

Django 1.0 Template
Development

A practical guide to Django template development
with custom tags, filters, multiple templates, caching,
and more

Scott Newman

 BIRMINGHAM - MUMBAI

Django 1.0 Template Development

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2008

Production Reference: 1051208

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-70-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Scott Newman

Reviewers

Jan V Smith

Dave Fregon

Patrick Chan

Senior Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editors

Abhinav Prasoon

John Antony

Copy Editor

Sneha Kulkarni

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

 Leena Purkait

Indexer

Rekha Nair

Proofreader

Chris Smith

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Scott Newman has been developing commercial web sites since 1997. Since then,
he has professionally developed web applications in C, PERL, ColdFusion, ASP,
PHP, and Python. He has also been a Windows network administrator and desktop
application developer, but always gravitates back to web development. Scott holds a
Network+ certification and is a dotMobi Certified Mobile Web Developer.

In recent years, Scott worked as the system development manager for a major media
company developing CMS and mobile applications in Django. He currently is the
consulting director for the Big Nerd Ranch in Atlanta, GA.

I would like to thank my wife, Jennifer, for her patience, support,
and encouragement during the months it took to write this book
—I could not have done it without her. I would also like to thank
Jon-Paul Roden and Patrick Ward for helping me become the
programmer I am today. A big thanks to Jim Riley and Rusty Coats
for getting me involved in Django, believing in my crazy idea to
write a CMS from scratch, and supporting my team along the way.
Finally, I would like to thank my mom and dad for always being
there for me.

About the Reviewers

Jan V Smith has been working on open source software since 2001. She is
based in Melbourne, Australia. Jan is Vice President of Computerbank Victoria.
Computerbank takes donated computers and refurbishes them with Ubuntu and
open source software and then distributes them to people on low incomes. She has
reviewed several open source Python-based text books.

Thanks to my son Michael Cassidy for wanting to learn HTML
in 1999. We studied HTML together, later I discovered the vast
possibilities of the open source software movement. A movement
where intelligence and kindness coexist to help overcome short
sighted, greedy vendor lock-in.

Dave Fregon has been working with Zope since 1999, and open source concepts
since 1996, and 'most all of his general work is in this area, recently adding Django
to his growing repertoir. Dave has contributed to projects such as the engagemedia.
org and axxs.org community hosting services, among many other web-enabling
community efforts outside of his commercial work. It keeps him busy when he is not
out exploring the bush and rivers of Australia with his dog, Shade.

An active member of the Australian Zope community OzZope, Dave co-wrote
a chapter on Zope security with another member Jan Smith, for the book
"Zope—Content Management Systems and Beyond" edited by Stephan Richter,
released in German.

After working many years as contractor, he joined with others in regional Australia
to form a workers collective, NetAxxs.com.au, which provides Python-friendly web
hosting and development in Open Source technologies, as well as free servers for
community and activist-based hosting.

I'd like to thank all the contributors to open source projects, that
have given me inspiration in life and push me to contributing more
to the commons, the author amongst them. For my brother Peter
who inspired me with geekdom, to Karen for dealing with me in
the office, Shade for dealing with me all the time, and Leena Purkait
from Packt Publishing for her patience during a time of illness for
me whilst contributing to this books release.

Patrick Chan has recently survived a bachelor of computer engineering
with honors.

He is now an analyst programmer with Australia Post and also volunteers at
Computer Bank. Along with Jan Smith, he is working on ComputerbankDB, a
Django project that would replace the current inventory system for Computer Bank.

Patrick finds that unlike many other languages (names withheld to protect the
guilty), you don't tend to have to pull your hair out if you are programming in
Python. In fact, you have to be careful because you might actually find it fun
and enjoyable.

Table of Contents
Preface 1
Chapter 1: An Introduction to the Django Template System 7

What are templates? 7
Understanding the need for templates 8

Overview of the Django template system 8
Separating code from presentation 8
Helping designers and developers collaborate 9
Increasing maintainability 9
Template syntax 10
Modularity and reusability 10
Flexibility 10
Limitations 11
Critics of the system 11

Exploring how Django handles requests 12
Understanding the template system syntax 15

Context variable 15
Variables 16
Filters 16
Tags 16
Comments 17
Code note: Python dictionaries 18
How invalid variables are handled 19

Creating our demo application 19
Starting our application 21
Adding templates to our application 22

Adding variables to the view 23
Moving the logic into a separate template file 24
Using template filters 25

Table of Contents

[ii]

Using template tags to perform logical tests 26
Adding comments 27

Summary 28
Chapter 2: Views, URLs, and Generic Views 29

An overview 30
Creating the application 30

Create the data model 30
Create the admin file 31
Configure the URLs 31
Add data in the admin application 32

Mapping URLs to views 32
Handling unmatched URL patterns 34
Splitting up the URL configurations 35

Creating views 36
Accepting the request object 36
Responding with an HTTP response 37
Responding with an exception 37

Putting the views together 38
Building the basic view 38
Cleaning up the error handling 39
Adding the template files 39
Adding the template to the view 41
Creating the list view and template 42

Using generic views to shorten development time 44
Simple generic views 44

Loading a template directly 44
Redirecting URLs 45

List/detail generic views 46
Replacing the list view 46
Replacing the detail view 48

Using the other generic views 49
Comparing views and generic views 49
Summary 50

Chapter 3: Template Context 51
The context explained 51

Practicing working with the context 53
Using locals for prototyping 55
Adding, changing, and removing items in the context 56

Using the context values in your templates 57
Preventing method execution from templates 60

Handling invalid context variables 60
Cleaning up the view 61

Table of Contents

[iii]

Context rendering shortcuts 62
Using render_to_response() 62
Using render_to_string() 63

Context processors 63
Exploring the default context processors 63

Auth 63
Debug 64
Media 64

il8n 65
Configuring your project to use context processors 65
Configuring your views to use context processors 65
Using render_to_response with RequestContext 66
Using the context processors in our project 67
Writing your own context processor 68

Summary 70
Chapter 4: Using the Built-In Tags and Filters 71

Built-in filter reference 71
add 72
addslashes 72
capfirst 73
center 73
cut 74
date 74
default 75
default_if_none 75
dictsort 76
dictsortreversed 76
divisibleby 77
escape 77
escapejs 78
filesizeformat 78
first 79
fix_ampersands 79
floatformat 79
force_escape 80
get_digit 80
iriencode 81
join 81
last 82
length 82
length_is 83

Table of Contents

[iv]

linebreaks 83
linebreaksbr 84
linenumbers 84
ljust 84
lower 85
make_list 86
phone2numeric 86
pluralize 87
pprint 87
random 88
removetags 88
rjust 89
safe 89
slice 90
slugify 90
stringformat 90
striptags 91
time 92
timesince 92
timeuntil 92
title 92
truncatewords 93
truncatewords_html 94
unordered_list 94
upper 95
urlencode 95
urlize 96
urlizetrunc 96
wordcount 97
wordwrap 97
yesno 98

Built-in tag reference 98
autoescape 99
block 99
comment 100
cycle 100
debug 101
extends 101
filter 101
firstof 102

Table of Contents

[v]

for 102
forloop 103

if 104
ifchanged 105
ifequal 106
ifnotequal 107
include 107
load 108
now 108
regroup 109
spaceless 110
ssi 111
templatetag 111
url 112
widthratio 113
with 114

Summary 115
Chapter 5: Loading and Inheriting Templates 117

Configuring the template system 117
Finding a home for the template files 120
Working with the template loaders 121

Loading templates manually 121
Choosing a template loader 122
Using the filesystem loader 122
Using the application directories loader 123
About the eggs template loader 124
Using the loaders together 124
Loading your template files 125

Setting up the error handling templates 125
Creating the error templates 126
Testing the error templates 126

Breaking templates into reusable pieces 127
Extending templates with inheritance 127

Using the block tag 128
Extending templates 129
Adding inheritance to the press application 131
Using multiple block tags 132
Adding template inheritance to our press release list 133

Inheriting from multiple child templates 134
Appending to blocks 136
Template strategy 137

Table of Contents

[vi]

Creating content placeholders 137
Extra JS 137
Extra style 138
Extra head content 139
Extra body tag attributes 139

Using include files 140
Using include 140

Using SSI 141
Summary 142

Chapter 6: Serving Multiple Templates 143
Considering the different approaches 143

Serving mobile devices 144
Adapting content 145

Setting up our example 145
Serving printable pages 147
Creating site themes 149

Testing the template overrides 150
Serving different templates by domain name 152

Serving different sites with the development web server 153
Redirecting users to the mobile site (optional) 155

Detecting mobile devices 155
Writing the middleware 156
Checking only once 158
Installing the middleware 159

Summary 161
Chapter 7: Custom Tags and Filters 163

Examining the built-in tags and filters 163
Template filters 164
Template tags 164

Writing your own template filters 165
Setting up a test application 165
Creating a home for our filter library 167
Template filter syntax 168
Loading template libraries 169
U.S. currency filter 169
Replace profanities filter 171
Filters that expect strings 173
In-list filter 174

Writing your own template tags 175
Creating another sample application 176
Adding the template library 177

Table of Contents

[vii]

Template tag syntax 177
A simple tag example 178
The compilation function 179
The template node subclass 179
Registering our custom tag 179
All work and no play tag 180
Passing a template variable to a tag 182
Modifying the context through a tag 184

Summary 186
Chapter 8: Pagination 187

An Overview 187
Verifying our application setup 188

Verifying the application 188
Verifying the configuration 188
Verifying the URL configuration 189
Verifying the model 189
Verifying the view 190
Adding test records 190

Exploring pagination using the Django shell 191
Examining database performance 193
Allowing for empty result sets 195
Preventing orphaned records 195

Using pagination in your views 196
Creating the view 196
Retrieving the current position from the URL 197

Putting navigation into the templates 197
Pagination with generic views 199

Setting up our generic list view 200
Generically calling the last page 201

Summary 201
Chapter 9: Customizing the Admin Look and Feel 203

Overriding the admin templates 203
Leveraging the template loader 204
Locating the admin template files 204
Exploring the admin template files 205

Inspecting the base.html template 205
Inspecting the base_site.html template 206
Inspecting the index.html template 206
Inspecting the change_list.html template 207
Inspecting the change_form.html template 208

Table of Contents

[viii]

Customizing the admin header 208
Replacing the page title 208
Changing the header text 209

Adding a new link box to the admin 209
Overriding the admin index file 210
Creating the include file 211

Customizing the admin color scheme 212
Identifying styles to change 213
Using the extrastyle block 213

Summary 216
Chapter 10: Caching Your Pages 217

An overview 217
Do you need caching? 218
How caching works 218

Exploring the available cache systems 218
Filesystem caching 219
Database caching 219
Memcached 219
Local memory caching 219
Dummy caching 220

Setting up your cache system 220
Configuring the cache backend 220

Database caching 220
Filesystem caching 220
Local memory caching 221
Dummy caching 221
Memcached 221

Adding additional backend arguments 221
Setting up for the examples 222

Caching individual views 222
Adding caching 224

Caching pieces of templates 224
Low-level caching 226
Caching your whole site 227

Preventing data from being cached 229
General caching strategies 229
Working with outside caches 229
Summary 230

Chapter 11: Internationalization 231
Exploring i18n 231
Creating an example application 232

Table of Contents

[ix]

Configuring your project for i18n 236
Installing libraries for i18n translation 236
Marking strings as translatable 237
Creating message files 237
Enabling automatic language preference 242

How Django determines language preference 244
Summary 244

Index 245

Preface
Django is a high-level Python web application framework designed to support the
rapid development of dynamic web sites, web applications, and web services. It
includes a template system that allows programmers and designers to easily and
efficiently output their content in a flexible, extendable, and maintainable manner.

This book is a comprehensive, practical exploration of Django's template system.
Developers and template authors will appreciate the introduction to Django
templates, including an examination of views, generic views, and URL configurations
to illustrate how incoming requests are handled and ultimately mapped to templates.
Template inheritance and outputting different templates based on user agents are
also covered.

The chapters on pagination, internationalization, caching, and customizing the admin
application are example-driven so you can learn the concepts and later apply them
as "recipes" in your own projects. For most examples, we will be working with an
ongoing example project to show the power of combining your new skills together.

Whether large or small, complex or simple, I hope the techniques presented in this
book serve you well in your Django projects.

What this book covers
Here is a brief summary of each chapter:

Chapter 1 gives you an introduction to the Django template system and provides an
overview of how it works.

Chapter 2 explores how URL configuration routes your requests to views and
generic views. You will understand how to use generic views to streamline your
project's development.

Preface

[2]

Chapter 3 explains how data from your views is exposed to the template system via
the template context.

Chapter 4 reviews all of Django's built-in tags and filters, each with examples and
usage notes.

Chapter 5 uses extension and inheritance to create a modular skeleton for your
project's templates.

Chapter 6 teaches you how to serve multiple versions of your templates in a single
Django project. You will create mobile and traditional templates and learn how to
serve them from the same views.

Chapter 7 explains how to extend the template system by writing your own template
tags and filters.

Chapter 8 teaches you how to use Django's pagination libraries to split the output of
your applications into pages and provide navigation between them.

Chapter 9 shows you how to customize the look and feel of the automatic admin
application by editing some templates and creating custom CSS rules.

Chapter 10 teaches you to use the cache framework to optimize the speed and
performance of your project.

Chapter 11 uses internationalization to automatically serve your site templates in
multiple languages based on the user's preferences.

What you need for this book
A working installation of Python 2.3 or greater (2.4 or greater
is recommended)
The ability to run a Django-supported database (examples in the book
use SQLite)
An installed and working Django installation (see www.DjangoProject.com
for installation details)
Some experience with Django, at least having gone through the tutorials at
www.DjangoProject.com

•

•

•

•

Preface

[3]

Who this book is for
This book is for web developers and template authors who want to fully understand
and utilize the Django template system. The reader should have completed the
introductory tutorials on the Django project's web site and some experience with the
framework will be very helpful. Basic knowledge of Python and HTML is assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

{% ifequal color 'blue' %}
 Wow, you like blue!
{% else %}
 Why don't you like blue?
{% endifequal %}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

from django.http import HttpResponse
from django.template import Context, Template, loader

def detail(request):
 dict_values = {'fav_color': 'blue'}
 template_string = "My favorite color is {{ fav_color }}."
 c = Context(dict_values)
 t = Template(template_string)
 rendered_template = t.render(c)
 return HttpResponse(rendered_template)

Any command-line input and output is written as follows:

$ python manage.py runserver

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5708_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or web site name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

An Introduction to the Django
Template System

Django simplifies the process of creating data-driven applications and provides a
flexible, modular approach to web development. In contrast to many other web
application frameworks, Django is full stack, which means it contains all the libraries
and packages necessary to create applications. Because the pieces were designed as a
whole, you can develop using them with the confidence that they will all work well
together. One of these pieces is the Django template system that allows output to be
formatted in a flexible, consistent, and maintainable fashion.

In this chapter we will:

Learn what templates are and why you should use them
Review how Django handles requests
Learn the syntax used in the templating system
Set up a demo application that we will use throughout this book

What are templates?
The term template can have different meanings depending on what programming
environment, language, or framework you are working in, so let's clarify what
it represents to Django developers. In Django, a template is a string that can be
combined with data to produce output. Typically, templates are stored as files on
the file system, and contain placeholders that are replaced with information from the
database and the results returned as HTML documents.

•

•

•

•

An Introduction to the Django Template System

[8]

Understanding the need for templates
In some development platforms, such as PHP and ASP, the programming code and
the HTML markup is all contained in a single file that gets processed and returned
by the web server. In complex pages, this approach can become difficult to develop
and maintain because there isn't a separation between the presentation and the
programming logic used to render it.

Having programming logic mixed in with your markup code also limits the
ability for designers to work in the files, unless they also understand the bits of
programming logic sprinkled within. This makes changing the markup both tedious
and time-consuming because the developer usually has to do the updates.

This clearly isn't a productive way to develop applications. We end up with a
number of requirements that need to be addressed:

We need to separate the output markup from the Python code
The system should encourage reusability and maintainability of output files
Common page elements should be contained in their own files and easily
included into the overall structure of the site
Designers and developers need to be able to work without getting in each
other's way
The system should have a shallow learning curve and only require a basic
understanding of programming concepts
The system needs to be extensible and flexible enough to fit the specific needs
of our projects

Overview of the Django template system
The Django template system fits all of these criteria nicely. By separating code and
content, allowing only basic programming constructs, and making it possible to
write your own extensions to the system, the Django authors have created a solution
that works well for both designers and developers.

Separating code from presentation
Instead of mixing programming code and presentation markup (such as HTML) in
the same files, we create templates that have placeholders where the data will go.
When the template engine renders the templates, these placeholders are replaced
with their appropriate values. By the time the output is returned to the web browser,
all traces of the template have been removed, leaving only the resulting output.

•

•

•

•

•

•

Chapter 1

[9]

As we have seen, Django templates, typically, are files loaded by the template engine
and rendered into output that will be sent back to the browser. This loading and
rendering takes place in the view, the function that Django calls to fulfill requests.

In some web development frameworks, the terms view and template
are used differently. In Django, the view is a Python function that is called
by the framework to return an HTTP response. The template is a file or
string that encapsulates the presentation markup that is used to generate
the response.

In order to accomplish basic output logic, such as looping through records and
creating table rows, some programming code needs to exist in the template files.
The amount of programming you can do in your template depends on your
programming language or framework; Django allows basic looping and conditional
logic. The process of rendering executes this template logic and replaces placeholders
with data.

Helping designers and developers collaborate
By separating templates out of framework code into their own files, developers and
designers can work simultaneously on the same project without stepping on each
other's work. This approach has the added benefit that there is a clear differentiation
between design and development; coders stay out of the design arena and designers
stay out of the programming arena—we can live in harmony! (Well, maybe...)

Keeping the template clear of code also makes it easier to work in WYSIWYG (What
You See Is What You Get) editors such as Dreamweaver and Homesite. We're not
going to cover that in the book, but it's worth mentioning.

Increasing maintainability
The template files are usually located in their own folders nested somewhere in the
Django project. The templates can include other templates in them, and so common
page elements such as menus, headers, and footers can be kept in their own files.
Including common elements from single files increases the maintainability of our
application by reducing the amount of common output markup that is duplicated
in different files. Instead of hunting around for all the occurrences of some HTML
to replace, we can make the change in one place and all templates that include the
content will be updated automatically.

An Introduction to the Django Template System

[10]

Templates can also have parent templates that simplify the development of sections
of a site. For example, if we have a calendar listing in the events section of a website,
we might use three templates:

A child template that handles the listing of calendar items
A parent template that handles the formatting of the events section of the site
A grandparent template that handles the formatting of the overall site

This prevents the duplication of site- and section-wide HTML by keeping them in
single files. We'll explore the parent-child relationship and inheritance of templates
in great detail in a later chapter.

Template syntax
The syntax of the template system is intentionally clean, simple, and elegant. With
a minimal understanding of programming concepts, you can make powerful and
flexible templates to output your data.

We'll cover these concepts and the syntax of the template language later in
this chapter.

Modularity and reusability
Django ships with many built-in template elements that we can use to control and
format the output of our templates. You can also write your own template elements,
if you have a need that isn't met by the default libraries, or use ones that other
developers have written. Sites such as DjangoSnippets.org contain many template
libraries that developers have shared and can be easily incorporated into your
own site.

In a later chapter, we'll cover writing your own template element libraries and how
to install and use libraries that others have written.

Flexibility
The template system is flexible enough so that we can output any kind of data that
we want. It doesn't assume (or require) that you are going to produce HTML. We can
dynamically generate PDF documents, CSV files, HTML files, microformats, and text
documents. It also doesn't require you to write your templates in any specific format
(such as XML) the way some other Python templating languages do.

•

•

•

Chapter 1

[11]

Even though you can extend the template system with custom elements to fit your
needs, the Django creators gave us the ultimate back door—You don't have to use
their template system! You are free to implement any Python template system and
libraries of your choice, and you can do it on an as-needed basis in only the places
you desire. For example, if you want to use the Django template system for half of
your views and the open-source Genshi templating system for the other half, there's
no penalty.

Limitations
The elegance and simplicity of the Django template system comes at a price; there
are a few limitations to be aware of. In a nutshell, only the processing of simple
presentation logic is supported in templates. You can loop over sets of data and
check the value of objects and variables to perform conditional logic, but you
cannot perform complex logic and execute raw Python code.

Here are a few things you cannot do using the Django template system syntax:

You cannot execute arbitrary Python code inside a template.
You cannot set or modify the value of variables inside a template.
You cannot pass arguments to the methods of objects inside a template.

If you need to perform these kinds of actions, you can often write your own
extensions to the template system. We will fully cover these limitations and their
implications later in the book.

Critics of the system
Some critics argue that the Django template system is too simple and isn't robust
enough to perform complex formatting or outputting. This may be true, but
remember that these limitations are intentional to achieve the design goals we
discussed earlier. You're also free not to use Django's template system and use a
more liberal template library if you choose.

Personally, after using Django's template system on a team of designers
and developers for almost two years, I find that the simplicity and
elegance of the system results in disciplined application design. This
simplicity enforces consistency in the templates, and makes developers
consider the output and prepare their data properly before sending it off
to the templates to be rendered. This prevents logic from creeping into the
templates as deadlines start to loom and developers cut corners to meet
them! (Not that any of us would do that, of course!)

•

•

•

An Introduction to the Django Template System

[12]

Exploring how Django handles requests
In order to understand how the template system works in conjunction with the
rest of the Django framework, we should briefly explore how a request is handled.
Understanding this process isn't critical to working with templates, but it will help you
make sense of what is happening. This isn't an exhaustive explanation, but it should
get us through a basic understanding of what is happening beneath the covers.

Here's how a typical request is handled:

1. A URL is requested.
2. The middleware is called.
3. The URL is evaluated.
4. The middleware is called (again).
5. The view is called.
6. The template object and template file are loaded.
7. The template is rendered.
8. The middleware is called (yet again).
9. The output is sent to the browser.

The incoming HTTP request is received

Middleware is called (Request preprocessor)

URL Matched against list of patterns

Middleware is called (View preprocessor)

View is called

Template is loaded and rendered

Middleware is called (Response preprocessor)

HTTP response is returned

Chapter 1

[13]

Step 1: A URL is requested

The user requests a web page via URL in his/her browser. The web server receives
this request and passes it to Python and Django.

Note: We are skipping over the gritty details of DNS, routing, web server
interface to Python, and so on. Those are way out of the scope of the book,
so just take for granted that Django has received the request properly.

Step 2: The middleware is called

Django has a special mechanism called the middleware that allows you to call
functions at a number of places in this request-response cycle. You can invoke a
middleware function in four places: before the URL resolution, before the view
is called, after the view is called, and if the view raises an exception (if there's
a problem).

The middleware at this step is called the Request Preprocessor, but that's
extra-credit information.

Step 3: The URL is evaluated

Django's URL dispatcher compares the requested URL with a list of patterns (regular
expressions, to be exact). If a match is found, Django imports and calls the view that
is associated with the pattern. This process is known as URL resolution.

The view is a Python function that handles the creation of the response. If additional
pieces of data have been sent in the URL (such as product IDs, story names, and so
on), they are passed as arguments to the function.

Django also has a concept called Generic Views that can automatically
load and render a template at this step without having to go any further.
We'll look at generic views in a later chapter.

Step 4: The middleware is called (again)

If you have middleware functions to be run after URL resolution but before the view
is executed, it will be called here.

The middleware at this step is called the View Preprocessor.

An Introduction to the Django Template System

[14]

Step 5: The view is called

The view is where the rubber meets the road, so to speak.

The majority of views will use the database API to perform some kind of CRUD
(create, retrieve, update, and delete) operation, load a template, render the output,
and send it back to the user.

The Python code in the view function is executed at this point. Usually this entails
retrieving some kind of data, most often by using the Django database API to
retrieve model objects.

Once the data is retrieved, it is passed to a special object called the Context. This is
the object that holds the retrieved data and makes it available to the templates. For
now, think of it as a dictionary of variable names and values that the template will
get. If you are not familiar with Python dictionaries, see the code notes later in this
chapter or look in the Python standard documentation.

Models are not required in views, nor is even having a database! Of
course, that would be kind of silly, since we're trying to create a
data-driven site. It should just be stated that you don't HAVE to have a
model to have a valid view.

Step 6: The template object and template file are loaded

The template object is called and gets the appropriate template file from the file
system at the location specified in the view. This relative path is combined with the
templates directory specified in our project's settings.py file.

As we discussed earlier in the chapter, templates are not technically required to send
back responses, but they make your life much easier. We'll see this in the upcoming
examples in this chapter.

Step 7: The template is rendered

The text inside the template is rendered. The placeholders are replaced with their
associated data and statements of template logic (such as looping) are performed.
At this point, the rendered template is just a large Python string of characters.

Step 8: The middleware is called (again)

If you have middleware functions to be run after the response is generated but before
it's sent back to the user, they are called at this step.

The middleware at this step is called the Response Postprocessor.

Chapter 1

[15]

Step 9: The output is sent to the browser

The rendered template is packaged up with formatting that is needed by the browser
to understand how to accept and display the page. By adding this formatting, the
string has been turned into an HTTP response that is sent back to the browser.

In this example, the response is HTML, but it doesn't have to be. It could also be
plain text, XML, JavaScript, CSV, PDF, and so on. Part of the formatting of the HTTP
response tells the browser what the MIME type of the response is, and it tells the
browser what kind of data to expect.

Understanding the template system syntax
Now that we have a basic understanding of how the template system fits into the big
picture, we can finally explore some basics of how it works.

As we discussed earlier, Django templates are basically just text files that have
placeholders and simple logic in them. These placeholders are evaluated when the
template is rendered, and Django replaces them with the values that go in their place.

Let's illustrate with a quick example of a template file:

<html>
<head>
<title>{{ page_title }}</title>
</head>
<body>
<h1>{{ header }}</h1>
{% for name in names_list %}
{{ name.last|upper }}, {{ name.first|upper }}

{% endfor %}
</body>
</html>

Don't worry if you don't immediately grasp these concepts. We'll be running through
a practical example of the syntax at the end of the chapter.

Context variable
If you recall the request-handling overview, we said the context was a special
object that contained the values available to the template when it is rendered. We'll
work through a practical example later in the chapter. For now, just think of it as a
dictionary of variables that the template will be able to see (see the upcoming code
note if you don't know what a Python dictionary is).

An Introduction to the Django Template System

[16]

Variables
Variables are the basic placeholders in a Django template. They are identified by two
curly brackets on each side:

My favorite color is {{ color }}.

When the Django template engine renders this page, it will see {{ color }} as a
placeholder for the real value it is supposed to put in its place. It looks in the context
for a key named color and finds the value associated. If our context has a key
named color and an associated value of blue, the output would look like this:

My favorite color is blue.

Filters
Filters can format the output of variables in Django templates. They are identified by
the use of a pipe symbol immediately following a template variable:

My favorite color is {{ color|upper }}.

In this example, upper is the filter we are using to modify the variable color.
(Notice there is no space between the variable, the pipe, and the filter.) The upper
filter will take the value of the variable and convert all the letters to upper case.
(Specifically, it applies the Python string function upper() to the value.) Here is the
resulting output:

My favorite color is BLUE.

The filters don't change the value of the variables they modify, but just
modify the way they are outputted. In our example, if you use {{ color
}} somewhere else in your template without the template filter, it won't
appear in upper case.

Django ships with a number of default filters that cover many common
presentation-formatting needs. You can find them listed in the Django
documentation at DjangoProject.com.

Tags
Template tags instruct the template rendering engine to perform some kind of action.
They are identified by a curly bracket and percentage symbol, and often have an
accompanying closing tag:

{% ifequal color 'blue' %}
 Wow, you like blue!

Chapter 1

[17]

{% else %}
 Why don't you like blue?
{% endifequal %}

In this example, we are using the template tag ifequal. It takes two arguments,
which means the values to be compared. Unlike Python code, we don't use
parentheses or commas around the arguments. We just use a space between the
template tag and each of the arguments. The tag also has a corresponding closing tag
endifequal that tells the template engine we are done.

In this example, since the value of the variable is blue, we get this output:
Wow, you like blue!

Like filters, Django ships with a number of default tags that perform common logic
in templates such as looping through sets of data. We'll be covering tags and filters in
more depth in later chapters as well as writing our own custom tags.

When the templates are rendered, the tags are removed by the template engine. If
you view the source of your output, you will not see your tags, though you will
probably see a blank space where the tag was.

Comments
There are two kinds of comments we can use in Django templates: single-line and
multi-line. Like comments in Python, you can leave yourself notes in a template
or use comments to prevent a chunk of template code from being rendered by the
template engine. Single-line comments are identified by a curly bracket and a hash
mark (also known as the number sign or pound symbol):

{# Remember to move this down the page later #}
My favorite color is {{ color }}.

Multi-line comments are implemented as tags, and they have a corresponding
endcomment tag:

{% comment %}
{% ifequal color 'blue' %}
 Wow, you like blue!
{% else %}
 Why don't you like blue?
{% endifequal %}
{% endcomment %}

In this example, the template engine ignores everything between the comment and
endcomment tags. This is often used to troubleshoot and debug a section of template
that isn't behaving properly.

An Introduction to the Django Template System

[18]

Like template tags, single- and multi-line comments are removed from the resulting
output by the template engine. They are not the same as HTML comments; you
won't see them if you view the source of your output.

Code note: Python dictionaries
In case you are not familiar with Python dictionaries, here is a basic explanation.

A dictionary is one of Python's built-in data types, similar to hashes in other
programming languages. It consists of keys and values. The key is the label used
to identify the item, and the value is what it is equal to.

Here's an example:

>> mydictionary = {}
>> mydictionary['mykey'] = 'myvalue'
>> mydictionary['myotherkey'] = 10
>> print mydictionary
{'mykey': 'myvalue', 'myotherkey': 10}

The first line tells Python that we are creating a new dictionary called mydictionary.
The empty curly brackets tell Python that we are creating a variable that is of type
dictionary and not a string or integer. The next two lines add keys and values to the
dictionary. The first adds a new key called mykey that has a value of myvalue. The
second has a key of myotherkey and has a value of 10.

We can mix numbers and strings as values of the keys. They don't all have
to be the same type.

You can also create a dictionary in one step:

>> mydictionary = {'mykey': 'myvalue', 'myotherkey': 10}

This may look a little more complex, but it does the same thing the first three lines of
our example above did.

Why is all of this important? It lets us keep all of our values grouped under a single
variable. In the Django template language, the Context holds a dictionary of all the
values we are going to make available to our template. When Django passes the
dictionary to the template, the keys are what the placeholders are going to work with
to be replaced with their values.

Chapter 1

[19]

How invalid variables are handled
If you try to use a variable in your template that has not been made available to the
context object, you will not get an error. The template system simply ignores it and
keeps on going. This was a design decision by the Django developers to prevent a
missing data item from "breaking" an application.

If you have an error with a template tag, however, you will get an error.

Creating our demo application
Throughout the book, we're going to work with the same example site so that we
don't have to set up a new project for every chapter. This project will explore all the
concepts throughout the book.

Rather than work with the clichéd example of a blog, we'll work with example
applications that you'd find in a typical corporate website, such as news and press
releases. If you've ever worked a corporate job, you've probably done something like
this (and if you haven't, stick it on your resume when you're done!).

The specific configuration directives (project file system locations, database
names/passwords, and so on) are given to maintain consistency throughout
the book. Feel free to change them to suit your specific needs, but be sure your
settings.py file matches your setup. If you decide to put the project in a different
directory on the file system than what is used here, make sure to change your code
appropriately when doing the examples in this book. (Hint: It's probably easier to
follow along with these values if at all possible!)

Prerequisite #1: Install and test the Django framework

Installing the Django framework is thoroughly covered in the documentation on the
DjangoProject.com site. If you have trouble, you can try posting a message to the
Django-Users|Google Group (http://groups-beta.google.com/group/
django-users).

If you can start a Python shell and successfully run the command import django,
you should be good to continue.

At the time of this writing, the latest release of Django is 1.0, so that's
what we will be using here.

An Introduction to the Django Template System

[20]

Prerequisite #2: Create a new database

For purposes of this book, it doesn't matter what database engine you use as long
as Django supports it (for example, MySQL, PostgreSQL, SQLite, and so on). If you
don't have MySQL or PostgreSQL installed, SQLite is probably the easiest choice to
work with as it requires zero administration to set up and use.

If you are using MySQL or PostgreSQL, following the instructions of your specific
database engine, perform the following tasks. (If you are using SQLite, you don't
have to do this.)

1. Create a database called mycompany.
2. Create a user called mycompany with a password of mycompany.

Step 1: Create the Project Directory

Create a file system location for our Django project files. This is one of the couple
of places where your settings might vary depending on the operating system you
are using:

For Unix/Mac: Create a /projects/ directory.

For Windows: Create a c:\projects\ directory.

Step 2: Start your project

From the projects directory, run this command:

$ django-admin.py startproject mycompany

This will create a mycompany directory under projects.

Note: Rather than writing out both Windows and Mac/Linux versions
of the full filesystem path each time we refer to it, the directory will be
referred to as mycompany/ instead of /projects/mycompany or c:\
projects\mycompany. If you see mycompany/, you can safely assume
that we are talking about those directories.

Step 3: Test your installation

In the mycompany directory, run this command:

$ python manage.py runserver

Browse to http://localhost:8000 and make sure you see the blue
It Worked! screen.

Chapter 1

[21]

During development and testing, you will have to keep starting and stopping
the development web server. Anytime you need to browse a URL to test your
application, you need to have the server running. Some people like to keep it
running in a separate terminal window during development. Just be aware that
the web server will restart each time you change a file. If you have a typo in your
saved file, the web server may stop and display an error message and you'll need to
manually stop and start the web server again when this happens.

Step 4: Configure the project's settings

For the upcoming chapters, we need to make sure Django is configured to use our
database. In the mycompany/settings.py file, edit the database settings to match
what you are using:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = '/projects/mycompany/mycompany.db'
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''

The settings above are valid if you are using SQLite, which is preferable because
it requires no configuration. If you are using a different database engine, such
PostgreSQL or MySQL, make sure you configure the settings accordingly. Consult
the online documentation if you are having trouble.

Starting our application
We now have an empty skeleton of a project upon which we can start building
applications. The first application we are going to work with will just be a
demonstration to get us warmed up.

Step 1: Create the demo project

In the mycompany directory, run this command:

$ python manage.py startapp demo

This will create a demo directory under the mycompany directory.

Step 2: Add a detail function to the demo view

In the file mycompany/demo/views.py, add these lines:

from django.http import HttpResponse

def detail(request):
 return HttpResponse('got here!')

An Introduction to the Django Template System

[22]

Step 3: Add a URL pattern for our demo project

In the file mycompany/urls.py, edit the file to look like this:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^demo/$', 'mycompany.demo.views.detail'),
)

This tells the URL dispatcher that if it matches a URL of http://localhost:8000/
demo/, call the detail function inside the file mycompany/demo/views.py.

The URL dispatcher automatically strips the http://
localhost:8000/ portion when matching, so we don't need to
include it as part of our pattern.

Step 4: Make sure it worked

In the mycompany directory, run this command:

$ python manage.py runserver

This will start the Django development server. You should see something very
similar to the following:

Validating models...
0 errors found
Django version 1.0-final-SVN-unknown, using settings 'mycompany.
settings'

Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Browse to http://localhost:8000/demo/. You should see the got here! line we
wrote in our view.

Congratulations! We've created our first Django view. We've built a solid base
to start from and we're ready to start playing with views, contexts, and
(of course!) templates.

Adding templates to our application
The app we built in the last section serves a page, but it's only a starting point for
the application we are going to build. Let's use it to explore some concepts of how
Django templates work.

Chapter 1

[23]

Adding variables to the view
Before we start loading templates, we need to explore the Context and Template
objects. As we discussed, the context makes variables and objects available to the
templates during rendering. We pass it a dictionary of variables and objects and their
associated values. When the template is rendered, the placeholders will be replaced
with their corresponding values.

Edit your mycompany/demo/views.py file, adding the highlighted line and replacing
your detail function with this one:

from django.http import HttpResponse
from django.template import Context, Template, loader

def detail(request):
 dict_values = {'fav_color': 'blue'}
 template_string = "My favorite color is {{ fav_color }}."
 c = Context(dict_values)
 t = Template(template_string)
 rendered_template = t.render(c)
 return HttpResponse(rendered_template)

Browse to http://localhost:8000/demo/ and you should see the simple
one-liner response:

My favorite color is blue.

So what happened here? Let's break it down.

We created a simple dictionary called dict_values and populated a key called
fav_color with a value of blue. If you're not familiar with Python dictionary syntax,
check out the code note earlier in this chapter or the Python standard documentation
under 'Data Structures'. You'll want to be familiar with this syntax; it's used quite a
bit with Django.

