

Design and Prototyping for Drupal

Dani Nordin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Design and Prototyping for Drupal
by Dani Nordin

Copyright © 2012 Dani Nordin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Julie Steele and Meghan Blanchette
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-12-13 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449305505 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Design and Prototyping for Drupal, the image of a large claw crab, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30550-5

[LSI]

1323795425

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449305505

Table of Contents

Preface . vii

Part I. Getting Started: Some Stuff to Consider

1. Design for Drupal: Basic Concepts . 3
About the Case Studies 6

2. The Drupal Designer’s Toolkit . 9
Balsamiq Mockups 9
Fireworks 10
Coda 12
LessCSS and Less.app 12

Part II. Design and Layout

3. Sketch Many, Show One . 17
Ideation: Methods and Madness 18

4. Using Style Tiles to Explore Design Ideas . 25

5. Design Layout: Covering All Your Bases . 31
Greyboxing: An In-Between Option 33

6. Working with Layout Grids . 37
Why Use a Grid? 37
Grids in Wireframing 39
Grids in Theming 39
Anatomy of a Grid Layout 42

iii

But What About All These Presentational Classes? There Must Be a Better
Way! 45
The New CSS Grid Layout module: The Future Is Now 46
Going Deeper: CSS Layout and Grid Systems 48

7. Setting up Fireworks Templates for Drupal . 49
Step One: Setting Up the Grid 50
Step Two: Setting Up the Header 51
Step 3: Single Node Page 52
Step 4: Single Node Pages with Sidebars 54
Step 5: Create the Other Pages 56
Step 6: Step Up the Visuals 59

Part III. Prototyping, Theming, and Managing your Markup

8. Paper Prototyping . 67
When to Use a Paper Prototype 68
Fidelity 68
Creating a Paper Prototype 68
Walking Through the Prototype 69
Other Types of Prototypes 72

9. Breaking Down a Layout for Drupal Implementation . 75
Nodes 75
Blocks 76
Views 76

10. Working with Base Themes . 79
How to Choose a Base Theme 80
Other Base Themes to Try 82
Creating a Child Theme 83
Other Things You Should Know About Base Themes 86

Clear the Theme Registry! 86
Working with Regions 86

Please, Tell Me More! 87

11. Prototyping in the Browser . 89

12. Practical Example #1: Using Views to Enhance a Layout . 93
But I’m Not a Developer—What if I Don’t Want to Code? 96
Step 1: Create the “Event Categories” Taxonomy Vocabulary 96
Step 2: Create the Event Content Type 97

iv | Table of Contents

Step 3: Create an Image Style 103
Step 4: Create the User Profile 108
Step 5: Getting Profile Content into the Event Page 111

Setting Up the View 112
Step 6: Setting Up the Contextual Filter 116
Step 7: Setting Up the “Related Events” Block 118
So What Did We Just Do Here? 121

13. Practical Example #2: Controlling Views Markup . 123
Step 1: Associating an Image with a Taxonomy Term 125
Step 2: Create the Event Categories View 126
Step 3: Update the Field Settings 128
Step 4: Add a Custom Class to Each Taxonomy Term: Name Field 130
Step 5: Style Away 132
So What Did We Just Do Here? 135

14. Managing Your Code: Some Modules that Can Help . 137
Block Class 137
HTML5 Tools and Elements 139
@font-your-face 139
Semantic Fields 139

15. Working with LessCSS . 141
Creating Variables 141
The Mighty Mixin 142
Nesting Behavior 142
Compiling the Code 143
Working with LessCSS: Organizing Your Stylesheets 144

Setting Up Color Variables 144
Why This is Awesome (Aside From the Obvious) 147
Working with LessCSS on a Team 149

Table of Contents | v

Preface

Introduction
If you’re reading this book, you’re probably a web designer who has heard of Drupal,
wants to get started with it, and may have even tried it out a couple of times. And you
might be frustrated because even if you’re used to code, Drupal has thrown you a major
learning curve that you hadn’t expected. And just when you think you’ve gotten a basic
site together, now you have to figure out how to make it look right—and the whole
process starts over again.

Yep, I’ve been there too. That’s why I wrote this book.

This book is for the solo site builder or small team that’s itching to do interesting things
with Drupal, but needs a bit of help understanding how to set up a successful Drupal
project. It’s for the designer who knows HTML and CSS, but doesn’t want to have to
learn how to speak developer in order to parse Drupal documentation. Most impor-
tantly, this book is for those who want to use Drupal to make their vision a reality, but
need help working their minds around the way that Drupal handles design challenges.

What I present here are not recipes for specific use cases; although recipes can be useful,
experience has shown there’s rarely just one way to accomplish an objective in Drupal.
Rather, what I’m offering is context: a way of understanding what Drupal is and how
it works, so that you can get over the hump and start figuring things out on your own.
Over the course of this series of books, I’ll help you understand:

• How to plan and manage Drupal projects successfully (in the Planning and Man-
aging Drupal Projects guide)

• How to more effectively create visual design for Drupal by understanding what
Drupal is spitting out (in Design and Prototyping for Drupal)

• How to break down your design layouts to turn them into Drupal themes (in Design
and Prototyping for Drupal)

• How to get started with version control, Drush, and other ninja-developer Drupal
Magick that can make your life much easier working with Drupal (in Drupal De-
velopment Tricks for Designers)

vii

http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020295
http://oreilly.com/catalog/0636920020295
http://oreilly.com/catalog/0636920020295
http://oreilly.com/catalog/0636920020301
http://oreilly.com/catalog/0636920020301

In This Volume
In this second volume, Design and Prototyping for Drupal, we’ll start digging into the
practical design challenges that Drupal presents, and look at some strategies for dealing
with them. You will learn:

• Strategies for sketching, wireframing and designing effective layouts for Drupal

• How to break down a Drupal layout to understand its basic components, and
where those components are coming from within Drupal

• An introduction to working with layout grids and the 960 grid system to facilitate
efficient wireframing, layout and theming

• The basics of Drupal’s theming layer, including what to look for in a base theme,
and how to create a subtheme to hold your customizations

• Strategies for managing the markup that Drupal produces, including the markup
that comes from Views, the powerful module that helps organize and display the
content in your Drupal site

• An introduction to LessCSS, which can help you organize your CSS and theme
your site more efficiently

A Quick Note on Nomenclature
Before we continue, it’s important to make a distinction between visual design and
theming. While many themers can design and vice versa, visual design (as defined in
this guide) is the act of creating a set of visual standards that will control the way the
site looks. This could involve something as simple as picking out colors and font choices
for the site, and creating some standards for laying out type, boxes, etc. More often, it
involves creating visual mockups in a program such as Fireworks or Photoshop.

Theming, on the other hand, is the process of implementing those visual standards
across the site’s template files, using HTML, CSS, and PHP. While theming can (and
sometimes does) happen without visual design, design is what truly brings the message
home to the client’s audience. When well constructed, and implemented by talented
themers, a site’s visual design is an important factor in whether the site meets the client’s
business objectives.

Theming, as a distinctive job description, seems relatively unique to the Drupal uni-
verse. While many other CMSs include some idea of a theme layer—“theme” being
defined as a set of customizable templates through which content is displayed—with
many CMSs, designers either appropriate an existing theme to create their design, or
they hand finished design comps off as either images or HTML files to a developer,
who integrates those files into the website’s structure. While this can also be done in
Drupal, it’s not advised; Drupal’s theme layer has a level of complexity to it that makes
simply modifying an existing theme problematic. For this reason, many Drupal

viii | Preface

designers will turn to themers, also called “Front-End Developers,” to help them im-
plement their designs, particularly if they include any kind of fancy stuff.

A Note on Code
One thing I must emphasize about the Drupal design process is that it often involves
getting into code—but not always. As mentioned before, many excellent Drupal de-
signers never touch a line of code; however, those designers always have developers who
help them implement their designs. If you want to design for Drupal but don’t have access
to developers, well, you’re going to need to learn code and site building in Drupal.
There’s no way around it if you want to do good work.

The good news, however, is that’s part of what you’ll learn about in this book. While
I’m not going to provide you with a recipe for a generic promotional site, or guidance
on how to install Drupal, what I will do is show you how I figured out some of the
stickier design and implementation challenges for a couple of real world projects, which
will give you an insider’s look at what it’s like to design and prototype in Drupal.

But Dani, I’ve Never Even Installed Drupal Before; What Do I Do?
This guide assumes that you’re at least somewhat familiar with Drupal, particularly
Drupal 7. If you’ve never worked with Drupal at all, you might find some of the ex-
amples confusing. If you need to get started working in Drupal from the ground up, I
recommend checking out NodeOne’s excellent “Learn Drupal 7” training series. The
series, located at http://nodeone.se/blogg/learn-drupal-7-sceencast-series-summed-up,
will walk you through the basics you need to get started building your own site. Don’t
worry; I’ll wait for you.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | ix

http://nodeone.se/blogg/learn-drupal-7-sceencast-series-summed-up

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Design and Prototyping for Drupal by Dani
Nordin (O’Reilly). Copyright 2012 Dani Nordin, 978-1-449-30550-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920020295

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

About the Reviewers
Todd Ross Nienkerk, Four Kitchens co-founder, has been involved in the web design
and publishing industries since 1996. As an active member of the Drupal community,
Todd regularly speaks at Drupal events and participates in code sprints all over the
world. As a member of the Drupal.org Redesign Team, Todd helped spearhead the
effort to redesign Drupal.org and communicate a fresher, more effective Drupal brand.
He is also a member of the Drupal Documentation Team and has chaired tracks for
DrupalCon Copenhagen 2010, DrupalCon Chicago 2011, and DrupalCon Denver
2012. Todd is currently serving as the DrupalCon global chair for all design, user ex-
perience, and theming tracks.

Tricia Okin is a designer based and working in Brooklyn since 2001 and founded
papercut in 2004. papercut was resurrected in early 2009 by Tricia after realizing she
wanted to make good work with tangibility & purpose. She also realized she couldn’t
and would rather not do it alone in a design vacuum. From there, Tricia called on the
best resources she could find and mustered up a gang of wily collaborators with as
much passion for being their own bosses as she has.

Preface | xi

http://oreilly.com/catalog/0636920020295
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://drupal.org
http://drupal.org

For nearly two decades, Jenifer Tidwell has been designing and building user inter-
faces for a variety of industry verticals. She has experience in designing both desktop
and Web applications, and currently designs and develops websites for small busi-
nesses. She recently worked on redesigning the interface for Google Books. Before that,
as a user interface designer at The MathWorks, Jenifer was instrumental in a redesign
of the charting and visualization UI of MATLAB, which is used by researchers, students,
and engineers worldwide to develop cars, planes, proteins, and theories about the
universe. Jenifer blogs about UI patterns and other design-related topics at http://de
signinginterfaces.com/blog.

Acknowledgments
To be honest, I’m still amazed at being given the chance to write this book. It had been
swirling around in my mind for a while, and I consider it one of life’s happier coinci-
dences that I happened to get the opportunity to write about Drupal in not one, but
two major books this year.

A brief list of thanks to the folks who have helped me in various capacities to help this
book see the light of day:

My intrepid editors, Julie Steele and Meghan Blanchette, for giving me the opportunity
to write the book, and for helping me make sense of O’Reilly’s lengthy style guide. Also
thanks to Laurel Ruma for making the introduction to Julie so I could actually sell this
crazy idea.

Todd Nienkerk of Four Kitchens (fourkitchens.com) helped me understand how the
ideas I’ve used in really tiny teams apply to the work of larger teams; his feedback as a
reviewer (as indicated by the many times I quote him throughout this text), was in-
valuable.

Tricia Okin of Papercut (papercutny.com) was instrumental in helping me deconstruct
what my readers would need. She also provided a tremendous real-world example for
the book in the form of the Urban Homesteaders Unite project. Her commentary
throughout this process, as well as her wicked sense of humor and willingness to ac-
tually learn Drupal, has been a constant source of awesome.

Various colleagues and professional acquaintances, in and out of the Drupal commu-
nity, who were kind enough to let me interview them: Greg Segall of OnePica, Richard
Banfield of Fresh Tilled Soil, David Rondeau of inContext Design, Todd Nienkerk,
Jason Pamental, Amy Seals, Mike Rohde, Ryan Parsley, Leisa Reichelt and Andrew
Burcin.

xii | Preface

http://designinginterfaces.com/blog
http://designinginterfaces.com/blog
http://fourkitchens.com
http://papercutny.com

Claudio Luis Vera, for introducing me to Drupal, and being a mentor, collaborator,
and commiserator for the last several years. Also, Ben Buckman of New Leaf Digital,
who has been one of the guiding forces behind my passion to bring Drupally knowledge
—particularly Drush, Git and other stuff—to my fellow designers.

Finally, I want to thank the niecelet, Patience Marie Nordin, for giving me someone to
be a role model to, and my husband, Nicolas Malyska, for being the most supportive
partner anyone can hope for.

Preface | xiii

PART I

Getting Started:
Some Stuff to Consider

CHAPTER 1

Design for Drupal: Basic Concepts

At the most recent Drupal Design Camp in Boston,* Drupal founder Dries Buytaert
mentioned in his keynote speech, “I make designers write PHP. And produce horrible
code. You guys should hate me.”

While this announcement got a big laugh from attendees at the camp, Dries wasn’t
completely joking. Creating effective design for Drupal requires a willingness to acquire
some technical knowledge. If you’ve ever thought of using Drupal as a “quick” or
“cheap” way to build a website, and you’ve experimented with it at all, you’ve already
learned that you were dead wrong in that assumption.

But, if you’re willing to build on your design skills, learn some basic principles, and
apply them to an interesting and rapidly growing technology, you might find yourself
very happy working with Drupal. And believe it or not, the Drupal community will love
you for it; the last couple of years in particular has seen a renaissance of talented de-
signers who are not only doing beautiful work in Drupal, but they’re showing others
how to do it as well. If you want proof, look no further than the impressive collection
of videos from Boston’s most recent Drupal Design Camp, which you can find at http:
//ttv.mit.edu/collections/drupal:1922.

Blatant plug for the Drupal design community aside, let’s move on to some basic prin-
ciples of creating design for Drupal. To recap from the Planning and Managing Drupal
Projects guide, visual design (defined here primarily as creating the look and feel for a
given site), often comes either after or alongside the technical implementation phase
of a Drupal project. See Figure 1-1 for a reminder.

This is important for a couple of reasons:

1. Focusing on visual design later in the process helps clients focus on information
hierarchy, content and structure in the early phases—which is especially important
for content-rich or interaction-driven sites.

* http://boston2011.design4drupal.org/

3

http://ttv.mit.edu/collections/drupal:1922
http://ttv.mit.edu/collections/drupal:1922
http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020264
http://boston2011.design4drupal.org/

2. As mentioned in the Planning and Managing guide, having actual content and
structure for the site at least somewhat established prior to starting visual design
gives you a better idea of where you’re starting from—which makes it easier to
create layouts that are both visually attractive and feasible to implement.

This last piece—feasible to implement—is one of the core challenges to working in
Drupal, and where many visual designers end up going crazy. Whether we want it to
or not, Drupal has ways it likes to do things—a fact that is true with any web-based
framework (yes, even WordPress). By understanding and respecting how Drupal likes
to do things, it’s easier to develop design patterns that allow you to design more effi-
ciently, while maintaining your creativity.

The presentation Don’t Design Websites, Design Web SYSTEMS!,† first presented by
Todd Nienkerk and Aaron Stanush of Four Kitchens at DrupalCon Copenhagen, il-
lustrates this point perfectly. Working with design agency Thinkso Creative to imple-
ment a complex Drupal site for Expeditiary Learning, the Four Kitchens team started
with a series of visual designs, site maps and wireframes that Thinkso had put together.
All of these provided an excellent design direction for the Four Kitchens team, but
because some design elements had been created before Thinkso had chosen Drupal as
its platform, several of the elements had to be reconsidered and restructured in order
to avoid significant delays or cost impacts in production.

Figure 1-1. An overview of the Drupal site planning and design process. See how Technical
Implementation and Visual Design go together? That’s important.

† You can get the slide deck at http://fourkitchens.com/presentations.

4 | Chapter 1: Design for Drupal: Basic Concepts

http://fourkitchens.com/presentations

Does this mean that you should know you’re designing for Drupal before you start the
discovery and user experience phase of a site? Not always. Some projects, particularly
ones that involve a high level of user interaction or complexity, can benefit from a
platform-agnostic approach in the early phases. What’s more important to this process
is flexibility: knowing that your designs may have to adapt once you get into technical
implementation. This need to adapt is also a key reason that designers should get to
know Drupal. By having even a basic understanding of what’s happening “under the
hood,” you can adapt quickly, and avoid the nightmare that eventually befalls every
talented web designer: well-meaning implementers who destroy your design to make
it fit their framework.

The process for creating an effective Drupal design often depends on the nature of the
team and their development strategy. Some Drupal designers focus primarily on aes-
thetics and layout and give their designs to the developers to implement; other designers
prefer to do a little bit of everything, moving from layout to Views configuration to
theming as the project progresses, and working with developers to handle the trickier
bits of functionality they want to develop.

As you’ll probably notice by the time you finish the book, I’m in the latter camp. For
me, design for Drupal is about creating a vision, sketching out the possibilities, and
moving quickly into prototyping to test the assumptions that I make during the design
process. Prototyping early—whether with paper, in a program like Axure or Balsamiq
Mockups, or directly in Drupal—helps me make sure that I’m not creating something
that will be impossible to implement. It also helps me remain vigilant about all the little
things that need to be considered when designing for in a Drupal site, including:

• 404 and 403 pages

• Error messages and content administration links on individual pages

• User profile pages

• Form elements, including the user login block

• The look of block quotes, tables and other things that might be inserted into the
content

• Pages for individual content categories, or for social areas of the site

Because we’re working in a dynamic framework, any of these pieces might pop up at
some point in your user’s journey through the site—and it’s a safe bet that all of them
will. Taking the time to create design that integrates these components with your overall
look and feel is part of helping your site look thoughtfully designed and not “Drupally.”

The design phase of a Drupal project typically happens in four stages:

Ideation
During ideation, you’re generating ideas for layout, usually in rapid-fire format.
Options for ideation include style tiles (sometimes called mood boards), and
sketches of wireframes or grid layouts.

Design for Drupal: Basic Concepts | 5

Wireframing
Wireframes are basic, component-level mockups of your site’s pages. While it’s
very possible (and increasingly popular) to sketch wireframes with pencil and paper
and use those to discuss architecture and content priorities to the client, other
options include Adobe Fireworks or Balsamiq Mockups. You can also use a pro-
gram like Axure RP for wireframing, which allows you to prototype multiple pages
within the same document, annotate functionality on the wireframes, and output
a functional specification for developers with the click of a button. If you're doing
UX work with clients who plan on developing in-house, this can be extraordinarily
useful.

Design comps
During layout, you’re starting to lay in real content and images, and organize con-
tent on the page. Some teams, like San Francisco’s Chapter Three, use a hybrid
wireframe/design process called “greyboxing” as a way to more rapidly iterate de-
sign; others prefer to keep wireframes and design comps as separate components
of the design process. See Chapter 5 for more on greyboxing.

Iteration and client signoff
During iteration, wireframes and designs are discussed, debated, and tweaked until
the team agrees that it’s ready.

Ideally, iteration happens throughout the entire process, with the final result being a
set of visual designs that’s been agreed on by the team and signed off by the client as
“this is what we’re going for.” Each stage feeds the next; ideation gives you the ideas
for wireframes, which inform the designs, etc.

In theory, all of these pieces would happen in turn, and the final designs would be
handed over to the implementation team for turning into a Drupal site. In practice,
many teams go straight from wireframes into prototyping, and add visual design as a
final layer. Others go straight into visual design and then work on implementing those
designs in Drupal. As long as you have a solid discovery and information architecture
phase to back up your design choices, either approach can work; the important part is
having an understanding of what it will take to implement your design choices, and
collaborating with your team to make sure that you’re designing things that can be
implemented.

If you’re working solo, it’s also vital to know what pieces of the puzzle are beyond the
scope of your abilities; having a developer you can call when you need some extra help
getting something to work can save you money and headaches down the line.

About the Case Studies
Throughout this book, we’ll be focusing on two real-world projects. While this can
make it challenging to “follow along at home,” for those who like to work that way, I
have two reasons for this decision:

6 | Chapter 1: Design for Drupal: Basic Concepts

1. I’m working on them currently, and I enjoy being able to do two things at once;

2. Focusing on projects like these, as opposed to a single project made up for the
book, gives you the chance to see how these ideas work in the real world, with all
the frustrations and moments of unexpected joy that happen in real projects.

In Part II, Design and Layout, we’ll mostly be using my portfolio site, tzk-design.com,
as an example. This project is currently in the process of being redesigned as I refocus
my studio, and it gives me a chance to walk you through the actual process of sketching
and creating layouts for a relatively simple site.

The second project, Urban Homesteaders Unite (UHU), is being developed by myself
and a colleague, Tricia Okin of Brooklyn, NY’s Papercut (http://papercutny.com). The
site was originally conceived as part of Tricia’s MFA thesis (as such, layouts were al-
ready created), and I’ve been working with her to expand upon that original idea and
turn it into reality.

The goal of UHU is to connect urban homesteaders, e.g., people into gardening, food
preservation, and other city-hippie pursuits, through home-based events, blog posts
and connecting with other homesteaders in their neighborhood. This lets me get into
deeper areas of Drupal trickiness such as Views relationships and working with user
profiles (cue evil laughing).

Through these projects, I can show you a typical Drupal design process—from ideation
and sketches to prototyping and applying our look and feel to the site’s theme. Let’s
get started!

About the Case Studies | 7

http://tzk-design.com
http://papercutny.com

CHAPTER 2

The Drupal Designer’s Toolkit

While every designer has their own set of applications and supplies that they use for
everyday design and prototyping work, certain tools just seem to be particularly useful
when working in Drupal. The following is the toolkit that I use for most of my work.
Although the last two applications (Coda and Less.app) are Mac-specific, the others
are available for Mac or PC.

