Charlie Collins
Michael Galpin
Matthias Kappler

Includes 91 Techniques

/Ill MANNING

Android in Practice

Android in Practice

CHARLIE COLLINS
MICHAEL D. GALPIN
MATTHIAS KAPPLER

MANNING

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/l/l Manning Publications Co.Development editor:Cynthia Kane
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Typesetter: Gordan Salinovic
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 9781935182924
Printed in the United States of America

12345678910 - MAL- 16 15 14 13 12 11

www.manning.com

brief contents

PART 1 BACKGROUND AND FUNDAMENTALS sececeescesccsscsscescescossosscescene 1

1 = Introducing Android 3
2 = Android application fundamentals 40
3 = Managing lifecycle and state 73

PART 2 REAL WORLD RECIPES «eeeeeeeescescesscessescesccssssssessesssssssssesssses 99

4 = Getting the pixels perfect 101

= Managing background tasks with Services 155
s Threads and concurrency 189

Storing data locally 224

= Sharing data between apps 266

= HTTP networking and web services 295

© 0 g O Ot
|

10 = Location is everything 334
11 = Appeal to the senses using multimedia 363
12 = 2D and 3D drawing 402

PART 3 BEYOND STANDARD DEVELOPMENT «eeeeeceescscescescscessoscssesnss 441

13 m Testing and instrumentation 443
14 = Build management 489
15 = Developing for Android tablets 540

v

contents

preface xiti

acknowledgments xv

about this book xviii

about the cover illustration xxii

PART 1 BACKGROUND AND FUNDAMENTALS'...........'..'...1

Introducing Android 3
1.1 Android in a nutshell 5
1.2 Hello Android! 9
1.3 Java, but not Java Java 19
1.4 Linux, but not Linux Linux 24
1.5 More capabilities with native libraries 29
1.6 Tools of the trade 32
1.7 Summary 38

Android application fundamentals 40
2.1 The DealDroid application 41
2.2 Core building blocks 43

viii CONTENTS

2.3 Application manifest 44

2.4 Resources 46

2.5 Layout, views, and widgets 49

2.6 Activities 51

2.7 Adapters 59

2.8 Intents and IntentFilters 63

2.9 The Application object 69
2.10 Summary 71

Managing lifecycle and state 73

3.1 Defining an Android application 74

3.2 Knowing the Activity lifecycle 79

3.3 Controlling Activity instance state 90
3.4 Getting things done within a task 95

3.5 Summary 97

PART 2 REAL WORLD RECIPES «ecevcescescescescoscescoscossossossossosses DD

Getting the pixels perfect 101
4.1 The MyMovies application 102
4.2 View hierarchies and rendering 103

4.3 Arranging views in layouts 106
TecuNiQUE 1 The merge and include directives 114

4.4 Expanding on ListView and Adapter 117
TECHNIQUE 2 Managing a stateful list 118
TecuNniQuE 3 Header and footer views 122

4.5 Applying themes and styles 125
TecnoNiQuE 4 Applying and writing styles 125
TECHNIQUE 5 Applying and writing themes 127
TecaNiQuE 6 Styling ListView backgrounds 129

4.6 Working with drawables 133
TeEcHNIQUE 7 Working with shape drawables 134
TecaNiQuE 8 Working with selector drawables 138
TecHNIQUE 9 Scaling views with nine-patch drawables 141
4.7 Creating portable user interfaces 144

TecHNIQUE 10 Automatically scaling to different screens 144

4.8

TECHNIQUE
TECHNIQUE

Summary

CONTENTS

11 Loading configuration dependent resources
12 Programming pixel-independently 152

154

Managing background tasks with Services 155

5.1

It’s all about the multitasking 156

5.2 Why services and how to use them 157

5.3

5.4

TECHNIQUE
TECHNIQUE
TECHNIQUE
TECHNIQUE
TECHNIQUE

13 Creating a Service 158

14 Starting a Service automatically 161
15 Communicating with a Service 163
16 Using a Service for caching data 169
17 Creating notifications 171

Scheduling and Services 176

TECHNIQUE
TECHNIQUE
TECHNIQUE

Summary

18 Using the AlarmManager 177
19 Keeping Services awake 180
20 Using Cloud to Device Messaging 183

187

Threads and concurrency 189

6.1

6.2

6.3

Concurrency in Android 190

TECHNIQUE
TECHNIQUE
TECHNIQUE

21 Basic threading 191

149

22 Communicating change between threads 195

23 Managing threads in thread pools 200

Working with AsyncTask 205

TECHNIQUE
TECHNIQUE

24 Implementing jobs with AsyncTask 206
25 Preparing for configuration changes 210

Miscellaneous techniques 216

TECHNIQUE
TECHNIQUE

26 Displaying splash screens with timers 216
27 Implementing custom message loops 219

6.4 Summary 223

Storing data locally 224

7.1

7.2

Reading and writing files 225

TECHNIQUE
TECHNIQUE
TECHNIQUE
TECHNIQUE

28 Using internal storage 226

29 Using external storage 230

30 Using cache directories 235

31 Making sure files are saved with sync 236

Maintaining preferences 237

TECHNIQUE
TECHNIQUE

32 Reading and writing preference data 237
33 Using a PreferenceActivity 238

7.3

7.4
7.5

CONTENTS

Working with a database 241

TecuNiQUE 34 Creating a database and model objects 244
TecHNIQUE 35 Creating DAOs and a data manager 252

Inspecting SQLite databases 262
Summary 265

Sharing data between apps 266

8.1

8.2

8.3

Process-to-process sharing 267

TecuNniQuE 36 Using Intents 268

TECHNIQUE 37 Making remote procedure calls 274

TecuNIQUE 38 Share data (and more) by sharing Context 280
Accessing common data 285

TecHNIQUE 39 Using standard ContentProviders 285
TecaNiQuE 40 Working with a custom ContentProvider 290

Summary 293

HTTP networking and web services 295

9.1

9.2

9.3

9.4

Basic HTTP networking 296

TecuNniQUE 41 HTTP with HttpURLConnection 297
TecuNniQue 42 HTTP with Apache HttpClient 303
TecuNIQUE 43 Configuring a thread-safe HttpClient 306
Consuming XML and JSON web services 311
TecnNiQUE 44 Parsing XML with SAX 314

TecHNIQUE 45 Parsing XML with XmlPull 319
TecHNIQUE 46 Parsing JSON 322

How to gracefully recover from network failures 326

TECHNIQUE 47 Retrying requests using request-retry
handlers 326
TecHNIQUE 48 Handling network configuration changes 330

Summary 332

1 Location is everything 334

10.1
10.2

10.3

A brief introduction to geospatial coordinates 335

Location managers, providers, and listeners 337

TecHNIQUE 49 Checking the status of a LocationProvider 344
TecHNIQUE 50 Determining current location with a
LocationListener 345

Building a map-based application 351

TecuNniQUE 51 Converting an address to geographical
coordinates 353

CONTENTS xi

TeEcHNIQUE 52 Creating a MapActivity with associated
MapView 356

TecHNIQUE 53 Displaying Overlayltems on a MapView 358
10.4 Summary 362

1 Appeal to the senses using multimedia 363

11.1 Features too good for a feature phone 364
TecHNIQUE 54 Detecting capabilities 364

11.2 Managing media 367

TecHNIQUE 55 Working with resources and files 367
TeCHNIQUE 56 Using media ContentProviders 374
TecuNIQUE 57 Using Intents and Activities 377

11.3 Media playback 380

TrecHNIQUE 58 Images and simple animations 380
TecuNIQUE 59 Controlling audio 384
TecHNIQUE 60 Watching video 388
11.4 Capturing input 391
TecuNIQUE 61 Taking pictures 391
TECHNIQUE 62 Recording audio and video 395

11.5 Summary 400

1 2D and 3D drawing 402

12.1 Drawing with the 2D libraries 403

TecuNiQUE 63 Going full screen 405

TECHNIQUE 64 Drawing simple shapes 406

TECHNIQUE 65 Rendering continuously in the Ul thread 408
TECHNIQUE 66 Drawing text to the screen 408

TECHNIQUE 67 Using a typeface when drawing text 411
TecuNIQUE 68 Displaying bitmaps 412

TecHNIQUE 69 Applying 2D effects 413

12.2 3D and OpenGL ES 416

TECHNIQUE 70 Drawing the first triangle 421
TeEcHNIQUE 71 Creating a pyramid 425

TeEcHNIQUE 72 Coloring the pyramid 431
TECHNIQUE 73 Adding texture to the pyramid 433

12.3 Summary 438

PART 3 BEYOND STANDARD DEVELOPMENT cecceecccccccssccccesssss 441

1 Testing and instrumentation 443

13.1 Testing the Android 445
TECHNIQUE 74 A simple Android unit test 452

CONTENTS

13.2 Pulling strings: Android instrumentation 457
TECHNIQUE 75 Unit testing Activities 458
TecHNIQUE 76 User stories as functional tests 462
TeCHNIQUE 77 Beautiful tests with Robotium 467
13.3 Beyond instrumentation: mocks and monkeys 471

TECHNIQUE 78 Mock objects and how to use them 471
TECHNIQUE 79 Accelerating unit tests with Robolectric 477
TecHNIQUE 80 Stressing out with the Monkey 482

13.4 Summary 488

1 Build management 489

14.1 Building Android applications 491
TecHNIQUE 81 Building with Ant 496
14.2 Managing builds with Maven 504

TECHNIQUE 82 Building with Maven 507
TecHNIQUE 83 The Maven Eclipse plugin 517
TecuniQuE 84 The Maven/Android SDK deployer 521

14.3 Build servers and continuous builds 525

TecuNIQUE 85 Continuous builds with Hudson 527
TecaNnIQUE 86 Matrix builds 534

14.4 Summary 539

Z Developing for Android tablets 540
15.1 Tablet prep 542

TecuniQuE 87 Leveraging existing code using library
projects 542
TecHNIQUE 88 Targeting only tablets 544

15.2 Tablet fundamentals 547

TECHNIQUE 89 Fragments 547
TecuNniQuE 90 The Action Bar 556
TecaNiQuE 91 Drag and Drop 560

15.3 Summary 567

appendix A Debugging tools of the trade 569
appendix B Extending Android development 580
appendix C ProGuard 589

appendix D monkeyrunner 602
index 611

preface

There was a lot of buzz in late 2007 about a forthcoming Google-backed open source
mobile phone venture, but there weren’t a lot of details. We were interested from the
outset because we were all involved with open source projects in one way or another,
and we were Linux users with a Java background. The new Google-backed “Java/
Linux phone platform,” as several blogs and pundits termed it at the time, was excit-
ing and it seemed to suit us perfectly.

Then several official press releases from the Open Handset Alliance came out and
the word Java was absent from all of them. At the same time it supposedly ran a “cus-
tom virtual machine” and several people who we knew to be Java guys were tapped to
work on various parts of it. Was this thing Java or not? This was the first of the ways
Android intrigued us, before we were even sure what it was.

When more details about the platform emerged, it became clear that it would use
Java “the language” but would avoid the Sun (at the time) virtual machine, and it
would deviate from the standard Linux kernel/distribution approach. Google and
their OHA partners were using a lot of existing and open tools and components, but
were wiring them up in a new way and mixing in parts of their own.

We thought the platform had solid engineering, great timing, and a lot of poten-
tial. As soon as the first betas dropped, we grabbed the SDK and tools and started tin-
kering. We then bought the first Android devices available so we could put the early
applications we wrote on our own phones, and we haven’t stopped tinkering since.

We now know Android as a unique platform that’s both open and extremely popu-
lar. There isn’t a single device that runs Android anymore; now there are hundreds.

PREFACE

And the platform hasn’t been standing still either. There have been many new releases
and improvements. Android has grown by leaps and bounds and isn’t showing any
signs of slowing down yet.

Still, in all the excitement and growth of Android, one thing has become apparent
to us, as developers. It’s extremely easy to start building applications for the platform,
because it’s Java-based and familiar to so many, but it’s also easy to get into trouble.
Android is a powerful laser gun from the future, but a lot of us still have it aimed at
our own feet. Beyond the idiosyncrasies of some of the APIs and the new capabilities
such as GPS, cameras, and hardware sensors, there’s also a constrained environment
with limited resources. It’s not enough to craft a new UI, get a web service working to
talk to the network, and be able to use the GPS, for example. You need to do all that
within a lifecycle that restarts your code when the device orientation changes, while
supporting different screen sizes, without blocking the UI thread, playing nicely with
system resources, and more. It’s easy to create Android applications, but it’s hard to
create good Android applications.

This is where Android in Practice came into being. We’ve written Android apps
downloaded by millions of users and have learned much along the way. As we learned
from both our successes and failures, we published articles and wrote blog posts about
Android. We collected a tip or a recipe here and there and tried to share it. We even
read a few good introductory Android books, or smaller books that covered several
topics well but left other things out. We realized there was a gap. There wasn’t a book
that started with the basics and then went into more depth with nontrivial examples
and covered everything we thought was important—from background and develop-
ment to building and testing and more. We got together and shared our ideas and col-
lected our articles and a new book project was born.

What you’re now holding in your hands is our effort at sharing our experiences and
knowledge in trying to craft a book that both beginners and advanced users can learn
from and use as a reference. We hope you’ll find advice and techniques in this book that
are truly useful, and we hope it helps you become aware of how to build great Android
applications that are successful on the Android platform for years to come.

acknowledgments

It takes an entire cast of people to write a book. Without the tireless efforts of the crew
at Manning, our friends who helped with several sections, and all of our technical
reviewers and early access subscribers who provided feedback along the way, this book
would never have happened.

Michael Stephens at Manning got the entire project off the ground and got us into
the capable hands of Troy Mott, who directed us through the remainder of the proj-
ect. Along the way Cynthia Kane was our development editor and main advisor on
many topics. She helped us with just about everything, from grammar and usage to
style and format and more. Mary Piergies kept everything organized and led the way
into production. Once there, Benjamin Berg did a fantastic job of formatting and
copyediting, while Gordan Salinovic did the typesetting. And publisher Marjan Bace
made the whole thing possible.

Outside of Manning we managed to convince a few of our friends and colleagues
to pitch in too. Tamas Jano and Robert Cooper provided code examples and text to
help us create the 2D and 3D drawing chapter. And, Logan Johnson worked on sev-
eral of the ContentProvider examples that became part of chapter 8, “Sharing data
between apps.” Without their excellent contributions we would’ve lacked coverage of
those important aspects of Android programming.

Our other outside help came from our technical reviewers. Jerome Baton took the
time to download and build and review all of our example projects, and he found sev-
eral issues that we’d missed. As well, we got many suggestions and corrections from the
other reviewers of our book, including Steve Prior, Nenad Nikolic, Kevin McDonagh,

XV

xvi

ACKNOWLEDGMENTS

Mark Ryall, Peter Johnson, Al Scherer, Norman Klein, Tijs Rademakers, Michele Galli,
Sivakumar Thyagarajan, Justin Tyler Wiley, Cheryl Jerozal, Brian Ehmann, Robby
O’Connor, Gabor Paller, Dave Nicolette, Ian Stirk, Daniel Alford, and David Strong.
The Early Access subscribers also provided valuable feedback.

All of these people made this book much better than it would’ve been without
them, and we’re truly grateful for their contributions.

CHARLIE

Writing a technical book is a long and difficult process, but it’s ultimately very reward-
ing when you can hold the finished product in your hands and be proud of it. I'd like
to start by thanking my coauthors Michael and Matthias for that pride. These guys
both not only really know their stuff, but they also kept going even when things took
longer than planned, and they took on more than they had signed on for. In all it was
a great experience working with them.

I’d also like to thank the Android team and the Android and open source commu-
nity. All of the people who work to make Android better either directly, or with bug
reports and patches, help on forums and question and answer sites, participation in
user groups and conferences, and creating libraries and tools are a big reason the
platform works and thrives. In addition to thanking everyone who contributes to
Android, I’d be remiss if I didn’t mention the open source community at large. Those
who’ve worked on Linux, or a library like WebKit, or SQLite, or Apache HttpClient, or
many more, and those who’ve worked on tools like Eclipse and Maven, are also key to
the success of Android and to the everyday work that I get to do using the platform.

Finally I'd like to thank my family and friends. My wife Erin, and my daughters Sky-
lar and Delaney were always supportive and encouraging, even when “the book” took
time away from my participation in one family event or another. And my parents, Earl
and Peg Farmer, have always been there for me and have always encouraged me to do
the best that I can in whatever I attempt.

MicHAEL

I'd like to first and foremost thank my beautiful wife Crystal. It takes a lot of time to
write a book and time is one thing in short supply for a developer working at a startup
and for a father with two young sons. Without an amazing wife, there’s no way this
book could’ve happened. I'd also like to thank my high school English teacher, Dr. Ed
Deluzain. He’s the person who taught me how to write, and that skill has opened up
many opportunities for me. Writing a book has been a dream that’s finally coming
true, but it’s a dream that started in Dr. Deluzain’s class. Finally, I’d like to acknowl-
edge Troy Mott, who has worked with me for many years on various technical writing
endeavors. It has pleased me greatly to work with him once again on this book.

MATTHIAS

First, I'd like to wholeheartedly thank the Android developer community, of which I
am in highest appreciation. I'm an open-source enthusiast, and I fully believe in the
idea of contributing back whenever you take. I have taken lots from the open source

ACKNOWLEDGMENTS xvii

community: answers, ideas, code, and this book is my way of contributing back to you
all. Thanks especially to everyone who has contributed ideas and code back to Sign-
post, Droid-Fu, and Calculon, my pet projects.

Personally, I’d also like to send a big kudos to Kevin McDonagh and Carl-Gustaf
Harroch of Novoda, for all the effort they put into making Android not just a plat-
form, but a community. Special thanks also go to Manfred Moser, Hugo Josefson, and
Renas Reda, authors of the Android plugin for Maven and the Robotium library
respectively, for reviewing those chapters in this book. Big thanks also go to Julian
Harty, Carlos Sessa, Nenad Nikolic, Jan Berkel, Thibaut Rouffineau, and all the other
great people who either reviewed this book, or with whom I had insightful discussions
about Android and building amazing open source software. You guys are all rockstars!

It should not go unnoted that this book was a team effort; that’s why I want to
thank Charlie and Michael for continually driving this project forward and for the
uniquely enjoyable ride!

Last, and definitely not least, I thank my dear parents for supporting me all the way
through this book and for keeping me going whenever I was about to get stuck.

about this book

Android is an open source mobile device platform created by Google and the Open
Handset Alliance. Android powers smartphones, tablets, set-top boxes, TVs, and
more. Android in Practice is a book dedicated to helping developers build applications
for the Android platform.

This book is intended to provide some background information and coverage of
the basics of developing applications for Android for beginners and also goes into
depth on many topics for intermediate to advanced developers. The overall goal of
Android in Practiceis to collect and organize helpful Android programming techniques
over a variety of topics and explain those techniques in the context of the overall plat-
form. We’re going for the why as much as the how. You will find 91 techniques in the
book, each consisting of a problem, solution, and discussion section.

Who should read this book?

This is a book about developing applications for the Android platform, from key com-
ponents and application basics to advanced techniques, testing, building, project
management, and more. We hope this book will appeal to Android developers of vary-
ing skill levels, from beginner to advanced; Android testers; and managers and team
leaders looking to better understand Android development.

This book is intended for people who already have some programming experience
and are at least familiar with Java. Therefore, we assume that most readers are some-
what familiar with Java and related technologies (working with IDEs, compiling and
writing Java code, XML, basic networking, and so forth).

Xviii

ABOUT THIS BOOK XixX

Roadmap

Chapter 1 introduces Android, the platform and talks about the progression that led
to it, the companies behind it, and what sets it apart. It also introduces the core
Android APIs and tools and includes a “hello world” programming example.

Chapter 2 covers all of the key components needed in a basic Android application,
including resources, layout, views, activities, adapters, and intents.

Chapter 3 discusses the details of the lifecycle of an Android application and of
activities. We discuss both the stack of activities an application includes and how activ-
ities are grouped into tasks.

Chapter 4 focuses entirely on the user interface. This includes how views are cre-
ated and rendered, how they’re arranged in layouts, how adapters are used to manage
them, how they can be styled and reused, working with drawables, and handling
devices with different screen sizes.

Chapter 5 provides details on multitasking using services. This goes from what a
service is and why it’s necessary to how they can be created, how they can be started
automatically or scheduled with alarms, how they can be used to cache data and send
notifications, and how to push messages from the cloud to devices.

Chapter 6 details where threads and asynchronous tasks can be used to make
Android applications more responsive and performant. The topics covered include
communicating between threads, managing threads, using handlers and timers, mes-
sage loops, and more.

Chapter 7 deals with working with external and internal storage to store data.
This includes using the filesystem and preferences files and working with SQLite and
databases.

Chapter 8 deals with sharing data between different applications. This includes
consuming data from other applications on the platform and providing data to other
applications, both using a content provider.

Chapter 9 extends the concepts of storing and sharing data by using the network.
This means using HTTP from several different clients, working with web services using
XML and JSON, understanding how to detect and switch between different network
data sources, and recovering gracefully from networking problems.

Chapter 10 deals with location-related services. This includes determining what
location providers are present and what resources each requires, obtaining location
data from different sources, and building map-based applications.

Chapter 11 features multimedia. The topics here include detecting multimedia
capabilities, working with resources and files, using media related content providers,
and working with audio and video, including using the camera, displaying animations,
and controlling audio playback.

Chapter 12 delves into 2D and 3D drawing. This is where we learn about drawing
shapes and lines on the canvas, creating effects, building custom views, and working
with 3D programming using OpenGL ES.

ABOUT THIS BOOK

Chapter 13 covers automated testing of Android applications. This includes work-
ing with different types of tests and several different test approaches and frameworks.

Chapter 14 discusses project management and build automation. This includes
an overview of all the steps required in an Android build, coverage of working with
build tools such as Ant and Maven, and continuous integration of Android builds
with Hudson.

Chapter 15 targets developing for Android tablets. This includes using existing
code libraries, targeting different devices, working with activity fragments, and differ-
ent user interface components for tablets.

Appendix A picks up several questions involving debugging Android applications
and gives some useful advice on how to effectively use the Android Debug Bridge. It
also covers a recent addition to Android called StrictMode, which allows you to detect
performance smells in your applications.

Appendix B presents Android application development from an entirely new per-
spective, as it explores two alternative approaches to native Android development:
using WebViews and programming in alternative languages like Scala.

Appendix C covers use of the ProGuard byte code optimizer and obfuscator, some-
thing you should have on your radar for any production-quality application.

Appendix D covers monkeyrunner, a scripted tool used to instrument Android
applications. This is our attempt to shed some light on a useful but underdocumented
tool.

Code conventions and downloads

This book contains many example projects, all of which are based on multiple code
listings. We’ve tried to be as thorough as possible in the listings and yet keep them
concise, but this isn’t always easy with Java and XML. Many of the listings also include
code annotations that highlight important concepts and explain portions. These
annotations are discussed in the text.

In some listings we’ve omitted the more verbose or boilerplate portions of the
code where we feel it makes sense to do so. For example, after we’ve introduced one
concept, we typically don’t keep repeating the same technique in the code listings.
We know it can be frustrating to not have complete examples, but it’s also impossible
to include all of the code this book covers in its entirety and still adequately discuss
the related concepts. We’ve tried to strike a balance and indicate in the listings wher-
ever code is omitted for brevity, and we’ve also included every line of code as a com-
plete working project available for download as either source or in working binary
form at the Android in Practice Google Code hosting site: http://code.google.com/p/
android-in-practice/. The code is also available from the publisher’s website at http:/

/www.manning.com/AndroidinPractice.

http://code.google.com/p/android-in-practice/
http://code.google.com/p/android-in-practice/
http://www.manning.com/AndroidinPractice
http://www.manning.com/AndroidinPractice

ABOUT THIS BOOK xxi

Author Online

The purchase of Android in Practice includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to http://manning.com/
AndroidinPractice. This page provides information on how to get on the forum once
you are registered, what kind of help is available, and the rules of conduct on

the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. Itisn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

CHARLIE CoLLINS is the director of development at MOVL, where he helps create apps
that allow connected TVs and mobile devices to interact. Charlie has worked on sev-
eral open source projects and has a strong background in web applications and web
services. Charlie was also the coauthor of Manning’s GWT in Practice and Unlocking
Android. When he’s not coding Android apps or writing server logic, Charlie can often
be found playing tennis or mountain biking. Charlie lives in Atlanta, Georgia, with his
wife and two daughters.

MicHAEL GALPIN is a developer at Bump Technologies where he works on Bump, one of
the most popular social networking apps on the Android Market. Prior to that, he was
at eBay for four years where he worked on eBay Mobile for Android, one of the most
popular shopping apps. He frequently writes articles about open source technology
for IBM developerWorks. He lives in San Jose, California, with his wife and two sons.

MartTHIAS KAPPLER is a developer at Qype.com, Europe’s largest community portal for
local reviews, where he leads development in Qype’s mobile products division, the “A-
Team” (Android and API). He has been all over Android from its early alpha day and
has founded or contributed to several well-received open source projects, including
Signpost OAuth, Droid-Fu, Calculon, and Gradle’s Android plugin. In his spare time
he’s a music, movie, and coffee addict, and when not busy discovering new locations
and reviewing them on Qype, he’s probably practicing Taekkyon, a Korean martial art.
Matthias lives in Hamburg, Germany.

http://manning.com/AndroidinPractice
http://manning.com/AndroidinPractice

about the cover illustration

The figure on the cover of Android in Practice is captioned “Habit of the Grand Seig-
neur’s Body Guard in 1700” and is taken from the four-volume Collection of the Dresses of
Different Nations by Thomas Jefferys, published in London between 1757 and 1772.
The collection, which includes beautifully hand-colored copperplate engravings of
costumes from around the world, has influenced theatrical costume design ever since
it was published.

The diversity of the drawings in the Collection of the Dresses of Different Nations speaks
vividly of the richness of the costumes presented on the London stage over 200 years
ago. The costumes, both historical and contemporaneous, offered a glimpse into the
dress customs of people living in different times and in different countries, bringing
them to life for London theater audiences.

Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life—or a more varied and interesting intel-
lectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and historical
costumes brought back to life by pictures from collections such as this one.

Part 1

Background
and fundamentals

rI:is first part of Android in Practice will explain the core concepts surround-
ing the Android platform and its key components. In chapter 1, you'll learn
what Android is, who created it, and why it was created. We’ll also introduce you
to the basics of developing applications for it. In chapter 2, you’ll take the basics
further and build a foundation for later examples by completing your first non-
trivial example. This will involve the application manifest, activities, views,
resources, layouts, and adapters. Chapter 3 will build upon this foundation by
helping you understand and work with the well-defined lifecycle of components
such as activities, as well as overall Android applications.

Introducing Androvd

In this chapter

= Android in a nutshell

= Writing a Hello Android app

® Android’s Java and Linux roots
= Native libraries and other tools

Reality is that which, when you stop believing in it, doesn’t go away.
—Philip K. Dick

Today, mobile phones are everywhere. They’re more prevalent than personal com-
puters. They’ve replaced our watches, calculators, cameras, MP3 players, and often
our means of internet access. They also provide capabilities such as GPS navigation,
motion and gesture interfaces, social networking, and an indescribably broad array
of “apps” that mix and match many features. With all of this, it’s easy to see why
mobile devices are popular.