We also created a string named template_string that contains our first taste of the
Django template syntax. The double brackets in the string are simply the delimiter
used to identify template variables. {{ fav_color }} tells the template rendering
function that this is a placeholder for the value of the variable fav_color.

Next, we created a context object named c and passed it our dictionary. We also
created a template object called t and passed it our template string.

Templates don't have to be stored as files, they can also be strings. When
you load a template, Django opens the file and extracts the text into a
variable. We're keeping the example simple to start with here and just
using a string to represent our template.

An Introduction to the Django Template System

[24]

When we call the render method of the Template object, it parses the template
string and replaces any template variables and logic with the appropriate values. In
this case, {{ fav_color }} was replaced with the value blue. The rendered template
is returned as a string to the rendered_template variable.

Finally, we send the value of the variable rendered_template to the browser as an
HTTP response. Django nicely handles all the necessary steps of properly formatting
the output for the browser to do its work and displaying the HTML.

Keep in mind that the verbosity of this example is intentional to keep the example
clear. If you are familiar with Python, you'll know it could be written more concisely
like this:

def detail(request):
 c = Context({'fav_color': 'blue'})
 t = Template("My favorite color is {{ fav_color }}.")
 return HttpResponse(t.render(c))

Moving the logic into a separate template file
Templates are usually longer than five words, so let's put the template string into a
separate file.

We need to create a templates directory in our project. Technically, the templates
could go anywhere on the file system, but it is common to put them under a
templates directory at the root of your project. Create a directory called templates
under the mycompany directory.

In your mycompany/settings.py file, find the TEMPLATE_DIRS variable (it's actually
a Python tuple) and add a reference to our new templates directory:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

In Windows, use the value c:/projects/mycompany/templates/.
The slashes don't follow the normal Windows syntax, but it's what
Django requires.

Even though we are only specifying a single directory of templates, make sure you
have the trailing comma after the file path in TEMPLATE_DIRS. If you omit it, Python
will treat your TEMPLATE_DIRS variable as a string, not a tuple, and you'll get an
error when you try to run it.

Chapter 1

[25]

Adding a trailing comma in a list or tuple is also good practice since
Python allows trailing commas. If you always leave a comma after your
last item, you won't forget to add it the next time you add another item to
the end of the sequence.

While we are in the settings.py file, let's enable debugging for our project by
setting the DEBUG and TEMPLATE_DEBUG variables at the top of the file to True:

DEBUG = True
TEMPLATE_DEBUG = True

This will ensure that Django shows us error pages with debugging information
instead of a blank page.

Now that we've told Django where to find the templates, let's create a file called
example.html in the mycompany/templates directory. In the file, add the line that
was in our detail view:

My favorite color is {{ fav_color }}.

We need to change our view to load this new template file. Edit your
mycompany/demo/views.py file and change the detail view to look like this:

def detail(request):
 c = Context({ 'fav_color': 'blue' })
 t = loader.get_template('example.html')
 rendered_template = t.render(c)
 return HttpResponse(rendered_template)

Browse to http://localhost:8000/demo/ and you should see the same response
that we got before we created the template file:

My favorite color is blue

Using template filters
If we want to modify the output of a variable, we can use a template filter. Filters
modify the way a context variable is displayed in the output. As we saw earlier,
they are applied using a pipe symbol directly after the variable. Do not put a space
between the variable and the pipe.

An Introduction to the Django Template System

[26]

To make the value of our fav_color variable be displayed entirely in capital letters,
we can use the upper filter. In your mycompany/templates/example.html file, add
the upper filter to the template fav_color template variable:

My favorite color is {{ fav_color|upper }}.

Browse to http://localhost:8000/demo/ and you should see this output:

My favorite color is BLUE

Using template tags to perform logical tests
We've already seen how variable substitution takes place. So let's use a template tag
to perform some simple logic to compare values.

We're going to use the ifequal tag to test if the fav_color context variable has the
value blue. The tag uses this syntax: {% fequal <argument1> <argument2> %}

Change your mycompany/templates/example.html template file to look like this:

{% ifequal fav_color 'blue' %}
 My favorite color is {{ fav_color }}.
{% else %}
 My favorite color is not blue.
{% endifequal %}

Browse to http://localhost:8000/demo/ and you should see this output:

My favorite color is blue.

We can also use template tags to perform looping logic. It is very common in a
template to loop over a set of values and perform an action on each value. Let's add
a second color to our context variable and use a for loop in our template to write
them out.

First, in your detail view, change your fav_color variable to a list of colors by
using Python list syntax:

def detail(request):
 c = Context({ 'fav_color': ['blue','green'] })
 t = loader.get_template('example.html')
 rendered_template = t.render(c)
 return HttpResponse(rendered_template)

Chapter 1

[27]

We'll use the for and endfor tags to loop through the list of favorite colors. Notice
that we are using a variable called color to hold the value for each iteration of the
loop. In this example, fav_color is our list of colors from the Context, and color is
the current value in the loop. Make sure you change the variable in the curly brackets
to use color.

Replace the contents of your mycompany/templates/example.html file with
these lines:

{% for color in fav_color %}
 My favorite color is {{ color }}.

{% endfor %}

The resulting output will look like this:
My favorite color is blue.
My favorite color is green.

Adding comments
If you want to add comments to your templates, you have two options: single-line
and multi-line comments. If you want to make a comment that only spans a single
line, you can wrap your comment with a curly bracket and hash (pound sign) syntax:

{% for color in fav_color %}
 {# We are writing out a comment here #}
 My favorite color is {{ color }}.

{% endfor %}

If you want to make comments that span multiple lines, you can wrap your
comments in a comment tag. Note that the comment tag requires an ending
endcomment tag:

{% comment %}
My comment
is more than
one line long
{% endcomment %}

An Introduction to the Django Template System

[28]

Summary
That's it for our Django introduction and templating overview. Hopefully, you were
able to follow along and got a taste for what we'll be covering in this book.

In this chapter, we:

Discussed why templates are critical to development
Explored how Django processes requests
Covered the syntax of Django templates including filters, tags, and comments

We also set up a new Django project and configured it to run a test application.
This project will be used throughout the book, so make sure you were able to get it
working before continuing.

In the next chapter, we'll look at views and generic views to understand where
templates get loaded and rendered.

•

•

•

Views, URLs, and
Generic Views

Many developers new to Django get tripped up on the vocabulary and purpose
of different pieces of the system—models, views, generic views, model managers,
and so on. With some functions belonging to models and others to views, it can be
confusing to know where to put the logic of your applications.

The view is where most of your application logic will be executed. Before we can
work with views, however, we need to look at the URL dispatching system to see
how a view is matched up with an incoming request. Once we have seen the URL
dispatcher and some working views, we'll take a look at some shortcuts Django
offers us to accomplish these actions even more quickly.

You can write entire Django sites without using models, but you'd have a hard time
doing that without views or generic views.

In this chapter, we will:

Create a sample application to work with
Learn how the URL dispatcher works and how URLs are matched to views
Explore the structure of views
Build views to display a list of content and content detail
See how to cut down development time with generic views
Examine when to use regular views instead of generic views

•

•

•

•

•

•

Views, URLs, and Generic Views

[30]

An overview
Views are at the heart of Django and hold most of your application logic. They are
nothing more than Python functions that take an HTTP request as input and return
an HTTP response or error.

A mechanism called the dispatcher identifies an incoming URL against a set of URL
patterns and their associated view functions. When a match is found, the associated
view is called and the request gets handled.

Since many views follow a common strategy of loading an object or list, loading a
template, rendering the template, and returning a response, Django offers a way of
doing this without writing a view function. These generic views are called from the
URL dispatcher and go right to the template.

Creating the application
Before we start looking at views and URLs, let's create a sample application to
experiment with. Since most books and examples use blog models as their demos,
let's keep things fresh by making our demo a press release application for a
company website. The press release object will have a title, body, published date,
and author name.

Create the data model
In the root directory of your project (in the directory projects/mycompany), create
the press application by using the startapp command:

$ python manage.py startapp press

This will create a press folder in your site. Edit the
mycompany/press/models.py file:

from django.db import models

class PressRelease(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()
 pub_date = models.DateTimeField()
 author = models.CharField(max_length=100)

 def __unicode__(self):
 return self.title

Chapter 2

[31]

Create the admin file
To take advantage of the automatic admin interface that Django gives us, we
need to create a file called an admin file. Create a file called admin.py in the
mycompany/press directory, adding these lines:

from django.contrib import admin
from mycompany.press.models import PressRelease

admin.site.register(PressRelease)

If you've used Django before version 1.0, this step is new. The admin
configuration directives were taken out of the model and put into their
own files starting in version 1.0.

Add the press and admin applications to your INSTALLED_APPS variable in the
settings.py file:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.admin',
 'django.contrib.contenttypes',
 'django.contrib.sessions',go.contrib.sessions',
 'django.contrib.sites',
 'mycompany.press',
)

In the root directory of your project, run the syncdb command to add the new
models to the database:
$ python manage.py syncdb

Because we have Django's authentication system listed as one of our installed
applications, the initial syncdb process will ask us if we want to create a superuser.
Go ahead and create a superuser account; you will be using it later to access the
admin site.

Configure the URLs
Finally, edit the mycompany/urls.py file:

from django.conf.urls.defaults import *
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
)

Views, URLs, and Generic Views

[32]

If you have completed Chapter 1, you probably have a URL pattern for the demo
application that we used. You can remove it as we won't be using it again.

Add data in the admin application
By adding django.contrib.admin to our INSTALLED_APPS setting and
creating a URL mapping for it, we can access the admin site by browsing to
http://localhost:8000/admin/.

Go into the admin app and add two or three press releases so that we have some
sample data to work with:

Mapping URLs to views
When Django accepts an incoming request, one of the first things it does is that it
looks at the URL and tries to match it against a group of URL patterns. In order to
identify patterns, Django uses regular expressions to see if the URLs follow a
known format.

Chapter 2

[33]

Consider these URLs:

http://localhost:8000/press/detail/1/
http://localhost:8000/press/detail/2/

These URLs appear to follow a pattern that they start with press/detail/ and end
with a number that represents the ID of a press release. (Recall that we don't work
with the domain name portion of the URL. Django takes care of this automatically
for us and just sends us everything that follows the domain name.)

With this pattern, we can add a new line to our mycompany/urls.py file:

from django.conf.urls.defaults import *
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'^press/detail/\d+/$', 'mycompany.press.views.detail'),

)

If you're not familiar with Python's regular expressions, this new line may look a bit
wonky. This is the most important part:

r'^press/detail/\d+/$'

It reads like this: "A string that starts with press/detail/ and ends with one or
more digits followed by a slash".

The second segment of the new line is the view function that will get called when an
incoming URL matches this pattern. In this case, it will be a function called detail in
the mycompany/press/views.py file.

There's only one problem with this pattern—it recognizes that a number will be at
the end of the URL, but doesn't do anything to pass that number to the view when
it's called.

We can use a Python regular expression group to capture that number:

urlpatterns = patterns('',
 (r'^admin/', include('django.contrib.admin.urls')),
 (r'^press/detail/(?P<pid>\d+)/$',

 'mycompany.press.views.detail'),
)

Views, URLs, and Generic Views

[34]

This grouping syntax looks really funky, but it's easy to understand once you've seen
it a few times. (?P) is the Python syntax for a named group, which allows the regular
expression to save the piece that matched, and put a label on it so that we can call it
later. The <pid> part is where we assign the label of pid to the ID of the press release
that was sent with the URL.

In the case of this URL, the named group pid will be equal to 2:

http://localhost:8000/press/detail/2/

Any named groups that we get from a URL are passed as arguments to our view
function. In this example, our detail function in press/views.py will have a
method signature like this:

def detail(request, pid):
 p = PressRelease.object.get(id=pid)
 …

There are two keyword arguments to the detail function, request and pid.
(Django automatically passes the keyword request, which we'll explore a little later.)

Because we used a named group in the URL configuration to capture the press
release ID, it's passed to our detail function as pid. You can use multiple named
groups in your URL patterns to capture multiple pieces of information and pass
them to your functions.

Note: URL configurations and patterns are usually referred to as
URLConf. You will see them named in this way in other parts of
this book.

Handling unmatched URL patterns
URLs are matched up with view functions when they match patterns, but what
happens when a match isn't found? This URL wouldn't match the patterns we
created because it doesn't end in a number:

http://localhost:8000/press/detail/abc/

In this case, the URL dispatcher wouldn't match against our pattern and would
keep trying other patterns until a match is found. If no match is found, a 404 error is
raised. If you have debug set to true (DEBUG=True) in your settings file, you'll see
an error message like this:

Chapter 2

[35]

Splitting up the URL configurations
We created the URL configurations for the press application in the mycompany/
urls.py file. While this is perfectly acceptable, sticking all the configurations into the
main urls.py file can get unwieldy for large projects with many applications. It also
isn't very modular if we want to share applications with others or use applications
that other people distribute.

Instead of writing the press release configuration in our main mycompany/urls.py
file, let's create a new file at mycompany/press/urls.py:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^detail/(?P<pid>\d+)/$', 'press.views.detail'),
)

This looks very similar to what we already have, but note that we've dropped press
from the beginning of the regular expression. This line will match URLs that start
with detail.

Open your mycompany/urls.py file and edit the highlighted line:
from django.conf.urls.defaults import *
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'^press/', include('mycompany.press.urls')),
)

Views, URLs, and Generic Views

[36]

We've changed the regular expression portion to match URLs that start with
press/. If one is found, Django will hop over to the press/urls.py file to try to
match the rest of the URL (without the press/ prefix).

With this setup, we are telling Django that any URLs that start with press will be
handled in a separate urls.py file in the press directory.

Creating views
Now that we're matching a URL to a view and passing it information, we can look at
how a view is structured. Views have two rules you must follow:

1. The view must accept the request object as its first argument.
2. The view must return an HTTP response or an exception.

Beyond this, just remember that a view is a standard Python function and you can do
just about anything in it that you can do in a Python program.

Accepting the request object
Our first rule for views states that a view must accept the request object as its first
argument. What is this request object?

Django automatically creates the request object when a page is requested. It
contains data about the incoming HTTP request such as the requestor's IP address,
user agent, request method, cookies, GET parameters, POST parameters, and so on.
Everything you should need to know about an incoming request will be found in
this object.

When you build your view functions, always specify request as the first
keyword argument:

def detail(request):

 # Python code here

If you forget to add request as the first parameter, you'll know quickly because your
view will fail to load with some kind of error message about the arguments
(the exact error depends on what other keyword arguments you might be using).

Chapter 2

[37]

Responding with an HTTP response
The second rule for views is that a view must return an HTTP response or an
exception. Let's start by talking about what an HTTP response is.

In order for a browser to understand how to render a web page, it looks at some
special hidden information called headers, which is sent by the server along with the
content or document being requested. These headers tell the browser information
such as what kind of web server is sending the response, which version of the HTTP
protocol is being used, how big the content is, and what kind of content is being sent.

Luckily, we don't have to worry about most of this because the web server and
Django take care of it for us. All we have to do is make sure we send the response out
of our view using the HttpResponse method.

In your mycompany/press/views.py file, add the following lines:

from django.http import HttpResponse

def detail(request, pid):
 return HttpResponse('This is just a test.')

Point your browser to http://localhost:8000/press/detail/1/. Here's what it
should look like:

Obviously, our views are going to be more complicated than this one, but it
illustrates how simple they can be.

Responding with an exception
The second part of our rule said that the view can respond with an exception instead
of an HTTP response. When Django encounters an error during the processing of
a view, we usually want to return a friendly error message to the user to let them
know something went wrong (as opposed to just sending back a blank screen).
Usually, these error messages are in the form of 404 or 500 Error pages.

Views, URLs, and Generic Views

[38]

404 errors are also known as page not found errors. Anyone who has spent time
surfing the Web has undoubtedly encountered a 404 Error page when clicking an
old link that is no longer valid. In traditional HTML publishing, 404 errors popped
up when the user requested a filename that wasn't found on the server (that's where
the "page" in "page not found" comes from). With Django, we don't have URLs that
represent filenames on the server, but we still return a 404 error when the user is
looking for a resource that does not exist.

Django makes it easy to return a 404 page by returning the error using the
HttpResponseNotFound function:

from django.http import HttpResponseNotFound

def detail(request, pid):
 return HttpResponseNotFound('Page Not Found')

Similarly, requests that cause errors on the server are usually referred to as 500
errors. (500 is the standard HTTP response code for a server error.) Django also
makes it easy to serve a 500 error:

from django.http import HttpResponseServerError

def detail(request, pid):
 return HttpResponseServerError('An Error Has Occurred.')

Putting the views together
Now that we know how a view works and what it needs to do, let's write the real
view to work with our sample application.

Building the basic view
In your mycompany/press/views.py file, replace any contents with the
following lines:

from django.http import HttpResponse
from django.http import HttpResponseNotFound
from mycompany.press.models import PressRelease

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 try:
 p = PressRelease.objects.get(id=pid)
 return HttpResponse(p.title)
 except PressRelease.DoesNotExist:
 return HttpResponseNotFound('Press Release Not Found')

Chapter 2

[39]

If you'd like to test it out, point your browser to http://localhost:8000/press/
detail/1/. You should see the title of your press release. Change the number at the
end of the press release to an ID that doesn't exist (such as 99) and you should get a
Page Not Found error.

This view doesn't return a very pretty output, but it follows the rule that the view
must serve an HTTP response or an error/exception. The try/except error handling
to make sure the press release exists is kind of ugly. Luckily, Django gives us a more
elegant way of handling it.

Cleaning up the error handling
Instead of putting a try/except block around the object lookup, Django has a
get_object_or_404 method that will automatically raise an error if the object is
not found.

Change the highlighted lines in your mycompany/press/views.py file:

from django.http import HttpResponse
from django.shortcuts import get_object_or_404

from mycompany.press.models import PressRelease

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)

 return HttpResponse(p.title)

That's a much cleaner way of doing things!

Note: If you're getting a list instead of an object, Django has a get_list_
or_404 method that you can use. We'll see this in a few pages.

Adding the template files
The last thing we need to do is add a way to load up the response with the output
of a rendered template. All of this syntax will be covered in detail in a later chapter;
don't worry if you don't completely understand everything you see yet.

We're going to load a template file, replace placeholders in that file with our data
(called "rendering" the template), and then return the contents of the template as a
string as an HTTP response.

Views, URLs, and Generic Views

[40]

In the first chapter, we created a templates directory at mycompany/templates, and
configured the settings.py file to tell Django where to find it:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

Verify that you have configured your project this way before continuing. With this
setting in place, we can load templates relative to this path.

Create a directory under the mycompany/templates directory called press.
(It's common practice to use subdirectories to group template files by the application
they are associated with.)

Create a new file at mycompany/templates/press/detail.html and add
these lines:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>{{ press.title }}</h1>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

This simple template file has placeholders for our title, author, pub_date, and
body fields. When the template is rendered, these placeholders will be replaced with
their respective values.

Now that we have a template, we can tell the view to use it.

Chapter 2

[41]

Adding the template to the view
In our mycompany/press/views.py file, let's add a few lines to load our template.
Replace the contents of your file with these lines:

from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.template import loader, Context
from mycompany.press.models import PressRelease

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 rendered_template = t.render(c)
 return HttpResponse(rendered_template)

In the function, we're retrieving the press/detail.html template file and creating a
special data object called Context. We'll cover the Context object in great detail in a
later chapter. So for now, just understand that it passes data to the template so that it
can be rendered. The context object in this example passes our press release object to
the template in a variable called press.

Our template gets rendered into a string called rendered_template that is sent back
to the browser via HttpResponse the same way we sent back simple lines of text in
previous examples.

The rendered_template variable was used for clarity. You can omit it and just
return the response like this:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')

 c = Context({'press': p})

 return HttpResponse(t.render(c))

Views, URLs, and Generic Views

[42]

Point your browser to the URL http://localhost:8000/detail/1/. You should
see something like this depending on what you entered earlier into the admin site as
sample data:

Creating the list view and template
In addition to displaying the detail for a specific press release, we'll also need a way
to display a list of press releases. The steps to add this will be very similar to what
we just did to add our detail view.

In your mycompany/press/views.py file, add the highlighted lines:

from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.shortcuts import get_list_or_404
from django.template import loader, Context
from mycompany.press.models import PressRelease

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

def press_list(request):
 '''
 Returns a list of press releases
 '''
 pl = get_list_or_404(PressRelease)
 t = loader.get_template('press/list.html')
 c = Context({'press_list': pl})
 return HttpResponse(t.render(c))

Chapter 2

[43]

In your mycompany/press/urls.py file, add the highlighted line:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$','mycompany.press.views.detail'),
 (r'list/$', 'mycompany.press.views.press_list'),
)

Any incoming request starting with press/ will be sent to our press/urls.py file.
If the remaining part of the URL is list/, it will be handled by the press_list
function in our press/views.py file. If the remaining part is detail/<number>
(such as detail/1 or detail/2), it will be handled by the detail function.

Finally, create a new file at mycompany/templates/press/list.html:

<html>
<head>
<title>Press Releases</title>
</head>
<body>
<h1>Press Releases</h1>

{% for press in press_list %}

{{ press.title }}

{% endfor %}

</body>
</html>

Point your browser to the URL http://localhost:8000/press/list/. You should
see something like this, depending on what you entered earlier into the admin site:

Views, URLs, and Generic Views

[44]

Using generic views to shorten development time
What we've done so far in this chapter is pretty standard for web
application development:

We created a view to load an object by its ID.
We created a view to load a list of objects.
We retrieved our object using the data sent in from the URL or retrieved a list
of objects.
We loaded a template file.
We rendered the template.
We returned an HTTP response.

Because these actions are so common, Django has a way to cut out the whole step
of writing a view, called generic views. Generic views are called from the URL
configuration file, which allows you to go right from the URL pattern to
your template.

Generic views come in a few types:

Simple
List/detail
Date-based
Create/update/delete

We won't be covering the date-based or create/update/delete generic views.
But after reading this chapter, you'll be well-prepared to read about them in the
online documentation.

Simple generic views
The two simple generic views that handle loading of a template don't require any
data lookup (going directly to a template) and redirecting from one URL to another.

Loading a template directly
If you just need to load and render a template when a URL is requested, you can use
the direct_to_template generic view.

For example, let's build a robots exclusion file (aka a robots.txt file) that search
engine spiders will request at http://localhost:8000/robots.txt. (Search
engines wouldn't index pages on a localhost domain, but pretend for this example
that they would.)

•

•

•

•

•

•

•

•

•

•

Chapter 2

[45]

Since the file is rarely changed after being created, you may not want the overhead
of a database lookup to serve it, so you just want to render a template when the URL
is requested.

Create a new file at mycompany/templates/robots.txt and add these lines:

User-agent: *
Disallow: /admin

This very simple example will prevent spiders from trying to index your admin path
(visit robotstxt.org for more info on how exclusion files work).

In your mycompany/urls.py file, add the highlighted lines:

from django.conf.urls.defaults import *
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'^press/', include('mycompany.press.urls')),
 (r'^robots.txt$',
 'django.views.generic.simple.direct_to_template',
 'template': 'robots.txt'}),
)

Point your browser to the URL http://localhost:8000/robots.txt/. You'll get a
response that looks like this:

Redirecting URLs
If you want to automatically redirect one URL to another, you can use the
redirect_to generic view.

For example, you might want to redirect from http://localhost:8000/press/ to
http://localhost:8000/press/list/.

Views, URLs, and Generic Views

[46]

In your mycompany/press/urls.py file, add the highlighted line:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$','mycompany.press.views.detail'),
 (r'list/$', 'mycompany.press.views.press_list'),
 (r'$', 'django.views.generic.simple.redirect_to',

 {'url': '/press/list/'})

)

Point your browser to the URL http://localhost:8000/press/ and you will be
redirected to http://localhost:8000/press/list/.

List/detail generic views
Generic views that handle object lists and object details can speed up your
development time. Instead of writing views that do routine logic of retrieving
object(s), loading and rendering templates, and then returning a response, we let the
generic views do the heavy lifting for us.

Replacing the list view
Consider the press_list view we built earlier in the chapter at
mycompany/press/views.py:

def press_list(request):
 '''
 Returns a list of press releases
 '''
 pl = get_list_or_404(PressRelease)
 t = loader.get_template('press/list.html')
 c = Context({'press_list': pl})
 return HttpResponse(t.render(c))

We can completely replace the logic of this view by replacing our list configuration
with a generic view.

Replace the highlighted lines in the mycompany/press/urls.py file:

from django.conf.urls.defaults import *
from mycompany.press.models import PressRelease

press_list_dict = {

 'queryset': PressRelease.objects.all(),

Chapter 2

[47]

}

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$','mycompany.press.views.detail'),
 (r'list/$',

 'django.views.generic.list_detail.object_list',

 press_list_dict),

 (r'$', 'django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

When you use generic views, some default assumptions will be made. For our
example, we need to worry about these defaults:

The list of objects you send to the template in the context will be called
object_list—this is a problem for us because our list of objects is called
press_list.
It's OK to send an empty list to the template—currently, our view returns a
404 Error if the list is empty.
The template file will be called appname/modelname_list.html—currently,
our template is called press/list.html.

We are faced with two choices: change our code or override these defaults. It would
be easy to change our view and template name, but instead let's override the defaults
by adding some extra keys to the dictionary we pass to the generic view.

Add the highlighted lines to the mycompany/press/urls.py file:

press_list_dict = {
 'queryset': PressRelease.objects.all(),
 'template_name': 'press/list.html',

 'allow_empty': False,

 'template_object_name': 'press',

}

By passing these overrides, we make our templates work as we created them.

You may be wondering about the value of the last key, template_object_name.
Why is its value press when we are looking for an object named press_list in our
template? Generic views add _list to the object name, so to get an object named
press_list, we pass a template_object_name of press.

•

•

•

Views, URLs, and Generic Views

[48]

Replacing the detail view
Consider the detail view we created earlier in mycompany/press/views.py:

from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.shortcuts import get_list_or_404
from django.template import loader, Context
from mycompany.press.models import PressRelease

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Just as we did with the list view, we can replace the logic of this detail view by
replacing our "detail" configuration with a generic view.

Add the highlighted lines to the mycompany/press/urls.py file:

from django.conf.urls.defaults import *
from mycompany.press.models import PressRelease

press_detail_dict={

 'queryset': PressRelease.objects.all(),

 'template_name': 'press/detail.html',

 'template_object_name': 'press',

}

press_list_dict={
 'queryset': PressRelease.objects.all(),
 'template_name': 'press/list.html',
 'allow_empty': False,
 'template_object_name': 'press',
}

urlpatterns=patterns('',
 (r'detail/(?P<object_id>\d+)/$',

 'django.views.generic.list_detail.object_detail',

 press_detail_dict),

 (r'list/$',

Chapter 2

[49]

 'django.views.generic.list_detail.object_list',
 press_list_dict),
 (r'$', 'django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

A couple of things to note are:

We changed the name of the press release ID captured in the URL from pid
to object_id. Generic views expect a variable called object_id and though
there are ways to get around it, it's much simpler to change the name to what
Django is expecting.
Looking at the press_detail_dict dictionary, it looks as if we are retrieving
all of the press releases in our queryset, but the generic view is automatically
going to use the object_id from our URL to filter the appropriate object.
There is no allow_empty key in the press_detail_dict. If the generic view
can't find the object, it automatically returns a 404 error.

We have now completely replaced the functionality of the view functions in
mycompany/press/views.py.

Using the other generic views
As mentioned, generic views come in two other varieties, date-based and
create/update/delete. We won't be covering them, but here's a quick summary
to whet your appetite for further exploration.

Date-based generic views allow you to create archives for your models that have a
DateField or DateTimeField. You can set up different views for yearly, monthly,
weekly, and daily displays of your content.

Create/update/delete generic views allow you to set up form-based pages to add new
content, edit content, and delete content from your models. They are very similar to the
add/edit pages from the admin application, and perform the same validation.

Comparing views and generic views
Now that we've seen both views and the generic views, you may be wondering why
you would choose to use one over the other. The answer is usually found in the
complexity of what you are trying to accomplish.

•

•

•

Views, URLs, and Generic Views

[50]

Don't let the simplicity of generic views fool you; entire sites have been written with
only generic views. They can be much more complex than our simple examples were
in this chapter, taking many additional arguments for specific functionality.

Try to use generic views when you can, and fall back to regular views when the
complexity exceeds what you feel comfortable trying to do in a generic view. You
may discover that what you want to do can be accomplished in a generic view, but
that it's much simpler to do the same with a regular view.

Summary
In this chapter we learned how views and generic views can be used to display
content. We explored how the URL dispatcher works and how it matches URLs to
their associated view functions. We also learned how to pass data from the URL into
our views using regular expressions. We built views to show a list of content and a
content detail page, and then used generic views to reproduce that functionality.

In the next chapter, we will look at the Context, the object that makes variables from
our view available to the template during rendering.

Template Context
The Context is a special collection of data that is used to pass information from your
views into your templates. Since the template system is only allowed to work with
values that you explicitly give it access to, understanding how to work with the
Context is a very important skill for template design and debugging.

In this chapter, we will:

Learn how the Context object works
Work with context values in templates
Explore some shortcuts for rendering the context
Use context processors to automatically add values to the context
Use Django shortcuts to simplify rendering a template in context

The context explained
As we have seen earlier, the Context is a mapping of variable names to values.
When the template is rendered, these values are made available to the template
engine and fill in "the holes" in your templates by replacing variables with their
respective values.

Technically, the Context is a class in Django that we instantiate before rendering
a template. A context is a mapping of a single variable name to a value. When
we render the template, we are usually registering multiple contexts, or multiple
mappings of variable names to values. Don't get hung up on the semantics. When
we're talking about context, just think about the variables that are made available to
the template.

•

•

•

•

•

Template Context

[52]

To use the Context, we import the Context class from django.template.Context.
When we instantiate it, we can pass a dictionary of variable names as an
optional argument.

To experiment with the Context, we can launch the Django interactive shell by
running these commands:

$ cd /projects/mycompany

$ python manage.py shell

This command launches the Django shell that allows you to interactively work with
the Python code and Django libraries. By using the shell, we can experiment with the
template without having to create a whole view, run the development server, and
load the URL in a browser. Here's an example:

>>> from django.template import Context, Template
>>> c = Context({'fav_color': 'blue'})
>>> print c
[{'fav_color': 'blue'}]

When using the Django shell, each line begins with >>>, which is
sometimes called chevrons. Anything output from the shell (such as a
print statement), will not have the chevrons at the beginning of the line.

When the template is rendered, the template variable is replaced with the
corresponding item from the context. We can simulate that here by creating a string
with a variable to be substituted, then running the render method on it:

>>> from django.template import Context, Template
>>> c = Context({'fav_color': 'blue'})
>>> t = Template('My favorite color is {{ fav_color }}.')
>>> print t.render(c)
My favorite color is blue.

Recall that a template is just a string of text characters and can be either loaded from
a file or passed to the Template object as a string.

Though the Context is a class, it behaves like a dictionary. You can use the standard
Python dictionary syntax methods such as pop(), push(), get(), has_keys() and
update(). You can remove keys and add new ones.

Chapter 3

[53]

Practicing working with the context
Understanding the context object is an important skill when working with templates,
so let's get some practice with it in an actual Django view. We'll add a new page to
our press release application that we started in Chapter 2, which shows information
about the most recent press release.

In your mycompany/press/models.py file, add the highlighted lines:

class PressRelease(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()
 pub_date = models.DateTimeField()
 author = models.CharField(max_length=100)

 class Meta:

 get_latest_by = 'pub_date'

 def get_absolute_url(self):

 return '/press/detail/%d/' % self.id

 def __unicode__(self):
 return self.title

These highlighted lines tell Django that when we're trying to look up the latest
record, use pub_date to find the record with the most recent date. It also gives us a
way to return a hyperlink to the press release detail view by adding a function to the
class called get_absolute_url.

In your mycompany/press/views.py file, add the following view function to the
end of the file:

def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 t = loader.get_template('press/latest.html')
 c = Context({
 'title': p.title,
 'author': p.author,
 'date': p.pub_date,
 'link': p.get_absolute_url(),
 })
 return HttpResponse(t.render(c))

Template Context

[54]

In your mycompany/press/urls.py file, add the highlighted line to the
patterns declaration:

urlpatterns = patterns('',
 (r'detail/(?P<object_id>\d+)/$',
 'django.views.generic.list_detail.object_detail',
 press_detail_dict),
 (r'list/$',
 'django.views.generic.list_detail.object_list',
 press_list_dict),
 (r'latest/$', 'mycompany.press.views.latest'),
 (r'$', 'django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

Finally, create a new template called latest.html in the mycompany/templates/
press/ directory with the following lines:

<html>
<head>
<title>Latest Press Release</title>
</head>
<body>
<h1>{{ title }}</h1>
<p>
Author: {{ author }}

Date: {{ date }}

View Detail

</p>
</body>
</html>

Point your browser to the URL http://localhost:8000/press/latest/. You'll see
something like this (depending on the value of your latest press release):

Chapter 3

[55]

What we've done is pretty common when working with an existing project and
application. We have:

Added a new view function.
Added a new template.
Edited the existing model to add functionality.
Added a new template file.
Added a new URL mapping to point to our view function.

This was a lot of work just to create a way for us to practice the template context, but
it's a great practice for working in Django.

In mycompany/press/views.py file, consider the highlighted lines:

def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 t = loader.get_template('press/latest.html')
 c = Context({

 'title': p.title,

 'author': p.author,

 'date': p.pub_date,

 'link': p.get_absolute_url(),

 })

 return HttpResponse(t.render(c))

These lines explicitly pass the variables title, author, date, and link to the
template Context object. When the template engine renders the template file, it relies
on the Context to find the appropriate values to replace the template variables with.

We could have simply passed the variable p to and looked up the
properties from within the template. But we did this to illustrate the
concept of passing values to the Context object (we'll clean this up later
in the chapter).

Using locals for prototyping
It can sometimes feel redundant to list all your variables when instantiating your
Context variable. If you don't want to explicitly pass them, you can use a Python
built-in function called locals() that returns a dictionary of all the variables defined
in the current function.

•

•

•

•

•

Template Context

[56]

In our previous example, we could have used locals() to pass variables to
the Context:

def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 title = p.title
 author = p.author
 date = p.pub_date
 link = p.get_absolute_url()
 t = loader.get_template('press/latest.html')
 c = Context(locals())
 return HttpResponse(t.render(c))

This didn't save us any code, but it illustrates the point about passing all the
variables defined in the function. One thing to notice about this example is that
the variable p will also be passed to the template because it has been defined in
the function.

Using locals() is good for quick testing and prototyping, but you will
probably want to explicitly choose the variables that are passed to the
Context. This can help make your code more efficient and maintainable in
the long run.
In complex views, there may be values you don't want to be available to
the template. Or, you may want to use different variable names in the
view than you do in your template for readability. Explicitly passing your
Context values can help in both these situations.

Adding, changing, and removing items in
the context
There may be times you want to change the context after you have instantiated it.
This isn't that common in a view, since assigning context mappings is one of the
last things we do before rendering the template. But the context might even be
manipulated from within a template tag.

Django's regroup tag, for example, does this. When you run it against a list of
objects, the tag creates a new, grouped list in the current context that is then available
to the rest of your template.

You can also create your own custom tags that are able to change the context. We'll
save that for the chapter on template tags, but for now just remember that you can
add, edit, and remove context items with the standard Python dictionary syntax.

Chapter 3

[57]

Here's an example using the Django shell that demonstrates how to do this:

>>> # Create an empty context object
>>> c = Context()
>>>
>>> # Add a value to the context
>>> c['fav_color'] = 'blue'
>>> print c
[{'fav_color': 'blue'}]
>>>
>>> # Add a new item to the context
>>> c['new_fav'] = 'red'
>>> print c
[{'new_fav': 'red', 'fav_color': 'blue'}]
>>>
>>> # Remove an item from the context
>>> del(c['fav_color'])
>>> print c
[{'new_fav': 'red'}]
>>>
>>> # Change the value of an existing item
>>> c['new_fav'] = 'orange'
>>> print c
[{'new_fav': 'orange'}]
>>>
>>> # See if an item exists
>>> c.has_key('new_fav')
True

Using the context values in your
templates
We worked with template variables in the first chapter, but didn't discuss some of
the subtleties of working with different kinds of data such as methods, objects, lists,
and dictionaries. The template engine provides us with a simple way to work with
different kinds of data by consistently using a dotted syntax. Regardless of the type
of data you are trying to retrieve, you use the same syntax.

Let's look at some examples using the Django shell to keep things simple. We'll pass
strings to the Template object again to keep the examples clear, instead of loading
the text from template files.

Template Context

[58]

Note: If you are not familiar with Python dictionaries, lists, objects, and
methods, you'll probably want to brush up on these concepts before going
any further. If you don't understand what you are putting into a template,
you won't understand what you're getting back out.
A great reference is Mark Pilgrim's Dive Into Python, available for free at
diveintopython.org.