Balsamiq Mockups
Balsamiq (http://balsamiq.com/products/mockups) is a relatively small, but robust,
Adobe Air application that helps you create UI mockups incredibly quickly. The pro-
gram itself contains many of the standard elements you’d expect in a web mockup (text
boxes, headlines, video or image comps, etc.), but it’s all done in a simple, cartoonish
style that helps clients and the design team focus on what’s important in the early stages
of a project—content organization and hierarchy. Stephanie at Fusion by Top Notch
Themes also put together a handy mockup of Drupal-specific components, which you
can download here: http://fusiondrupalthemes.com/story/100325/easier-wireframing
-drupal-components-balsamiq-mockups. I’ve used it extensively for some of the exam-
ples in this book. Figure 2-1 shows the entire set of components.

In the Resources section of this book’s website (http://drupalfordesignersbook.com/re
sources), I’ve also uploaded a copy of this document (as a .bmml file). For those using
the 960 grid system to more efficiently iterate wireframes and design mockups (see
Chapter 6 for more info), the master download from 960.gs contains Balsamiq mockup
elements for 12, 16, and 24 column layouts.

9

http://balsamiq.com/products/mockups
http://fusiondrupalthemes.com/story/100325/easier-wireframing-drupal-components-balsamiq-mockups
http://fusiondrupalthemes.com/story/100325/easier-wireframing-drupal-components-balsamiq-mockups
http://drupalfordesignersbook.com/resources
http://drupalfordesignersbook.com/resources

Fireworks
Many designers prefer to use Photoshop or Illustrator for mocking up screen layouts.
Although both of these can be very useful (I used Illustrator for years before switching
to Fireworks), Fireworks (http://www.adobe.com/products/fireworks.html) has both of
them beat for a few key reasons:

Share layers among pages
A key component to the magic of Fireworks’ multiple pages feature is the ability
to share layers (think Photoshop or Illustrator Layers) among several pages in your
file. So your header, which is consistent from page to page, can be set up as a single
layer, then shared to every page in your document. Change that header once, and
every page is changed. Genius! You can also export individual layers as images,
which is useful for logos, backgrounds and other elements that you need to transfer
from design comp to an image in your theme.

Figure 2-1. A set of standard Drupal components, for your rapid wireframing needs. Courtesy of the
fine folks at Fusion by Top Notch themes.

10 | Chapter 2: The Drupal Designer’s Toolkit

http://www.adobe.com/products/fireworks.html

Multiple pages
With Fireworks, you can include multiple pages for the same site in one layout.
You can also share layers among different pages. Why is this valuable? Consider
this: in most design projects, you might have several pages that you need to lay out
for a given design. However, certain elements (such as your grid, or your navigation
menu) don’t necessarily change from page to page. If you created all of these layouts
in Photoshop or Illustrator, and had to make changes to the navigation, you’d have
to modify each one of those files in turn. With Fireworks, you can change one layer
in your file, export it to PDF, and automatically you’d see your changes across all
the documents.

PDF Export with clickable goodness
Speaking of multiple pages, you can export your entire document as a multi-page
PDF, and use Fireworks’ Web Layer to create clickable hot-spots to navigate to
other pages, show rollover states, and more. The bonus? All of this can be exported
into your PDF—meaning that your client can click around the PDF as if it was a
prototype of their website.

Symbols
Symbols are Fireworks’ way of collecting elements that are standard in a given
document. The beauty of working with symbols is being able to create a symbol,
place it, and then quickly edit it when your design changes. Change the symbol,
and wherever it appears in your document, the symbols change.

Styles
If you’re used to InDesign, you already know what styles are. Styles are standard
ways of styling elements in your design, which can be altered and changed at will
—and everything you’ve applied that style to will change along with it. This is
especially useful when working with the greyboxing method, which we’ll explain
in Chapter 5.

Use the same application for wireframing and design
One of the best reasons for using Fireworks over other technologies is that it can
be used for everything from wireframes to prototyping to design, all within the
same file. You can also export individual layers to images from within Fireworks,
which can save a bunch of time in theming, when compared to the usual process
of slicing up large layouts in Photoshop or Illustrator. The fact that Fireworks
handles vectors (like Illustrator)—but treats them as raster (like Photoshop)—also
makes it easier to tweak individual shapes without risking a loss of fidelity.

Much like the set of Drupal components that were created for Balsamiq Mockups (see
above), you can also find Fireworks templates for commonly used Drupal elements,
courtesy of San Francisco’s Chapter Three. In the Resources section of the Drupal for
Designers site, you’ll find both the Chapter Three Fireworks template, and the Greybox
template. You can also learn about the Fireworks templates here: http://www.chapter
three.com/blog/nica_lorber/design_drupal_template_approach. If you prefer to create

Fireworks | 11

http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach
http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach

your own, head over to Chapter 7, where I walk through the process of creating my
own Fireworks template for Drupal.

Coda
Coda (http://panic.com/coda) is a relatively inexpensive (under $100) application for
coding websites. Not only does it allow you to code your pages and upload them in the
same screen, it also has the ability to connect to Terminal on your remote server from
within the application, which is useful when you’re running shell commands, like
Drush or Git. Most importantly, Coda’s Clips library allows you to keep commonly
used code snippets in one place and insert them into your HTML simply by double-
clicking. This is extraordinarily useful for theming.

If you’re working with a team over the same network, you can also use Bonjour to
collaborate with other Coda users in your team. Through the network, you can edit
someone else’s code (or let them edit yours), save the files, and watch the changes
happen in front of you.

LessCSS and Less.app
Less (http://incident57.com/less; which you’ll read about in Part III, Prototyping, Them-
ing, and Managing your Markup of this book) is a CSS framework that allows you to
more efficiently create CSS. In addition to allowing you to set variables and “mixins”
for colors, fonts, etc. directly in your stylesheets that can be called anywhere else in the
stylesheets, it allows you to nest styles within each other. For example, a simple navi-
gation menu might look like this:

ul#navigation { list-style: none; display: inline; }
ul#navigation > li { list-style: none; float: left; margin-right: 1em;
 border-right: 1px solid gray; }
ul#navigation > li a { padding: 3px 0; color: black; text-decoration: none;}
ul#navigation > li a:hover { color: white; background: black;
 text-decoration: underline; }

In Less, you’d style it thus:

ul#navigation {
 list-style: none; display: inline;

 > li {
 list-style: none;
 float: left;
 margin-right: 1em;
 border-right: 1px solid gray;
 padding: 3px 0;

 a {
 padding: 3px 0; color: black;
 text-decoration: none;

12 | Chapter 2: The Drupal Designer’s Toolkit

http://panic.com/coda
http://incident57.com/less

 }

 a:hover {
 color: white; background: black;
 text-decoration: underline;
 }
 }
}

When this code is compiled, it will compile into the same code as the first example,
but you get to save yourself some typing and keep all your code for a given element
organized in one place. This is especially useful when working in Drupal, as you’ll often
find yourself customizing a much larger amount of CSS for any given area of a site—
from a particular page, to a block, to the entire sidebar. You’ll read more about the
awesomeness that is Less CSS in Chapter 15.

Ordinarily, you would compile your Less code using a small Javascript file either on
your site’s server, or directly in your template files. While this is one way of doing it, it
forces a load on the server that you may not want, and it could mess you up if your user
is in a browser that doesn’t have Javascript enabled. Yes, it does happen sometimes.
This is where Less.app comes in. It’s a tiny Mac application that sits open while you
work, and “watches” any folder that you put into it for changes to .less files. As you’re
working, every time you save the file, Less.app will compile your Less code for you into
a .css file, allowing you to more efficiently see what you’re doing. Figure 2-2 is a screen-
shot of the app, which is available at http://incident57.com/less.

Figure 2-2. The handy Less.app “watches” any folder that you drag into it and compiles your LessCSS
into CSS as you work

LessCSS and Less.app | 13

http://incident57.com/less

PART II

Design and Layout

CHAPTER 3

Sketch Many, Show One

Like many designers, when doing a logo design for a client, I’ll often sketch many
different options, and then refine the 3–4 most effective options to show the client.
This works because the client feels that they have a choice among several good options,
but they aren’t overwhelmed with decisions. It also works because they know I’ve
carefully vetted each option, and decided that any of them can work equally well.

Given this approach to branding work, it would make sense that we would want to
give the client a few different options for their website’s layout or information archi-
tecture, and work with the client to choose the best option. In my experience, this
approach fails for some very important reasons:

• It keeps conversation focused on visuals, not content or organization of in-
formation. I cannot emphasize this enough: the early stages of creating a website
should be focused on content and communication priorities, not on visual ones.
While visual communication is also an important part of the web design process,
those conversations are best had after you’ve already established your content hi-
erarchies, and seen how real content flows through your site.

• There’s a lot more to decide in a web layout than there is in a logo design. A
logo, while essential to an effective brand, is a relatively small part of the overall
identity of an organization. As such, the decision of which logo to choose is often
a relatively quick one, and the client’s focus is exclusively on this one image. With
a web layout, there are many more variables to pay attention to. Does the navigation
make sense? Have we covered everything that should (and shouldn’t) be on this
page? Throwing aesthetic decisions into the mix too early in the game prevents
stakeholders from focusing on these other questions, which can hinder the user
experience of the site.

17

Because of these concerns, I recommend a “sketch many, show one” approach to wire-
frames and design comps. With this approach, you sketch a bunch of different options
for a web layout—usually the home page and at least one interior page—and pick the
one that works best according to the project’s goals to refine and present to the client.

This approach can be very successful, especially for clients who tend to focus on too
many things at once. However, there’s a caveat: whenever you present work in this
fashion, it’s important to reassure the client that you’re showing them one approach
based on what your research suggests will work best, and that this approach is open to
change based on the client’s objectives and preferences. Also, although clients have
rarely needed it, I also leave room in my contracts for a complete shift in direction, if
the client feels strongly that the solution we’ve come up with doesn’t fit their needs.

Although some designers bristle at the idea of only showing one layout option, I’ve
found that this approach works well for a number of reasons:

• It keeps the conversation focused (which becomes more important as projects gain
complexity)

• It moves you and the client through the process more efficiently, so you can move
into prototyping more quickly

• It shows confidence in your approach, which can give the client confidence in your
team

Perhaps most importantly, by presenting one design that can be iterated upon, you’re
making it easier on stakeholders and the production team by focusing your efforts in
one direction, rather than trying two or three directions to see which one fits. Addi-
tionally, if your process includes a solid IA and UX phase prior to the visual design
phase (which it should), showing one layout tells the client that you’ve had a lot of time
to get to know their brand.

Ideation: Methods and Madness
A growing number of designers, including Milwaukee-based Mike Rohde (interviewed
below) have started showing their early sketches to clients, as a way to present truly
low-fi wireframes and keep the discussion focused on user experience and not visual
design. In practice, I’ve found that the success of this approach often depends on the
client and the rest of the project team. With some clients and developers, I toss out a
quick sketch in my journal, show it to them, and they get it completely. With others,
unless it’s mocked up in a pixel-perfect Fireworks or Photoshop document, you spend
more time defending your choice to sketch on paper than you do discussing potential
design approaches.

18 | Chapter 3: Sketch Many, Show One

Whether you build out your wireframes in software or keep them strictly paper-based,
the point of sketches is to come up with as many ideas as possible, get rid of the ones
that don’t work, and pare it all down to the one or two best ideas you generated, and
then talk those through with your stakeholders. Lately, I’ve been starting my sketches
with the six-up templates from UX firm Adaptive Path (http://www.adaptivepath.com/
ideas/sketchboards-discover-better-faster-ux-solutions; also see Figure 3-1) to help force
myself to come up with more than one or two options for a given page. Having to create
six small sketches at a time helps move you past the obvious choices, and often, I’ll find
that one of my later options works even better than my first instinct.

Once I’ve worked out a couple of ideas on the six-up template (or just created a bunch
of thumbnails in my journal), I’ll choose the one that seems to work best and work
it into a larger sketch, either using a sheet from the Browser Sketch Pad from uisten-
cils.com, or mocking up a quick wireframe in Balsamiq Mockups (see Figure 3-2).

Figure 3-1. This six-screen sketch sheet, available from Adaptive Path’s website, makes it easy to
sketch multiple ideas for a page before refining the most effective concept

Ideation: Methods and Madness | 19

http://www.adaptivepath.com/ideas/sketchboards-discover-better-faster-ux-solutions
http://www.adaptivepath.com/ideas/sketchboards-discover-better-faster-ux-solutions
http://uistencils.com
http://uistencils.com

Figure 3-2. Using Balsamiq Mockups to refine one of the earlier pencil sketches. This mockup is based
on a 12-column, 960-pixel grid, ala 960.gs

From the Trenches: Mike Rohde, UI Designer and Illustrator
Mike Rohde is a UX/UI Designer from Milwaukee who is known, among other things,
as the illustrator for 37Signals’ book “Rework.” As a designer who works on a variety
of complex interaction challenges ranging from websites to multi-platform applica-
tions, Mike uses pencil sketches extensively in his creative process, and considers them
an essential component of client communication.

Dani: When you do interface work, you show your clients hand-drawn sketches. How do
you find that that has served you as you do UX work, whether it’s Drupal or any other
platform?

Mike: I’ve found that sketches work really well for helping to make a quick transition
from idea to a concept that the client can really get their head around. There’s a level
where you can [verbally] say “yes, well it’ll do this, and we can make it do that,” and
if they’re not a web developer or even a designer, they often can’t picture what that

20 | Chapter 3: Sketch Many, Show One

thing will look like when you describe it. In fact, it might become more confusing to
them as they’re trying to envision it. The other danger is that you describe it and they
have one idea, then when you show it to them, it’s actually a different idea than what
they had envisioned.

The challenge when you go straight to a finished project—let’s say you invest a lot of
time and energy creating a prototype—and you haven’t gotten very good information,
or the client hasn’t been as forthcoming as you’d like—you may have invested a lot of
time and energy in creating a prototype that isn’t going to work for the client, and you’ll
have to start over. Hand-drawn sketches provide something in between. You can do it
to many different degrees; I’ve done everything from incredibly loose sketches that I’ve
shown along with a little description and received approval on to very detailed wire-
frame-type sketches.

It varies depending on the client and what I wanted to show, but it’s been very effective.
One of the main things I’ve noticed about sketches is that clients aren’t so afraid of
them. One of the things that happens with wireframes, mockups or prototypes—or
anything that feels like it’s at some level of “finished”—is that clients will sometimes
feel that there’s too much progress and they’re afraid to say something. They won’t say
so directly, but they might feel like “I can’t really criticize it because they’ve already
spent so much time on it.” But that lack of up-front feedback ends up coming out in
the end, and at the back end of the project we end up noticing things, and needing more
changes, which are more expensive to implement. By giving them a sketch, you can
head them off on some issues and let them feel like they can have some input because,
you know, it’s just a pencil sketch. I can criticize that—they’ll just do another one right?

Dani: When you look at a wireframe that’s been done in Fireworks, it’s often easy for the
client to critique like, “oh, is that really going to be the font?” I imagine that, with sketches,
there’s a lot less of that. You’re really focused on “this is the hierarchy of information on
this screen”—which is really what you want to be talking about in the wireframe stage.

Mike: I think it comes down to setting expectations. Many times when I do sketch
work, I’ll work with Basecamp, and upload a scan of a sketch that I’ve done, with a
pretty detailed description of what they can expect to happen and what my thoughts
are. If it’s a combination of notes and a sketch itself, I’ll very often include notes like
“this will do that” with an arrow pointing to a button that will do such and such or so
and so. But then I’ll provide a description. And then when I speak to the client, I’ll talk
to them on the phone and point to parts of the sketch, and we can even go in and mark
the sketch up during an in-person meeting (See Figures 3-3, 3-4, and 3-5).

What that does is bring them into the process of decision making and understanding.
I think that if I prepare them and say, “look, this is a very high-level sketch of the broad
idea that we’re going for—we’re not going to show fonts or colors or any of those
things,” then it seems to work pretty well. Again, I think it’s a question of setting ex-
pectations that happens with every kind of design that we do. Whether it’s sketches or
mockups, and then explaining your process.

Ideation: Methods and Madness | 21

Figure 3-3. An early sketch concept wireframe for Pear Note on the iPad. Image credit: Mike Rohde,
rohdesign.com/usefulfruit.com

Once I’ve mocked up my wireframe, I’ll use what I’ve mocked up to validate the con-
cepts about content priorities, navigation, etc., that we established in the information
architecture/UX phase with the client and design team. For personal projects, or
projects where there’s a piece of the interaction that I am still trying to understand, I
may also go straight into a prototype, either in a program like Axure or in Drupal, so I
can make sure what I’m thinking of is feasible and show clients the real interaction
we’re trying to create. Prototyping, whether I’m doing it myself or with a developer’s
help, also helps me work out areas of the content that may require special treatment,
like videos or content that needs to be formatted a certain way. I’ll also use this op-
portunity to start collecting images, type treatments, and color options in a series of
style tiles, which I’ll start showing to the client after we’ve established the information
priorities. We’ll talk about style tiles in the next chapter.

22 | Chapter 3: Sketch Many, Show One

http://rohdesign.com/usefulfruit.com

Figure 3-4. Rough concept sketches for the Pear Note iPad icon and menus. These were created to
explore some ideas with Chad (iPad developer) before jumping back to Photoshop for mockups. I
explored all kinds of ideas and shared them with Chad. We discussed further and then I created final
mockups which Chad used for reference in the final development of the app. Image credit: Mike Rohde,
rohdesign.com/usefulfruit.com

Ideation: Methods and Madness | 23

http://rohdesign.com/usefulfruit.com

Figure 3-5. Here are two detailed wireframe-like concept sketches, used to explore ideas for working
out the Pear Note for iPad interface details. In the end the app was simplified a bit from these sketches,
focusing on core features for v1 (audio and text). Image credit: Mike Rohde, rohdesign.com/
usefulfruit.com

24 | Chapter 3: Sketch Many, Show One

http://rohdesign.com/usefulfruit.com
http://rohdesign.com/usefulfruit.com

CHAPTER 4

Using Style Tiles to Explore
Design Ideas

A style tile (sometimes called a mood board) is a simple collection of images, fonts,
colors and other inspiration to inform your design. The important difference between
a sketch or layout concept and a style tile is its lack of structure; while a layout comp
is meant to represent an entire page, a style tile is best kept simple. In a style tile, you
collect elements that make sense for the project, shuffle them around, and see how they
work. Style tiles are also meant to be works in progress; while the hope is that layout
comps will only reach the client when they’re in good enough condition to be close to
final, a series of style tiles can be shown to a client at early stages of the project, to gauge
aesthetic preferences and make sure you’re on the same wavelength. They’re also great
for fleshing out ideas, or keeping track of visual stories for future projects. Figures
4-1 and 4-2 are style tiles for the redesign of my studio website, currently in progress.

As you can see, this isn’t a complete layout as much as a visual exploration of fonts,
colors, and treatments for different areas of the site. When it comes down to theming
the site, I might end up doing something entirely different—but at the very least, I’m
developing a sense of the mood that I’m trying to create, and working out how the
different types of images I will need to show will be displayed, how headlines should
be treated, etc.

Style tiles can be created at any stage of a project. They’re especially good for exploring
ideas early on, while you’re wireframing, as a way to collect your thoughts about visual
solutions before you are ready to explore them with the client. The most important
thing to note about them, particularly if you plan on discussing them with clients, is
that style tiles should not look like a web page. Their purpose is to explore visual elements
and treatments, not to create a layout for the website.

25

Figure 4-1. An initial style tile for tzk-design.com

26 | Chapter 4: Using Style Tiles to Explore Design Ideas

http://tzk-design.com

Figure 4-2. A second style tile, with a different feel to it. After considering the two, I decided to build
on the approach in this one, which I refine in Chapter 7

Using Style Tiles to Explore Design Ideas | 27

The benefit of showing style tiles instead of design layouts is similar to the benefit of
starting a discussion with sketches instead of a more formalized wireframe:

It’s fast
A set of style tiles can take as little as 1–3 hours to put together, often even less.
They’re also much easier and more efficient to iterate than full design comps; rather
than fleshing out these ideas in full designs that then have to be iterated again and
again, you can use style tiles to quickly identify a set of visual guidelines that will
guide the overall look and feel of a site quickly and cheaply. In fact, I’ve sometimes
ended up doing style tiles while doing research or information architecture for a
client project, throwing ideas into a Fireworks file as ideas come up.

It’s modular
Because you’re using the style tiles to explore visual approaches rather than to set
up a specific set of layouts for a given section of the site, style tiles fit in very well
with the modularity of the Drupal design process. In some cases, you can even start
theming based on style tiles instead of having to do full layout comps.

It brings the client into the conversation
This increases their confidence in your approach, and lets them see the design
process happening in front of them. Having the client involved in the conversation
at an early stage in the process helps them feel like they have “ownership” of the
design, which increases the likelihood that they’ll approve the proposed design
when you’re ready to finalize the look and feel of the site.

It helps keep the conversation focused
By walking the client through a set of style tiles, rather than a complete layout, you
can keep the conversation focused on aesthetics, rather than content and place-
ment—which, ideally, will have already been settled by the time you’ve started
discussing the style tiles. This helps keep everyone focused on the visuals at the
time when you’re actually supposed to be focused on the visuals.

What you’re doing, in essence, is setting up a series of stylistic conventions to be used
across the site’s various elements. This can help you save time by letting you go straight
from wireframe to implementation, using the style tiles to guide the theming process,
rather than creating design layouts that dictate the design of a specific page, but can’t
necessarily be carried over to the other pages.

Once you’ve iterated your style tiles to the point where you and the client agree that
you’ve found the best visual approach, you have a choice in how to proceed. If you’ve
already started getting some content into a development site (which you ideally will by
this point), you can start applying these standards across your site’s theme, and give
clients the chance to see how these visuals will play out with real content. If you’re still
working out issues with specific types of content, or special areas of the site, you may
want to start working the style tiles into full design comps, preferably with examples
of real content from the client’s site.

28 | Chapter 4: Using Style Tiles to Explore Design Ideas

Whether you go to theming straight from your style tiles or you go from style tiles to
full design comps, it’s important to consider not just the basics, like headers, para-
graphs, and sidebar boxes, but to think holistically about the types of content and
functionality that you’re going to be building. In Chapter 5, Design Layout: Covering
All Your Bases, we’ll look at some of the elements that should be considered when
designing for a Drupal implementation.