The technology behind mobile devices has advanced rapidly. It wasn’t all that
long ago that voice calls were routed through a completely wired network with
human switchboard operators and all phones were attached to physical wires. The
"plain old telephone system" (POTS), as it has become known, matured, and manual
switchboards were replaced with computer controlled switches. Then features such

CHAPTER 1 Introducing Android

as voicemail and caller id were added. Eventually, the wires were cut. At first, wireless
phones had home base stations and bulky antennas. Then, carriers built extensive wire-
less networks that made even that unnecessary. Next, crude applications began to
appear alongside the telephony capability, and mobile devices and networks were
pushed to provide more and more functionality. Today, we’ve come a long way, but
we’re still pushing. With impressive hardware and network speeds, we have incredibly
powerful wireless handheld computers.

Making use of all this computing and networking power is the tricky part. Until
recently, the software in many mainstream mobile devices was proprietary. This typi-
cally meant several things, all of which were hurdles for developers:

= The source code wasn’t available to see how things ticked.

= There may have been formidable licensing fees or other development costs.

= There were restrictive terms and opaque policies even if you were licensed.

= There weren’t easily approachable programming languages or software devel-
opment kits (SDKs).

= There weren’t easy ways to get applications in front of users and installed on
devices.

A consortium of companies known as the Open Handset Alliance, led by Google, looked
at the landscape several years ago and asked the question “What would it take to build
a better mobile phone?” By better they meant a phone that could overcome the hurdles
holding back widespread collaboration, innovation, and adoption on other platforms.
The answer they came up with was Android. Android is a powerful and open platform
that anyone can use and extend. Figure 1.1 shows a montage of screen shots that dem-
onstrate a few of the platform’s capabilities.

Android’s power and capabilities make it appealing to users. Those same features
combined with the open nature and impressive engineering make it attractive to
developers. Android is the way forward. The potential is there; what’s needed now are
more innovative developers to write quality applications. Android needs you.

Being both Android users and developers ourselves, this is what inspired us to try
to pass on some practical knowledge about the platform, and about how to write appli-
cations for it. That’s where Android in Practice comes into play. This book is about
building applications for Android and it brings real-world tips from the trenches.

PREFLIGHT CHECK One thing we need to get out of the way up front is that
Android in Practice is intended to be a recipe-style book of practical examples
that tackle many different aspects of the platform (some of them advanced).
Part 1 of this book, including this chapter, is a whirlwind introduction to the
basics. Once we get past this, we’ll advance quickly. If you're already familiar
with Android and have already written Android applications, you may want to
go straight for the deeper dive and skip ahead to parts 2 and 3. These are
each focused on a particular area of the platform and go into much more
depth than this introduction. You’re welcome to stay with us and revisit the
fundamentals if you prefer as well.

1.1

Android in a nutshell 5

L@ c16n
9 [

G BE© T

Scoreblctile for Androdd WLE,
A, L. PGA, Wora Cup F1,
NASCAR ana maored

Flash Player 10.1 BET propameq

v

B Pll’dﬁra Radio FREE

) Sooste aps Inatated

& Soosle Earth Instabed

Erirerir

“ Google Sky Map Invtased

i LATEST NEWS
rilling Rig Returns to

Figure 1.1 Several
Android screen shots
demonstrating some

of the capabilities of the
platform, including a cus-
tomizable interface,
phone, application mar-
ket, full-fledged browser,
e mapping, and navigation.

In this first chapter, we’ll start by sharing some background information and dealing
with the basics. That means we’ll first talk more about what Android is, and why it mat-
ters. From there we’ll build a simple “Hello Android” application to get the lay of the
land. Through that exercise, we’ll introduce you to the Android Software Development Kit
(SDK) and the main parts of an Android application. Then we’ll move on to cover the
key aspects of the specialized Java runtime Android uses, Dalvik. We’ll also examine
some of the details of the Linux-based operating system (OS) that powers all of it.
After that, we’ll discuss Android’s overall architecture, including its native middleware
libraries, its applications and application framework, and further developer tools and
SDK details.

At the end of this chapter, you should have a basic understanding of the Android
platform and development process. With that foundation, you should be ready to
move on to tackling more detail in chapter 2 and beyond.

Android in a nutshell

If we were to ask one of the millions of Android device owners “What is Android?”
we’d get a variety of responses. Some might say it’s a kind of phone, or it’s a place to
get apps for their phone, or maybe a cute little green robot. As developers, we go fur-
ther—we understand it’s a broad platform for creating and running applications.

111

112

CHAPTER 1 Introducing Android

Before we jump into the code, we need to define what we mean when we say
“Android,” touch on whatsets it apart, and discuss the key components of the platform.

Defining Android

The marketing tag line is that Android is a “complete set of software for mobile
devices: an operating system, middleware, and key mobile applications.” It’s that and
more. It goes beyond mobile, and arguably, the development framework and SDK
aren’t captured in that description—but they’re essential too.

Android truly is a complete stack, from boot loader, device drivers, and libraries, to
software APIs, included applications, and SDK. Android isn’t a particular device, or
even class of devices; it’s a platform that can be used and adapted to power different
hardware configurations. Mobile phones are the main class of Android powered
devices, but it’s also currently used on electronic book readers, netbooks, tablets, and
set-top boxes.

What sets Android apart

Even though it’s open and powerful, Android isn’t perfect. Android doesn’t get every-
thing right, but we think it’s a big step in the right direction. Android avoids many of
the issues surrounding proprietary systems by being open source and being licensed
in an open manner (with no licensing fees whatsoever). Android provides an
approachable and accessible (free) SDK and other development tools. And, Android
deals with getting applications in front of users with a built-in market application that
allows users to easily download and install apps right from their phones.

THE MARKET AND INSTALLING APPLICATIONS The Android Market is the main
way users find and install applications on their phones. Anyone who registers
and agrees to the terms can submit applications to the Android Market. Once
in the Market, applications are available to users immediately (without any
review process). Applications can then be rated and commented upon by
users. This technique is different because it’s ultra-convenient and it brings a
social aspect directly to the mix. Application ratings are a sort of artificial
selection for the app ecosystem. The fittest apps survive and thrive. In addi-
tion to the official Android Market, users can also use (if their carriers permit
it) third-party markets and direct downloads to install applications.

Beyond the users and the market, Android also runs on a plethora of devices. In fact,
there are so many different devices now that it can be difficult to develop and test
applications that work on every one. This is one criticism that has been leveled at
Android. But there are many ways to mitigate the associated problems, and Android
was designed to help cope with this. We’ll learn more about creating applications that
work on multiple devices, even with multiple screen sizes, in several later examples in
the book.

Android didn’t pioneer the open source mobile operating system concept. Others
have come before it, and there surely will be others after. Android also didn’t invent

113

Android in a nutshell 7

the market approach that it uses to provide easy and socialized access to applications
for users. Yet, Android has combined all of these things in new ways, with the backing
of a consortium of successful commercial companies and solid engineering, and this
has made it one of the most popular and successful mobile operating systems on the
planet today.

With a description of Android in hand, and some understanding of the motivation
for its creation, we’ll next turn to the key components that make up the platform.

Key platform components

Like any technology stack, the Android platform can be broken down into areas of
responsibility to make it easier to understand. The main divisions of the Android plat-
form are depicted in figure 1.2.

Applications

Application Framework

Middleware Libraries

Software
Development Kit
(SDK) and developer
tools

Operating System

Figure 1.2 An overview of the major components of the Android platform: 0S,
middleware, application framework, applications, and developer tools

CHAPTER 1 Introducing Android

QRCODES AND URLS Throughout the book, in cases where it might be useful on
a mobile device, instead of providing only a text URL to an online resource,
we’re also going to provide a Quick Response (QR) code (2D bar code). These
codes can be scanned by many bar code scanners, such as several available on

Android, and resolved to URLs for quick and easy browsing.

The preceding QR code decodes to the official “what is
Android” documentation: http://mng.bz/Z4Le. There you
can find more information about what Android is, including
the official architectural “layer cake” diagram.

The architectural diagram in figure 1.2 shows that the Android platform can be bro-
ken down into five sections:

Applications
Application framework
Middleware libraries
Operating system

SDK and developer tools

Applications are pretty obvious. But several different types of applications are available
on most Android devices, and the distinction is subtle. Core open source applications
are included as part of Android itself, such as the Browser, Camera, Gallery, Music,
Phone, and more. These are typically included with every Android device. There are
also non—open source Google apps that are included with most official builds, includ-
ing Market, Gmail, Maps, YouTube and more. Many carrier or handset manufacturer-
specific applications are included on specific builds (such as AT&T’s own music player,
Verizon’s own Navigator, or Sprint’s TV). And, third-party applications are available in
the Android Market, which can be either open source or proprietary. These include
independent Google applications such as Goggles and Listen, official apps from popu-
lar services like Twitter and Facebook, and thousands of other choices.

WHY CAN'T | UNINSTALL SOME APPS? Many handset manufacturers and service

carriers, and even Google to some degree, include certain applications on a
special read-only part of the Android file system called the system partition.
Applications that are installed here can’t be easily uninstalled (you need to
have administrative privileges, and/or mount the partition as read-write to
remove them). This is often annoying, but also understandable. Part of the
power of Android is that manufacturers and carriers can customize it the way
they want to. This is part of the reason why many of these companies have
adopted the platform to begin with.

Supporting applications, the Android platform includes a framework to run them in.
The application framework provides a tightly integrated part of the platform SDK and
APIs that allow for high-level interaction with the system from within applications.
When your application needs access to hardware sensors, network data, the state of

http://mng.bz/Z4Le

1.2

Hello Android! 9

interface elements, or many other things, it gets to that information through the
application framework. We’ll learn more about the SDK and the application frame-
work in section 1.6.

Beneath the application framework sits the software collectively referred to as the
middleware. As the name suggests, middleware is software components that sit in
between—in this case between the operating system and the applications/application
framework. The middleware includes libraries for many functions (data storage,
graphics rendering, web browsing, and so on) and it also contains a special sub-
section called the Dalvik runtime. This is Android’s special nonstandard virtual
machine (VM) and its core application libraries. We’ll learn more about Dalvik in
section 1.3.

At the bottom of the Android stack is the operating system. Android’s OS is Linux-
based and performs much the same tasks you’d expect from any conventional desktop
computer OS. This includes interfacing with the hardware through a set of device
drivers (such as audio or video drivers), processing user input, managing application
processes, handling file and network I/0, and so forth. We’ll learn more about the
Android Linux OS in section 1.4.

With Android’s layered design, each level is an abstraction of the one beneath it.
Don’t worry—as a developer you won’t have to deal with lower-level details directly.
Rather, you’ll always access subsystems by going through simple interfaces exposed in
Android’s application framework (unless you’re doing native development work with
the Native Development Kit or NDK, but that’s getting ahead of the game).

Android is a vast system; we neither can nor want to cover everything here. Instead,
as we progress through this chapter, we’ll focus on the important parts, the parts we
think you should know about and have a basic understanding of. As we go, we’ll share
more details about the layers we’ve introduced, within the context of building applica-
tions and understanding the platform from a developer’s perspective. To do that, we’ll
start by getting the prerequisites in
order and writing our first Android
application, “Hello Android.”

5554:avd_L6_w_market

Hello Android!

Our first Android application will
display a single line of text and one
image on asingle screen. Itisn’timpres-
sive, but we’re keeping it simple on pur-
pose. We want the components of the
application, and the process, to take |
center stage. The application we’ll
build, “Hello Android,” is seen in com-

. K . Figure 1.3 The Hello Android application being run
pleted form running in the emulator in from an emulator instance and showing some simple
figure 1.3. onscreen elements: text and an image

10

1.2.1

CHAPTER 1 Introducing Android

To build Hello Android we’ll use a few tools that we need to get in order first. These
include the Android SDK, the Eclipse Integrated Development Environment (IDE), and the
Eclipse Android Development Tools (ADT) plugin.

Getting the SDK and Eclipse

If you’ve never worked with Android before, to get started you need to check the sys-
tem requirements and then download and set up a Java development kit (JDK), the
Android SDK, and the Eclipse IDE. We won’t spend a lot of time on describing the pro-
cesses for installing these prerequisites because they're well documented online.
Table 1.1 includes a description of the related online resources, and links to where
they’re located.

Table 1.1 Prerequisites and online documentation for Android development

Description URL
System requirements http://developer.android.com/sdk/requirements.html
Java—JDK5 or JDK6 http://www.oracle.com/technetwork/java/javase/downloads

Eclipse IDE for Java Developers http://www.eclipse.org/downloads/

Android SDK http://developer.android.com/sdk/index.html

Android Development Tools (ADT) | http://developer.android.com/sdk/eclipse-adt.html
Eclipse Plugin

The Android ADT plugin works in conjunction with Eclipse’s Java Development Tools
(/DT). The fact that an Android application’s source code can be written in Java (the
language) and Android development is supported by Eclipse isn’t an accident. Java
has strong tooling support (like Eclipse) and a large active community of developers.
Eclipse provides convenient Java development features such as syntax highlighting,
code completion, error detection, build support, and an excellent debugger. Eclipse
also provides wizards for creating and running Android applications, managing and
manipulating Android Virtual Devices (AVDs), and specialized editors for creating
user interfaces and managing application metadata.

DO | HAVE TO USE ECLIPSE? The short answer is no, you don’t have to use
Eclipse. You can use the Apache Ant Java-based build tool and the command
line if you prefer. Or, you can integrate the Ant-based tools supplied with
another IDE if that’s your preference. Our recommendation is to use Eclipse.
The Android team has chosen Eclipse as the main IDE to support, and the
Android Development Tools (ADT) plugin for Eclipse is useful.

FOR THAT MATTER, DO | HAVE TO USE JAVA? For those out there who don’t pre-
fer Java, Android hasn’t forgotten you entirely, and neither have we. We’ll
touch on using alternative languages such as Scala in an appendix. And, we’ll
also look at building web applications (using JavaScript and CSS, for example)

http://developer.android.com/sdk/requirements.html
http://www.oracle.com/technetwork/java/javase/downloads
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html

122

Hello Android! 11

for Android too. These are broad topics so we can’t cover them in depth, but
we want to at least introduce them and make sure you know there are options.
That said, Java is the main development language of Android, and it’ll be the
main language we use throughout this book.

Though we aren’t going to spell out how to install Eclipse and the Android SDKand ADT
plugin here (as previously noted), we’ll mention a few tips. Even if you already have
Eclipse, if you don’t have Android, you might want to reinstall Eclipse in a new location,
and install the ADT plugin there. That way you’ll have a shiny new Android-specific
Eclipse install (or maybe also include the Google plugin for AppEngine and GWT and
make it a Google Eclipse install). This helps on a few fronts: first, Eclipse can get bogged
down when too many plugins and extras are installed; and second, this new installation
will be out of the way of any existing projects and plugins you have, so it might be easier
to troubleshoot any plugin issues or configuration problems should they arise. Also,
even though you’re likely to use Eclipse a lot, you’ll want to make sure the Android tools
are in your PATH and that you have the command line handy. A few tools only work from
the command line (theyaren’t exposed in the plugin), and it’s a good idea to know what
the underlying tools are and how to use them. We’ll cover the tools specifically in
section 1.6, and as related topics come up in later examples and topics.

Once you get set up, the next step is to fire up the Eclipse IDE and create an
Android project.

Creating an Android project with Eclipse

You’re probably already familiar with Eclipse, or at least with the concept of creating a
new project in a GUI tool. To create our Hello Android project we’ll follow the well-
worn path from File, to New, to Android Project, as seen in figure 1.4.

The next dialog that pops up in the IDE is the initial project properties screen.
We’ll enter some basic information for our project, as seen in figure 1.5. The project
properties you’ll need to create a new project include a Project Name (the name used
to identify the project within Eclipse), and then a series of Android related inputs:
Build Target, Application Name, Package Name, and Activity Name (labeled Create
Activity in figure 1.5).

”. - ,-;[;\.[»*_._| - -Tf__l_-_j;l-_l__';":]_r I r(.'.i-l,"_-.:‘,;‘:'j rc/com) h’l_t-.l_ll‘
Edit Run Source Navigate Search Project Refactor Window Help

Java Project

Open File,.. | N
Close Ctri+X K Wel_’.) Application Project
Close All ci+x cti+c | Project..
Package
Save As... Class

Figure 1.4 Creating a new Android project in Eclipse

CHAPTER 1 Introducing Android

New Android Project

Creates a new Android Project resource,

Project name: [HelloAndroid]

Contents

@ Create new project in workspace

) Create project from existing source
| Use default location

O Create project from existing sample

Samples: ¢
Build Target

Target Name Vendor Platform APILev
i:l Android 1.5 Android Open Source Project 1.5 3 .
Android 1.6 Android Open Source Project 1.6 4
|[] Google APIs Google Inc. 1.6 4

[J Android 2.0 Android Open Source Project 2.0 5
|[J Android 2.1-update1 Android Open Source Project 2.1-update* 7

[J Google APIs Google Inc. 2.1-update” 7

[] Android 2.2 Android Open Source Project 2.2 8

Standard Android platform 1.6

Properties

Application name: [HelloAndroid

¥ Create Activity: |Main|

l
Package name: [com.manning.aip.helloandroid |
l
)

Min SDK Version: |

Figure 1.5 Set proper-
] - ties for the HelloAndroid
@ sack | Next> || cancel || Finish | project in Eclipse using
- - the ADT plugin

The names are straightforward, as is the Java package. The Build Target is more inter-
esting. This is the Android SDK Platform that you had to install when you installed the
SDK. The platform contains the particular dependencies and tools for a specific ver-
sion of the Android API. You can install multiple platforms, and therefore build and
test for different versions of the API, but you're only required to have one. (We've
picked Android 1.6, but for this simple project it doesn’t matter; any Target/platform
will do.) The Create Activity setting is also worth touching on. If you check this, the
ADT will create a template “Hello World” class and screen for you.

Before we go any further, let’s take a look at the structure we now have after we click
the Finish button and let the Eclipse ADT plugin create our initial Android project.

1.23

Hello Android! 13

Project structure

Android projects rely on a predefined project structure to allow different components
to be located, and to provide some convention over configuration. Java source code,
layout files, string resources, image resources, and more have their place in the hierar-
chy. Figure 1.6 depicts the complete structure for our Hello Android project, includ-
ing the source (and generated source), resources, and manifest.

As figure 1.6 shows, Java source code for an Android project is placed in a top level
src directory. From there a parallel gen directory is also present for generated source.
This is where the Android tool chain will create autogenerated sources for you,
including R java.

Ris an internal class that’s used to wire resources. As for resources, they’re noncode
items (such as externalized strings) that are included with your project. Resources are
placed in the res directory. Within the res directory are several subdirectories that
determine the type of resource, and when it should be used. Lastly, within the top level
directory is the Android configuration file for the project, AndroidManifest.xml.

Now that we’ve seen the structure and know where things go, in the next few sec-
tions we’ll focus on what each of these items is, and how you build and use them, as we

v (#src
< f# com.manning.aip.helloandroid
P [J) Main.java
P =4 Android 1.6
v &8 gen [Generated Java Files]
¥ @ com.manning.aip.helloandroid
P [Rjava g
&= assets
v Z2res
P (= drawable-hdpi
P (= drawable-ldpi
¥ (= drawable-mdpi Resources
% droid.gif
[®icon.png
< (= layout

Java source

Generated R.java

)

X main.xml

v (= values .
X) strings.xml Manifest

a) AndroidManifest.xml

Figure 1.6 An overview of the basic project structure of an Android application

14

1.24

1.2.5

CHAPTER 1 Introducing Android

create the Hello Android application. We’ll start with Main java file in the src direc-
tory. This is our first look at an Android Activity class.

Introducing the Activity class

In Android terms, an activity is a Java class that creates a default window on the screen
and allows for placement of the user interface (UI) elements. Simply put, an Activity
class roughly correlates to a screen in an Android application (most of the time: there
are some subtleties, which we’ll learn as we go). Because we started our project using
the ADT plugin and we enabled the Create Activity option, we already have our first
Activity class, Main.

Listing 1.1 Main.java Android Activity class as generated by the ADT plugin

package com.manning.aip.helloandroid;

import android.app.Activity;

import android.os.Bundle; Extend
public class Main extends Activity { Activity
/** Called when the activity is first created. */
@Ooverride Override
public void onCreate (Bundle savedInstanceState) { onCreate
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ; <€) Setlayout

}

The generated Activity class the ADT plugin provides is simple, which makes it a
great place to start poking around. First, we see that this class extends Activity @.
This is important. Activity brings a lot along, including lifecycle methods such as
onCreate @. As the comment in the code (which the plugin also generated) indi-
cates, this is called when the Activity class is first created. We’ll learn much more
about Activity in chapters 2 and 3. Activity is one of the most important classes
you’ll use in day-to-day development, and it has many more facets we won’t touch
on here.

For now, think of this as the first screen, where you can hook into the lifecycle and
tell the framework how to configure the visual elements using a separate layout
resource @. In this case our layout resource is R. layout .main and we set it as the con-
tent view. The R class is a special generated class that hooks names with resources,
something we’ll learn more about shortly.

Setting the Activity layout

A layout resource is a special configuration file for the design and arrangement of visual
elements on the screen. One handy aspect of Android development is that a lot of the
time the UI can be declared in XML with a layout resource. This separates the presen-
tation from the code (somewhat), and makes many UI elements reusable. The first lay-
out resource we’re using for our Main Activity screen is shown next.

Hello Android! 15

Listing 1.2 Main.xml layout resource used to declare Ul elements for the Main Activity

<?xml version="1.0" encoding="utf-8"?> LinearLayout
<LinearLayout r parent
xmlns:android="http://schemas.android.com/apk/res/android" element

android:orientation="vertical”
android:layout_width="fill parent"
android:layout height="fill parent"”
android:background="#FFF"

S TextView

<TextView for text

android:layout width="fill parent”
android:layout_height="wrap_content”
android:layout marginTop="25dp"
android:gravity="center horizontal"
android:textColor="#000" .
android:textSize="50dp" Set TextView settings
android:text="@string/hello" contents

/> ImageView
for images

Modify
TextView

<ImageView
android:layout width="fill parent”
android:layout height="wrap_content" Droid image
android:src="@drawable/droid" for ImageView
/>
</LinearLayout>
The layout we’re using for Hello Android is basic, but we’ve modified it from the
default generated layout the ADT plugin creates. The first thing to note here is the
xmlns:android namespace. This is an XML shortcut. We define it this way so we can
refer to the Android schema elements throughout the rest of the file using only the
android: prefix. Next we see that we’re using a LinearLayout . LinearLayout
refers to an Android layout class, in this case, one that puts the child elements it con-
tains in a line (either horizontal or vertical; see the orientation attribute). A layout
in Android is a specialized type of View (specifically, a ViewGroup, but we’re getting
ahead of ourselves). Several different layouts are available in Android, all of which
we’ll meet in chapter 4. View is the base class of elements that are capable of dealing
with screen layout and are intended to be seen or interacted with by the user. Android
is loaded with many different types of views, such as the TextView ® we see next in
our layout.

A TextView, you guessed it, displays text. View elements often have attributes that
can manipulate their properties. Here we’ve set the margin, gravity (position on the
screen relative to other elements), color, and size of the TextView €. Also, we see that
the android:text attribute, which determines what text to display is set to @string/
hello @. This usage of @string means we’re referring to a string resource. We could
have hard-coded some text here, but externalizing resources like this keeps our layout
and our content nicely separated.

After the TextView, we next have an ImageView @. For it, we're specifying the src
attribute as @drawable/droid, another external resource reference, this time to a
drawable named droid @. We’ll discuss drawables in chapter 4. For now, we need to

16

1.2.6

CHAPTER 1 Introducing Android

understand that we’ve included a droid.gif image file in the res/drawable-mdpi direc-
tory of the project and that way Android can find and use it (this file is available with
the code download for the book; we initially grabbed it from the Android goodies
page: http://www.android.com/media/goodies.html). With our layout out of the way,

let’s take a closer look at how the resource references work.

Referring to resources

As we’ve seen, the @ sign in a layout file (which itself is a type of resource) is a refer-
ence to another resource. In the case of estring/hello we’re referring to a
strings.xml file. It’s always a good idea to keep different types of entities in your proj-
ect separate from the code. This goes for layouts, strings, images, XML files, and any-
thing that Android refers to as a resource.

With strings and images, this is obvious. If you want to have different resources
based on different settings, such as language or location, you can. The @ sign tells
Android to parse these values as resources. Android has many resource types, which
we’ll learn more about in the next few chapters, but for now let’s take a look at what’s
in our strings.xml file.

Listing 1.3 The res/values/strings.xml resource file

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello"s>Hello Android!</string>

<string name="app_ name">HelloAndroid</string>
</resources>
This externalized string file is in an XML format, and it holds key/value paired data.
In the layout we referred to the hello resource, which will ultimately display the
“Hello Android!” string. Strings, as well as more complex data types such as colors
and drawables (an Android type for shapes), can all be represented in XML and used
as resources.

WHY ALL THIS XML? XML isn’t all bad. For Android it makes a lot of sense. XML
gives the tooling a rigid structure and strong types to work with, but it can often
be bloated and slow to parse. Don’t worry—these resources are compiled into
a binary format by the platform and not parsed as XML at runtime.

Android can also use other components that aren’t XML as resources. For example,
our droid picture is a binary image file. When such binary files are placed in the cor-
rect place in the project’s path for their type, they’re automatically made accessible as
resources. Next, let’s take a quick look at how resources are named and resolved.

All Android resources are identified by the Android application framework as con-
stants in Java through the auto-generated R class. The R class is comprised of multiple
internal classes, as shown in the next listing.

http://www.android.com/media/goodies.html

Hello Android! 17

Listing 1.4 The autogenerated R.java class showing internal classes and constant names

/* AUTO-GENERATED FILE. DO NOT MODIFY. R class is auto-
* generated

* This class was automatically generated by the

* aapt tool from the resource data it found. It

* should not be modified by hand.

*/

package com.manning.aip.helloandroid;

public final class R {
public static final class attr {

} Subclass for
public static final class drawable { drawable types
public static final int droid=0x7£020000;
public static final int icon=0x7£020001;
} Subclass for
public static final class layout { layout types
public static final int main=0x7£030000;
} Subclass for
public static final class string { string types

public static final int app name=0x7£040001;
public static final int hello=0x7£040000;

}

The comment at the top of the R source file makes it clear: this class is automatically
created for you, and shouldn’t be modified by hand @.

ECLIPSE AND R If Eclipse complains about the R class not being present, or
not compiling, don’t panic. This class will be regenerated if you have a gen
directory, and you clean (Project -> Clean) or recompile/build your project.
The Android Asset Processing Tool, or aapt, is invoked by Eclipse when you
rebuild your project, and it regenerates the R source file.

Inside the R source file is a separate subclass for each type of resource your project
contains. For our purposes with Hello Android we’ve used drawables (images) @, a lay-
out @, and some strings @. When an Android project is compiled, it goes through
some special steps, one of which is to identify and label resources (and compile them,
if they’re compilable). The constants in the R class allow you to refer to resources later
by name, rather than by the integer that defines the location of the item (in the
resource table Android uses to look up resources).

Again, we’ll learn more about resources in chapter 2, and throughout the book. At
this point, keep in mind that noncode entities are stored as resources, and referenced
via R java. With some background on R, we now have Java source that’s tied to a layout
resource, and our layout resource itself refers to several other resources. The next
thing we need to cover is how all of these different elements are brought together and
wired up to make an application. This is why we need an application manifest.

18

1.2.7

CHAPTER 1 Introducing Android

Project wiring: the manifest

Every Android application must have a manifest file named AndroidManifest.xml.
This file, as seen in the following listing, wires up the different components of the
application and defines properties such as label, version, and a lot more.