The most basic example is using a plain old variable in your template:

>>> # Create a simple variable string
>>> favorite = 'blue'
>>> c = Context({ 'favorite': favorite })
>>> t = Template("My favorite color is {{ favorite }}.")
>>> print t.render(c)
My favorite color is blue.

This example was pretty simple. We created a string, put it in the context, and then
referenced it from the template.

If you want to use a dictionary, you access the keys with dotted notation:

>>> # Create an empty dictionary
>>> favorite = {}
>>> favorite['color'] = 'blue'
>>> c = Context({ 'favorite': favorite })
>>> t = Template('My favorite color is {{ favorite.color }}.')
>>> print t.render(c)
My favorite color is blue.

In this example, we created a dictionary and assigned it a key called color with a
value of blue. From the template, we are able to access the key by referring to the
dictionary's key using a dotted syntax. (Normally in Python, you'd use brackets to
refer to a dictionary's key.)

If you want to access the property of an object, you also use a dotted notation:

>>> # Create an empty Object
>>> class Favorite():
>>> pass
>>>
>>> # Instantiate the object
>>> favorite = Favorite()
>>>
>>> # Assign an arbitrary property to the object
>>> favorite.color = 'blue'

Chapter 3

[59]

>>>
>>> c = Context({ 'favorite': favorite })
>>> t = Template("My favorite color is {{ favorite.color }}.")
>>> print t.render(c)
My favorite color is blue.

In this example, we created an empty object and then assigned it a property called
color with a value of blue. From the template, we are (again) able to get the value of
the object using dotted syntax. This is one of the most common techniques we'll use
in templates, since database records are returned as objects and the field values are
available as properties of the object.

If you want to call a method of a class, you use dotted notation, but not parentheses
or arguments:

>>> # Create a class with a single method
>>> class Favorite():
>>> def get_color(self):
>>> return 'blue'
>>>
>>> favorite = Favorite()
>>> c = Context({'favorite': favorite })
>>> t = Template('My favorite color is {{ favorite.get_color }}.')
>>> print t.render(c)
My favorite color is blue.

Here we are calling the get_color method of the favorite object from within the
template. This example is important; the syntax of calling methods and functions
trips up many beginners to Django templating.

The Django template system allows you to call methods, but you don't use
parentheses as you would in the regular Python programming. Because you don't
use parentheses, you cannot call methods that require arguments. This is done
intentionally to keep programming logic out of the templates and to keep the
template syntax simple.

Finally, if you want to access the value of a list element, you can refer to the index
with dotted notation:

>>> color_list = ['orange', 'blue', 'green', 'red']
>>> c = Context({ 'favorite_colors': color_list })
>>> t = Template("My favorite color is {{ favorite_colors.0 }}.")
>>> print t.render(c)
My favorite color is orange.

Template Context

[60]

Accessing a specific element of a list by index is not a common thing to do in your
templates, but you should be aware that it can be done. This is a dangerous way to
get the value, because if the list coming from your view is empty, the template will
raise an exception and the page will not render.

Preventing method execution from templates
If you want to prevent a method from being called by a template, you can add an
alters_data attribute to your function and set its value to True:

>>> class Account():
>>> def wipeout(self):
>>> self.bank_account.delete()
>>> return "You are broke"
>>> wipeout.alters_data = True
>>>
>>> account = Acccount()
>>> c = Context({"account": account})
>>> t = Template("Deleting Account: {{ account.wipeout }}.")
>>> print t.render(c)
Deleting Account: .

Though we tried executing the wipeout() method from inside the template,
alters_data was True, and so the template engine prevented it from being called.
(No errors are raised.)

By default, Django models apply alters_data to the save() and delete() methods
of the model object and so they cannot be executed from inside a template. If you
really wanted to be able to do this from your template (warning flags should be
going off in your head if you do), you'll have to write your own custom template tag
to do it.

Handling invalid context variables
Django has a handy way of handling references to invalid variables in your context—it
does nothing! OK, that's not technically true, but you generally won't see any errors
from your templates as a result of trying to use variables that don't exist.

If the variable does not exist, it is interpreted as an empty string ('') or None,
depending on what is trying to use it. If it's being called by the tags if, for, or
regroup, the invalid variable will be treated as the value None. Anything else will
treat it as an empty string because of the setting TEMPLATE_STRING_IF_INVALID.

Chapter 3

[61]

By default, TEMPLATE_STRING_IF_INVALID is set to "" (empty string), so that is what
is used in place of a value. For example:

>>> t = Template('Hello, my name is {{ bogus_variable }}.')
>>> t.render(c)
Hello, my name is .

If you set TEMPLATE_STRING_IF_INVALID to something else, the text you used will
be rendered in place of the invalid variable.

The Django documentation warns about changing TEMPLATE_STRING_
TO_INVALID for anything except debugging because the Django admin
app relies on this setting to be an empty string. You should really leave it
as is!

The take-away from this is to understand that your site won't come to a screeching
halt if it encounters an invalid variable, but you'll have to watch for silent
variable failure.

Cleaning up the view
Earlier in the chapter, we experimented with our view called latest in the press
application to populate the context using a few different techniques. Now that we
are more familiar with Django template syntax, let's clean up the function to use
best practices.

In your mycompany/press/views.py file, edit the latest function to look like this:
def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 t = loader.get_template('press/latest.html')
 c = Context({
 'press': p,
 })
 return HttpResponse(t.render(c))

In your mycompany/templates/press/latest.html file, edit the highlighted lines
to look like this:

<html>
<head>
<title>Latest Press Release</title>
</head>
<body>
<h1>{{ press.title }}</h1>

Template Context

[62]

<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

View Detail

</p>
</body>
</html>

In the view function, we are passing an object p to our Context, and the context
will pass it to the template as a variable called press. Instead of passing individual
values to the template for title, author, date, and link, we pass the object press
and allow the template to get its values from the object's properties. We changed the
template file to look for the properties of the press object, instead of the individual
variables it was using before.

Notice that we are also calling the function get_absolute_url from within the
template and that it is called without parentheses.

Context rendering shortcuts
Django makes a few shortcuts available to save us from repetitive, common coding.

Using render_to_response()
Since it's pretty common to create a context, load a template, render the template,
and then return the rendered string as an HTTP response, Django provides a
shortcut at django.shortcuts.render_to_response to do this quickly.

In your mycompany/press/views.py file, add this line to the top of the file to import
the render_to_response function:

from django.shortcuts import render_to_response

In the same file, edit the latest function to look like this:

def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 return render_to_response('press/latest.html', {
 'press': p,
 })

Instead of loading a template file, creating a context, and rendering the template with
the context, we simply use the render_to_response function that takes a template
as its first argument and context as its second to streamline the process.

Chapter 3

[63]

Using render_to_string()
In addition to render_to_response, Django also provides a shortcut at django.
shortcuts.render_to_string to render the template and context into a string
instead of an HTTP response. This isn't terribly useful in the examples we've looked
at here, but it's very useful when used in conjunction with the low-level caching API.

When using the low-level caching API, we take the rendered template string and
cache the value before returning the HTTP response. The next visitor can get served
the rendered template string from cache without having to perform all the logic in
the view again.

We'll be working with Django caching in chapter 10.

Context processors
In the course of your Django development you may have data that you want to make
available to your Context without having to specify it in every view. This could be
things such as information about the current authenticated user, media settings, or
a custom piece of data that you need in all of your templates. If you find yourself
adding the same items to your Context in many views, it's a good candidate for a
context processor.

Exploring the default context processors
Django provides us a set of libraries for commonly used context processors. These
include auth, debug, i18n, and media. Each of these libraries adds extra variables to
our context that we can use from within our templates.

Auth
Auth adds the variables user, messages, and perms to the context. user is the
currently logged in user, messages is a list of messages for that user (you see this
a lot in the admin app when you change something—it's the message at the top of
the screen after you add/save/delete), and perms are the user's permissions. perms
follows the format perms.<application name>.<permission name>.

Here is some example usage of these values in a template:

The current user is {{ user.username }}.
{% if messages %}
 {% for message in messages %}
 {{ message }}
 {% endfor %}

Template Context

[64]

{% endif %}
{% if perms.press.can_add %}
 Add a press release
{% endif%}

Adding the auth context processor automatically added some user, messages, and
perms values to our template.

Debug
Debug adds a Boolean variable debug to the context and a list called sql_queries
that contains all the SQL queries run up to this point and their execution time. When
using the debug processor, you can access these values from within your templates
like this:

{% if debug %}
 {% for query in sql_queries %}
 <p>This query took {{ query.time }} seconds: {{ query.sql }}</p>
 {% endfor %}
{% endif %}

The debug context processor requires two specific configurations in your
settings.py file: debug must be set to True, and your computer's IP
address must be in the INTERNAL_IPS list.

Media
Media adds a MEDIA_URL variable that has the value of your MEDIA_URL setting from
the settings.py file. You can use MEDIA_URL in your templates so that you don't
have to hard-code the address in your template:

For this example, if press.image is equal to press1.gif and MEDIA_URL is
http://localhost:8000/media/, this would get rendered in your template as:

Using MEDIA_URL makes it easy to maintain your site if you need to change your link
to your media location later.

Chapter 3

[65]

il8n
The i18n processor deals with internationalization and gives you the ability to
serve the same template in multiple languages. This is such a big topic that we'll be
spending all of chapter 11 on it.

Configuring your project to use context
processors
Now that we understand what the default context processors can do for us, we need
to configure our project to use them. The first thing we need to do is add a new setting
to our mycompany/settings.py file. Add this block of text anywhere in the file:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.core.context_processors.auth',
 'django.core.context_processors.debug',
 'django.core.context_processors.i18n',
 'django.core.context_processors.media',
)

While you are still in mycompany/settings.py file, change the value of MEDIA_URL
to something other than the default empty string:

MEDIA_URL = 'http://localhost:8000/'

These settings make the four default context processors available to our views, but
we need to make a slight change to our views before we can use them.

Configuring your views to use context
processors
Before we can use our newly added context processors, we need to change our views
to use a special version of the Context called RequestContext. Let's demonstrate this
by using one of the views from Chapter 2.

Instead of calling the Context from our view like this:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Template Context

[66]

we are going to import and use RequestContext:

from django.template import RequestContext

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=1)
 t = loader.get_template('press/detail.html')
 c = RequestContext(request, {'press': p})

 return HttpResponse(t.render(c))

Notice that the first argument to RequestContext() is a request
object. Forgetting to include this is a common mistake!

You might be wondering what the RequestContext is and how it's different from
the regular Context object we've been using so far. RequestContext works just like
the regular Context object, but it requires the current request to be passed to it as an
argument and adds some extra values to our Context.

The extra values it adds to the Context depend on what you are using in the
TEMPLATE_CONTEXT_PROCESSORS setting in your settings.py file. In our example
above, we're using the auth, media, debug, and i18n processors. So any variables
these libraries set will automatically get added to our context and will be available
to our templates.

Using render_to_response with
RequestContext
In the last example, we saw how to use the RequestContext instead of Context in
our view function, but how do we do it when we're using render_to_response? We
don't explicitly define a Context object, and so the syntax is slightly different.

In your mycompany/press/views.py file, add this import statement to the top of
the file:

from django.template import RequestContext

Chapter 3

[67]

Alternatively, you can add it to the end of your existing line that imports Context. In
the same file, edit the latest view, changing the highlighted line:

def latest(request):
 ''' Returns information on the latest press release '''
 p = PressRelease.objects.latest()
 return render_to_response('press/latest.html', {
 'press': p,
 }, context_instance=RequestContext(request))

To use RequestContext with render_to_response, we simply add an extra
argument to the function that tells it what kind of context instance we are using.

Using the context processors in our project
Now that our project is configured to use the default context processors and our
view is configured to use RequestContext, we can see a context processor in action.
Let's see how the django.core.context_processors.auth processor can be used
with our templates.

In your mycompany/templates/press/latest.html file, add the highlighted lines:

<html>
<head>
<title>Latest Press Release</title>
</head>
<body>
<hr>
{% if user.is_anonymous %}
 You are not logged in.
{% else %}
 You are logged in as {{ user.username }}.
{% endif %}
<hr>
<h1>{{ press.title }}</h1>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

View Detail

</p>
</body>
</html>

Remember that the auth processor adds a variable called user to the RequestContext,
so we can use the user.is_anonymous method to see if a user is logged in.

Template Context

[68]

Log in to your site by pointing your browser to the URL http://localhost:8000/
admin/ and entering your username and password. Without logging out, change the
URL to http://localhost:8000/press/latest/. If you are logged in as the user
admin, you should see something similar to this:

Now point your browser to the URL http://localhost:8000/admin/logout/ and
make sure it says you are logged out. Return to the URL http://localhost:8000/
press/latest/, and you should see this (you may have to refresh the page):

Writing your own context processor
You're not limited to adding auth, media, i18n, or debug to your context. Those
are just the default context processors that are included with Django. If you want
to include other values in your templates, it is very simple to write your own
context processor.

For example, if we wanted to add the user's IP address to the context, we could write
our own context processor to do this. Django doesn't care where you put the file that
contains your custom context processors as long as it can be imported.

Chapter 3

[69]

For this example, we'll add a new file in the root of our project. In the mycompany
directory, add a new file called context_processors.py with these lines:

def add_ip(request):
 ''' Adds the REMOTE_ADDR value to the context '''
 return {'user_ip_addr': request.META['REMOTE_ADDR']}

First, add a reference to our new file in the TEMPLATE_CONTEXT_PROCESSORS tuple in
your mycompany/settings.py file by adding the highlighted line:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.core.context_processors.auth',
 'django.core.context_processors.debug',
 'django.core.context_processors.i18n',
 'django.core.context_processors.media',
 'mycompany.context_processors.add_ip',
)

Add the variable user_ip_addr at the end of your template (before the </body> tag)
in the mycompany/templates/press/lastest.html file:

<hr>User IP: {{ user_ip_addr }}<hr>

Point your browser to the URL http://localhost:8000/press/lastest/. You
should see something similar to this:

By adding the add_ip context processor to our project, we can now access the
user's IP address with the user_ip_addr variable from any template that is using
the RequestContext.

Template Context

[70]

Summary
In this chapter, we covered the Django Context class and its usage. This was a
code-heavy chapter; don't feel bad if you need to go through the chapter again to
make sure you got everything.

We saw how to instantiate the Context object and pass its values from our views.
We briefly looked at manipulating an existing context, and how to use locals() to
lazily pass all items from our current scope into the Context.

We looked at how to use these values from the context in our templates and how
Django handles invalid variables. We also saw some shortcuts for rendering contexts
and how to subclass Context with the RequestContext class to get additional items
into our Context.

Next, we'll look at how to use Django's built-in tags and filters.

Using the Built-In Tags
and Filters

Django ships with a number of built-in template tags and filters to modify and work
with the data in your templates. Recall that filters are used to modify the way data is
displayed in templates, such as transforming text to upper or lower case. Tags allow
you to execute some logic in your templates, such as looping through data, escaping
text for use in JavaScript, and sorting lists.

Most of the common needs of template development are covered using the built-in
tags and filters. Unfortunately, not all of them have examples provided in the online
documentation, so we'll cover all of them here with examples.

In this chapter, we will explore how to use each of Django's built-in tags and filters
with a demonstration of their usage and syntax.

Built-in filter reference
Filters are easier to get your head around than tags, and so we'll start by reviewing
them first. If you need to transform the output of your data in the template, you'll use
a filter. It's important to remember that they don't modify the data, but only the way
it is displayed. If you use the upper filter on a template variable, for example, the
variable's output will be displayed in the upper case, but the variable's underlying
value is not changed. If you use the variable again later in the template without the
filter, it will not be displayed in the upper case.

To use a filter, type a pipe symbol after your variable name, then type the filter name,
and any arguments it might require. No spaces are put between the variable and the
filter name.

Using the Built-In Tags and Filters

[72]

For example, if we have a template variable called myvariable and we want to use
the upper filter, it would look like this in the template:

{{ myvariable|upper }}

add
add adds (mathematically, not via concatenation) the argument to the value
being modified.

Usage notes:

add requires an integer argument for the value to add, or an argument that
can be safely converted to an integer via int().
It only works with integers. Both the value and the argument are converted
to integers when parsed.

Example:

{{ myintvalue|add:3 }}

Passing a string argument that can be safely converted to an integer also works
as follows:

{{ myintvalue|add:"3" }}

Passing a float argument doesn't throw an exception, but it's converted to an integer,
so you'll lose decimal precision. These two examples return the same value:

{{ myintvalue|add:3 }}
{{ myintvalue|add:3.5 }}

addslashes
This puts a backslash in front of any quotes in the value.

If this value is given:

myvalue = 'Django is "the" web app framework'

Apply the filter:

{{ myvalue|addslashes }}

The resulting output will be:

Django is \"the\" web app framework

•

•

Chapter 4

[73]

capfirst
This capitalizes the first letter of the value being modified.

Usage notes:

The value being modified must be a string. If you try to modify a numeric
value, it won't throw an exception, but will simply ignore it.
This filter is commonly used for proper nouns when you're not sure the data
has been entered that way.

Given this value:

myvalue = "this is a good example"

Apply the filter:

{{ myvalue|capfirst }}

Resulting output:

This is a good example

center
This is used to center a value by padding the left and right sides of a string with a
whitespace. The total width of the string with whitespace is called the field.

Usage note:

centre requires an integer argument (or string that can be cast as an integer)
that represents the size of the field.

Note: If you try this in a browser, remember that browsers ignore
multiple spaces and so you won't see the result.

Given this value:

myvalue = 'this is a good example'

Apply the filter (note the dollar signs at the beginning and end; they are so we can
see the effect of the filter):

${{ myvalue|center:30 }}$

•

•

•

Using the Built-In Tags and Filters

[74]

Resulting output:

$ this is a good example $

You'll see in the example that the string was 22 characters long, and we told it to
center in a field that is 30-characters wide. The filter added 4 spaces to each side of
the string, resulting in a centered field 30 characters wide.

cut
This removes the argument from the value being modified (similar to Python's
strip() function).

Usage notes:

cut requires a string argument representing the string to remove.
Passing an integer as an argument will throw an exception.

Given this value:

myvalue = 'Thank you for not littering and not loitering'

Apply the filter:

{{ myvalue|cut:"not" }}

Resulting output (notice it does not remove the extra spaces).

Thank you for littering and loitering.

date
It formats a datetime object to the format specified. The format is the same as the
now tag we covered earlier.

Usage notes:

The value being modified must be a date or datetime object.
If you are modifying a date object (not a datetime), you can only pass a
format string to use the year, month, and day attributes.
See the Django online documentation for a full list of all the
formatting characters.

•

•

•

•

•

Chapter 4

[75]

Given the value:

import datetime
mydate = datetime.datetime.now()

Apply the filter:

The current year is {{ mydate|date:"Y" }}

Resulting output:

The current year is 2008

default
If the template variable is False, this value will be used instead.

Usage notes:

Works if the value being modified is False, None, or an empty string.
If you just want to test for None, use the default_if_none filter instead.

Given these values:

myvalue1 = False
myvalue2 = None
myvalue3 = ''

Apply the filter:

{{ myvalue1|default:"Value 1 was false" }}

{{ myvalue2|default:"Value 2 was false" }}

{{ myvalue3|default:"Value 3 was false" }}

Resulting output:
Value 1 was false
Value 2 was false
Value 3 was false

default_if_none
Similar to the default tag, this tag will output a default value only if the value being
modified is None.

Given these values:

myvalue1 = False
myvalue2 = None
myvalue3 = ''

•
•

Using the Built-In Tags and Filters

[76]

Apply the filter:

{{ myvalue1|default_if_none:"Value 1 was false" }}

{{ myvalue2|default_if_none:"Value 2 was false" }}

{{ myvalue3|default_if_none:"Value 3 was false" }}

Resulting output: (Notice only the second line returned the default value, while the
others returned their actual value.)

False
Value 2 was false

dictsort
This sorts a list of dictionaries by a specified key.

Usage notes:

Requires a string argument representing the key to sort by.
If you try to sort by a key that doesn't exist, it will throw an exception.

Given this value:

cars = [
 {'make': 'Ford', 'model': 'Ranger'},
 {'make': 'Chevy', 'model': 'Tahoe'},
 {'make': 'Toyota', 'model': 'Tacoma'},
]

Apply the filter:

{{ cars|dictsort:"make" }}

Resulting output (reformatted to fit the page):

[
 {'make': 'Chevy', 'model': 'Tahoe'},
 {'make': 'Ford', 'model': 'Ranger'},
 {'make': 'Toyota', 'model': 'Tacoma'}
]

dictsortreversed
This works exactly like the dictsort filter, but it sorts in the reverse order.

•

•

Chapter 4

[77]

divisibleby
This returns a Boolean value if the value being modified is divisible by the argument.
(This is great for checking if something is even or odd.)

Usage note:

divisibleby requires an integer argument or string that can be safely cast as
an integer.

Given this value:

myvalue = 100

Apply the filter:

{{ myvalue|divisibleby:"2" }}

Resulting output:

True

escape
This is used to escape HTML values, transforming <, >, ', ", and & into their HTML
character equivalents.

Usage notes:

If you chain this filter with other filters, escape will always happen last. Use
the force_escape filter if you want it to happen in-place.
If you apply this filter to a value that is auto-escaped, it will only result in one
escaping. (It won't try to do it twice.)

Given this value:

myvalue = "Django is the best."

Apply the filter:

{{ myvalue|escape }}

Resulting output:

Django is the best.

•

•

•

Using the Built-In Tags and Filters

[78]

escapejs
This is used to escape characters that will be used in dynamically written JavaScript,
such as JSON. The characters that can trip up JavaScript are: \\, \, ", >, <, &, =, -, and ;.

Usage notes:

This filter doesn't escape characters for use in HTML, only JavaScript.
The filter turns the characters into their hexadecimal equivalents.

Given this value:

myvalue = "Django's features are many; it <rules>!"

Apply the filter:

{{ myvalue1|default:"Value 1 was false" }}

Resulting output:

Django\x27s features are many\x3B it \x3Crules\x3E!

filesizeformat
This formats a file size to be human-readable (such as KB, MB, etc.).

Usage notes:

The value being modified must be a float or able to be safely cast as a float.
If the value is less than 1024, it will be returned in bytes.
If the value is between 1024 and 1048576 (1024 * 1024), it will be returned in
kilobytes (KB).
If the value is between 1048576 and 1073741824 (1024 * 1024 * 1024), it will be
returned in megabytes (MB).
If the value is greater than 1073741824, it will be returned in gigabytes (GB).

Given this value:

myvalue = 150000

Apply the filter:

{{ myvalue|filesizeformat }}

Resulting output:

146.5 KB

•

•

•

•

•

•

•

Chapter 4

[79]

first
This returns the first element from a list.

Usage note:

It requires the value being modified to be a list.

Given this value:

mylist = ['Homer', 'Marge', 'Bart', 'Lisa']

Apply the filter:

{{ mylist|first }}

Resulting output:

Homer

fix_ampersands
This replaces ampersands with their character entity (&)

Usage notes:

You probably won't use this filter a lot anymore, since the value is
auto-escaped in templates by default.
This is commonly used for instances that require strict adherence to web
standards, such as XHTML and XML.

Given this value:

Myvalue = "If you're happy & you know it"

Apply the filter:

{{ myvalue|fix_ampersands }}

Resulting output:

If you're happy & you know it

floatformat
This rounds a float value to a given number of decimal places. This filter can be
tricky because there are a couple different options available.

•

•

•

Using the Built-In Tags and Filters

[80]

Usage notes:

floatformat requires that the value being modified is a float or can safely be
cast as a float.
If you pass no argument to the filter, it will round to one decimal place,
but only if there is a decimal value available (that is, 3.00 will round to 3,
not 3.0).
If you pass an integer argument to the filter, it will round to that
many places.
If you pass a negative integer argument to the filter, it will round to that
many places, but only if there is a decimal value available.

Given these values:

myvalue1 = 3.1234
myvalue2 = 3.00

Apply the filters:

{{ myvalue1|floatformat:"2" }}
{{ myvalue2|floatformat:"-2" }}

Resulting output:

3.12
3

force_escape
Like the escape filter, this filter escapes the HTML values. Unlike the HTML tag, it
does it when encountered. (escape does it after all other filters.)

If we applied chained filters, we'd get different behavior:

{{ myvalue|force_escape|striptags }}
{{ myvalue|escape|striptags }}

In the first part of the example, force_escape would happen before the striptags
filter. In the second part, escape would happen after the striptags filter.

get_digit
This returns the appropriate digit from an integer. The argument represents the
number of places to return from the right of the number.

•

•

•

•

Chapter 4

[81]

Usage notes:

If you pass anything other than an integer as an argument to the filter, it
won't throw an exception, and returns the original value.
If you request a position that does not exist (such as "4" in the example
below) it will return a zero.

Given the value:

myvalue = 987

Apply the filter:

{{ myvalue|get_digit:"1" }}

{{ myvalue|get_digit:"3" }}

Resulting output:

9
7

Note: Think of 2 as the "tens" place, 3 as the "hundreds" place, and so on.

iriencode
This is used to convert International Resource Identifiers (IRIs) to safe URL strings.
Consult RFC 3987 for more information and examples.

join
This joins a list into a string, similar to Python's join() string function.

Usage notes:

It must be applied to a value that supports iteration.
It requires a string argument to represent what is to be put between each
list element.

Given this value:

mylist = ['Eric','Kyle','Stan','Kenny']

•

•

•

•

Using the Built-In Tags and Filters

[82]

Apply the filter:
{{ mylist|join:", " }}

Resulting output:
Eric, Kyle, Stan, Kenny

last
This returns the last item in a list (similar to the first filter).

Usage note:
It requires the value being modified to be a list.

Given this value:
mylist = ['Homer', 'Marge', 'Bart', 'Lisa']

Apply the filter:
{{ mylist|last }}

Resulting output:
Lisa

length
This returns the length of the value being modified.

Usage notes:
If the value is a list, it returns the number of items in the list.
If the value is a string, it returns the string length.

Given these values:
mylist = ['Eric','Kyle','Stan','Kenny']
myvalue = 'Garrison'

Apply the filters:
{{ mylist|length }}
{{ myvalue|length }}

Resulting output:
4
8

•

•

•

Chapter 4

[83]

length_is
This returns a Boolean indicating if the value is equal to the argument.

Usage note:

This value requires an integer argument (or value that can be safely cast as
an integer).

Given these values:

mylist = ['Eric','Kyle','Stan','Kenny']
myvalue = 'Garrison'

Apply the filters:

{{ mylist|length_is:"4" }}
{{ myvalue|length_is:"10" }}

Resulting output:

True
False

linebreaks
This replaces line breaks with their HTML equivalents.

Usage notes:

The line breaks become
.
The line breaks followed by a blank line become </p>.
The value is surrounded with <p></p> tags.

Given the value:

myvalue = "This is\n\na good\n example."

Apply the filter:

{{ myvalue|linebreaks }}

Resulting output:

<p>This is</p>
<p>a good
 example.</p>

•

•

•

•

Using the Built-In Tags and Filters

[84]

linebreaksbr
This replaces the newline characters with HTML
 tags. It is similar to the
linebreaks filter, but it doesn't insert <p> tags.

Given the value:

myvalue = "This is\na good\n example."

Apply the filter:

{{ myvalue|linebreaksbr }}

Resulting output:

This is

a good
 example.

linenumbers
This puts a line number in front of each line.

Usage notes:

It uses newline characters, not HTML
 or <p> tags.
It doesn't strip out whitespace, so you could end up with spaces at the front
of your lines (see the example below).

Given this value:

myvalue = "This is\na good\n example."

Apply the filter:

{{ myvalue|linenumbers }}

Resulting output:

1. This is
2. a good
3. example.

ljust
This is used to left-justify a value by padding the right side of a string with
whitespace. The total width of the string with the whitespace is called the "field".

•

•

Chapter 4

[85]

Usage note:

It requires an integer argument (or string that can be cast as an integer) that
represents the size of the field.

If you try this in a browser, remember that browsers ignore multiple
spaces, and so you won't see the result.

Given this value:

myvalue = 'this is a good example'

Apply the filter (note the dollar signs at the beginning and end; they are so that we
can see the effect of the filter):

${{ myvalue|ljust:30 }}$

Resulting output:

$this is a good example $

You'll see in the example that the string was 22 characters long, and we told it to
create a field 30 characters wide. The filter added 8 spaces to the right side of the
string, resulting in a field 30 characters wide.

lower
This transforms a string to lower case.

Usage note:

It requires a string argument.

Given this value:

myvalue = 'This is a GOOD exAmPlE'

Apply the filter:

{{ myvalue|lower }}

Resulting output:

this is a good example

•

•

Using the Built-In Tags and Filters

[86]

make_list
This turns a string or numeric value into a list

It requires the value being modified to be a string or numeric value.
It returns a list of Unicode values.

Given these values:

myvalue1 = 'Django'
myvalue2 = 123

Apply the filter:

{{ myvalue1|make_list }}
{{ myvalue2|make_list }}

Resulting output:

[u'D', u'j', u'a', u'n', u'g', u'o']
[1, 2, 3]

phone2numeric
This turns a phone number with letters into the numeric-only version.

Usage notes:

The value being modified does not have to be a valid phone number or
in any special format. Any letters will be transformed into their numeric
equivalents.
Any non-alphabetic character will be returned as is.

Given this value:

myvalue = '1-800-ASK-GARY'

Apply the filter:

{{ myvalue|phone2numeric }}

Resulting output:

1-800-275-4279

•

•

•

•

Chapter 4

[87]

pluralize
When applied to a numeric value, this filter can return a suffix that will make the
preceding word plural.

Usage notes:

It requires a numeric value to be modified.
It returns an "s" to values greater than 1 by default, but you can override the
return value for words that are pluralized with "es".

Given this value:

num_tools = 11

Apply the filter:

We have {{ num_tools }} wrench{{ num_tools|pluralize:"es" }}.

Resulting output:

We have 11 wrenches.

pprint
This formats the output in Python's "pretty-printed" format that makes code
more readable.

Given this value:

cars = [
 {'make': 'Ford', 'model': 'Ranger'},
 {'make': 'Chevy', 'model': 'Tahoe'},
 {'make': 'Toyota', 'model': 'Tacoma'},
]

Apply the filter:

{{ cars|pprint }}

Resulting output:

[{'make': 'Ford', 'model': 'Ranger'},
 {'make': 'Chevy', 'model': 'Tahoe'},
 {'make': 'Toyota', 'model': 'Tacoma'}]

•

•

Using the Built-In Tags and Filters

[88]

If we didn't use the pprint filter, the output would look like this (the output is on a
single line):

[{'make': 'Ford', 'model': 'Ranger'}, {'make': 'Chevy', 'model':
'Tahoe'}, {'make': 'Toyota', 'model': 'Tacoma'}]

random
This returns a random element from a list.

Usage note:

It requires the value being modified to be a list.

Given this value:

mylist = [1,2,3,4,5]

Apply the filter:

{{ mylist|random }}

Resulting output: (It could be any item from the list, this time just happened to be 2!)

2

removetags
This removes a list of HTML/XHTML markup tags from a string.

Usage notes:

Any text between removed tags is left untouched.
Arguments to the filter are case sensitive; and are
distinct searches.
This is similar to the striptags filter, which will remove all tags from a
string. removetags gives you the choice of what you want to remove.

Given this value:

myvalue = 'Django is the web app framework'

Apply the filter:

{{ myvalue|striptags:"strong" }}

Resulting output:

Django is the web app framework

•

•
•

•

Chapter 4

[89]

rjust
This is used to right-justify a value by padding the left side of a string with
whitespace. The total width of the string with whitespace is called the "field".

Usage notes:

It requires an integer argument (or string that can be cast as an integer) that
represents the size of the field.

If you try this in a browser, remember that browsers ignore multiple
spaces, so you won't see the result.

Given this value:

myvalue = 'this is a good example'

Apply the filter: (note the dollar signs at the beginning and end, they are so we can
see the effect of the filter)

${{ myvalue|rjust:30 }}$

Resulting output:

$ this is a good example$

You'll see in the example that the string was 22 characters long, and we told it to
create a field 30 characters wide. The filter added 8 spaces to the right side of the
string, resulting in a field 30 characters wide.

safe
This tells the template engine not to apply escaping behavior to the string.

Given this value:

myvalue = 'Django is great'

Apply the filter:

{{ myvalue|safe }}

Resulting output:

Django is great

If we didn't use the safe filter, the output would look like this:

Django is great

•

Using the Built-In Tags and Filters

[90]

slice
This returns the specified slice of a list.

Usage notes:

It requires the value being modified to be a list.
It follows the same rules as Python list slicing. (See online Python
documentation for more information, as this can be tricky.)
It returns a list.

Given this value:

mylist = ['Homer', 'Marge', 'Bart', 'Lisa']

Apply the filter:

{{ mylist|slice:"1:3" }}

Resulting output:

['Marge', 'Bart']

slugify
This transforms a string into a slug by removing non-alphanumeric or underscore
characters, replacing spaces with hyphens, and transforming all letters to lower case.

Given this value:

myvalue = 'Django is Awesome!'

Apply the filter:

{{ myvalue|slugify }}

Resulting output:

django-is-awesome

stringformat
This applies a string formatting to a value.

•

•

•

Chapter 4

[91]

Usage notes:

It requires a valid string formatting character as an argument.
See the Python online documentation on string formatting for
more information.

Given this value:

myvalue = 100

Apply the filter:

{{ myvalue|stringformat:"s" }}

Resulting output:

100

Though it may not be immediately obvious, the previous example was the same as
doing this in Python:

myvalue = 100
print "%s" % myvalue

striptags
This strips all HTML/XHTML tags from a string.

Usage notes:

Any values inside of the tags are preserved.
This filter is similar to the removetags filter, which removes tags in a list
you provide.

Given this value:

myvalue = 'Django is a great
 framework'

Apply the filter:

{{ myvalue|striptags }}

Resulting output:

Django is a great framework

•

•

•

•

Using the Built-In Tags and Filters

[92]

time
This filter formats a Python time object to the format specified. The format is the
same as the date tag we covered earlier, but you can only use format strings that
apply to time values, not date values.

timesince
This returns the time between now and the date value being compared. The filter
returns value in years, months, days, and minutes.

Usage notes:

The smallest unit of time returned is minutes.
It can be applied to date or datetime objects.
If you don't want to compare against the current time (now), you can pass a
datetime object as an argument to use as the comparison date.
If the value being modified is greater than the current time (or the argument
you pass), the filter will return "0 minutes".

Given these values:

from datetime import datetime, timedelta
yesterday = datetime.now() – timedelta(days=1)
week_ago = datetime.now() – timedelta(days=7)

Apply the filters:

{{ yesterday|timesince }}
{{ week_ago|timesince:yesterday }}

Resulting output:

1 day
6 days

timeuntil
This works exactly like the timesince tag, but compares times in the future.

title
This transforms the first letter of each word in a string to upper case, also known as
"title case".

•

•

•

•

Chapter 4

[93]

Given this value:

myvalue = 'This is a GOOD exAmPlE'

Apply the filter:

{{ myvalue|title }}

Resulting output:

This Is A Good Example

truncatewords
This truncates a string at a given number of words. (It won't count HTML tags as
words if they are present in your string.)

Usage notes:

It requires an integer argument or an argument that can be safely cast as
an integer.
The filter truncates at word boundaries, not at character counts, and so you
can truncate without worrying about returning a partial word.
Since words can be of varying lengths, you cannot safely cut down a string to
a specified length with this filter.
Returns an ellipsis (…) if the filter successfully truncates a string. (If the
string didn't have enough words to truncate, it does not add an ellipsis.)

Given this value:

myvalue = "This is a great example of a filter"

Apply the filter:

{{ myvalue|truncatewords:"3" }}

Resulting output:

This is a …

•

•

•

•

Using the Built-In Tags and Filters

[94]

truncatewords_html
This works the same as the truncatewords filter, but it won't leave HTML tags
hanging open if it truncates at a place between two tags.

Usage note:

This filter incurs more of a performance hit than truncatewords, so only use
if it you have HTML present in your strings.

Given this value:

myvalue = "This is a great example of it"

Apply the filter (note safe is being used so as not to escape the HTML tags):

{{ myvalue|safe|truncatewords_html:"4" }}

Resulting output:

This is a great ...

If you only used truncatewords for this, the resulting output would look like this:

This is a great ...

unordered_list
This turns lists and nested lists into an HTML unordered list.

Usage notes:

It won't add the outer and tags for you, so you have to put those
outside your template variable being modified.
It requires that the value being modified is a list.

Given this value:

myvalue = ['Homer',['Bart','Lisa','Maggie'],'Ned']

Apply the filter:

{{ myvalue|unordered_list }}

Resulting output:

Homer

Bart
 Lisa

•

•

•

Chapter 4

[95]

 Maggie

Ned

upper
This transforms a string to upper case.