Using Style Tiles to Explore Design Ideas | 29

CHAPTER 5

Design Layout: Covering All Your Bases

Once you’ve established a visual direction with style tiles and you’re ready to get into
design comps (or start theming), you want to make sure you’re considering all of the
elements you may end up dealing with in the process of creating a Drupal site. For
example, how do you want to treat block quotes? Tables of data? What about pagers
for list pages? The following is a brief list of the elements you should consider when
creating your style tiles, adapted from San Francisco Drupal firm Chapter Three’s ex-
cellent blog post, Design for Drupal—a Template Approach:*

• Header text and links

• Footer text and links

• H1 - H5 tags

• Body

• Link

• Unordered List

• Blockquote

• Image Styles

• Code snippets in text

• Admin Tabs (the View/Edit/etc. tabs listed on pages for logged-in users)

• Secondary Admin Tabs (the links listed under admin tabs)

• Collapsible Field Sets and Accordions

• Headers and typography for blocks

• “More” button

• “Read More” link/button

• Form elements and labels

• Tags

* http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach

31

http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach

• Pagination for Views listings

• Tables

• Error Messages

• Status Messages

• Warning Messages

• Help Messages

• Blog post titles

• Author and post date information

• Breadcrumbs

While you don’t have to style every last element within a style tile, it’s useful to keep
them in the back of your mind while playing around with ideas. In fact, you may even
consider doing two style tiles for a given project: one for front-facing pages (i.e., what
the user sees) and another for client-facing (i.e., site editors, etc.) pages.

Once you’ve gone over the style tiles with your client, and you’re confident that the
visual approach you’ve decided on will work for them, it’s time to start looking at the
layout of your pages. As with the mood board elements mentioned above, the key here
is to make sure you’ve got your bases covered. While it’s not necessary to try to create
a design comp for every single page in your Drupal implementation, there are certain
pages that will show up over and over again in your layouts, and it’s useful to set a
visual standard for each of these types of pages. When creating your design layouts, be
sure to consider the following types of pages:

• Single node page, with one sidebar

• Single node page, with two sidebars

• Single node page, with no sidebars

• Blog listing, with pagination

• Single blog page, with comments

• User profile pages

• Category pages

• Groups pages (if applicable)

• 404 and 403 pages

• Contact forms

• And finally, the home page

If you’re working in Fireworks (see Chapter 2 for the various reasons why you should
be), the good news is that you can collect all of these pages into one document, use
Hotspots to create links among the various pages, and export the whole thing as a multi-
page PDF that your client can then click around to see the flow of their website.

32 | Chapter 5: Design Layout: Covering All Your Bases

If you want to get a head start on your design layouts, Chapter Three has created a
multi-page Fireworks file you can download to get started. The file, available at http://
www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach, has the
following pages already created:

• News/Blog page

• News/Blog page with sidebar

• Basic Node Page + Typography

• Basic Node Page w/sidebar

• News/Blog Views

• Admin Login w/tabs

• Admin: Collapsible Boxes

• Admin: Table

• Contact Us

• Profile Page

• Error Message

While a couple of the pages (such as the admin areas) aren’t something you typically
need to worry about with Drupal 7 theming, they’re extremely useful for Drupal 6
projects, where the admin theme is often the same as the site’s theme. You also want
to make sure that you consider things like admin links on individual pages, the site’s
log in page, and profile pages, which don’t use the Drupal admin theme. In a couple
of chapters, I’ll walk you through the process of creating your own Fireworks template,
using the example of the new version of tzk-design.com, currently in development.

Greyboxing: An In-Between Option
While it’s often tempting to go straight from wireframes to design layouts, in some
cases an interaction that you’re trying to create is complex enough that it makes sense
to take a step in between. Other times, you might find yourself dealing with a very tight
deadline for a project, and you need to move from wireframe to design more quickly
than you would normally—but you still want to make sure that the client’s attention
stays focused on content and information priorities before you jump straight into colors
and fonts.

One alternative to going straight from wireframes to design is greyboxing, a process
outlined by Chapter Three’s Floor Van Herreweghe in her blog post “Designing in the
Grey” (http://www.chapterthree.com/greyboxing) and a recent presentation at Drupal
Design Camp in Boston (http://boston2011.design4drupal.org/sessions/art-wireframing
-using-greybox-model-visualize-user-experience). Greyboxing is, in essence, a middle
step between wireframes (simple layouts with placeholders/blank boxes for content)
and design layouts (which are often meant to represent the ultimate design of the site’s

Greyboxing: An In-Between Option | 33

http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach
http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach
http://tzk-design.com
http://www.chapterthree.com/greyboxing
http://boston2011.design4drupal.org/sessions/art-wireframing-using-greybox-model-visualize-user-experience
http://boston2011.design4drupal.org/sessions/art-wireframing-using-greybox-model-visualize-user-experience

pages). It gives you an opportunity to design while you’re wireframing, but it also gives
you the opportunity to move from wireframe to design sooner than you would in a
traditional wireframe-to-layout design process, which is useful for projects that require
a very strict timeline.

The idea is that you already have a sense—through your sketches—of what the content
for the page is going to be, and you’ve already got an idea of some different visual
approaches for the page, which you incorporated into your style tiles. But you’re not
quite ready to fully take the leap into full-on design mode—for example, if there are
content issues the client still needs to settle on. The important thing to note here is that
greyboxing does not replace sketching; rather, it gives you an interim step in the process
before you get to a complete design. For example, Figure 5-1 is an example of a page
layout for our Urban Homesteaders Unite site, created using the greyboxing
technique.

In projects with very tight deadlines, greyboxing can also be a way to go from sketches
into a starting point for your layout while maintaining the client’s attention on content
organization and flow rather than color preferences. In her session at Design for Drupal
Camp, Van Herreweghe used an example from a project that only allowed three weeks
for the entire design phase; going into greyboxing quickly allowed her to quickly set a
visual standard, and then evolve the visual standard with colors, fonts, etc. as the layout
gets closer to what it should be. This is another benefit to using Fireworks for this
process; Fireworks allows you to set up Styles (similar to InDesign’s Styles palette),
which you can simply edit to change all instances of a given element within your docu-
ment. This means that you can start with your greybox layout, then change the styles
to create the final design.

Another thing that can help you make your layout decisions more efficiently is working
with a grid framework; in the next chapter, we’ll discuss 960.gs, one of my favorites.

34 | Chapter 5: Design Layout: Covering All Your Bases

Figure 5-1. This Event page has been laid out using the greyboxing technique. Note that some visual
standards have already started to be set, images have placeholders connected to them, but everything
is still in varying shades of grey

Greyboxing: An In-Between Option | 35

CHAPTER 6

Working with Layout Grids

We can think of grids, therefore, as a springboard for creativity. They lay a foundation
through which a designer can create solutions to problems large and small, and in doing
so help readers, users, and audiences find that which all humans seek: a sense of order
within disorder.*

As you may have noticed from the series of semi-transparent rectangles overlaying a
few of the examples in this book, I use grid systems fairly often in my work. There are
several different grid systems available for websites, many created for specific projects
by developers who decided to give their work back to the design community. This
chapter will focus on the one I’ve been using for years, 960.gs. 960 is certainly not the
only option for a grid system; however, it is one that has received a lot of attention and
support in the Drupal community. The 960 grid system (960.gs), developed by Nathan
Smith, is incorporated into both the NineSixty (drupal.org/project/ninesixty) and
Omega (drupal.org/project/omega) Drupal themes, and the 960 grid generator
(grids.heroku.com/) allows you to create your own version of the 960 grid by setting a
column number, width, and gutter width (Figure 6-1).

Why Use a Grid?
Grids have been a standard part of the practice of graphic design for decades. In addition
to providing much-needed structure in a layout, grids also serve to make information
easier for us to process. When confronted with any layout—whether it’s a printed
brochure or a website—our eyes struggle first to instill some sort of order to what we’re
seeing. When we’re confronted with a chaotic layout, particularly when an element in
that layout is just slightly misaligned with an element near it, we focus more on the
misalignment than the message or content of the piece. Grids, then, give us the ability
to create that order, and to make it easier for the people accessing our content to pay
attention to what’s important about the page. See Figure 6-2 for an example.

* Vinh, Khoi. Ordering Disorder: Grid Systems in Web Design, p. 13

37

http://drupal.org/project/ninesixty
http://drupal.org/project/omega
http://grids.heroku.com/

Additionally, and particularly in regards to layout for the web, having a grid system
helps create a set of known constraints that can help you focus your design solutions.
As the logistics of implementing our solutions for the web continue to grow more
complex, the structure provided by different grid systems gives you one less thing to
worry about when implementing your layout.

This means that you can iterate on a design more quickly. Rather than thinking of
elements on a page in terms of pixel widths, which can range from 100px to 960px or
more, a grid system allows you to think of things in terms of how many columns it
takes up. This is remarkably useful in terms of efficiency; instead of kvetching about
whether a sidebar should be 200px or 234px wide, for example, and spending your
time worried about padding and floating, etc.—you can tweak things simply by chang-
ing the sidebar’s class from 2 columns to 3 columns wide.

Figure 6-1. Nathan Smith’s lovely 960.gs is a good starting place for working with grids in your web
design. If you want to try your hand at a custom grid, he even includes a custom CSS generator

38 | Chapter 6: Working with Layout Grids

Figure 6-2. Elements that are just slightly misaligned can create distraction for users

Grids in Wireframing
Working with a grid system also makes wireframing more efficient. I find that a well-
constructed grid even facilitates sketching ideas; having a grid right there on the page
makes it easier to consider issues of hierarchy, proportion and overall layout without
second-guessing yourself. The classic 960 grid uses 12 or 16 columns; however, a 24
column grid was recently added, which has been built into the Omega theme. Person-
ally, I prefer the 24-column layout (see Figure 6-4); it has enough columns to be very
flexible (for example, you can have either three or four columns of content in a given
region), but not so many that it’s hard to figure out how many to use for a given element.
Figure 6-3, a very early wireframe for my personal site, uses a 12-column grid. In
Figure 6-4, I’ve revised the wireframe to use a 24-column grid.

Grids in Theming
There are several base themes available for Drupal that have the 960.gs grid built right
into them. You will learn more about two of them, NineSixty (drupal.org/project/nine-
sixty) and Omega (drupal.org/project/omega) in Chapter 10, Working with Base
Themes; however, several base themes are available that incorporate 960.gs in their
styles. Two other options available for Drupal 7 are:

Grids in Theming | 39

http://drupal.org/project/ninesixty
http://drupal.org/project/ninesixty
http://drupal.org/project/omega

Panels 960gs (drupal.org/project/panels_960gs)
This is an HTML5-based theme that incorporates the 960 grid system with Panels
(drupal.org/project/panels), a module that allows you to create customized drag-
and-drop layouts for multiple purposes. Panels is a module created by the Earl
Miles, the creator of Views. I can’t say I’ve ever used this theme, as I don’t tend to
use Panels in my sites; however, for those who use Panels regularly, it seems like a
great option.

Sky (drupal.org/project/sky)
Developed by Jacine Luisi of Gravitek Labs, Sky isn’t so much a base theme as it
is a nice, basic theme with sensible defaults. It’s also Color module enabled, which
means that you can easily change the default color scheme of the theme in your
site’s Appearance settings. I used this theme for a project I worked on in early 2011;
while many of the defaults seemed very sensible, I found there were a large number
of overrides needed in order to customize it to the level I needed for the project.

Figure 6-3. This quick wireframe for the “About” page of my website refresh uses a 12-column grid

40 | Chapter 6: Working with Layout Grids

http://drupal.org/project/panels_960gs
http://drupal.org/project/panels
http://drupal.org/project/sky

Aside from the ones listed, just about any base theme can be adjusted to incorporate
the 960 grid system. Simply download the appropriate grid from 960.gs (either the
standard grid, or a custom grid of your own wicked devising, using the custom grid

Figure 6-4. Switching to a 24-column grid gives me a bit more flexibility; I can fit a bit more on the
page, but still keep things organized

Grids in Theming | 41

generator), load the CSS files into your subtheme, and add their names to your sub-
theme’s .info file. Then, sketch your layout using the grid, and incorporate those grid
values into your subtheme’s template files, or use the Block Class module to add a
custom grid value (represented as a class, like “grid-2”) to a block in your theme. See
Chapter 14 for a description of the Block Class module.

Anatomy of a Grid Layout
960 (and many other grid systems) work like this: you start with your container width.
The container is just that; it contains your grid columns. Regardless of the number of
columns (12, 16, or 24), in each container div, you’ll have a series of <divs> inside the
containers, each of which has a certain column width, denoted by the class grid-
[number]. So, for example, let’s say I have a layout like Figure 6-5, with a 12-column
grid, a content area of 6 columns and 2 sidebars of 3 columns each.

Figure 6-5. A sample grid-based layout, using a 12-column grid

42 | Chapter 6: Working with Layout Grids

If I was building that out in code, it might look like this:

<div id="page" class="container-12">
 <div id="header" class="container-12">
 </div>
 <div id="middle" class="container-12">
 <div id="content" class="grid-6 alpha">
 <p>Some text goes here</p>
 </div>
 <div id="sidebar-first" class="grid-3">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-3">
 <p>some text goes here</p>
 </div>
 </div>
 <div id="footer" class="container-12">
 Etc. Etc. Etc.
 </div>
</div>

As you can see, each of the horizontal sections of our layout—header, middle and footer
—is given a container class, while each vertical section in our layout gets a grid class
with a number corresponding to the number of columns we want the section to have.

In addition to the grid values, 960.gs also has push and pull classes that will apply
negative or positive margins to a given layout in order to give you a content-first layout
(helping search engines and screen readers better deal with your site’s content) while
maintaining the aesthetic we want. For example, let’s say that we want that first sidebar
to show up on the left side of the page instead of after the content area, but we still
want to keep the sidebar’s content showing up after the content area in our markup.
In our “middle” section, we could adjust our markup thus:

<div id="middle" class="container-12">
 <div id="content" class="grid-6 push-3">
 <p>Some text goes here</p>
 </div>
 <div id="sidebar-first" class="grid-3 pull-3">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-3">
 <p>some text goes here</p>
 </div>
</div>

There’s also a prefix and suffix class for adding space between elements; for example,
if you wanted to put some air in between the content area and the second sidebar, you
could change the markup like this:

<div id="middle" class="container-12">
 <div id="content" class="grid-6 push-3 suffix-1">
 <p>Some text goes here</p>
 </div>

Anatomy of a Grid Layout | 43

 <div id="sidebar-first" class="grid-3 pull-6">
 <p>some text goes here</p>
 </div>
 <div id="sidebar-second" class="grid-2">
 <p>some text goes here</p>
 </div>
</div>

It may sound a bit complicated, but as long as all the numbers in your grid add up to
the width of your container, you’re all set. Here’s a quick checklist for doing the math:

• Push and pull values should match the widths of the elements with which they’re
being swapped. If our content area above (grid-6) needs to swap places with our
first sidebar (grid-3), the sidebar should have a class of pull-6, and our content
area should have a class of push-3.

• Prefix and suffix values add to your column total. So if you have a 12-column
grid, and your content area has a width of grid-5 and a suffix of suffix-1, you have
exactly 6 columns left in your grid. This is especially noticeable when wireframing,
and it’s also one of the reasons I like 24-column grids.

From the Trenches: Todd Nienkerk, Four Kitchens
Four Kitchens is a Drupal shop in Austin, TX, that specializes in helping clients create
large-scale websites. They also run DrupalCamp Austin, a yearly Drupal event, and
they co-created and co-maintain Pressflow, a specialized Drupal distribution optimized
for large-scale implementations. Todd is a vocal advocate of 960.gs, and gives presen-
tations on the system at Drupal events around the country.

Dani: Why do you love grids?

Todd: My own reason is the one that I perhaps don’t hype enough in the talks I give
about grid design, but it’s a constraint that frees me. Just as a painter would first choose
a palette, or limit the size of the canvas—you impose a limit on what you design, because
then you can innovate within those constraints.

If you have not only a blank canvas, but a blank canvas of any size, or shape, or orien-
tation, how do you even start, really? Whatever you’re creating, you have to make that
first decision. A grid is like that first decision. What’s even better about it is that it’s a
first decision that’s kind of already made for you; you don’t have to feel like, “Oh, did
I screw up?” You’re rarely going to say, “I picked a width of 920 pixels for my website.
I hope I don’t regret this in a year.”

Typesetting is a really good analogy for this kind of thing, because it’s why grids were
developed back in the day. You had to create grids to set your type, because you couldn’t
build actual typesetting machines for each book. You had to develop something that
you could reuse from one book to another.

Using a grid allows you to say, “my content is going to be somewhere in this range,”
and now I have fewer decisions to make. Consider the paradox of choice; if you have
too much choice, you’re going to freeze up and maybe not make any decision whatso-
ever. But if you have a limited number of choices—for example, 12 columns to work

44 | Chapter 6: Working with Layout Grids

with—you can configure them in a finite way, and it’s easier to make decisions about
that configuration. You can have 12 1-column spaces, you can have 1 12-column space,
you can have 3 4-column spaces, etc. It’s actually freeing, because it limits your choices,
and you can propel the process forward. You get beyond that first stage of existential,
“what am I going to do with this giant blank canvas of infinity?” and create a starting
point from which you can move forward.

Dani: Knowing that I have a certain amount of structure helps me come up with ideas
more quickly, because I know the language of the grid. I frequently do wireframes where
I specify “grid-5,” “grid-7,” etc. One of the things I love about 960 is that, if a column
suddenly appears way too wide, you could just move down a number on the grid class,
and it’s done. Boom. Resized. There’s none of this thing you have to do with Zen, where
you have to change values in four different stylesheets.

Todd: Yes, the ease of use of a grid system—and I don’t think this is exclusive to 960,
but I think that 960 does it best in terms of setting the tone for this kind of thing—is
that changing stuff, and visualizing the markup and CSS is orders of magnitude simpler.
It’s no longer about “is this 127 pixels?” or “what’s my negative margin here?” It’s a
shortcut, or shorthand; if I’m working in a 16-column grid, I know that a single column
is 40 pixels wide, and it has a margin-right and margin-left of 10 pixels. I know that
academically. But when I’m in the zone, and I just need to move things around, and I
need to rapidly iterate and prototype, I don’t want to be thinking about, “why did my
layout break? Why did this object flow to the next row?”

With the grid, I can simply look at the numbers and say, “all of these numbers add up
to 12; I’m done.” If I decide one thing is too wide, and I want to make it 1 column
shorter, I just have to add a column somewhere else and I’m done. Thinking of widths
in terms of columns, rather than pixels, is a huge time-saver. How often have we had
to do a web design with a calculator app open? Why not create the math up front, and
never have to think about it again?

But What About All These Presentational Classes? There Must
Be a Better Way!
While 960.gs offers a ton of flexibility, and can make constructing a page more efficient,
it must be acknowledge that it adds a fair amount of code to your site—not only the
CSS files that construct the grid, but also the presentational classes needed to set up
page defaults (grid-x, push-x, etc.). For those who pride themselves on fully semantic
code (organized by hierarchy, presentation well separated from content, etc.), this can
be a major annoyance. What if there was another option—an option that could set up
a grid for you without all those annoying extra CSS classes?

Currently, there is one option: Susy (susy.oddbird.net/). Susy is billed as a way to make
“unobtrusive grids for designers.” Susy allows you to create custom grids using Com-
pass and Sass (command-line CSS tools; see http://compass-style.org/), without any

But What About All These Presentational Classes? There Must Be a Better Way! | 45

http://susy.oddbird.net/
http://compass-style.org/

presentational classes showing up in your markup. While Susy looks very powerful,
there are some caveats to its awesomeness:

• It requires knowledge of the command line. You’ll need to install a Ruby gem
in order to install the Susy plugin, and you’ll also need the command line to start
a new project and to compile your CSS once you’ve set your definitions.

• It requires knowledge of Compass and Sass. Compass and Sass are, as men-
tioned earlier, command-line CSS tools. They are similar to LessCSS, which you
will read about later in this book, but instead of using Javascript to compile your
CSS, they do everything through the command line.

• You need to do math. Lots of math. In order to plan out and define your grid,
you’ll need to do some advanced planning and set up the math for your grid.

I’m not saying that any of these things are deal-breakers; over the years, I’ve actually
gotten somewhat cozy with the command line, and I was one of those obnoxious kids
who did math for fun. However, the power of Compass, Sass, and Susy come with
pretty steep learning curves; every designer will have their own take as to how much
of that learning curve they’re willing (or have time) to take on. For those who are
interested in using Compass, but aren’t ready for the command line just yet, there is a
reasonably priced ($7) app available for both Mac and Windows that will compile your
Compass for you. I don’t know if it also works with Susy, but it’s worth a try.

The New CSS Grid Layout module: The Future Is Now
With all this talk of grid systems for the web, the future looks promising. An actual
CSS Grid Layout module is, as of this writing, in editor’s draft at the w3c (http://dev
.w3.org/csswg/css3-grid-align/). The CSS Grid Layout module will allow you to define
a basic grid in the top of your CSS, and position your elements directly within the grid.

For example, let’s go back to Figure 6-5 and see how we’d construct that grid with this
new module.

The first thing we’d want to do is define our grid container. We’ll call that #page in our
CSS. Since most of our widths are actually grid-3 (in 960.gs terms), we can probably
get away with doing 4 columns instead of 12. We’ll also need three rows: one for the
header, one for the middle, and one for the bottom:

#page {
 display: grid;
 grid-columns: 1fr 1fr 1fr 1fr;
 grid-rows: 130px auto auto;
}

The “fr” in the grid-columns is shorthand for “fractions;” it’s a percentage of the overall
grid.

46 | Chapter 6: Working with Layout Grids

http://dev.w3.org/csswg/css3-grid-align/
http://dev.w3.org/csswg/css3-grid-align/

This will set up our grid with four equal columns and three rows, both of which auto-
matically size vertically. Now, we want to start setting up the rest of our page. We’ll
start by styling our header:

#header {
 grid-column: 1; /* location of the element */
 grid-column-span: 4; /* width of the element, in column spans */
 grid-row: 1; /* location of the element */
}

From there, we’ll work on our second row; we’ll call our first element article, and the
second sidebar-1 and sidebar-2.

#article { grid-column: 1; grid-column-span: 2; grid-row: 2; }
#sidebar-1 { grid-column: 3; grid-column-span: 1; grid-row: 2; }
#sidebar-2 { grid-column: 4; grid-column-span: 1; grid-row: 2; }

Finally, we’ll work on our bottom section. We’ll call these postscript-1 through
postscript-4.

