
	Contents
	Preface
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Introducing Cocoa
	Introducing Cocoa
	Profiting from Cocoa
	Introducing Xcode and the Apple Developer Programs
	Summary

	Chapter 2: Think Cocoa!
	Designing for Cocoa
	Creating Cocoa Applications
	Moving to Cocoa and Objective-C from Other Platforms
	Summary

	Chapter 3: Introducing the Cocoa and OS X Documentation
	Getting Started with the Documentation
	Using the Documentation
	Summary

	Chapter 4: Getting Started with Xcode
	Getting Ready for Xcode
	Installing Xcode
	Creating a New OS X Project
	Exploring Xcode’s Windows
	Summary

	Chapter 5: Introducing Classes and Objects in Objective-C
	Understanding Objects
	Creating classes
	Using Objects in Objective-C
	Summary

	Chapter 6: Getting Started With Classes and Messages in Application Design
	Understanding the Cocoa Development Process
	Understanding Applications
	Discovering Object Methods and Properties
	Introducing Code Sense
	Summary

	Chapter 7: Introducing Interface Builder
	Introducing Nib Files
	Getting Started with Interface Builder
	Setting Classes and Subclasses
	Summary

	Chapter 8: Building an Application with Interface Builder
	Designing a Project in Interface Builder
	Using Advanced UI Techniques
	Summary

	Part II: Going Deeper
	Chapter 9: Using Cocoa Design Patterns and Advanced Messaging
	Understanding Model-View-Controller
	Understanding Target-Action
	Using Key-Value Coding
	Using Key-Value Observing
	Using Notifications
	Handling Errors and Exceptions
	Summary

	Chapter 10: Working with Files, URLs, and Web Data
	Creating and Using File Paths
	Creating and Using URLs
	Using Open and Save Panes
	Using Web APIs
	Using WebView
	Summary

	Chapter 11: Using Timers, Threads, and Blocks
	Using NSTimer
	Using performSelector:
	Working with NSThread
	Using NSOperation
	Getting Started with Blocks
	Using NSTask
	Summary

	Chapter 12: Managing Data and Memory in Cocoa
	Introducing Data Collection Objects
	Using NSCoder and NSData
	Managing Memory
	Summary

	Chapter 13: Using Preferences and Bindings
	Understanding Bindings
	Using Bindings with Controllers
	Implementing Preferences with Bindings
	Creating and Using Value Transformers
	Summary

	Chapter 14: Using Core Data
	Creating a Core Data Application Visually
	Exploring and Extending a Core Data Application
	Summary

	Chapter 15: Working with Text and Documents
	Using NSString
	Creating Nanopad: A Rich Text Editor
	Creating, Saving, and Loading Documents
	Localizing Applications
	Summary

	Part III: Expanding the Possibilities
	Chapter 16: Managing Views and Creating 2D Graphics
	Understanding Windows and Views
	Understanding the Cocoa Graphics System
	Using CoreImage Filters
	Summary

	Chapter 17: Creating Animations and 3D Graphics
	Using Direct Property Animation
	Using Animators
	Creating Animations with CALayer
	Using OpenGL
	Summary

	Chapter 18: Debugging, Optimizing, and Managing Code
	Using the Console and NSLog
	Debugging with Breakpoints and the Debugger Window
	Using Instruments
	Using Shark
	Managing Code with Snapshots and Source Control
	Summary

	Chapter 19: Developing for the iPhone and iPad
	Introducing the iPhone, iPod touch, and iPad
	Moving to iOS from OS X
	Understanding iOS Views and UI Design
	Developing for iOS in Xcode
	Building a Simple Application
	Selling in the App Store
	Summary

	Part IV: Appendixes
	Appendix A: Building Dashboard Widgets
	Introducing Dashboard
	Profiting from Widgets
	Understanding Widget Technology
	Introducing Dashcode
	Building a Widget in Dashcode
	Summary

	Appendix B: Maximizing Productivity and Avoiding Errors
	Managing Projects Successfully
	Getting Help
	Summary

	Index