Given this value:

myvalue = 'This is a GOOD exAmPlE'

Apply the filter:

{{ myvalue|upper }}

Resulting output:

THIS IS A GOOD EXAMPLE

urlencode
This escapes a string so that it can be used in a URL. Any characters other than
non-alphanumeric characters (a-z, A-Z, 0-9), underscores, and dashes are replaced
with their 2-digit hexadecimal equivalent, prefixed with a percent symbol (%).

Usage notes:

See RFC 1738 for more information on what is allowed in a URL.
Consult a hex encoding table for information on the hexadecimal equivalents.

Given the value:

Myvalue = 'hey! Can you hear me?'

Apply the filter:

{{ myvalue|urlize }}

Resulting output:

hey%21%20Can%20you%20hear%20me%3F

•

•

Using the Built-In Tags and Filters

[96]

urlize
This searches for and transforms plain-text web addresses (such as www.packtpub.
com) into clickable hyperlinks inside of a string.

Usage notes:

Only apply this filter to plain text, not strings with HTML.
If HTML is encountered, it won't turn it into a hyperlink but the original text
will be returned.
It adds a 'nofollow' attribute to the link automatically.
Doesn't require a subdomain (such as www) in front of the text to be
recognized as a URL, but you may not get reliable results for domains
outside of .com, .net, and .org.

Given this value:

myvalue = 'www.abc.com is a good website'

Apply the filter:

{{ myvalue|urlize }}

Resulting output:

www.abc.com is a good
website

urlizetrunc
This is the same as the urlize filter, but it truncates the visible portion of the
hyperlink (between the tags) to the specified length.

Usage notes:

It requires an integer argument for the number of characters to truncate at.
It inserts an ellipsis (…) when truncating.
It does not truncate the web address href attribute.

Given this value:

www.Supercalifragilisticexpialidocious.com rules!

Apply the filter:

{{ myvalue|urlizetrunc:"10" }}

•

•

•

•

•

•

•

Chapter 4

[97]

Resulting output:

<a href="http://www.Supercalifragilisticexpialidocious.com"
rel="nofollow">www.Supercal... rules!wordcount

wordcount
This counts the number of words in a string.

Given this value:

Myvalue = 'This is a good example'

Apply the filter:

{{ myvalue|wordcount }}

Resulting output:

5

wordwrap
This inserts line breaks at the specified character length.

Usage notes:

It requires an integer argument for the character length.
Since browsers ignore newlines, you'll probably want to use this inside of a
<pre></pre> section to preserve formatting.

Given the value:

myvalue = 'Long examples are not pretty but short examples can be'

Apply the filter:

{{ myvalue|wordwrap:"10" }}

Resulting output:

Long examples
are not pretty
but short
examples can be

•

•

Using the Built-In Tags and Filters

[98]

Notice that it only inserts line breaks. So if you want to insert HTML breaks, you'll
need to chain the filters together:

{{ myvalue|wordwrap:"10"|linebreaksbr }}

Resulting value:

Long examples
are not pretty
but short
examples can be

yesno
This maps True, False, and None values to specified words.

Usage notes:

If you don't supply an argument for None, None will be mapped to the value
that False uses. (See the third line in the example.)

Given these values:

myvalue1 = True
myvalue2 = False
myvalue3 = None

Apply these filters:

{{ myvalue1|yesno:"Yay,Nay,Ni" }}
{{ myvalue2|yesno:"Yay,Nay,Ni" }}
{{ myvalue3|yesno:"Yay,Nay,Ni" }}
{{ myvalue3|yesno:"Yay,Nay" }}

Resulting output:

Yay
Nay
Ni
Nay

Built-in tag reference
Tags can be trickier to understand than filters because they can do so much
more. Tags allow for programming logic in your template code, such as looping
through records with the {% for %} tag and performing conditional logic with the
{% ifequal %} tag. If you're unsure whether to use a tag or a filter, think about what
you're trying to accomplish. If it's simple display formatting, you'll probably use a
filter; if it's something more involved, you'll probably need a tag.

•

Chapter 4

[99]

To use a tag, you put a single bracket and percent symbol around the tag name. Many
tags require an ending tag, such as the ifequal/endifequal tag in this example:

{% ifequal object.color 'blue' %}
 The object is blue.
{% else %}
 The object is not blue
{% endifequal %}

autoescape
This turns on or off the auto-escaping behavior in a Django template block. When
escaping is enabled, HTML characters are turned into their character equivalents to
prevent potentially malicious content from being written.

Usage Notes:

It requires the ending tag endautoescape.
It requires a single string argument on or off.
This tag is similar to the escape filter covered earlier.

For example, if we set this template variable in our view:

test = 'This is my <script>alert("content");</script>!'

If the value isn't escaped, the JavaScript will execute and a dialog box will
be presented:

{% autoescape off %}
 {{ test }}
{% endautoescape %}

This was a benign example, but you can imagine the implications of malicious
JavaScript code being executed. By default, templates autoescape the values of
template variables, and so this tag is useful when you want to dynamically output
HTML content.

block
This delimits a section of Django template for use with template inheritance.

Usage Notes:

It requires a single string argument that is the name of the block.
It requires the ending tag endblock.
The endblock tag can optionally have the name of the block as an argument.

•
•
•

•
•
•

Using the Built-In Tags and Filters

[100]

Example:

{% block page_content %}
 This is my page content.
{% endblock page_content %}

comment
This is used to prevent the Django template engine from evaluating template code.
It's similar to HTML comment tags, but the commented code will not be included in
the response. This tag is great for debugging sections of template code.

Usage note:

It requires the ending tag endcomment.

Example:

{% comment %}
 None of this will be parsed:
 {{ bad_variable }}
{% endcomment %}

cycle
This is used to alternate through a list of variables or strings. It's often used in a loop,
but you can also use it to alternate through values as they are encountered in
the template.

Usage notes:

Arguments to the tag can be strings or template variables.
If used outside of a loop, you'll need to use an argument to name the value
being cycled.

Example (in a loop):

<table>
{% for val in val_list %}
 <tr bgcolor="{% cycle 'white' 'green' %}">
 <td>My row</td>
 </tr>
{% endfor %}
</table>

•

•

•

Chapter 4

[101]

Each iteration through the loop will alternate the values white and green as the
background color for the row.

You don't have to use the cycle tag in a loop. You can define a name for the
alternating values and call them using the cycle tag again:

{% cycle 'white' 'green' as mycolors %}

<p>My first color is: {% cycle mycolors %}</p>
<p>My second color is: {% cycle mycolors %}</p>

debug
This returns a set of huge dictionaries with debugging information. This is very
useful when you're trying to figure out if a value is in the current context.

Example:

{% debug %}

extends
This tells the template engine that the template is the child of another template. All
the blocks in this template will be "carried up" into the parent.

Usage note:

It requires a string or template variable argument that indicates what
template is being extended.

Example:

{% extends "section_base.html" %}
{% block content %}
 I am a child template.
{% endblock %}

filter
This is used to apply a template filter to a section of content between the tags.
Template filters are traditionally applied to template variables, but this allows you to
run them on a whole section of content, including multiple variables.

Usage notes:

It requires an argument telling the tag what filter to apply.
You can chain filters together using a pipe.

•

•

•

Using the Built-In Tags and Filters

[102]

Example:

{% filter upper %}
 everything between the tags will be upper-cased.
 {{ myvar1 }} is upper-cased, so is {{ myvar2 }}.
{% endfilter %}

You can chain filters together:

{% filter upper|truncatewords:2 %}
 you won't see more than two words, but they
 will be upper-cased!
{% endfilter %}

firstof
This returns the first variable that isn't False.

Usage notes:

It requires at least one template variable as an argument. (If you pass as a
string, there's no way for it to return False, so that doesn't make sense to do.)
If all of your arguments are False, the tag doesn't return anything.
You can pass a string as a last argument and it will be used as a default value
if none of the preceding arguments are returned.
Though it would seem like you could, you cannot pass a list as a single
argument and have it evaluate the values of the list; the tag will return the
whole list.

If we set these values in our view:

val1 = None
val2 = 'Something'

We can use the firstof tag to return them:

{% firstof val1 val2 "default" %}

Because val1 is None and will return False, the value Something will be returned.

for
This loops through an iterable variable, most commonly a list.

•

•

•

•

Chapter 4

[103]

Usage notes:

It requires an iterable argument.
It requires an endfor closing tag.
You can loop through a variable in reverse order by passing the
argument reversed.
You can unpack the iterated variables as you loop through them (see the
example that will follow).
The forloop variable gives you access to information about the current loop
(current position, if the current item is first/last, number of iterations until
the end).

Example:

{% for item in item_list %}
 {{ item }}
{% endfor %}

If you want to loop through a list backwards, you can pass the reversed argument:

{% for item in item_list reversed %}
 {{ item }}
{% endfor %}

If the values in your iterable can be unpacked, you can do so and use the values. This
is useful for looping through a dictionary and getting both the key and the value:

{% for key, val in mydict %}
 The current key is {{ key }},
 the value is: {{ val }}
{% endfor %}

forloop
A forloop variable is automatically created when you are looping through an
iterable. You can use its properties to get information about the loop:

forloop.first: This returns True if this is the first iteration of the loop.
forloop.last: This returns True if this is the last iteration of the loop.
forloop.counter: This shows the current iteration of the loop (that is, where
you are in the loop).
forloop.revcounter: This shows the number of iterations until the end of
the loop.
forloop.parentloop: This shows information about the parent loop in a
nested loop.

•
•
•

•

•

•

•

•

•

•

Using the Built-In Tags and Filters

[104]

Here's an example of how to use the forloop variable:

{% for item in mylist %}

 {% if forloop.first %}
 # of items: {{ forloop.revcounter }}

 {% endif %}

 {{ item }}{% if not forloop.last %},{% endif %}

{% endfor %}

If the value of mylist was equal to ['eggs', 'milk', 'butter', 'salt'], the
resulting output of this example would look like this:

of items: 4

eggs, milk, butter, salt

We use the last property to make sure that we don't have a trailing comma in
our output.

The properties counter and revcounter are "1-indexed", meaning
the first value is 1. If you want the first value to be 0, use the properties
counter0 and revcounter0 instead.

if
This executes a section of template code if the argument is True.

Usage notes:

"true" passes for multiple conditions: Boolean True, a non-None variable,
and a non-empty list.
There is no 'else-if' functionality, but you can nest your if tags.
You can use and and or to perform multiple evaluations.
You can use not to check negative equality.
It requires an endif closing tag.

The "true"-ness of a value can be confusing, so let's break it down. We'll say an item
"passes" when the if tag evaluates it as true:

Boolean values:

myvalue1 = True # Passes
myvalue2 = False # Does not pass

•

•

•

•

•

Chapter 4

[105]

String values:

myvalue1 = 'Good book' # Passes
myvalue2 = '' # Does not pass

Non-None values:

myvalue1 = None # Does not pass

List values:

myvalue1 = [1,2,3] # Passes
myvalue2 = [] # Does not pass

Use and to test that multiple values are all true:

{% if myvalue1 and myvalue2 %}
 passes if both variables are true
{% endif %}

Use or to test that multiple values have at least one item that is true:

{% if myvalue1 or myvalue2 %}
 passes if one of the variables is true
{% endif %}

Use not to check if the value does not evaluate to true:

{% if not myvalue1 %}
 There was no value.
{% endif %}

ifchanged
This tests to see if a variable's value has changed since the last iteration through a
loop. This tag is commonly used when iterating through a list of objects and you
want start a new section of output when a value changes.

Usage notes:

It requires a template value argument representing the value to compare
between loops.
You can check to see if multiple values have changed by passing
multiple arguments.
You can use an else tag to perform an action if the value hasn't changed.
It also requires a closing endifchanged tag.

•

•

•

•

Using the Built-In Tags and Filters

[106]

For example, if you have a class schedule and you want to split it up by rooms, you
could do something like this:

{% for course in course_list %}

 {% ifchanged course.location %}
 <h1>{{ course.location }}</h1>
 {% endifchanged %}

{% endfor %}

On the first iteration through the list, course.location will register as changed
because there was no preceding value to check. So, you don't have to worry about
checking if it's the first time through the list.

If you want to perform an action when multiple items have changed, you can pass
more than one argument to the tag:

{% for course in course_list %}

 {% ifchanged course.campus course.name %}
 <h1>{{ course.name }}</h1>
 {% else %}
 {{ course.name }}
 {% endifchanged %}

In this example, the course name will be in header tags if both the campus and name
are different than the previous iteration.

For this technique to be effective, you'll want to make sure the lists
are ordered by the property being compared. If you don't, you'll have
multiple headers for the same value.
See the regroup tag for similar functionality. We'll cover that tag shortly.

ifequal
This checks to see if the two arguments are equal. One important catch with this
tag is that you can't check if a value is equal to True or False. You can only test the
equality of values. If you need to check True or False, use the if tag instead.

Usage notes:

It requires two arguments to compare, one of which may be a string.
(It wouldn't make sense to compare two strings.)
Both arguments can be template variables.

•

•

Chapter 4

[107]

You can use else to perform an action if the two values are not equal.
It requires a closing endifequal tag.
You can test if a value is equal to None.

Example:

{% ifequal course.name 'Algebra' %}
 This is algebra.
{% else %}
 This is not algebra.
{% endifequal %}

ifnotequal
This is exactly like the ifequal tag, but checks if the arguments do not equal
each other.

include
This is used to load a template into the current template and render it with the
current context.

Usage notes:

It requires a single string or template variable argument that tells the tag
what template file to load.
The path to the template file is not relative to the current template.
Any template variables in the included file are rendered with the
current context.

Example:

{% include 'sports/stats.html' %}

In the preceding example, the file sports/stats.html is relative to the TEMPLATE_
DIRS setting. So if the include tag was used in the sports/news.html file, you still
have to tell it to look in the sports directory.

You can also use a template variable as the argument to the include tag so that you
can dynamically include files.

•

•

•

•

•

Using the Built-In Tags and Filters

[108]

load
This loads a custom tag or filter library.

Usage notes:

Django looks for directories called templatetags, when it initializes and
searches through them, when the load tag calls a library.
You don't have to specify the directory a library exists in.
You don't put quotes around the library name.
You can pass multiple tag libraries as arguments.

Example:

{% load blogs_extratags %}

You can pass multiple arguments to the load tag, putting a space between each:

{% load blogs_extratags news_extratags %}

now
This displays the current date/time stamp. You can customize it using defined
format strings.

Usage notes:

It requires a string argument to define the format of the output.
There are a few dozen format strings available, and we'll briefly look at a few
of them. (See the online documentation for a full reference.)
To add literal values into the format string, prefix it with a backslash.

Here are a few string values and what they return:

Y: Four-digit year
l: Day name (in a long format such as Monday, Friday, etc.)
f: Time in hours and minutes (such as 4:15)
F: Month name (in a long format such as January, November, etc.)
j: Day of the month without leading zeros
S: Day of the month suffix (such as "rd", "th", and so on)

For example, Y will return the current year with four digits:

The current year is {% now "Y" %}.

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[109]

You can use multiple strings inside the formatting argument. Notice the comma that
is added to the output as a string literal:

Today is {% now "l, F jS" %}

This example displays something like this:

Today is Sunday, August 31st

If you want to include a literal string value that clashes with one of the built-in
formatting characters, put a slash in front of it:

Today is the {% "now jS o\f F" %}

This example displays the following:

Today is the 31st of August

If we didn't put a slash in front of f, the template would think we wanted the value
that f returns, which is the time in hours and minutes:

Today is the 31st o8:16 August

There are dozens of formatting characters available. Consult the online Django
documentation for a full list.

regroup
This takes a list of objects and groups them by a common attribute. This is one of the
trickier tags to work with.

Usage notes:

It requires three arguments: the name of the list to group, the attribute to
group by, and the list that will be returned by the tag.
The returned value is a list of dictionaries with the keys list and
grouper. list is the resulting list and grouper is the attribute that list
was grouped by.

Let's use a list of academic courses as an example. In our view, we set these values:

course_list = [
 {'name': 'Art', 'instructor': 'Skinner'},
 {'name': 'Physics', 'instructor': 'Skinner'},
 {'name': 'Math', 'instructor': 'Hoover'},
 {'name': 'Astronomy', 'instructor': 'Crabapple'},
 {'name': 'Gym', 'instructor': 'Chalmers'},
 {'name': 'Physics', 'instructor': 'Hoover'},
]

•

•

Using the Built-In Tags and Filters

[110]

Let's return the list of courses grouped by the instructor's name. First, we'll call the
regroup tag with the proper arguments:

{% regroup course_list by instructor as regrouped_courses %}

In this example, course_list is the original list we're working with, instructor is
the attribute from the list we want to group by, and regrouped_courses is the value
that will be returned by the regroup tag.

Next, we'll use a for loop to iterate over the regrouped course list that was returned
in the previous example:

{% for item in regrouped_courses %}

<h1>{{ item.grouper }}</h1>

{% for course in item.list %}
 {{ course.name }}

{% endfor %}

{% endfor %}

Here's the part that can seem tricky. Each element of regrouped_courses is a
dictionary with two keys:

grouper
list

In this example, item.grouper returns the instructor name (that's the item we
regrouped by in the previous example). item.list is the list of grouped objects
related to the grouper.

As with the ifchanged tag, you must start with sorted data to get reliable results.
The most efficient way is to specify the proper ordering when retrieving results with
the database API, but there is a dictsort filter that can be used to sort dictionaries
from within the template. We covered that filter earlier in the chapter.

spaceless
This removes the whitespace that surrounds and is between HTML tags, including
tab and newline characters.

Usage notes:

It requires a closing endspaceless tag.
It doesn't remove whitespace from inside tags, but only between tags.

•

•

•

•

This material is copyright and is licensed for the sole use by Francisco Palm on 31st December 2008
Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Chapter 4

[111]

Example:

{% spaceless %}

 <p>Django Rules</p>

{% endspaceless %}

This example returns the following output:

<p>Django Rules</p>

ssi
Similar to the include tag, this tag brings in the contents of the given page into the
current template.

Usage notes:

It requires an argument with absolute path to the file that you wish
to include.
You can specify an optional argument parsed to parse the included file with
the current context.
You must have the path to be included specified in the
ALLOWED_INCLUDE_ROOTS tuple in your settings.py file.

Though this tag looks very similar to the include tag, there are two key differences:

The ssi tag does not parse the contents of the file unless you specify the
optional argument parsed (see the example ahead).
The file to be included is independent of your TEMPLATE_DIRS setting. The
tag takes an absolute file system path.

Example:

{% ssi '/projects/mycompany/templates/menu.html' parsed %}

templatetag
This allows you to write out the characters used to work with template tags.

Usage note:

It requires a string argument specifying the characters you wish to output.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Francisco Palm on 31st December 2008
Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Using the Built-In Tags and Filters

[112]

The immediate usage of this is not obvious until you try to write something like this
in your template:

In order to load your tag library, use this command:
{% load mytag %}

If you tried to write this, you'd get a template syntax error that the tag 'mytag'
couldn't be opened, or if it were a valid tag, it would simply load the library and
return nothing.

If you want to write out a literal output such as the example above, use the
templatetag tag with the appropriate arguments:

In order to load your tag library, use this command:
{% templatetag openblock %}
load mytag
{% templatetag closeblock %}

The available arguments and characters they output are:

openblock: {%
closeblock: %}
openbrace: {
closebrace: }
opencomment: {#
closecomment: #}
openvariable: {{
closevariable: }}

Now when the template is rendered, {% template openblock %} will be replaced
with {% and {% template closeblock %} will be replaced with %}.

url
This is used with a reverse URL matching to return a URL path without having to
hardcode a URL into your template.

Usage notes:

It requires an argument specifying a URL pattern to match.
An optional second argument takes a comma-separated list and inserts the
items as needed into the URL (see the example overleaf).
You must specify all the arguments a URL configuration is expecting, such as
ID and slug values.

•
•
•
•
•
•
•
•

•
•

•

This material is copyright and is licensed for the sole use by Francisco Palm on 31st December 2008
Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Chapter 4

[113]

For example, if the list of press releases on your site is located at /press/list/, you
don't want to hardcode that URL into your templates in case it changes in the future.
Instead, you can use the url tag to "look up" the appropriate URL pattern and output
it into your template.

Suppose you have a URL configuration like this:

url(r'detail/(?P<pid>\d+)/$', 'press.views.detail',
 name='press_detail')

You can use the url tag to find the URL configuration associated with the press
detail view:

{% url press.views.detail 4 %}

This example will return this output:

/press/releases/4

If you are using named patterns in your URL configuration, you can specify the
name of the configuration instead of the view as the argument to the tag. You will
get the same result as above with this example:

{% url press_detail 4 %}

It's a good idea to use named URL patterns if you are going to use the url tag in case
you have multiple URL configurations that point to the same view.

widthratio
This computes the ratio of a given value to a maximum value. This tag was made
for creating bar charts (hence the "width" part of the name), but it can be used to
calculate percentages.

Usage notes:

For creating bar charts, the tag requires three arguments: a given value, the
total max value, and the length of the bar in the chart.
For creating percentages, the tag also requires three arguments: a given
value, the max value, and 100 (you multiply by 100 to get the percentage
of 100).

For example, when creating a chart, if the given value val is 50, the highest value
maxval is 100, and the length of the bar is 200 pixels, you'd write the tag like this:

•

•

This material is copyright and is licensed for the sole use by Francisco Palm on 31st December 2008
Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Using the Built-In Tags and Filters

[114]

The example would output the following because 50/100 * 200 = 100 pixels:

To calculate a percentage, the syntax is similar. Let's say we're figuring out
the percentage of people that voted "YES" on a poll. If 50 people voted "YES"
(represented by yes_votes), and 200 people voted (represented by total_votes),
then we'd calculate it like this:

Yes votes: {% widthratio yes_votes total_votes 100 %}

In this example, the output would be 25%. (50 "YES" votes / 200 total votes ' 100)

with
This takes a computed variable and stores it as a template variable. If you have
a value that needs to be computed and used multiple times in a template, you
can compute it once and store it, reusing it as necessary without having to calculate
it again. This is beneficial if the computation of the value is processor or
memory intensive.

Usage notes:

It requires two arguments: the computed value and the name under which to
store it.
The stored variable is only available within the with and endwith tags.
It requires the closing endwith tag.

This tag is also useful if you need to run a template filter on a variable, as you only
have to do it once.

Example:

{% with myname|upper as myuppername %}
 <p>Hello, I'm {{ myuppername }}.</p>
 <p>{{ myuppername }} welcomes you.}}</p>
{% endwith %}

This example is trivial, but if you have a template variable that requires a database-
intensive lookup or expensive filter (such as an intensive regular expression on a
long text field) it can help your performance.

•

•

•

This material is copyright and is licensed for the sole use by Francisco Palm on 31st December 2008
Campo Claro Res Campo Sol Torre C PB 03, , Merida, Merida, 5115

Chapter 4

[115]

Summary
This was a very long chapter, but should serve as an important reference as you
begin using the built-in tags and filters in your templates. We reviewed all the tags
and filters that come with Django and explored an example of the usage and syntax
for each.

In the next chapter, we'll look at how to load and inherit templates in your application.

Loading and Inheriting
Templates

In order to use our templates, Django needs to know how we want to load them
from the filesystem and where the template files can be found. In the first chapter we
briefly looked at how this worked in order to get some examples working. So now
let's take a closer look at how the system works.

In this chapter we will:

Explore the configuration options to set up the template system
Learn the different methods for loading templates
Create templates for error handling
Extend templates using inheritance
Create parent and child templates
Create a strategy for setting up templates in your projects
Work with template includes

Configuring the template system
There are a number of configuration settings for your mycomapny/settings.py file,
but there are only four main ones we need to work out with to configure the Django
template system: DEBUG, TEMPLATE_DEBUG, TEMPLATE_LOADERS, and TEMPLATE_DIRS.

DEBUG

The DEBUG setting tells Django to run in debugging mode, enabling diagnostic
information to be displayed in the browser when errors occur. These error messages
can be very helpful for tracking down errors and bugs.

•

•

•

•

•

•

•

Loading and Inheriting Templates

[118]

Here's how it should look in your mycompany/settings.py file:

DEBUG = True

TEMPLATE_DEBUG = True

When debugging is turned off, errors will be displayed using a friendly error
template instead of showing the diagnostic information that you wouldn't want
general users to see. By default, Django hides the most sensitive settings. But there
are still bits of information you probably don't want the users to see.

Here's an example of debugging output:

Caution: DEBUG also controls extra SQL logging and it can be a real
memory hog when enabled. Debugging should be disabled in production
applications for both performance and security.

TEMPLATE_DEBUG

The TEMPLATE_DEBUG setting enables the template debugging mode where extra
detail will be displayed for template syntax errors.

Chapter 5

[119]

Here's how it should look in your mycompany/settings.py file:

DEBUG = True
TEMPLATE_DEBUG = DEBUG

Since the template debugging information is only shown when DEBUG is True, both
settings have to be True to take advantage of this setting.

The Template error section in the following example is only shown when
TEMPLATE_DEBUG is equal to DEBUG:

TEMPLATE_LOADERS

The TEMPLATE_LOADERS setting is a tuple that tells Django how you are going to load
templates, either from specified directories on the filesystem, from subdirectories
under each of your applications, or from Python Eggs. We will look at the differences
later in the chapter.

Loading and Inheriting Templates

[120]

A tuple is a Python native datatype similar to a list. But once defined,
the tuple cannot have items added to it, removed from it, or have its
values changed. They generally offer better performance than lists. You
can find more information about tuples and Python datatypes at
www.python.org/docs or www.diveintopython.com.

Here's how it should look in your mycompany/settings.py file:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
'django.template.loaders.eggs.load_template_source',
)

TEMPLATE_DIRS

The TEMPLATE_DIRS setting is a tuple that specifies where on the filesystem the
template files are found. You should always end the path with a trailing slash.

Here's how it should look in your mycompany/settings.py file:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

If you are using a Windows machine, you need to use Unix-style forward slashes in
your paths:

TEMPLATE_DIRS = (
 'c:/projects/mycompany/templates/',

)

As we discussed in Chapter 1, this is one of the few settings that need to
be changed if you're using a Windows machine to develop your code.

Finding a home for the template files
Template files can be located anywhere on the filesystem, provided the web server
has the appropriate permission to read the directory and files within. It's a common
practice in Django development to make a directory for your templates with
subdirectories for each of your application's templates.

In our ongoing example project, we created a directory at mycompany/templates
and created a press subdirectory underneath it.

Chapter 5

[121]

For some projects with many developers, it might make more sense to
keep your template files in a completely separate location away from your
code, such as /projects/html. This way, you can easily set special
permissions on these files or give template authors a separate place on the
filesystem to work, which keeps them completely out of your code.

Working with the template loaders
Django's template loaders ease the burden of working with template files on the
filesystem. You just tell the loader which template file to use and the rest is taken
care of. Before we look at the actual loaders, let's look at why we want to use them.

Loading templates manually
If you didn't use a loader, you'd have to write a slew of Python code when working
with template files. In order to load a file manually, you'd have to:

Check for the existence of the template file
Check that you have permissions to open the template file
Code exception handling if the file doesn't exist or you can't read it
Write open(), read(), and close() methods on the file handle every time
you want to use it
Pass the file contents into the template loader

Not only is this tedious, it's boring, messy, and error-prone. Consider these two
code samples:

Without template loader:

try:
 f = open(os.path.join(settings.TEMPLATE_DIRS[0]),
 'press/demo.html')
 data = f.read()
 f.close()
except IOError, e:
 return HttpResponseServerError('Error Loading Template')

t = Template(data)
return HttpResponse(t.render(c))

•

•

•

•

•

Loading and Inheriting Templates

[122]

With the template loader:

t = loader.get_template('press/demo.html')
return HttpResponse(t.render(c))

The template loader provides a clean, consistent, and common way to load templates
that also handles the various errors that could happen.

Choosing a template loader
There are three different types of loaders available to our projects, allowing us to get
our template files in different ways:

Load from specified directories on the filesystem
Load from the application directories
Load from Python Eggs

When you first create your project, all three loader types are made available in the
settings.py file:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
'django.template.loaders.eggs.load_template_source',
)

We saw this code snippet at the beginning of the chapter when talking about the
TEMPLATE_DIRS setting.

The eggs loader is commented out by default. In practice, it's rarely
used and you can safely remove it from the tuple if you aren't planning
to use it.

Using the filesystem loader
The filesystem loader is the most common way to load templates. It uses the paths
specified in the TEMPLATE_DIRS setting to find your template files. Let's look at an
example using our ongoing project.

In the mycompany/settings.py file, make sure your TEMPLATE_DIRS tuple is
pointing to the templates directory:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

•

•

•

Chapter 5

[123]

In the mycompany/press/views.py file, look at the loader.get_template call:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)

 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Django will use the path from the TEMPLATE_DIRS setting joined with the argument
to get_template to figure out that the template is located here on the filesystem:

/projects/mycompany/templates/press/detail.html

The TEMPLATE_DIRS setting can have specific multiple filesystem paths for templates.
(In most applications, you probably will only have one or two paths.) The loader will
try each of the paths listed when looking for a template, using the first one it finds.

Using the application directories loader
You can use the app_directories loader to load templates from subdirectories
underneath your individual application directories. The template system looks
for directories called templates under each of your applications listed in the
configuration setting INSTALLED_APPS in your mycompany/settings.py file.

For example, in our application at mycompany/press, the app_directories
loader would look for a folder called mycompany/press/templates. When we
tried to load the template in our view above, Django would try to find our template
in this directory:

/projects/mycompany/press/templates/detail.html

To maximize the performance, Django looks through all the applications during
initialization and caches a list of which apps have subdirectories called templates.
The only performance penalty will be on the initial startup. After that, Django will
use the cached list of directories when looking for templates.

The app_directories loader doesn't even look at the
TEMPLATE_DIRS setting.

Loading and Inheriting Templates

[124]

Using the app_directories loader is useful when you are planning to write an
application that is shared with others or becomes part of a library. In those cases,
the templates are distributed along with the application and it "just works" out of
the box.

The disadvantage to this approach is that your template files are spread throughout
your project in individual application directories and this makes maintenance more
difficult. If you're not planning to distribute or reuse your application in multiple
sites, you probably will find it's better to use the filesystem loader.

Caution: In case you are thinking "I'll never use the app_directories
loader, I think I'll just take it out…", be aware that Django's admin
application needs it to load its default templates.

About the eggs template loader
The eggs loader is commented out by default and is not in widespread use. It's made
for application authors who share their applications as Python Eggs. Similar to the
app_directories loader, you can put your template files inside your distributable
application and the loader will look inside the egg (usually nested deep under the
Python folder on your system) for the template.

With its extremely specific appeal, we're not going to spend time covering this topic.
Just know that it is one of the available template choices and it's there if you need it.

Using the loaders together
Because you can specify more than one loader type, Django will try them in the order
you specified in the TEMPLATE_LOADERS setting. It's common practice to use both the
filesystem and app_directories loader types in projects.

This is how it is set up by default. We left it as is for our
mycompany/settings.py file:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
'django.template.loaders.eggs.load_template_source',
)

Using this setup, filesystem is the first loader type, and app_directories is the
second. If Django can't find the template in one of the paths in TEMPLATE_DIRS, it
will try looking in the folders underneath each application in your project.

Chapter 5

[125]

Loading your template files
Regardless of the loader type used, you will use one of two methods inside your
views to retrieve your templates: get_template or select_template.

The get_template method is what we have been using so far. It takes a single
argument, the name of the template to load, and it handles all the dirty work of file
locating, opening, reading, closing, and exception handling. You can also pass it the
subdirectory names in the argument:

t = loader.get_template('detail.html')
t = loader.get_template('press/detail.html')

The select_template method works just like get_template, but instead of taking a
single path to a template file, you pass it a list of file paths:

t = loader.select_template(['demo/override.html',
 'demo/press.html'])

The template loader will try each file path in the list until a match is found. If the file
is not found or is not valid, no exceptions are thrown. The template engine moves on
and tries the next file listed. This is a very important concept because it allows us to
override default templates on demand.

Hypothetically, if your model has a field called template_override, it allows you to
(optionally) specify a custom template on a per-record basis. When you retrieve the
data from your model, you can pass the value of that field as the first item in the list
to select_template like this:

m = Myobject.objects.get(id=1)
t = loader.select_template([m.template_override,
 'press/detail.html'])

In this code snippet, if m.template_override has no value (or specifies an invalid
template file), the loader will load the press/detail.html file.

Setting up the error handling templates
When Django encounters an error and needs to serve a 404 (Page Not Found) or
500 (Server Error) response, it looks for the files called 404.html and 500.html
(respectively) in the root of your templates directory. If you have more than one
directory in your TEMPLATE_DIRS setting, it will search each one in order until it
finds the required file.

Loading and Inheriting Templates

[126]

If it can't find the 404.html file, Django will serve a TemplateDoesNotExist error.
If it can't find the 500.html file, you'll get the most generic-looking error page your
web server provides.

If you have debugging enabled in your settings.py file, Django will
serve you a diagnostic error page and you won't see your 404.html or
500.html templates.

Creating the error templates
Let's add these error pages to our project. Create a new file called 404.html in the
mycompany/templates directory and add these lines:

<html>
<head>
<title>Page Not Found</title>
</head>
<body>
<h1>Page Not Found</h1>
</body>
</html>

Create a new file called 500.html in the mycompany/templates directory and add
these lines:

<html>
<head>
<title>Error</title>
</head>
<body>
<h1>An Error Has Occurred</h1>
</body>
</html>

Testing the error templates
To test our templates, we'll have to temporarily turn off debugging for our project.
To do this, edit your mycompany/settings.py file and set DEBUG to False:

DEBUG = False

Point your browser to the URL http://localhost:8000/badurl/ (or something
else that doesn't exist in our project), and you should see the output of your
404.html template.

Chapter 5

[127]

You can intentionally introduce an error into one of your project files (such as an
unindented line or misplaced character) if you want to test your 500.html template.

Make sure you set DEBUG back to True in your settings.py file when you are done
testing these templates.

Breaking templates into reusable pieces
Up to this point, we have been working with template files that were self-contained.
This was good for explaining the theory behind working with templates, but in
reality your templates will share common parts with each other such as headers,
footers, and menus.

Typically, in web application development (regardless of the language or platform)
this is solved by dynamically inserting other files into your template (known as
"include" files in many systems). When a template is loaded, it "calls in" content
from various files and inserts it in the appropriate places. This approach does not
lend itself well to complex setups where your included file needs to inject content
into multiple places in your base template. (It can be done, but it's typically not
very simple.)

Django gives us a very flexible way to break up our templates, which solves the
challenges of complex include files, called template inheritance. Instead of filling
holes in your base template with the content from included files, you take your
current template and put its contents into the holes in a parent template (the reverse
of an include file).

Extending templates with inheritance
With template extension, you create labeled "blocks" in your parent templates that
get filled with content from child templates. Let's illustrate this with a diagram:

base.html
(parent)

page.html
(child)

Loading and Inheriting Templates

[128]

Notice that the arrow is pointing from the child template to the parent template. In
Django templates, you start from a child template and work up into parent templates.
In this example, the view would load and parse page.html, and the rendered output
from page.html would go into base.html via logic in the template file.

Looking at the diagram, base.html (the parent template) has a "hole" where the
output of page.html (the child template) goes. The hole in the parent is labeled
with a block tag so that it can be identified by the child. The label tells the template
engine, "This area can be replaced by content in a child template if you have it."

Using the block tag
In the diagram we say that page.html extends base.html. To accomplish this, we're
going to make a hole in base.html that will get filled with the contents of page.
html. We'll use a template tag called block to define where that hole is and what it
is called.

The block tag takes a single argument, the name of the block. The template
engine uses this name to match up a block in a child template with a block in the
parent template. Block tags require a matching tag endblock to define the end of
the content.

The important thing to remember is that there are two block tags, one in the child
and one in the parent. Anything in the child's block tag gets put into the parent's
block tag. We'll look at some basic examples here and then add these concepts to our
press application to bring it all together.

Here's an example of what the block tag looks like:
{% block content %}
 This is my page content.
{% endblock content %}

You don't have to use the name of the block in the endblock tag, but it's
a good idea to label it to keep things identifiable.

The base.html file is the parent template and looks like this:
<html>
<head>
<title>Press Release</title>
</head>
<body>
{% block content %}{% endblock content %}
</body>
</html>

Chapter 5

[129]

Notice the area under the <body> tag where we put the block tag called content.
We're telling the template engine that child templates can override the contents of
this area. When the engine finds a block called content in a child template, it will
stick the contents of that block in this area.

The page.html file is the child template and looks like this:
{% extends "base.html" %}

{% block content %}
 This is the body of my press release.
{% endblock content %}

Notice that this template also has a block tag in it labeled content. In fact, that's
really all this template has except for the extends tag (which we'll get to soon).

I've added in some html comments for clarity. When we look at the rendered output,
we'll use them to see where the contents of the block start and end.