Figure 6-6. Revisiting our 12-column layout from earlier

The New CSS Grid Layout module: The Future Is Now | 47

#postscript-1 { grid-column: 1; grid-column-span: 1; grid-row: 3; }
#postscript-2 { grid-column: 2; grid-column-span: 1; grid-row: 3; }
#postscript-3 { grid-column: 3; grid-column-span: 1; grid-row: 3; }
#postscript-4 { grid-column: 4; grid-column-span: 1; grid-row: 3; }

As you can see, this new module is fairly easy when compared to Susy above—especially
in terms of defining your grids and placing information. However, this specification is
currently only available in the IE10 Platform Preview, which means that you can’t ac-
tually use it right now. And that paradoxically, there’s something that IE is ahead of
the curve on. I’ll give you a moment to absorb that.

Going Deeper: CSS Layout and Grid Systems
Although it’s hard to feel that CSS as a layout engine has found its way yet, there’s a
lot to be hopeful for. People are working hard around the world to find options that
work in multiple browsers, and new options are turning up all the time. If you want to
learn more about grids and CSS layout, the following resources might prove useful:

• Vinh, Khoi. “Ordering Disorder: Grid Principles for Web Design.” New Riders,
2011.

• Gasston, Peter. “The Future of CSS Layouts.” .net Magazine. August 3, 2011. http:
//www.netmagazine.com/features/future-css-layouts.

• Boulton, Mark. “Rethinking CSS Grids.” From Mark Boulton’s blog, August 8,
2011. http://www.markboulton.co.uk/journal/comments/rethinking-css-grids

• The w3c’s editor’s draft for CSS Grid Layout: http://dev.w3.org/csswg/css3-grid
-align/

• Official documentation on Compass: http://compass-style.org/

• Official documentation on Sass: http://sass-lang.com/

• The Grid System. Online resource about grids in both print and web design. http:
//www.thegridsystem.org/

• Design by Grid. Articles, tutorials and resources for grids in web design: http://
www.designbygrid.com/

• The Golden Grid System. I haven’t played with this yet, but it looks very promising
for responsive grid-based layout: http://goldengridsystem.com/

• The 1140 grid, designed by Andy Taylor. Another option for adaptive layout, which
starts at 1140px wide and reflows columns down to mobile: http://cssgrid.net/

• The Square Grid, designed by Avraham Cornfeld: http://thesquaregrid.com/. This
is a framework based on 35 equal-width columns. Laura Scott of PingV Creative
has also incorporated this grid into a Drupal theme, available at http://drupal.org/
project/squaregrid.

48 | Chapter 6: Working with Layout Grids

http://www.netmagazine.com/features/future-css-layouts
http://www.netmagazine.com/features/future-css-layouts
http://www.markboulton.co.uk/journal/comments/rethinking-css-grids
http://dev.w3.org/csswg/css3-grid-align/
http://dev.w3.org/csswg/css3-grid-align/
http://compass-style.org/
http://sass-lang.com/
http://www.thegridsystem.org/
http://www.thegridsystem.org/
http://www.designbygrid.com/
http://www.designbygrid.com/
http://goldengridsystem.com/
http://cssgrid.net/
http://thesquaregrid.com/
http://drupal.org/project/squaregrid
http://drupal.org/project/squaregrid

CHAPTER 7

Setting up Fireworks Templates for
Drupal

While the Fireworks templates provided by Drupal firm Chapter Three* can provide
an excellent starting point for your layouts, you may find that having a predetermined
set of styles and pages inhibits your creativity. Even if something’s all in Helvetica and
isn’t meant to be a final layout, it can be easy to get caught up in other priorities, and
let the defaults do the heavy lifting. Additionally, while the templates provide a good
set of default areas that you’ll want to consider for 90% of your Drupal implementa-
tions, every project is unique enough that it makes sense to put some thought into how
you want to set up your layouts rather than depending on what another design team
has done.

Below, I’ll outline a simple process for creating your own custom Fireworks templates.
This process assumes that you have a basic knowledge of how to use Fireworks; if you
haven’t used it before and need to learn it, Lynda.com has a Fireworks CS5 training
course (see http://www.lynda.com/Fireworks-CS5-tutorials/essential-training/59962-2
.html), and the Adobe Classroom in a Book series has an excellent book on Fireworks
(http://www.amazon.com/Adobe-Fireworks-CS5-Classroom-Book/dp/0321704487).
The book Adobe Fireworks CS4 How-To’s: 100 Essential Techniques (http://www.ama
zon.com/Adobe-Fireworks-CS4-How-Tos-Techniques/dp/0321562879/ref=sr_1_2?s=
books&ie=UTF8&qid=1315255117&sr=1-2) deals with the previous version of Fire-
works, but still provides an excellent introduction to using the software.

For the purposes of this overview, I’ll focus on setting up a layout for tzk-design.com,
my personal site.

* Available at http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach and http://
www.chapterthree.com/greyboxing.

49

http://lynda.com
http://www.lynda.com/Fireworks-CS5-tutorials/essential-training/59962-2.html
http://www.lynda.com/Fireworks-CS5-tutorials/essential-training/59962-2.html
http://www.amazon.com/Adobe-Fireworks-CS5-Classroom-Book/dp/0321704487
http://www.amazon.com/Adobe-Fireworks-CS4-How-Tos-Techniques/dp/0321562879/ref=sr_1_2?s=books&ie=UTF8&qid=1315255117&sr=1-2
http://www.amazon.com/Adobe-Fireworks-CS4-How-Tos-Techniques/dp/0321562879/ref=sr_1_2?s=books&ie=UTF8&qid=1315255117&sr=1-2
http://www.amazon.com/Adobe-Fireworks-CS4-How-Tos-Techniques/dp/0321562879/ref=sr_1_2?s=books&ie=UTF8&qid=1315255117&sr=1-2
http://tzk-design.com
http://www.chapterthree.com/blog/nica_lorber/design_drupal_template_approach
http://www.chapterthree.com/greyboxing
http://www.chapterthree.com/greyboxing

Step One: Setting Up the Grid
The first step to efficiently setting up a layout is to start with the basics. What are the
basic content areas of the page? How will body text and headlines be dealt with? What
about links, lists, etc.? These are collected onto a sample page, and styles are set so they
can be reused elsewhere.

We’ll start with the page grid. Since I’m using the Omega theme to set up this site, I’ll
be starting out with the standard 960 24-column grid. Each piece of the grid is 30px
wide, colored pink at 20% transparency, and placed with a 10px gutter between each
piece. That’ll be a layer in my document called “24-column grid,” which I’ll place at
the top of my layers and share with all other pages in my document. Figure 7-1 shows
how my layout looks after I’ve set up the grid.

Figure 7-1. After setting up the 24-column grid, we already have a layer set up for our Fireworks
template

50 | Chapter 7: Setting up Fireworks Templates for Drupal

Step Two: Setting Up the Header
Now that I have my grid in place, I want to take a bit of time thinking through how the
navigation will be organized and setting up some type defaults. For that, I’ll create a
new layer called “header” and bring in my logo, the navigation links and other elements.
I can bring these in directly from my style tiles (see Chapter 4, Using Style Tiles to Explore
Design Ideas).

With the navigation, I may want to play around with the format of links, text, colors,
etc.—but I want to be able to change them across the board when I make edits. For
this, I’ll convert the navigation to a symbol called “navigation” (do this by selecting the
navigation elements, right clicking, and selecting “Convert to Symbol” from the con-
textual menu). I’ll also set up some Styles for the navigation, including the type format
for links in their on and off state, and a style for the background of the on state.
Figure 7-2 shows what my Layers and Styles palettes look like when I’m done.

Figure 7-2. Our new navigation, straight from the mood board we created earlier

Once we’ve created the navigation, we want to make sure that we label our new layer
“Header” and share it to all pages in our document. I’ll also add a small “Accepting
work in:” status message (see Figure 7-3) in the upper-right corner, which will be
brought in as a block when I build the site.

Step Two: Setting Up the Header | 51

Figure 7-3. Our header is starting to take shape

Step 3: Single Node Page
Now that we have our header in place, we should probably think about how type will
look. For this, we’ll start with a single node page, which will give us an opportunity to
figure out a variety of different type defaults.

The focus of a single node page should be on the legibility of the content on the page.
I want to avoid a line length that’s too long, so I’ll keep my content area at a width of
12 columns, which is about half the page. It’s important to test out a couple of different
types of copy that could appear in a given text sample, so I’ll include a secondary
heading, a pullout quote (which I’ll convert into a symbol) and some sample body copy.
I also want to make sure I plan for titles that might go long, so I’ll set my h1 as a two-
line title to see how it looks. Finally, each element in my sample copy will have its styles
saved in the Styles palette:

• h1: the page title

• p: the body copy

• h2: the secondary title underneath the first paragraph

• blockquote: the pullout quote. The entire block quote is pulled out from the main
flow of the text and saved as a symbol

Figure 7-4 shows where we are with our sample node page.

Right now, we’re assuming that this page has no sidebar; this means that we’re going
to end up with a lot of extra space on the right side of the content unless we come up
with some sensible margins. Looking at our grid again, I see that the logo is set as a 2-
column wide image; let’s move the content 2 columns to the right to align with the left

52 | Chapter 7: Setting up Fireworks Templates for Drupal

edge of the navigation. We’ll also make the content area wider: 14 columns instead of
12. While I’m at it, I’ll create a footer for the page, repeating the three dotted lines I
used below the navigation to create a balance to the page, and creating new styles called
“footer p” and “footer a” for the Footer text. Figure 7-5 shows where I’ve landed.

Figure 7-5. Our finished node page

Figure 7-4. Setting up a sample node page to set up our content styles

Step 3: Single Node Page | 53

Now that we have an idea of what a node page looks like without a sidebar, it’s easy
enough to copy this page and use it to create a second template with one sidebar, and
another with two sidebars.

Step 4: Single Node Pages with Sidebars
The point of starting off your template with a node page that doesn’t have sidebars is
this: you will inevitably have a page like this somewhere on your site. And many designers,
well-meaning as they are, end up forgetting this and assume there will be 1–2 sidebars
on the page. As Drupal’s default behavior reflows the text to fill the entire page when
there are no sidebars, this results in these pages having long and drastically uncom-
fortable line lengths.

That said, it’s safe to assume that most pages will have at least one sidebar, and that
the sidebars will contain different types of blocks, for example:

• A list of node titles or categories

• Static text or images

• A tag cloud or something similar

• Callout boxes, like a contact form or customer testimonial

Therefore, while I’m working on my node pages, I should also take a look at how these
different types of sidebar blocks will be styled, and how I’ll set up both one- and two-
sidebar layouts. I’ll use my two-sidebar layout as my blog post page, and set up a “recent
entries” block, tag cloud, and “about the blog” description block. Because presenta-
tions end up being a large part of my work, I’ll also put a “recent presentations” block
in the right sidebar, with images. This will give me the opportunity to create styles for
other blocks that include images. Figure 7-6 shows the result.

Creating the sidebars gives me an opportunity to set up a few more styles, including
“sidebar h2” (for block titles), “date callout” for the blog post date and presentation
date, “tag cloud” for the links in the cloud, and “a” for links. Note the style names:
each style’s name is related to a piece of the theme that’s going to be styled with CSS
later.

Another thing to note here is the placement of blocks: since I’m using Omega as my
base theme, viewing my layout on a smaller screen, such as a tablet in portrait mode
or a smartphone screen, will cause the blocks to the right of my content area to float
underneath the content in the order they appear. As such, I want to make sure that the
blocks are placed in order of importance: first the “about” section, then post tags, then
recent entries, and finally, presentations. As I build this out, the priorities may change,
but for now, this looks good.

54 | Chapter 7: Setting up Fireworks Templates for Drupal

Once we have a two-sidebar page done, it’s easy enough to do a one-sidebar page. I’ll
start by duplicating my two-sidebar layout and removing the right sidebar. Then I’ll
make the right sidebar just a little bit wider, which will help it fill out more of the page.
If we look at Figure 7-7, we’ll see where we’ve gotten with that layout.

Figure 7-7. Our one-sidebar layout is much less cramped compared to the two-sidebar layout, but is
mostly useful when there are just a few things that go on the page aside from content

Figure 7-6. Our two-sidebar layout contains the info we need, but leaves plenty of room for the blog
post, which is the focus of the page

Step 4: Single Node Pages with Sidebars | 55

One of the great things about working in Fireworks—although this is
also true of Illustrator and Photoshop—is the ability to easily show and
hide layers. In my Fireworks document, I can toggle my grid on to
quickly size elements, then toggle it off to see how the overall page looks.

Step 5: Create the Other Pages
Now that I have my basic page structure down, it’s time to start looking at the other
pages in my site. Working with the styles I’ve already created (and creating new ones
as I need to), I’ll create the following pages in my layout:

• Blog listing, with the sidebars as used in my two-sidebar layout

• Category page, based on the blog listing page

• Project page, with associated images and text

• Project listing, with images and a brief project description

• Contact page

• A 404 (page not found) and 403 (access denied) page

• The home page, with associated blocks and callout areas

This should cover most of the pages that I will be setting up in the Drupal implemen-
tation, and give me more than enough to work with. Many of the pages will feed each
other—for example, my blog listing page will start with my two-sidebar layout, and
change the listing, and then the category page will follow from that. However, the
project pages, being highly image/case study focused, will require special treatment,
including putting some thought into how I’m going to organize the projects, and how
they should be displayed. This is where having the real content comes in handy; because
I know that the content I’m dealing with in this section is highly visual, I realize that
my needs for this particular page will be different than my needs for the blog pages.
Figures 7-8 through 7-10 show the approximate layouts that I’ve created.

56 | Chapter 7: Setting up Fireworks Templates for Drupal

Figure 7-8. Our project page, with images

Step 5: Create the Other Pages | 57

Figure 7-9. The blog listing, with pager

58 | Chapter 7: Setting up Fireworks Templates for Drupal

Figure 7-10. The project listing, grouped into the types of projects I typically work on

Step 6: Step Up the Visuals
Up until this point, with the exception of the logo and header, I’ve purposely kept the
visuals pretty low-key. The purpose of this first phase of design is to focus on the grid
and the structure of the page, similar to what I’d do in the wireframing stage. Once I
have those standards set, though, it’s time to start adding some more interesting visuals
to the page.

Step 6: Step Up the Visuals | 59

The first piece is to start adding color. I’ve already created my color palette and chosen
my fonts in the style tiles I created earlier (see Chapter 4), so I’ll start by making my
headers brown, and setting them in Impressum, the font I’ve chosen for the headers.
I’ll do this by selecting the post title on any page, restyling it with my new color and
font, selecting it, and then choosing “Redefine Style” from the Styles palette (see Fig-
ure 7-11). Once the style is redefined, any instance of that style will have the new
attributes I have chosen.

Figure 7-11. Redefining our H1 style. If we look on our pages once the style is redefined, we’ll notice
that everything has been restyled now

After I’ve defined my headers, I’ll redefine the styles for the other elements of my page
using the same process. Add a few flourishes, and we’re looking pretty darn good.
Figures 7-12, 7-13, and 7-14 show some of my completed pages with the new styles.

Now we have a layout that we can start putting into Drupal. In addition to under-
standing the basic page structure, we’ve also started setting up some typographic styles
that will guide our design, which will help us make more efficient CSS to code our
theme.

60 | Chapter 7: Setting up Fireworks Templates for Drupal

Figure 7-12. New blog post page with styles applied. As you can see, I’ve started to set some visual
standards; for example, links in orange and green for subtitles, etc.

In the next section of the book, we’ll start looking at how to prototype a site for Drupal.
For the purposes of the next section, we’ll focus on a different project, called Urban
Homesteaders Unite. This project, which I’m collaborating on with my friend Tricia
Okin of Papercut, will allow us to get into some much more interesting design chal-
lenges, including working with complex Views relationships and customizing profile
pages.

Step 6: Step Up the Visuals | 61

Figure 7-13. The project page looks even better, borrowing from the blog page’s titles

62 | Chapter 7: Setting up Fireworks Templates for Drupal

Figure 7-14. The project list stays pretty simple, but doesn’t need the banner around the title of the page

Step 6: Step Up the Visuals | 63

PART III

Prototyping, Theming, and
Managing your Markup

CHAPTER 8

Paper Prototyping

While prototyping in the browser is useful when you’re starting to imagine how a given
function or section of a site might work out, it’s also a lot of work. If you’re not sure
about a given bit of design logic, or how a certain piece of the user flow will work out,
it could take a lot of time and energy to try to prototype the interaction in Drupal—
and if you end up realizing that the solution you’ve created has usability problems, or
is best done another way, it can be frustrating to “throw away” all the work you did.

One way to deal with this uncertainty is by using paper prototypes. Paper gives you the
flexibility to move things around when they don’t work, or to try out complex inter-
actions, in a way that doesn’t require you to throw a bunch of time into code. It also
has the benefit of being extremely portable, and it lets you try out ideas on the fly. By
showing a paper prototype to a user and having them show you how they would go
about completing a given task, you get quick access to usability problems that crop up
in your designs. Most importantly, once you discover those problems, you can get more
information about why the problems occurred, and make changes to your prototype on
the fly.

This is the single most important point about paper prototyping. Where a usability test
involving a piece of software or a website that’s already been built can reveal usability
issues that you have to tackle later, in the iteration process, paper prototypes let you
find the mistakes and fix them in front of the user. Each time you fix something, you
get a little bit closer to something that works; and you save yourself a whole lot of
headaches and code when it comes time to build things.

67

When to Use a Paper Prototype
While conceivably, a paper prototype could be used for any application, including a
corporate website, they tend to be most useful when the interaction you’re trying to
create for a user has a bit of complexity to it. Examples include:

• Shopping carts

• Sites in which content categorization is a primary part of the navigation (e.g., higher
ed websites, or e-commerce applications)

• Sites that require some type of form entry (log in screens, checkout screens, etc.)

Working with mobile layout (whether you’re making a website or an application) is an
especially good application of paper prototypes; since the experience of a mobile site
needs to be much more concentrated, paper prototypes can help identify which tasks
or information are most important to users, and where the frustration patterns come in.

Fidelity
The level of fidelity in a paper prototype can range from printouts of screen layouts or
wireframes to hand drawn interfaces. No matter what level of fidelity you end up with,
the point is to get something that a user can start interacting with, and being able to
show them the interactions that are taking place while they’re doing them.

Creating a Paper Prototype
The best place to start is the sketches you’ve already made—whether they’re in a note-
book, or done in a program like Fireworks or Balsamiq Mockups. In a YouTube ex-
ample of a paper prototype test from Blue Duck Labs for a kid’s educational website
(http://youtu.be/9wQkLthhHKA), the examples are mocked up from screen wireframes;
in another example from South African UX designer Werner Puchert (http://youtu.be/
y4Wwnt9KIjg), each aspect of the prototype is sketched by hand. What you decide
depends on where you are in the project and what you’re comfortable with. At the least,
the prototype should have:

• A place to start. This could be the home page; it could be a specific section of the
site you’re focusing on.

• Somewhere to go. Each paper prototype should be focused on a specific set of
tasks, so make sure that your prototype includes each screen related to that task.

• An indication of what happens when you go there. This is the most important
part. In a paper prototype, you’re trying to assess the interaction that’s happening,
and make sure that users understand how it is meant to work. Most importantly,
users should be able to understand how it works without you having to tell them.

68 | Chapter 8: Paper Prototyping

http://youtu.be/9wQkLthhHKA
http://youtu.be/y4Wwnt9KIjg
http://youtu.be/y4Wwnt9KIjg

The last point is one of the key benefits of keeping paper prototypes low-fidelity. If, for
example, a user clicks on a button you weren’t expecting them to click on, you need
to be able to show them the interaction that will happen when they click on it. If you’re
keeping to low-fi prototypes, it’s much easier to sketch out the interaction on a new
piece of paper or a Post-It than it is to anticipate every possible interaction in a given
flow for the purposes of a prototype. Or worse—to try making a quick mockup of a
new screen in code to print out while the user is waiting. That way leads chaos.

Walking Through the Prototype
It’s hard to demonstrate in words exactly how to walk through the prototype with a
potential user. In the interview with David Rondeau of InContext Design (see “From
the Trenches: David Rondeau, inContext Design” on page 69), he walks through the
process that his team uses for working with paper prototypes; however, the following
videos can also give you a good visual demonstration of a variety of paper prototype
techniques:

• Animating Paper Prototypes: blog post plus video from UK designer Chris Neale:
http://e102.co.uk/?p=3

• Example Usability Test, from Blue Duck Labs: http://youtu.be/9wQkLthhHKA

• Low-Fi Web Prototype II, by Werner Puchert: http://youtu.be/y4Wwnt9KIjg

• A few examples from Drupal UX designer Roy Scholten:

— http://www.youtube.com/user/royscholten#p/u/1/7VOkLzD3yDs

— http://www.youtube.com/user/royscholten#p/u/10/Yn0ZgKf74xM

— http://www.youtube.com/user/royscholten#p/u/9/Z0UZkkvDTCM

From the Trenches: David Rondeau, inContext Design
David Rondeau is the Design Chair at InContext Design, a user experience design firm
based in Concord, MA (http://www.incontextdesign.com). InContext created the Con-
textual Design process, which is taught at universities all over the world. Paper proto-
types are a significant part of the Contextual Design process, meaning that David and
his colleagues use them as part of every project.

Dani: What is it that you love so much about paper prototypes? Why do they work so well
for you?

David: Paper prototypes are critical for allowing you to validate the structure, basic
functions, and the flow of your design, before having to code anything. It works because
it’s paper, so it’s easy to make. There’s not a ton of time and overhead involved; people
can argue that they can do HTML just as fast, but I don’t believe it. Besides, any time
you start using a specific tool, you start getting bogged down in details.

Dani: So walk me through the Contextual Design process.