Listing 1.5 The AndroidManifest.xml file used to define configuration

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.manning.aip.helloandroid”

android:versionCode="1" Manifest definition
android:versionName="1.0">
<application android:icon="@drawable/icon" {/i) Application element
android:label="@string/app name">
<activity android:name=".Main" w Activity definitions
android:label="@string/app_name">
<intent-filters>
<action
android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filters> Intent-filter a/
</activitys>
</applications>

</manifest>

The manifest file that our Hello Android application is using is basic. This file hasn’t
been modified at all from what the ADT plugin generated. It includes an opening
manifest element with version properties, package name, namespace @, and an appli-
cation element with icon and label @. Both of these elements support more attri-
butes, and we’ll explore the manifest further in chapter 2.

Inside the application element we see an activity element, with name and label @.
You guessed it, this is where the single Activity class in our Hello Android applica-
tion is defined. Each Activity within a particular application must be defined here in
order to be resolved and used by the platform.

The next item, the intentfilter element, represents an important concept @.
Intent filters are the way Android manages activities (and other components such as
services and broadcast receivers, which we’ll discuss in chapter 5) and decides what
each is capable of. Other activities don’t need to know the exact name of an Activity
class to use it (though they can use it that way). Instead, activities can specify what they
want to accomplish—their intent—and the system will check for any registered activities
that fit the bill. These will be resolved and used at runtime.

Intent filters can get complicated. At this point we aren’t going to veer off course
and get into the finer points; we’ll leave the topic for chapter 2. For now, it’s impor-
tant to understand that an intent filter with an action of Main, and a category of
Launcher makes an Activity show up on the default Android application selection
screen (which is a platform provided application called Launcher).

128

1.3

13.1

Java, but not Java Java 19

With our project in place, and our understanding of the basic structure complete,
the next step is to run and debug our application from Eclipse.

Running and debugging Hello Android

Running and debugging an Android application from Eclipse is straightforward. It’s
done the same way you would any project in Eclipse, except that you have the option
in the configuration to run via an emulated phone or another device. To create a
launch configuration and run or debug Hello Android do the following:

= Run—Right click project -> Run As -> Android Application
= Debug—Right click project -> Debug As -> Android Application

Once your application has been launched once, you’ll have a launch configuration
that you can edit (under Run -> Run Configurations in Eclipse). From this dialog you
can set the Target (which device or emulator instance to use) to manual or automatic,
and you can tweak other emulator options. We’ll go into more depth concerning the
Android emulator and Android Virtual Devices (AVDs), Eclipse and the ADT plugin,
and other tools in section 1.6.

Before we get to those details though, let’s step back and examine how the plat-
form and architecture work together to make Android tick now that we have a work-
ing application. To begin with, we need to explain the way Android deals with Java.

Java, but not Java Java

Any Java runtime environment (JRE) consists of two things. First, the core library bun-
dles all classes that are part of the Java platform, including language utilities, network-
ing, concurrency, and so forth. Second, the Java virtual machine (JVM) runs Java
programs by interpreting the Java bytecode contained in a set of class files produced
by a Java compiler.

Android’s runtime environment follows this pattern, but the similarity with Sun/
Oracle’s JRE ends there. Android’s Java core library doesn’t bundle the same packages
(although there’s significant overlap) and the JVM can neither load .class files nor
interpret Java bytecode. At first, this sounds bad. Don’t panic—you’ll still be able to
reuse many Java libraries with your Android application and you usually won’t even
notice that Java bytecode isn’t a part of the picture.

If Android Java isn’t regular Java, what is it? In the next few section, we’ll discuss
just that. We’ll cover the Java core library implementation, which is based on the
Apache Harmony project, and which standard packages are or aren’t included. Addi-
tionally, we’ll address the virtual machine, named Dalvik, that runs all Android appli-
cations written in Java.

Built on Harmony

As we’ve already noted, Android is an open source project. This includes its Java core
library implementation. You might assume that Google either created their own open
source implementation of Java or took the source code from Sun’s Open]JDK project

20

1.3.2

CHAPTER 1 Introducing Android

(Sun started to turn the Java platform into open-source several years ago). Neither is
the case. Instead, Android is based on Apache Harmony, an alternative implementa-
tion of the Java 5 Standard Edition released by the Apache Software Foundation.

When mentioning Harmony, it’s important to understand that even though it’s the
basis for Android’s core Java library, they aren’t exactly the same. The Android core
library implementation is trimmed down to include only packages that are useful on a
mobile device or those that aren’t replaced by an Android-specific Java technology. In
all, what’s included, and what isn’t?

Packages and libraries included

Let’s say it one more time: not all of Java’s runtime library is implemented in Android.
Understanding what is and isn’t there lets you know how much of your Java program-
ming knowledge you’ll be able to reuse and determines if you’ll be able to leverage
existing Java libraries (because those libraries are likely to rely on the core Java run-
time library). Figure 1.7 shows a breakdown of which parts of the Java standard run-
time library are implemented on Android.

[==1 1 1 —1 [—
java.applet java.awt java.beans java.io java.lang
1 1 1 =), —
java.math java.net java.nio java.rmi java.security
—1L —1 [—1 —1 [1
java.sql java.text fava.util java.uti.concurrent java.utillogging
—L [F==11, == ==l

java.util.regex Javax.accessbiity Javax.activation javax.activity javax annotation

— rZZa! 772 ZZ7] FZZ)
javax.crypto javax.imageio javaxjws javax.lang.modei Javax.mangement
ZZZ) — FEZ == FZA
javax.naming javax.net javax.print javax.rmi javax.script
— =zah — Zz2) ZZ2)
javax.security javax.sound javax.sgl Jjavax.swing javax.tools
— T — — — —
o] 1 [Foei] fraray —
javax vansaction javax.xml org.lett.jgss org.omg org.w3c.dom Figure 1.7 A graphical
representation of the
— top-level packages in the
A |: Fully Implemented : Not Implemented standard Java runtime and

their status in the Android
|:j Partially Implemented runtime

Java, but not Java Java 21

As seen in figure 1.7, Android implements much of the Java standard runtime library.
For most of the unimplemented packages, it’s fairly obvious why they were omitted
from the Android runtime. For example, Java’s desktop user interface libraries, AWT
and Swing, aren’t implemented and this is sensible. Android provides its own user
interface components (based on Views as we saw earlier), so there’s no need for AWT
or Swing. Java also supports some legacy technologies such as CORBA and RMI that
would make little sense as part of Android (these often make little sense as part of
standard core Java as well, but we digress).

If you look at what Android does implement, you see the majority of the Java run-
time that most developers regularly use. You see most of the essential java.lang pack-
age. You also see most of the java.util package, which has all of the key data structures
you might need, such as linked lists and hash tables. You see all of java.io and
java.net, the packages for reading and writing data from files, the network, and so on.
You also see all of the java.nio package for reading and writing data asynchronously.

In fact, some of the packages included with Android might surprise you. For exam-
ple, Android includes the java.sqgl and javax.sqgl packages. That’s right: Android
includes classes for connecting to relational databases. (Because Android supports
such things doesn’t mean you’d want to connect to a remote database from a phone.)
Android also provides most of the many XML support classes in Java. For example, it
supports both Document Object Model (DOM) and Simple API for XML (SAX) parsing
of XML documents, and includes all of the core Java classes that those parsers require.
Nevertheless, not all of the XML options offered by Java are supported in Android. For
example, the Java API for XML Binding (JAXB) is missing completely. Also, Java’s
Streaming API for XML (StAX) is notably absent, although Android does include a
library with similar functionality. This library, the XML pull-parser (org.xmlpull.vl)
has been popular on the Java ME platform because of its small memory footprint.

The XML pull-parser library used in Android is an example of an open source, third-
party library that’s included with the Android runtime and is therefore available to any
Android application. Several other similar, notable libraries are included with Android.
The one that you’ll most likely use is the Apache HttpClient API. This is a popular open
source library that has been around for a decade, and as the name suggests, can be used
to greatly simplify HTTP communication. You can use Java’s java.net package directly,
but if you need to deal with things such as cookies, redirects, authentication, and the
like, then you’ll want to consider HttpClient. Another notable third-party library bun-
dled with Android is the JavaScript Object Notation (JSON) API from json.org. The
Android JSON AP is a stripped down version of that popular library, with only the essen-
tial classes needed for parsing JSON strings, and serializing Java objects into JSON strings.
(We’ll discuss all the networking and XML/JSON options in detail in chapter 9.)

Knowing what’s available, both in terms of standard and third-party libraries, will save
you a lot of time when building Android applications. Beyond these basic Java libraries,
Android also provides a rich set of APIs for accessing Android specific parts of the plat-
form. This includes device hardware, media, graphics, location, local data, and more.

22

1.3.3

CHAPTER 1 Introducing Android

We’ll learn more about these APIs when we focus on the SDKin section 1.6. Another key
aspect of Android Java is understanding the virtual machine it provides, Dalvik.

The Dalvik virtual machine

Dalvik is Google’s own Java virtual machine, and as such is in charge of executing Java
applications running on Android. It was designed and developed from scratch, and
has been optimized to run on embedded systems such as mobile phones. Dalvik isn’t
bound to the Android platform; it works on any UNIX-based operating system, includ-
ing vanilla Linux, BSD, and MacOS X.

When talking about running applications on mobile phones, what we mean is run-
ning applications in an environment that’s low on both resources and power. Dalvik
therefore has been designed around three basic requirements:

= It must be fast, even on weak CPUs
= It must run on systems with little memory

= It must run in an energy-efficient way

When we said Dalvik is a Java virtual machine, that’s not completely true (but we find
that it’s easier to understand when thinking of it as the part of Android that runs
applications written in Java, which certainly is true). That’s because as we touched on
earlier, Dalvik can’t interpret Java bytecode, which is what you get when compiling a
Java program using javac. Instead, Dalvik uses a memory efficient, custom bytecode
language, into which the .class files produced by the Java compiler get converted.

The Dalvik bytecode format differs from Oracle/Sun Java bytecode in several sig-
nificant ways. First, the code isn’t spread over multiple self-contained .class files, but
is aggregated into a single .dex file (short for Dalvik executable). This helps reduce
duplication of internal data structures and cuts down significantly on file size. (To put
this into perspective, an uncompressed DEX file is about half the size of a compressed
JAR file.) Second, unlike the Oracle/Sun JVM, which is a stack-based virtual machine,
Dalvik is based on registers. This implies that its instruction set is slightly more com-
plex (it needs a bigger vocabulary than a stack-based VM to represent and interpret
programs), but at the same time can perform the same tasks using less code. The
result is fewer instruction dispatches and smaller program size. Fewer instructions
means less CPU cycles and therefore less battery consumption. Smaller program size
means less memory consumed at runtime.

Even though DEX isn’t Java bytecode, one key thing to understand is that javac
and Java bytecode are still part of the equation. This is because Java source code writ-
ten for an Android application is first compiled into Java class files. There are several
excellent reasons for building on top of the Java compiler, instead of replacing it. The
compiler does a lot of optimizations for us, and Java bytecode is a much simpler pro-
gramming language to work with from a tooling perspective. The other nice thing
about this design is that you can use anything that you have class files (or a jar) for. It’s
not necessary to have the source code for a library to use it in an Android application.

23

Java, but not Java Java

After the source code is compiled into class files, they’re then dexed (compiled) by
the Android dx tool. We’ll touch more on tools, and dx, in section 1.6.

In addition to using the streamlined DEX format, Dalvik also performs a host of
other optimizations, such as utilizing shared memory to allow objects being used by
more than one application. This results in less memory consumption and fewer gar-
bage collector cycles (again saving computing time and therefore battery). To achieve
this, Android starts a special Dalvik VM instance on system boot, called Zygote, which

preloads data into the shared memory that will likely be used by all applications (such
as the core libraries). The Zygote VM then forks a new Dalvik instance from itself for
each new application that’s about to start. Each child process (which is also a separate
Linux process, as we’ll discuss in the next section) can then access the shared data. An

overview of the VM and Zygote application-spawning process is depicted in figure 1.8.

Zygote Service
(started at boot)

Shared Memory

Zygote Dalvik VM

Process 1

VM 1

Application 1

Process 2

VM 2

Application 2

Figure 1.8

Process 3

VM3

Application 3

Zygote VM

An overview of the
Android Java Dalvik
VM and application
initialization process
through the initial

24

14

14.1

CHAPTER 1 Introducing Android

Dalvik is therefore intentionally different from a standard Java VM. Dalvik has optimi-
zations that were designed for better performance and resource usage on an embed-
ded device. The Zygote Dalvik VM is also intended to make copies of itself for each
application process. An Android device ultimately runs many virtual machines, many
separate instances of Dalvik.

DALVIK AND JUST IN TIME COMPILATION (JIT) As of Android 2.2, Dalvik also
includes a just-in-time (JIT) compiler. Using a JIT, the Dalvik VM can automati-
cally recognize and optimize portions of code at runtime, and compile them
into native code. This further helps improve the performance of code run-
ning on the Dalvik VM (code that would otherwise always have to be inter-
preted and run as bytecode).

Android provides a Java runtime that’s (almost) as powerful as on the desktop, and
better yet, super-fast. Next, we’ll talk about the next part of the stack: the operating
system the virtual machine runs on. In Android terms, that means a specialized ver-
sion of Linux.

Linux, but not Linux Linux

Underneath the Java source code, the bytecode, the application platform, and the Dal-
vik VM, Android is powered by a Linux-based operating system. Operating systems are
complicated beasts, but you have nothing to fear. Even if you don’t know much about
them, as a programmer you’ll be able to understand the core concepts involved.

Is Android Linux?

There is some disagreement about whether the Android operating system should be
referred to as Linux, the free and open source operating system invented by Linus Tor-
valds in the 1990s. Truth is, it depends both on what you mean by Linux, and how picky
you are. Traditionally, Linux refers to the Linux kernel, the OS core stripped of any addi-
tional applications. Often, when people refer to an OS as Linux, they mean a GNU/
Linux distribution. A GNU/Linux distribution comprises the Linux kernel, the set of
standard operating system applications from the GNU project (which aren’t exclusive to
Linux), plus any additional applications specific to that distribution. Ubuntu, Red Hat,
and OpenSUSE are examples of GNU/Linux distributions: they consist of a Linux kernel
(often modified), the GNU applications, and other vendor-specific applications.

That being said, Android is based on the Linux kernel. It has been forked from
the 2.6.x mainline, yet it’s not a GNU/Linux distribution because it lacks many of the
applications that all GNU/Linux distributions share (especially the X11 windowing
system). In fact, Android doesn’t even contain the GNU standard C language library
(glibc). Rather, it contains a custom, much slimmer implementation optimized for
mobile devices called Bionic. This means that programs written for x86 GNU/Linux
distributions won’t work on Android by default—if at all. Instead, they first have to
be compiled against Android’s C library (Bionic).

14.2

Linux, but not Linux Linux 25

OF ANDROIDS AND PENGUINS When Android development began, the
Android operating system kernel started out as a true branch of the 2.6.x
Linux kernel tree. The Linux community had high hopes for the future of
Linux, with a player like Google actively working and improving on the
source code and contributing changes back upstream. But due to heavy
modifications to the driver architecture (partially caused by Android’s cus-
tom security system), code contributions from the Android kernel branch
were impossible to merge into the Linux kernel mainline. This upset the
Linux community, because it locked out vendors who developed Android
device drivers by keeping them from contributing code back to the Linux
kernel. As a result of this, any code contributions made by Google to the
Linux kernel project have been completely removed from kernel.org as of
February 2010, and both projects are now being developed independently of
each other.

Despite these sometimes pointed discussions, the Android OS always has been—and
for the most part still is—Linux. Don’t let Linux’s prankish mascot Tux the penguin
fool you. Linux is a serious player in the operating systems market and is deployed on
millions of systems worldwide. Its flexible architecture, security, speed, and stability
make it an excellent choice for many purposes.

If you don’t have any experience with a Linux-based OS, again, don’t worry. You’ll
rarely have to access the Android OS directly, because most tasks that involve the OS
are either wrapped in a framework interface (when talking about application develop-
ment), or can be performed by means of specialized tools provided with the platform
SDK (when talking about userlevel interaction such as accessing the command
prompt). Still, we think it’s a good idea to know about certain aspects of a typical
Linux system, because a few key points are vital to understanding how Android appli-
cations work and interact (and why the Open Handset Alliance, the consortium of
companies behind Android, chose Linux to base the platform on). We’ll start with
Linux’s file and device handling, continue with its security model, and finally have a
brief look at its process model and how it affects application development.

Storage devices and the file system

In contrast to Microsoft Windows, storage devices such as hard-drives, memory cards,
and so forth aren’t assigned letters on Linux. Instead, Linux uses a single directory
tree, called root or /, where each directory (including the root directory itself) can be
mapped to a storage device (or more precisely, to a partition on a storage device, but
for simplicity we’ll ignore this subtlety hereafter).

A NOTE ABOUT PATH SEPARATORS Unlike Windows, file and directory paths on
Linux use forward slashes. For example, the file readme.txt in directory help,
which is located under the root directory, would be addressed using the fol-
lowing absolute path:

/help/readme. txt

26

CHAPTER 1 Introducing Android

If you’re already in the root directory, you can address files using a relative
path:

help/readme.txt or ./help/readme.txt

The period (.) in a Linux path always refers to the current directory.

A directory mapped to a storage device, is called a mount point. We furthermore say
that a device is being mounted to some directory. You may have already come across the
term mounting when plugging your Android phone into your computer. When you
do this, you’ll see a notification asking whether you’d like to mount the phone’s SD
card. This means that the SD card storage device will be bound to a directory through
which you’ll be able to access its contents.

The root directory must always be a mount point; it typically points to the boot par-
tition. Other directories may refer to other devices, such as a memory card or a DVD
drive. These devices can be mounted and unmounted at runtime, making this a flexi-
ble approach to managing multiple devices and access paths. Let’s look at the direc-
tory tree of an Android emulator instance, as seen in figure 1.9 (you’ll learn more
about the emulator and the adb tool used to launch the shell in section 1.6).

The # symbol on the second line of figure 1.9 indicates that this is a command line
prompt for the superuser, or root user This is the administrative account on a Linux sys-
tem, and the default on the Android emulator. For normal users, this symbol would
change to $. The 1s / partisa command. 1sisa GNU application which lists the contents
of the directory or path given to it, in this case /, which is the root directory. Everything
following that line, up to the next # symbol, is the output of the 1s command.

P

@ ceollins@erotalusy E[E]E)
File Edit View Terminal Help

ccollins@crotalus:~$ adb -e shell [~]
#1s /
sqlite_stmt_journals
cache

sdcard

etc

system

sys

sbin

proc

init.rc
init.goldfish.rc
init

default.prop

data

root

dev

£

Figure 1.9 Emulator shell instance showing the top-level directory structure by using
the 1s command

143

Linux, but not Linux Linux 27

Usually, you don’t have to deal with most of the files and directories, but for some of
these, it’s helpful to know where they are, and what they’re for. Table 1.2 lists some of
the most important locations on the Android filesystem.

Table 1.2 Important locations on the Android filesystem

Location Description

/sdcard This is the mount point for the Secure Digital (SD) mass storage card that you can
stick in many Android devices. If you want to browse its contents, or copy files from/to
it, this is where you’ll want to look.

/data/app This is where Android saves all installed applications, in their bundled form (as APKfiles).

/data/data | This is where Android saves application specific data. If, for example, your application
uses a preference file or bundles custom libraries, you can find them here.

When talking about files and directories, one question that inevitably arises is what
about security and privacy? How can you prevent another user from accessing your
private data? As it turns out, Linux uses a simple but effective permission system to
handle that.

User accounts and file permissions

One thing Linux is popular for, especially in multiuser environments, is its user
account management and—closely related—its permission and privacy model. Per-
missions in Linux are handled on a perile basis. This may sound restrictive, but it
isn’t, because we didn’t yet mention a rather curious aspect about Linux (in fact, any
UNIX-based OS): everything in Linux is a file. Disks and processes are represented and
controlled through files, applications and their settings are files, even directories are
files. Hence, you can control access to almost anything by looking at one or more files.
This is reflected in Linux’s security model; permissions are stored directly in the file-
system. Every file permission mask controls three security realms: user, group, and
others (corresponding to the file’s owner, the file’s user group, and everyone else,
respectively). For each of these realms, you can set read, write, and execute permis-
sions separately. A file could for instance be writable by its owner, but not by anyone
else. Running the 1s -1 command on a file or directory, as seen in figure 1.10, shows
the permissions, and a few other notable things.

user last updated timestamp

| 1
drwxrwx--- system cache 2010-02-09 23:34 cache

Figure 1.10 Annotated
L. . diagram of the output pro-
permissions group directory name duced by the 1s command

28

144

CHAPTER 1 Introducing Android

There are several important parts to the output seen in figure 1.10. We’ll touch on
each section from left to right. The leftmost letter in the permissions group indicates
the type of file (in this case d for directory). The three groups of read-write-execute
permissions (rwx) correspond to user, group, and others. A dash indicates the
absence of a permission. Next is the user. In this case, the system user owns this
resource. Following that is the group, cache. The lastupdated timestamp is next, fol-
lowed by the name of the resource. Here we have a directory named cache. In all, this
output shows us that the user and group have full access to the directory and everyone
else has no permissions at all—they can’t even list the directory’s contents.

This system enables fine-grained control over resources (files, directories, and other
resources that are treated as files). This has an important implication for Android.
When a user installs an application on their Android phone, a new user account is cre-
ated for the application, and only that account can access the files. The application is
thereby sandboxed. It can’t access sensitive system files, files of other applications, or
the user’s private data—it can only access its own files and data. This isn’t to say that
Android applications can’t interoperate or access each other’s data, or that users and
permissions can’t be explicitly controlled. All of those things are possible, and we’ll
learn about them, but the default settings are one locked-down user per application.

Processes and multitasking

Android’s rigorous security model continues with system processes. Every Android
application starts in its own Linux system process, isolating its state from any other pro-
cess running at the same time—in particular from other applications. That’s because an
application process on Linux (in fact, any modern OS) is only allowed to access the
memory it’s been assigned, not the memory reserved by the OS or another application.

We’d like to mention one more aspect briefly, and that’s multitasking. Even though
all modern operating systems can execute many processes in parallel, you may be used
to running only one application at a time on your phone. That limitation isn’t present
on the Android platform; you can run as many applications in parallel as you like.

Multitasking offers the huge benefit of not having to exit an application when
launching another, improving the overall user experience. This is important on plat-
forms where interaction between applications is part of the system’s overall design,
which is the case for Android. Android balances the potentially significant cost of mul-
tiple applications running simultaneously in a limited environment with some design
choices. Specifically Android gives preference to applications the user is currently
interacting with, or has used most recently, and all applications are run in a stack.
We’ll learn more about the lifecycle of Android applications, and processes and tasks,
in chapter 3, but the platform manages the system resources by balancing the most
relevant applications.

That is all you need to know about Android’s Linux lineage. If you want to learn
more about Linux itself, there are plenty of good books on that topic, but now that
you're equipped with the fundamentals of Linux’s file management, and have been

15

151

152

More capabilities with native libraries 29

introduced to its account, security, and process model, you're good to venture into
the Android native libraries that run on top of it.

More capabilities with native libraries

We’re now going to look at the system libraries bundled with the Android platform.
Welcome to the world of C/C++ and native libraries! These libraries are also exposed
to the Android SDK via JNI, and therefore you don’t have to deal with native code
(unless you want to), but it’s important to understand the relationships.

Well cover these libraries briefly, to describe the Android middle tier. Our inten-
tion is to give you an idea of what’s possible with Android by looking at some of the
technologies that ship with it. We’ll begin with the stuff that gets your attention first:
audio and video from OpenCORE. Then we’ll check out the database storage option,
SQLite. From there we’ll look at the browser rendering engine, WebKit. And finally
we’ll wrap it up with a discussion of hardware sensors and the camera.

Audio and video processing

Android has rich support for multimedia, sporting advanced 2D /3D graphics render-
ing using SGL and OpenGL ES (which we’ll cover in chapter 11), as well as audio and
video playback and recording in various formats. For the latter, Android builds on
PacketVideo’s OpenCORE system, a sophisticated media framework optimized for
mobile devices that supports a host of common file formats and codecs, including
MP3, MIDI, Ogg Vorbis, PCM, and AAC for audio; and H.263, H.264, and MPEG-4 for
video playback. The 3GPP container format is supported too.

With these audio and video libraries, Android applications have access to a some
serious multimedia capabilities. Beyond recoding video and playing 3D games,
another important library Android provides is its SQLite data storage engine.

Storage engine

If you need to persist data from your application to the device, then Android has you
covered. Android ships with SQLite, a fully transactional database engine based on the
SQL-92 standard. SQLite is a relational storage engine. It stores data in tables (called
relations in database theory), much like MySQL, Oracle, or DB2. But its architecture
dramatically differs from conventional database management systems (DBMS) like the
ones mentioned.

First, SQLite doesn’t require a client-server architecture. With a client-server DBMS,
a server process listens for incoming requests from one or more client processes,
transferring data back and forth using interprocess communication (IPC—typically via
sockets). This is required for a client to query a remote database, for example over the
Internet. SQLite can be embedded directly with the application that uses it, communi-
cating with it via simple function calls instead of complex IPC mechanisms.

Second, SQLite is simpler in almost every aspect. It uses a much simpler approach
to data storage, storing a database’s schema, indices, and tables in a single, cross-
platform portable file. This makes database backups ridiculously simple; you copy a

30

1.5.3

154

CHAPTER 1 Introducing Android

single file from A to B. It’s also self-contained and extremely small. SQLite is deployed
as a single library file of about 200-300 kilobytes (depending on the configuration at
compile time), with only minimal dependencies to the C language library. It also
requires literally zero configuration. SQLite doesn’t require configuration files or
installation procedures; you drop it somewhere and use it. This makes it a perfect can-
didate for embedded systems such as mobile phones.

Despite these simplifications, SQLite is powerful. Its storage engine supports ACID
(atomic, consistent, isolated, durable) compliant transactions, and supports B-tree
indexing for fast data access. It also has its limitations though. Writing to a database
table will lock the entire database, resulting in reduced throughput where high con-
currency is desired. That’s typically not the case in a mobile application, making this
less of a drawback than it may sound. Much worse is SQLite’s limited support for
ALTER TABLE statements, making schema migrations painful to handle. This can be a
serious problem when deploying updates to your application. Persisting data using
SQLite will be covered in chapter 6.

Along with having data covered, Android also includes another library that’s of
paramount importance in the modern web-enabled world, a full-blown browser ren-
dering engine based on WebKit.

Web integration

Android comes equipped with WebKit, a complete HTML rendering engine also used
in Apple’s Safari and Google’s Chrome. WebKit supports CSS Level 3 stylesheets (scor-
ing an impressive 100 out of 100 points in the important Acid3 web standards test)
and also sports a performant JavaScript engine (Google’s V8, which outperforms most
other JavaScript VMs in many head-to-head comparisons). The Browser application
that comes preinstalled with every Android handset is as powerful as any desktop
browser out there. This is a key point. The browser engine Android provides isn’t
stripped down. It’s not exactly the same as your desktop browser, but it’s close.

Also, it’s important to understand that use of WebKit isn’t constrained to the
Browser application. In fact, you can embed HTML backed by WebKit directly into
your applications by using a UI widget component called a WebView (which we’ll see in
several examples in the book). This will allow you to seamlessly integrate your applica-
tions with content from the World Wide Web.

The next area of native library integration we need to visit is the impressive array of
hardware drivers and support for sensors and cameras, and more.