When the page is rendered, the source looks like this:
<html>
<head>
<title>Press Release</title>
</head>
<body>
This is the body of my press release.
</body>
</html>

How did this work? Let's break it down. In our parent template (base.html) we left
a hole in the middle that we expected to be filled by a child template (page.html).

That hole was defined as a block called content that held the body of our press
release. The contents of the block labeled content were carried up to the template
and put in the matching hole labeled content.

Extending templates
When the template engine renders the child template, the first tag found in the
template is the extends tag. This tells the template engine that this template is a
child of another template.

Loading and Inheriting Templates

[130]

From our previous example of page.html file, notice the first line uses the
extends tag:

{% extends "base.html" %}

{% block content %}
 This is the body of my press release.
{% endblock content %}

The extends tag takes a single argument specifying who the parent of this template
is. In this example, base.html is the parent of page.html.

Here are a couple of important things to keep in mind about using the extends tag:

In a child template, the extends tag should be the first tag in the file.
The extends tag loads templates in the same way the function
get_template does in the view. It's relative to the TEMPLATE_DIRS setting
and can include subdirectories.
If you try to extend a template that doesn't exist, you'll get an error.
When writing your endblock tag, you don't have to put the name of the
block, but it's a good idea to put it in for clarity.
We specified a string of "base.html" as the argument to the tag, but you're
not limited to strings. You can pass variables to your template to dynamically
extend templates.

Because Django knows we will be using this template to extend another, it grabs all
the blocks we defined and goes looking for the template we are going to extend. This
is important because anything outside the block tags will be lost when the template
is inherited into its parent!

For example, suppose we added an extra line to our page.html file before the
content block:

{% extends "base.html" %}

Press Release

{% block content %}
This is the body of my press release.
{% endblock content %}

The words "Press Release" are not enclosed in any block tags. When the template
engine parses this template file, these words will be lost because we didn't specify
where we want them to go in the parent.

•

•

•

•

•

Chapter 5

[131]

Adding inheritance to the press application
Let's incorporate these new concepts into our press application.

In the mycompany/templates/press directory, add a new file called base.html and
add these lines:

<html>
<head>
<title>Press Releases<title>
<style type="text/css">
body {
 text-align: center;
}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
</style>
</head>
<body>
<div id="container">
<div class="header">
<h1>MyCompany Press Releases</h1>
</div>

{% block content %}{% endblock content %}

</div>
</body>
</html>

This file will serve as the parent template and acts like a shell that we will put
content into.

Edit the mycompany/templates/press/detail.html file, replacing the contents
with these lines:

{% extends "press/base.html" %}

{% block content %}

<h2>{{ press.title }}</h2>
<p>

Loading and Inheriting Templates

[132]

Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>

{% endblock content %}

What we have done is taken our press release detail template and broken it into
pieces. The markup that controlled the layout of the page was put into the base.
html file, and the handling of the "guts" of the page where the press release details
are rendered was kept in detail.html and surrounded with a block tag.

Point your browser to the URL http://localhost:8000/press/detail/1/, and
you should see something like the following:

We've used a block tag called content in our child template and a corresponding
block tag in our parent template to put the press release details into the base
template. We still have a generic title "Press Releases" that should be replaced with
the title of the press release. To do this, we need to create a second block in our
parent template.

Using multiple block tags
To get our title into the parent template, we'll create a second block tag called title
that our child templates can use to pass a page title. You can define multiple blocks
inside a template as long as they have different names.

Chapter 5

[133]

In the mycompany/templates/press/detail.html file, add a new block tag called
title to the top, underneath the extends tag and before the block content tag:

{% extends "press/base.html" %}

{% block title %}
 {{ press.title }}
{% endblock title %}

In the mycompany/templates/press/base.html file, edit the <title> tag to use our
new block:

 <title>{% block title %}{% endblock title %}<title>

Point your browser to the URL http://localhost:8000/press/detail/1/, and
you should see the title of the press release in the browser window's title bar.

Adding template inheritance to our press
release list
Since we've already split up our press release detail template, we should do the same
to our press release list page.

Edit the mycompany/templates/press/list.html file, replacing the contents with
these lines:

{% extends "press/base.html" %}

{% block title %}
 All Press Releases
{% endblock title %}

{% block content %}

<h2>All Press Releases</h2>

 {% for press in press_list %}

 {{ press.title }}

 {% endfor %}

{% endblock content %}

Loading and Inheriting Templates

[134]

Point your browser to the URL http://localhost:8000/press/list/ and you
should see something similar to this:

By splitting our templates into pieces, we're able to reuse the shell of the page in
multiple press release pages, saving us work if we decide later to change the look of
the page.

Inheriting from multiple child templates
We've taken the press release section of our project and defined a base template that
acts as a parent template, and two child templates that can extend the base template. In
a real-world project, we'd take this one step further and create another parent template
for use site-wide. With this setup, we'd have a site-wide base template, a section-wide
base template, and child templates that inherit from the section-wide base.

Here's an illustration of how that would look:

base.html
(parent)

section_base.html
(child)

page.html
(child)

Let's add this three-level setup to our project. We'll have to make three changes: add
a site base template, change the section base template to extend the site base, and
move site-wide code from the section base to the site base.

In the mycompany/templates directory, add a new file called site_base.html,
adding the following lines:

<html>
<head>
<title>{% block title %}{% endblock title %}<title>

Chapter 5

[135]

<style type="text/css">
body {
 text-align: center;
}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
</style>
</head>
<body>
<div id="container">
<div class="header">
<h1>
{% block header %}{% endblock header %}
</h1>
</div>

{% block site_content %}{% endblock site_content %}

</div>
</body>
</html>

Notice that we've added a new block called header for the header text for the page
and changed the name of the main block in the body to site_content.

Edit the mycompany/templates/press/base.html file, replacing the contents with
these lines:

{% extends "site_base.html" %}

{% block header %}
MyCompany Press Releases
{% endblock header %}

{% block site_content %}

{% block content %}{% endblock %}

<hr/>
For questions regarding press releases, please contact John Doe at
555-5555.

{% endblock site_content %}

Loading and Inheriting Templates

[136]

Point your browser to the URL http://localhost:8000/press/list/ and it
should look something like this:

We've added a section-specific footer to our press release pages (call John Doe) by
putting it inside the site_content block. In our detail.html template, the body of
the press release is put into a block called content, which is then put into the block
called site_content in base.html, its parent template.

In our detail.html template, we defined a block called title to hold our page title.
Notice that we didn't do anything with it in base.html. Instead, it's carried all the
way to our site_base.html file. It's perfectly acceptable to define blocks that "jump"
up the inheritance tree.

Appending to blocks
Up to this point, we've been filling blocks with content from child templates. What
if you wanted to leave any default content in that block and add to it the contents of
the child template?

To do this, we use a special variable called {{ block.super }}. This variable
holds whatever the block contains before being overwritten by the block from a
child template.

In our mycompany/templates/site_base.html file, let's add a default page title:

<title>{% block title %}MyCompany{% endblock title %}</title>

We want to leave the word "MyCompany" in the title of the page and append more text
to it, and so we use the {{ block.super }} variable in our child template.

Chapter 5

[137]

Edit the contents of the title block in the mycompany/templates/press/
detail.html file:

{% block title %}
{{ block.super }}: {{ press.title }}
{% endblock title %}

When the page is rendered, the page title will be output with "MyCompany:" in front
of the page title.

Template strategy
There is no "magic number" or "correct" number of template files to have in your site.
Every project's needs are different; some sites will have just a couple of templates,
others may have dozens.

A good rule of thumb is that if you are repeating any part of your template on more
than one or two pages, it's a good candidate to be put in its own file. This will save
you time and effort down the line when you have to maintain these files by only
having to make a change in one place.

With some planning, you can make your templates very flexible by creating blocks in
your templates that you can use in child templates when the need arises.

Creating content placeholders
One thing you'll probably want to do in your templates is create placeholders for
JavaScript and CSS that can be supplied by your child templates.

When you define a block in a parent template, you are not required to use
it in a child template. If you don't, the template engine will just return an
empty block.

Extra JS
By defining an extra_js block, you can add additional page-specific JavaScript
in a child template. In your mycompany/templates/site_base.html file, add the
highlighted lines:

<html>
<head>
<title>{% block title %}MyCompany{% endblock title %}<title>
<style type="text/css">
body {

Loading and Inheriting Templates

[138]

 text-align: center;
}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
</style>
<script>
{% block extra_js %}{% endblock extra_js %}
</script>
</head>

Extra style
Like the extra_js block we created above, let's add an extra_style block. If you
have CSS that isn't a part of a library used on every page, you can specify it in a
child template. In your mycompany/templates/site_base.html file, add the
highlighted line:

<html>
<head>
<title>{% block title %}MyCompany{% endblock title %}<title>
<style type="text/css">
body {
 text-align: center;
}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
{% block extra_style %}{% endblock %}
</style>
<script>
{% block extra_js %}{% endblock extra_js %}
</script>
</head>

Chapter 5

[139]

Extra head content
Finally, create an extra_head block before the closing </head> tag. This will give
you the flexibility to inject any additional markup you might need in the head of the
document, such as meta or script tags and blocks. In your mycompany/templates/
site_base.html file, add the highlighted line above the closing </head> tag:

{% block extra_head %}{% endblock %}
</head>

Extra body tag attributes
This clever block can save you headache if you need to run a specific JavaScript
function on the page load or unload. In your mycompany/templates/site_base.
html file, edit the body tag to look like this:

<body {% spaceless %}
 {% block extra_body %}{% endblock extra_body %}
 {% endspaceless %}>

You don't need to put in line breaks; this was done to fit the format here.
The spaceless tag is important as it will remove any line breaks you
might accidentally introduce into the tag. Some web browsers choke
when your body tag has line breaks in it.

For example, if you're using a Google map on one of your pages and need to
make sure a function is called when the body loads, you can specify it like this
in a template:

{% block extra_body %}
 onload="initialize()" onunload="GUnload()"
{% endblock extra_body %}

When your page is rendered, it will look like this:

<body onload="initialize()" onunload="GUnload()">

With these extra blocks defined, you can add markup, script, and CSS as needed to
your site_base.html template. Here's how it looks when completed:

<html>
<head>
<title>{% block title %}MyCompany{% endblock title %}<title>
<style type="text/css">
body {
 text-align: center;

Loading and Inheriting Templates

[140]

}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
{% block extra_style %}{% endblock %}
</style>
<script>
{% block extra_js %}{% endblock extra_js %}
</script>
{% block extra_head %}{% endblock %}
</head>
<body {% spaceless %}
 {% block extra_body %}{% endblock extra_body %}
 {% endspaceless %}>

<div id="container">

Using include files
Though we saw the limitations of using include files earlier in this chapter, there
are times when they can be useful. If you have a piece of content that you need to
include in some child templates, it may not make sense to create extra parent/child
relationships just to drop in this content. Let's look at two options that Django
provides us to easily include content.

Using include
To take the contents of a template file and put it into another template, use the
include tag. Pass the tag a template file name to include just like you did with the
extends tag:

{% include "menu.html" %}

In this hypothetical example, the menu.html file will be loaded the same way other
templates are loaded by the template engine. The location of the file is relative to the
TEMPLATE_DIRS setting, and the file is parsed by the template engine using the same
context variables as the template that called it.

Chapter 5

[141]

Because the include files are also rendered with the context, you can use
template tags and variables in them.

If you attempt to include a file that does not exist, Django will raise a
TemplateDoesNotExist error.

Using SSI
Django offers an interesting alternative to the include tag, the ssi tag. (SSI stands
for Server Side Include, something that was commonly used in the early days of
web development.) At first glance, the ssi and include tags seem identical, but
there is a critical difference. The ssi tag takes a full filesystem path to the file and
doesn't work in conjunction with your TEMPLATE_DIRS setting.

The include tag uses the same syntax as extends. The file location is relative to the
TEMPLATE_DIRS setting in your settings.py file. The ssi tag allows you to include
any file from the filesystem, regardless of your TEMPLATE_DIRS setting.

{% ssi /home/scott/bio.html %}

Don't put quotes around the argument to the ssi tag. If you do, it won't
find the file and will return an error message into your template. It's odd
and seems inconsistent with the rest of Django, but that's how it works as
version 1.0. Perhaps it will change in the future versions.

Unlike the include tag, the ssi tag does not parse the contents of the included file
by default. If you want to use variables in the file, you'll need to specify parsed in
the call:

{% ssi /home/scott/bio.html parsed %}

If you don't provide the parsed argument and have variables in the file, they
will be treated as text and not replaced. (You'll end up with a markup such as
{{ variable }} in your output.)

In order to use the ssi tag, you have to specify an ALLOWED_INCLUDE_ROOTS
variable in your settings.py file:

ALLOWED_INCLUDE_ROOTS = (
 "/some/path/on/your/server/",

)

Loading and Inheriting Templates

[142]

If you try to use ssi to include a file in a directory that you haven't given permission
to with ALLOWED_INCLUDE_ROOTS, you'll see this error message displayed in the
output of your template when rendered:

[Didn't have permission to include file]

This error is different than the error when you try to include an invalid file. As we
saw with include, the engine will raise an error and your page will not display.
With ssi, you get this permission error written out in text as part of your template.

Summary
In this chapter, we looked at how the Django template system gets configured and
how template inheritance works.

Specifically, we looked at the following:

The three template loader types: the filesystem loader, the
app_directories loader, and the eggs loader
How the filesystem and app_directories loaders are configured, how
they work, and how they can be configured to work together
How Django calls templates for 404 and 500 errors
The order in which Django looks for templates when multiple loader types
are used
The difference between including and extending templates
How template inheritance works
How to use block tags in templates
Using block.super to append to blocks
Creating reusable site elements with inheritance and includes
Creating flexible templates by defining placeholder blocks in our
parent templates
How to use the include and ssi tags

In the next chapter, we will look at serving multiple templates from a single project.

•

•

•

•

•

•

•

•

•

•

•

Serving Multiple Templates
There are times when we will need to serve the same content in multiple ways
whether it's displaying a printable version of a page, creating festive themes for
holidays or promotions, or using a different set of templates for mobile devices.

There are a number of approaches to these tasks, and no one is "right". As we will
see, the best choice depends on the circumstances specific to your site and users.

In this chapter we will:

Consider the different approaches to tailoring output
Explore the challenges of serving content to mobile devices
Create printer-friendly output via URL parameters
Easily create site themes by overriding template files
Use a second domain name to serve mobile templates
Automatically redirect mobile users to an alternative URL

Considering the different approaches
Though there are different approaches that can be taken to serve content in multiple
formats, the best solution will be specific to your circumstances and implementation.

Almost any approach you take will have maintenance overhead. You'll have multiple
places to update when things change. As copies of your template files proliferate, a
simple text change can become a large task.

Some of the cases we'll look at don't require much consideration. Serving a printable
version of a page, for example, is straightforward and easily accomplished. Putting
a pumpkin in your site header at Halloween or using a heart background around
Valentine's Day can make your site seem timely and relevant, especially if you are in
a seasonal business.

•

•

•

•

•

•

Serving Multiple Templates

[144]

Other techniques, such as serving different templates to different browsers, devices,
or user-agents might create serious debate among content authors. Since serving
content to mobile devices is becoming a new standard of doing business, we'll make
it the focus of this chapter.

Serving mobile devices
The Mobile Web will remind some old timers (like me!) of the early days of web
design where we'd create different sites for Netscape and Internet Explorer.
Hopefully, we take lessons from those days as we go forward and don't repeat
our mistakes. Though we're not as apt to serve wholly different templates to
different desktop browsers as we once were, the mobile device arena creates special
challenges that require careful attention.

One way to serve both desktop and mobile devices is a one-size-fits-all approach.
Through carefully structured and semantically correct XHTML markup and CSS
selectors identified to be applied to handheld output, you can do a reasonable job of
making your content fit a variety of contexts and devices.

However, this method has a couple of serious shortcomings. First, it does not take
into account the limitations of devices for rich media presentation with Flash,
JavaScript, DHTML, and AJAX as they are largely unsupported on all but the
highest-end devices. If your site depends on any of these technologies, your users
can get frustrated when trying to experience it on a mobile device.

Also, it doesn't address the varying levels of CSS support by different mobile
devices. What looks perfect on one device might look passable on another and
completely unusable on a third because only some of the CSS rules were applied
properly. It also does not take into account the potentially high bandwidth costs for
large markup files and CSS for users who pay by the amount of data transferred.
For example, putting display: none on an image doesn't stop a mobile device from
downloading the file. It only prevents it from being shown.

Finally, this approach doesn't tailor the experience to the user's circumstances. Users
tend to be goal-oriented and have specific actions in mind when using the mobile
web, and content designers should recognize that simply recreating the desktop
experience on a smaller screen might not solve their needs. Limiting the information
to what a mobile user is looking for and designing a simplified navigation can
provide a better user experience.

Chapter 6

[145]

Adapting content
You know your users best, and it is up to you to decide the best way to serve them.
You may decide to pass on the one-size-fits-all approach and serve a separate mobile
experience through content adaptation.

The W3C's Mobile Web Initiative best practices guidelines suggest giving users
the flexibility and freedom to choose their experience, and provide links between
the desktop and mobile templates so that they can navigate between the two. It is
generally not recommended to automatically redirect users on mobile devices to a
mobile site unless you give them a way to access the full site.

The dark side to this kind of content adaptation is that you will have a second set of
template files to keep updated when you make site changes. It can also cause your
visitors to search through different bookmarks to find the content they have saved.

Before we get into multiple sites, let's start with some examples of showing
alternative templates on our current site.

Setting up our example
In Chapter 2, we worked with the Press Release application, configuring it to work
with both regular and generic views. Let's continue to use this application and
modify it to serve data in a few different formats. Also, at the end of Chapter 2 we
set up our application to serve the detail page with a generic view, saving us from
having to write a view to serve the detail of a press release.

Because we want to customize the output of our detail page based on the presence
of a variable in the URL, we're going to use our view function again instead of
the generic view. If you didn't delete it, the view function should still be in your
mycompany/press/views.py file. (It's included below in case you deleted it.)

Edit your mycompany/press/urls.py file, removing the generic view for the press
release detail page and inserting the highlighted line as shown:

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$',

 'mycompany.press.views.detail'),

 (r'list/$','django.views.generic.list_detail.object_list',
 press_list_dict),
 (r'latest/$','mycompany.press.views.latest'),
 (r'$','django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

Serving Multiple Templates

[146]

In your mycompany/press/views.py file, your detail view should look like this:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)
 t = loader.get_template('press/detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Let's jazz up our template a little more for the press release detail by adding
some CSS to it. In mycompany/templates/press/detail.html, edit the file to look
like this:

<html>
<head>
<title>{{ press.title }}</title>
<style type="text/css">
body {
 text-align: center;
}
#container {
 margin: 0 auto;
 width: 70%;
 text-align: left;
}
.header {
 background-color: #000;
 color: #fff;
}
</style>
</head>
<body>
<div id="container">
<div class="header">
<h1>MyCompany Press Releases</h1>
</div>
<div>
<h2>{{ press.title }}</h2>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</div>
</body>
</html>

Chapter 6

[147]

Start your development server and point your browser to the URL
http://localhost:8000/press/detail/1/. You should see something
like this, depending on what you entered when you originally created your
press release:

If your press release detail page is serving correctly, you're ready to continue.

You may be wondering why we originally created the detail page and
used a regular view, then changed it to a generic view, and now are
changing it back again. Don't get frustrated—this is all a part of learning!
Remember that we said the generic views can save us development time,
but sometimes you'll need to use a regular view because you're doing
something in a way that requires a view function customized to the task
at hand.
The exercise we're about to do is one of those circumstances, and after
going through the exercise, you'll have a better idea of when to use one
type of view over another.

Serving printable pages
One of the easiest approaches we will look at is serving an alternative version of a
page based on the presence of a variable in the URL (aka a URL parameter). To serve
a printable version of an article, for example, we can add ?printable to the end of
the URL.

To make it work, we'll add an extra step in our view to check the URL for this
variable. If it exists, we'll load up a printer-friendly template file. If it doesn't exist,
we'll load the normal template file.

Serving Multiple Templates

[148]

Start by editing the highlighted lines to the detail function in the
mycompany/press/views.py file:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)

 if request.GET.has_key('printable'):
 template_file = 'press/detail_printable.html'
 else:
 template_file = 'press/detail.html'

 t = loader.get_template(template_file)
 c = Context({'press': p})
 return HttpResponse(t.render(c))

We're looking at the request.GET object to see if a query string parameter of
printable was present in the current request. If it was, we load the press/detail_
printable.html file. If not, we load the press/detail.html file. We've also changed
the loader.get_template function to look for the template_file variable.

To test our changes, we'll need to create a simple version of our template that only
has minimal formatting. Create a new file called detail_printable.html in the
mycompany/templates/press/ directory and add these lines into it:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>{{ press.title }}</h1>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

Now that we have both regular and printable templates, let's test our view.
Point your browser to the URL http://localhost:8000/press/detail/1/,
and you should see our original template as it was before. Change the URL to

Chapter 6

[149]

http://localhost:8000/press/detail/1/?printable and you should see our
new printable template:

Creating site themes
Depending on the audience and focus of your site, you may want to temporarily
change the look of your site for a season or holiday such as Halloween or Valentine's
Day. This is easily accomplished by leveraging the power of the TEMPLATE_DIRS
configuration setting.

You will recall from an earlier chapter that the TEMPLATE_DIRS variable in the
settings.py file allows you to specify the location of the templates for your site.
One thing about which we didn't go into detail was that TEMPLATE_DIRS allows you
to specify multiple locations for your template files.

When you specify multiple paths for your template files, Django will look for a
requested template file in the first path, and if it doesn't find it, it will keep searching
through the remaining paths until the file is located.

We can use this to our advantage by adding an override directory as the first
element of the TEMPLATE_DIRS value. When we want to override a template with a
special themed one, we'll add the file to the override directory. The next time the
template loader tries to load the template, it will find it in the override directory
and serve it.

For example, let's say we want to override our press release page from the previous
example. Recall that the view loaded the template like this (from mycompany/press/
views.py):

template_file = 'press/detail.html'
t = loader.get_template(template_file)

Serving Multiple Templates

[150]

When the template engine loads the press/detail.html template file, it gets it
from the mycompany/templates/ directory as specified in the mycompany/
settings.py file:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

If we add an additional directory to our TEMPLATE_DIRS setting, Django will look in
the new directory first:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/override/',
 '/projects/mycompany/templates/',
)

Now when the template is loaded, it will first check for the file /projects/
mycompany/templates/override/press/detail.html. If that file doesn't exist,
it will go on to the next directory and look for the file in /projects/mycompany/
templates/press/detail.html.

If you're using Windows, use the Windows-style file path
c:/projects/mycompany/templates/ for these examples.

Therein lies the beauty. If we want to override our press release template, we simply
drop an alternative version with the same file name into the override directory.
When we're done using it, we just remove it from the override directory and
the original version will be served (or rename the file in the override directory to
something other than detail.html).

If you're concerned about the performance overhead of having a nearly
empty override directory that is constantly checked for the existence
of template files, we'll look at caching techniques in a later chapter as a
potential solution for this problem.

Testing the template overrides
Let's create a template override to test the concept we just learned. In your
mycompany/settings.py file, edit the TEMPLATE_DIRS setting to look like this:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/override/',
 '/projects/mycompany/templates/',
)

Chapter 6

[151]

Create a directory called override at mycompany/templates/ and another directory
underneath that called press. You should now have these directories:

/projects/mycompany/templates/override/
/projects/mycompany/templates/override/press/

Create a new file called detail.html in mycompany/templates/override/press/
and add these lines to the file:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>Happy Holidays</h1>
<h2>{{ press.title }}</h2>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

You'll probably notice that this is just our printable detail template with an extra
"Happy Holidays" line added to the top of it.

Point your browser to the URL http://localhost:8000/press/detail/1/ and
you should see something like this:

Serving Multiple Templates

[152]

By creating a new press release detail template and dropping it in the override
directory, we caused Django to automatically pick up the new template and serve it
without us having to change the view. To change it back, you can simply remove the
file from the override directory (or rename it).

One other thing to notice is that if you add ?printable to the end of the URL, it still
serves the printable version of the file we created earlier.

Delete the mycompany/templates/override/ directory and any files in it as we
won't need them again.

Serving different templates by
domain name
An increasingly common need for web applications is to serve a set of alternative
templates for mobile devices. A common way to serve this alternative view of your
site is to use a different domain name, such as mobile.mydomain.com, m.mydomain.
com or mydomain.mobi.

Django makes it very easy to serve a secondary domain name from the same base
project. When you configure your web server to serve your Django site, you tell it
what settings file to use, so you can create a second settings file in the same directory
and give it a different value for the TEMPLATE_DIRS setting.

For example, your main site would point to mycompany/settings.py and have a
TEMPLATE_DIRS setting like this:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/',
)

Your mobile site would point to mycompany/settings_mobile.py with a
TEMPLATE_DIRS setting like this:

TEMPLATE_DIRS = (
 '/projects/mycompany/templates/mobile/',
)

This technique gets even better when you realize that you don't have to completely
duplicate your settings.py file when creating settings_mobile.py. Because the
only thing we need to change between the two files is the TEMPLATE_DIRS value, the
only lines you need to put in your settings_mobile.py file are these:

Chapter 6

[153]

from settings import *
TEMPLATE_DIRS = (
 '/projects/mycompany/templates/mobile/',
)

The first line imports all the existing values from the mycompany/settings.py file.
The second line overrides the value of TEMPLATE_DIRS with our new directory. This
technique has the added benefit that changes to the settings.py file don't have to
be duplicated into settings_mobile.py. They will be automatically picked up.

Serving different sites with the development
web server
We can test how this works by using the development web server that we've been
using all along and specifying which settings file to use. (You can also make your
production web server, such as Apache or lighttpd do this. You'll find configuration
information in Django's online documentation.) We'll start two instances of the
development server on different ports to simulate the real-world example of using
two different domains.

Step 1: Cloning the settings File

Create a new file in your mycompany directory called settings_mobile.py. In that
file, insert these lines:

from settings import *
TEMPLATE_DIRS = (
 '/projects/mycompany/templates/mobile/',
)

Because this file exists in the same directory as settings.py, it's able to use a simple
import statement to bring in all its values.

Step 2: Create a mobile template

We won't go into the details of creating templates that are friendly to mobile web
browsers, as there is plenty of information available online on this. (If you're
interested, dev.mobi is an excellent resource for information on that subject as well
as Mobile Web Development by Nirav Mehta, printed by Packt Publishing.)

To test our setup, we'll create a different template so that we can see that it served
properly. Create a new directory in mycompany/templates/ called mobile. Create a
press directory in the mycompany/templates/mobile/ directory.

Serving Multiple Templates

[154]

You should now have these directories:

mycompany/templates/press/
mycompany/templates/mobile/press/

Create a new file called detail.html in your mycompany/templates/mobile/
press/ directory and add these lines:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>MyCompany Mobile</h1>
<h2>{{ press.title }}</h2>
<p>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

Step 3: Configuring the development web server

When using the development web server, it's possible to tell it what settings file to
run against by passing a command-line argument:

$ manage.py runserver --settings=settings_mobile

Using two separate terminal windows, run two different instances of the web server
at two different ports so that we can test the differences:

$ manage.py runserver 8000 --settings=settings

$ manage.py runserver 8001 --settings=settings_mobile

If we point our web browser at the URL http://localhost:8000/press/
detail/1/, we'll get the regular version of our press release. If we use the URL
http://localhost:8001/press/detail/1/, we'll get the new mobile version of
the site like this:

Chapter 6

[155]

I was introduced to this method by Matt Croydon's blog at postneo.
com. He agreed to let me share it in this chapter. Thanks, Matt!

Redirecting users to the mobile site
(optional)
I saved this section for last because it's entirely optional and uses some advanced
concepts. You can consider it as an extra credit exercise. None of the examples in the
rest of the book rely on it, so you can safely skip it if you want.

Now that we have a second site set up for mobile users, we may want to
automatically redirect our users to it if we can tell they are using a mobile device.

Caution: This technique isn't foolproof and could cause difficulties for
some of your users who want to be able to choose their mobile experience.
We'll code a way with which they can get back to the main site, but
consider this when deciding if you want to use the technique.

Detecting mobile devices
The HTTP_USER_AGENT is the key piece of information we will use to determine how
the user is accessing the site. It's a string containing the identity of the browser being
used; consider it the "fingerprint" of the browser. In Django, the user agent string is
available from the key request.META['HTTP_USER_AGENT'].

Serving Multiple Templates

[156]

Here's the user agent from iPhone (There is no line break, it's one long,
continued line.):

Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en) AppleWebKit/420+
(KHTML, like Gecko) Version/3.0 Mobile/1A543a Safari/419.3

Notice that the string is full of version numbers. If you try to match on these strings
directly, you could end up with hundreds or thousands of strings to check against, as
new versions are released on different platforms. Inside the string, however, are two
strings that we might use to give us a clue whether this is a mobile device, Mobile
and iPhone.

Instead of seeing if the current user agent is equal to this string, we'll use regular
expressions to look inside the string for patterns we know match common mobile
user agents.

Here's a Python snippet from the interactive shell to illustrate the point:
>>> import re
>>> user_agent = '''Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en)
AppleWebKit/420+ (KHTML, like Gecko) Version/3.0 Mobile/1A543a
Safari/419.3'''
>>> re.search('iPhone', user_agent)
<_sre.SRE_Match object at 0x736b0>

When we searched for the term iPhone inside of the user_agent string, we found
a match. We can use this kind of test to determine if the request is coming from a
mobile device. We could check this in each of our views, but that would require a lot
of redundant code. Instead, we'll write it into a piece of Django middleware that will
run before each request is processed.

Regular expressions can be tricky to work with, and you may want to
read up on how they work before diving in. They can be incredibly
powerful, so it's probably time well spent!

Writing the middleware
You'll recall from a previous chapter that middleware functions allow you to "tap in"
or inject functions into the request and response cycle. We'll use a process_request
middleware function to check for a mobile device before any views are executed.

The first thing we'll need to do is create a directory under our project in which to put
our middleware file. Create a new directory under the existing mycompany directory
called middleware. Inside the new directory, we'll create two files:

mycompany/middleware/__init__.py

mycompany/middleware/mobile_redirect.py

•
•

Chapter 6

[157]

The first file, __init__.py, is just a blank file that Python needs for its importing
process. Don't worry too much about it; just create it as a blank file. The second file,
mobile_redirect.py, will contain the logic to do our redirection.

Here's the first pass at our code. Enter these lines in mobile_redirect.py:

from django.http import HttpResponseRedirect
import re

mobile_url = 'http://localhost:8001/'

agents_list = [
 'Nokia','\bMOT','^LGE?\b','SonyEricsson',
 'Ericsson','BlackBerry','DoCoMo','Symbian',
 'Windows\ CE','NetFront','Klondike','PalmOS',
 'PalmSource','portalmm','S[CG]H-','\bSAGEM',
 'SEC-','jBrowser-WAP','Mitsu','Panasonic-',
 'SAMSUNG-','Samsung-','Sendo','SHARP-',
 'Vodaphone','BenQ','iPAQ','AvantGo',
 'Go.Web','Sanyo-','AUDIOVOX','PG-',
 'CDM[-\d]','^KDDI-','^SIE-','TSM[-\d]',
 '^KWC-','WAP','^KGT [NC]','iPhone',
]

def is_mobile(user_agent):
 for agent in agents_list:
 if re.search(agent, user_agent):
 return True
 return False

class MobileRedirect(object):
 def process_request(self, request):
 if is_mobile(request.META['HTTP_USER_AGENT']):
 return HttpResponseRedirect(mobile_url)
 else:
 pass
 return None

Starting at the bottom, we've created a generic object called MobileRedirect that has
a process_request method. (Django's middleware system requires us to set it up
this way.)

We're calling a function is_mobile_device that takes the user agent as an argument,
determines if it matches against a list of known mobile agents, and returns a Boolean
True or False. If it matched, we redirect the user to our mobile site. If not, the
middleware will return None and Django will continue.

Serving Multiple Templates

[158]

The is_mobile_device function iterates through a list of regular expression patterns
and looks for a match. Notice that the user_agents list contains regular expression
patterns just like the one we worked with a minute ago. You'll see some regular
expression syntax such as \b and \d that match the pattern as a word (not a piece in
the middle of a string) and match digits, respectively.

Checking only once
There are a couple of potential downsides to this technique. First, most visitors to
your site will probably not have browsers with user agent strings that match against
this list and get redirected to your mobile site. Running this piece of middleware on
every request is a waste of resources and could negatively impact performance.

Second, it doesn't give your user the option of viewing your desktop site on his/her
mobile device as they are automatically redirected. Users with advanced mobile
browsers such as the iPhone may want to use your full site. Every time they try to
access the full site, they will get redirected to the mobile site.

The easiest way to get around both these problems is to use a session variable to
record that we have already performed the user agent check. Sessions are turned on
by default in Django, so we'll just add a couple lines:

class MobileRedirect(object):
 def process_request(self, request):
 if not request.session.get('checked_ua', False):
 if is_mobile(request.META['HTTP_USER_AGENT']):
 request.session['checked_ua'] = True
 return HttpResponseRedirect(mobile_url)
 else:
 # Make sure it doesn't try this again
 request.session['checked_ua'] = True
 return None

Here we've added a session variable checked_ua that we can check before we run
the is_mobile_device function. If the session variable evaluates to True, we skip
over the processing and Django continues on its way.

If it's not True, we check the user agent and use the checked_ua variable to
record that we've done the processing. This solves our second problem, which
we identified: If the user goes back to our full site, they won't get redirected again
because the session variable will indicate that the check was already performed.
We'll know they were redirected and they came back, so they probably don't want to
be redirected again!

Chapter 6

[159]

Django's session framework requires cookies to work properly. Most
modern mobile browsers support cookies, so this technique should work
well. If the mobile browser doesn't support cookies or they are disabled,
the user will not be able to get back to your full site because the session
won't exist.

Installing the middleware
The last thing we need to do is add our function to the MIDDLEWARE_CLASSES setting
inside our mycompany/settings.py file. We also need to override the setting inside
of our mobile_settings.py file, otherwise it will keep trying to redirect to itself!

In your mycompany/settings.py file, add the highlighted line to the
MIDDLEWARE_CLASSES setting:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'middleware.mobile_redirect.MobileRedirect',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
)

Notice that we put the mobile redirect middleware after the session middleware. If we
don't, we will not be able to write the session variable that we need. The order matters!

Finally, in our settings_mobile.py file, add the MIDDLEWARE_CLASSES setting
without the mobile redirect:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
)

You may be wondering why we did this with a session variable instead of a cookie.
In order to set cookies, we need to have access to the HTTP response object that is
written, as that's where cookie writing happens. Since we don't have this object in the
process_request middleware, we kept it simple by using session variables.

To test the middleware in your web browser, you'll need to change the browser's
user agent string. An easy way to do this in the Firefox browser is to install a
plug-in called the User Agent Switcher. This browser add-in allows your desktop
web browser to masquerade as a different user agent.

You can find the add-in at https://addons.mozilla.org/en-US/
firefox/addon/59.

Serving Multiple Templates

[160]

I installed the add-in in my Firefox application, and followed the directions provided
to add a new user agent. I used these settings:

Description: iPhone
User Agent: Mozilla/5.0 (iPhone; U; CPU like Mac OS X; en)
AppleWebKit/420+ (KHTML, like Gecko)
Version/3.0
Mobile/1A542a Safari/419.3

With these settings in place, I went up to Firefox's Tools menu, chose User Agent
Switcher, and chose the new iPhone setting. With this setting, my browser tricks
web servers into thinking it's an iPhone.

Browse to the URL http://localhost:8000/, and the middleware should
immediately try to redirect you to http://localhost:8001/.

•
•
•
•
•

Chapter 6

[161]

Summary
In this chapter, we've explored the topic of serving content with multiple templates.
We looked at the different approaches available to serve content to mobile devices,
including using basic templates and content adaptation.

We learned how to detect the presence of a URL parameter to dynamically choose
the template loaded in a view, and how to use the TEMPLATE_DIRS setting to override
a template on demand without having to change any code.

Finally, we leaned how to serve a second set of templates to a separate domain
name by creating a settings file to override the default settings. We also explored
a technique using middleware to redirect users to a different URL based on their
browser's user agent string.

In the next chapter, we'll look at Custom Tags and Filters.

Custom Tags and Filters
Django ships with a number of built-in template tags and filters that fit the needs of
most web-publishing situations. Filters are typically used to modify the output of a
value in the template, and tags let you do just about anything you want.

At some point in your development, you may come across a situation or need that
cannot be handled by the default template tags and filters. Luckily, Django provides
a way to write our own extensions to the template engine by creating custom tags
and filters.