Walking Through the Prototype | 69

http://e102.co.uk/?p=3
http://youtu.be/9wQkLthhHKA
http://youtu.be/y4Wwnt9KIjg
http://www.youtube.com/user/royscholten#p/u/1/7VOkLzD3yDs
http://www.youtube.com/user/royscholten#p/u/10/Yn0ZgKf74xM
http://www.youtube.com/user/royscholten#p/u/9/Z0UZkkvDTCM
http://www.incontextdesign.com

David: In a typical project, we might go out and do 12–30 interviews with people, who
are the users of whatever kind of product it is that we’re looking at. We consolidate the
data, put it all up on a wall, and then we do what we call “walking the wall.” We’ll
walk along the wall, looking at all this data, for a couple of hours, to prime our brains
so we understand the user’s problems—what they do, what works for them, what
doesn’t. Then we have our brainstorming session, which we call “visioning.”

In visioning, we tell the story of what the future would be based on what we now know.
It’s wide, it’s broad, and we come up with all kinds of cool things that will support the
user in ways that haven’t been done yet. Once we have that vision, that’s when the
second half of the project starts.

That’s part of the process of using paper prototypes. You have a bunch of ideas, groun-
ded in data. Even with all that data, and with clients in the room who understand the
domain, you’re still never going to get everything right. Ever. I’ve been doing design
for 20 years, this type of design for 11, and I still have yet to see a perfect first-round
paper prototype. There’s always something that’s not quite right.

Dani: I think that’s one of the things that makes paper prototypes so useful. Your first
couple of options are never quite right. When you jump straight into code, or even Fire-
works, you’re tempted not to “waste” the time you just spent.

David: It’s not something you feel like you can just throw away. If you’ve ever read Bill
Buxton’s book, Sketching User Interfaces, this is one of the key things he talks about.
What makes something a sketch is that it can be thrown away. Paper prototypes, then,
are basically sketches that you have the user do their work in.

Dani: I have heard the argument that users just don’t get paper prototypes. These folks
believe the only way you can really show an interaction is to show users something that
looks the way that it’s going to look.

David: Well, I’ve been doing them for 11 years, and I can tell you that they work. If
someone’s suggesting that they don’t work, that often means a) they don’t understand
how to use them, and b) they’re trying to test the wrong level of interaction design.

The other reason paper is good is that it’s easy to change, and it allows you to co-design
in the moment, with the user. The point of the prototype isn’t just to validate your
ideas, it’s to come back with a prototype that’s been changed to support the user’s work
practice. In interviews, a user might say, “Oh, I need it to do this thing,” and we didn’t
put it in the design. Draw some buttons on the prototype, add another piece of paper,
and put it in front of the user, and say, “Okay—let’s try to use this.” You can’t do that
in HTML. Once you’ve committed something to code, it’s too much work to change
it. The user isn’t going to sit there and wait for you to make changes to HTML.

Dani: It gives you that chance to validate what you’re thinking and say, “does this even
work for the people who have to use it?” before you start throwing things into code.

David: I think it’s all about using your time wisely. If you think about design, you don’t
start designing the look of the buttons right away. You have to understand what the
system is supposed to do—what are the core functions, what are the key places that
you’re supposed to go to, and how do you move between those places? Now you have

70 | Chapter 8: Paper Prototyping

an idea, now, let’s go see if this idea actually works for the people that I want to buy
this thing.

Dani: So you do all the research, and now you’re at a point where you have to make a
design from that research. Now you’re going to start sketching out the interface, looking
at the different options. Do you start with just one paper prototype and test that, or do
you try a couple of options?

David: No, we always test one. The caveat is that there may be some parts in that one
that we want to test a couple of options for; but we typically do no more than two.

Dani: How do you test it?

David: It’s a two hour interview, usually two people go into it. One person runs the
interview/prototype, the other takes notes, since it’s too hard to do both at the same
time. We’ll go to the person’s work, because their office is where they do all their work,
it’s where they might have cheat sheets, notes, people that they talk to to help them get
their work done—things you’d never find out if you met them in a Starbucks. They
also need to have their computer, because they may need to access their work so they
can reference things, etc.

We go in, talk to them for a little while and ask questions for the first 15 minutes or so:
what’s their work? What do they do? Mind you, these are usually people that we’ve
already interviewed in our initial research. We already understand their “work;” what
we’re looking for is hooks—real instances of work they just finished or need to do—
so we can have them re-do that work in the prototype.

Once we find those hooks, we’ll stop and introduce them to the paper prototype. We’ll
give them a brief intro to the prototype, but we don’t give specific details or show them
how to use it. We’ll say something like, “okay, you were talking about this specific
piece of work [the hook] that you do; how would you do that here?” Then we give them
a marker or a pen, and tell them “this is your new mouse; this is your new keyboard,”
and tell them that they can “click” wherever they want on the paper, and then we’ll
show you what happens.

Dani: Are there any pitfalls to testing the prototype with users?

David: One of the key things you don’t want to do is what we call a “demo,” which is
more like putting it in front of someone and showing them what it does—“Isn’t my
baby beautiful? Don’t you love it?” If you do that, you can’t be sure they will give you
an honest answer. They’ll tell you what they think, which is not always what they need.
So if you get them grounded in a real case of their actual work that they’ve done or that
they need to do, then you can talk to them about why they need something. You get
the why, not just the what.

Often, we’ll be going through the paper prototype, and they’ll see some other piece of
information or functionality, and they’ll say, “Oh, what does that do?” We’ll say, “I
don’t know; why don’t you click on it and we’ll find out.” They click on it, and say, “I
could use that.” We could just capture that as a validation of one of our concepts—
but it’s not really a validation because we don’t understand why they want it. So we
always ask why, or better yet, offer a hypothesis to the user and let them react to it. If
you’re wrong, they’ll tell you, and if you’re right, you’ll be able to tell right away.

Walking Through the Prototype | 71

If you say, “Oh—do you need that for this kind of a thing?” they’ll either say, “Uh...
yeah...” and you ask, “When was the last time you did that?” and they say, “I don’t
know... six months ago, maybe?” that’s really a “No.” But if they say, “I did that twice
last week,” we’ll ask more questions. “What did you need? What did you do?”

You want to give them the ability to tell you, but you can’t ask too many open-ended
questions, because the users—being nice people—want to please you, so they’ll make
stuff up if they think that’s what you want to hear. So if I say, “Do you want that because
you need it for X,” this isn’t made-up stuff, right? They can say, “No, that’s stupid. I
never do that,” or they go, “Yeah, yeah, that’s exactly what I need.”

Other Types of Prototypes
While paper prototypes are useful when you’re working with users face to face, some-
times, that’s not an option. How do you rapidly create a prototype you can test remotely
without having to jump into Drupal development?

Enter an entire world of digital prototyping software. With these applications, once
you get over the initial learning curve, you can create hotspots in your layouts, link
them to other pages in your prototype, and mimic a wide range of responses to user
inputs. You can test the prototypes in person, or use screen sharing/recording software
like Silverback (http://silverbackapp.com/) to test your work with people from their own
computers.

If you’re already using Adobe Fireworks for creating your wireframes or design layouts
(see Chapter 7), you can incorporate Hot Spots in your Fireworks layouts to link areas
of the layout with other pages in your layout, and export the file as a clickable prototype.
Other options for clickable prototypes include:

Axure
Axure (http://www.axure.com/) is a desktop program for Mac and Windows, fa-
vored by a number of UX designers. The program also has a number of specialized
widgets (UX symbols and images) available for free on their website for customizing
your prototypes. In addition to being able to create a complete clickable prototype
in one document, Axure also allows you to easily create user flows (to show task
flows for specific screens) and include them in the prototype. It also allows you to
annotate any area of the prototype with notes on functionality, requirements, etc.
—and output a detailed functional specification in Word with the click of a button.
If you're working with a team to implement your designs, the time savings you get
from specification export alone are invaluable.

Justinmind
Another multiplatform desktop option. Justinmind (http://www.justinmind.com/)
and Axure both come with a hefty pricetag—$495–$600.

72 | Chapter 8: Paper Prototyping

http://silverbackapp.com/
http://www.axure.com/
http://www.justinmind.com/

AppSketcher
Another desktop choice, with a price tag under $200 (http://www.appsketcher
.com/).

HotGloo
HotGloo (https://www.hotgloo.com/) is a web-based service available for a monthly
subscription depending on how much you use the service.

Pencil Project
Pencil Project (http://pencil.evolus.vn/en-US/Home.aspx) is a plugin for Firefox that
will let you build prototypes from within the browser itself. It’s also one of the few
free options for digital prototyping I’ve come across.

Other Types of Prototypes | 73

http://www.appsketcher.com/
http://www.appsketcher.com/
https://www.hotgloo.com/
http://pencil.evolus.vn/en-US/Home.aspx

CHAPTER 9

Breaking Down a Layout for
Drupal Implementation

The two most important parts of working in Drupal, in terms of creating and imple-
menting layouts for a given page, are figuring out where the content in a given layout
is coming from and how to manage the code that Drupal is creating. This is, arguably,
the biggest difference between building sites in Drupal and building them with HTML.
Whereas it’s fairly straightforward to mock up a page in HTML once you have an idea
of what it should look like, everything that goes into your Drupal site comes from
somewhere in the site’s database; your code simply tells Drupal how to render the
content it pulls from that database.

Content in a Drupal layout can come from any number of places.

Nodes
Any individual piece of content, in Drupal terms, is called a “node,” and it’s displayed
using a file called node.tpl.php. If you’re dealing with the layout of a single page and are
only concerned with how the actual page content is displayed, you’re likely dealing
with node.tpl.php.

While node.tpl.php can help you control certain aspects of how Drupal displays indi-
vidual nodes—for example, if you want to move the page title, or change the markup
that controls the node’s container—if your content type has custom fields, as many
content types do, you’ll want to manage those in the Manage Display tab, available by
going into the admin area for your content type. From there, you can manage how fields
are organized on the page, how and if their labels are displayed alongside the field, and
even the format of the field display. For more information on managing content types
and fields, check out the Planning and Managing Drupal Projects guide. The Practical
Example in Chapter 12 also includes an example of setting up custom fields for a con-
tent type.

75

http://oreilly.com/catalog/0636920020264

Blocks
Blocks are, essentially, little bits of content that you can put anywhere you want to in
your Drupal page. A block can come from anywhere—not only can you create your
own blocks through the blocks administration screen (Structure→Blocks), but many
modules, such as Views and Drupal’s Menu system, create blocks for you that you can
then place on your site. A good rule of thumb is this: if something’s going into a sidebar
or footer, or it’s not part of the main content, it’s likely coming from a block.

Views
Views helps you create lists of content to put in various places on your site. As you will
see in the practical examples in Chapters 12 and 13, I used Views to create a custom
“Who’s Hosting” block for my Event page, with user profile information based on a
User reference field. I also used it to create a block of related events for the sidebar, and
a list of categories for events with associated images. Views works by setting up your
defaults (what Views is pulling out of the database) and parsing it into different displays
depending on your needs. Anywhere you have a list of content, you likely have a View.

For example, Figure 9-1 shows the home page of our site for Urban Homesteaders Unite.

If I break this down according to the numbers that I’ve annotated on my layout, I’ll see:

• 1, 2, 4, 5, 6, 7, and 8 are all blocks.

• 2, 7, and 8 are blocks built with Views.

• There’s no actual node content on the home page.

• 3 is a menu, and comes from the Menu core system.

There’s no hard and fast way to know exactly where a bit of content is coming from on
the page (for example, depending on the regions in your theme, block #6 could actually
be coming in as content from the home page; I’m creating it as a block because it’s
easier to theme that way), but there’s a few things that it’s safe to assume:

• Anything that is in the menu bar comes from the menu system.

• Anything that looks like a list of content, users, or taxonomy terms comes from
Views displays.

• Anything that is contained within its own little box on the page is likely a Block.

Once you have an idea of where content comes from, it’s easier to figure out how you’re
going to put things into Drupal. Even if you’re just creating a layout for someone else
to implement, knowing how things are going to be implemented, and learning the
design patterns that Drupal gives you will make your job infinitely easier.

76 | Chapter 9: Breaking Down a Layout for Drupal Implementation

Figure 9-1. Our rough homepage mockup for UHU, with annotations

Views | 77

Remember: an important part of good design is understanding the constraints that
you’re dealing with, and how much you can stretch against those constraints. You’ll
hear this from me several times before this book is done, but trust me: going with
Drupal, rather than against it, will take you far. And you can still do gorgeous design.
Really.

78 | Chapter 9: Breaking Down a Layout for Drupal Implementation

CHAPTER 10

Working with Base Themes

Back when I was using WordPress to build most of my sites, the process of theming
(i.e., applying the look and feel to a website) was relatively simple. I’d mock up the
design that I was thinking about, head over to wordpress.org, and find a theme that had
the same basic structure as the site I was designing. Then I’d hack apart the files, cus-
tomizing it with my own CSS and images. Changing the HTML output was pretty
simple as well; as long as I could pick out the few bits of PHP code that were making
the site render content and not mess with them too much, it wasn’t a big deal to cus-
tomize container names or change the format of a given page.

When I did my first Drupal site, back when Drupal 6 was still relatively new, I thought
the process would be about the same. I mocked up my template, went to drupal.org,
and started searching for a contributed theme that looked sort of like what I was going
for. Then I started trying to customize it according to what I’d mocked up.

I cried my way through that first site. And drank more coffee than I care to talk about.

As I started to chat with other designers about this problem, I realized I wasn’t alone.
Drupal’s theme layer is impressive, flexible, and powerful; it’s also confusing as hell
until you get used to it. The biggest layer of confusion is this: while in WordPress, it’s
generally fine to download a theme package and start hacking it up to customize it, you
don’t want to do that in Drupal. Why? Because Drupal keeps tabs on that theme file,
and includes it in any updates you make to your site’s code. This means that any cus-
tomizations you make will be gone as soon as you update the code. All of them. Really.*

The other problem with hacking themes directly is making sense of the code. While
some themes allow you to make any customizations you need directly in the template
files (files that end with tpl.php), many advanced themes put most of their theme over-
rides directly into template.php, a set of PHP functions that controls various aspects of
the way Drupal renders the page. In fact, I’ve seen themes where everything—including
how 960 grid classes are rendered—is thrown into template.php. This means that,

* All. Of. Them.

79

http://wordpress.org
http://drupal.org

unless you’re really cozy with PHP and don’t mind spending your time writing theme
functions, you’ll be lost the moment you try to customize a theme.

This is where choosing a good base theme comes in handy. A base theme, in Drupal
terms, is a theme that contains minimal styling, a good number of templates (.tpl.php
files) that you can duplicate into your child theme and customize, and renders code in
a way that you can customize via CSS. The base theme, ideally, handles most of the
heavy lifting in terms of rendering the page layout, and setting reasonable defaults for
font sizes, form elements, and the like. By creating a child theme derived from this base,
you create all your customizations in a separate set of files within the /sites/all/themes
folder, which keeps your custom code safe—and helps you debug issues without having
to worry about the base theme getting wrecked. It also has the key benefit of letting
someone else (the theme maintainer) worry about updates to the theme; since your
customizations will mostly involve CSS and the occasional .tpl.php file, they won’t often
be completely borked by security updates.

How to Choose a Base Theme
Choosing a base theme is often a matter of personal preference. Drupal.org offers quite
a few to choose from, and every site builder has their favorite. Whichever you choose,
make sure that your base theme:

Has a way of dealing with code and CSS files that makes sense to you
If you’ve never worked with Drupal themes before, it might seem like none of them
are organized in ways that make sense; however, some themes are more confusing
than others. For me, I prefer to avoid themes that throw all of the page rendering
information into functions in template.php; while I don’t mind dealing with some
PHP, I also avoid themes that separate each aspect of the page into separate CSS
files that you have to sort through (I’m looking at you, Zen).

Spits out relatively clean code
You aren’t always going to be able to find the ultimate, beautiful semantic markup
that you might want from a base theme, but you can at least get close. If you can’t
get exactly the code you want out of your base theme, there are a couple of modules
that can help; check out Chapter 14 for examples.

Has enough tpl.php files that you can customize the code easily if you need to
At the very least, a good base theme should have its own version of page.tpl.php,
block.tpl.php, and node.tpl.php available for you to customize. You may not need
to customize it in your child theme, but having it there is incredibly useful for the
possibility that you will need to.

Whichever base theme you select, you’ll want to save into /sites/all/themes and enable
it in your Appearance settings (Figure 10-1).

It’s very likely that you’ll end up trying out a few base themes before you settle on one
you like. On the recommendation of a few friends in the Drupal community, I tried

80 | Chapter 10: Working with Base Themes

http://drupal.org

Zen (drupal.org/project/zen) a few times before realizing that I couldn’t make sense of
it. After giving up Zen, I switched to the NineSixty base theme (drupal.org/project/
ninesixty), which is based on the 960 grid system (960.gs). NineSixty was, and still is,
one of my favorites to work with; the grid system gives me the ability to quickly make
layout adjustments, and the code is cleaner than many base themes that I’ve worked
with, particularly once I started creating my own starter kit with most of the extraneous
<divs> deleted.

However, in the last year or so, as HTML5 and responsive design has become more of
a priority, I’ve started experimenting with Omega (drupal.org/project/omega). Omega
is an HTML5-based theme with three versions of the 960.gs grid at the ready and a
completely responsive layout (which resizes according to your browser window.) While
it’s not without its stuff to figure out (including a whole lotta template.php), one of my
favorite things about Omega is the ability to customize the grid for each section of the
site. For example, on Urban Homesteaders Unite, I use a 12-column grid on the header,
but a 16-column grid in the Content region, which gives me a bit more flexibility in the
layout.

Another nice thing about Omega is the ability to update my page defaults through a
GUI in the theme settings page (Figure 10-2). This frees me to experiment with different
layouts as I need to, without having to search through code and tweak grid numbers
here and there. I don’t know if it’s faster than tweaking code directly, but it’s certainly
a bit more idiot-proof.

Figure 10-1. The Appearance settings page (Appearance) lets you enable themes in your Drupal site,
and set the default theme for your particular site

How to Choose a Base Theme | 81

http://drupal.org/project/zen
http://drupal.org/project/ninesixty
http://drupal.org/project/ninesixty
http://drupal.org/project/omega

Other Base Themes to Try
Now that I’ve given you my favorites, here are some other base themes to try, based on
recommendations from friends in the Drupal community:

Square Grid (drupal.org/project/squaregrid)
Square Grid, created by PingV Creative’s Laura Scott, uses the Square Grid frame-
work (mentioned in the chapter on using grids) as a base. This 35-column layout
gives you quite a bit of flexibility in organizing your site’s blocks and columns, and
like Omega, it also takes mobile-first layout into consideration.

Tao (drupal.org/project/tao)
Tao is a base theme that simply resets a lot of Drupal’s default page rendering
behavior. The goal of it is to sit back and let your subtheme do its job. It does
assume a focus on preprocessors (i.e., setting up things in template.php), which
might mean that you have to deal with a lot of PHP and theme functions, but it
also provides many advantages, such as sensible code to start working with.

Mothership (drupal.org/project/mothership)
This theme does what it can to strip out many of the extra <divs> and classes that
tend to plague Drupal’s way of displaying data. This gives you the ability to start

Figure 10-2. Updating the Content region defaults in Omega’s snazzy region settings GUI

82 | Chapter 10: Working with Base Themes

http://drupal.org/project/squaregrid
http://drupal.org/project/tao
http://drupal.org/project/mothership

your theme with a clean slate, and creates nice, semantic markup. It even helps you
get rid of the crazy extra code that Views can tend to spit out. We’ll chat about
that a bit more in Chapter 13, which is all about managing the code that Views
gives you.

Zen (drupal.org/project/zen)
If you spend any time in the Drupal community, frankly, you’re going to hear a lot
of people recommending Zen. In fact, it’s such a common base theme that many
people who start working with Drupal start out working with the Zen theme, often
on the recommendation of a developer they know. As you might have guessed from
my comments above, I’m not a huge fan of Zen, but I include it because you’ll
probably hear about it at some point. One thing it does well is produce well-ordered
code; unfortunately, it suffers from many extra <div> tags, and multiple CSS files
that handle different aspects of page layout, which can be confusing for new
themers.

Creating a Child Theme
Once you’ve got your base theme downloaded and set up, you have to set up a child
theme to put all your customizations into. Some themes, such as Zen and Omega, come
with a set of starter kits that you can simply copy into your /sites/all/themes folder and
rename; with other themes, you may have to copy the files you need manually into a
new folder. To start with, all child themes should contain three files:

• A blank template.php file, which will eventually hold any theme functions that you
decide to put into it. Note that this file should be blank initially; copying the
template.php file from your base theme will cause errors when you try to access
your site.

• A THEMENAME.info file, which you can copy from the base theme.

• A styles.css (or something similar) file, which will be referenced in your
theme’s .info file and contain all of the CSS customizations for your child theme.

If you plan on overriding any of the base theme’s tpl.php files, you can also copy those
into your child theme. However, generally, I avoid doing that unless I need to create a
new template region, or change the base theme’s grid layout.

To create your child theme, you’ll start by modifying the theme’s .info file. The .info
file defines the page regions, CSS and Javascript files that your theme will use. For
example, here’s part of the content of the .info file that comes with Omega’s HTML5
starter kit:†

† If you’re interested in trying out Omega, it’s recommended that you work with one of the starter kits that
come with the theme instead of trying to copy the one that comes with Omega itself. Omega’s .info file is
copious and full of interesting settings that don’t need to be copied into your child theme.

Creating a Child Theme | 83

http://drupal.org/project/zen

name = Omega
description = Omega extends the Omega
theme framework with some additional features and makes them availabe to its subthemes.
This theme should not be used directly, instead choose one of the Omega or Alpha
starterkits.
core = 7.x
engine = phptemplate
screenshot = screenshot.png
version = 3.x
base theme = alpha

; REGIONS
; REQUIRED CORE REGIONS
regions[page_top] = Page Top
regions[page_bottom] = Page Bottom
regions[content] = Content

; END REQUIRED CORE REGIONS
regions[user_first] = User Bar First
regions[user_second] = User Bar Second
regions[branding] = Branding
regions[menu] = Menu

If you’ve copied your base theme’s .info file into your child theme’s folder, you can
generally delete everything in the “stylesheets” and “scripts” sections. The information
on whatever regions your base theme has identified, however, must stay where they
are. Regions are specific areas on the page where you can place content—usually
through the Blocks administration (Structure→Blocks or, if you’re using the Context
module [drupal.org/project/context], through the Context administration). There’s a
couple of things you need to remember when modifying your .info file:

• As mentioned before, any regions your base theme has defined should stay in the
file. Any regions that are set up in your child theme’s template files, but aren’t listed
in its .info file, could break your theme.