Sensors, camera, and more

In addition to multimedia, database support, and web browsing capabilities, Android
also comes with support for a wide array of sensors to scan the phone’s environment,
plus support for built-in digital cameras. The latest version of Android has support for
the following sensor types:

More capabilities with native libraries 31

= GPS location for accurate device position detection (network-based positioning
using cell triangulation is also possible; see chapter 9)

= Device orientation and movement detection through gyroscopes and acceler-
ometers

= Magnetic field detection

= Ambient light and proximity detection

= Temperature sensors

= Pressure sensors

Note that not all sensor types are supported by all devices. Google’s first Android
phone, the G1 (a.k.a. HTC Dream), only has GPS, accelerometer, magnetic field, and
orientation sensors. Newer Android phones such as the Motorola Droid (called Mile-
stone in Europe) also have light and proximity sensors. All Android phones at the time
of this writing are equipped with a camera. We’ll leave it to your imagination how you
can leverage these technologies to build truly innovative applications, but table 1.3 out-
lines a list of applications that already do.

Table 1.3 List of notable applications that make innovative use of sensors on the Android platform

Application name Description

Hoccer Uses location and throw/catch gestures to exchange items like contacts,
images, or files between two phones—data exchange has never been funnier!

Locale Manages your phone settings such as ringer volume based on location and
time—automatically silence your phone when at home!

Coin Flip Uses flick gestures and gyroscopic positioning data to toss a virtual coin—let
the bets come!

Bubble Uses orientation sensors to realize a virtual bubble level—never have skewed
pictures on your wall again!

The Android phone app | Uses the proximity sensor to determine whether you're holding the phone to your
ear—this will automatically turn off the display during calls to preserve battery!

Compass Uses magnetic field data to render a virtual compass—never get lost again!
Barcode Scanner Uses the camera to read 1D and 2D barcodes—never type lengthy product
codes again!

There are more examples, but table 1.3 should give you an idea of what’s possible with
sensors on Android. In total, it’s an impressive combination of hardware and software
that makes for some unique and exciting user experiences.

Now that we’ve covered the basic background of Android itself—from what it is
and why it was created to application fundamentals, key platform components, and
native libraries—it’s time to take a closer look at the day-to-day developer tools from
the SDK and Eclipse ADT plugin.

32

1.6

l1.6.1

CHAPTER 1 Introducing Android

Tools of the trade

We know you’re eager to get into more Android application details, but software
development is like a craft; a good carpenter must know their nails and timbers (the
materials) as much as their drill and hammer (the tools). Now that we have a taste of
basic development, and have learned a bit about the materials involved, we’ll take a
closer look at the tools.

Android provides many different tools for creating, maintaining, debugging, pro-
filing, and more. Among them, the SDK provides libraries for accessing everything on
a device from sending SMS to determining latitude and longitude, and a rich applica-
tion framework that’s designed to make application development straightforward and
keep boilerplate code to a minimum. Along with APIs, the SDK also includes a wide
array of extremely useful command line programs. And, there’s a helpful GUI wrapper
for both in the form of the Eclipse IDE and the ADT Eclipse plugin.

Android-specific APIs

The Android SDK provides about all of the core Java functionality you’re likely to need
through the Apache Harmony—based core JVM libraries we discussed in section 1.3. The
main java and javax packages, and general use third-party libraries for networking
and XML parsing and the like are all available. But what about libraries for accessing
Android-specific constructs? What about interacting with device hardware, working
with audio and video, using local networking, and more? The answers to these ques-
tions take us to the next level of the Android SDK, the android package namespace.

Within the Java realm, beyond the core libraries are the Android specific con-
structs in the android package. Want to play an MP3? Look at the android.media
package. Need to get the user’s geolocation? Check out the android.location pack-
age. Maybe you need to connect to another Android device using Bluetooth? Take a
look at the android.bluetooth package. Most phones have a camera, and you can
access that using the Camera class in the android.hardware package (where you can
also find other hardware-related APIs). Speaking of phone features, what about mak-
ing phone calls or sending text messages? The android.telephony package exposes
those traditional mobile phone features.

Along with media and hardware support, another compelling feature of Android is
its stunning graphics. This is obviously important for game developers, but what appli-
cation doesn’t benefit from some gratuitous eye candy? The android.graphics package
contains a lot of easy-to-use APIs for working with graphical primitives such as images,
colors, and polygons. For more intense 3D graphics, the android.opengl package is
where you’ll find Android’s implementation of the OpenGL ES library for 3D graphics.

WHAT ABOUT GOING NATIVE? Like the vast majority of Android application
code, the SDK’s core libraries and application framework are written in pure
Java. But the SDK also has a C/C++ counterpart, the NDK. The NDK is an add-
on to the SDK and works in conjunction to it. With the NDK, you can write
code directly in C or C++ and bypass Java and the Dalvik virtual machine

16.2

Tools of the trade 33

altogether. As you might guess, this is usually done for performance reasons.
The NDK includes all of the headers you’ll need to link to your native code, as
well as tools for building your native libraries and embedding those libraries
in an Android application.

The Java side of the Android SDK comes into full view when you combine the android
APIs with the core Java libraries with key third-party components also present. The
sum of these parts is a powerful foundation to build applications on top of. Beyond
APIs, the Android SDK also provides some important command-line tools.

SDK tools and components

Speaking of tools, the SDK comes packed with them. Among them, it includes tools
for compiling your application source code into the dex class files understood by the
Dalvik VM, packaging your code into an APK file for use on an Android device, run-
ning an Android emulator, logging, live debugging, performance profiling, and more.

In fact, we used some of these tools when we worked with the Eclipse ADT plugin
in section 1.2 and created the Hello Android application. Here we’ll go into a bit
more detail. The plugin wraps many of the tools and incorporates them automatically.
This is a nice feature: you can manually use the tools we’re about to introduce, and
they’re often extremely useful, but you don’t have to. We encourage you to get to
know the tools and understand what they do, because doing so will give you a better
understanding of Android overall. That knowledge will make it easier for you to iden-
tify and troubleshoot any issues, if you prefer you can stick to the Eclipse plugin.

Before we delve in, we have to explain that Android tools come in two different
varieties: core tools and platform-specific tools. One complexity of developing for
Android is that you must deal with multiple supported versions of Android APIs or
platforms. The SDK accounts for this, and you can install multiple platform compo-
nents within the SDK. This is definitely better than having to install multiple SDKs!

Once you install the SDK and a platform or two, you’ll find the tools in a couple of
locations. The core SDK tools can be found in the <sdk>/tools directory (which can
be added to your PATH to make the tools convenient to use from anywhere). Platform-
specific tools can be found in the <sdk>/platform-tools directory. Table 1.4 lists
some of the key tools and describes what they do.

Table 1.4 Some of the key Android command-line tools

Tool Location Description

aapt <sdk>/platform-tools | Android Asset Packaging Tool—Used to com-
pile resources into binary assets, and to pack-
age archives (APK files).

aidl <sdk>/platform-tools | Android Interface Definition Language—Com-
piles .aidlfiles that are used to define interfaces
for Android Inter-Process Communication (IPC).

CHAPTER 1 Introducing Android

Table 1.4 Some of the key Android command-line tools (continued)

Tool

dx

adb

android

ddms

draw9patch
emulator
hierarchyviewer

layoutopt

mksdcard

sglite3

traceview

Location

<sdk>/platform-tools

<sdk>/platform-tools

<sdk>/tools

<sdk>/tools

<sdk>/tools
<sdk>/tools
<sdk>/tools

<sdk>/tools

<sdk>/tools

<sdk>/tools

<sdk>/tools

Description

Used to read .class bytecode and transform it
into Android bytecode (which is stored in .dex
files).

Android Debug Bridge—A client/server applica-
tion used to interact with and manage devices
and emulators. Provides many subcommands.

Used to create and delete Android Virtual
Devices (emulator instances). Also used to
create and update projects from the com-
mand line. Also used to manage SDK plat-
form components.

Dalvik Debug Monitor Service—Used for
debugging and inspecting running Android
applications. Provides an interface to logging,
memory statistics, thread statistics, state
information, and more. Also used to send
mock call, SMS, and location data to a device
or emulator instance.

Used to draw Nine Patch images.
QEMU-based mobile device emulator.
Used to view and optimize Ul layout hierarchies.

Used to quickly analyze and recommend layout
optimizations.

Used to create images to be used as external
storage (SD card) by emulator instances.

Used to explore and interact with SQLite data-
bases.

Used to analyze trace files, which are profiling
snapshots of Android applications.

In addition to the overview we’ve provided here in table 1.4, which isn’t comprehen-
sive, you can quickly see a description of each available tool and its usage instructions
by invoking it from the command line with no arguments (or in some cases using - -

help as the sole argument). You can also find detailed documentation for each of

these tools in the online SDK documentation. We’ll go over some of the more essential
tools here to give you an idea of what tools fits what job (and we’ll revisit other rele-
vant tools in other areas of the book). We’ll start with compiling code using the dx

compiler tool.

Android uses the Java programming language (most of the time), as we’ve dis-

cussed, but the binary files that are deployed to a device aren’t Java class files that run

Tools of the trade 35

=

Java compiler
(javac)

- =

Dex compiler Packaging
(dx) (aapt)

Jjava files class files .dex file .apk file
source code

Figure 1.11 The Android compiling and packaging process from source files, through compilation steps,
and finally into an APK file

on the Java VM. Instead, as we noted in section 1.3, they’re .dex files that run on the
Dalvik VM. Java developers are used to using the Java compiler, javac, to compile Java
source code files into Java class files. Even though the Dalvik VM doesn’t use Java class
files, we still need the Java compiler, as you can see from figure 1.11.

The dx tool is a platform-specific tool, as you’d expect. It takes all of the class files
in your application and produces a single .dex file. This file is the input to the last
step in the larger process of packaging an application. Packaging is handled by the
aapt tool we noted in section 1.2.6 when exploring the R file.

The aapt tool handles all of the building and compiling of an application, but
what about running and debugging? First, before you can run an application, as we
noted in section 1.2, you need to create an Android virtual device (AVD) to run it on.
This is an emulator image that runs a specific version of the Android OS and has spe-
cific hardware (mainly its visual display). To create an image, you can use another
tool, the Android SDK and AVD Manager.

The android tool is used to manage AVDs and to update/install platforms and
update the SDK itself (remember, the SDK is modular). You can create a new AVD with
the following command:

android create avd -t <PLATFORM> -n <NAME>

For example, android create avd -t android-7 -n avd21l would create an AVD called
avd2l that targets the android-7 platform. The string android-7 identifies an
Android platform (also called API level). To get a list of available platforms, you can
use the command android list target. Typing android -help will display all of the
many options with the android tool. If you don’t want to remember all of this, you can

36

CHAPTER 1 Introducing Android

(NN Android SDK and AVD Manager
Virtual Devices || existing Android Virtual Devices:

Installed Packages

X AVD Name Target Name Platform APl Level New...
iailshle Packages v android1l Android 1.1 11 2
Settings + android15 Android 1.5 15 3 Delete...
o vandroid16 Android 1.6 16 4 —
~ android 16-defa Android 1.6 1.6 4 —
~ android16-hvga Android 1.6 1.6 4 Detal
~ android16-qvga Android 1.6 1.6 4
~ android201-def Android 2.0.1 2.0.1 6 Start.
~ NexusOne Android 2.1 2.1 7
~ android21-defa Android 2.1 21 7
v Goog2l Coogle APIs (Google Inc.) 2.1 7
Refresh

~ A valid Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 1.12 The android tool interface, which shows the SDK and AVD manager

invoke the android tool with no arguments and it’ll launch a graphical interface that
lets you execute any of the commands. Figure 1.12 shows the android GUIL

As you can see from figure 1.12, the android tool GUI is also used to start an AVD—
to launch an Android emulator. From the GUI, you can do this by selecting an AVD
and clicking on the Start button in the right column. You can also start an emulator
from the command line using another tool, the emulator tool:

emulator -avd <AVD NAME>

For example, emulator -avd avd2l would launch the AVD called avd21. There are
many more options to the android tool, and to the emulators you can create with it.
For complete details see the help output or the documentation. Figure 1.13 shows the
emulator running an Android 2.1 image.

Now that you’ve seen the tools for creating and running an AVD, to query for avail-
able devices and get your application installed on an emulator you’ll use a tool that
you’ll get to know well, the Android debug bridge, adb. The adb tool is your main
access point into a running AVD. It has numerous capabilities, and you're encouraged
to explore them. As with other tools, you can get a list of the options by typing adb -
help. To check for devices that are connected or running (which you’ve created and
started) you can use the adb devices command. To install an application (after you’ve
confirmed an emulator device is running), you can use this command:

adb install <app>

For example, adb install MyApp.apk will install MyApp.apk to a running emulator
(this will only work if one emulator is running; if more than one are running, specify

Tools of the trade 37

#0 P EERELT

Figure 1.13 The Android
emulator running an AVD
image configured to work
with version 2.1 of the
Android platform

which emulator to run on). You can use the same adb command to install the applica-
tion on a physical device as well. A handy way to direct adb commands back and forth
between a single emulator and a single physical device is to use the -e and -d switches,
respectively (adb -e install or adb -d install).

You can also use the adb tool to connect to the device using the adb shell com-
mand and explore the virtual system. Remember, as we saw in section 1.4, the Android
kernel is based on Linux and the shell will give you a command prompt. The shell
itself has many other useful subcommands; again we encourage you to explore it.
We’ll see the shell again in several other areas of the book where it’s relevant. Once
you have an emulator running and your application is installed on it, another use for
the adb tool is to trace log files or dump debug information.

For a more detailed inspection of a device, you’ll need another indispensable SDK
tool, the Dalvik Debug Monitor or ddms. This graphical application shows various
types of diagnostic information from an emulator or device. Figure 1.14 shows the
ddms tool in action.

Figure 1.14 gives you an idea of the capabilities of the ddms tool. It can attach to
the Dalvik VM of your application and show you detailed logging information, as well
as data about memory allocations and garbage collection. This is valuable because
mobile applications are often memory challenged, so understanding memory usage is
key. The ddms tool can also be used to tweak the behavior of an emulator. For exam-
ple, with it you can change the speed of the emulator’s network connection. Your
development computer is probably enjoying a LAN or broadband connection, and
that’s much faster than the typical data connection on a mobile phone. You can also
simulate incoming phone calls, text messages, and even give the device mock GPS
coordinates. Depending on what your application does, these can make testing with
an emulator more realistic and therefore, more valuable.

38

1.7

CHAPTER 1 Introducing Android

AO6 Dalvik Debug |
(M N -] Info .ﬁuads"w Allocation Tracker T ﬁ;sin&; " Emulator Control iwn;Log |
Name
- - Heap updates will happen after every GC for this client

ot g SHtAr: 364 Onlin % drolc D Heap Size Allocated Free %Used # Objects
system_process 52 8600 “Cause GC)
com.android.inputmethod lati 92 5 8601 14.820 MB-2.520 ME 1.900 MR _S0.57%° 54,563 Roegepy
com.android.phone 95 B 8602 -
android.process.acore 101 % 8603 Display: | Stats %
com.andraid.settings 116 % 8604 Troe Count Totl Size Smallest largest Median Average
com.android.alarmelock 134 % 8605 free 3,014 1.876 MB 16 B 508.038 K 64B 6528
com.ebay.moblle:remote 144 % 8606 data object 35,23 1.203 MB 168 7048 328 158
android. process.media 150 % 8607 class object 3,147541.578K 1768 1848 1768 1768
com.andraid.email 168 % 8608 1-byte array (bytell, boolean 922 202.016K 248 2.148KE 488 2248
com.android.mms 180 % 8609 2-byte array (short[], char{]) 11,84 728,578 K 24 B 28.023 KB 488 628
com.android. browser 196 5510 4-byte array (object(], intf], f 3,400 281.250 K 24 B 16.023 KB 408 848
com.ebat.moblle 218 0 B BE1LY 8 B-byte array (longl], double] 15 3.906KE 408 1L.ODOKE 1288 2668

non-Java object 189 25.320 KB 168 B.023 KB 328 1378

AllGcation count par siee

Sian

¥ - ©0000 & H

Time pid 1ag Message

03-28 17:34: 26 wvold Andraid Volume Daemon version 2.0 m
03-28 17:34: 27 DEBUGC debuggerd: Dec 18 2009 16:42:51

03-2817:34: 26 wold Error opening switch name path °fsys/class /switch/test2' (No such file or directory)

03-28 17:34: 26 wold Error bootstrapping switch °/sys/class/switch/test2' (No such file or directory)

03-28 17:34: 26 wold Error opening switch name path °/sys/class fswitch/test’ (No such file or directory) a
03-28 17:34: 26 wvold Error bootstrapping switch '/sys/class/switch/test’ (No such file or directory) v
Filter:

Figure 1.14 Using the Dalvik Debug Monitor (DDMS), which has many capabilities, to inspect the heap
of a running application

We’ll see more of these tools as we progress through the book. We’ll also touch on
others we haven’t singled out here. For instance, we’ll talk specifically about
draw9patch, layoutopt, and hierarchyviewer in chapter 4, and we’ll use the adb tool
in several later examples. The key is to understand where these tools are and what
they offer. Though the command-line tools aren’t mandatory, they can help with diag-
nosis and troubleshooting, and they do offer some advanced options that the IDE plu-
gins may not expose.

Summary

Welcome to Android. We hope that our rapid-fire introduction here has whet your
appetite and that you’re more eager than ever to learn and create. After all, develop-
ers building quality applications is what the Android ecosystem is trying to empower,
and what drives the entire platform forward.

At this point in our journey, you should have a solid understanding of what
Android is and some of the motivation behind its creation. Android has a recurring
theme, as we’ve seen—it’s open. The platform is open and can be used by anyone. Its
code is open and can be tailored to meet different needs. Even its tools are open and
give developers the freedom of choice when it comes to how they’ll develop their

Summary 39

applications. The importance of this aspect can’t be understated; it’s what sets
Android apart.

Along with understanding the bigger Android picture, you should also now have
an idea of what the Android architecture is. You’ve seen that Android is based on Java
and Linux, but it’s not the typical out-of-the-box variety of either. You’ve also seen that
Android provides a capability-packed set of middleware that sits between the special-
ized Dalvik VM (and core Java libraries and application framework) and the operating
system layer. All of this architecture is in place to optimize the operating environment
of a mobile device for running applications.

For applications themselves, you’ve also now seen what it takes to create a basic
application, from source code, layouts, resources, manifests, and more. Along with
those application constituents, you've seen the Android SDK tools and components,
as well as the Eclipse IDE and ADT plugin. Again, all of this is the foundation of
Android application development. Now it’s time to reinforce and build upon that
foundation and go further into the details surrounding the fundamentals of Android
application development.

Androwd
application fundamenials

In this chapter

= Core building blocks

= The application manifest

= Working with resources, layouts, views,
and widgets

= Adapters, intents, and intent filters

I'd take the awe of understanding over the awe of ignorance any day.
—Douglas Adams

To build solid Android applications you need to start with the basics. It’s the same
with learning any technology, skill, or sport. This is the point where a basketball
coach would give the speech about learning to dribble and pass, before trying to
perfect the alley-oop. Advanced techniques will come, but they’re built on a basis of
mastering the fundamentals.

To that end, in this chapter we’ll focus on the core building blocks of Android
application development. This means we’ll revisitand expand upon the fundamental
conceptswe introduced in chapter 1, and we’ll fill in more detail too. Specifically, we’ll

40

2.1

The DealDroid application 41

take a closer look at the entire scope of an Android application. We’ll start with the man-
ifest and resources, and then we’ll explore layout and views, then activities and intents,
and the use of Adapters to bind data to widgets. Finally, we’ll also touch on passing inter-
nal data between activities using the Application object. All of these concepts relate to
common ways to accomplish basic tasks with the Android platform, and they’re all part
of the foundation we need to build before diving deeper in later parts of the book.
With the wide array of topics to address in mind, we’re going to build another sample
application that pulls in all of these parts. Though the application we’ll be building isn’t
trivial, it’s not overly complicated either. This is because we want to cover a wide variety
of the essential programming techniques found in many Android applications, and we
want to keep things relatively straightforward at the same time. This application isn’t
going to be intricate or pretty, butit’ll get the job done. If you want your application to
look good, you’ll have to wait until chapter 4, and if you want to add more features, we’ll
come to those in later chapters too. Until then
you’ll have to live with a homely application that DM@ 7:56om
only a developer could love. Without further
ado, let’s meet the DealDroid.

The DealDroid application

DealDroid is a nice application that displays the
“Daily Deals” from eBay. More importantly, it also
illustrates alot of the basic components and com-
mon techniques used in many Android applica-
tions. So what’s DealDroid? Well, let’s start with
eBay’s Daily Deals.

Daily Deals is a popular application on the
eBay web site that shows limited-time sales for
savvy e-commerce shoppers. You can view it at
http://deals.ebay.com, butwho wants to view this
in a boring web page when you could instead Daily Deals
checkitoutinaconvenient Android application?
Do you see where this is going? Figure 2.1 shows

) - o Figure 2.1 The main screen of the
the opening screen of the DealDroid application, DealDroid application shows the featured

which displays the eBay Daily Deals. deals of the day in an Android ListView.

GRAB THE PROJECT: DEALDROID You can get the source code for
this project and the packaged APK to run it at the Android in
Practice code web site. Because some code listings here are
shortened to focus on specific concepts, we recommend that
you download the complete source code and follow along
within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/r560, APK file: http://mng.bz/ARip

http://deals.ebay.com
http://mng.bz/r560
http://mng.bz/ARip

42

CHAPTER 2 Android application fundamentals

The opening screen of DealDroid, aptly named
DealList,displaysalistof the featured Daily Deals
for the current day. This is dynamic data from
eBay that changes, well, daily. It can change more
frequently than daily, as deals often sell-out and
are replaced by new deals. Not only will this appli-
cation show the current Daily Deals, it can also
show other deals in various categories of more
specific interest, like gadgets and fashion. When
you find a deal that you like, you can view more
detail by clicking on it and drilling down into the
DealDetails screen, as seen in Figure 2.2.

That about does it for the core UI of the Deal-
Droid. As we said, it’s simple and somewhat ugly.
Beyond the UI though, what if you want to do
more than look at a deal? DealDroid lets you
email the deal to a friend, by leveraging the bun-
dled Android mail application. Also, if you want
to share the deal by another means, such as via
FaceBook or Twitter (or any other application
wired in by the framework to allow sharing), Deal-
Droid lets you to do that too. If instead you love
the deal so much that you want to buy it, then
DealDroid uses Android’s excellent browser and
sends you to eBay’s mobile website. Figure 2.3
shows the sharing menu, and what each menu
option launches.

Additional DealDroid features

DealDroid is capable of running a back-
ground Service to keep an eye out for new
deals as they show up (maybe a deal ran out
and a new one replaced it, or you had the
application running when the day’s new
deals were revealed) and issuing a Notifi-
cation. We aren’t including those features
in the discussion in this chapter, because
Services have their own focus in chapter 5,
and we want to stay on track here. For this
reason, the source code download for the
book includes two versions of DealDroid: ba-
sic as we’ll build here, and DealDroidWith-
Service, which includes several broadcast
receivers and a background Service.

Lacrosse Technology 3 Day
Audio Weather Forecaster

Figure 2.2 The DealDetails screen of the
DealDroid application shows specific deal
information. Selecting adealonthe Deal -
List screen will take you to this screen.

Ga W

Figure 2.3 DealDroid likes to share with
other apps. Tapping the phone menu but-
ton displays the sharing options from the
detail screen.

2.2

Core building blocks 43

Now that we’ve seen what this application can do, let’s tear it apart and see how it
works. This is your red pill/blue pill moment: if you don’t want to see the android
behind the curtain revealed, then stop reading now! Otherwise, keep going and get
ready for the gruesome details of Android applications.

Core building blocks

One of the most valuable aspects of a platform like Android is its application frame-
work. Not only does it provide access to the GPS sensor on a device, or let you make
HTTP requests, it gives you a structure to fit your application into. It makes a deal with
you. If you put certain kinds of files in certain kinds of places, it’ll use those files in a
well-understood, predefined manner. You’re given a blueprint to follow. A lot of boil-
erplate tasks are stripped away, and you can focus on your application. This can be lib-
erating for developers. You have less to worry about because of what the platform takes
care of for you. This is a key, but often-ignored reason for the success of native mobile
application platforms such as Android, over mobile web applications. A mobile web
application developer may have more freedom in many ways, but they may also have
more tedious things to deal with and worry about. In several ways it’s easier to develop
on a native platform such as Android.
Figure 2.4 shows the main compo-
nents that Android provides for build-
ing applications. IntentFilters

We’ve already seen a quick tour of
a basic Android application in chap-
ter 1, but now it’s time to define the
components, and then in the upcom-

ing sections we’ll look at each in more
detail. First, Android applications are
mainly built with several core entities:

= Activity—The foreground;
they dictate the UI, and handle
events and interaction

BroadcastReceivers

Activities

= Service—The background; Views/

Widgets

they can perform long-running

tasks or poll

= BroadcastReceiver—Handlers Services
that can wake up and respond to

broadcast events (intents)

= ContentProvider—Allows you
to expose a data API to other
applications

These entities are what you’ll use to

build user interface screens, create Figure 2.4 The essential application components
background processes, and react to provided by the Android platform

44

2.3

CHAPTER 2 Android application fundamentals

certain types of events. Additional components are used in the construction of these
entities, their logic, and wiring between them:

= Views—UI elements that are drawn onscreen

= Layouts—View hierarchies that control screen format/appearance

= Intents—Messages wiring components together

= Resources—External elements, such as strings and drawables (pictures)
= Manifest—Configuration for applications

We’ll learn about all of these concepts in the upcoming sections as we review the sam-
ple DealDroid application step by step. We’ll begin with the bottom layer, the manifest
file that defines the relationships, capabilities, permissions, and configuration of every
Android application.

Application manifest

As we saw in chapter 1, the application manifest is the starting point for any Android
application. This isn’t some platitude—it’s literally true. When a user launches an
Android application, the first thing that the Android OS does is read the application’s
manifest. It does this before any code can execute, because the manifest tells it what
code needs to be executed. This follows the traditional executable application model
of Java, where an application is packaged as a jar file, with a manifest file that tells the
Java virtual machine what class (in the jar file) is the entry point to the application. In
the Android world, activities are the units of work; an application’s manifest file must
indicate which Activity is the entry point of the application. Let’s look at a more
concrete example of this: the DealDroid manifest file in the following listing.

Listing 2.1 The AndroidMainfest.xml manifest file of the DealDroid application

<?xml version="1.0" encoding="utf-8"?>

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.manning.aip.dealdroid"
android:versionCode="1"
android:versionName="1.0">

<application
android:icon="@drawable/ddicon" Application
android:label="@string/app_name" V with icon,
android:name=".DealDroidApp"> label, name
<activity DealList
android:name=".DealList" r Activity with
android:label="@string/app_name"> intent filter

<intent-filters
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activitys>

<activity

23.1

Application manifest 45

android:name=".DealDetails" L/ DealDetails
android:label="@string/deal_details" /> Activity
</application>

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-sdk android:minSdkVersion="4" />

) Permissions defined
</manifest>

If you’ve programmed in Java for long, then a manifest file is probably a familiar con-
cept to you. This file, always named AndroidManifest.xml for Android applications,
provides internal configuration and metadata about your application to the Android
runtime. In the manifest element, the package name and version identifiers for your
application are listed. The application element then tells the runtime what the name,
icon, and label are for your application 0. Finally, the child elements of application
define all of the things your application can do.

This includes the entry point Activity class with the name .DealList, and an
IntentFilter that declares action MAIN and category LAUNCHER @. The activity class
name is relative to the application’s package. The IntentFilter tells the runtime that
it should register this application and make it selectable from the phone’s home
screen (also known as the Launcher application). More generally, an IntentFilter is
an expression of capability. Other components then use an Intent to declare an
action to be completed. These concepts are important in Android because they allow
different components to be combined and used in conjunction with each other at
runtime (late binding). We’ll learn more about this in section 2.9.