In this chapter, we will:

Review how the default template tags and filters are implemented
Learn the syntax for writing our own template tags and filters
Learn where to put our custom files in our project and how Django
loads them
Create and implement custom filters to format currency, remove profanities,
and test if an item is in a list
Create and implement custom tags to write output and introduce new
variables into the context from within the template

Examining the built-in tags and filters
Before we start writing our own tags and filters, let's review how the built-in ones
work. They are written and implemented in the same way that we will use to write
our own, so looking at the code and its structure gives us some great examples as a
starting point. You can browse the built-in tags and filters by looking at these files in
the Django source code:

django/template/defaultfilters.py

django/template/defaulttags.py

•

•

•

•

•

•

•

Custom Tags and Filters

[164]

Template filters
If you need to change the way a value outputs in a template, use a template filter.
Typical filters modify string and number formats, add or remove characters, and so
on. A filter is essentially a Python function that can take one or two arguments: the
value it is working on, and an optional argument.

For example, the built-in filter upper transforms a template string to upper case:

{{ title|upper }}

Behind the scenes, it calls the upper function in defaultfilters.py:

def upper(value):
 """Converts a string into all uppercase."""
 return value.upper()
upper.is_safe = False
upper = stringfilter(upper)

In this example, the value of title is sent to the function upper as the argument
value. The function returns the result of the string function upper().

Don't worry about is_safe and stringfilter() right now. We'll get
to what they mean in a moment.

Template tags
Unlike filters, tags don't have to be passed any values or arguments and they can
take multiple arguments if you need them to. If you want to perform more complex
logic such as reordering lists, performing conditional logic, modifying context
variables, etc., you'll want to use a template tag instead of a filter.

For example, if you want to output the current date or time and specify the format,
you can use the built-in now tag:

The current year is {% now "Y" %}

Behind the scenes, it calls the now function in defaulttags.py:

def now(parser, token):
 """
 displays the date, formatted according to the given string.

 Uses the same format as PHP's date() function.

Chapter 7

[165]

 See http://php.net/date for all the possible values.
 Sample usage:

 It is {% now "jS F Y H:i" %}
 """
 bits = token.contents.split('"')
 if len(bits) != 3:
 raise TemplateSyntaxError, "'now' statement takes one argument"
 format_string = bits[1]
 return NowNode(format_string)
now = register.tag(now)

The template tag syntax is more complex than the filter syntax we saw earlier.
Rather than overwhelm you with what it all means right now, let's just note that it
has to figure out what the arguments to the tag were, make sure the tag got all the
information it needed, and create a chunk of template called a Node that the template
engine can then render as it would any other piece of template.

Writing your own template filters
Let's dive into writing our own filters. It can be hard to come up with a great
example of a useful filter since the Django team has included default filters that
serve most common needs, but we'll build three that can be helpful or can be later
modified to fit your specific needs.

Setting up a test application
To experiment with tags and filters, we need to set up a test application that we can
use as a sandbox to test our code. Instead of mucking up any apps that we have
created in the previous chapters, we'll create a new project.

Why not create custom tags and filters for our ongoing application? Well,
Django has covered most of the common needs you'll have, so we need
to reach deeper and create some samples that can be used for these more
specific cases where a custom library needs to be created.

Create a new project called customtags in /projects and then create a filtertest
application. (If you're using Windows, create it in c:\projects.)

Custom Tags and Filters

[166]

In the /projects directory, run the startproject command:

$ django-admin.py startproject customtags

In the /projects/customtags directory, run the startapp command:

$ python manage.py startapp filtertest

In the customtags/settings.py file, replace the TEMPLATE_DIRS and
INSTALLED_APPS tuples with these values:

TEMPLATE_DIRS = (
 '/projects/customtags/templates/',
)

INSTALLED_APPS = (
 'customtags.filtertest',
)

In the customtags/urls.py file, add these lines:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^filter/', 'customtags.filtertest.views.test'),
)

Create a templates directory under /projects/customtags and create a new file
called filter_test.html, adding these lines:

<h1>These are test values</h1>
<p>A good Django app is worth: {{ myprice }}.</p>
<p>My thoughts on Django: {{ mythoughts }}</p>
<p>Words to describe Django: {{ mywords }}</p>

To keep things simple, we won't create any models for the filtertest application.
Instead, we'll just manually pass some local variables in the view to our
template context.

Finally, in customtags/filtertest/views.py, add these lines:

from django.http import HttpResponse
from django.template import Context, loader

def test(request):
 t = loader.get_template('filter_test.html')
 c = Context({
 'myprice': 10000,
 'mythoughts': 'Django is dang cool!',

Chapter 7

[167]

 'mywords': ['great', 'awesome', 'fun'],
 })
 return HttpResponse(t.render(c))

Start the Django development server and point your browser to the URL
http://localhost:8000/filter/. You should see the following page. If you
don't, double-check that you have followed all the steps mentioned.

Now that we have something to work with, let's create some template filters to tweak
the output of our three context variables.

Creating a home for our filter library
Before we can write our filters, we need to create a place to put them. By
convention, Django requires us to create a directory called templatetags under an
installed application and put our library files in it. Django scans for folders called
templatetags when it initializes.

Create a directory at customtags/filtertest/templatetags and a file in it called
filtertest_extras.py. This file is our template library file and can hold many
filters that we create.

In the customtags/filtertest/templatetags/filtertest_extras.py file, add
these lines:

from django import template

register = template.Library()

Custom Tags and Filters

[168]

This code adds a variable called register to the module. It's required by the
template engine to properly register the tags and filters in the file.

Finally, create a blank file called __init__.py in the directory customtags/
filtertest/templatetags. Any directory that Python imports as a module needs
to have an __init__.py file inside it, even if it's blank. Don't worry too much about
this; it's just a Python convention that we need to follow.

Template filter syntax
Template filters are just Python functions that we can run from our templates. As
you will recall from an earlier chapter, the Django template system limits our ability
to call most functions directly in templates, but filters provide us a clean way to get a
part of that functionality back.

The syntax of a filter looks like a typical Python function. The function takes
two arguments:

1. The value of the template variable being modified
2. An optional filter argument (You cannot pass multiple arguments to

a filter.)
Here's a simple example: If we were going to write a filter called add_prefix that
added a string to the beginning of our value, we'd call it like this in the template:

{{ title|add_prefix:"zz" }}

In our hypothetical example, the add_prefix function would look like this:

def add_prefix(value, arg):
 return "%s_%s" % (arg, value)
register.filter(add_prefix)

The value of the {{ title }} context variable is the first argument to our add_prefix
function. zz is the argument to the filter and is passed to our function as arg.

In order for Django to be able to call our filters, they must register themselves for
use. We call the register function immediately after our filter function; do not put
a line break between the function and the register call; it needs to "touch" (see the
example above).

If you are using Python 2.4 or higher, you can call register using decorator syntax:

@register.filter
def add_prefix(value, arg):
 return "%s_%s" % (arg, value)

Chapter 7

[169]

To find out what version of Python you are using, you can launch the
Python interactive shell by typing python at the command line. The first
line that comes up will have the Python version in it.

We won't be using the decorator syntax in this chapter, but you should know it's
available if you want to use it. (Decorators are considered more "Pythonic", meaning
"in the style that Python programmers prefer".)

Loading template libraries
Once we write our tags and filters, we need to load them in order to use them in
our templates. When Django starts up, it scans all the installed applications for
templatetags directories and records the template library files within them.

In your template, you call the load tag with the name of the file you want to load,
minus the .py extension. To make it easier to remember its purpose, it can help
to give your library file a descriptive name. We'll use extras in our filename to
remember that they add extra functionality.

For example, our customtags/filtertest/templatetags/filtertest_extras.py
file gets loaded in the template like this:

{% load filtertest_extras %}

Any custom tags and filters inside the filtertest_extras library are now
available like the built-in ones. If you have a uscurrency filter defined in the
filtertest_extras.py file, you can now use it with standard filter syntax:

The price is {{ myprice|uscurrency }}.

Since we don't have that, let's build it!

U.S. currency filter
This filter will take a number and put a dollar sign in front and two decimal places
in the U.S. currency format, for example $99.88. To keep things simple, we won't be
worrying about localizing currency values based on the user's country.

In our test application, we are passing the value 10000 in the context variable
myprice. Let's build a filter that we can use like this to format the output with a
dollar sign and two decimal places that will be called like this:

A good Django app is worth {{ myprice|uscurrency }}

Custom Tags and Filters

[170]

In the customtags/filtertest/templatetags/filtertest_extras.py file, add
the highlighted code block:

from django import template

register = template.Library()

def uscurrency(c):
 if c > 0:
 return '$%.2f' % c
 else:
 return '-$%.2f' % (-1*c)
register.filter(uscurrency)

In the customtags/templates/filter_test.html file, change the highlighted lines:

{% load filtertest_extras %}
<h1>These are test values</h1>
<p>
A good Django app is worth {{ myprice|uscurrency }}.
</p>
<p>My thoughts on Django: {{ mythoughts }}</p>
<p>Words to describe Django: {{ mywords }}</p>

We added the {% load filtertag_extras %} line to tell Django to load our
filtertest_extras.py file. Remember that for this to work, the filtertest_
extras.py file must be in a directory called templatetags under an installed
application and there must be a blank file called __init__.py in that directory.

Point your browser to the URL http://localhost:8000/filter/ and you should
see this:

Chapter 7

[171]

Notice that the first line now reads: A good Django app is worth $10000.00. with a
proper U.S. currency formatting.

This worked great, but we are leaving ourselves open to a problem. If there is no
value for the context variable price, or if it's not a numeric value, we'll get an error.
By convention in Django, template filters should not raise any exceptions or throw
errors. If something goes wrong, the filter should silently fail.

Let's put a block around the guts of the uscurrency function to trap any errors that
could happen if the value of c isn't numeric.

In the customtags/filtertest/templatetags/filtertest_extras.py file, edit
the highlighted code:

from django import template

register = template.Library()

def uscurrency(c):
 try:
 if c > 0:
 return '$%.2f' % c
 else:
 return '-$%.2f' % (-1*c)
 except TypeError:
 return c
register.filter(uscurrency)

Now, if a value is passed that can't be formatted, the filter will return back the
original value that was passed to it. Depending on your situation, you might want to
return None or an empty string. That's up to you.

Replace profanities filter
This filter will take a list of swear words called PROFANITIES_LIST and make sure
they are not present in a string. If they are found, the word will be replaced with the
text *PROFANITY DELETED*.

Django maintains a list of offensive English words called PROFANITIES_
LIST in the file django/conf/global_settings.py. Since we don't
want to print the actual profanities here, we're going to use our own list
with words such as "dang"and "darn". Outside of this example, you can
just use the list by importing settings.PROFANITIES_LIST.

Custom Tags and Filters

[172]

In the customtags/filtertest/templatetags/filtertest_extras.py file, add
this code block to the bottom:

def replace_profanities(value):
 PROFANITIES_LIST = ['dang', 'darn']
 replacement = '*PROFANITY REMOVED*'
 import re
 for word in PROFANITIES_LIST:
 regex = re.compile(r"\b%s\b" % word, re.I)
 if regex.search(value):
 value = regex.sub(replacement, value)
 return value
register.filter(replace_profanities)

In the customtags/templates/filter_test.html file, add the
replace_profanities filter to the thoughts variable:

<p>
My thoughts on Django:
{{ mythoughts|replace_profanities }}
</p>

Point your browser to the URL http://localhost:8000/filter/ and you should
see this:

In the replace_profanities function, we iterated through the PROFANITIES_LIST
and did a regular expression search for each word. The word "dang" matched and
was replaced with *PROFANITY REMOVED*.

If you're not familiar with the regular expressions, one very important thing to notice
in the function is this line:

regex = re.compile(r"\b%s\b" % word, re.I)

Chapter 7

[173]

The \b around the word makes sure that the regular expression uses word
boundaries. This in turn makes sure that only the word by itself is matched, not
substrings. For example, "Django is darn cool" would match for the word "darn",
but "Django is darned cool" would not match because the word "darn" is inside the
word "darned".

This kind of filtering can negatively affect performance on large lists of
words or long strings of text (regular expressions being notoriously slow).
If you're going to use this in an application with high traffic, you will
probably want to use some sort of caching on your pages so that every
request doesn't incur the processing overhead each time it loads. We'll
talk about caching in a later chapter.

Filters that expect strings
If you are writing a filter that expects a string, you will probably want to make sure
the value you are passed is a string and not an integer, list, and so on. If you try to
run a string function such as upper() or lower() on a variable that is not a string,
Python will throw an exception.

Instead of having to manually check or cast the value as a string, Django offers a
function that will do it for us. You don't have to use it in your custom libraries, but it
simplifies the handling of strings in filters that expect them.

In the customtags/filtertest/templatetags/filtertest_extras.py file, add
the highlighted lines:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

def uscurrency(c):
 try:
 if c > 0:
 return '$%.2f' % c
 else:
 return '-$%.2f' % (-1*c)
 except TypeError:
 return c
register.filter('uscurrency', uscurrency)

def replace_profanities(value):
 PROFANITIES_LIST = ['dang', 'darn']

Custom Tags and Filters

[174]

 replacement = '*PROFANITY REMOVED*'
 import re
 for word in PROFANITIES_LIST:
 regex = re.compile(r"\b%s\b" % word, re.I)
 if regex.search(value):
 value = regex.sub(replacement, value)
 return value
replace_profanities = stringfilter(replace_profanities)
register.filter(replace_profanities)

With the addition of stringfilter, the argument value is automatically converted
to a string before the function processes. This will catch any problems if the filter is
attached to a list, integer, and so on.

stringfilter can also be called using decorator notation if you are
using Python 2.4 or higher. See the online documentation for the syntax.

In-list filter
Let's make a filter that tests if a string is present in a list. We'll make it return a
Boolean True or False if the string is in the list, and we can use it in conjunction with
an {% if %} tag. (It's also a good example of a template filter that takes an argument.)

In the customtags/filtertest/templatetags/filtertest_extras.py file, add
this code block to the end:

def in_list(value, arg):
 if type(value) != list:
 return False
 elif arg in value:
 return True
 else:
 return False
register.filter(in_list)

In the customtags/templates/filter_test.html file, edit the highlighted block:

{% load filtertest_extras %}
<h1>These are test values</h1>
<p>A good Django app is worth {{ myprice|uscurrency }}.</p>
<p>
My thoughts on Django: {{ mythoughts|replace_profanities }}
</p>

{% if mywords|in_list:"great" %}

Chapter 7

[175]

<p>They think Django is great!</p>
{% else %}
<p>They don't think Django is great.</p>
{% endif %}

Point your browser to the URL http://localhost:8000/filter/ and you should
see this:

For this filter, we did things a little differently. We returned a Boolean True or False
as the argument to the {% if %} tag. This is a great way to do conditional logic on a
value in those cases where the tags if, ifequal, and ifnotequal don't provide the
functionality you need.

Writing your own template tags
Template tags require more steps to build because they are more flexible and can
do more complex tasks than filters. Some of the biggest differences between tags
and filters are that tags don't have to be attached to any values and they can take
multiple arguments.

Writing a tag is a two-step process. First, you compile the tag text into a Node, which
is a "chunk" of template that can be rendered. Second, you render the Node into
output and return it to the template.

Custom Tags and Filters

[176]

Creating another sample application
Let's leave the filtertest application alone and create a new application called
tagtest to use as our sandbox for testing custom template tags.

In the /projects/customttags directory, run the startapp command:

$ python manage.py startapp tagtest

In customtags/settings.py, add our new tagtest application to the
INSTALLED_APPS tuple. Add the highlighted line:

INSTALLED_APPS = (
 'customtags.filtertest',
 'customtags.tagtest',
)

In customtags/urls.py, add the highlighted line:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^filter/', 'customtags.filtertest.views.test'),
 (r'^tag/', 'customtags.tagtest.views.test'),
)

Create a new file called tag_test.html in the customtags/templates directory
and add the following line. (This is just the start. We'll add more to this as we create
some tags.)

<h1>These are test tags</h1>

As in the case of the filtertest application we wrote earlier, we won't create any
models for the tagtest application. Instead, we'll pass variables in the view to our
template context.

Finally, in the customtags/tagtest/views.py file, add these lines:

from django.http import HttpResponse
from django.template import Context, loader
import datetime

def test(request):
 t = loader.get_template('tag_test.html')
 c = Context({
 'current_time': datetime.datetime.now(),
 })
 return HttpResponse(t.render(c))

Chapter 7

[177]

Point your browser to the URL http://localhost:8000/tag/ and you should
see this:

Adding the template library
Just as we did with the filtertest application, we need to create a folder
underneath our application called templatetags to hold our library files.

Create a directory at customtags/tagtest/templatetags and a file underneath
called tagtest_extras.py with the following lines:

from django import template

register = template.Library()

Create a blank file called __init__.py in the templatetags directory.

Template tag syntax
In its simplest form, calling a tag in a template looks like this:

{% tagname %}

The tag tagname will be called and any output from the tag will be put in its place in
the template. (Tags don't have to output anything.) If you want to pass arguments to
tags, you can do so by separating them with spaces:

{% tagname argument1 argument2 argument3 %}

Arguments can be template context variables, strings, integers, and so on, but all
arguments to tags will be considered strings. If you are passing an integer argument,
for example, you'll have to convert it to an integer before you can use it numerically.

Custom Tags and Filters

[178]

A simple tag example
Before we can break down the steps of parsing a tag, we'll need to create a very
simple example to work with. Let's create a tag that prints out a pleasant greeting.

In the customtags/tagtest/templatetags/tagtest_extras.py file, add the
highlighted lines:

from django import template

register = template.Library()

def do_say_greeting(parser, token):
 return SayGreetingNode()
register.tag('say_greeting', do_say_greeting)

class SayGreetingNode(template.Node):
 def render(self, context):
 return "Hello, it's nice to meet you."

In the customtags/templates/tag_test.html file, add the highlighted lines:
{% load tagtest_extras %}

<h1>These are test tags</h1>

{% say_greeting %}

Point your browser to the URL http://localhost:8000/tag/ and you should
see this:

Writing a tag is more involved than writing a filter, so let's break down what's
happening in this example.

Chapter 7

[179]

The compilation function
As we saw, parsing template tags is a two-step process. The first step is the
compilation function that splits the arguments and performs any necessary logic to
make sure the tag was called properly.

In our example, we don't have any arguments and so the compilation function has
very little do to. It simply returns a subclass of Node called SayGreetingNode that we
defined. Notice that the function is prefixed with do_, which is a Django convention
for naming compilation functions.

The compilation function takes two arguments: parser, the template parser object
that is automatically passed to it, and token, which holds all the information
necessary to parse the tag. The string token.contents is a string containing
everything from the tag between the {% and %} characters.

In this example, token.contents only contains the name of the tag being called,
so we don't need to do anything with it. In a later example, we'll practice splitting
token.contents into the tag name and any arguments passed.

The template node subclass
The second step of rendering a custom template is to define a subclass that the
compilation function can call. This subclass of Template.Node must have a
render() method that the template engine will call.

In our simple greeting example, the subclass is SayGreetingNode. It contains the
required render() method that returns a string with our greeting.

Registering our custom tag
Just as we did with our custom filters, we need to register the tag with the
template system. We do this by calling register.tag() directly underneath our
compilation function:

def do_say_greeting(parser, token):
 return SayGreetingNode()
register.tag('say_greeting', do_say_greeting)

The first argument to register.tag is the name of the custom tag as we will call it
in our template. The second argument is the name of the compilation function.

This example was very simple, but serves as a good demonstration of what is
required to create a custom template tag. Let's create another example that takes the
concept one step further by passing an argument.

Custom Tags and Filters

[180]

All work and no play tag
This tag will output the text "All work and no play makes Jack a dull boy." as many times
as the user wants, as dictated by a numeric argument to the tag.

Before we create the code, edit the file customtags/templates/tag_test.html to
look like this:

{% load tagtest_extras %}

<h1>These are test tags</h1>

{% all_work_no_play 10 %}

The all_work_no_play tag has not been created yet, but notice that we are passing
the number 10 as an argument.

In the file customtags/tagtest/templatetags/tagtest_extras.py, add this code
to the end of the file:

class AllWorkNode(template.Node):
 def __init__(self, repetitions):
 self.repetitions = repetitions
 def render(self, context):
 msg = "All work and no play makes Jack a dull boy. "
 return self.repetitions * msg

def do_all_work(parser, token):
 tag_name, repetitions = token.split_contents()
 repetitions = int(repetitions)
 return AllWorkNode(repetitions)
register.tag('all_work_no_play', do_all_work)

This tag has a few more lines than our greeting example. We'll start with the
do_all_work function. The first line splits token.contents (the raw string of the
tag between the {% %} delimiters) into the tag name and the argument:

tag_name, repetitions = token.split_contents()

The first piece returned from splitting the token.contents string will always be the
name of the tag.

As we saw earlier, one very important item to note about the arguments and tags is
that they will only come in as strings, regardless of what they were in the template.
In this case, the number 10 is returned as a string, not an integer. The next line casts
the value properly:

repetitions = int(repetitions)

Chapter 7

[181]

Now that we have parsed out the arguments, we have the information we need to
call our template node subclass. But wait! There is a potential danger lurking in our
example. What if the template author forgets to put an argument in the tag? When
we call token.split_contents(), we are expecting two values back and so this
would cause an error.

To ensure that the user specifies an argument with the tag, we have to add some
additional code to trap the error. Add the highlighted lines:

def do_all_work(parser, token):
 tag_name = token.contents.split()[0]
 try:
 tag_name, repetitions = token.split_contents()
 repetitions = int(repetitions)
 except ValueError:
 raise template.TemplateSyntaxError, \
 "%r tag missing integer argument" \
 % tag_name
 return AllWorkNode(repetitions)
register.tag('all_work_no_play', do_all_work)

If the template author forgets to specify the integer argument, a template error will
be raised.

The last line registers the tag and gives it the name all_work_no_play that we call it
with in the template:

register.tag('all_work_no_play', do_all_work)

Besides the render() function that we saw in the previous example, the
AllWorkNode class also defines its constructor. The constructor takes the repetitive
argument that is assigned to an instance variable self.repetitions.

If you aren't familiar with objects, just understand that Python will
automatically call a special method called __init__() (if it exists) when
a class is instantiated. This special function is called the constructor. We
have to assign the argument passed to the constructor to an instance
variable, which is a variable assigned to our object that other class
methods can use.
In this example, assigning the value of the argument repetitions to self.
repetitions means that the render() method of our class will be able
to use it.

Custom Tags and Filters

[182]

With everything in place, point your browser to the URL http://localhost:8000/
tag/ and you should see this:

Try changing the argument to the tag to 100 and refresh the page. You should see ten
times as many sentences.

Passing a template variable to a tag
For our final tag, we'll kill two birds with one stone. Let's build a tag that can take
a context variable as an argument and set a new context variable that we can use
later in the same template. Let's pass the current date to a tag and have it return
tomorrow's date.

Let's set up the example. Edit the file customtags/templates/tag_test.html to
look like this:

{% load tagtest_extras %}

<h1>These are test tags</h1>

Tomorrow is {% tomorrow current_time %}

Notice that we are calling a tag called tomorrow with the argument current_time.
(Remember that we specified current_time in the view when we set up this
example earlier.)

Chapter 7

[183]

Add this block to the file customtags/tagtest/templatetags/tagtest_extras.py
at the end of the file:

class TomorrowNode(template.Node):
 def __init__(self, current_date):
 self.current_date = template.Variable(current_date)
 def render(self, context):
 try:
 current_date = self.current_date.resolve(context)
 import datetime
 tomorrow = current_date + \
 datetime.timedelta(days=1)
 return tomorrow
 except template.VariableDoesNotExist:
 return ''

def do_tomorrow(parser, token):
 tag_name = token.contents.split()[0]
 try:
 tag_name, current_time = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError, \
 "%r tag requires a datetime argument" \
 % tag_name
 return TomorrowNode(current_time)
register.tag('tomorrow', do_tomorrow)

This code is very similar to what we saw in the previous example. We are splitting
the token to get the tag name and arguments, making sure the argument was passed,
and returning a node.

Using a context variable such as current_time as an argument provides an extra
challenge. Remember that arguments are parsed into the compilation function
as strings. In our example, when we parse out the token.contents string, we
will be left with two strings: tomorrow and current_date. In order to turn the
string current_date into the value of the context variable, we have to write some
additional code.

Looking at the class TomorrowNode, we have __init__ (the constructor) and
our render method. In the constructor, look at the syntax used to assign the
current_date argument:

self.current_date = template.Variable(current_date)

Custom Tags and Filters

[184]

We are telling Django that current_date is a string that represents a template
context variable. We can't actually resolve that variable into a value. That happens
next in the render step:

current_date = self.current_date.resolve(context)

We have the current template context available to us in the render function so that
we can finally figure out what the value of current_date is! From this point, we use
datetime.timedelta to figure out what current_date plus one day is.

Point your browser to the URL http://localhost:8000/tag/ and you should
see this:

(Your date will be different because your current time will be different.)

Modifying the context through a tag
Finally, let's do an extra-cool thing. Django's template system doesn't let you set
values from within templates, but template tags can. (Remember from the beginning
of the chapter when we said template tags can do anything?)

Let's change the TomorrowNode class slightly to set a new context variable instead of
returning a string. In tagtest_extras.py, change the highlighted lines:

class TomorrowNode(template.Node):
 def __init__(self, current_date):
 self.current_date = template.Variable(current_date)

 def render(self, context):
 try:
 import datetime
 current_date = self.current_date.resolve(context)
 tomorrow = current_date + \
 datetime.timedelta(days=1)

Chapter 7

[185]

 context['tomorrow_time'] = tomorrow
 return ''
 except template.VariableDoesNotExist:
 return ''

In the earlier chapter about the template context, we saw that context acts like a
dictionary, and adding new values is done with the traditional Python dictionary
syntax. In this case, we're adding a new context variable by specifying it as the key
tomorrow_time and assigning it the value of our tomorrow variable.

We're returning an empty string. If we didn't, the value None would be written out in
the template.

Edit the customtags/templates/tag_test.html file to look like this:

{% load tagtest_extras %}

<h1>These are test tags</h1>

{% tomorrow current_time %}

<p>Today is {{ current_time }}</p>
<p>Tomorrow is {{ tomorrow_time }}</p>

The tomorrow tag is called, but doesn't return any values. Instead, it sets the template
context variable tomorrow_time that we can then use a couple of lines later.

Point your browser to the URL http://localhost:8000/tag/ and you should
see this:

Custom Tags and Filters

[186]

Summary
In this chapter, we learned how to write our own custom tags and filters to extend
the default functionality of the Django template system. We looked at the structure
of the built-in tags and filters as a starting point for creating our own.

We explored how template filters are constructed and registered by the template
system. We also saw how they are loaded and called in the template, and how to
pass an argument to a filter.

We wrote our own filters to format U.S. currency values, remove profanities from
text, and see if a value was present in a list.

We looked at the structure of template tags, seeing how they have a two-step
process of compiling and returning a node. We learned how arguments are passed
to templates and how to parse them into their values. We also saw how to pass
template variables as arguments to tags and to add new context variables inside
a tag.

This chapter was much more involved than others we have worked with. Be proud
of getting through these more advanced topics and go forth with confidence that
you'll be able to extend the template system if you get in a jam!

In the next chapter, we will learn about the concept of Pagination.

Pagination
An important aspect of web usability is to break the data returned by your
application into manageable pages. Presenting hundreds of records on a single
page can result in pages that are large in size and result sets that are hard to scan for
information. Django provides a Paginator library that makes it easy to split your
results into smaller sets.

In this chapter we will:

Create a test application for experimenting with pagination
Learn how to implement the Paginator using the interactive Django shell
See the SQL executed when using the Paginator
Construct a view using pagination
Implement navigational links for pagination in the template
Use pagination with generic views

An Overview
Without the paginator library, we would have to write a lot of code by hand to break
our data into pages: SQL offsets, limits, calculating the number of pages, and so on.
Django's paginator library does all of this grunt work for us and wraps it all into a
nice object that we can pass to the template context.

Implementing the paginator library is simple and requires only a few steps:

1. Retrieve our queryset in the view using the database API
2. Pass that queryset object to the paginator object
3. Retrieve a current page object from the paginator object
4. Pass the current page object to our template via the context

•

•

•

•

•

•

Pagination

[188]

A querystring variable maintains the state of what page we are on in the queryset
so that we can navigate back and forth through the pages. The paginator takes care
of handling invalid page numbers, serving 404 pages, and so on.

Verifying our application setup
We will use our ongoing press application to experiment with the pagination library.
Before we start, let's make sure that the application is set up properly, in case you've
been skipping around chapters. If you've been following along, then you can skim
through the next few sections that make sure your application is set up properly.
But pay close attention to the URL listings to make sure that yours match the ones
we're using.

Verifying the application
You should have an application called press located at /projects/mycompany/
press. If you don't, run this command in the /projects/mycompany directory:

$ python manage.py startapp press

You should now have a /projects/mycompany/press directory.

Verifying the configuration
Make sure that the application is listed in your mycompany/settings.py file in the
INSTALLED_APPS tuple:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'mycompany.press',
)

If your INSTALLED_APPS setting looks different, that's OK as long as
mycompany.press is listed.

Chapter 8

[189]

Verifying the URL configuration
In your mycompany/urls.py file, you should have the highlighted URL pattern:

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'^press/', include('mycompany.press.urls')),
)

In your mycompany/press/urls.py file, make sure the highlighted configuration
exists and points to the press_list view. (In an earlier chapter, we used a
generic view.)

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$','mycompany.press.views.detail'),
 (r'list/$','mycompany.press.views.press_list'),
 (r'latest/$','mycompany.press.views.latest'),
 (r'$','django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

Verifying the model
In the mycompany/press/models.py file, make sure you have this
PressRelease model:

 class PressRelease(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()
 pub_date = models.DateTimeField()
 author = models.CharField(max_length=100)

 class Meta:
 get_latest_by = 'pub_date'

 def get_absolute_url(self):
 return '/press/detail/%d/' % self.id

 def __unicode__(self):
 return self.title

If you didn't already have the model listed, run the syncdb command to add the new
tables. (You can run it again to make sure, it won't hurt anything.)

$ python manage.py syncdb

Pagination

[190]

Verifying the view
We will be working with the press_list view shortly to add pagination, but this
is what we will be starting with. In the mycompany/press/views.py file, make sure
you have a press_list view:

def press_list(request):
 '''
 Returns a list of press releases
 '''
 pl = get_list_or_404(PressRelease)
 t = loader.get_template('press/list.html')
 c = Context({'press_list': pl})
 return HttpResponse(t.render(c))

While you are working in the mycompany/press/views.py file, make sure you have
the necessary import statements at the top:

from django.http import HttpResponse
from django.templates import Context, loader
from press.models import PressRelease

Adding test records
To effectively test pagination, we need to have enough records in the database
to be able to break them into pages. We could do this manually in the admin
application, but it would be tedious. Instead, let's use the Django interactive shell to
programmatically add some test records.

Run the shell command to start the interactive shell:

$ python manage.py shell

You should see something like the following; the three brackets indicate that you are
ready to start entering Python and Django commands:

Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)

[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

(InteractiveConsole)

>>>

Chapter 8

[191]

Enter the following commands (without the three brackets) to get rid of any press
release records you might have saved:

>>> from mycompany.press.models import PressRelease
>>> for p in PressRelease.objects.all():
>>> p.delete()

Now we'll import the datetime module, and run a looping code block to create and
save 52 records:

>>> import datetime
>>> for x in range(52):
... p = PressRelease.objects.create(
... title='This is a press release %d' % x,
... body='This is the body',
... pub_date=datetime.datetime.now(),
... author='John Doe',
...)
... p.save()
>>>

Now we have 52 records that we'll be able to retrieve to test the pagination.

Exploring pagination using the
Django shell
Before we create any views to paginate our results, we can test most of the concepts
in the Django shell. This will make it easier to see the various methods and
properties instead of switching between views and templates.

First, let's import the model and retrieve a queryset:

>>> from mycompany.press.models import PressRelease
>>> pl = PressRelease.objects.all()
>>> len(pl)
52

We can import the Paginator class, and pass it our queryset object and an argument
of 10 records per page:

>>> from django.core.paginator import Paginator
>>> p = Paginator(pl, 10)

Pagination

[192]

Let's look at some of the properties of our Paginator object. (The code comments are
provided for explanation; you don't have to type them.)

>>> # per_page gives us the number of records per page
>>> p.per_page
10
>>>
>>> # num_pages gives us the number of pages of records
>>> p.num_pages
6
>>>
>>> # count gives us the number of total records
>>> p.count
52
>>>
>>> # page_range gives us a list of page numbers
>>> p.page_range
[1, 2, 3, 4, 5, 6]

These properties are useful, but we need to call the Paginator.page() method with
a page number argument to construct our page of records:

>>> # pass a page number to the page method
>>> cp = p.page(1)
>>>
>>> # number gives us number of the current page
>>> cp.number
1
>>>
>>> # has_previous returns True if there is a page
>>> # before the current page
>>> cp.has_previous()
False
>>>
>>> # has_next returns True if there is a page
>>> # after the current page
>>> cp.has_next()
True
>>>
>>> # has_other_pages returns True if there are pages
>>> # other than the current page
>>> cp.has_other_pages()
True
>>>
>>> # start_index tells us the position in the overall

Chapter 8

[193]

>>> # queryset for the first record on the current page
>>> cp.start_index()
1
>>>
>>> # end_index tells us the position in the overall
>>> # queryset for the last record on the current page
>>> cp.end_index()
10
>>>
>>> # next_page_number tells us the page number after
>>> # the current page
>>> cp.next_page_number()
2
>>>
>>> # previous_page_number tells us the page number
>>> # before the current page
>>> cp.previous_page_number()
0
>>>
>>> # object_list shows us the objects in the current page
>>> cp.object_list
[<PressRelease: This is a press release 0>, <PressRelease: This
is a press release 1>, <PressRelease: This is a press release 2>,
<PressRelease: This is a press release 3>, <PressRelease: This is
a press release 4>, <PressRelease: This is a press release 5>,
<PressRelease: This is a press release 6>, <PressRelease: This is
a press release 7>, <PressRelease: This is a press release 8>,
<PressRelease: This is a press release 9>]

Using these methods and properties, we have everything we need to build our view
and templates. We'll use them in our view to retrieve the objects, loop through them,
and build the navigation to go forward and back through the pages.

Examining database performance
At a first glance, it appears that the way Django paginates will retrieve all the records
and then just "slice off" whatever the current page uses. Luckily, this is not the case.
Django selects full records only when they are iterated over (also known as "lazy
evaluation"). If it didn't, large record sets could kill the performance because it would
retrieve all the columns for all the records just to use a page of them.

In the Django shell, we can look at a variable called connection.queries to watch
a running list of SQL queries that have been executed. You'll see in the example that
follows that Django only retrieves the records for the current page, and only does so
after we loop through them.

Pagination

[194]

If you have the interactive shell open, stop it by typing the exit function and restart
it so that we clear out anything in memory before trying the next example:

>>> exit()

$ python manage.py shell

With the interactive shell open, try this example:

>>> from django.db import connection
>>> from mycompany.press.models import PressRelease
>>> from django.core.paginator import Paginator
>>>
>>> pl = PressRelease.objects.all()
>>>
>>> # No queries have been run yet
>>> connection.queries
[]
>>> p = Paginator(pl, 2)
>>>
>>> # Still no queries, even though we called the paginator
>>> connection.queries
[]
>>> cur_page = p.page(1)
>>>
>>> # Calling the page resulted in our first query but all
>>> # it did was select a count, not the records
>>> connection.queries
[{'time': '0.002', 'sql': 'SELECT COUNT(*) FROM "press_
pressrelease"'}]
>>>
>>> for item in cur_page.object_list:
... print item.title
...
This is a press release 0
This is a press release 1
>>>
>>> # Now we have two total queries – notice the limit clause
>>> # used in the query that only calls 2 rows
>>> connection.queries
[{'time': '0.003', 'sql': 'SELECT COUNT(*) FROM "press_
pressrelease"'}, {'time': '0.001', 'sql': 'SELECT "press_
pressrelease"."id", "press_pressrelease"."title", "press_
pressrelease"."body", "press_pressrelease"."pub_date", "press_
pressrelease"."author" FROM "press_pressrelease" LIMIT 2'}]
>>>

Chapter 8

[195]

connection.queries will only be used when debugging is enabled in
your settings.py file.

As you can see, Django only selected the columns from the rows when we looped
through the object list. Also, it was careful to use a limit clause when the SQL was
executed so that only two rows were retrieved.

Allowing for empty result sets
By default, the Paginator class allows you to pass empty object lists. If you'd prefer
to automatically return a 404 page if there are no records, you can override the
allow_empty_first_page parameter:

p = Paginator(pl, 2, allow_empty_first_page=False)

Warning: Don't try to use the get_object_or_404 shortcut when
getting your result set. get_object_or_404 returns a list, not a
queryset. Use the allow_empty_first_page argument if you want a
404 page when there are no records.