• Themes have two names: the Machine Name and the Human-Friendly Name.
Machine Names are always written in lowercase, with underscores instead of
spaces (i.e, my_awesome_theme), while Human Friendly Names can have upper-
case letters, spaces, etc. (i.e., My Awesome Theme).

• The top bit of information (name, description, core version, engine, etc.) should
stay at the top of the page. These are required by Drupal to make the theme work.
Most of it should stay the same as what’s in your base theme, with the exception
of the name and description.‡

• Additionally, you want to include base theme = MACHINE_NAME underneath the top
set of descriptive information. In the Omega example above, you can see that
Omega is using a theme called Alpha as its base theme; if you were creating a child

‡ If you want to learn more about what goes into a theme’s .info file, check out http://drupal.org/node/
171205, which has a complete list of the types of information you can put in there.

84 | Chapter 10: Working with Base Themes

http://drupal.org/project/context
http://drupal.org/node/171205
http://drupal.org/node/171205

theme from Omega, you would change that text to base theme = omega. Likewise,
if you were creating a child theme based on NineSixty, which doesn’t have its own
base theme, you’d add base theme = ninesixty to your child theme’s .info file.

Once you’ve updated the descriptive information and identified the base theme that
you’re working with, you want to include any stylesheets or Javascript files that you
want to include in your theme.

For example, here’s the updated .info file for my Urban Homesteaders Unite theme
(which was created with the HTML5 starter kit that comes with Omega):

name = Urban Homesteaders Unite
description = Custom Starter Kit for Urban Homesteaders Unite.
core = 7.x
engine = phptemplate
screenshot = screenshot.png
base theme = omega

; REQUIRED CORE REGIONS
regions[page_top] = Page Top
regions[page_bottom] = Page Bottom
regions[content] = Content

; OPTIONAL STYLESHEETS
css[mobile.css][name] = Mobile Styles
css[mobile.css][description] = Your custom CSS for the mobile version of your website
(mobile first).
css[mobile.css][options][weight] = -89

css[styles.css][name] = Main Styles
css[styles.css][description] = Your main custom CSS file.
css[styles.css][options][weight] = 10

From there, you should be able to enable your theme through the Appearance menu,
set it as the default, and plug away at your styles.css file (Figure 10-3).

Figure 10-3. Setting our theme defaults

Creating a Child Theme | 85

Other Things You Should Know About Base Themes
Now that you’ve gotten the hang of editing your theme’s .info file and making a child
theme, there are a couple of other things that you should bear in mind when working:

Clear the Theme Registry!
Any time you add a new element to your .info file—whether it’s to add a new region
to your page, or add a new stylesheet (for example, I sometimes like to add a separate
stylesheet for the navigation on sites with complex navigation styles), you must clear
your theme registry. Sometimes, for really sticky issues, you can also try clearing all of
the caches. You can clear all caches by going into Configuration→Performance and
pressing the “Clear all Caches” button. If you’re feeling super nerdy, you can also use
the command drush cc all to clear the caches from within Drush, the command line
tool for Drupal. We’ll discuss Drush in the next book, Drupal Development Tricks for
Designers (cue evil laughing).

You don’t have to clear the cache every time you do something simple,
like changing the CSS in your theme; but if you make a change and
nothing happens, clearing the cache will often help.

Working with Regions
Regions are Drupal’s way of laying out containers for content in a given theme. Many
themes, such as Bartik and Omega, come with a copious volume of regions—all with
odd names like “Triptych,” “Postscript,” and “Preface”—for your block organization
pleasure. This is, in fact, one of the things you want in a base theme—the more regions
you have, even if you use none of them, the more flexibility you have in your layout.
The trick is to understand what the regions mean, and to use your layout to guide where
you put things.

In Drupal 6, your theme’s regions would be overlaid directly in the Blocks administra-
tion screen. In Drupal 7, things are different. If you look at your Blocks administration
screen (Structure→Blocks), you’ll see this link: “Demonstrate block regions (theme
name)” (Figure 10-4).

If you click that link, you’ll see a page that shows all the regions you have available in
your theme (Figure 10-5).

As you can see, there’s a lot to work with here; however, it’s not always easy to re-
member which region is where, or how things are going to show up. For that reason, I
tend to keep either a print or a sketch of my theme’s regions in my project file as I’m
working. If I lose track of something, I just refer to my printout, and I’m good to go.

86 | Chapter 10: Working with Base Themes

http://oreilly.com/catalog/0636920020301
http://oreilly.com/catalog/0636920020301

Please, Tell Me More!
We’ve really just scratched the surface of working with Base themes in Drupal 7. If
you’re itching (and I just know that you are) to learn more, check out http://drupal.org/
node/225125, where the lovely folks in the Drupal community have running documen-
tation on how to create a subtheme, with commentary. You can also add comments
and questions to the documentation page, simply by logging in with your Drupal.org
account.

Figure 10-4. If you go into Blocks administration, you’ll see a link that will let you show the theme’s
associated regions

Figure 10-5. Theme regions for our Omega theme

Please, Tell Me More! | 87

http://drupal.org/node/225125
http://drupal.org/node/225125

CHAPTER 11

Prototyping in the Browser

Some designers, like independent designer and web strategist Jason Pamental (thin-
kinginpencil.com) interviewed below, prefer to do site prototyping directly in the
browser. For Pamental, doing things this way gives you the opportunity to see things
as they actually behave in the browser, rather than mocking things up in Photoshop or
Fireworks only to spend hours explaining to clients why the designs changed once they
were implemented in Drupal.

The trick to this approach, however, is not falling into the trap of simply decorating on
top of what Drupal gives you—but rather, as Todd Nienkerk suggests in his Drupalcon
session, Don’t Design Websites, Design Web SYSTEMS!,* letting Drupal’s default be-
havior simply provide a guide your design decisions.

When a site doesn’t require a lot of complex interaction (for which I do paper- or Axure-
based prototypes) I’m a big fan of the “sketch, quickly wireframe, then start prototyping
in Drupal” approach. Being able to see how the interactions I’m designing can be im-
plemented in Drupal helps me make smarter decisions about layout and functionality,
because it helps me make sure that what I’m proposing can actually be done. In practice,
it often looks like this:

• I’ll create a bunch of sketches for possible page layouts, interactions, etc. and
choose 1–2 to start wireframing.

• I’ll create wireframes for the 1–2 best options, and talk them over with the project
team.

• I’ll work those wireframes into some kind of (non-Drupal) prototype, so the project
team can see how the interactions should work.

* Check out the slide deck at http://fourkitchens.com/presentations.

89

http://thinkinginpencil.com
http://thinkinginpencil.com
http://fourkitchens.com/presentations

• Those will be iterated until we figure out the best solution for what we’re dealing
with.

• I’ll either start working on prototyping my assumptions in Drupal, or I’ll work with
the team’s developer to start prototyping right away while I work on the next area
of functionality/content that needs fleshing out.

This is also one of the key reasons why I break up work plans into specific functional
areas of the site. It helps me focus the team’s energy on getting one specific area working
before we go too deeply into the next area. This approach can be called many things;
some think of it as Agile (from the software programming methodology), others call it
Lean (from the Lean Startup concept).† I tend to think of it as a Lean hybrid; the point
is less about getting a Minimum Viable Product up and running within a couple of
weeks, and more about being able to quickly get your head around the various com-
plexities of a project, create a bunch of hypotheses to test based on your research, and
start seeing how those hypotheses play out as quickly as you can.

From the Trenches: Jason Pamental, independent web strategist
Dani: You’ve mentioned to me that you prefer to prototype in the browser, rather than in
layout comps or sketches. Can you talk a bit more about that?

Jason: The main reason is that, when you prototype in the browser, you can see what
it really looks like. It doesn’t matter what tricks you have in Photoshop, it’s never going
to translate exactly into how a web page will behave. So, over the years, I’ve started to
see that, if you have a good base theme, or a handle on writing HTML, you get to a
place much faster where you can actually explore behavior—especially when you’re
putting it right into a content management system. So you can explore more of the real
life of a website quickly, rather than trying to mock up every different state of an
interaction.

Dani: How do you ideate something like that—do you go straight to code, or do you start
with sketches, and then move to code later?

Jason: In terms of the actual design process, there’s always work that goes on in Pho-
toshop or Illustrator. But oftentimes, that comes after a prototype’s been built. We tend
to have this “sandbox” version of a website, that’s been built out with all of the main
pages, and some of the default users there already. It’s really quick to play with things,
and think about “How am I going to search?” and “How am I going to play with these
things?” Once it’s time to go into the look and feel, you have all the real stuff there to
play with. Even as you’re opening Photoshop or Illustrator, you know the real things
that you have to be concerned with—the buttons, navigation elements, and the real
content on a page, etc.

But even with that, there’s pages and pages of sketches, notes and things like that from
early on in the process, especially for something complicated.

† For more information on the Lean Startup movement, check out http://theleanstartup.com/.

90 | Chapter 11: Prototyping in the Browser

http://theleanstartup.com/

Dani: The flow that I’ve been moving towards lately is sketch, maybe wireframe a couple
of pages, but then start prototyping in Drupal quickly so I can see how things are falling,
and how something’s going to be implemented. The question I always ask myself is: how
much of that workflow is based on the fact that I’m a team of 1–3, as opposed to being
one piece of a larger team? I notice with larger teams, they do often have more clearly
defined roles, so there’s not as much concern about whether you specifically can implement
something, but more about whether it can be implemented by the team. Have you had
experience with that?

Jason: I’ve worked on teams of varying sizes, from just me to managing a group of 3–
5 people to being a creative director at a company in Boston with 30 developers and a
team of 6 designers. I’ve never been a big fan of having a person for every possible task
and isolating the work that they’re doing. It’s never seemed to work well.

Especially with a platform like Drupal at your disposal—even doing the site for CVS/
CareMark, which is a pretty significant project, it was still a team of 5–6 core people.
There was a designer, there was a researcher and information architect, there was me
and a couple of developers who were helping me. That was pretty much it.

Dani: That’s one of the benefits of Drupal. There’s so much that’s built for you that it’s
easier to make big websites with fewer people. I don’t think it makes it any less complicated,
but I do think it allows you to focus on more important parts of the experience than what
the code is going to look like.

Jason: Exactly, and that’s one of my favorite things about it. It lets you be a team that
is iterative and reactive far more easily than when you have each person in their own
separate role. I keep thinking of these companies that push development offshore, or
to a partner company, where you have this enforced wall between design and archi-
tecture. Maybe there’s some prototyping, but the real development happens some-
where else. In those cases, there’s no way to just sit down with someone and discuss
something, and then react to it right away.

Dani: While you’re prototyping in the browser, do you find that there are any moments
where you find yourself leaning on Drupal’s defaults a bit too heavily?

Jason: That’s an easy trap to fall into. Because you know something works, so you put
your attention to something else, and it’s not necessarily that it works in the best way.
I think that’s a constant challenge, and not one that’s so difficult to overcome if you
work smartly. One of the things that I have enjoyed about the process of working on
the platform we’ve built for SchoolYard is that there’s a common base point we’re
starting with. Every project, we get to smooth off more of those rough corners.

I think that when you build up this set of defaults—this set of modules that you always
use, this point from which you always start the process—it lets you build up these layers
of sophistication. You can start building all these little things that add up to a much
more refined experience. That’s where taking the time to get to know the platform and
just look for stuff and see what’s out there—every time you do another project, it just
gets better and better.

Prototyping in the Browser | 91

Dani: How do you document that?

Jason: In part, it’s frozen in this starter kit website that I start from every time I start a
new project. Periodically I’ll go in there and update the modules, and every time I see
something interesting I make sure I throw it in there.

That, and blog posts. I do a lot of that. If I figure out some weird challenge, I take notes
in Evernote as I figure it out, I make sure I copy down all the steps, and I add in all the
things that I have found, and I stick it up on my blog.

92 | Chapter 11: Prototyping in the Browser

CHAPTER 12

Practical Example #1: Using Views to
Enhance a Layout

By now, we’ve had a chance to look at sketching and wireframing designs, creating
style tiles and layouts to explore design directions, and different options for prototyping
and iterating on those designs. So what happens when you’re dealing with a design
that’s already been created, and you’re getting ready to put it into Drupal? Under-
standing how Drupal stitches pages together can help you find the holes in implemen-
tation, and even help you improve the original layout. As an example, let’s take this
single event page created by Tricia for the Urban Homesteaders Unite site, as shown
in Figure 12-1.

The original layout for this page, created before the project was going to be built in
Drupal, was inspired by the way that Eventbrite.com displays events. At first glance,
this page would be pretty easy to build in Drupal.

But what if we could make it even better?

To do that, we need to consider a couple of things based on the overall vision for the
site (a way to get urban homesteaders together for different events), and the way that
Drupal will be organizing the site’s content:

• Each event is created by a user of the site who is also the host of the event.

• Each user will have their own profile, with contact information, a brief bio, and a
link to things they’ve done on the site.

• Given these two things, what if, rather than having users repeat their contact in-
formation as part of each event, you could pull it directly from the host’s user
profile? This would allow potential attendees put a face to the event, and learn
more about the person who’s about to teach them this stuff?

This is the type of situation where getting things into Drupal early makes the most
sense. The greybox comp in Figure 12-2 shows a rough idea of what we’re going to put
together.

93

http://eventbrite.com

Figure 12-1. Original design comp for an individual event page on Brooklyn Homesteaders Unite

94 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-2. A new mockup for the Event page, taking into account the ability to automatically feed
in the host’s bio information

Practical Example #1: Using Views to Enhance a Layout | 95

By starting to prototype this directly in Drupal, we can work out the kinks in our design
early, before they cause problems later on.

But I’m Not a Developer—What if I Don’t Want to Code?
Admittedly, much of this approach requires a certain willingness to work directly in
Drupal, which may (and usually does) mean touching code. The bad news is that if you
want to build sites in Drupal, but you don’t want to figure out how to deal with the
code, you essentially have two options:

• Partner up with a good developer. You can meet them all over the place, from
local Drupal meetups to online at groups.drupal.org. Occasionally, you can even
find Drupal developers on Twitter simply by asking a question with the hashtag
#Drupal. If you’re feeling brave and super-nerdy, you can also check out Drupal
folks on various IRC channels.*

• Don’t create the site. I’m serious. If you don’t want to deal with code, and you
aren’t willing to pay a developer, you shouldn’t be doing things in Drupal. Many
folks don’t want to hear this, but it’s the truth.

This said, if you’re willing to learn, and you don’t mind spending a bit of time messing
around, you’ll find that prototyping directly into Drupal isn’t without its headaches,
but it’s often easier than you may have thought. In some cases, it doesn’t even require
you to step into code at all.

Here’s how I set up the configuration for this crazy-awesome event page in Drupal 7.

Step 1: Create the “Event Categories” Taxonomy Vocabulary
Taxonomy, for those who haven’t learned a lot of DrupalSpeak™, is how Drupal cat-
egorizes content. Each taxonomy vocabulary is a set of categories, or tags, that you can
apply to one or several types of content. In previous versions of Drupal, you could create
vocabularies as you needed them, by creating a vocabulary and selecting which content
types the vocabulary could be associated with. This was easier in some respects, but
could turn complicated as new content types were added.

In Drupal 7, taxonomy vocabularies are treated very differently. Rather than creating
the vocabulary after the content type, you create it before you create the fields for a
content type, and then add a “term reference” field that points back to the vocabulary
within your content type.

* IRC: Internet Relay Chat. Used heavily by Drupal developers to have conversations and give each other help
in real-time. I have no idea how it works or how to get set up on it, but if you meet a nice developer, he or
she will often be more than happy to show you.

96 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

http://groups.drupal.org

We’ll start by creating a vocabulary. In the administration panel, we choose Struc-
ture→Taxonomy, and select the Add vocabulary option (see Figure 12-3). We’ll name
our new vocabulary “Event Categories” and hit Save.

Figure 12-3. See that little + next to “Add vocabulary?” You’ll see that a lot on Drupal admin screens.
Wherever you see it, it allows you to add something to whatever section you’re in

Once we’ve created our vocabulary, we’ll add terms by clicking the add terms link.
Once you’re done adding terms, you can choose list terms to see the terms you’ve
created. Figure 12-4 shows the terms that I included in my Event Categories vocabulary.

After we’ve created our taxonomy vocabulary, it’s time to create the Event content type.

Step 2: Create the Event Content Type
Creating a content type starts the same as creating a taxonomy vocabulary. This time,
you’ll select Structure→Content Types from the admin menu and click the Add content
type link.

When creating a content type in Drupal 7, it’s important to remember each of the steps
involved in creating them:

• Set up the field’s default settings, then click the Save and Add Fields button to add
fields.

Step 2: Create the Event Content Type | 97

• Add any fields you need in your content type, then click the Manage Fields tab to
manage how fields are displayed.

• Use the Manage Display area to set up how fields are displayed in different contexts
(for example, “teaser” content vs. a single page entry).

This last bit about Manage Display is the one that can trip you up if you aren’t careful.
Because Drupal depends on content, and the structure of that content can change dur-
ing site implementation—more fields are added or removed, new categories are decided
on, etc.—you may find yourself periodically going back and forth and adjusting the
content types you’ve created on your site. This is especially true of complex imple-
mentations, but it can happen just as easily on a small corporate site. A helpful way to
remember it is this: Manage Fields controls where fields show up when you’re creating
new content, while Manage Display controls how they show up when that content is
displayed.

Figure 12-4. All of the terms that we created for our event categories. Note that they come from the
homepage mockup listed at the beginning of the chapter

98 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-5 shows what the Manage Fields screen looks like after setting up the Event
content type.

Figure 12-5. Our Manage Fields configuration screen, with all the fields from our Event content type

We won’t get into a tutorial on creating fields here; if you’ve never created a content
type or added fields before, Sweden’s NodeOne has an excellent series of screencasts
that covers the basics of creating basic sites in Drupal 7 (http://dev.nodeone.se/en/learn
-drupal-7-with-nodeone). I will point out a couple of things, however:

• The Cost field is set up as an Integer field with a prefix of “$” and a suffix of “USD,”
so when rendered, it will show as “$10 USD.”

• The Audience Capacity field is also an Integer field, with a suffix of “ guests,” so
when rendered, it will show as “12 guests.”

Step 2: Create the Event Content Type | 99

http://dev.nodeone.se/en/learn-drupal-7-with-nodeone
http://dev.nodeone.se/en/learn-drupal-7-with-nodeone

• The Groups Audience field is a byproduct of the Organic Groups module (dru-
pal.org/project/og). As we currently have two primary locations for this site’s events
—Cambridge/Somerville and Brooklyn—each location is set up as its own Group.
Thus, an event can belong to either the Cambridge/Somerville group or the Brook-
lyn group; it’ll show up on the home page of whatever group you’re in.

Now that we have our fields put into the content type, we want to manage how they’re
being displayed. For this, we’ll need to visit the Manage Display tab. Before we do that,
however, let’s add a test event and check it out to see where we’re starting from.
Figure 12-6 shows our starting point.

Figure 12-6. Our new Event page, with minimum styling. Wait—that’s not in the right order!

As we can see, there’s a whole lot that’s out of order right now.

• The additional fields are all out of order

• There’s a bunch of stuff showing that we don’t really need, like the Groups audi-
ence and Published date

100 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

http://drupal.org/project/og
http://drupal.org/project/og

So, let’s go back to our content type and make some adjustments to the way things
display. We’re starting with something like what is shown in Figure 12-7.

Figure 12-7. The Manage Display tab in our Event content type

The first thing we’re going to do is hide some of the things we don’t need to see. We’ll
start by setting the Format of the Groups Audience and Who’s Hosting field to Hidden.
From there, we’ll set the Labels of all the fields (except for About this Event) to be
Inline instead of Above. Then we’ll rearrange the fields in the order they need to be in:

1. Date and Time

2. Location

3. Cost

4. Bring

5. Audience Capacity

6. About this Event

Now, the Manage Display settings look as shown in Figure 12-8.

Easy, right? Now let’s look at Figure 12-9 to see what it looks like in our sample event.

Step 2: Create the Event Content Type | 101

Figure 12-8. Organizing the fields in our Content Type to better fit our mockup

Figure 12-9. Getting closer, but it still needs work

102 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Now, there are a few things that are still missing here. First of all, we don’t want to
show the author information in the content, and we haven’t included an image with
the content. This will require a couple of steps. First, in our Event content type, we’re
going to go back to the Edit tab, and uncheck “Display author and date information”
under Display Settings (Figure 12-10).

Figure 12-10. There’s always something you forget

After we save the content type, we’re going to go back into Manage Fields, and add an
Image field to the content type. Next we’ll go into Manage Display and set up the
Image field to have a label that’s hidden. We can then go back into our published event
and add a placeholder image. Now it looks like Figure 12-11.

Now we realize another problem: we have to set up image styles.

Step 3: Create an Image Style
Image styles are the way Drupal 7 handles resizing and displaying images. You can have
as many image styles as you like, and the system will automatically handle cropping,
resizing and maintaining the files for you. For our events, we had an event image size
of 620px wide by 280px tall. To create an image style, select Configuration→Image
Styles from the Admin screen. Click the Add style link to add a new image style. I’m
going to call the new style grid-8 (as I’m using a 12-column grid, and 620px is 8 columns
wide; more on grid systems in Chapter 6), and set up the style to Scale and Crop to
620px by 280px. See Figure 12-12 for an example.

Step 3: Create an Image Style | 103

Figure 12-12. Configuration settings for our Events banner. Calling it something generic, like the
column width, allows us to use it universally wherever we need an image that size. Thus, if we create
a new content type and want to style it the same way, we’ll be covered.

Figure 12-11. Well now, that’s an awfully big image

104 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

From there, we go back into the Manage Display screen for our Event content type, and
click on the gear button to the right of the Image field. Select our new image style from
the Image Style drop-down menu and hit Update (see Figure 12-13).

Figure 12-13. Selecting our new image style

Now, if we refresh the page, we can see our results (Figure 12-14).

Now it’s time to start styling this puppy. After updating the styles for field labels, mov-
ing stuff around with page titles, and removing those blocks from the right sidebar,
what we have so far is shown in Figure 12-15.

At this point, we’re getting much closer to what we mocked up (Figure 12-16).