Along with the entry point, all other activities must be declared in the manifest .
The same is also true of other components such as BroadcastReciever, Service, and
ContentProvider (though we don’t have any here). A BroadcastReceiver is a special
filter that listens for intents that are broadcast through the system, and a Service is a
background process. We’ll focus on these concepts in chapter 5. A ContentProvider
allows you to expose a data API to other applications; we’ll learn about this in chapter 8.
Back to the manifest: after the main components are declared, we then also have per-
missions @), which rounds out our DealDroid configuration.

Permissions

DealDroid declares that it should be allowed to use the Internet (it parses an RSS feed
from eBay to get deal information), and that it should be allowed to check the status
of the network state. Android’s permissions system labels each protected action
declared this way, and then displays them to the user when they elect to install an
application. This detail is important. There are no checks at runtime. The user sees
what an application wants to do when they install it, and if they allow it, the permis-
sions are permanently granted. If an application tries to perform an action for which it
doesn’t have permission, a SecurityException is thrown.

Along with Internet and system events, you can also declare things such as whether
your application will read or write to the filesystem, whether it’ll read or write user

46

2.4

24.1

CHAPTER 2 Android application fundamentals

contact data, whether it can wake up the phone when it’s sleeping, and much more.
The constants class Manifest.permission in the SDK is where you can easily see all
the built in permissions available.

A less common use case is the need to declare and enforce your own permissions,
going beyond the system declarations. If you need to, you can declare custom permis-
sions in the manifest, and enforce them within components (activities, services, broad-
cast receivers and so on).

Moving past the manifest, the next step concept we need to address for DealDroid
are the noncode elements it includes, namely resources.

Resources

Resource is a broad term. It can mean images used in your application, international-
ized text, or any type of static value that you want to externalize from your application
code, as we discussed in chapter 1. Resources are defined by placing files in the /res
directory of your project. Resources can then be accessed either in code or through
references in XML.

Defining resources

Everything declared in the /res directory will not only be packaged up as part of your
application, but will also be programmatically accessible in your application code.
Resources have a few key properties it’s important to remember:

= Every resource has an ID
= Every resource has a specific type
= Resources have a specific location and file they are defined in

You’ll typically define resources of a few different types, such as strings or layouts,
using XML. This is by far the most common usage of resources. Resources don’t end
there though. You can define shapes, colors, drawables, styles, themes, menus, static
data arrays, and a lot more as XML resources. Resources that you don’t define in XML
can either be placed in specified locations, such as res/drawable for images, or
placed in the /res/raw directory and accessed as direct streams (such as for audio and
video files). Once you define a resource by placing an item in the /res folder, the plat-
form automatically parses it (unless it’s raw) and uses the aapt tool to link the ID
through the R class we saw in chapter 1. The R class maps each resource ID to its loca-
tion or compiled content.

WHY RESOURCES? Android goes to a lot of trouble to define resource types
and make support of resources available through the API. You might wonder
why this is necessary. There are several reasons. First, they separate code from
external entities such as images and strings. Such separation is a good thing
because it keeps the code focused and uncluttered. Second, resources are
efficient and fast. XML resources are compiled into a binary format. This
makes them friendly at development time, without being slow at runtime.

Resources 47

Third, resources enable the support of dynamic loading at runtime based on
various environment properties such as language, screen configuration, and
hardware capability. This enables internationalization and localization, which
we’ll learn more about later, and other environment specific changes.

The resources that we’ll deal with for DealDroid are simple: they’re strings, plurals,
and layouts. Plurals are a special type of resource that allow the system to automatically
deal with plurality for strings; we’ll come to those in a moment. First, let’s look at the
strings DealDroid uses in the following listing.

Listing 2.2 The res/values/strings.xml resources file showing values for named strings

<?xml version="1.0" encoding="utf-8"?> <1—o Top-level resources element
<resourcess
<string name="app_name">DealDroid</strings> 4——6) Define each string as element

string name="deal_ list _missing data"s>
No data to display, please try again later.</strings>
<string name="deal_ list_retrieving data">Getting deal data ...</string»>
<string name="deal_list_network unavailable">
No network connection, cannot retrieve data.</string>
<string name="deal_ list_reparse_menu">Re-parse Feed</strings>

<string name="deal_details">Deal Details</string>

<string name="deal_details_price_prefix"s$</strings>

<string name="deal details_mail menu"sMail</string>

<string name="deal_details_browser_menu">Browser</string>

<string name="deal_details_share_menu">Share</string>

<string name="deal_details_msrp_label">MSRP:</string>

<string name="deal_details_quantity_label"sQuantity:</string>

<string name="deal_details_quantity_sold_label">Quantity Sold:</string>

<string name="deal details_location_label"sLocation:</string>
</resources>

As promised, the strings we use in the DealDroid application are externalized and
defined in an XML file. This XML file is strings.xml and it’s placed in /res/values.
The file starts off with the typical XML stanza and then has a root element named
resources @. Each string is then defined in its own element with an attribute for the
name @. The name will be the ID for the resource, as well as the constant identifier in
the generated R class.

All of the strings we defined in strings.xml will be present as constants in the R
class with hexadecimal values. The values are pointers to where the initial values have
been compiled and stored in the internal resource table. You shouldn’t ever need to
dig into the resource table unless you’re doing serious Android hacking, but it helps
to understand that this is how compiled resources work.

NONRESOURCE RESOURCES—ASSETS If you need to access normal files that
aren’t preprocessed as resources and assigned an ID, you can use the /assets
directory. Any file placed in /assets is available to your application. An
example of an asset might be HTML source file for use with a WebView.

48

24.2

CHAPTER 2 Android application fundamentals

The other notable resources DealDroid uses are the XML screen layouts and the mys-
terious plurals file we mentioned previously. Plurals are an obscure but useful
Android resource type that allow you to easily, and in an internationalized manner,
deal with plural values. This next listing shows how plurals are defined in XML.

Listing 2.3 The res/values/plurals.xml resource file using the XLIFF format

<resources xmlns:xliff="urn:oasis:names:tc:x1iff:document:1.2"> Special
<plurals name="deal_service_new_deal"> OASIS
<item quantity="one">1 new deal!</items> Quantity XLIFF
<item quantity="other"s definitions XML
<x1iff:g id="count">%d</x1iff:g> Use String format
new deals! formatting
</item>
</plurals>
</resources>

Plurals are different from most other XML resources in that they use a special format,
OASIS XLIFF @. You don’t have to know a lot about this to use it. You define at least
two text labels—one for items with a quantity of one, and another for items that are
plural in quantity (a quantity of other) @—and the framework will return a proper
value. Android string resources support String. format style arguments too, as we’ve
done with %d € (this marker will be replaced with the digit we supply when we get the
resource later).

Why are plurals important? Why not say “10 new deal(s)” and be done with it?
Well, you could do that, but it’s arguably ugly, and it’s not internationalized. Things
can get tricky in a hurry with multiple languages and plural values. For example,
there is no plural in Japanese and several plurals in Slovakian (for 1, 2, 3, 4, 5, or
more). The plurals format alleviates that. The next thing we need to discuss is how to
access resources.

Accessing resources

Once you’ve defined resources you’ll then refer to them either in code or in XML by
using their IDs. We’ll learn more about this as we step through our DealDroid Activity
classes later in this chapter, and when we start using styles and themes in chapter 4, but
for now let’s touch on the basics.

To access a resource in code, you use the R-defined constant’s ID, such as
R.string.deal_details. From this ID notation, you can tell that it’s a local resource
and not a system resource, and that it’s a string. System resources are distinguished
from local resources by the android namespace prefix, such as android.R.
string.yes. You can use the ID with various methods, most notably with the
Resources class as follows:

= For standard strings use Resources.getString (R.string.deal details)
= For plurals use Resources.getQuantityString(R.plurals.deal_service_
new deal, 1);

2.5

25.1

Layout, views, and widgets 49

Making references to resources in XML is even easier. To do this you reference the
resource ID you’re interested in with the @ prefix. For example, you’d refer to the
deal details string as @string/deal details. To include the android namespace
you use a colon, such as @android:string/yes.

TYPES OF RESOURCES There are many different types of data you can external-
ize as resources on Android. We’ve seen strings, plurals, and a few layouts at
this point (more of those coming up), but you should know that menus, styles,
animations, shapes, arrays of data, and more can also be defined as resources.
We’ll see more resources and different resource types as we progress through
the book. For a complete and up-to-date guide of all the supported types, see
the Android resources documentation at http://mng.bz/al.Ry.

You need to be aware of a few more subtleties with XML resource access, such as how
to define new IDs in XML and how to work with layouts. This takes us into designing
the screen for an Activity, and working with view hierarchies, views, and widgets.

Layout, views, and widgets

A special resource known as a layout is what you’ll use to design screens, items for lists,
and other UI elements in Android. We introduced layouts in chapter 1, but here we’ll
clarify how you declare them as XML, and we’ll touch on the components that com-
prise them: views and widgets.

We won’t be done with layout, views, and widgets with one short discussion here,
but we’ll add detail as we keep the focus on the basics of Android development. Then,
in chapter 4 we’ll come back to these topics and take the deep dive.

Declaring layouts

When it comes to creating the basic UI elements in an application, Android separates
the presentation into layout resources that resemble an HTML-like approach. This is
in contrast to typical Java UI frameworks such as Swing. The basic idea is to statically
declare the Ul for a given view as an XML resource and then use IDs to refer to Ul ele-
ments in code. Let’s look at an example. The following listing shows the layout XML
for the first screen in the DealDroid application.

Listing 2.4 The res/layout/deallist.xml layout resource file, showing views and widgets

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical” android:layout width="fill_ parent"
android:layout_height="fill parent"s
<ListView android:id="€android:id/list"
android:layout width="fill parent”
android:layout_height="fill parent" android:layout weight="1" />
<Spinner android:id="@+id/section_spinner"
android:layout width="fill parent” Spinner
android:layout height="wrap_content” widget
android:layout margin="5dp" />
</LinearLayout>

Top-level LinearLayout

ListView with
reserved ID of “list”

http://mng.bz/aLRy

50

CHAPTER 2 Android application fundamentals

A layout file is an XML file. It’s a different set of elements, but the concept is similar to
the kind of HTML that would be used to create a web page. Whereas HTML elements
tend to be low-level, Android’s layout elements are more sophisticated. The root ele-
ment of this layout file is a container of View classes known as a LinearLayout @.
LinearLayout puts all of its child views into either a single row or column. Other lay-
out types are provided, such as FrameLayout, RelativeLayout, and TableLayout, and
you can create your own, but for now we’re going to stick to LinearLayout and we’ll
meet the other types in chapter 4.

In our example, the orientation of our LinearLayout (defined as an attribute of
the element) is vertical. This means all of the child views will be laid out in a single col-
umn, top-to-bottom in the same order as they are specified in the layout file. Inside
the layout, we include two child elements: a ListView with a special reserved ID of
list @, and a Spinner €. We can also see that we’re defining attributes for these ele-
ments, such as layout_width, layout height, and layout weight. These control the
size and positioning of the view elements, and again we’ll get to the specifics sur-
rounding these and other layout attributes
in chapter 4.

As seen in the screenshot in figure 2.5, -
which our deallist layout produces, a List-

View is a widget that shows a list of items, D
and a Spinner is a widget that displays a

selection of choices with one element at a .
time showing (we’ll learn more about each

of these when we see the code that corre-
sponds to this layout in the next few sec-
tions). Going back to listing 2.4, note how
both widgets have resource IDs, like you’d
assign to an HTML element.

One thing you may have noticed is that
the Spinner resource ID is declared with a +
sign in front of it: @+id/section_spinner.
This special notation means go ahead and Daily Deals

create the resource ID in the resource table
(and R java file) if it doesn’t already exist. If

Figure 2.5 This DealDroid DealList
you reuse a resource ID, or otherwise refer screen shows the two components, a

to one that already exists, you don’t need to ~ ListViewand a Spinner, defined in
the deallist.xml layout.

include the plus.

XML ISN'T THE ONLY GAME IN TOWN XML-based layouts are convenient and
arguably a solid design choice that separate responsibilities, but it’s important
to note that you don’t have to use XML at all. Layouts, other XML resources,
and all other views and widgets can also be defined within Java code. All of the
XML layouts that Android uses are representations of framework Java classes

25.2

2.6

Activities 51

that are parsed and inflated into Java objects. We’ll learn more about writing
raw views later in the book, and more about layout inflation later in this chap-
ter, but keep in mind that XML isn’t the only way to define UI components in
your Android application.

IDs in XML layouts let us refer to widgets in code, so we can populate them with data,
attach event listeners, and so on. Also note that the elements’ XML layouts correspond
to much richer components than the low-level elements in HTML.

We aren’t done with our discussions of layouts yet, because we have one more screen
(the detail screen) to build for DealDroid, and we’ll focus on the Ul in chapter 4. Nev-
ertheless, this gives us a good foothold into what they are; now we need to define the
other terms we are bandying about: views and widgets.

Views and widgets

As we touched on in chapter 1, the class android.view.View is the base class for Ul
objects in Android. This is where every onscreen element in any Android application
begins. There are three major types of views:

= SurfaceView
= ViewGroup
= Widget

The first and most basic view type is SurfaceView, which provides a direct drawing sur-
face. We won’t deal with these directly in this chapter, but you’ll learn more about
them when we talk about drawing and graphics in later chapters. The next view type is
ViewGroup. These are an abstraction of layouts and other view containers (views that
contain other views). We’ve already seen a few simple layouts, and we’ll learn more
about them and how they relate to view hierarchies and groups coming up. Finally,
the last view type is Widget. These are the classic Ul components you’ll use most often.

Widgets, which are part of the android.widget package, are views that often inter-
act with the user and can be backed by a data source. This means simple form ele-
ments such as text input boxes and buttons are widgets, and are more involved
components like ListView and Spinner, as we’ve seen.

Now that we’ve declared views and widgets in layouts and touched on what these
terms mean (knowing there’s more to come), the next thing we need to do is link to
these components in code and bring them to life with activities.

Activities

An Activity is a single focused thing that the user can do. Typically each screen in
your application will be defined with a layout, and made up of views and widgets that
are controlled by a corresponding Activity. Each Activity creates a window for Ul,
manages lifecycle and state, provides an endpoint for intents (which we’ll learn about
in section 2.8), handles interface events, controls menus, and more.

52

2.6.1

CHAPTER 2 Android application fundamentals

A SINGLE FOCUSED THING Typically an Activity will correspond to a screen in
an application, but note the careful wording of the definition from the docu-
mentation. A “single focused” thing isn’t a screen. The screen abstraction
works most of the time, and it’s a useful analogy, but keep in mind that an
Activity can also be a floating window on top of another Activity.

To create an Android screen in an application you’ll extend the Activity class or one
of its specialized subclasses (and you’ll usually define the UI for that screen with a lay-
out resource, as we’ve seen). We’ll cover some of the trickier parts of dealing with the
Activity class, including lifecycle subtleties and how activities relate to tasks, in
chapter 3. Here we’ll address the basics of working with the Activity class, and we’ll
see our first use of a specialized Activity subclass for dealing with lists, ListActiv-
ity. We'll start with the most important parts of the Activity class, the methods that
you’ll implement often.

Activity basics

The Android platform performs an intricate juggling act to manage resources. With
limited CPU power and memory available, Android uses a stack of activities that the
system controls to try to keep the most relevant things a user is interested in running,
and push other things into the background.

What’s most relevant, and how does the system perform this juggling act? Most rel-
evant is any application the user is using. An application is typically composed of a set
of components, including activities, services, and broadcast receivers, that are run
using the same user ID and process on the platform (as we noted in chapter 1). As
users click on buttons or respond to notifications to open new activities, the system
shuffles existing activities to the background. To do this, the system pushes activities
through their lifecycle methods. The most common Activity lifecycle methods are:

= onCreate—Called when an Activity is first created

= onPause—Called when an Activity is going into the background

= onResume—~Called when an Activity is being resumed after having been in the
background

There are more lifecycle methods (we’ll discuss all of them in the next chapter), but
onCreate is where things are initiated, onPause is where they should be cleaned up or
persisted, and onResume is where things are reloaded or reset. You’ll override onCre-
ate with every Activity you build, and in most (but not all) onPause and onResume.

In addition to the lifecycle phase hooks, Activity also extends Context and pro-
vides a host of event, state, menu, and other helper methods. The lifecycle methods of
Activity are essential to understand and use correctly. Using these methods properly
will result in a responsive and error-free application. Because these methods and the
related concepts are important, we’ll focus on this topic and related things such as
managing state and using some of the other Activity methods in the next chapter.
Before we get into those details, we're first going to look at the Activity implementa-
tion to create the deal list screen for DealDroid.

2.6.2

Activities 53

List-based activities

Lists in Android are a great place to start digging into views and activities, and a good
example of the Model-View-Controller (MVC) design pattern. It’s important to under-
stand how data and its representation are decoupled from each other and how this is
reflected in the framework interfaces.

Recall from figure 2.6 that DealDroid displays lists of deal data using a ListView.
ListView is a scrolling container that may have an arbitrary number of child views,
which we call list items. A list item can be any kind of view, and not all list items have to
be of the same kind, which enables you to create lists of varied complexity. ListView
does all the heavy lifting for you: it takes care of recycling and redrawing all visible list
items if the underlying data changes, it handles touch events, and so on.

Even though it’s perfectly fine to use ListView directly (and sometimes you need
to), it’s typically used indirectly by going through Android’s ListActivity class. What
ListActivity does is manage a ListView for you, and hence saves you from writing
the boilerplate code required for setting it up and responding to events, and so on.

Here we’ll take the ListActivity approach and build out the code that provides
the ListView for DealDroid. The DealList class is our first nontrivial piece of code.
We’re going to break it into separate sections to discuss, starting with the biggest part:
the declaration and onCreate method, as shown in the following listing.

Listing 2.5 Start of the DeallList.java Activity class, from declaration through onCreate

public class DeallList extends ListActivity { Extend

private static final int MENU_REPARSE = 0; IJ“ACHVKY
private DealDroidApp app;

private List<Item> items;

private DealsAdapter dealsAdapter;

private Spinner sectionSpinner;

private ArrayAdapter<Section> spinnerAdapter;

private int currentSelectedSection;

private ProgressDialog progressDialog;

@Ooverride Override
public void onCreate (Bundle savedInstanceState) { onCreate
super.onCreate (savedInstanceState) ;
setContentView (R.layout.deallist) ; Set layout as

progressDialog = new ProgressDialog(this) ; content view

progressDialog.setCancelable (false) ;
progressDialog. setMessage (
getString (R.string.deal_ list_retrieving data));

app = (DealDroidApp) getApplication() ; Instantiate
items = new ArrayList<Items () ; Set up Collection 2E2:;aﬂ°“
dealsAdapter = new DealsAdapter (items) ; and Adapter)
setListAdapter (dealsAdapter) ; Set Adapter

for ListView

if (app.getSectionList().isEmpty()) {

54

CHAPTER 2 Android application fundamentals

if (app.connectionPresent()) {
new ParseFeedTask () .execute() ; Parse data from
} else { the network

Toast .makeText (this, getString/(
R.string.deal_ list_network_unavailable),
Toast . LENGTH_LONG) . show () ; Show quick
1 message with Toast
} else {
resetListItems (app.getSectionList () .get (0) .getItems()) ;

}

sectionSpinner = (Spinner) findviewById(R.id.section_spinner) ;
spinnerAdapter =
new ArrayAdapter<Sections>(DealList.this,
android.R.layout.simple spinner_item, app.getSectionList());
spinnerAdapter.setDropDownViewResource (

android.R.layout.simple_spinner_dropdown_item) ; Set up Spinner
sectionSpinner.setAdapter (spinnerAdapter) ; and Adapter
sectionSpinner.setOnItemSelectedListener (
new OnltemSelectedListener() { Implement
@Override Listener
public void onItemSelected (AdapterView<?> parentView, forSMnner
View selectedItemView, int position, long id) ({
if (currentSelectedSection != position) ({
currentSelectedSection = position;
resetListItems (
app.getSectionList () .get (position) .getItems()); React to
1 Spinner
} click
. event
@Override

public void onNothingSelected (AdapterView<?> parentView) {
// do nothing
}

1

}

// .. continued in subsequent listings
The first thing to note with listing 2.5 is that, as promised, we’re extending ListAc-
tivity @. From there, we see what almost every Activity will start out with, overrid-
ing onCreate @®. This is part of the all-important Activity lifecycle that we’ll focus on
in chapter 3. For now, we need to understand that onCreate is where we set things up
when our Activity is created. Inside of onCreate, we associate the layout file we built
in listing 2.4 as the content view using setContentView €. We’ll learn more about
what exactly this is doing when we talk about inflating layouts in chapter 4. For now,
keep in mind that this method is how we associate our XML layout with our Activity.

After the initial setup, we’re instantiating an Application object 0, which we’ll use
later to store some global state and define some utility methods. The code for this class,
and more discussion about Application objects in general, will be in section 2.9. Next,
we get to the heart of the ListView matter, using an Adapter to provide data for our list.

In this case, we’re using a regular Java Collection (a List), and passing it into a
DealsAdapter class @. The DealsAdapter is a custom class that extends Adapter and

Activities 55

supplies the deal items for our list. In general terms, this is what adapters do: they pro-
vide data. Adapters come in various forms. They can be backed by arrays, collections,
or even files or database cursors, and they can be trivial or complex. We’ll learn more
about adapters, and see the code for DealsAdapter, in section 2.7. For now, trust that
the adapter will supply deal items to the ListView. We make the association between
the Adapter and the ListView with setListAdapter @.

One important thing to note is that we haven’t directly referenced a ListView any-
where. This is one of the conveniences ListActivity provides. We can imagine you
frowning. How does this work, considering we haven’t done any additional setup? We
did, but it was subtle. Remember how we passed a reserved ID to the <ListView> ele-
ment in the layout in listing 2.4? The trick is that whenever you inherit from List-
Activity, it'll look for a <ListView> declaration in the activity’s layout that carries the
android:id/list resource ID. It'll then automatically connect this widget with the
operations in the setListAdapter method (and other helper methods, such as
getListView). No rocket science involved.

RESERVED RESOURCE IDS Android uses predefined reserved IDs not only for
lists, but also in some other places. One other example of this is TabActivity,
which will look for the tabhost, tabcontent, and tabs IDs in your layout. You
can also use them to access views defined in some of Android’s predefined
layouts. For instance, Android ships with default layouts for list items, such as
simple_list item 1 and simple list_item 2 for single- and two-line text-
based list items.

Getting past the adapter setup for our ListView, we then come to a method call that
checks whether the current deal section list of items is already populated. If it’s not,
we check whether the network is available, and we then issue a mysterious call to
ParseFeedTask.execute @. This is an invocation of an AsyncTask implementation.
An AsyncTask lets us perform a long-running operation on a separate Thread from
the UI (in this case, make a network call and parse the eBay deals RSS feed). We aren’t
going to step into this code here because it’s off the fundamentals track, but don’t
worry; we’ll cover threading, and AsyncTask in detail, in chapter 6 (and if you're
interested in jumping ahead now, you can see this code in the download for the Deal-
Droid project). The takeaway here is that we don’t want to do any long-running and/
or blocking work in our onCreate method (or anywhere on the main Ul Thread for
that matter). Also, if we can’t run our AsyncTask because we can’t connect to the net-
work, we show the user a pop-up message on the screen using a Toast @.

After our data retrieval is out of the way, we then get to our Spinner widget @. As
we saw in figure 2.6, the Spinner provides a stacked list of choices, much like an
HTML select tag. The Spinner also uses an Adapter as a data source. This time it’s a
standard ArrayAdapter that gets data from our Application object (again, we’ll get
into the adapter details in the next section).

After the data is set up via the Adapter, we’re then attaching an OnItemSelected-
Listener to our Spinner 0. This allows us to receive an event anytime an item in the

56

CHAPTER 2 Android application fundamentals

Spinner is selected. For this case, we get the clicked item, determine whether it’s dif-
ferent than what we’re already working with, and if so, call resetListItems with the
selection @. We’ll see what this method does in our next listing; first let’s expand on
how an Android View component reacts to an event. There are many listeners like this
in the Android framework for all kinds of events: items being clicked, items being
long clicked, scrolling, flinging, focus changes, and more. Listeners are interfaces.
Here we’ve created an in place implementation of the OnItemSelectedListener
interface with an anonymous inner class.

ANONYMOUS INNER CLASSES You could define a class in a separate file that
implements a listener interface when you need it, then create an instance of
that class, and then use it for the adapter’s listener. Alternatively you could
declare that the current class you’re working on implements the interface
and you could include the required method locally (and if you have multiple
listeners, you can use the same method and filter for the correct component
within it). There are several approaches to dealing with this situation, and
which one to choose depends on the situation to some degree, and your per-
sonal preference. We find anonymous inner classes convenient and capable,
and that’s why we’ve chosen them, although they aren’t easy to understand at
first. One of the advantages of anonymous inner classes is that they have vari-
able scope access to the enclosing method and class variables through a fea-
ture known as lexical closure.

That’s it for the onCreate method of DealList. It’s not trivial, so don’t worry if you
don’t completely understand it yet. As we flesh out the details of the Adapters and
work through the remaining listings, things will come into focus. We’ll start with what
happens when we have a new list of items to display in our ListView, such as when a
selection is made from the Spinner. This takes us into the aforementioned resetLis-
tItems method, which is seen in the following listing.

Listing 2.6 Resetting the ListView adapter in the DeallList.java Activity class

private void resetListItems(List<Item> newItems) { W Reset member

items.clear () ; Collection
items.addAll (newItems) ;
dealsAdapter.notifyDataSetChanged() ; Notify Adapter that

} data set has changed

The resetListItems method is short and sweet. In it, we take in a new List of Item,
and we use it to repopulate the class member variable we’ve assigned for items @.
Recall that this same instance of items is what we passed into DealsAdapter when we
constructed it. It’s the same instance, and after we change it, we call notify-
DataSetChanged @ on DealsAdapter, and our list is updated and the views are
redrawn. We’ll see the code for our custom adapter, and learn more about adapters in
general, coming up.

Now that we’ve seen how our ListView will get updated when we want to reset the
data, the next thing we need to handle is how to respond when a user clicks a specific

Activities 57

item in the list. This is done with the aptly named onListItemClick method in the fol-
lowing listing.

Listing 2.7 Handling a click event for an item in the ListView of Deallist.java Activity

@Override

protected void onListItemClick (ListView listView, Override

View view, int position, long id) { onListitemClick

view.setBackgroundColor (android.R.color.background_light) ;
app.setCurrentItem(app.getSectionList () .

get (currentSelectedSection) .getItems () .get (position)) ;
Intent dealDetails = new Intent (DeallList.this, DealDetails.class); i,J

startActivity(dealDetails) ; .
} Respond with Intent

The onListItemClick method, which is part of ListActivity, is an event-handling
callback. If a user selects an item in a ListView, this method is fired, and we override
it @ to do whatever we want @. Within it we set some global application state on the
previously noted Application object, and then we launch the DealDetails Activity
using an Intent. As we’ve touched on, intents are the wiring of Android applications;
we’ll learn more about them in section 2.8.

THE POWER OF LISTVIEW As we’ve seen, ListView presents a scrollable list of
selectable items. ListView is one of the most useful and powerful widgets
Android provides. Though we aren’t using more advanced features here, you
should know that ListView could also support filtering, sorting, complex
item views, custom layouts, headers, footers, and more. We’ll see ListView
again in many later examples in the book, and we’ll exercise more of it as we
go, but check the documentation for a comprehensive outline of the capabil-
ities: http://mng.bz/2LZM.