Preventing orphaned records
In the example result set that we have been using, we have 52 records. If we are
allowing 10 records per page, we will end up with six pages, the last one having only
two records (for example, 1-10, 11-20, 21-30, 31-40, 41-50, 51-52).

Paginator allows us to stick these two end records to the last results page to prevent
the page with just a couple of records. These records are considered "orphans" and
by specifying the number of orphans, we end up with only five pages of results, the
last page having 12 items instead of 10:

>>> from django.core.paginator import Paginator
>>> from mycompany.press.models import PressRelease
>>> pl = PressRelease.objects.all()
>>> len(pl)
52
>>> p = Paginator(pl, 10, orphans=2)
>>> p.num_pages
5
>>> p.page_range
[1, 2, 3, 4, 5]
>>>

Pagination

[196]

>>> # This page will have 10 objects
>>> p4 = p.page(4)
>>> len(p4.object_list)
10
>>>
>>> # The last page has 12 objects because the
>>> # orphans are added automatically
>>> p5 = p.page(5)
>>> len(p5.object_list)
12

Using pagination in your views
Now that we've used the Django shell to interactively look at the methods and
properties of the Paginator and Page objects, let's use that knowledge in an
actual view.

Creating the view
In the mycompany/press/views.py file, edit the press_list view function to look
like this and add the import statement to load the pagination module:

from django.core.paginator import Paginator

def press_list(request):
 '''
 Returns a list of press releases
 '''

 pl = PressRelease.objects.all()
 p = Paginator(pl, 10)
 cur_page = p.page(request.GET.get('page', 1))

 t = loader.get_template('press/list.html')
 c = Context({
 'press_list': cur_page.object_list,
 'page_obj': cur_page,
 })
 return HttpResponse(t.render(c))

We're using the Paginator the same way we did in the examples from the Django
shell. We pass two items into the template context: press_list and page_obj.
press_list. While press_list is a list of objects from the current page, page_obj is
an object representing the current page of results. These two items are all we need to
be able to return the records and navigation on the page.

Chapter 8

[197]

Retrieving the current position from the URL
The line from the view that gets the page number from a URL parameter deserves a
closer look and explanation:

cur_page = p.page(request.GET.get('page', 1))

A good rule of thumb when building web applications is to never trust data that
comes from GET or POST, and this is not an exception. We're getting a variable
called page from the URL, and if it's not present, we are using the integer 1.

We aren't casting page as an integer (querystring parameters are evaluated as
Unicode strings, even if they represent numbers) or even making sure it's a number.
Why? The Paginator class does this for us. If an invalid page number is passed,
either a number outside the range of pages or an invalid value such as a non-digit,
the Paginator will automatically return a 404 page.

Remember: Page objects are 1-based, so the first page will be 1, not 0.

Putting navigation into the templates
Before we can see the output of our work in a browser, we need to put together
the template and build in the appropriate navigation to go to the next and
previous pages.

Edit the mycompany/templates/press/list.html file to look like this:

<html>
<head>
<title>Press Releases</title>
</head>
<body>
<h1>Press Releases</h1>

{% for press in press_list %}

{{ press.title }}

{% endfor %}

<p>
Page {{ page_obj.number }} of {{ page_obj.paginator.num_pages }}

Pagination

[198]

</p>
<p>
{% if page_obj.has_previous %}
Previous
{% else %}
Previous
{% endif %}
 |
{% if page_obj.has_next %}
Next
{% else %}
Next
{% endif %}
</p>
</body>
</html>

If you have been following along with the previous chapters, you'll
notice that we're not using template inheritance with this example. This
is intentional to keep the example simple. Feel free to go back and add it
afterwards for good practice.

In the first part of our template, we are iterating over the objects from the
current page:

{% for press in press_list %}

{{ press.title }}

{% endfor %}

In the second part of the template, we are using the properties of the page object
page_obj to write out the navigation between the pages:

{% if page_obj.has_previous %}
Previous
{% else %}
Previous
{% endif %}
 |
{% if page_obj.has_next %}

Chapter 8

[199]

Next
{% else %}
Next
{% endif %}

Using the Boolean values for has_previous and has_next, we determine if the
words "Previous" and "Next" should be hyperlinked or just static text.

Point your browser to the URL http://localhost:8000/press/list/ and you
should see this:

Pagination with generic views
As we discussed in Chapter 2, generic views are used to cut down on the number
of boilerplate views we end up writing in many web applications. The paginating
results in these pages are also very common, and are built into the handling of
generic views.

Pagination

[200]

Setting up our generic list view
Instead of replacing our current list view, let's add another URL configuration to the
mycompany/press/urls.py file. Add the highlighted lines:

from django.conf.urls.defaults import *
from mycompany.press.models import PressRelease

press_list_dict = {
 'queryset': PressRelease.objects.all(),
 'template_name': 'press/list.html',
 'allow_empty': False,
 'template_object_name': 'press',
 'paginate_by': 10,
}

urlpatterns = patterns('',
 (r'detail/(?P<pid>\d+)/$','mycompany.press.views.detail'),
 (r'list/$','mycompany.press.views.press_list'),
 (r'list2/',
 'django.views.generic.list_detail.object_list',
 press_list_dict),
 (r'latest/$','mycompany.press.views.latest'),
 (r'$','django.views.generic.simple.redirect_to',
 {'url': '/press/list/'})
)

If you have been following along with earlier chapters, the highlighted
import statement press_list_dict dictionary will already be in your file.
Edit your code to look like the current example.

This is similar to what we did in our chapter about the generic views. In our
press_list_dict dictionary, we've added an additional key called paginate_by.

The second URL configuration does not have a dollar sign at the end of
the first element in the tuple. This is important because it allows the URL
to match with or without the ?page=n parameter.

As of the time of this writing, you cannot specify the allow_empty_first_page and
orphan parameters to generic views.

Point your browser to the URL http://localhost:8000/press/list2/ and you
should see the same output as before. (This URL uses generic views)

Chapter 8

[201]

Generically calling the last page
One cool feature in generic view pagination is the ability to use the string last in the
URL instead of a number.

For example, instead of this URL:

http://localhost:8000/press/list2/?page=6

You can use this:

http://localhost:8000/press/list2/?page=last

With this trick, you can create a link somewhere in your site to the last page of press
releases without having to know how many pages of results exist. Often the last page
of results has the most recent items, so you can use this to display only the latest.

Summary
In this chapter, we learned how to break our result sets into smaller pieces with
the pagination library. We configured our press application and populated it with
enough records to test out the concepts using the interactive Django shell. We looked
at the properties of the Paginator and Page objects, and what their values represent.

We put these concepts into practice in a view, and built a template with the
appropriate navigation to view the pages that made up our results set. Finally,
we explored how to use pagination when using generic views.

In the next chapter, we will learn how to customize the look and feel of the automatic
admin application.

Customizing the Admin
Look and Feel

The automatic admin application (aka "the admin") is an amazing feature of Django
that saves countless hours of routine development work. To add that extra "finishing
touch" to your application, you may want to change the color scheme of the admin
pages to match your site, change some of the default page headers, and add outside
links to the admin dashboard.

In this chapter, we will:
Explore how admin templates are structured
Override the necessary templates to customize the appearance of the admin
Change the default header of the admin pages
Add navigation links to the top of the admin page
Add an additional box of links to the admin dashboard
Override the admin stylesheet to match your site's color scheme

We're will not talk about how to change the functionality of the admin,
since that's thoroughly documented in Django's online documentation.
We're going to look at how to make the admin appear with the same look
and feel as the rest of your site.

Overriding the admin templates
Before we can start modifying the admin templates, we need to explore their structure.
The templates used for the admin are no different than other Django templates, and
you already know everything needed to work with them. We don't want to edit the
existing admin templates as they are part of the Django source code. If we edit them,
we might lose our changes when updating Django as they could get overridden with
the new files. Instead, we will override the files and leave the originals untouched.

•
•
•
•
•
•

Customizing the Admin Look and Feel

[204]

Leveraging the template loader
In an earlier chapter, we talked about the app_directories template loader that
looks for a directory called templates underneath your individual applications. This
is how the admin templates "automatically" appear. They are found in a directory in
the Django admin source code. (We'll look at them shortly.)

In our mycompany/settings.py file, we use both the filesystem and
app_directories loaders:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.load_template_source',
 'django.template.loaders.app_directories.load_template_source',
)

The order of the loaders is important. Using the filesystem loader first allows us
to create an admin directory under our site's templates folder that will be used to
override the admin templates.

Our template files are located in this directory, as defined in the TEMPLATE_DIRS
value in the mycompany/settings.py file:

/projects/mycompany/templates/

In our templates directory, we will create a subdirectory called admin that holds
our admin templates. Using this setup, the template loader will first look in the
/projects/mycompany/templates/admin directory for a template file. If it doesn't
find the file, Django will use the default admin file. This is perfect for us because we
only need to create the files that we want to override.

Locating the admin template files
Let's look at the admin templates that ship with your Django distribution. You'll
need to know where Django is installed on your machine, which varies depending
on how you set it up.

If you download and install a release of Django, your files will likely be under your
Python site-packages directory. To find where that directory is, launch the Python
interactive shell and enter these commands:

>>> import distutils.sysconfig

>>> print distutils.sysconfig.get_python_lib()

/Library/Python/2.5/site-packages

Chapter 9

[205]

From this example, you can see that the site-packages directory on my Macintosh
is located in the /Library/Python/2.5/ directory. Yours may be different. Once
you locate the site-packages directory, browse it for a directory called django. This
directory will contain the Django source code files.

Exploring the admin template files
In your Django source code directory, browse for the contrib/admin/templates/
admin directory and you'll see about twenty-five HTML files. It may seem like a lot,
but there are only a few that we'll be concerned with. The others are just includes or
snippets that we won't need to customize.

Here are the main files and their purposes:

base.html: This is the highest parent template. We will not do any
customization in it, but there are some important extra blocks to look at.
base_site.html: This file has the page title and header text. It extends base.
html and we will do most of our customizations in it.
change_list.html: This is the list of objects you can edit when you choose
one of your apps on the home page.
change_form.html: This is the form that's shown when editing an object.
index.html: This is the home or "dashboard" page of the admin app that
lists all the apps you can manipulate. (We'll be adding some extra links to
this page.)

Inspecting the base.html template
We won't be editing or overriding the base.html file because Django has done much
of the heavy lifting for us. On lines seven and eight of the file, there are blocks that
allow us to add extra information into the head of the HTML document from within
the child templates:

{% block extrastyle %}{% endblock %}
{% block extrahead %}{% endblock %}

When we start writing our own admin templates, we'll use these extrastyle and
extrahead blocks to our advantage and inject extra CSS and JavaScript into the
resulting HTML output.

•

•

•

•

•

Customizing the Admin Look and Feel

[206]

Inspecting the base_site.html template
This simple file is the ideal place to do most of the customization work for our
admin. For example, we can change the title and the text header at the top of all the
admin pages by editing the title and branding blocks:

{% block title %}{{ title }} | {% trans 'Django site admin' %}
{% endblock %}

{% block branding %}
<h1 id="site-name">{% trans 'Django administration' %}</h1>
{% endblock %}

{% block nav-global %}{% endblock %}

The last empty block, nav-global, allows you to add content to the bottom of the
colored header underneath the branding text.

Since we'll be editing the title and branding text for our site, we'll want to copy this
base_site.html file to our templates/admin directory. We'll also be adding extra
CSS information to this file to make the color scheme match that of ours.

What are these trans tags? They are used by Django's
internationalization (i18n) libraries to automatically translate the text into
the user's language preference.

Inspecting the index.html template
This file controls the dashboard page you see when logging into the admin. All the
applications you have permission to manipulate are listed in blocks such as Auth,
Flatpages, Press, and Sites in the following example:

Chapter 9

[207]

We can add additional content above or below these blocks by adding it to the
appropriate place in the index.html file:

{% block content %}
<div id="content-main">

We can put HTML here to make it appear above the
boxes for the applications.

{% if app_list %}
 {% for app in app_list %}

By adding content in the highlighted area, we can add our own links and content to
the main admin page.

Inspecting the change_list.html template
The change list is the main list of objects inside an application (such as the press
release application) that we can edit. We won't be editing or overriding this file, but
notice the alternating color scheme on the list. The template calls a custom tag that
renders the change_list_results.html file:

Customizing the Admin Look and Feel

[208]

The colors are controlled by the row1 and row2 classes applied by the cycle tag in
the change_list_results.html file:

<tbody>
{% for result in results %}
<tr class="{% cycle 'row1' 'row2' %}">{% for item in result %}
{{ item }}{% endfor %}</tr>
{% endfor %}
</tbody>

The resulting HTML output looks like this (notice the class attributes on the tr tags):

<tbody>
<tr class="row1"><th>This is a press release 51
</th></tr>
<tr class="row2"><th>This is a press release 50
</th></tr>

By overriding the styles for the row1 and row2 CSS selectors, we can use our own
color scheme in the change list. We'll do that later in the chapter.

Inspecting the change_form.html template
We won't be working with this file. But if you want to add additional content above
the form used to edit an object, this is the file you'd work with.

Customizing the admin header
To make our admin site feel less generic, we'll replace the default title and header
at the top of the pages.

Create a new directory called admin under the directory mycompany/templates.
Copy the django/contrib/admin/templates/base_site.html file to your
templates/admin directory. This is the first file we'll be overriding.

Replacing the page title
In our admin pages, the page title is presented in this format:

<title>Site administration | Django site admin</title>

This can be changed by editing the title block in base_site.html. Open the
mycompany/templates/admin/site_base.html file and edit the block that looks
like this:

{% block title %}{{ title }} | {% trans 'Django site admin' %}{%
endblock %}

Chapter 9

[209]

Replace the text in quotes after the pipe symbol with our site's title:

{% block title %}{{ title }} | {% trans 'MyCompany Administration'
%}{% endblock %}

The trans tag is used by Django's internationalization (i18n) libraries to
translate text into other languages. We're not going to translate our new
text, but we'll leave the trans tags in the file in case you ever want to.

Point your browser to the URL http://localhost:8000/admin/ and you will see
that the title in the top of the browser window reflects our new change:

Changing the header text
The next thing we'll want to change is the text Django administration. We can do
this by editing the contents of the branding block in the base_site.html file:

{% block branding %}
<h1 id="site-name">{% trans 'MyCompany administration' %}</h1>
{% endblock %}

Reload the page and you'll see that the header text has changed:

Adding a new link box to the admin
Let's add some links to the admin dashboard in a format that matches the way
apps are listed. We'll add links to Google Analytics for our page traffic analysis and
Google Webmaster tools to help get us indexed properly in Google. Having these
links available in your admin page is handy when administering your site.

Customizing the Admin Look and Feel

[210]

Overriding the admin index file
Copy the django/contrib/admin/index.html file to your mycompany/templates/
admin directory. This page controls the appearance of the dashboard in the admin, so
we'll be adding the links at its top.

When our apps are listed on this page, they appear automatically as part of the inner
workings of the admin app. We don't want to alter this functionality as, when a new
app is added in the future, we don't want to manually add it to the admin home
page. By adding additional lines to the index.html file, we'll get our extra content
added without changing the way the apps are loaded.

Look for the content-main div in the templates/admin/index.html file
(around line 13):

{% block content %}
<div id="content-main">

{% if app_list %}
 {% for app in app_list %}
 <div class="module">

We're going to stick our additional content at the beginning of the div before the
{% if app_list %} tag like this:

{% block content %}
<div id="content-main">

<p>This is where the extra content goes.</p>

{% if app_list %}
 {% for app in app_list %}
 <div class="module">

When we reload the page, you'll see the new text above the first app:

Rather than adding our new HTML code into the index.html file, let's use an
include file instead to keep the code cleaner.

Chapter 9

[211]

Edit templates/admin/index.html to use an include file:
{% block content %}
<div id="content-main">

{% include 'admin/index_links.html' %}

{% if app_list %}
 {% for app in app_list %}

Creating the include file
Create a new file at templates/admin/index_links.html and add this line:

<p>This is where the extra content goes.</p>

When you render the page, it should look exactly the way it did the last time. Now
that we know it works, let's add some HTML markup so that the links are grouped
in a look that matches the rest of the dashboard.

In templates/admin/index_links.html, replace the contents with this:
<style>
.module div {
 padding: 5px;
 font-weight: bold;
 border-bottom: 1px solid #eee;
 line-height: 13px;
}
.module div a {
 font-weight: bold;
}
</style>

<div class="module">
 <h2>Tool Links</h2>
 <div>Google Analytics</
div>
 <div>Google
Webmaster Tools</div>
</div>

Let's break it down and explain a couple of pieces of markup:

We apply the class module to the div. This gives the box the distinct look
with the blue title bar.
The h2 tag becomes the text inside the box's blue title.
We have a style block inside the include file, but you can put it anywhere you
feel like.

•

•

•

Customizing the Admin Look and Feel

[212]

When you reload the page, it should look like this:

Customizing the admin color scheme
If you've ever looked at the admin page with CSS turned off, you'll know that it
owes most of its beauty to the CSS stylesheets it ships with. Here's what it looks like
without the styles applied:

Chapter 9

[213]

Rather than trying to edit the stylesheets directly, we'll just redefine the specific
styles needed to apply our color scheme. We only need to override the specific
properties we want to change, such as the font or the background color.

Identifying styles to change
The admin stylesheets are found in django/contrib/admin/media/css, but we
don't need to copy them anywhere to make our changes. We just need to identify the
selectors we'd like to override. We can do that by viewing the source on the rendered
admin pages and seeing what the IDs and class attributes are applied to the content
we want to change.

You can also use third-party tools to identify the CSS that is applied to
elements on the page. Freely available tools such as Firebug and the Web
Developer Toolbar for Firefox are very handy for this kind of work.
Firebug: https://addons.mozilla.org/en-US/firefox/
addon/1843

Developer Toolbar: https://addons.mozilla.org/en-US/
firefox/addon/60

For our customizations, we will change these admin page elements:

Header background color (controlled by the background-color property of
the div named header)
Header title font color (controlled by the color property of the h1 element in
the div named header)
Dashboard box header background color (controlled by the
background-color and color selectors in the module class applied to
caption and h2 elements)
Change list shaded row background color (controlled by the background-
color property of the row1 class)

Using the extrastyle block
Earlier in the chapter, we identified some special blocks the admin template authors
put in the base.html template that allow us to add in extra functionality. The
extrastyle block allows us to define CSS in our base_site.html template that
we've already copied into our templates directory.

•

•

•

•

Customizing the Admin Look and Feel

[214]

In templates/admin/base_site.html, add these lines:

{% block extrastyle %}
<style>
/* Header background color */
#header {
 background-color: #f57948;
}
/* Header title font color */
#branding h1 {
 color: #fff;
}
/* Link box title bar color */
.module caption, .module h2 {
 background-color: #f57948;
 background-image: None;
 color: #fff;
}
/* Change list shaded row color */
.row1 {
 background-color:#eee;
}
/* Change list non-shaded row color */
.row2 {
 background-color: #fff;
}
</style>
{% endblock %}

When the page is rendered, you can view the source and see that our extrastyle
block has been injected into the top of the resulting HTML.

Since a picture is worth a thousand words, let's take a look at a labeled screenshot of
what we just built. This printed page doesn't convey color well, but the labels should
help us show what we just changed:

Chapter 9

[215]

Here is what the admin change list page looks like with our CSS changes:

By adding some simple CSS to the extrastyle block, we were able to customize the
admin stylesheets to fit the color scheme of our site.

Customizing the Admin Look and Feel

[216]

Summary
In this chapter, we edited the templates of the Django admin application to add
additional content and make the color scheme match our site.

We looked at the structure of the admin templates and how we can override them
by creating an admin directory under our site's templates directory. We saw how the
template filesystem loader will look for the files in this directory before looking at the
template files under the admin application.

We explored how to change the admin header by editing the base_site.html file
with our own information. We added our own links to the admin dashboard in a
format that matches the other boxes on the page.

Finally, by using some special blocks in the admin base template, we added a
set of global navigation links and the new CSS rules to override the default
admin stylesheet.

In the next chapter, we'll look at how to improve performance using Django's
caching libraries to cache our page content.

Caching Your Pages
The Django framework makes it easy to produce dynamic pages and generate
content "on the fly" when a page is requested. Under certain circumstances, this
can have a negative impact on your site's performance, such as when you start
generating a large amount of traffic or if your pages use intensive database queries.
In these situations, you can use the built-in caching mechanisms to reduce the
amount of processing that goes into serving each request.

In this chapter, we will:

Explore the basics of caching output
Compare the different cache backends that Django offers
Configure your site for caching
Cache content on a per-view basis
Cache content from within Django templates
Use the low-level cache API to cache specific pieces of data
Cache your entire site automatically
Explore strategies for using different cache mechanisms together
Configure Django to work with caches other than your own

An overview
Generating web pages for every request can be difficult for the server. But if we can
hold on to data between requests and serve it again for the next request, we can
reduce the overhead of serving each page.

We use a cache to store the result of a query so that future requests won't have to
look it up again. Deciding how long to hold onto the data before looking it up again
depends on your situation; but the longer you can go without having to look it up,
the more performance you should be able to squeeze out of your server.

•

•

•

•

•

•

•

•

•

Caching your pages

[218]

Do you need caching?
How do you know if you need to implement caching on your site? Usually, there are a
few warning signs that indicate the time one should think about using caching such as:

Processor or memory usage has climbed to a level that you are not
comfortable with.
Your web or database server cannot keep up with the incoming requests.
It takes too long for the server to render a page request (the underlying page,
not including images or external references).
You anticipate your site traffic increasing to a point where one of the
previous items will come into play.
You want to be one of the cool kids who use caching on their site.

How caching works
Whether it's a complex database query, an intensive algorithm, or just the sheer
number of incoming requests that are causing problems, caching can help your pages
render more quickly. The concept is simple: Do the work once, and then save the
results for the next time they are needed.

Holding on to the results can save time, but how long do you go without looking
them up again? It depends on how often the underlying data changes. For example,
if you're serving an hourly weather forecast, you may only need to look up the data
once per hour. If you're serving current weather conditions, you'll probably have to
look it up every 5 or 10 minutes.

What if you're serving the weather conditions for more than one city? You don't want
to look up Atlanta's weather and serve it to someone looking for conditions in Dallas,
and so you'll have to use a label to identify the piece of data. This label is what we'll
call the cache key, and the conditions are the cached data. The amount of time spent
before looking up the conditions again is the cache expiration or cache timeout. When
the timeout is reached, the data is considered stale and won't be used anymore.

Exploring the available cache systems
The Django cache framework offers a variety of cache backends with a consistent
interface. This gives you the flexibility to store your cached data as you see fit and
change it later without having to change any of your code. For example, you can
use the filesystem as the cache backend while your site is small, and upgrade to the
Memcached backend later without having to change the code in your views.

Let's briefly look at the different cache backend options.

•

•
•

•

•

Chapter 10

[219]

Filesystem caching
This backend saves the cached data to a file on the local filesystem. This is a great
starter option for caching as it is easy to set up, works well on shared hosting
environments, and doesn't rely on the database, thus reducing the number of reads
and writes. You are limited, however, by the speed of reading and writing to the
server's hard drive (also known as disk I/O).

Database caching
This backend uses a special database table to store its cached data. Like the filesystem
backend, it works well in shared hosting environments and is easy to set up. But
it is not good for environments where you are trying to keep down the number of
database reads/writes, as it stores the data in a special database table.

Memcached
Memcached is a daemon that runs on the server and uses TCP/IP sockets for
communication. It is considered to be the fastest, most efficient cache backend for
Django (and many other frameworks as well). Memcached is an in-memory cache.
It stores the cached data in RAM, avoiding the I/O overhead of the filesystem and
database caches.

Memcached takes up the server RAM, so it usually isn't available in shared hosting
situations. If you have a dedicated server and can spare the RAM, this is the best
cache backend option. It has the added benefit that multiple servers can access the
same cache, since it uses TCP/IP, and you can pool together separate Memcached
servers to act as a single cache.

Another consideration when using this backend is that Python client libraries are
required to use Memcached. They're freely available and easy to install.

Memcached stores its data in RAM and all data is lost when the machine
or the daemon restarts. This isn't a problem as you shouldn't store
anything in cache that can't be regenerated.

Local memory caching
This backend (also known as locmem) is an alternative to Memcached, but at the
time of this writing is not considered to be suitable for production sites. There are
debates on the Django bug list about whether more than one web server process can
access the same local memory space. Perhaps by the time you read this, the links will
have been worked out. But for now, consider it as a development-only cache. (If you
have the RAM available, just go with Memcached anyway!)

Caching your pages

[220]

Dummy caching
This backend is designed for development work when you want to see fresh data
on every request. It doesn't actually cache any data, but allows you to put your
caching calls into place without getting errors saying you don't have a cache backend
installed. Alternatively, you could set up one of the other cache backends and change
the expiration time to zero seconds, ensuring that you always see new content; but
this way is much cleaner.

Setting up your cache system
Now that you've seen the various cache backends that Django offers, we can now
start implementing the code to work with them. Regardless of the backend you
chose, the code will be identical.

Configuring the cache backend
To tell Django which backend we intend to use, we will set a variable called
CACHE_BACKEND in our mycompany/settings.py file. Each backend uses a slightly
different value, so we'll run through each separately.

Database caching
In order to use the database caching backend, you also have to run the
createcachetable command from the manage.py file. This example uses
my_cache_table as the name of the table, but you're free to use whatever you like:

$ python manage.py createcachetable my_cache_table

Once you have your cache table set up, add the backend to your
mycompany/settings.py file:

CACHE_BACKEND = 'db://my_cache_table'

Filesystem caching
Filesystem caching requires very little setup, and the backend points to an absolute
directory path on your filesystem. Make sure the web server process has permission
to write and delete in that directory (the directory must exist).

There are three slashes at the beginning of the setting, and a trailing slash
is not required:
CACHE_BACKEND = 'filesystem:///projects/mycompany/
cache/'

Chapter 10

[221]

Local memory caching
Local memory (locmem) caching requires no setup. You just provide this
backend setting:

CACHE_BACKEND = 'locmem:///'

Dummy caching
Like locmem, dummy caching also uses a very simple setting:

CACHE_BACKEND = 'dummy:///'

Memcached
Memcached is the most complex backend setup, but it's not very difficult to
set up. Make sure you install the Python library cmemcache (preferred) or
python-memcached.

Once you have the Python libraries installed, the backend setting uses the server IP
address and the port number. In this example, it's on the local machine (127.0.0.1) on
port 11211, the standard port for Memcached:

CACHE_BACKEND = 'memcached://127.0.0.1:11211/'

Adding additional backend arguments
Once you have your backend configured, you can add some additional arguments to
tailor the way it works:

timeout: This is the amount of time that an item can be in cache before it's
considered stale. The default value is 300 seconds.
max_entries: This is the maximum number of entries that can build up in the
cache before the cache is cleaned. The default value is 300 entries.
cull_percentage: When the cache is cleaned, the cull percentage is the
percentage of the entries that are removed when the maximum number of
entries is reached.

The formats of the arguments are similar to URL querystring parameters:

CACHE_BACKEND = 'locmem:///?timeout=60&max_entries=300'

•

•

•

Caching your pages

[222]

Setting up for the examples
You can use any of the cache backends for the examples that follow (except dummy,
since it won't do anything). The easiest one to set up is probably the local memory
cache, as it doesn't require you do to anything except add the backend configuration
to your settings file.

Caching individual views
Now that you've configured caching, let's implement it in one of our views.
Our press release detail view is a great candidate for caching. The content of the
individual releases rarely changes and, therefore, doesn't need to be queried from the
database for every request.

We'll use the same view at the mycompany/press/views.py file that we've been
using throughout our chapters. In Chapter 6, we added functionality to the view to
work with multiple templates by adding the highlighted lines:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)

 if request.GET.has_key('printable'):

 template_file = 'press/detail_printable.html'

 else:

 template_file = 'press/detail.html'

 t = loader.get_template(template_file)

 c = Context({'press': p})
 return HttpResponse(t.render(c))

Let's simplify the view so that we can just focus on learning how to work with
caching. Strip out the extra lines and your view should look like this:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)
 t = loader.get_template('press/cache_detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Chapter 10

[223]

Notice that we have changed the name of the template that is loaded by the
template loader to a new file called cache_detail.html. Create a new file called
cache_detail.html in the mycompany/templates/press directory and add
these lines:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>{{ press.title }}</h1>
<p>
<hr>Current Datetime: {% now "H:m:s" %}<hr>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

Once you have these items in place, run your development server and test your
setup. Your output should look similar to the screenshot, depending on the content
of your press release.

Browse to http://localhost:8000/press/detail/1/ and you should see
something similar to this:

Reload the URL a couple of times, and make sure the current time changes for
each reload.

Caching your pages

[224]

Adding caching
Let's "freeze time" by adding caching to our view. Once in place, the result of the
view will be saved in cache and the code inside the view won't be evaluated again
until the cache expires. We can see that this behavior is working when we reload our
view and the date and time do not change.

Add the highlighted lines to the mycompany/press/views.py file:

from django.views.decorators.cache import cache_page

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)
 t = loader.get_template('press/cache_detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))
detail = cache_page(detail, 10)

Alternatively, you can use Python's decorator syntax for caching if you're using
Python version 2.4 or greater:

from django.views.decorators.cache import cache_page
@cache_page(10)

def detail(request, pid):
 '''
 ...

Load the page, view the results, and refresh the page. You'll see that the page content
does not change when you refresh. Once the ten seconds have passed, the cache
expires and the view runs again.

It's usually a good idea to set the value of your cache timeout as a variable
in your site's settings.py file and use it in your views. This will make
it easier to change the cache timeout values in multiple views at once.

Caching pieces of templates
Django also gives us the ability to cache fragments of templates using a special
template tag. We can use it to cache the part of the template that evaluates the
current time.

Chapter 10

[225]

Remove the line of code that caches the detail view and reload the page a few times
to make sure the time is refreshing each time. Your detail view should look like
this again:

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 p = get_object_or_404(PressRelease, id=pid)
 t = loader.get_template('press/cache_detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Once you've reverted the view to it's pre-caching state, add the highlighted lines to
mycompany/templates/press/detail.html:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>{{ press.title }}</h1>
<p>
{% load cache %}

{% cache 10 curtime %}

<hr>Current Datetime: {% now "H:m:s" %}<hr>

{% endcache %}

Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

This new block loads a library called cache and uses the cache template tag. The
tag takes two arguments: the length of time to cache the fragment, and a unique
name for the fragment. In this example, it will be cached for 10 seconds and
called curtime.

Test out the page and see if it works in the same way as it did when we used the
per-view cache. Template fragment caching is great for pieces of content that get
brought into your templates (such as with an include) or when you want very fine
control over what content gets cached.

Caching your pages

[226]

Low-level caching
If per-view and template caching don't solve your needs, Django offers you a way
to choose exactly the pieces that get cached. The low-level cache API lets you read
and write to and from the cache and explicitly decide how you want the data to
be cached.

Say, for example, you wanted the press release to show the current date and time
each refresh, but you don't want the database to get queried for the content of the
release? You can use low-level caching to save the result of the database lookup.

Before we begin, remove the template fragment caching from the previous example by
editing the highlighted line in mycompany/templates/press/cache_detail.html:

<html>
<head>
<title>{{ press.title }}</title>
</head>
<body>
<h1>{{ press.title }}</h1>
<p>
<hr>Current Datetime: {% now "H:m:s" %}<hr>
Author: {{ press.author }}

Date: {{ press.pub_date }}

</p>
<p>
{{ press.body }}
</p>
</body>
</html>

Verify that each refresh updates the time displayed on the page each time you
hit refresh.

In the mycompany/press/views.py file, add the highlighted lines:

from django.core.cache import cache

def detail(request, pid):
 '''
 Accepts a press release ID and returns the detail page
 '''
 cache_key= "press_release_%s" % pid
 p = cache.get(cache_key)

 if not p:
 p = get_object_or_404(PressRelease, id=pid)

Chapter 10

[227]

 cache.set(cache_key, p, 60)

 t = loader.get_template('press/cache_detail.html')
 c = Context({'press': p})
 return HttpResponse(t.render(c))

Once you have the code in place, load the URL in the browser and verify the time
increments each time you refresh. Go into the admin and change some of the values
of your press release and reload it in the browser. You should see the time increment,
but the data should remain unchanged. (The example above gives you 60 seconds to
update the press release.)

What happened in this example to make it work? First, we created a cache key to act
as a label for our data. It's important that we make sure the key is unique so we add
the ID of the object as part of the key.

cache_key= "press_release_%d" % pid

Next, we try to retrieve the object from the cache using the key. If it doesn't exist, the
cache.get() method returns None.

p = cache.get(cache_key)

if not p:
 p = get_object_or_404(PressRelease, id=pid)
 cache.set(cache_key, p, 60)

If the cache.get() method returns None, we know that we have to look up the
object. While we're looking it up, we set the value in the cache so the next request
won't have to do this step.

If the object does exist in cache but is expired, it's treated as if it didn't
exist and the method returns None. We don't have to worry about
checking if it exists and it's not stale—that's taken care of for us.

Caching your whole site
If you want to cache your entire site without having to configure the cache for each
individual view, Django provides middleware that can do this for you.

Edit the MIDDLEWARE_CLASSES tuple in your mycompany/settings.py file to look
like this: (add the highlighted lines)

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.middleware.cache.UpdateCacheMiddleware',

Caching your pages

[228]

 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',

)

The order of the classes in the tuple is important, so make sure you add them
exactly as listed. If you're not using all of these pieces of middleware and your
tuple looks different, just make sure you put the highlighted lines around the
CommonMiddleware element.

Add the following lines to your mycompany/settings.py file:

CACHE_MIDDLEWARE_SECONDS = 300
CACHE_MIDDLEWARE_KEY_PREFIX = 'mycompany_'
CACHE_MIDDLEWARE_ANONYMOUS_ONLY = True

You can probably figure out that CACHE_MIDDLEWARE_SECONDS is a global setting
for the cache expiration time of all views. (Note that you cannot individually set
different cache times for different views.) What do the other settings do?

The value of CACHE_MIDDLEWARE_KEY_PREFIX is prepended to the cache key that
is automatically generated for a view. This ensures that if you have multiple sites
running from the same code base (as we had in the chapter where we served our
mobile and desktop sites from the same code) you won't have a key collision. When
a key collision occurs, the output of one site's view overwrites another site's,
resulting in erroneous output.

Finally, CACHE_MIDDLEWARE_ANONYMOUS_ONLY ensures that requests made by
logged-in users don't get cached. This prevents user-specific data from getting
written into the cache.

Consider the following snippet of template code:

Hello, {{ user.username }}!

If user "A" requests the page and it gets cached, user "B" will see the wrong username
on the page.

Caution: Even if you aren't serving user-specific data in your templates,
Django's automatic admin interface requires the anonymous-only setting
to work properly. If you forget to put it in, you'll update records and
won't see the changes reflected in the admin until you clear the cache.

If you're testing the per-site cache and don't seem to get the pages to cache, make
sure you're not logged in to the admin site!

Chapter 10

[229]

Preventing data from being cached
If you're using the per-site cache and have some specific views that you want to
exclude from cache, you can use the never_cache decorator:

from django.views.decorators.cache import never_cache

@never_cache
def detail(request, pid):
 ...

Using the never_cache decorator ensures that the view will not be cached by the
per-site caching mechanism.

General caching strategies
With different caching mechanism options such as per-site, per-view, low-level,
and so on, it may be difficult to determine which one fits your site best. There is no
single "right" answer, but let's look at a general strategy for implementing caching on
your site.

The per-site cache is fast and easy to implement. You don't have to remember to
implement caching in your views, and you can configure the caching to prevent
authenticated requests from getting cached.

What if you have views that require authentication? With the per-site cache
enabled, these views won't get the benefit of the cache. In this case, you may want
to implement low-level caching to store the bits of data that aren't user-specific. But
sometimes, this isn't possible, for example when you present data specific to the
logged-in user.

If you are presenting a lot of user-specific data, look for places in your
templates where you can add caching, such as a dynamically generated menu or
navigation system.

Keep in mind that not everything on your site will benefit from being cached. There
is an overhead to implement the cache, and if it's greater than the overhead of
executing the code in question, you probably won't experience any benefit.

Working with outside caches
Not every cache you'll deal with is stored locally on your server. For example, many
web browsers have built-in functionality to cache content and some networks are
behind proxies and web accelerators.

Caching your pages

[230]

We can provide some additional information via HTTP headers to these caches that
make sure our content is stored properly. Specifically, the Vary HTTP header allows us
to tell a cache how to differentiate content that it might otherwise think is the same.

As a simple example, we can tell a cache to cache content that is based on the user
agent that a visitor is using. This lets us cache a request for a mobile device, such as
an iPhone, differently than we would for a generic mobile device.

from django.views.decorators.vary import vary_on_headers

@vary_on_headers('User-Agent')
def detail(request, pid):
 ...