And, the only code we’ve added so far is a bit of CSS in our theme to set some text
defaults. Now, it’s time to start working on getting the rest of this stuff into Drupal.
Next up: getting our user data to show up on the page.

If it seems like we’re jumping around a bit here, that’s because we are.
Believe it or not, this is pretty typical in building Drupal sites; each
component of a site plan will have its own set of needs, and will often
require going back and adjusting things as you go. This is why I always
recommend breaking down site plans by specific sections of function-
ality; for more about this, check out the Planning and Managing Drupal
Projects guide.

Now that we have our Event Node set up, it’s time to move on to the
next component: the user profile connected to the event.

Step 3: Create an Image Style | 105

http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020264

Figure 12-14. Look, Ma! It shrunk all by itself!

106 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-15. Getting still closer to our mockup

Figure 12-16. A quick reminder of where we are headed

Step 3: Create an Image Style | 107

Step 4: Create the User Profile
By default, Drupal gives each user its own profile, which you can see by going to
site.url/user in your browser. However, there really isn’t much to show on this page;
for example, Figure 12-17 shows a screenshot of my /user page before adding anything
to it.

Figure 12-17. Drupal’s core user profile; cute, but not very useful

In order to include the contact information and other interesting bits that we’ll need
to include with the Event page, we’ll need to install a module. The Profile2 module
(drupal.org/project/profile2) is Drupal 7’s answer to Drupal 6’s Content Profile (dru-
pal.org/project/content_profile), as well as an interesting replacement for Drupal 7’s core
Profile module. With Profile2, you can create different “types” of profiles and associate
them with different roles, add fields, and other useful stuff. For right now, we just need
the basics: contact information, website, etc. To do that, after you install the Profile2
module, you’d choose Structure→Profile Types from the admin menu. The Profile
Types screen will show you a “Main Profile” type; that’s what we’re going to choose to
start with (Figure 12-18). The Profile2 module essentially treats profiles as if they are
content types, which means you can add fields just as you would with a content type.

108 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

http://drupal.org/project/profile2
http://drupal.org/project/content_profile
http://drupal.org/project/content_profile

Figure 12-18. The profile type screen from Profile2

For our purposes, we’re going to add the following fields, using the same basic proce-
dure we used for creating the Event content type:

• Phone number

• Website or blog URL

• Bio

• Interests: a Term Reference field that links to the Tags taxonomy vocabulary.

• Types of Events: a Term Reference field that links to the Event Category vocabulary.

Figure 12-19 shows what it looks like when we’re done.

Figure 12-19. Our finished profile fields

Step 4: Create the User Profile | 109

When creating fields, it’s generally a good idea to use the name of the
content type in the field name, e.g., profile_about. This helps you find
the fields you’re looking for in other areas, such as Views. The exception
to this is fields that are used among many content types, such as an
Image or File field, or some types of taxonomy fields.

Now that I have the fields created, it’s time to populate our test users with some profile
content. Figure 12-20 shows what my profile looks like now that I’ve filled it out a bit.

Figure 12-20. Hey look! You can see my contact information now!

110 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Step 5: Getting Profile Content into the Event Page
Now that I have an Event content type, and additional information in our user profile,
I have to figure out how to stitch all of this together so that the user’s contact infor-
mation, etc. is actually showing up on our sample Event. There are a few options for
how we can do this:

The User Reference module
This module allows you to create a “User Reference” field into a content type, and
populate it with content. While we already have this in the Event content type, the
only option for displaying this field is the user’s username as a link to their profile.
This isn’t what we’re looking for.

A Related User view
This option, using Views, is more complex, but gives you the most control over
how content is output and displayed. For example, we have some extra information
on the profile, such as Interests and Event Types; we really don’t need those to
show up on our Event page.

Creating a custom .tpl file
This option, arguably the most complex, also isn’t very sustainable. You’d start by
copying node.tpl.php in your theme file and calling it node--event.tpl.php.

Note: This assumes that your content type’s machine name is event; you can create
a custom .tpl for any content type by adding --CONTENTTYPE to the name of the file.
From there, you’d use custom code to manually insert the individual fields into
the .tpl file.

Although the last option can give you a lot of control over the code you output, there
are several reasons this approach can be challenging. For one, it’s code-heavy; if you
aren’t familiar with Drupal theme hooks, it can take a long time to figure it out. Even
if you did figure it out, this isn’t the only challenge to the custom template approach.
If you choose a different theme for the site, or you accidentally delete your cus-
tom .tpl.php file, the entire page will break, and the user information will disappear
again.

You also have to consider a bunch of other factors: what if the user leaves a field empty?
What if you want to change the fields that you show, or add a field, etc.? While
the code used to simply display the content of a field (i.e., <?php <h2><?php print
render($content['field_NAME’]); ?></h2> ?>) isn’t that complicated once you figure
it out, it doesn’t take into account whether the field contains data—which means that
empty fields will still render, and the page will look broken. Additionally, you have to
add the code every time you add a field to your content type.

Given the options, I prefer to use the Views approach. There are a couple reasons for
this:

Step 5: Getting Profile Content into the Event Page | 111

• It’s as close as you can get to putting code in a .tpl.php file without having to put
code in a .tpl.php file.

• It’s reusable in other areas of the site. Since much of this implementation involves
relating data to other data (i.e., user info on events, events related by category, etc.)
setting up the logic once gives you something you can easily clone and relate to
other content types, pages, etc.

Here’s how I set it up.

Setting Up the View
It took me several tries, and a few frantic Twitter posts, before I figured out the best
way to create this View. The key, apparently, is using Views relationships, which are a
complex and mystical art that seems to elude even some of the best developers I know.
The important thing to remember for this example is that you want to set up a view of
Content/Nodes of the Event content type, NOT a view of Users or Profiles. This is
where I got stuck; intuitively, you would think that Users and Profiles would be basi-
cally the same thing, that both would be available to a View, and that you could some-
how use the User Reference field as a way to pull that data into your view. As it turns
out, that’s sort of what happens, but you have to go about it in an odd way.

So, we start by setting up a View, of Content of the type Event, and we’re going to set
up a block with an Unformatted List of Fields. Figure 12-21 shows the starting screen
for my view.

Figure 12-21. Starting off our view for the host information

112 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Once we have our initial setup done, it’s time to start adding settings. Here comes the
interesting part: if you were, right now, to start adding fields to this view, you would
only see fields that belong to the Event content type. This, however, isn’t what we want.
What we want is the user information that relates to the user we’ve identified in the
“Who’s Hosting” field. For this, we need to set up a couple of relationships.

Setting up a Views Relationship is fairly simple once you’re used to it, but the logic is
complicated at first glance. The way to think about it is this: when you create a Refer-
ence field, whether it’s to a node, a user, or anything else, you’re essentially creating a
relationship between the node that contains the field, and whatever you’re referencing.
This means that, when I created my “Theories of Bacon” event and referenced my Test
Host user in the “Who’s Hosting” field, I created a relationship between the event and
the Test Host user. Now, in my View, I can call back that relationship, and Views will
make all the content and fields of that related thing (in this case, my Test Host) available
for adding to my View (Figure 12-22).

Figure 12-22. Setting up our “Who’s Hosting” relationship

Another trick is this: in Drupal, users and profiles are treated as different things. This
means that, if I set up my view with only the “Who’s Hosting” relationship in it, all it
will let me include in my view is the default user information. In other words, all we
can include is the user’s name and picture. What about all the fields we added to their
user profile?

The answer to this is—you guessed it—creating another relationship. This time, the
relationship is to the Profile connected to the user in the “Who’s Hosting” field (Fig-
ure 12-23).

At this point, we can now add all of the fields that we need for our block (Figure 12-24).

Step 5: Getting Profile Content into the Event Page | 113

Figure 12-24. Adding our fields to the view; now we can place this block and have at it

Now that I’ve got the view all saved and ready, if I go to Structure→Blocks in my Admin
menu, I should see my new block all set to put into my Event node. I’m going to start
by configuring it to show up in Sidebar Second (the right sidebar) and only on Event
content types (Figure 12-25).

Now, if I go back to my event (Figure 12-26), I should see my “About the Host” block,
with Test Host’s user info right underneath their picture...

Figure 12-23. Adding the Profile field to our relationships

114 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-25. Configuring our Who’s Hosting block in the Blocks configuration screen
(Structure→Blocks)

Figure 12-26. Our “about the host” block is all set on our Event node...but why isn’t it showing the
right user?

...or not.

Step 5: Getting Profile Content into the Event Page | 115

This is where I got tripped up. Because the Relationship can only give you the fields to
put in your view; in order to make the view select the right user information, you also
have to work with Contextual Filters.

Step 6: Setting Up the Contextual Filter
In prior versions of Views, Contextual Filters were called Arguments. The difference
between contextual filters and your garden variety Views filter is in its specificity; while
you can use standard views filters to select global variables, such as the type of content
or whether it’s published, contextual filters use something on the page—usually in the
form of some kind of numeric ID, which Drupal attaches to nodes, groups, and taxon-
omy terms—to determine how it filters the content.

Here’s the basic idea:

• Figure out which component (field, node ID, group ID, etc.) contains the “context”
you want to filter on

• Set that up, in a “default” argument

• Publish and prosper

Since we’re basing this view on the “Who’s Hosting” field, my first instinct was to create
the contextual filter based on that field. However, the argument needs a default value
to work, and the option that made the most sense, User ID from URL, turns up either
the node’s author or nothing at all, depending on which settings you choose (Fig-
ure 12-27).

Figure 12-27. Yeah...okay, no

After an hour or two of trying different things and banging my head against the key-
board, I finally gave up and set up my contextual filter with a default value of the node’s
author. This, at least, had a value that showed up, and I could work on other pieces of
the project while I stewed over my failure.

It was a couple of days later, when I ran into my friend Jacine Luisi of Gravitek Labs in
NYC, that I was finally able to figure out the issue. Jacine is a front-end developer
working on the Drupal 8 HTML5 initiative (http://groups.drupal.org/node/157339), and
she’s one of many friends I’ve been lucky to find in the Drupal community over the
years. In what was meant to be a quick chat over Skype, I ended up mentioning this

116 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

http://groups.drupal.org/node/157339

Views issue to her, and she was kind enough to spend an hour or so working out the
issue I was having. Here’s her explanation of how it works:

I was off on what the argument should be, stupidly...because the block is totally discon-
nected from the page content and needs to be manually fed the context, which in this
case is the node ID.

It needs to grab that from the URL, so I set the argument to “Provide default value:
Content ID from URL” on the Content: Nid field.

So, now it has its context...Then the relationships kick in. There are 2 relationships:

The first is on the “Who’s hosting” field. It will use the contextual filter (argument) and
require that the field for the NID of the content we are viewing matches the user specified.

The second is the “User: Profile” which allows the use of the other fields you wanted,
but wouldn’t be required if all you wanted was the user picture and name.

Figure 12-28 shows what that configuration looks like.

Figure 12-28. Our new contextual filter, with the RIGHT default value

And now, if we save the filter, we can go back to our page, and see the result in Fig-
ure 12-29.

Step 6: Setting Up the Contextual Filter | 117

Figure 12-29. Our new block, with the all the right info. Whee!

Step 7: Setting Up the “Related Events” Block
Now that I have the host info block set up, it’s easy enough to create a “related events”
view and place the block it creates. The process was remarkably similar to what I did
with the host information, with the following exceptions:

• Instead of configuring our contextual filters by the node ID, we’re using the Taxon-
omy term, from the Event Categories vocabulary

• Since this is just pulling fields from the Event content type, we don’t need to worry
about relationships

Figure 12-30 shows how that contextual filter was set up.

118 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-30. Contextual Filter settings for our “Related Events” view

Now, if I go back to my Blocks administration screen (Structure→Blocks) and enable
the Related Events block using the same configuration as I did with the About the
Host block, I should see a selection of related workshops available for theming (see
Figure 12-31).

From here, it’s easy to start theming this whole thing so it looks a bit closer to our
design. After a bit of CSS love, and a bit of Drupal tweaking, here’s our updated page
in Figure 12-32.

Step 7: Setting Up the “Related Events” Block | 119

Figure 12-31. Oh, look! There’s also a Sausage Sunday happening. Neat!

120 | Chapter 12: Practical Example #1: Using Views to Enhance a Layout

Figure 12-32. Our Event page, with theming applied. Isn’t that better?

So What Did We Just Do Here?
At this point, you might be wondering why on earth I dragged you through all that.
The reason is simple: in my experience, unless you’re working on a large team where
every person has a distinct Thing to Do, this is how the process goes. While it’s tempting
to put together a stack of wireframes, layouts, etc., and hand them off to developers to
implement, the reality of working with any web-based framework is that certain things
just work better if you go with the system rather than against it. Understanding the
system by actually creating stuff within Drupal is one of the best ways to figure out how
to work with it.

This doesn’t mean that you can’t innovate or create design that is truly beautiful. But
the point of good design isn’t reinventing the wheel; it’s partially about incorporating
design patterns that have been shown to work well, and partially about finding areas
where you can improve an experience that isn’t optimal. Taking advantage of some of
the defaults that Drupal gives you isn’t copping out: it’s smart design.

So What Did We Just Do Here? | 121

CHAPTER 13

Practical Example #2: Controlling
Views Markup

As we’ve discussed previously, much of the code that Drupal will output on any given
page may come from Views—whether it’s a page full of blog entries, or a block of
Taxonomy terms in your sidebar. The beauty of this is that it gives you a tremendous
amount of flexibility in terms of what information you display on the page, and how it
gets displayed. The challenge, however, is getting your Views output to display in a
way that:

• Allows you to theme it easily—in other words, it isn’t impossible to find out what
things are called so you can style them

• Doesn’t make you cringe when you look at the code

In previous versions of Views, the only way to manage the code that Views created was
to override everything that Views spit out—from creating custom tpl.php files to ac-
tually rewriting the results of Views queries. In Drupal 6, you could use the Semantic
Views module (drupal.org/project/semanticviews) to specifically manage the output of
a Views field. While there’s still a little bit of rewriting you may have to do in order to
create truly semantic Views code, the latest versions of Views give you a number of
ways to control the code that it creates—if you know how to use them.

As an example, let’s take our Event Categories block for the homepage of Urban
Homesteaders Unite. Figure 13-1 shows the layout for our home page.

The first thing we have to figure out is this top box with all the pictures in it—techni-
cally, it’s a list of Event categories, which is a list of Taxonomy terms in the Event
Categories vocabulary. But how do we associate the terms with a specific image? And
how do we make each term a different color?

123

http://drupal.org/project/semanticviews

Figure 13-1. Our mockup for the homepage

124 | Chapter 13: Practical Example #2: Controlling Views Markup

The process, (which, by the way, is much easier in Drupal 7 than it was in Drupal 6),
goes like this:

• Add an image to the taxonomy term by adding a field to the vocabulary itself

• Add a representative image to each term in our Event Categories list

• Set up our View to output specific code for the list of terms, and give each instance
of the term name its own class, which we can then theme

Step 1: Associating an Image with a Taxonomy Term
In order for each term in our Event Categories vocabulary to have its own image, I first
needed to add an image field to the vocabulary. To do this, I went into Struc-
ture→Taxonomy and chose “edit vocabulary” next to the Event Categories vocabulary.
From there, I selected Manage Fields to add my image field (Figure 13-2).

Figure 13-2. Adding the Image field to our vocabulary

Once I added the field, I went into the Manage Display tab for the vocabulary to make
sure the label for the image stays hidden in the default view for the term. I may decide
later to change how it’s displayed (or hide it all together), but for now, I’ll leave it set
to our grid-8 image style (Figure 13-3), which we created in Chapter 12.

Now, it’s just a matter of adding an image to the individual terms. If I go back to the
vocabulary page and click “list terms,” I can now edit each category to be associated
with the image we’ve chosen for it (Figure 13-4).

Once I had an image associated with each term in my Event Categories vocabulary, it
was time to create my View.

Step 1: Associating an Image with a Taxonomy Term | 125

Step 2: Create the Event Categories View
The initial Event Categories view was pretty simple. As the goal was simply to give a
visual list of taxonomy terms, all I needed was a list of taxonomy terms that showed
the name of the term, linked to the term page itself, followed by the image I’d added
to each term. Figure 13-5 shows what my initial settings looked like.

Once I had the view set up, it was time to select the fields I needed, and set up my filters.
To begin with, I just want to add the Image field; Taxonomy Term: Name is added by
default. I also wanted to limit the terms I showed to just the Event Categories vocabu-
lary. Figure 13-6 shows what the settings looked like once I was done.

Figure 13-3. Changing the display of our Image field

Figure 13-4. Adding an image to our “Canning & Pickling” category

126 | Chapter 13: Practical Example #2: Controlling Views Markup

Now that we have all of our settings put together, we should be able to enable our block
via the Blocks administration (Structure→Blocks) and see our new view on the home
page (Figure 13-7).

In order to get this looking correct, we have to start tweaking some of our View settings.

Figure 13-5. Our initial View settings. Note that we’re looking for “Taxonomy Terms,” not “Content”

Figure 13-6. Our block settings page in the View. Now the fun begins!

Step 2: Create the Event Categories View | 127

Step 3: Update the Field Settings
The first thing that I want to do is make sure that the images are displaying at the correct
size. For that, I’ll go back into the settings for our Image field and set the preferred
image style to “grid-3_long,” which scales and crops all images to 205px by 180px
(Figure 13-8). While I’m at it, I’m going to go into Style Settings for the field and uncheck
the box that adds the default classes to the field’s markup. This’ll help us get rid of
some overhead we don’t need.

Views’ Style Settings are a relatively new, and incredibly useful, addition
to Views. Although it’s not without its bugs (for example, the Views
template still wraps every field in its own <div> tag), it allows you to
control the markup your View creates with much more granularity than
previous versions of Views. In Drupal 6, this level of control over
markup can also be achieved using the Semantic Views module.

Now that we’ve done that, we also want to make sure each row of our View floats next
to one another like our design comp. Since we’re using a version of the 960 Grid System
in our theme (for more info on grid systems, check out Chapter 6, Working with Layout
Grids), all we have to do is add a class to our Format settings for each row of the View.
We’re going to give each row a class of grid-3, which makes each row 3 columns wide,

Figure 13-7. Well that’s... something.

128 | Chapter 13: Practical Example #2: Controlling Views Markup

and alpha, which removes the left margin and helps things float more easily in the
container (Figure 13-9).

Figure 13-8. Customizing our Image field

Figure 13-9. Setting up some sensible grid settings for our row format

Now, if we look at the block on our home page (Figure 13-10), we see that we’re starting
to get somewhere.

Step 3: Update the Field Settings | 129

But we still have to deal with the term names. The goal is to give each name term a
different background color; this will require a unique class for each term name. How
do you do that?

Step 4: Add a Custom Class to Each Taxonomy Term: Name Field
The answer is in Tokens, which Views calls Replacement Patterns. Tokens are little bits
of text, usually surrounded by brackets (e.g., [link]), which you can use to replace
other text. So, for example, I can create a custom class for each instance of the Taxon-
omy Term Name field, by inserting a token for the name into the CSS class for that field.

Creating the token was a little bit tricky. The first step is find the actual token; to do
this, I had to pretend I was rewriting the field.

If you click on the name of any field in your Views settings, you’ll see a few drop-down
areas that let you set up different parameters for the field. With the Image field, you
already saw the Style Settings variable. If you check out the options under Rewrite Re-
sults (see Figure 13-11), you’ll notice an option: “Rewrite the output of this field.” This
is highly useful if you want to create very specific code from Views. The rewrite options
are how we’ll create our custom class.

Figure 13-10. Getting close...I can almost smell it

130 | Chapter 13: Practical Example #2: Controlling Views Markup

Figure 13-11. If we choose the option to rewrite the field’s output, there’s a host of things we can do
with it

In order to find the token I needed to create my new Views class, I had to check the
option to rewrite the field output. Underneath the checkbox, you’ll see a new dropdown
called “Replacement Patterns” (see Figure 13-12). That will give you a list of the re-
placement patterns you have available.

Figure 13-12. Our list of replacement patterns

Looking at the options (there’s only one, since we’re just loading in the term name), I
see that [name] is the replacement pattern that I want. Now, I can uncheck the option
to rewrite the field’s output, and set up my Style Settings for the field (Figure 13-13).

Step 4: Add a Custom Class to Each Taxonomy Term: Name Field | 131

Step 5: Style Away
Now, if I go back to my home page and inspect the code Views just created, I’ll see
what’s highlighted in Figure 13-14.

Figure 13-14. Hey now—we have a new class name to use in our Name header!

Figure 13-13. Our new and improved Style Settings for the Taxonomy Term: Name field

132 | Chapter 13: Practical Example #2: Controlling Views Markup

From there, it’s a simple matter to start putting this together in CSS. I work with
LessCSS, a CSS framework that allows you to set variables for colors, fonts and other
CSS attributes, and allows you to nest styles. You’ll learn more about that a bit later,
in Chapter 15.

Here’s the .less code that I used to style the headings:*

/* 1.0 Colors & Fonts

 1.1 Colors */

@gray: #8D8D7D;
@dkgray: #4D4545;
@mdgray: #666;
@ltgray: #999;
@palegray: #ccc;

@red: #D32F00;
@orange: #D17103;
@cyan: #47A7BF;
@dkcyan: #183b44;
@green: #89A155;
@gold: #eeb200;

/* 2.0 Homepage Event Categories block */
#zone-content .homepage-events {
 .views-row {
 margin-bottom: 2em;
 text-align: center; /* center the image in the container */
 overflow: hidden; /* hide the excess when it resizes */
 }

 h3 a {
 font-size: .75em;
 display: block;
 padding: .5em 0;
 color: white;
 text-decoration: none;
 text-align: center;
 }

 .Bikes-Bees-and-More {
 background: @green;
 }

 .Butchery-Meat-amp-Fish {
 background: @red;
 }

 .Canning-amp-Preserving {
 background: @gold;

* If you haven’t heard of .less yet, you’re missing out. Check out Chapter 15 for an overview, or go to http://
incident57.com/less to download the Less.app for Mac FREE.