After the ListView and the Spinner, we need to expand on one more aspect to the
DealList screen: the options menu. The options menu is shown if the user presses
the device’s Menu button. For this version of DealDroid, our options menu only has
one choice: reparse the data feed (because we aren’t using a Service to do that for
us, we have a menu choice to do it). Setting the options menu up, and reacting to
menu events, are both accomplished in the following listing.

Listing 2.8 Setting up the menu for the DeallList.java Activity class

@Ooverride Override)
public boolean onCreateOptionsMenu (Menu menu) { onCreateOptionsMenu
menu.add (0, DealList.MENU_REPARSE, 0,
R.string.deal_ list_reparse_menu) ; Add Menultem
return true; to Menu
!
@Ooverride Override onOptions-
public boolean onOptionsItemSelected (Menultem item) { ItemSelected

switch (item.getItemId()) {

http://mng.bz/2LZM

58

CHAPTER 2 Android application fundamentals

case MENU_REPARSE:

if (app.connectionPresent()) ({
new ParseFeedTask () .execute() ;
} else {

Toast .makeText (this,
getString(R.string.deal_list_network unavailable),
Toast . LENGTH_LONG) .show () ;

}

return true;

}

return super.onOptionsItemSelected(item) ;

}

Any Activity can choose whether to include an options menu. To create one, you can
override onCreateOptionsMenu @ and then append MenuItems to the passed-in Menu,
aswe’ve done here. The Menu. add method lets us specify a group ID, item ID, order, and
a String to display (2) (among other options, although we aren’t using anything else
here). The options menu can hold as many items as you want, although only the first
six can be shown on what’s called the Icon Menu. Beyond six, the Expanded Menu can be
accessed by selecting More from the Icon Menu. Because we only have one item here,
we aren’t too worried about the group and item IDs, but they’re useful when you have
more items. We return true in onCreateOptionsMenu because we want the menu to be
displayed (you can return false if you don’t want the menu to be displayed).

To respond when a user selects an item from the options menu, we’ve also overrid-
den the onOptionsItemSelected method @. Here, the selected MenuItem is passed
in, and we use the item ID to tell which one we’re dealing with. Once we have the spe-
cific MenuItem we’re concerned with, we can perform whatever action we need to (in
our case, reparse the daily deals feed, again using the AsyncTask).

OPTIONS MENU AS AN XML RESOURCE You can define your options menu in
code, as we’ve done for DealList, or you can use an XML menu resource (/res/
menu). There are many possibilities and options; for complete details on the
options menu, see the current documentation: http://mng.bz/h8c0.

With the menu out of the way, the final piece of main Activity code we need to
address for DealList is the all-important onPause method, which is shown in the next
listing.

Listing 2.9 The onPause method in the DeallList.java Activity class

@Override
public void onPause() {
if (progressDialog.isShowing()) {

progressDialog.dismiss () ;

}

super.onPause () ;

}

The Activity lifecycle, which we’ve already mentioned and will cover in detail in
chapter 3, is managed by overriding lifecycle methods, such as onCreate and onPause.

http://mng.bz/h8c0

2.7

271

Adapters 59

onCreate was where we built up the components our Activity needs, and onPause is
where we need to perform any necessary cleanup. For DealDroid we’re using a Pro-
gressDialog to indicate to users that something is happening at certain points (such
as when we make the network call to get deal data). A ProgressDialog is an interac-
tive pop-up dialog that can show progress, such as a horizontal bar filling up, or a spin-
ning circle. If this dialog is showing when our Activity is stopped, it’ll effectively be
leaked, and that can cause force close (FC) errors. This is why we need to dismiss it, if
it’s showing, within onPause.

Now that we’ve touched on how Activity lifecycle methods are used (as a primer
to chapter 3), and seen how a ListActivity works, the next step is to finish up and
see how the adapters backing our views are implemented.

Adapters

When you have to feed data from a data source to a view, you’ll use an Adapter, as
we’ve seen. As the name suggests, an Adapter adapts a certain data source and hence
lets you plug in different kinds of data sources into a view (an AdapterView) that can
then render this data to the screen. ListView and Spinner are AdapterView views.
Android ships with several predefined adapters, most notably ArrayAdapter, for serv-
ing data from a Java array object or Collection, and CursorAdapter for fetching data
from a SQLite database (we’ll learn more about databases and cursors in chapter 7).
You’re by no means restricted to the built-in adapters; you can, for instance, imple-
ment an adapter that wraps a web service and fetches data from the Internet directly
into your views. Anything’s possible!

Adapter basics

The most basic way to use an adapter is to leverage one of the existing implementa-
tions Android provides, such as ArrayAdapter (which, despite the name, also works
with collections). To see how this works, let’s take a quick look back at how we pro-
vided data for our Spinner in listing 2.5:
spinnerAdapter =
new ArrayAdapter<Sections>(DeallList.this,
android.R.layout.simple spinner item, sectionList);
To instantiate this ArrayAdapter, we're using DealList.this for the Context, then a
layout resource to tell the Adapter how to display each item, and finally the data itself
in the form of a List of Section objects. Section is a simple JavaBean-style class (get-
ters and setters) with a title and a collection of Items that comes from our own model.
Item is another simple bean that represents a particular deal with an ID, title, price,
location, and so on (for the complete source on these classes, see the code download
for this project). The layout we’re using for the Spinner item is set using the reserved
ID android.R.layout.simple_spinner_item By default, ArrayAdapter expects a lay-
out that represents a single TextView. As we can tell by the android name prefix, we’re
using a layout provided by the framework for this purpose. Our Spinner is simple, so

60

2.7.2

CHAPTER 2 Android application fundamentals

we’ll use this built-in layout. If we wanted, we could change this layout and define our
own. The default behavior of an ArrayAdapter is to call the toString method on each
piece of data it has and render it using the specified layout. If you want to do something
different, you can override the getView method of ArrayAdapter as we’ll see in the
next section.

ANDROID AND CONTEXT If you look through the various Android APIs, you’ll
notice that many of them take an android.content.Context object as a
parameter. You’ll also see that an Activity or a Service is usually used as a
Context. This works because both of these classes extend from Context.
What’s Context exactly? Per the Android reference documentation, it’s an
entity that represents various environment data. It provides access to local
files, databases, class loaders associated to the environment, services includ-
ing system-level services, and more. Throughout this book, and in your day-to-
day coding with Android, you’ll see the Context passed around frequently.

A basic adapter provides a quick way to pour data into a view, but what if we need to
customize the views, or moreover, what if we need to reflect changes in the data to the
view, or vice versa? To deal with either or both of those conditions, we often need a
custom adapter.

Custom adapters

Creating your own adapter means creating a class that implements the Adapter inter-
face. There are several convenience classes such as ArrayAdapter or BaseAdapter
from which you can inherit, and you need to override or add those parts that are rele-
vant to you. The getview method is called whenever a list item must be (re)drawn.
This happens frequently, for example when scrolling through the list. If the list data
changes, you must tell the list view that it should redraw its children by calling
Adapter.notifyDataSetChanged, as we saw in listing 2.6.

The DealsAdapter we referenced in listing 2.5 is a custom adapter that extends
ArrayAdapter. In listing 2.5 we instantiated this Adapter and set it as the backing for
the entire ListActivity using setListAdapter (dealsAdapter). The DealsAdapter
code is shown in this next listing.

Listing 2.10 The DealsAdapter.java custom Adapter for supplying views to the DealList

private class DealsAdapter extends ArrayAdapter<Items> { Extend

public DealsAdapter () { ArrayAdapter

super (DeallList.this,
R.layout.list_item, new ArrayList<Item>()); Define

} constructor

@Override
public View getView(int position,

View convertView, ViewGroup parent)
if (convertView == null) W L

Override getVie

Adapters 61

LayoutInflater inflater = (LayoutInflater)
getSystemService (Context.LAYOUT INFLATER_SERVICE) ;
convertView = inflater.inflate(R.layout.list_ item,

parent, false); Use
} Layoutinflater
TextView text =
(TextView) convertView.findViewById(R.id.deal title); Populate
ImageView image = convertView

(ImageView) convertView.findViewById(R.id.deal img) ;
image.setImageBitmap (

BitmapFactory.decodeResource (getResources (), R.drawable.ddicon)) ;
Item item = getItem(position); 4—0 Get data item
if (item !'= null) {

text.setText (item.getTitle()) ;
Bitmap bitmap = app.getImageCache () .get (item.getItemId()) ;
if (bitmap != null) {

image.setImageBitmap (bitmap) ; Apply data values to view
} else {
image.setTag(item.getItemId()) ;
new RetrieveImageTask (image) Use task to
.execute (item.getSmallPicUrl ()) ; retrieve bitmap
1
; Return

return convertView; View

}

The DealsAdapter class has a lot happening in it. This is the first custom Adapter
we’ve seen, but it won’t be the last. This concept is important when you want to do
anything beyond the defaults with widgets. We need to go beyond the defaults because
our ListView, as seen in figure 2.6, has a custom layout with a small picture and the
title of the deal for each Item in the list. Recall that the default for ArrayAdapter, as
we saw with our Spinner, is to display the toString value of the each data item. We
need more than that.

DealsAdapter begins by extending ArrayAdapter @. This is important because
Adapter is an interface with quite a few methods, and we only want to override the
View being drawn, not all of the other plumbing. You can implement your own
Adapter from scratch, or extend BaseAdapter to start from a lower level, but we want
to reuse as much of the framework as we can, so we’re extending ArrayAdapter.

The first thing our DealsAdapter class does is define its own constructor that
passes along the required elements to ArrayAdapter @. To use an ArrayAdapter you
need the Context, a layout resource ID, and an array or Collection of data. After the
constructor, we override the getView method €. This is where the Android frame-
work steps up and does something clever to help draw ListView screens faster: it uses
a convertView. A convertView is an existing View that if present, and if of the right
type, can be reused. Because a ListView can scroll many items on a screen, and often
they can be represented by the same views with different contents (a new name and

62

CHAPTER 2 Android application fundamentals

picture in our case), reusing views rather than re-creating them for every position is a
major optimization. Even if the list has 1,000 items, they aren’t all on the screen at the
same time. We’re effectively paging through the data, and paging through the UI ele-
ments and repurposing them, by using a convertView View. For our example, if the
convertView passed in is null, we establish it by inflating the layout we want to use,
R.layout.list item @.

This is another static layout that we’ve declared in XML, and we’re using the system
LAYOUT_INFLATER SERVICE to “inflate” it into code. This layout, which we’ve placed in
the /res/layout directory in our project, is a simple RelativeLayout:
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill parent"
android:layout height="fill_ parent">
<ImageView android:id="@+id/deal_ img"
android:layout_width="50dp"
android:layout_height="50dp"
android:layout_margin="5dp" />
<TextView android:id="@+id/deal_title"
android:layout toRightOf="@id/deal_img"
android:layout width="fill parent”
android:layout_height="wrap_content"
android:layout margin="5dp" />
</RelativeLayout>
A RelativeLayout works differently than the LinearLayouts we’ve seen up to now.
Rather than lining up elements horizontally or vertically, it lays them out in relation to
one another as you specify. Again, we’ll find out more about this and all layouts in
chapter 4.

Once the layout is established we use findViewById to get a handle to the View
elements it references @. After we have the references, we then get the current data
Item @ and apply the data values to the views @. The title comes right from the Item
data class we’re using, and the image we set first as a default using a resource drawable
named ddicon (the file for this is located at res/drawable-mdpi/ddicon.gif). After the
default image is set, we then try to get the image for the deal from the Internet using
the item’s URL @ (if it isn’t already cached in our Application object). We do this
using another AsyncTask, RetrieveImageTask, which makes an HTTP call over the
network (the code isn’t shown here so we can stay on topic, but again it’s available
with the project download if you’re interested). Finally, getView returns the View it
has worked to build @), and the AdapterView displays it.

In all, our custom adapter is drawing custom views and reflecting data model
changes to those views. We're using the adapter’s notifyDataSetChanged method
within the earlier resetListItems method we saw in listing 2.6 to initially prime the
adapter (and also when a user picks a different deal-type section from the Spinner
selection listener). Again, this causes the views to be redrawn to reflect the current data.

The other side of this coin would be updating the data model based on actions in
the user interface. This could be users selecting items in the list (and needing to keep
track of what’s selected, and what isn’t), or more complicated interface elements in

2.8

Intents and IntentFilters 63

each list item that allow users to fill in form fields or otherwise interact with the data
(you can make each item as detailed as you need). We don’t need this for DealDroid,
but it’s important to note that this type of two-way data binding can be done with a
custom adapter (we’ll see examples in later chapters that include this).

A PATTERN EMERGES: MODEL-VIEW-CONTROLLER You may have noticed a famil-
iar pattern here: we have a view that renders data from a data source (the
model), and we have an Activity that dispatches user input to the view and
notifies it about changes in the underlying data so that it can redraw itself
(the controller). That’s MVC all right! If you look closely, the framework is full
of object interaction that follows the MVC pattern. Keep this in mind: it’s a
flexible and powerful design pattern commonly found in widget frameworks
(as is the Adapter pattern, by the way).

Think about how flexible the adapter solution is. If we were to store our data in a data-
base, or retrieve it in a paged fashion from a web service, we could replace our adapter
object with one that iterates over the data source we need. We wouldn’t have
to change a thing about our list view. That’s loose coupling and object orientation
par excellence.

Beyond the way activities can use views that are loosely coupled from their data
sources via adapters, Android also provides another type of loose coupling between
activities and other components: intents.

Intents and IntentFilters

One area where Android shines is the flexibility it provides in communicating
between components, and sharing data between them. Android makes this possible
using Intent- and IntentFilter-based events. As we’ve noted, an Intent is a descrip-
tion of an action you want to happen, and an IntentFilter is a means for a compo-
nent to declare it’s capable of handling a specific Intent. Intents themselves don’t do
any work; rather, they describe something that needs to be done.

If a component wants to perform an action, it declares that intention with an
Intent and hands it off to the system. The system then decodes the Intent and
decides which other component, Activity, Service, or BroadcastReceiver, can
handle the job.

Also, if an Activity, BroadcastReceiver, or Service wants to offer some action
to be available to other components, it declares an IntentFilter. The Android plat-
form keeps track of all the IntentFilter declarations that the current running sys-
tem is capable of handling, and then resolves intents as they come in to the most
suitable component dynamically, on the fly, at runtime. Figure 2.6 looks at this
another way, using interlocking shapes as an analogy to depict the Intent/Intent-
Filter relationship.

To see how the Intent process works, we’ll implement the DealDetails part of
DealDroid, which will involve declaring several different types of intents and talking a
bit more about intent filters.

64 CHAPTER 2 Android application fundamentals

- >> o > -

Figure 2.6 Intents and IntentFilters combine to filter and respond to events by
dispatching them to registered components.

2.8.1 Using intents

To see what goes into an Intent object, we’re going to build the final Activity of the
DealDroid application, DealDetails. If you recall from section 2.1, the DealDetails
screen displays the details of a deal after a user clicks on it from the DealList screen.
Along with displaying information, the other major thing DealDetails does is allow
the user to share the deal in several ways using intents and menu options, as seen in
the following listing.

Listing 2.11 The first part of the DealDetails.java Activity class

public class DealDetails extends Activity { Extend

private static final int MENU_MAIL = 1; Acﬂvny

private static final int MENU_BROWSE = 2;
private static final int MENU_SHARE = 3;

private DealDroidApp app;
private ProgressBar progressBar;

@Override
public void onCreate (Bundle savedInstanceState) { Override
super.onCreate (savedInstanceState) ; onCreate

setContentView (R.layout.dealdetails) ;
app = (DealDroidApp) getApplication() ;

progressBar = (ProgressBar) findviewById(R.id.progress) ;
progressBar.setIndeterminate (true) ;

Item item = app.getCurrentItem() ;

if (item != null)
// population of view items omitted to shorten listing
// see code download

}

@Ooverride Override)
public boolean onCreateOptionsMenu(Menu menu) { onCreateOptionsMenu
menu.add (DealDetails.NONE, DealDetails.MAIL,
DealDetails.NONE, R.string.deal details_mail_ menu) ;

menu.add (DealDetails.NONE, DealDetails.BROWSE, Add
DealDetails.NONE, R.string.deal details_ browser menu) ; Mequhem
menu.add (DealDetails.NONE, DealDetails.SHARE, choices

DealDetails.NONE, R.string.deal details share menu) ;

Intents and IntentFilters 65

return true; .
} Override

onOptionsitemSelected
@Override
public boolean onOptionsItemSelected(Menultem item) {
switch (item.getItemId()) ({
case MAIL:
shareDealUsingChooser (“text/html”) ; Share with text/

return true; html MIME
case BROWSE:

openDealInBrowser () ; Open in
return true; browser
case SHARE:
shareDealUsingChooser (“text/*") ; Share with text/*

return true; MIME type
default:

return super.onOptionsItemSelected(item) ;

Within the DealDetails class we see the standard pattern of extending Activity @,
then overriding the onCreate lifecycle method @, and setting our layout using set -
ContentView (the layout for DealDetails isn’t shown here because it’s simple and
doesn’t add to the discussion at this point). After those familiar steps, we come to
onCreateOptionsMenu @), where we set up the option menu items @ for performing
actions with a particular deal. This method returns true to make sure the menu is
shown (it won’t be shown unless the return value is true).

After the option menu items are defined, we then override the onOptionItem-
Selected method that’ll be called when an option item is selected @. Here we
respond to the different option items: share a deal using a chooser with the text/
html MIME type @, open the deal in the Browser application @, or share it using a
chooser with the text/* MIME type O (which offers more options than text/html).
In each case that we explicitly handle here, we return true, which indicates that the
menu processing should stop. In case any menu items are passed in that we don’t han-
dle, the default case passes off to the super implementation.

A chooser is a dialog of choices of how to handle an Intent, as we’ll see momen-
tarily. The following listing fills in the detail of exactly how we’re performing these
actions through intents, by diving into the shareDealUsingChooser and openDeallIn-
Browser methods.

Listing 2.12 The sharing actions of the DealDetails Activity, handled through Intents

private void shareDealUsingChooser (String type) { "“?“tw“h
Intent i = new Intent (Intent.ACTION_SEND) ; action
i.setType (type) ; 4—0 MIME type
i.putExtra (Intent.EXTRA SUBJECT, "Subject:"); Extra
i.putExtra (Intent.EXTRA TEXT, createDealMessage()); data

try {

CHAPTER 2 Android application fundamentals

startActivity (Intent.createChooser(i,

"Share deal ..."));

} catch (android.content.ActivityNotFoundException ex) {

Toast .makeText (DealDetails.this,

"There are no chooser options installed for the "

+ type + " + type.",
Toast . LENGTH_SHORT) .show () ;

}

Activity with
Intent chooser

private void openDealInBrowser () { <+— openDeallnBrowser
Intent i = new Intent (Intent.ACTION_VIEW, Uri.parse(3
app.getCurrentItem() .getDealUrl ())) ; h“?ntwnh
action and URI

startActivity (i) ;

}

private String createDealMessage () {
Item item = app.getCurrentItem() ;
StringBuffer sb = new StringBuffer();
sb.append ("Check out this deal:\n");
sb.append ("\nTitle:" + item.getTitle()) ;

<+—@ createDealMessage

sb.append ("\nPrice:" + item.getConvertedCurrentPrice()) ;

sb.append ("\nQuantity:" + item.getQuantity());

(
(
sb.append ("\nLocation:" + item.getLocation()) ;
(
(

sb.append ("\nURL:" + item.getDealUrl()) ;
return sb.toString() ;

}

// AsyncTask inner class and closing of DealDetails omitted

// to shorten listing

Inside the shareDealUsingChooser method, where
we do a lot of Intent-related work, we first set up an
Intent with the action set to ACTION SEND @. This
step is small but key. Action is one of the primary
pieces of information an Intent can contain, along
with data (as we’ll see in a second), and MIME
type @. A Bundle of extras can also be included.
The extra data can be simple types (strings, primi-
tives, and so on), or custom types that are made
Parcelable (serializable across processes). Here
we’re including a subject header and deal details in
the form of a String @ (which is built by the cre-
ateDealMessage method @). Once the Intent is
ready, we then use startActivity with create-
Chooser to fire it @. The chooser shown when we
press the Share menu option in DealDroid (on an
device, not the emulator, which has fewer capabili-
ties) is seen in figure 2.7.

The chooser seen in figure 2.8 demonstrates
that many registered components can handle a
SEND text/* type Intent (which the DealDetails

"6 1, G -85 &3 7:57 e’

&;ﬁ Dropbox

\}_o/ Google Voice

w Messaging

o Twitter

Figure 2.7 The DealDroid details
screen Share deal menu option chooser
shows the many ways one particular
type of Intent can be handled.

282

Intents and IntentFilters 67

share button creates). By using a chooser, we’re specifically indicating that we want
the user to make a choice each time. If we hadn’t used a chooser, the user would still
have a choice to make, but they’d also have the option of selecting a default action. By
changing one line in DealDetails, we can see how this works. If we edit the share-
DealUsingChooser method and change the startActivity line from the following:

startActivity (Intent.createChooser (i, "Share deal ..."));

to

"6 13, G -so]| @8 s:15 "

startActivity (i) ;

Then we can invoke the Share button again, and G) Complete action using

we’ll get the choices seen in figure 2.8.

If we control the chooser (figure 2.7), we can set
the title, and we can require the user to make a choice
each time they perform the action (if more than one
component can handle the action). If, on the other
hand, we let the system present the choices (fig-

ure 2.8), we can’t control the title, and the user is \S_’/ Google Voice
offered the choice of setting a default for the Intent. 5

Either way, the more generic the Intent, the more w Messaging
choices. As we can see, SEND text/* is generic, and =

results in a long list of choices (there are more not ‘—3 Twitter

seen in the screenshots, if the user scrolls).
Getting back to listing 2.12, in the openDealIn- - Use by default for:this action.

Browser method, we see a different way to create an
Intent. Here we’re setting the action to VIEW, and

) ; Figure 2.8 The same set of choices,
the data to a Uri (in this case the HTTP URL to the without specifically using a chooser,

deal). This is a far more specific Intent because we shows that the user can set a default
preference.

want to view the item, and the URI indicates a more
particular type of data (it contains a URL with the protocol—HTTP—and a hostname
and path). When we indicate that we want to view an HTTP URL in this manner, only
one type of component should respond, a web browser. If there are multiple browsers
on the system (which is possible, if the user has installed additional browsers), then
this still could result in a choice, but that’s far less likely than sharing SEND action.

To see how we can create even more specific intents, and how the parts of an
Intent affect what component will be able to respond to them, we need to discuss the
different types of intents.

Intent types

Going back to listing 2.7, to get from the DealList Activity to the DealDetails
Activity we used the following Intent:

Intent dealDetails = new Intent (DeallList.this, DealDetails.class);
startActivity(dealDetails) ;

68

283

CHAPTER 2 Android application fundamentals

In this case, the Intent doesn’t have an action, a type, or data, like the ones we used
in the previous section did. Instead this Intent points directly at a specific class,
DealDetails.class, and says “you’re it.” This is an explicit Intent. Explicit intents are
fairly common inside of a single application, where you know exactly what each com-
ponent does, and you know the class name (they’re simple and direct).

If, on the other hand, you want to reach out across application boundaries and/or
use features that are described in a more abstract way (show this web page, dial this
phone number, display this map, and so on), you use an mplicit Intent. Implicit
intents are resolved to components that can handle them using a combination of the
available optional attributes present. These include action, data, type, and a few other
things, as defined in table 2.1.

Table 2.1 Attributes that can be defined and used when declaring and resolving Intents

Intent attribute name Description Examples

action The action to be performed. ACTION_VIEW, ACTION_DIAL,
ACTION_SHARE, ACTION_EDIT

data The data to operate on. content://contacts/people/1,
http://www.reddit.com

type The MIME type for any Intent data. text/*, text/plain, text/html,
Optional, can also be inferred from image/png
the data itself.

category Additional hints about the actionto | CATEGORY LAUNCHER,

execute. CATEGORY_ ALTERNATIVE
extras A Bundle of additional information | putExtra ("KEY", "VALUE")
component The component class to use, MyActivity.class

bypassing all other Intent evaluation.

The action, data, type, and category are used to map an implicit Intent to a compo-
nent that declares it can handle it. Alternatively, explicit intents hard-code the compo-
nent that’ll be invoked. The explicit part is easy to understand; the implicit approach
is more complicated, and it involves a process of Intent resolution.

Intent resolution

Intents declare what you want to do. You use them to invoke other components. The
other piece of the puzzle is declaring what actions, types, and categories your compo-
nents support so that they can be used to fulfill intents from others. To do this, you
declare and use an IntentFilter.

We saw an example of declaring an IntentFilter in the DealDroid application
manifest in listing 2.1. That filter had an action of MAIN and a category of LAUNCHER.
This declares that our DeallList Activity can be made available on the Home screen
(the platform Launcher application). Another example of an IntentFilter is one of
the many declared in the platform built-in Messaging application, as shown:

2.9

The Application object 69

<intent-filter>

<action android:name="android.intent.action.SEND" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="text/plain" />
</intent-filter>
As we can see from the IntentFilter declared in the Messaging application, it says
make me available when something wants to use the SEND action, with the DEFAULT cat-
egory, and a data MIME type of text/plain. In listing 2.12, the shareDealUs-
ingChooser method created an Intent with similar parameters. We didn’t declare a
category there, but that’s okay because categories only have to match if they're
declared in the Intent. More specifically, if the Intent has a category defined, the
IntentFilter must contain it for there to be a match. If the Intent has no categories
defined, it matches any category.

One caveat to this can be tricky. Anytime the Context.startActivity method is
called with an implicit intent (the component isn’t set), it automatically adds the
DEFAULT category to the Intent. This means any IntentFilter that wants to handle
implicit intents should declare that it supports the DEFAULT category (like the Messag-
ing IntentFilter does).

Because the Messaging IntentFilter matches the Intent we created in share-
DealUsingChooser, the ComposeMessageActivity from the Messaging application
shows up on our list of choices in figures 2.8.

We’ll see many more examples of intents and intent filters as we proceed through
the book, but the main thing to realize here is that Android is keeping track of all of
the intent filters available and matching intents as they come to the components that
can handle them at runtime. Android keeps track of the registered IntentFilter
declarations with the PackageManager (which you can also query if you need to; it
can tell you what is and isn’t available at any given time). When a new application is
installed, its declarations are added, and when an application is uninstalled, its decla-
rations are removed.

At this point, we’ve created a good bit of the DealDroid application. We’ve con-
structed the Deallist layout and Activity, and the DealDetails Activity. We've
also explored setting up the manifest, declaring and using resources, declaring and
invoking intents, working with views and widgets, and dealing with adapters. Now, the
final thing we need to do to wrap up the DealDroid application is build and under-
stand the Application object we’ve previously referred to in several listings.

The Application object

We’ve seen a lot of code in this chapter, and in several places we’ve seen a reference to
an app object. If you recall, this object was a reference to a DealDroidApp class when
we assigned it. DealDroidApp extends Android’s Application object. An Application
object has a well-defined lifecycle, and can be used as a data structure for holding an
application’s global state. We’ll talk more about lifecycle in chapter 3, but the impor-
tant thing to keep in mind with the Application object is that it’s created when the

70

CHAPTER 2 Android application fundamentals

process for your application is created, and it isn’t bound to a particular Activity or
Service. This means it’s a great and extremely simple way to hold onto and share
nontrivial and nonpersistent data between activities and services within your applica-
tion. By nontrivial and nonpersistent, we mean data that your application needs which
would be cumbersome to pass around as Intent extras everywhere, and also isn’t
appropriate for a file or database.