If you'd like to try it out, you can do so if you have two web different web browsers.
Point your first browser at the page and it will cache the content. Point your second
browser at the page, and you will not see the cached results because the browser's
user agent string will be different.

You can tell the cache to vary on a variety of criteria: user agents, visitor language
preferences, cookies, and so on. The vary_on_headers decorator allows you to pass
multiple values to it.

If varying your content for upstream caches is important to the proper operation of
your site, check the online documentation for a full discussion and more examples.

Make sure you remove the middleware caching libraries or set the cache
expiration time to zero seconds if you’re going on to the next chapter or
you will be working with cached pages!

Summary
In this chapter, we explored how to improve the performance of our site by
implementing caching. We saw the different backends that Django offers and learned
how to configure our site to use each of them. We also learned how to cache pieces
of data using the low-level API, the output of views with per-view caching, and even
our whole site with per-site caching.

We looked at when certain cache mechanisms work better than others and also the
general caching strategies. Finally, we wrapped up by looking at how our data might
be cached by outside servers and how to make sure our data is served properly in
those situations.

In the next chapter, we will look at serving your site in multiple languages with
Django's internationalization (i18n) libraries.

Internationalization
Internationalization, also known as i18n (the word "internationalization" consists of
the letters "i" and "n" with 18 letters in between), provides a way to present your site
in multiple languages from the same template files. Instead of creating a separate
site in a different language, you identify strings of text in your templates that are
substituted with a string in the appropriate language for the visitor.

In this chapter, we will:

Learn how i18n works
Build a sample application
Configure the project for i18n
Install the appropriate libraries to create language files
Mark strings in our template for translation
Create English and German translations for our project
Learn how to manually and automatically configure language preference

Exploring i18n
Internationalization can be used to offer your site in multiple languages from a single
project. Instead of creating multiple domains, projects, or templates, you can provide
translation strings in your templates that allow for the appropriate language file to
be chosen.

One important thing to keep in mind is that the database content is not
stored in multiple versions. It is presented to the user in the same way
regardless of language. Saving multiple translations of content can be
done, but it isn't something than can easily be done inside templates and
so it's beyond the scope of this book.

•

•

•

•

•

•

•

Internationalization

[232]

When a user first views the site, an HTTP header called Accept-Language will identify
his or her language preference. If it's not specified, Django will look at your project's
settings file and see what the default language to serve is. You can also provide links to
set cookies that Django will look for to determine the language preference.

In order to use i18n, we will have to tell Django that we are planning to use it, create
a sample project with marked translation strings, create the translation files, and then
view our templates. We'll configure Django to use the Accept-Language header later
in the chapter. For now, we'll manually configure the language preference.

Creating an example application
To explore the concepts in this chapter, we'll need to create a sample application.
We'll make a simple contact list application that displays a user's first name, last
name, birthday, and salutation based on gender. This simple example will give us
the ability to change the labels for the fields as well as the date format used to show
the birthday and the language used to display the salutation.

For this example project, we'll assume you are following along with the book and
working in the Django project called mycompany. If you are not, make the appropriate
changes in the code for your project name. (You won't need any of the other apps
we've built to follow along with this chapter.)

Start by adding a new application to your project. In the /projects/mycompany
directory, run the following command:

$ python manage.py startapp contactlist

Once the app has been created, edit mycompany/contactlist/models.py to look
like this:

from django.db import models

GENDER = (
 (1, 'Male'),
 (2, 'Female'),
)

class Entry(models.Model):
 first_name = models.CharField(max_length=100)
 last_name = models.CharField(max_length=100)
 birthday = models.DateTimeField()
 gender = models.SmallIntegerField(choices=GENDER)

 def get_absolute_url(self):

Chapter 11

[233]

 return "/contactlist/detail/%d/" % self.id

 class Meta:
 verbose_name_plural = 'entries'

 def __unicode__(self):
 return "%s, %s" % (self.last_name, self.first_name)

Once the model has been created, add the new app to the INSTALLED_APPS tuple in
mycompany/settings.py. Add the highlighted line:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.admin',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'mycompany.contactlist',
)

You may have more applications installed if you've been keeping up with
the book, which is OK—just add the highlighted entry to the tuple.

While in the mycompany/settings.py file, find the LANGUAGE_CODE setting and set it
to en:

LANGUAGE_CODE = 'en'

Run the syncdb command in the root directory of the project to create the new
model's database table:

$ python manage.py syncdb

Let's use the Django shell to quickly add a few entries to the application:

$ python manage.py shell
>>> from contactlist.models import Entry
>>>
>>> e = Entry.objects.create(first_name='John', last_name='Doe',
gender=1, birthday='1985-01-01')
>>>
>>> e = Entry.objects.create(first_name='Jane', last_name='Smith',
gender=2, birthday='1980-05-01')

Internationalization

[234]

With the model and data in place, add an entry to your mycompany/urls.py file to
direct requests to our application. Add the following highlighted line:

urlpatterns = patterns('',
 (r'^admin/(.*)', admin.site.root),
 (r'^contact/', include('contactlist.urls')),
)

Your root urls.py file may have more entries in it if you've been
working with other chapters. That's not a problem; just add the
highlighted entry to the list.

Create a new urls.py file in the mycompany/contactlist/ directory and add the
lines given in the code that follows. Notice that we are using generic views to display
the list and detail for entry records in the highlighted lines:

from django.conf.urls.defaults import *
from contactlist.models import Entry

info_dict = {
 'queryset': Entry.objects.all(),
}

urlpatterns = patterns('django.views.generic.list_detail',
 (r'^(?P<object_id>[0-9]+)/$',
 'object_detail', info_dict),
 (r'^$', 'object_list', info_dict),
)

Finally, create template files for the list and detail views. We'll hard-code the English
labels for now so that we can verify it's working.

Create a new directory called contactlist in the mycompany/templates directory.
In mycompany/templates/contactlist add a new file called entry_list.html
with the following lines:

<h1>Contact List</h1>

{% for object in object_list %}
 {{ object }}
{% endfor %}

Create a new file called entry_detail.html in the mycompany/templates/
contactlist/ directory and add the following lines:

<h1>Contact Information</h1>
<h2>
{% ifequal object.get_gender_display "Male" %}

Chapter 11

[235]

 Mr.
{% else %}
 Mrs.
{% endifequal %}
{{ object.first_name }} {{ object.last_name }}
</h2>
<p>
First Name: {{ object.first_name }}

Last Name: {{ object.last_name }}

Birthday: {{ object.birthday|date:"m/d/Y" }}

</p>

Launch the development web server and verify that you see the correct the output
for the two views. Browse to the URL http://localhost:8000/contact/ and you
should see this:

Browse to the URL http://localhost:8000/contact/1/ and you should see this:

Congratulations! We now have a working project with which to test i18n.

Internationalization

[236]

Configuring your project for i18n
Now that our project is in place, let's tell Django that we are planning to use i18n in
it. We'll start by adding some configuration settings.

In the mycompany/settings.py file, find the LANGUAGE_CODE setting and add an
additional commented line for the German language setting de:

LANGUAGE_CODE = 'en'
#LANGUAGE_CODE = 'de'

These settings will tell Django that our project's default language is English, but the
commented line will make it easy for us to switch the site to German for testing later.

While you're still in the file, make sure we're loading the internationalization
machinery. (It's set to True by default, but make sure.)

USE_I18N = True

We'll need to create a directory where the i18n files are kept. Create a directory called
locale in the mycompany folder at the root of your project:
$ mkdir /projects/mycompany/locale

Installing libraries for i18n translation
Before we can have the fun of creating different translations, we need to make sure
our installation has the tools necessary to create the files needed for translation.

On Mac and Linux, Django uses the GNU gettext libraries. On Windows, you'll
need to install gettext for Windows, available on Sourceforge at the URL
http://gnuwin32.sourceforge.net/packages/gettext.htm.

Try the following command to see if you have the libraries installed properly.
(The cd command is included to make sure you're running it from the root of your
project, thus saving you from frustrating errors in case you forget.)
$ cd /projects/mycompany/

$ django-admin.py makemessages –l en

django-admin.py is located in the django/bin directory. If it's
not in your path, you will have to specify the full path to the file to run
the command.

If you get no error, you are ready to continue. If you get an error saying that the
libraries are not installed properly, do a web search for "gettext [operating system]"
(inserting your operating system) and follow the instructions specific to your setup.

Chapter 11

[237]

Marking strings as translatable
With all the prep work out of the way, let's modify the templates we created to be
multilingual. Instead of the hardcoded English text that we put in our file earlier, let's
start marking the field labels as translation strings. Basically, we're using a Django
template tag to say "insert the translation here".

The list template is easy to work with as we only have to make two replacements.
Replace the highlighted lines in templates/contactlist/entry_list.html:

{% load i18n %}

<h1>{% trans "Contact List" %}</h1>

{% for object in object_list %}
 {{ object }}
{% endfor %}

The first line loads the library file for internationalization, in the same way as loading
any tag library. The second line is where we mark the text Contact List as a
translation string.

Our changes haven't done much and if you view the URL in a browser, nothing
will appear to have changed. Now that there is a translation string identified in a
template, we can put the i18n mechanisms to work.

Creating message files
A message file is a plain-text file that contains all the named translation strings and
how they should appear in a given language. Each language you choose to support
will get its own message file.

To create a message file, we use the django-admin.py script. Make sure you have
created the locale directory in your project root before doing this. (We covered
this in an earlier step.) Navigate to your project root and use the script to make a
message file:

$ cd /projects/mycompany/

$ django-admin.py makemessages –l en

We're telling the makemessages command to create a language file for en (English).
Recall that in our settings.py file we defined this as the default language by setting
it as the LANGUAGE_CODE.

Internationalization

[238]

Look in your mycompany/locale directory, and you will see a series of nested
directories have been created. In the mycompany/locale/en/LC_MESSAGES directory,
you'll find a file called django.po. This is the message file that was created.

Here's an excerpt from mycompany/locale/en/LC_MESSAGES/django.po:

#: templates/contactlist/entry_list.html:3
msgid "Contact List"
msgstr ""

Notice that the commented line tells you in what file and at what line number the
translation string was found.

The msgid is the unique identifier for the translation string so don't change it. Also,
make sure when you are adding more strings later that you don't create another one
with the same name, as they must be unique.

The msgstr is blank. It's the translated text that will be displayed when the template
is output. Since it's blank, Django will just use the value of msgid.

Let's put a value in msgstr so that we can see how it works. Open the file
mycompany/locale/en/LC_MESSAGES/django.po and find the entry_list.html
entry. Edit the highlighted line:

#: templates/contactlist/entry_list.html:3
msgid "Contact List"
msgstr "All Contacts"

Save the file, and use the django-admin.py script to run the compilemessages
command from our project root directory:

$ cd /projects/mycompany/

$ django-admin.py compilemessages –l en

The script creates a django.mo file in the same folder as the message file—this is the
compiled message file. (Don't try to view it; it's a binary file.)

Important: Before you can see your changes reflected in a browser, you
must restart your web server, including the development server.

Chapter 11

[239]

Browse to the URL http://localhost:8000/contact/ and you should see the
new header:

Notice the new translation "All Contacts" has replaced the "Contact List" text.

Let's create another message file for German translations. Using the django-admin.
py script, run the makemessages command to create a German language file:

$ cd /projects/mycompany/

$ django-admin.py makemessages –l de

You'll see that a new directory has been created at mycompany/locale/de, almost
identical to the en directory that was created earlier.

Find the django.po file in mycompany/locale/de/LC_MESSAGES, and make a
German translation for the English text "Contact List" by adding the text in the
highlighted line:

#: templates/contactlist/entry_list.html:3
msgid "Contact List"
msgstr "Alle Kontakts"

Save the file and use the django-admin.py script to run the
compilemessages command:

$ cd /projects/mycompany/

$ django-admin.py compilemessages –l de

Alternatively, you can run the command with no argument to tell it to compile all
message files:

$ django-admin.py compilemessages

In order to see our German translation, we need to go into our settings file and
configure the default language for the site to German.

Internationalization

[240]

In the mycompany/settings.py file, edit the LANGUAGE_CODE lines to look
like this:

#LANGUAGE_CODE = 'en'
LANGUAGE_CODE = 'de'

Restart your web server, and browse to the URL http://localhost:8000/contact/
to see the German header:

Now that we've worked with the list template, let's mark translation strings in our
detail template file. In the mycompany/templates/contactlist/entry_detail.
html file, edit the content to look like this:

{% load i18n %}
<h1>{% trans 'Contact Information' %}</h1>
<h2>
{% ifequal object.get_gender_display "Male" %}
 {% trans "Mr." %}
{% else %}
 {% trans "Mrs." %}
{% endifequal %}
{{ object.first_name }} {{ object.last_name }}
</h2>
<p>
{% trans "First Name" %}: {{ object.first_name }}

{% trans "Last Name" %}: {{ object.last_name }}

{% trans "Birthday" %}:
{{ object.birthday|date:_("DATETIME_FORMAT") }}

</p>

Chapter 11

[241]

There's nothing in here we haven't done yet, but the date formatting probably needs
a little explanation. Because the European dates are formatted differently than
they are in the United States, we need to mark the argument to the date filter as a
translation string.

To do this, we use the _() function to tell Django that this is a translation string:

_("DATETIME_FORMAT")

It looks funny, but _() is a shortcut to the django.utils.translation.gettext()
function that does i18n translation. Using this as an argument to the date filter
allows us to translate the string before it is passed to the filter.

With these translation strings in place, run the django-admin.py makemessages
command. Use the –a flag to tell it to remake all message files, looking for new
translation strings in our templates:

$ cd /projects/mycompany/

$ django-admin.py makemessages –a

Look at the django.po files in the en and de directories. You'll find your new
translation strings in the file, and notice that the translation we did for "Contact List"
is still present—it was not overwritten by the makemessages command.

In the file mycompany/locale/de/LC_MESSAGES/django.po, add these translation
strings to the highlighted lines:

#: templates/contactlist/entry_detail.html:3
msgid "Contact Information"
msgstr "Kontakt"

#: templates/contactlist/entry_detail.html:7
msgid "Mr."
msgstr "Herr"

#: templates/contactlist/entry_detail.html:9
msgid "Mrs."
msgstr "Frau"

#: templates/contactlist/entry_detail.html:16
msgid "First Name"
msgstr "Namen"

#: templates/contactlist/entry_detail.html:17
msgid "Last Name"
msgstr "Nachname"

#: templates/contactlist/entry_detail.html:18
msgid "Birthday"
msgstr "Geburtstag"

#: templates/contactlist/entry_detail.html:18

Internationalization

[242]

msgid "DATETIME_FORMAT"
msgstr "d/m/Y"

#: templates/contactlist/entry_list.html:3
msgid "Contact List"
msgstr "Alle Kontakts"

With the translations in place, run the compile messages command:

$ cd /projects/mycompany/

$ django-admin.py compilemessages

Restart your web server, and browse to http://localhost:8000/contact/1/ to
see our changes:

Notice that our new German translation messages are displayed in the template
output. If you switch the language back to en in your settings file, it will be displayed
in English. This works well when we want to decide the language to display, but
let's take it a step further and allow the user to tell us what language he or she wants
to see.

Enabling automatic language preference
In our examples we used the LANGUAGE_CODE setting to choose the default language
for our site. Let's configure our project to automatically determine the user's
language preference from their browser.

We can detect the user's language preference by inspecting the Accept-Language
HTTP header. Luckily, Django makes it very simple to inspect and take action based
on the header.

Chapter 11

[243]

In your mycompany/settings.py file, add a special piece of middleware
called LocaleMiddleware to your MIDDLEWARE_CLASSES tuple by adding the
highlighted line:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',

 'django.middleware.common.CommonMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
)

If the classes listed in your project are slightly different, that's OK. Just make sure
you add LocaleMiddleware after the SessionMiddleware entry. The order is
important because Django stores the user's language preference as a part of its
session, so the session middleware needs to come first.

Important: If you are using cache middleware, make sure it comes before
the locale middleware; otherwise, your users might get cached content in
the wrong language!

While you are in the settings.py file, ensure the main language is set to English:

LANGUAGE_CODE = 'en'

In order to test the middleware, we need to configure our browser to send a different
language header. Most browsers have a mechanism for setting the language
preference. Here are a few examples:

Firefox: Preferences | Content | Languages
Internet Explorer: Tools | Internet Options | General | Languages
Safari (on Mac): System Preferences | International | Language

With your main site language set to English (en), configure your browser's language
preference to German (de). Browse to one of the pages, and you should see the
German translations. Set it back to English, browse to the page, and you should see
the English translations. With this working, the user's web browser can automatically
tell Django in what language to present the content.

•

•

•

Internationalization

[244]

How Django determines language preference
When taking requests and returning content, Django goes through four steps to
determine the visitor's language preference:

1. It looks in the user's session object for a key called django_language.
2. It looks for a cookie named django_language (or whatever you named it, if

you changed the cookie name in your settings file).
3. It looks for the browser's Accept-Language HTTP header.
4. If none of those were found, it uses the LANGUAGE_CODE setting in your

settings.py file.

Summary
If you need to offer your site in multiple languages, you can do so by using the
internationalization (i18n) libraries built into the Django framework. Instead of
creating another version of your site in a different language, you can translate
strings in your templates depending on the user's language preferences or your site's
configuration settings.

To enable i18n, you must configure your project by ensuring that USE_I18N is
set to True and defining a LANGUAGE_CODE for your site. In your templates, load
the i18n tag library and mark strings as translatable by putting them inside a
{% trans %} tag. Run the django-admin.py script to make message files, then create
your translations in those files, and run the script again to compile the message files.

To automatically choose the user's language preference based on his or her browser
settings, load the LocaleMiddleware after any cache or session middleware in your
site's settings file.

This chapter only scratches the surface of what Django is able to do with i18n. For
more information, and for information on using i18n in your view code, consult the
online documentation.

That concludes our book on Django templates and output. We've looked at a wide
range of material, and hopefully you've learned a lot along the way. The best way to
turn this new knowledge into a skill is through repetition. So review the material and
practice, practice, practice!

Index
A
add filter

example 72
using 72

addslashes filter
applying 72

admin color schemes
customizing 212, 213

admin color schemes, customizing 212, 213
extrastyle block, using 213-215
page elements, modifying 213
styles, identifying 213

admin dashboard
new link box, adding 209

admin header, customizing 208
page tittle, replacing 208
text, changing 209

admin template, exploring
base.html template 205
base.html template, inspecting 205
base_site.html template 205
base_site.html template, inspecting 206
change_form.html template 205
change_form.html template, inspecting 208
change_list.html template 205
change_list.html template,

inspecting 207, 208
index.html template 205
index.html template, inspecting 206, 207

admin template, overriding
exploring 205
files, locating 204, 205
structure, exploring 203
template loader, leveraging 204

app_directories loader, template loaders
advantage 124
disadvantage 124
using 123, 124

application, creating
admin data, adding 32
admin file, creating 31
data model, creating 30
URLs, configuring 31

application, setting up
application, verifying 188
configuration, verifying 188
model, verifying 189
test records, adding 190, 191
URL configuration, verifying 189
verfying 188
view, verifying 190

approaches
considering 143
content adaption 145
mobile devices, serving 144
mobile devices, shortcomings 144

autoescape tag
about 99
using 99

automatic language preference
Django’s language preference 244
enabling 242, 243

B
blocks

appending 136
content placeholders, placing 137
strategies 137

block tag
example 100

[246]

using 99
built-in filters, reviewing

template filters 163, 164
template tags 164, 165

built-in tags
reviewing 163

C
cache backend, cache systems

configuring 220
database caching 220
dummy caching 221
filesystem caching 220
local memory caching 221
Memcached 221

cache systems
implementing 220
setting up 220

cache systems, exploring
about 218
database caching 219
dummy caching 220
filesystem caching 219
local memory caching 219
Memcached 219
options 218, 220

cache systems, setting up
additional backened arguments,

adding 221
cache backend, configuring 220
for examples 222

caching
cache data 218
cache expiration 218
cache key 218
cache timeout 218
entire site caching 227
individual views 222, 223
low-level caching 226, 227
need for 218
need for, situations 218
outside caches, working with 229
overview 217
template pieces 225
using 217
working 218

caching, individual views
adding, to view 224

caching, strategies
per-site cache 229
per-site cache, advantages 229
per-site cache, disadvantages 229

capfirst filter
applying 73
using 73

center filter
applying 74
requirements 73
using 73

comment tag
example 100
using 100

content placeholders, blocks
extra_head block 139
extra_js block 137
extra_style block 138
extra body tag attributes 139, 140
placing 137

context
about 51
experimenting with 52
items, adding 56
items, changing 56, 57
items, removing 56
locals, using for prototyping 55
overview 51
using 52
working with 53-55

context processors
about 63
default context processors, exploring 63
project, configuring 65
render_to_response, using with

RequestContext 66, 67
using, in project 67, 68
views, configuring 65, 66
writing 68, 69

context rendering shortcuts
render_to_response(), using 62, 63
render_to_string(), using 63

context values
invalid context variables, handling 60
method execution, preventing 60

[247]

using, in templates 57-60
view, cleaning up 61, 62

cut filter
applying 74
using 74

cycle tag
example 100
using 100

D
date filter

applying 75
using 74

debug tag
about 101
example 101

default_if_none filter
applying 76

default context processors,
context processors

Auth 63
Debug 64
exploring 63
il8n 65
Media 64

default filter
applying 75
using 75

demo application
creating 19

demo application, creating 19
starting with 21, 22
database, creating 20
Django framework, installing 19
Django framework, testing 19
installment testing 20
project’s setting, configuring 21
project, starting with 20
project directory, creating 20
templates, adding to application 22

dictsort filter
applying 76
using 76

divisibleby filter
applying 77
using 77

Django
include files, using 140
overview 7, 30
request handle, exploring 12

Django template system
code from presentation, separating 8, 9
critics 11
designers and developers collaboration 9
flexibility 10
limitations 11
maintainability, increasing 9, 10
modularity 10
overview 8
reusability 10
syntax 10

Django template system, syntax 15
code note 18
comments 17, 18
comments, multi-line comments 17
comments, single-line comments 17
context variable 15
example 15
filters 16
tags 16
variables 16
variables, handling 19

E
eggs template loader, template loaders 124
entire site caching

about 227, 228
never_cache decorator used 229

error handling templates
404.html files 125
505.html files 125
creating 126
setting up 125, 126
testing 126, 127

escape filter
applying 77
using 77

escapejs filter
applying 78
using 78

extends tag
example 101
using 101

[248]

F
filesizeformat filter

applying 78
using 78

filesystem loader, template loaders
example 122
using 122

filter
about 71
add filter 72
addslashes filter 72
capfirst filter 73
center filter 73
cut filter 74
date filter 74
default_if_none filter 75
default filter 75
dictsort filter 76
dictsortreversed filter 76
divisibleby filter 77
escape filter 77
escapejs filter 78
filesizeformat filter 78
first filter 79
fix_ampersands filter 79
floatformat filter 79
force_escape filter 80
get_digit filter 80
Ijust filter 84
iriencode filter 81
join filter 81
last filter 82
length _is filter 83
length filter 82
linebreaksbr filter 84
linebreaks filter 83
linenumbers filter 84
lower filter 85
make_list filter 86
phone2numeric filter 86
pluralize filter 87
pprint filter 87
random filter 88
removetags filter 88
rjust filter 89
safe filter 89

slice filter 90
slugify filter 90
stringformat filter 90
striptags filter 91
time filter 92
timesince filter 92
timeuntil filter 92
title filter 92
truncatewords_html filter 94
truncatewords filter 93
unordered_list filter 94
upper filter 72, 95
urlencode filter 95
urlize filter 96
urlizetrunc filter 96
wordcount filter 97
wordwrap filter 97
yesno filter 98

filter tag
about 101
example 102
using 101

first filter
applying 79
using 79

firstof tag
using 102

fix_ampersands filter
applying 79
using 79

floatformat filter
applying 80
using 80

for loop, for tag
example 104
properties 103

for tag
example 103
for loop 103
using 103

G
generic views, pagination

about 199
last page, calling generically 201
view list, setting up 200

[249]

get_digit filter
applying 81
using 81

H
HTTP Response, view 37

I
i18n

about 231
exploring 231, 232
libraries, installing for translation 236
message files, creating 237-242
project configuration 236
sample application, creating 232-235
strings, marking as translatable 237

ifchanged tag
example 106
using 105

ifequal tag
example 107
using 106

if tag
using 104, 105

Ijust filter
applying 85
using 84

include tag
example 107
SSI, using 141
using 107, 140

internationalization. See i18n
iriencode filter

use 81

J
join filter

applying 82
using 81

L
last filter

applying 82
using 82

length_is filter
applying 83
using 83

length filter
applying 82
using 82

linebreaksbr filter
applying 84

linebreaks filter
applying 83
using 83

linenumbers filter
applying 84
using 84

load tag
example 108
using 108

lower filter
applying 85
using 85

M
make_list filter

applying 86
using 86

Memcached, cache systems
about 219
features 219

message files
creating 237-242
creating, django-admin.pyscript used 237

mobile sites
middleware file, installing 159, 160
middleware file, settings used 160
middleware file, writing 156, 157
mobile devices, detecting 155, 156
potential downsides 158
redirecting to 155
session variable, using 158

multiple child templates
inheriting from 134
three-level setup, adding 134-136

my company press release example
setting up 145-147

[250]

N
new link box, admin dashboard

adding 209
admin index file, overriding 210
include file, creating 211

now tag
example 109
string values 108
using 108

O
outside caches, working with

about 229, 230
vary_on_headers 230
varyHTTP header 230

P
pagination, exploring

database performance, examining 193, 194
django shell used 191-193
empty objects list, allowing 195
orphaned records, preventing 195, 196

pagination, using
 current position fromURL, retrieving 197
view, creating 196

paginator library
implementing 187
importance 187

phone2numeric filter
applying 86
using 86

pluralize filter
applying 87
using 87

pprint filter
applying 87
using 87

printable page
serving 147-149

R
random filter

applying 88
using 88

regroup tag
example 109, 110
grouper key 110
list key 110
using 109

removetags filter
applying 88
using 88

request handle, Django
exploring 12
middleware, calling 13
middleware, calling(again) 13, 14
output, sending to browser 15
template, rendering 14
template file, loading 14
template object, loading 14
URL, evaluating 13
URL, requesting 13
view, calling 14

rjust filter
applying 89
using 89

S
safe filter

using 89
Server Side Include. See SSI
simple generic views, views

template, loading directly 44, 45
URLs, redirecting 45, 46

sites
development web server, configuring 154
mobile template, creating 153
serving. with different web servers 153, 154
settings file, cloning 153

site themes
creating 149, 150
template override, creating 150, 151
template override, testing 151, 152

slice filter
applying 90
using 90

slugify filter
applying 90

spaceless tag
example 111

[251]

using 110
SSI 141
ssi tag

example 111
key differences 111
using 111

stringformat filter
applying 91
using 91

striptags filter
applying 91
using 91

T
tag

about 98
autoescape tag 99
block tag 99
comment tag 100
cycle tag 100
debug tag 101
extends tag 101
filter tag 101
firstof tag 102
for tag 102
ifchanged tag 105
ifequal tag 106
ifnotequal tag 107
if tag 104
include tag 107
load tag 108
now tag 108, 109
regroup tag 109, 110
spaceless tag 111
ssi tag 111
templatetag 111
url tag 112
using 99
widthratio tag 113
with tag 114

template filter, writing 165
in-list filter 174, 175
replace profanities filter 171, 172
string expecting filter 173
temlatetags, creating 167
template filter syntax 168

template filter syntax, example 168
template libraries, loading 169
test application, setting up 165-167
U.S.currency filter 169-171

template loaders
app_directories loader, using 123
choosing 122
eggs template loader 124
filesystem loader, using 122, 123
get_template method 125
multiple loaders, using 124
select_template method 125
templates, loading manually 121, 122
templates, retrieving 125

templates
about 7
blocks, creating 127, 128
block tag, using 128, 129
block tag, example 128
extending, with inheritance 127
extends tag 129, 130
multiple block tags, using 132
navigation, building 197-199
need for 8
press application, adding

inheritance 131, 132
press release list, adding inheritance to 133
requirements 8
serving, by domain name 152, 153
template inheritance 127

templates, demo application
adding to application 22
comments, adding 27
filters, using 25
logic, moving into separate template

file 24, 25
tags, using 26, 27
variables, adding to view 23, 24

template system
configuration 117
directories used 120

template system, configuring
DEBUG setting 117, 118
TEMPLATE_DEBUG setting 119
TEMPLATE_DIRS setting 120
TEMPLATE_LOADERS setting 119, 120

[252]

templatetag
arguments 112
characters 112
using 111

template tags
all work and no play tag 180-182
sample application, creating 176
compilation function 179
context, modifying 184, 185
custom tag, registering 179
simple tag example 178
template library, adding 177
template node subclass 179
template tag syntax 177
variable, passing to tag 182-184

template tags, writing 175
timesince filter

applying 92
using 92

title filter
applying 93
using 93

truncatewords_html filter
applying 94
using 94

truncatewords filter
applying 93
using 93

U
unordered_list filter

applying 94
using 94

upper filter
applying 95

urlencode filter
applying 95
using 95

urlize filter
applying 96
using 96

urlizetrunc filter
applying 96
using 96

URLs
mapping, to views 32-34

unmatched URL pattern, handling 34
URL configurations, splitting up 35

url tag
example 113
using 112

V
views

generic views, comparing with 49
generic views, types 44
generic views, using 44
rules 36

views, combining
basic view, building 38, 39
detail view, replacing 48
error handling, cleaning up 39
list view, creating 42, 43
list view, replacing 46, 48
other generic views, using 49
simple generic views 44
template, adding to view 41
template files, handling 39
templates, creating 42, 43

views, creating
request object, accepting 36
responding, with exception 37
responding, with HTTP response 37

W
widthratio tag

example 113
using 113

with tag
example 114
using 114

wordcount filter
applying 97

wordwrap filter
applying 97, 98
using 97

Y
yesno filter

applying 98
using 98

	Cover
	Table of Contents
	Preface
	Chapter 1: An Introduction to the Django Template System
	What are templates?
	Understanding the need for templates

	Overview of the Django template system
	Separating code from presentation
	Helping designers and developers collaborate
	Increasing maintainability
	Template syntax
	Modularity and reusability
	Flexibility
	Limitations
	Critics of the system

	Exploring how Django handles requests
	Understanding the template system syntax
	Context variable
	Variables
	Filters
	Tags
	Comments
	Code note: Python dictionaries
	How invalid variables are handled

	Creating our demo application
	Starting our application
	Adding templates to our application
	Adding variables to the view
	Moving the logic into a separate template file
	Using template filters
	Using template tags to perform logical tests
	Adding comments

	Summary

	Chapter 2: Views, URLs, and Generic Views
	An overview
	Creating the application
	Create the data model
	Create the admin file
	Configure the URLs
	Add data in the admin application

	Mapping URLs to views
	Handling unmatched URL patterns
	Splitting up the URL configurations

	Creating views
	Accepting the request object
	Responding with an HTTP response
	Responding with an exception

	Putting the views together
	Building the basic view
	Cleaning up the error handling
	Adding the template files
	Adding the template to the view
	Creating the list view and template
	Using generic views to shorten development time

	Simple generic views
	Loading a template directly
	Redirecting URLs

	List/detail generic views
	Replacing the list view
	Replacing the detail view

	Using the other generic views

	Comparing views and generic views
	Summary

	Chapter 3: Template Context
	The context explained
	Practicing working with the context
	Using locals for prototyping
	Adding, changing, and removing items in the context

	Using the context values in your templates
	Preventing method execution from templates
	Handling invalid context variables
	Cleaning up the view

	Context rendering shortcuts
	Using render_to_response()
	Using render_to_string()

	Context processors
	Exploring the default context processors
	Auth
	Debug
	Media

	il8n
	Configuring your project to use context processors
	Configuring your views to use context processors
	Using render_to_response with RequestContext
	Using the context processors in our project
	Writing your own context processor

	Summary

	Chapter 4: Using the Built-In Tags and Filters
	Built-in filter reference
	add
	addslashes
	capfirst
	center
	cut
	date
	default
	default_if_none
	dictsort
	dictsortreversed
	divisibleby
	escape
	escapejs
	filesizeformat
	first
	fix_ampersands
	floatformat
	force_escape
	get_digit
	iriencode
	join
	last
	length
	length_is
	linebreaks
	linebreaksbr
	linenumbers
	ljust
	lower
	make_list
	phone2numeric
	pluralize
	pprint
	random
	removetags
	rjust
	safe
	slice
	slugify
	stringformat
	striptags
	time
	timesince
	timeuntil
	title
	truncatewords
	truncatewords_html
	unordered_list
	upper
	urlencode
	urlize
	urlizetrunc
	wordcount
	wordwrap
	yesno

	Built-in tag reference
	autoescape
	block
	comment
	cycle
	debug
	extends
	filter
	firstof
	for
	forloop

	if
	ifchanged
	ifequal
	ifnotequal
	include
	load
	now
	regroup
	spaceless
	ssi
	templatetag
	url
	widthratio
	with

	Summary

	Chapter 5: Loading and Inheriting Templates
	Configuring the template system
	Finding a home for the template files
	Working with the template loaders
	Loading templates manually
	Choosing a template loader
	Using the filesystem loader
	Using the application directories loader
	About the eggs template loader
	Using the loaders together
	Loading your template files

	Setting up the error handling templates
	Creating the error templates
	Testing the error templates

	Breaking templates into reusable pieces
	Extending templates with inheritance
	Using the block tag
	Extending templates
	Adding inheritance to the press application
	Using multiple block tags
	Adding template inheritance to our press release list

	Inheriting from multiple child templates
	Appending to blocks
	Template strategy
	Creating content placeholders
	Extra JS
	Extra style
	Extra head content
	Extra body tag attributes

	Using include files
	Using include
	Using SSI

	Summary

	Chapter 6: Serving Multiple Templates
	Considering the different approaches
	Serving mobile devices
	Adapting content

	Setting up our example
	Serving printable pages
	Creating site themes
	Testing the template overrides

	Serving different templates by domain name
	Serving different sites with the development web server

	Redirecting users to the mobile site (optional)
	Detecting mobile devices
	Writing the middleware
	Checking only once
	Installing the middleware

	Summary

	Chapter 7: Custom Tags and Filters
	Examining the built-in tags and filters
	Template filters
	Template tags

	Writing your own template filters
	Setting up a test application
	Creating a home for our filter library
	Template filter syntax
	Loading template libraries
	U.S. currency filter
	Replace profanities filter
	Filters that expect strings
	In-list filter

	Writing your own template tags
	Creating another sample application
	Adding the template library
	Template tag syntax
	A simple tag example
	The compilation function
	The template node subclass
	Registering our custom tag
	All work and no play tag
	Passing a template variable to a tag
	Modifying the context through a tag

	Summary

	Chapter 8: Pagination
	An Overview
	Verifying our application setup
	Verifying the application
	Verifying the configuration
	Verifying the URL configuration
	Verifying the model
	Verifying the view
	Adding test records

	Exploring pagination using the Django shell
	Examining database performance
	Allowing for empty result sets
	Preventing orphaned records

	Using pagination in your views
	Creating the view
	Retrieving the current position from the URL

	Putting navigation into the templates
	Pagination with generic views
	Setting up our generic list view
	Generically calling the last page

	Summary

	Chapter 9: Customizing the Admin Look and Feel
	Overriding the admin templates
	Leveraging the template loader
	Locating the admin template files
	Exploring the admin template files
	Inspecting the base.html template
	Inspecting the base_site.html template
	Inspecting the index.html template
	Inspecting the change_list.html template
	Inspecting the change_form.html template

	Customizing the Admin Header
	Replacing the page title
	Changing the header text

	Adding a new link box to the admin
	Overriding the admin index file
	Creating the include file

	Customizing the admin color scheme
	Identifying styles to change
	Using the extrastyle block

	Summary

	Chapter 10: Caching Your Pages
	An overview
	Do you need caching?
	How caching works

	Exploring the available cache systems
	Filesystem caching
	Database caching
	Memcached
	Local memory caching
	Dummy caching

	Setting up your cache system
	Configuring the cache backend
	Database caching
	Filesystem caching
	Local memory caching
	Dummy caching
	Memcached

	Adding additional backend arguments
	Setting up for the examples

	Caching individual views
	Adding caching

	Caching pieces of templates
	Low-level caching
	Caching your whole site
	Preventing data from being cached

	General caching strategies
	Working with outside caches
	Summary

	Chapter 11: Internationalization
	Exploring i18n
	Creating an example application
	Configuring your project for i18n
	Installing libraries for i18n translation
	Marking strings as translatable
	Creating message files
	Enabling automatic language preference
	How Django determines language preference

	Summary

	Index