Step 5: Style Away | 133

http://incident57.com/less
http://incident57.com/less

 }

 .Cooking-Baking-amp-Drinks {
 background: @dkcyan;
 }

 .Crafts {
 background: @cyan;
 }

 .DIY {
 background: @ltgray;
 }

 .Eco-Home-amp-Lifestyle {
 background: @dkgray;
 }

 .Urban-Farming {
 background: @orange;
 }
}

If I go back into my browser and refresh the page, I have something that looks like
Figure 13-15.

Figure 13-15. Our finished block. Look how pretty!

134 | Chapter 13: Practical Example #2: Controlling Views Markup

So What Did We Just Do Here?
As you can tell from the process that was just illustrated (and our first Practical Example
in Chapter 12), there’s a lot that you can do with Views. But part of working with Views
is understanding the code it creates and how to manipulate that code to get the results
you want. Knowing how it works—even if you’re not the one implementing a particular
site—can make it easier to envision how a given project might look in the end, and
make it easier to create beautiful layouts that will be easier for your team to implement.

Recently, I worked on a massive site overhaul with my friend Claudio Luis Vera
(@modulist on Drupal.org). Claudio was working on wireframes and design layout,
while I focused on prototyping the site in Drupal 7. During the design process, Claudio
kept finding himself getting stuck on a particular piece of the design puzzle and unable
to come up with what a given page should look like—until he started thinking in terms
of how Views might output the content. Simply by understanding what Views would
do with the content, he was able to rapidly create and iterate designs, and we were able
to more easily implement them in the prototype—and the final product.

This is the value in having an understanding of Views. It’s not always easy to figure out,
but once you get the basics down, it’s that much easier to get your job done.

So What Did We Just Do Here? | 135

http://drupal.org

CHAPTER 14

Managing Your Code: Some Modules
that Can Help

Once you’ve broken down your layout, settled on your base theme, and wrangled your
Views code, you can finally start theming your site. But where do you get started? How
do you find the right selector to apply your CSS to? This is where it helps to add a couple
of tricks. You can do a lot with themes and Views rewrite options in terms of cleaning
up the code Drupal gives you so you can theme more efficiently. However, there are
still issues with some of the ways that Drupal outputs code. The following modules
can help.

Block Class
Block Class (drupal.org/project/block_class) is a little module that does something very
important: it allows you to give any block its own class, independent of what Drupal
wants to call it. This is useful, for example, when you want to create a block of featured
content, or even a new class called “green” that you apply to random blocks in your
theme.

For example, going back to our home page for Urban Homesteaders Unite, one of the
things that we’re creating is an “about this site” block that describes what people can
do here. If we look under the hood at what Drupal calls this block, we’ll see something
akin to Figure 14-1.

Now, we’ve already got some styling set in this block just from our typography defaults.
But what if we wanted to add to this—say, make the headings a different color, or add
a background color to it? Or, in the case of our mobile site, hide it completely? Drupal’s
default pattern is to give every element on the page a bunch of automatic classes based
on what it is, where it is in the system, and a few other generic factors. Which class
selector would we point to in order to make sure that we don’t accidentally end up
styling other blocks as well?

137

http://drupal.org/project/block_class

Simply by installing the Block Class module, we can easily add a unique class to our
block, directly in the Block configuration screen (see Figure 14-2).

Figure 14-2. Adding a custom class to our block

This will allow us to customize the styles for that block using the .welcome selector,
which will help us more quickly theme our site. It won’t strip out the gobbledygook
that Drupal outputs in the first place, but it at least gives us something that we know
to be unique to that block, and something that’s named somewhat logically.

Figure 14-1. See that long list of class names that’s highlighted? That’s our block.

138 | Chapter 14: Managing Your Code: Some Modules that Can Help

HTML5 Tools and Elements
HTML5 Tools (drupal.org/project/html5_tools), which depends on the Elements mod-
ule, helps you prepare your theme for HTML5 by giving you access to HTML5 form
elements like <phone>, <email>, and other lovelies. It also allows you to use these
elements directly in your Views.

@font-your-face
This module (drupal.org/project/fontyourface), a relatively new discovery for me, gives
you an administrative interface for browsing web fonts from a variety of sources, in-
cluding TypeKit, FontSquirrel, and more, and implementing them in your site’s theme
using the @font-face property. This promises to make working with web fonts signif-
icantly easier; while with certain font services, you can download the font files, import
their stylesheets into your theme’s CSS and work with them that way, the @font-your-
face module looks especially good for implementing hosted webfonts, such as TypeKit
and Fontdeck, that don’t necessarily have downloadable fonts that you can load into
your theme.

Semantic Fields
Formerly called Semantic CCK (drupal.org/project/semantic_fields), Semantic Fields (in
Development Release as of this writing) helps you do exactly what it sounds like: turn
your Drupal fields into clean, semantic code. The module lets you set up certain default
field formats through a configuration interface, then apply those formats to a given field
in your Drupal content type through the Manage Display interface. This means that
you can, conceivably, turn code like this:

<div class="field field-type-filefield field-field-recipe-photo">
 <div class="field-items">
 <div class="field-item odd">

 </div>
 </div>
</div>

To this:

without having to mess with template files or theme functions. As a fan of semantic
markup, I can’t begin to tell you how gleeful this makes me.

Semantic Fields | 139

http://drupal.org/project/html5_tools
http://drupal.org/project/fontyourface
http://drupal.org/project/semantic_fields

CHAPTER 15

Working with LessCSS

LessCSS (http://lesscss.org/) is a dynamic stylesheet language that allows you to code
CSS more efficiently. Not only does it allow you to create variables with sensible names
that you can re-use anywhere in your stylesheet, it also allows you to nest CSS styles,
which is a huge timesaver—especially working in Drupal, when you might find yourself
styling several different selectors within one page or block of the site.

In LessCSS, you’ll create your code in a file with the extension .less. Once you’ve created
your code, you compile it into a .css either using a Javascript call in the browser (there’s
even a Drupal module for it—drupal.org/project/less), or use Less.app (available for
Mac at incident57.com/less) to compile it and upload the .css file to your server. Gen-
erally, I go for the latter approach.

Creating Variables
Variables are little bits of code that you can call at will in your stylesheet. My favorite
use for variables is in picking out colors. For example, let’s assume that your site uses
a specific shade of brown (#572700) in a variety of places throughout the layout. In
regular CSS, you’d have to input each instance manually, and you’ll more than likely
have the color written down—with a bunch of other colors used in your layout—on a
pad somewhere near your desk.

Using LessCSS, you’d define the color once using @brown: #572700; and then call the
color wherever it appears using color: @brown; or background-color: @brown;.

This not only allows you to code more quickly overall (no need to keep referring to that
page of scribbles on your desk every time you need to call the color), but it also allows
you to change colors quickly, if you realize down the line that a particular color just
wasn’t working out. Instead of having to do a Find and Replace for the color’s hex
value, you can just change the settings on the @brown variable and save your .less file.

141

http://lesscss.org/
http://drupal.org/project/less

The Mighty Mixin
Mixins are similar to variables, in that you call them in much the same way. There are
three differences between mixins and variables:

1. They start with a dot (.) instead of an @ symbol.

2. Instead of a general variable that you can call anywhere in your syntax, a mixin can
only show up as its own line of code.

3. Unlike variables, a mixin can combine many lines of code into one neat little prop-
erty that you can plug into your CSS whenever you need it.

The syntax for a mixin is exactly like standard CSS, for example:

.brown-link {
 a {
 padding: 1em;
 background-color: @brown;
 color: white;
 }

 a, a:hover {
 background-color: @orange;
 color: @brown;
 }
}

The difference is that, instead of having to retype all this code whenever you need a
brown link in your document, you’d simply call that mixin in your code for the area
that you’re working on, like so:

#Menu ul>li {
 float: left;
 margin-right: 1em;
 .brown-link;
}

Mixins work best for bits of unwieldy code you use all the time, such as font designa-
tions, CSS3 variables that require multiple lines of code, and anything else you find
yourself typing over and over again. They’re also good for properties that may change
as you work. I set up font conventions as mixins in the top of my .less file using a generic
font stack, and change the font stack when I’ve decided which fonts I’m going to use.

Nesting Behavior
The other, and perhaps most important, feature of LessCSS is the ability to nest your
CSS selectors inside their parent selectors. This not only makes your stylesheet shorter
and more organized, it helps you understand how different selectors relate to each
other. You’ll see an example of this awesomeness a bit later; first, a note on how LessCSS
actually gets turned into usable CSS.

142 | Chapter 15: Working with LessCSS

Compiling the Code
In order for LessCSS to work on your site, it needs to be compiled into regular CSS. If
you’re on MacOSX, you can download Less.app, a free application that will compile
your .less files into CSS every time you save the file (http://incident57.com/less). Simply
keep the app (see Figure 15-1) open while you work, drag your theme’s folder into it,
and every time you save the file, it will compile your work into a .css file in the theme
folder.

Figure 15-1. The handy Less.app “watches” any folder that you drag into it and compiles your LessCSS
into CSS as you work

If you aren’t on Mac (or you’re working in OSX 10.5 or earlier—Less.app only works
in 10.6 and above), there are other options for compiling your .less files:

The LessCSS Preprocessor module
This module claims to process any .less file that you add to your theme’s .info file
(http://drupal.org/project/less). I’ve never used it before, so I can’t vouch for how
well it works; if you do have the ability to use Less.app, I’d use that before installing
the module.

The Less.js JavaScript
This JavaScript file (downloadable from http://lesscss.org/ will process your .less
files directly on the server if you include it in your theme’s .info file.

Compiling the Code | 143

http://incident57.com/less
http://drupal.org/project/less
http://lesscss.org/

Although both of these are perfectly fine options, I prefer using Less.app for one major
reason: I hate worrying about my JavaScript not running. In an average Drupal instal-
lation, you’re going to have quite a few .js files running on your site just because you
installed Core and a couple of modules. Adding Less.js to the mix just adds another
thing for the server to do when it serves up a page, and that adds weight to my site that
I don’t want to worry about. So if you can, I highly recommend using Less.app.

Working with LessCSS: Organizing Your Stylesheets
Confession: I’m hyper-organized when it comes to my CSS. Everything is ordered and
numbered, with a table of contents. Call me OCD, but it works.

Whether I’m working in straight CSS or Less, every file starts about the same. Here,
for example, is the table of contents for my Urban Homesteaders Unite theme:

/*
Custom styles for Urban Homesteaders Unite
Authors: Dani Nordin, tzk-design.com and Tricia Okin, papercutny.com

Table of Contents

1.0 Colors & Fonts
 1.1 Colors
 1.2 fonts
2.0 CSS3 Behaviors
3.0 Page Defaults
4.0 Navigation Menus
5.0 Drupal Defaults
6.0 Custom
7.0 Typography

*/

This way of organizing your CSS allows you to set up your page defaults near the top
of the file, and put all your custom stuff at the bottom. This helps create a more natural
flow as I’m theming; generally, I’ll start by theming the Big Stuff (fonts, color standards,
etc.), and then move into page-level or template-level variables. Note that I do include
the main page typography at the bottom of the file; this ensures that any of my custom
typography shows up before my global page typography, and get overridden.

Setting Up Color Variables
Before I switched to using LessCSS, I would incorporate color values into my table of
contents. For example:

Table of Contents

Color Values:
gray: #8D8D7D;
dkgray: #4D4545;

144 | Chapter 15: Working with LessCSS

mdgray: #666;
ltgray: #999;
palegray: #ccc;

red: #D32F00;
orange: #D17103;
cyan: #47A7BF;
green: #89A155;
gold: #eeb200;

That way, if I was in the middle of a big theming push, I could just do a quick “find”
on the color I need by name and copy-paste it into what I was theming without having
to remember the hex value. Now, with Less, I’m able to do the same thing, but instead
of writing color: #D32F00; in my code, I can write color: @red; and Less.app will
compile it into the CSS I need to make my object’s text red. This means, in my
styles.less file, I’ll start myself off by defining those color variables:

/* 1.0 Colors & Fonts
 1.1 Colors */
@gray: #8D8D7D;
@dkgray: #4D4545;
@mdgray: #666;
@ltgray: #999;
@palegray: #ccc;

@red: #D32F00;
@orange: #D17103;
@cyan: #47A7BF;
@green: #89A155;
@gold: #eeb200;

After defining colors, I’ll define the font mixins. LessCSS allows you to use entire bits
of code as variables, called mixins. This is especially handy when working with CSS3
properties like rounded corners and drop-shadows (which usually require three lines
of CSS). For my font mixins, I’m going to define some general defaults, using fonts that
my partner Tricia and I have decided on:

/* 1.2 Fonts */

.serif-italic {
 font-family: 'ArvoItalic', Georgia, Times New Roman, serif;
}

.headings {
 font-family: 'ArvoRegular', Georgia, Times New Roman, serif;
 font-weight: normal;
}

.serif {
 font-family: Georgia, Times New Roman, serif;
}

.sans {
 font-family: 'PTSansRegular', Helvetica, Arial, san-serif;

Working with LessCSS: Organizing Your Stylesheets | 145

}

.sans-italic {
 font-family: 'PTSansItalic', Helvetica, Arial, san-serif;
}

.caption-bold {
 font-family: 'PTSansBold', Helvetica, Arial, san-serif;
}

.caption-regular {
 font-family: 'PTSansCaptionRegular', Helvetica, Arial, san-serif;
}

.narrow-regular {
 font-family: 'PTSansNarrowRegular', Helvetica, Arial, san-serif;
}

The use of the descriptors .serif-italic, .serif, and .sans is intentional; as the fonts may
end up changing during the design phase, using generic descriptors like these allows
me to change fonts site-wide simply by changing the font stack in a few lines of code.
Less.app then compiles it to what I need. Using a generic name for the mixin also allows
me to change the font without being tied to the name of the original font I chose. Now,
let’s say I wanted to change the headings in my site. I’d use the .headings variable as a
line in my CSS, like so:

h1, h2, h3, h4 {
 .headings;
 color: @orange;
}

When Less.app outputs the CSS file, that will translate to:

h1,
h2,
h3,
h4 {
 font-family: 'ArvoRegular', Georgia, Times New Roman, serif;
 font-weight: normal;
 color: #d17103;
}

Brilliant, right? This is why I love using LessCSS. The next step is defining any CSS3
mixins I need. For this site, we’re keeping things pretty low-key; the only thing we’re
really using is rounded corners for a few boxes here and there. For that, we’d put this
in our code:

/* 2.0 CSS3 Variables */

.round-sm {
 /* all corners */
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
}

146 | Chapter 15: Working with LessCSS

.round-lg {
 /* all corners */
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
}

Now, if we wanted to style everything with the class selector button to be green with
rounded corners, we could add the following to our code:

/* Form elements */
.button {
 .serif-italic;

 a {
 color: white!important;
 .round-sm;
 background-color: @green;
 padding: 1em;
 }

 a:hover {
 background-color: @cyan;
 }
}

When it’s compiled into CSS, I’ll have something that looks like Figure 15-2.

Figure 15-2. Our lovely button

Why This is Awesome (Aside From the Obvious)
Aside from the sheer volume of code you can prevent yourself from having to write
(your carpal tunnel will thank you), one of the things that makes LessCSS especially
awesome when you’re working in Drupal is the way it helps you organize your CSS
according to parent/child relationships, which is essential to theming in Drupal.

In most cases, when theming Drupal elements, you’ll be theming specific containers—
say, all Views of a certain type, or a Featured Content block—and everything within
those containers. In standard CSS, it’s very easy to find yourself losing track of where
you are in the hierarchy when you start getting into more complex relationships. This
is especially true with navigation menus, where you have a multitude of selectors—and
their immediate descendants—to deal with. But with LessCSS’s nested styles, you can
start from the top down and keep everything in one place. For example, here’s the
sample code from our Event page that we did in Chapter 11, Prototyping in the Browser:

Why This is Awesome (Aside From the Obvious) | 147

/* 6.2 Event Node */

.field-name-field-event-image {
 margin-bottom: 1em;
}

.about-host {
 .user-picture {
 float: left;
 margin-right: .5em;
 }

 h3 {
 margin: 0; padding: 0;
 }
 .username {
 font-size: 1em; line-height: 1.3em;
 }
}

.related-events {
 .views-row {
 margin: 1em 0;
 padding-bottom: .5em;
 border-bottom: 1px dotted @gray;
 }

 h4 {
 margin: 0; padding: 0;
 }

 .date {
 .sans-italic;
 font-size: .85em;
 }

}

Note that each block—.about-host and .related-events—starts off as its own thing, and
all the elements that lie within those blocks are styled within the block. This not only
helps you organize your code (no more will you end up with that handful of random
styles thrown at the bottom of your stylesheet at the last minute), but it also helps you
actually understand the parent-child relationships. Over time, I’ve been able to more
easily figure out where my best top-level selector is—should I deal with the body of a
page? The content area? A single block?—and create CSS that gives me the look I want
to for a specific section of a theme without accidentally overriding CSS in other areas
of the site.

148 | Chapter 15: Working with LessCSS

Working with LessCSS on a Team
While there is much that is awesome about working with LessCSS, there is one minor
sticking point. If you are working in LessCSS on a project that other people are con-
tributing to, each person on the team who is touching the CSS of the project must also be
working in LessCSS.

Although I’ve been able to figure it out with time, this has burned me a couple of times.
Since LessCSS depends on being able to compile your .less files into .css files, anyone
who wants to add to the styles of a given site needs to update the .less file, not
the .css file, and compile that .less file into standard CSS code. If, for example, one of
your colleagues decides to change or add CSS to the site, and they add it into
styles.css (like many of us instinctively would), the moment that you go back into
styles.less and make updates, everything your colleague just wrote in styles.css would be
overwritten when you compiled styles.less.

If you’re working on a project with a team—say you and another designer are working
on a startup, and both of you will be theming the site—it’s important to discuss this
early on in the project. If possible, train them on how to use LessCSS syntax (it’s really
easy, once you get used to it) and point them to Less.app; if they can’t use Less.app for
whatever reason, consider adding less.js to your theme’s .info file (make sure you
download the less.js file to a folder called “js” in your theme folder as well), and let the
server compile it for you.

Working with LessCSS on a Team | 149

About the Author
Dani Nordin is an independent user experience designer and strategist who specializes
in smart, human-friendly design for progressive brands. She discovered design purely
by accident as a Theatre student at Rhode Island College in 1995, and has been doing
some combination of design, public speaking, and writing ever since.

Dani is a regular feature at Boston’s Drupal meetup, and is a regular speaker at Boston’s
Design for Drupal Camp. In 2011, she was one of several contributors to The Definitive
Guide to Drupal 7, published by Apress; she also authored Planning and Managing
Drupal Projects for O’Reilly Media in 2011. Design and Prototyping for Drupal is her
third book. You can check out some of her work at tzk-design.com. She also blogs almost
regularly at daninordin.com.

Dani lives in Watertown, MA with her husband Nick and Persephone, a 14-pound
giant ball of black furry love cat. Both are infinite sources of comedic gold.

http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020264
http://oreilly.com/catalog/0636920020295
http://tzk-design.com
http://daninordin.com

	Design and Prototyping for Drupal
	Table of Contents
	Preface
	Introduction
	In This Volume
	A Quick Note on Nomenclature
	A Note on Code
	But Dani, I’ve Never Even Installed Drupal Before; What Do I Do?

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	About the Reviewers
	Acknowledgments

	Part I. Getting Started: Some Stuff to
 Consider
	Chapter 1. Design for Drupal: Basic Concepts
	About the Case Studies

	Chapter 2. The Drupal Designer’s Toolkit
	Balsamiq Mockups
	Fireworks
	Coda
	LessCSS and Less.app

	Part II. Design and Layout
	Chapter 3. Sketch Many, Show One
	Ideation: Methods and Madness

	Chapter 4. Using Style Tiles to Explore Design
 Ideas
	Chapter 5. Design Layout: Covering All Your Bases
	Greyboxing: An In-Between Option

	Chapter 6. Working with Layout Grids
	Why Use a Grid?
	Grids in Wireframing
	Grids in Theming
	Anatomy of a Grid Layout
	But What About All These Presentational Classes? There Must Be a Better Way!
	The New CSS Grid Layout module: The Future Is Now
	Going Deeper: CSS Layout and Grid Systems

	Chapter 7. Setting up Fireworks Templates for Drupal
	Step One: Setting Up the Grid
	Step Two: Setting Up the Header
	Step 3: Single Node Page
	Step 4: Single Node Pages with Sidebars
	Step 5: Create the Other Pages
	Step 6: Step Up the Visuals

	Part III. Prototyping, Theming, and Managing your Markup
	Chapter 8. Paper Prototyping
	When to Use a Paper Prototype
	Fidelity
	Creating a Paper Prototype
	Walking Through the Prototype
	Other Types of Prototypes

	Chapter 9. Breaking Down a Layout for Drupal
 Implementation
	Nodes
	Blocks
	Views

	Chapter 10. Working with Base Themes
	How to Choose a Base Theme
	Other Base Themes to Try
	Creating a Child Theme
	Other Things You Should Know About Base Themes
	Clear the Theme Registry!
	Working with Regions

	Please, Tell Me More!

	Chapter 11. Prototyping in the Browser
	Chapter 12. Practical Example #1: Using Views to Enhance a Layout
	But I’m Not a Developer—What if I Don’t Want to Code?
	Step 1: Create the “Event Categories” Taxonomy Vocabulary
	Step 2: Create the Event Content Type
	Step 3: Create an Image Style
	Step 4: Create the User Profile
	Step 5: Getting Profile Content into the Event Page
	Setting Up the View

	Step 6: Setting Up the Contextual Filter
	Step 7: Setting Up the “Related Events” Block
	So What Did We Just Do Here?

	Chapter 13. Practical Example #2: Controlling Views Markup
	Step 1: Associating an Image with a Taxonomy Term
	Step 2: Create the Event Categories View
	Step 3: Update the Field Settings
	Step 4: Add a Custom Class to Each Taxonomy Term: Name Field
	Step 5: Style Away
	So What Did We Just Do Here?

	Chapter 14. Managing Your Code: Some Modules that Can Help
	Block Class
	HTML5 Tools and Elements
	@font-your-face
	Semantic Fields

	Chapter 15. Working with LessCSS
	Creating Variables
	The Mighty Mixin
	Nesting Behavior
	Compiling the Code
	Working with LessCSS: Organizing Your Stylesheets
	Setting Up Color Variables

	Why This is Awesome (Aside From the Obvious)
	Working with LessCSS on a Team