ANOTHER WAY TO SHARE IN-APP DATA Another good choice for nontrivial and
nonpersistent data is a static singleton object. You have to be careful with stat-
ics, though. They don’t have a well-defined lifecycle, and it’s easy to hang
onto a reference that could cause a memory leak. If you prefer statics over the
Application object, that’s fine, but consider setting up and tearing down
your static classes from the Application object, which does have a well-
defined lifecycle, for the best of both worlds.

In the following listing we finally see the DealDroidApp object that we’ve used from
several previous activities.

Listing 2.13 DealDroidApp.java file provides the shared Application object for DealDroid

public class DealDroidApp extends Application { Extend Application

private ConnectivityManager cMgr; object

private DailyDealsFeedParser parser;

private List<Section> sectionList; Include data members
private Map<Long, Bitmap> imageCache; shared by application
private Item currentItem;

public DailyDealsFeedParser getParser() ({
return this.parser;
}

public List<Section> getSectionList () {
return this.sectionList;

public Map<Long, Bitmap> getImageCache () {
return this.imageCache;
}

public Item getCurrentItem()
return this.currentItem;

public void setCurrentItem(Item currentItem) {
this.currentItem = currentItem;

@Ooverride Override onCreate

public void onCreate() { lifecycle method

super.onCreate () ;

this.cMgr = (ConnectivityManager)
this.getSystemService (Context .CONNECTIVITY SERVICE) ;

this.parser = new DailyDealsXmlPullFeedParser() ;

2.10

Summary 71

this.sectionList = new ArrayList<Sections>(6);
this.imageCache = new HashMap<Long, Bitmap>();

}

// retrieveBitmap and connectionPresent helper methods
// omitted to shorten listing

1

Like most custom Application instances @), the DealDroidApp object includes sev-
eral data members we’ve used in various places in the application, and a few utility
methods (which we aren’t showing here). For the DealDroidApp, the data members
we’ve included are @:

= The ConnectivityManager

= ADailyDealsFeedParser XMLPullParser implementation for parsing RSS
= The list of Sections, if any

= A Map to cache small images

= The currently selected Item, if any

After the member variables are declared, we then override the onCreate lifecycle
method @ to set up our Application instance. Within onCreate, we see that we
instantiate a few interesting things. First we create the ConnectivityManager, which is
a system service that we can use to check network state (we’ll learn more about this in
later examples). Second we create an instance of the DailyDealsFeedParser class,
which we used from the DealList Activity to parse the daily deals RSS feed (we’ll dis-
cuss XML parsing in chapter 6). Then we instantiate a few standard Java Collection
objects to hold data.

The final step is to make sure our application will use our custom Application
object, which we already handled in the manifest. Back in listing 2.1 we did this by
using the name attribute for the application element (without this, the default Appli-
cation object would be used):
<application android:icon="@drawable/ddicon"

android:label="@string/app_name"

android:name=".DealDroidApp">
And that does it! The DealDroid application is complete now that we’ve placed some
global state and provided utility methods via the Application object. This final part of
DealDroid is also the final stop on our tour of the Android application fundamentals.

Summary

In completing the DealDroid application we’ve covered a lot of fundamental Android
application development ground. We took this journey in order to work on the basics,
to make sure you know what the core components of Android applications are and
how they’re used outside of a trivial example. That said, we’ve still tried to keep things
at a relatively high level to this point.

72

CHAPTER 2 Android application fundamentals

We’ve learned that the main Android application-building blocks are the applica-
tion manifest, resources, layouts, views, activities, and intents. The manifest is the con-
figuration for your application, and resources are externalized elements (such as
strings and images). The code begins with activities, which pull in resources and lay-
outs. Layouts are groups of views that organize the UI of a screen or component.
Often layouts are described in XML and inflated at runtime, which further helps sepa-
rate responsibilities. Activities use views and widgets to create elements that are dis-
played to the user, or the user interacts with. Intents are the wiring between
components, and even between different applications.

With DealDroid, and the basics of the components involved behind us, the next
area we need to focus on is overall application and component lifecycle.

Managing
lifecycle and state

In this chapter

® Understanding application processes and users
® Exploring Activity lifecycle

® Handling Activity instance state

®m Understanding tasks and task affinity

Each thing is of like form from everlasting and comes round again in its cycle.
—DMarcus Aurelius

All Android applications are created equal. This isn’t some ideological ideal; it’s a
truth born out of necessity. Many Android devices—as we’ve already noted a few
times but will hammer home again even at the risk of repetition—have limited
memory, CPU power, and other resources. Because of these factors, when the plat-
form was created, the design had to include a way to give the most important pro-
cesses the resources they needed, and at the same time subdue or kill other
processes that might get in the way.

73

74

3.1

CHAPTER 3 Managing lifecycle and state

Android handles this by managing application processes within a hierarchy where
the current and most recently used components are at the top. When resources get
scarce, the platform will kill the least-relevant processes. In addition, Android compo-
nents use a series of lifecycle methods that act as callbacks—the platform hooks into
these methods to create and destroy components (and move them through other
stages as well).

This all sounds well and good, but here’s the rub: users don’t care about any of this.
They want applications that work quickly and efficiently without losing state data or
crashing every time they rotate the device. That’s not much to ask, right? It isn’t, but
you’d be surprised how many Android applications, even corporate offerings, fail at
coping well within the Android environment. Here we hope to equip you with the
knowledge you need to ensure that your applications don’t fall into the same traps.

This journey will take us through defining what an Android application is and seeing
how separate user IDs and processes are used for each (most of the time). From there
we’ll also discuss how Android decides which processes are eligible to be killed. Then
we’ll step down a level and talk about application components, most notably the Activ-
ity class. Activities (and other components such as Service and BroadcastReceiver,
which we’ll cover in later chapters) have a series of lifecycle methods, such as onCreate
and onPause that allow you to control how they’re created, destroyed, and recreated.

In addition to lifecycle, it’s also critical to know how to deal with and maintain
Activity instance state. Instance state is nonpersistent data that you need to pass
from one instance of an Activity to the next (a new activity instance is recreated
when screen orientation changes), so the user’s selections and the like aren’t lost. You
can work within the lifecycle to maintain this data, once you know the right places to
pass it along.

After we have the process-application-component picture down, we’ll touch on the
concept of tasks in Android. A task is a group of activities that are related based on
what business action the user is trying to accomplish. Such activities may come from
different Android applications, but to the user, they appear as one. Knowing a bit
about activities, the activity stack, and how they relate to tasks, will help you under-
stand the platform and build better applications.

Defining an Android application

One tenet of the Android platform is that an application can use components from
another application, easily and transparently to the user. That blurs the definition of
an application. To a user, an application consists of activities from all over the place
(maps, browser, email, contacts, and camera, to name a few built-in options). The
user’s objective becomes important, regardless of the multiple components involved.
Android labels this cross-application application a fask.

We’ll discuss tasks later in section 3.3. We mention them here to disambiguate the
term. Our focus here will be on the technical definition of a single application. An
Android application, the technical kind, corresponds to all the components run

3.11

Defining an Android application 75

under the same user ID and process and linked by an overarching Application
object. The Application object serves as a central context for all of the components
(activities, services, broadcast receivers, and content providers). All of these items are
rolled up into an APK file and can be deployed to the Market as an app.

Here we’ll focus on this technical application definition. We’ll discuss the
Application object lifecycle and how an application relates to a process and user ID.
We’ll also see the priorities Android gives to different processes when it needs to
reclaim resources.

Application lifecycle

Every Android application is hosted by an Application object. We used this object to
share state and house utility methods in chapter 2, but even when you don’t extend it
and create your own, the default is there. The Application object has its own lifecy-
cle, which is thankfully easy to understand, as you can see:

1 onCreate is called when the Application is started.

2 onLowMemory is called when the system requests that applications try to clean up
what they can.

3 onTerminate is sometimes called when the Application is stopped.

4 onConfigurationChanged is called when the device Configuration changes
while the application is running (see http://mng.bz/LJGK).

As you can see, there are four straightforward methods. Out of these, the most com-
mon ones you’ll deal with are onCreate and onLowMemory. The other methods can be
used, but onTerminate isn’t guaranteed to be called, and onConfigurationChanged,
at the application level, is typically only needed for advanced situations.

You’'ll use onCreate, as we saw in chapter 2, to set up any initial internal or global
state for the Application. The Android framework will automatically create the
Application object for you the first time your application is started, and it’ll invoke
onCreate. There’s one caveat here: make sure this happens quickly. You don’t want
any long-running operations inside onCreate, because it affects overall application
startup time. As for onLowMemory, this can be used to purge caches or otherwise
release any memory that you can, in case the system requests that you do so. The ben-
efit here is that if you implement this, and if enough other applications do as well, the
system might be able to recover enough memory so that it doesn’t have to start termi-
nating currently unused applications, or worse yet, killing processes.

The significant thing to keep in mind with the Application object is that it’s cre-
ated when your overall application starts, and it’s not killed until the application stops.
It outlives your activities, services, broadcast receivers, and other components.

As to processes themselves, we briefly noted the fact that Android uses a separate
process and user ID for each application in chapter 1, but you might be wondering
how these relate to the Application object, and how you can control the arrange-
ment, should the need arise.

http://mng.bz/LJGK

76

3.1.2

CHAPTER 3 Managing lifecycle and state

Application user ID, process, and threads

When a user first requests any component of your Android application (Activity,
Service, BroadcastReceiver, or ContentProvider), it’s started with a unique user ID
and kicked off inside a new system process running under that ID. We discussed
Android’s Linux OS in chapter 1 and touched on the fact that using separate pro-
cesses for each application isolates memory and state, and therefore helps with secu-
rity and true multitasking.

Another key thing to understand is that each process, by default, runs one main
Thread. This main Thread is often called the UI Thread, but that’s a misnomer
because in addition to activities, broadcast receivers, content providers, and services
also use it. Any component that needs to do so should start its own separate Thread
from the main Thread in order to do any concurrent or background work (we’ll learn
more about threading in chapter 6). This hierarchy—process, application, main
thread, and the components therein—is depicted in figure 3.1.

Typically, and by default, the process/application/thread/component arrangement
is repeated, with a separate user ID and within a separate process, for each application.
The OS manages the multiple processes, and the Android interprocess communication
(IPC) mechanism is used to pass data between processes. If you run the ps command
from the ADB shell, or use Device -> Show Process Status from the DDMS tool (which runs
ps), you can examine the currently running processes, as seen in figure 3.2.

Process

Application

Main Thread

[Activity } O
‘ Service J

[BroadcastReceiver }

User
(owns process)

o J

Figure 3.1 Each application runs in its own process, with its own unique user ID, and
has its own main thread (by default).

Defining an Android application 77

Last login: Tue Mar 22 14:50:03 on ttys@ee =
Charlie-Collinss-MacBook-Pro:~ charliecollins$ adb -e shell
ps
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1] 296 204 c@093b98 @00AcB6C S /init
root 2 1] @ @ c@@4bb50 @eeeeeed S kthreadd
root 3 2 @] cP@3d428 POOGRRed S ksoftirgd/@
root 4 2 [}] cPd487a4 eeeeeeee S events/@
root 5 2 [} e c00487a4 eeeeeeee S khelper
root 6 2] 8 c00487a4 000000l S suspend
root 7 2 [} 2} c@0487a4 00000000 S kblockd/@
root 8 Z [} 8 c@@487a4 00000000 S cqueue
root 9 2 @ @ c@174bT4 O000@0RR S kseriod
root 1@ 2 @ 4] c@@487a4 oeeoeeee S kmmcd
root 11 2 @] cP068318 eeeeeeee S pdflush
root 12 2 [} e c0068318 eeeeeeee S pdflush
root 13 2] 8 cPd6cbes eeeeeeed S kswapde
root 14 2] 2} c00487a4 0oe00R0Q S aio/@
root 21 2 [} 8 c@1723f4 oeeeeeee S mtdblockd
root 22 2 @ @ c@@487a4 0000O00Q S hid_compat
root 23 2 @ 4] c@187478 eeeoeeee S mmcqd
root 24 2] 2] c00487a4 POQORROR S rpciod/@
root 25 1 748 296 c@ldcBdc afe@c27c S /system/bin/sh
system 26 1 808 244 c@193774 afe@c51c S /system/bin/servicemanager
root 27 1 852 376 cP@@93b98 afedcb4d S /system/bin/vold
root 28 1 672 248 cR19f514 afe@ceac S /system/bin/debuggerd
radio 29 E 5420 676 ffffffff afe@cbBc S /system/bin/rild
root 30 1 75564 21704 c@@93b98 afe@cB44 S zygote
media 31 1 18500 3092 ffffffff afe@c5lc S /system/bin/mediaserver
root 32 1 80@ 304 cB2023c8 afeBc27c S /system/bin/installd
keystore 33 1 1788 452 c@19f514 afe@ceac S /system/bin/keystore
root 34 1 748 316 c@@3bled afe@dldc S /system/bin/sh
root 35 1 840 340 cPRb1308 afe@d29c S /system/bin/qemud
root 38 1 6588 284 ffffffff @@@Geccd S /sbin/adbd
root 44 34 796 292 c@2023c8 afe@c27c S /system/bin/qemu-props
system 52 38 208856 29088 ffffffff afe@c51c S system_server
radio 93 30 113732 2156@ ffffffff afe@dd4ad S com.android.phone
app_1 95 30 106888 22224 ffffffff afe@ddad S android.process.acore
app_11 118 3@ 108972 17064 ffffffff afe@ddad S com.android.mms
app_@ 137 30 97464 16404 fffffff afe@d4ad S com.android.alarmclock
app_4 139 3@ 103888 17440 ffffffff afe@ddad S android.process.media
app_16 199 3@ 96864 15344 fTffffff afe@ddad S com.svox.pico
app_24 219 3@ 183144 21128 fTffffff afe@ddad S com.manning.aip.mymoviesdatabase
app_1 229 30 99520 16676 fTTfffff afe@dd4ad S com.android.inputmethod. lati
app_25 266 3@ 105428 18072 ffffffff afe@d4ad S com.manning.aip.lifecycle a—:o
root 275 38 748 312 ce@3ble@ afe@dldc S /system/bin/sh
ro‘.'l}t 276 275 884 316 00000000 afedc27c R ps
#
A

Figure 3.2 The output of the ps command from the ADB shell shows the currently
running processes.

As you can see in figure 3.2, the ps command provides a good deal of information
about the running processes. You can check the ps documentation for information
about optional switches to control the output, and the meaning of all the columns it
can display. The main things you’ll want to note here are user ID (column 1), process
ID (column 2), and name (column 8). For the most part, the user IDs are app_n,
where 7 is incremented for each application. (Some special built in applications use
special user IDs, such as radio for the phone, or system for settings.) And, the process
names are the names of the application packages.

CHOOSING WHICH PROCESSES GET THE AX

The Android platform does its best to keep every application process around as long
as it can. It can’t keep everything around forever, because resources are limited. So,

78

CHAPTER 3 Managing lifecycle and state

when it’s time to start killing off processes, how does it decide which to keep and
which to kill? It uses a five-level hierarchy, as seen in table 3.1.

Table 3.1 The five levels the Android platform uses to prioritize processes
Process status Description Priority

Foreground A process that’s running an Activity that the user is interacting with, 1
hosting a Service that’'s bound to an Activity that the user is interact-
ing with, hosting a Service that’s executing one of its lifecycle methods, or
is hosting a BroadcastReceiver that's executing.

Visible A process that isn’t used by the foreground, but is still hosting an 2
Activity that can affect what’s shown on the screen, or hosting a
Service that’s bound to another visible Activity.

Service A process that’s hosting a Service started with the startService 3
method (and doesn’t meet the criteria for foreground or visible by any
other means).

Background A process that’s hosting an Activity that has been stopped. Many such 4
processes may exist, and they're kept in an LRU list.

Empty A process that doesn’t host any current application components. 5

Android tries to make sure the highest-priority components, as defined by the hierar-
chy in table 3.1, are kept around, and it allows other processes to be killed to reclaim
system resources. One notable thing about the way the platform uses the hierarchy is
that a process hosting a Service is ranked higher than one hosting any background
activities. This means for long-running background tasks, you should favor a Service
(we’ll learn about services in chapter 5).

Other component lifecycles

Much like Activity components, BroadcastReceiver, Service, and ContentPro-
vider components are also tied to the main application’s process (by default). Even
though they use the same process, these components have a different lifecycle (with
different methods). BroadcastReceiver is simple; it exists during the onReceive
method it defines, and that’s it. Service has its own more involved lifecycle we’ll see
in chapter 5, and we’ll discuss ContentProvider in chapter 8.

FINE-TUNING PROCESS SETTINGS
Though the process arrangement we’ve described here is typical, it’s not always the
case. In advanced situations, if you need to, you can fine-tune the knobs and dials to
control the setup. You can set the process that your application should run under, and
you can optionally control the process that each component runs in.

These are advanced settings, and we don’t want to get too far off track here, but
you should be aware that you can choose to either run multiple applications in the

3.2

3.2.1

Knowing the Activity lifecycle 79

same process, under the same user ID, or run a single application under multiple pro-
cesses. Android has sensible and easy-to-use defaults, but it also gives you full control.
To change the process, you set the android:process attribute in the manifest (which
can be applied to applications and individual components).

Now, why might you want to manipulate these settings? If you want to run multiple
applications and easily access the same files (or other resources, such as database),
and still keep things private from other applications, you could run in the same pro-
cess. Alternatively, if you want to do super multitasking, and you want to take on the
responsibility to manage it correctly, you could run each activity in its own process.
(we’ll learn about services in chapter 5).

Knowing the way that system-level elements such as user IDs and processes affect
your Android application comes in handy, but the components themselves also have
their own lifecycles. Understanding Activity lifecycle is one of the most important,
and unfortunately potentially most confusing, aspects of Android development.

Knowing the Activity lifecycle

Much like processes, activities don’t get to hang around forever and suck up memory
and CPU cycles. Even within a process, with multiple activities associated to the same
application, some activities will be in the foreground and others won’t. Those in the
foreground, the ones the user is working with, get the priority. Other activities may be
stopped when the platform needs to reclaim resources (or killed if the process hosting
them is itself killed, based on the hierarchy we discussed in the previous section).

Users aren’t supposed to notice any of the process and activity swapping that the
platform does. To them the entire workflow of any task they want to perform should
be seamless. If some activities are created new, and some are restored from an inactive
state, the user doesn’t care and shouldn’t notice.

To developers, it’s more complicated. We get stuck with the bill of knowing when
to create and destroy resources, and how to maintain state as our activities are con-
stantly created, destroyed, and recreated. It’s our job, with the help of the framework
Android provides, to make things appear seamless, and to keep our activities respon-
sive and well behaved at the same time. This is where it’s key to understand the Activ-
ity lifecycle phases and methods.

Lifecycle phases and methods

To tackle this, we’ll begin with the big picture, the lifetime phases, and then we’ll dis-
cuss the most important lifecycle methods. Activities have three nested lifetime phases:

= Entire lifetime (created to destroyed)
= Visible lifetime (restarted to stopped)
= Foreground lifetime (resumed to paused)

These lifetime phases correspond to relative importance to the system, and allow logi-
cal points to hook in and create, use, or destroy resources (views, system services,
database cursors, network requests, and more). First, the entire lifetime phase is the

80

CHAPTER 3 Managing lifecycle and state

super set. This encompasses everything from the time an Activity is created until it’s

destroyed. Next, the visible phase, is where an Activity is onscreen and can be seen,
but it might not yet be in the foreground (it may be in transition, or it may be behind
another floating Activity). Finally the foreground phase is the most important: this is

where an Activity isinteracting with a user.

To control the transition through these phases and manage the setup and tear

down of resources, we’ll use lifecycle methods. We’ve already worked with a few of these

(such as onCreate and onPause), and you’re no doubt at least vaguely familiar with

them, but here we’ll spell them out more because using these methods correctly is
essential to building robust Android applications. The most important of these meth-
ods are seen in table 3.2 (which is taken directly from the Android documentation).

Table 3.2 Lifecycle methods

Method

onCreate

onRestart

onStart

onResume

onPause

Description

Called when the activity is first created. This is where
you should do all of your normal static setup: create
views, bind data to lists, and so on. This method
also provides you with a Bundle containing the
activity’s previously frozen state, if there was one.

Always followed by onStart.

Called after your activity has been stopped, prior to it
being started again.

Always followed by onStart

Called when the activity is becoming visible to the
user.

Followed by onResume if the activity comes to the
foreground, or onStop if it becomes hidden.

Called when the activity will start interacting with the
user. At this point your activity is at the top of the
activity stack, with user input going to it.

Always followed by onPause.

Called when the system is about to start resuming a
previous activity. This is typically used to commit
unsaved changes to persistent data, stop anima-
tions and other things that may be consuming CPU,
and so on. Implementations of this method must be
quick because the next activity will not be resumed
until this method returns.

Followed by either onResume if the activity returns
to the front, or onStop if it becomes invisible to the
user.

Killable

No

No

No

No

Pre-Honeycomb

Next

onStart

onStart

onResume or
onStop

onPause

onResume or
onStop

Knowing the Activity lifecycle 81

Table 3.2 Lifecycle methods (continued)

Method Description Killable Next
onStop Called when the activity is no longer visible to the Yes onRestartor
user, because another activity has been resumed onDestroy

and is covering this one. This may happen either
because a new activity is being started, an existing
one is being brought in front of this one, or this one
is being destroyed.

Followed by either onRestart if this activity is com-
ing back to interact with the user, or onDestroy if
this activity is going away.

onDestroy | The final call you receive before your activity is Yes nothing
destroyed. This can happen either because the activ-
ity is finishing (someone called £inish on it, or
because the system is temporarily destroying this
instance of the activity to save space. You can distin-
guish between these two scenarios with the
isFinishing method.

Though we generally will try to avoid repeating information from the Android docu-
mentation, table 3.2 is an intentional exception. The Activity lifecycle methods are a
big source of potential confusion, and this information is a key reference. Table 3.2
shows where the lifetime phases stop and start, along with a quick description of what
each lifecycle method does, whether each method is killable, and the order of
the methods.

To add a bit more to the descriptions of the most common lifecycle methods you’ll
override and to provide some notes, we’ve included table 3.3.

Table 3.3 The most commonly overridden Activity lifecycle methods, when they’re invoked, and what
you’ll typically use them for

Method When invoked When to override Description/Notes
onCreate | Invoked when an You'll always override This is where all initialization code
Activityisn't | onCreate (making sure to should be placed. If it’s the first
around in any call the super method, which | time an Activity has been
form, and mustbe | is true for all overridden lifecy- | started, it won’t have any saved
initially created. cle methods). instance state (the Bundle

passed to it will be null). If an
Activity was previously
destroyed and is being restarted, it
may have state (the Bundle will
be what was last saved in
onSavelnstanceState).

http://developer.android.com/reference/android/app/Activity.html#finish()
http://developer.android.com/reference/android/app/Activity.html#isFinishing()

82

3.2.2

CHAPTER 3 Managing lifecycle and state

Table 3.3 The most commonly overridden Activity lifecycle methods, when they’re invoked, and what
you’ll typically use them for (continued)

Method When invoked When to override Description/Notes
onResume | Invoked when an It’s common to override When this method is called, it
Activity has onResume to update views, means the Activity is being dis-
come to the fore- | butit shouldn’t be used to rein- | played and handling user events.
ground and will stantiate components. This is | This is the last nonkillable method
start interacting where you might refresh views | in the lifecycle.
with the user. based on a web service call to
retrieve data that may have
changed in between the time
the Activity was stopped
and resumed.
onPause Invoked when an You'll often override onPause. | This is where you'll store global per-

sistent state, or state that relates to
the task/application that outlives
the Activity instance (data that
needs to be saved in files or data-
bases, and so on). This is also
where you’ll want to release any
resources. For example, this is
where you'll often unregister intent
receivers, unbind services, remove
location and sensor listeners, stop
background threads, and so on.

Activityis
going to the back-
ground, buthasn’t
been killed yet.

This is where you'll clean up
anything your Activity
has created.

The three methods you’ll use most commonly are the ones we’ve noted in table 3.2:
onCreate, onResume, and onPause. Still, as we’ve seen from figure 3.3, these aren’t the
only Activity lifecycle methods. Some of the others, such as onStart, onStop, and
onDestroy, can be useful if you need more fine-grained control.

Now that we know what these methods are, and have an overview of what they do,
let’s take a look at a real example that reinforces these concepts.

The lifecycle in action

To get a more concrete idea of what causes an Activity to move through the lifecycle
methods—when it’s paused and resumed versus when it’s killed—we’re going to walk
through an example that will log and notify us at each stage. Then, we’ll poke and
prod it and see what happens. Doing so will show us how activities are placed in a
stack. It’ll also allow us to see firsthand what happens when an Activity is initially
launched, and then what happens when the Back or Home key is pressed. Also, we’ll
discuss killing the process that hosts the Activity to simulate the system reclaiming
resources and doing the same.

The application we’ll build to do this contains an abstract parent Activity that
logs and optionally issues a Notification message for each lifecycle method that
occurs. We’ll extend this Activity with three others so we can explore the lifecycle

Knowing the Activity lifecycle 83

7 Lifeyde Event: onCreate
ifecycleExp|

Main - demonstrate lifecycle
methods

P Lifeyde Event: onResume

Activity2 - stacking activities

Go to Activity3 5 .
- Activity3 - instance and

nonConfiguration state

Edit me, automatic state text

Number of resumes:
0

Figure 3.3 The three LifecycleExplorer activities display lifecycle method events as
notifications, stack activities, and work with instance state.

methods, see how the stack responds, and later work with instance state. The com-
pleted application, which we’ll call LifecycleExplorer, is seen in figure 3.3.

The LifecycleExplorer Activity screens can be accurately described as sparse and
ugly, but that’s okay. Here we’re focusing on function over form. The first screen,
Main, includes a few simple UI elements and buttons to go to the next Activity or fin-
ish the current one. The second screen, Activity2, is a placeholder in the Activity
stack. The third screen, Activity3, we’ll use later in the next section to work with
instance state.

GRAB THE PROJECT: LIFECYCLEEXPLORER You can get the source
code for this project, and or the packaged APK to run it, at the
Android in Practice code website. Because some code listings here
are shortened to focus on specific concepts, we recommend
that you download the complete source code and follow along
within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/Hbuq, APK File: http://mng.bz/vUQO

The important part of the LifecycleExplorer Main screen isn’t what it displays so much
as how we can visualize the lifecycle methods with the notifications it generates, as
seen in figure 3.4.

The notifications that LifecycleExplorer generates, as seen in figure 3.4, show the
class name, method name, and a timestamp. When we initially launch the application,

http://mng.bz/Hbuq
http://mng.bz/vUQO

84

CHAPTER 3

Managing lifecycle and state

47 Lifeycle Event: onCreate
ifecycleExplorer |

Main - demonstrate lifecycle
methods

Finish

Go to Activity2

00:14

i
October 2, 2010 Al @ 10:46pm

Android | Glear |

Notifications

com.manning.aip.lifecycle.Main

= onResume

1286059570933

com.manning.aip.lifecycle.Main
{ onStart

1286059570925

com.manning.aip.lifecycle.Main
1 onCreate

1286059570668

Figure 3.4

The LifecycleExplorer
Main Activity screen
generates notifications.

which invokes the Main Activity, we see that onCreate, onStart, and onResume are
involved. Here’s the code for this screen.

Listing 3.1 The Main.java Activity of LifecycleExplorer overriding the lifecycle methods

public class Main extends LifecycleActivity ({ Extend
private Button finish; LifecycleActivity
private Button activity2;
private Chronometer chrono;
@Override
public void onCreate (Bundle savedInstanceState) { Override
super.onCreate (savedInstanceState) ; onCreate to
setContentView (R.layout.main) ; instantiate
finish = (Button) findViewById(R.id.finishButton) ; resources
finish.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
finish () ;
}
1)
activity2 = (Button) findViewById(R.id.activity2Button) ;
activity2.setOnClickListener (new OnClickListener ()
public void onClick (View v) {
startActivity(new Intent (Main.this, Start Activity2
Activity2.class)) ; via Intent
}
P i
chrono = (Chronometer) findViewById(R.id.chronometer) ;
}
@Override
protected void onResume () { Override onResume to

super.onResume () ;

reset when resuming

Knowing the Activity lifecycle 85

chrono.setBase (SystemClock. elapsedRealtime()) ;
chrono.start () ;

}

@Override
protected void onPause () { Override onPause
chrono.stop () ; to clean up

super.onPause () ;

}

For the Main screen, we first extend LifecycleActivity @. We’ll see the code for
that class, which sends the notifications, next. After that, we see the basic overriding
pattern that we always use to manage an Activity class. We set up views in
onCreate @, then we reset anything that needs to be reset in onResume 0O, and we
cleanup in onpause @. To demonstrate something you might stop when pausing and
reset when resuming, we’re using a Chronometer widget. This is a fancy TextView that
counts seconds. We don’t want this to keep counting while our Activity is paused.
We admit it’s a contrived example, but we want to keep this simple. More realistically
you’ll do things such as update data in onResume, and you’ll save data and release
resources like listeners in onPause.

The only other notable thing here is that we include a Button to fire an Intent to
take us to the second screen in the application, Activity2 @. There isn’t any special
code in Activity2, just a TextView and Button as we saw in figure 3.5, so we’ll skip
the code (though you can browse or download the complete application). We include
Activity2 so that we can have several activities in the stack to see how the Back key
works in a moment.

The next part of the LifecycleExplorer code we want to look at is the Lifecy-
cleActivity we’re extending (which could be extended by any Activity). The fol-
lowing listing generates the logging and notifications for the lifecycle methods.

Listing 3.2 The LifecycleActivity.java class sends Not i fications foreach lifecycle method

public abstract class LifecycleActivity extends Activity ({
private static final String LOG_TAG = "LifecycleExplorer";

private NotificationManager notifyMgr;
private boolean enableNotifications;
private final String className;

public LifecycleActivity() ({
super () ;
this.className = this.getClass () .getName () ;

}

public LifecycleActivity(final boolean enableNotifications)
this () ;
this.enableNotifications = enableNotifications;

}

@Override

86

public void onCreate (Bundle savedInstanceState) { <+

CHAPTER 3 Managing lifecycle and state

super.onCreate (savedInstanceState) ;
notifyMgr = (NotificationManager)

getSystemService (Context . NOTIFICATION_SERVICE) ;

debugEvent ("onCreate") ;

}

@Override

protected void onStart () { S —

debugEvent ("onStart") ;
super.onStart () ;

}

@Override
protected void onResume () {

debugEvent ("onResume") ;

super.onResume () ;

}

@Override

protected void onPause () {

debugEvent ("onPause") ;

super.onPause () ;

@ Each lifecycle
method invokes
debugEvent

// remainder of lifecycle methods, such as onStop,
// onDestroy, and more
// omitted for brevity - they do the same thing as previous:
// debug, super
private void debugEvent (final String method)
long ts = System.currentTimeMillis() ;
Log.d(LOG_TAG, " *** " 4 method + " " + className + " " + ts);
if (enableNotifications) {

Notification notification =

new Notification(android.R.drawable.star big on,

"Lifeycle Event: " + method, OL);
RemoteViews notificationContentView =

debugEvent logs at debug

level and sends Notification

new RemoteViews (getPackageName (),
R.layout.custom notification_layout) ;
notification.contentView = notificationContentView;
notification.contentIntent =
PendingIntent.getActivity(this, 0, null, O0);
notification.flags |= Notification.FLAG _AUTO_CANCEL;
notificationContentView.setImageViewResource (
R.id.image, android.R.drawable.btn_star) ;
notificationContentView.setTextViewText (
R.id.lifecycle_class, getClass() .getName()) ;
notificationContentView.setTextViewText (
R.id.lifecycle_method, method) ;
notificationContentView.setTextColor (
R.id.lifecycle_method, R.color.black) ;
notificationContentView.setTextViewText (
R.id.lifecycle timestamp, Long.toString(ts)) ;

notifyMgr.notify((int) System.currentTimeMillis(), notification) ;

Knowing the Activity lifecycle 87

The LifecycleActivity includes an override for each Activity lifecycle method.
Inside these it calls the local debugEvent method with the method name @. The
debugEvent method itself logs the method name, class name, and a time stamp at the
debug level, and optionally sends a Notification with the same information (you can
use logcat to see the output, which is faster, or view the notifications in the UI) 0.
The notification details are included here for completeness, but aren’t part of the
scope of this example (we’ll learn more about notifications when we work with ser-
vices in chapter 5).

Now that we’ve seen how simple this is and we know how it works, it’s time to put
our Main Activity through its paces. First, recall from figure 3.4 that launching our
Activity the first time resulted in onCreate, onStart, and onResume being invoked,
in that order. What happens if we press the Home or Back keys? After trying it, we get
the notifications shown in figure 3.5.

Curiously, as we can see from figure 3.6, pressing Home or Back (after clearing
previous notifications and restarting our VM) results in a different lifecycle path.
When we press Home we see that the path is onSaveInstanceState, onPause, onStop.
Instance state, which we’ll discuss in the next section, is what’s passed in the Bundle to
onCreate if our Activity is ever destroyed by the system and then resumed. The
onSaveInstanceState method does the saving. It’s not a true lifecycle method, but it’s
related and important, so for now we’ve included a Notification for it as well. The
path for Back is onPause, onStop, onDestroy.

Why does Back not save the instance state and end up destroying the Activity,
whereas Home saves the instance state and doesn’t destroy the Activity? The default
behavior of the Back key is to pop the current Activity off of the activity stack by call-
ing the finish method, which destroys it without saving any state. If an Activity is
finished, it doesn’t need to save state (it’s done). Home, on the other hand, doesn’t
finish the Activity; it moves it to the background at the top of the activity stack.

October2,2010 | SGAMI @ 11:19+u | | October 2, 2010 Al @ 11:220m

Android clear || | Android Clear
com.manning.aip.lifecycle.Main com.manning.aip.lifecycle.Main

L onStop B& onDestroy
1286061543848 1286061733701
com.manning.aip.lifecycle.Main com.manning.aip.lifecycle.Main

1= onPause = onStop
1286061543208 1286061733695
com.manning.aip.lifecycle.Main com.manning.aip.lifecycle.Main

1 onSavelnstanceState 1 onPause
1286061543179 1286061733059

Figure 3.5 The lifecycle
@ methods fired when

| Iy pressing the Home and
s S Back keys respectively.

88

CHAPTER 3 Managing lifecycle and state

The activity stack

As users navigate from one activity to the next, each activity is pushed onto a linear
stack known as the activity stack. Users can go back to previous activities, which will
pop the current activity off the stack and resume the previous one, by using the Back
key. The home screen (Launcher) is the end of the stack. We’ll talk more about the
activity stack in section 3.4 when we discuss tasks.

The activity stack can be confusing at times, but it’s how the platform can easily keep
track of where the user has been and allow them to go back to the previous Activity.
It’s a great feature for users. We can see more of how this works by pressing the Go to
Activity2 button from our Main Activity and navigating to Activity2, as seen in
figure 3.6.

When we press Go to Activity2, the Main Activity isn’t destroyed. Instead it goes
through onSaveInstanceState, onPause, and onStop (like when we pressed Home),
and ends up in the background. At the same time, Activity2 is created (onCreate,
onStart, onResume) and then displayed. At this point (at the Activity2 screen) if we
press Back, Activity2 is destroyed, and then Main is what’s left at the top of the stack,
so it’s resumed from the lifecycle event notifications as seen in figure 3.7.

So those scenarios demonstrate the happy path. They show how the stack works,
what happens when an Activity is initially created, when it’s resumed, and when it’s
destroyed with £inish. What happens when we get off that path and into the weeds?
What happens when memory is low and the process hosting an Activity is killed?
There are several ways you can find out. You can log in to the adb shell and kill the
process of the application, or you can use ddms to halt the target VM.

In either case, the Activity has to make it to the onResume method before it can be
killed (or it wouldn’t have shown up anyway). Once there, the process can be killed at

October 3, 2010 @ 12:24m

Android | clear

. com.manning.aip.lifecycle.Main
Y./ onStop
[1286065416049
com.manning.aip.lifecycle.Activity2
onResume
1286065415687
com.manning.aip.lifecycle.Activity2
onstart
1286065415658
com.manning.aip.lifecycle.Activity2
{ onCreate
1286065415607
com.manning.aip.lifecycle.Main
onPause
1286065415518
com.manning.aip.lifecycle.Main
onSavelnstanceState

Activity2

Figure 3.6

Navigating from Main
to Activity2 in the
LifecycleExplorer
application shows the
lifecycle events that
are invoked for each

Activity.

3.2.3

Knowing the Activity lifecycle 89

any point. To describe this in fine Yogi Berra style, [goere=—ms DAL 12:32

Android &r_]

you’ll only get as far as you’ve gotten. Combining this
knowledge with an understanding of which items the

Android system Kkills first when it needs to reclaim

. i K com.manning.aip.lifecycle.Activity2
resources (see table 3.1) will help you identify where |7 onpestroy

activities will typically be killed. Background activities J2E000247163

. . com.manning.aip.lifecycle.Activity2
are on the chopping block first, and by definition |57 anstop

they’ll have gotten to onStop. Visible but non-fore- 12B6003ITTR

e com.manning.aip.lifecycle.Main
ground activities are next, and they’ve already been |7 onresume

to onPause 1286065947417

com.manning.aip.lifecycle.Main

Speaking of the rough patches off of the happy |7 onstan
path, the final thing we need to address with regard JaE6005937308
.. . . com.manning.aip.lifecycle.Activity2
to Activity and lifecycle is what happens on config- [gipause

uration changes. 1286065947297

Configuration changes @ L ==

The Configuration class defines all of the device Figure 3.7 Pressing the Back key

configuration information that’s returned to an displays the lifecycle events when
navigating from Activity2 back

application in the form of resources. This includes)
to Main.

information about hardware configuration, device

orientation, screen size, locale settings, and more. Some configuration elements rarely
change at runtime, such as the locale of the device. Others, such as orientation, hap-
pen frequently.

A special gotcha to look out for with Android is that by default, when a Configura-
tion change occurs, Android destroys and recreates the current Activity. Because ori-
entation changes (portrait versus landscape) are a type of configuration change, this
means a lot of tearing down and re-creating activities. Whenever a user tilts the phone,
or slides out the keyboard (depending on the device, and settings), this occurs.

To see this happen, try rotating the screen while running our sample Lifecycle-
Explorer application. To rotate the screen in the emulator, you can press CTRL+F11 on
your keyboard. If you do this, you can easily see the lifecycle path from the log output
using logcat (adb logcat from the command line or from Eclipse Window -> Show View
-> Android -> Logcat), as shown in figure 3.8.

On a configuration change, an Activity goes from onPause to onDestroy, and then
from onCreate to onResume. Additionally, instance state is saved and restored
(onSaveInstanceState and onRestorelInstanceState). This is significant. Activities
aren’t paused and resumed, because they can’t be. The configuration is different. They
need to restart to respond to any potential differences. But, they do get to hold on to
the instance state, and restarting should be fast (not noticeable to users). We’ll talk about
instance state and special nonconfiguration instance data in the next section, but the
point to take away here is that activities willbe created/destroyed/recreated frequently.

Understanding the Activity lifecycle and the stack of activities is the key to a
responsive and robust Android application. You can create well-behaved activities by

90

3.3

CHAPTER 3 Managing lifecycle and state

D/LifecycleExplorer(266): 3o« onCreate com.manning.aip.lifecycle.Main 1300820501738 _
D/LifecycleExplorer(266): s« onStart com.manning.aip.lifecycle.Main 1300820501988 5 ..
D/dalvikvm(52): GC freed 962@ objects / 727664 bytes in 176ms

D/LifecycleExplorer(266): s« onRestorelnstanceState com.manning.aip.lifecycle.Main 1300820502196
D/LifecycleExplorer(266): +sex onResume com.manning.aip.lifecycle.Main 1300820502208

D/dalvikvm{ 52): GC freed 4030 objects / 219792 bytes in 97ms

I/WindowManager(52): Setting rotation to 1, animFlags=1

I/WindowManager(52): onOrientationChanged, rotation changed to 1

I/WindowManager(52): Config changed: { scale=1.@ imsi=8/@ loc=en_US touch=3 keys=2/1/1 nav=3 orien=2 layout=18}
D/LifecycleExplorer(266): s+« onSavelnstanceState com.manning.aip.lifecycle.Main 1300820586548
D/LifecycleExplorer(266): s« onPause com.manning.aip.lifecycle.Main 1300820506559 0 s
D/LifecycleExplorer(266): s« onStop com.manning.aip.lifecycle.Main 1300820586597 -y
D/LifecycleExplorer(266): sk onRetainNonConfigurationInstance com.manning.aip.lifecycle.Main 1308820507097
D/LifecycleExplorer{ 266): 3= onDestroy com.manning.aip.lifecycle.Main 1300820587107

D/LifecycleExplorer(266): s« onCreate com.manning.aip.lifecycle.Main 1300820507137

D/StatusBar(52): updateResources

D/fLifecycleExplorer(266): sk onStart com.manning.aip.lifecycle.Main 1300820507375

D/LifecycleExplorer(266): 3=« onRestorelnstanceState com.manning.aip.lifecycle.Main 1300820587394
D/LifecycleExplorer{(266): s« onResume com.manning.aip.lifecycle.Main 1300820507483

Figure 3.8 A logcat output demonstration of the lifecycle methods an activity undergoes after an
orientation change

Controlling configuration change settings

If you don’t want your Activity to be destroyed and recreated in its entirety when a
configuration change occurs, you can set the android:configChanges attribute in
the manifest. This allows you to list the individual types of configuration changes you'’ll
have the Activity handle itself. It's good to be aware of this advanced setting, but
you generally shouldn’t use this as a substitute for correctly handling configuration
changes and properly passing instance state (you don’t want to fight the framework).

knowing the Activity lifecycle phases and methods and understanding where to cre-
ate and destroy resources (and also not to leave things like static references hanging
around). The next important part of working with activities and the lifecycle is know-
ing how to handle instance state and getting your activities to resume with it intact.

Controlling Activity instance state

If you’ve ever filled out a web form and then submitted it, only to have all of your form
fields cleared because of one failed validation, you know how frustrating it can be to
use an application that doesn’t manage and restore state. It’s maddening. Now, take
that same scenario and magnify it by putting it on a mobile platform, pecking out a lot
of data on a small virtual keyboard, and accidentally rotating the device. What, where
did my data go?

What if it’s an Android application and it loses the data it had for a large ListView
and starts to re-retrieve the data from the network? Ouch, that’s expensive, and it’s
sucking battery juice. Or, more subtly, what if the application still has the ListView
data but it’s 1,000 items long and it loses its place and drops the user back to the
top? Ugh.

Fortunately you can prevent these types of issues and maintain a smooth and sane
user experience if you know a bit about how to manage instance state in your Android
activities.

331

Controlling Activity instance state 91

Saving and restoring instance state

Instance state can be a confusing topic, so we’ll start with some clarification of terms.
Instance state refers to the state your activities need to reset themselves to where the
user left off. This means things like current nonsubmitted form values, selections, the
index in a ListView, and so on. Instance state doesn’t mean information that should
persist like the entire list of choices in a form, or your contacts, or your application
preferences. Those things are persistent state. So we have two types of state:

= Instance state—Lives as long as the instance of your Activity
= Persistent state—Outlives your Activity (files, preferences, database, network)

The confusing part here is that by instance, Android doesn’t mean the exact same Java
instance. Instead, Android is referring to a new instance of the same object type with the
same stuff so that it seems to the user like the same instance. Here’s the key: instance
state is saved whenever the system, and not you, destroys your Activity, as follows:

= Instance state saved—System destroys an Activity (config change or otherwise)
= Instance state NOT saved—£inish is called (default for Back key)

Armed with that knowledge, Activity behaviors you’ve seen or troubleshot before
might make more sense. We touched on this in our discussion of the Back and Home
keys in section 3.2, but the onSaveInstanceState method is what the system will use
to try to save instance state. It calls this when a configuration change occurs, or any
other time it’s forced to destroy your Activity (if it can; if the memory situation is
critical, it may not be able to get around to saving instance state). Instance state is
saved in a Bundle. This is a package of Parcelable (interprocess passable) data that
can include primitives, strings, and arrays of the same. (Other Parcelable types can
be passed too, but these are beyond our scope for now.)

The system will save reasonable defaults for instance state, but you can override
onSaveInstanceState and either take over or supplement it. For example, for each
View the system will call through to View.onSaveInstanceState. This means Edit-
Text elements will keep their contents and will be restored automatically, and so on.

Things are restored either in onCreate, which takes a Bundle as input, or in onRe-
storeInstanceState. The most common way to restore values is to use onCreate, but
onRestorelInstanceState can be used if you want to separate this function from the
initialization of other components.

To get an idea of how all of this creating, saving, destroying, and restoring, works,
let’s go back to our sample application and try a few things. For this we’ll first look at
the code for Activity3, which dabbles in instance state, as seen in the following listing.

Listing 3.3 The Activity3.java class saves and restores state

public class Activity3 extends LifecycleActivity
private static final String COUNT_KEY = "cKey";

private TextView numResumes;

92

CHAPTER 3 Managing lifecycle and state

private int count; Include class

@override instance variable

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.activity3) ;
numResumes = (TextView) findViewById(R.id.numResumes) ;

}

@Override
protected void onResume () {
super.onResume () ;

numResumes . setText (String.valueOf (count)) ; Set number of
| count++; resumes to count
@Override
protected void onRestoreInstanceState (Bundle savedInstanceState)
if ((savedInstanceState != null) &&
savedInstanceState.containsKey (COUNT_KEY)) {
count = savedInstanceState.getInt (COUNT KEY) ; Override
} onRestorelnstanceState

super.onRestoreInstanceState(savedInstanceState);

}

@Override
protected void onSavelInstanceState (Bundle outState) { 0 Override onSave-
outState.putInt (COUNT_KEY, count) ; / InstanceState

super.onSavelnstanceState (outState) ;

}

The first interesting thing we start out with in the Activity3 class in listing 3.3 is the
count instance variable @. We use this inside onResume to set the value of a TextView
to the count @. Because this overall application is dealing with lifecycle, we’re using
this example to keep track of how many times this activity has been resumed.

To maintain this instance variable even when our Java instance is destroyed and re-
instantiated, we have to implement the instance state methods. We use onSave-
InstanceState to store the count in the Bundle created @, and we use onRestore-
InstanceState @ to retrieve the same Bundle and reestablish the previous count.
Obviously, this is a simple example, but if we didn’t do this our count would never
show more than 0 (it would be cleared when the Activity is destroyed, and wouldn’t
be updated when paused and resumed). By going to Activity3 and then rotating the
screen (which causes a configuration change that destroys and recreates the Activ-
ity), we can demonstrate that this works as seen in figure 3.9.

As we can see in figure 3.9, our Activity was destroyed and then recreated after
an orientation change. Still, it was able to maintain the previous text value we set
for an EditText automatically, and it was able to keep track of its previous internal
count state as well. This all went smoothly, and the user didn’t lose any infor-
mation or have to re-enter any values because we used onSaveInstanceState and
onRestoreInstanceState.

3.3.2

Controlling Activity instance state 93

(o N
October 4,2010 17 M @ 2:06 am
Android Clear
7 Lifeycle Event: onRestorelnstancestate otifici - .
LifecycleExplorer com.mann
onResume
Activity3 - instance and nonConfiguration state ‘T-“’B“"i" ipiIifecycle Arthiitys
L_J_' onRestorelnsta eState
, ; R’ 1286157946265
Edit me, automatic state text maintained by e =
= com.manning.aip.lifecycle. Activity3
View.onSavelnstanceState| i onstart
1286157946228
Number of resumes: com.manning.aip.lifecycle.Activity3
B onCreate
1 1286157946176
com.manning.aip.lifecycle. Activity3
By onDestroy
1286157946142
com.manning.aip.lifecycle Activity3

Figure 3.9 The Activity3 screen shows the instance count has been maintained,
and the lifecycle- and instance state-related methods involved via notifications.

Before we leave the discussion of instance state, there’s one more special type of
instance state you may find useful that goes even further: the potentially confusingly
named nonconfiguration instance state.

Using nonconfiguration instance state

Nonconfiguration instance state refers to any extensive state you need to pass from the
current instance of an Activity to its future self that will be created as the result of a
configuration change. This special optimization Android can be incredibly useful at
times. The caveat is that it applies only to the current instance, and the one that’s cre-
ated immediately after that previous instance is destroyed and recreated.

So how does this work, and what data can you pass? In the following listing, we’ve
added the related code to the LifecycleExplorer Activity3 class so we can see it
firsthand.

Listing 3.4 Adding code to an Activity to work with nonconfiguration instance state

@Override .
public void onCreate (Bundle savedInstanceState) { Retrieve
super.onCreate (savedInstanceState) ; nonconfig
setContentView (R.layout.activity3) ; state
numResumes = (TextView) findViewById(R.id.numResumes) ;
Date date = (Date) this.getLastNonConfigurationInstance() ;
if (date != null) {
Toast .makeText (this, "\"LastNonConfiguration\" object present: "
+ date, Toast.LENGTH_LONG) .show () ; Showlweﬁous

} data, if present

94

CHAPTER 3 Managing lifecycle and state

@Override
public Object onRetainNonConfigurationInstance () { Savenonconﬁg
return new Date() ; state

}
}
Inside a revised onCreate method for Activity3, we see that we’re grabbing an
Object from the getLastNonConfigurationInstance method @. Specifically we're
casting the Object to a Date, and then displaying it with a Toast @, but the important
thing here is you can use whatever you want. This isn’t a primitive or a special Android
Parcelable type anymore; it’s a plain old Object. Here we could cast to an image,
Thread, Map, or to our own bean that contains all of the above—anything we want.

That is, anything that we’ve explicitly made available to getLastNonConfigura-
tionInstance by putting it in onRetainNonConfigurationInstance. In this case,
when we override that method, we return the Date €. Android will map the data
from the current instance of your Activity to the next instance of the same Activity
class that’s immediately recreated.

Big Fat Warning

Even though you can put any type of Object into nonconfiguration instance state, you
need to be careful not to ever retain anything that holds a strong reference back to
the Activity that's about to be destroyed (a View, an entire Adapter, and so on).
If you do, the Activity can’t be completely destroyed, and you’ll have a memory leak
(you’ll keep creating instances that can’t be destroyed).

After we add the code in listing 3.4, we can relaunch the LifecycleExplorer applica-
tion, navigate to Activity3, and rotate the screen. Doing so will then trigger a config-
uration change and show us that the Date gets passed as nonconfiguration data, as
seen in figure 3.10.

The great thing about nonconﬁgu— ﬁ? Lifeycle Event: onSavelnstancestate

ration instance state is that it’s flexible
and fast. There are a few concerns
though. First it only works for the cur- Activity3 - instance and nonConfiguration state
rent-to-immediate-next Activity, so
you can’t use it haphazardly (it’s an
optimization, but can’t be solely relied ;Lhﬁyncar:ggn;é%ugmcn' object present: Sun Oct 03 22:08:34
upon). And you have to be careful not 4

Edit me, automatic state text updated

to pass things such as strings, draw-

ables, or any other resource that could

change on a configuration change.
, K " Figure 3.10 Passing nonconfiguration state from
After all, we're talking about “noncon- the current Activity to the immediately created

figuration” related state. instance of the same class, as a state optimization

3.4

3.4.1

Getting things done within a task 95

With nonconfiguration state and regular instance state, you have some powerful
tools for creating a seamless and nearly instantaneous user experience with Android
activities. Next, to round out our lifecycle tour, we’ll be focusing on groups of activities
from one or more applications, also known as tasks.

Getting things done within a task

One additional concept in Android relates to processes, applications, and activities—
the task. A task isn’t something you instantiate via a Java object or define in the mani-
fest; instead it’s a framework concept that groups activities. This group is important
because it relates closely to the activity stack and affects how users navigate groups of
components.

Defining a task

We’ve already discussed the technical definition of a group of components in the
same root package bundled into an APK file—that’s an Android application. Still, as
we noted previously, that’s not what a user considers an application. To a user, an
application consists of all of the activities they need to get something done. To
Android this group of activities is a task.

One Activity always kicks off a task, and it’s known as the root activity. Most of the
time the root Activity is started via the Home screen (the Launcher application).
From there, each Activity involved in the task is added to the task activity stack and
the entire task is treated as a unit, as depicted in figure 3.11.

Task

Root Activity

Activity A

Activity B

Activity C

Figure 3.11 Diagram
of a task and a stack of
activities within it

96

3.4.2

3.4.3

CHAPTER 3 Managing lifecycle and state

-—

P~
M o

LightningCalc BookWorm

Browser Camera LifecycleExplc Figure 3.12 The recent tasks

switcher shows the tasks a user
can navigate back to displayed
using the root activity’s icon.

Another way to see how activities are grouped into tasks—and to see the current run-
ning tasks on a device—is to long press on the Home key. This will bring up the
Recent Tasks switcher, which shows an icon and name for each task, based on the root
Activity, as seen in figure 3.12.

Beyond the root Activity, any other activities that are related to the application
by being invoked via an Intent are (by default) placed on an activity stack for that task.
We discussed an activity stack in section 3.2, and we saw how an activity can be pushed
and popped from the stack. We’ve returned to this concept because multiple activity
stacks are floating around, one for each task.

Stacking activities within a task

A group of related activities is a task, and within that group the activities are placed in
a stack that the user can navigate. The user can push activities onto the task stack by
starting them (using an application), and can pop them off with the Back key. When
the user selects one task, the stack shows only activities related to that task—not all
activities jumbled together in one large bunch. You can’t go back through multiple
tasks; that would be potentially confusing. Instead the navigation is per task.

Allowing parts of multiple applications to work together is extremely powerful.
Grouping the different parts of multiple applications that are needed to accomplish
an objective into a task makes them more manageable (and controls the activity
stack navigation).

Understanding activity task affinity

Tasks provide powerful leverage for users, and they’re convenient for developers too.
We don’t have to rewrite an activity that can send an email or take a picture; we can
use the builtin applications via intents. When we do this, the activities that are
invoked are linked with the application that invoked them as part of that task. The
activities your application invokes are said to have an affinity to the task.

3.5

Summary 97

Much of the time you won’t need to worry about controlling this affinity. If your
application is started via the Launcher, the main Activity will start a new task (and
run in a new process with its own user ID), and it’'ll be the root activity. Most other
activities that are touched by your application will be associated with the task, and
have affinity to it, automatically.

Affinity matters when you want fine-grained control. As usual, Android is willing to
do the task/activity association for you, but it also allows you to step in and change the
settings if you desire. Specifically, you can explicitly set the task affinity, change the
launch mode behavior of activities (how they’re related to tasks when launched via
intents), control how and when the task/activity stack is retained or cleared, and more.
For full details on these advanced settings you should check the current documentation.

Tasks are important because they’re the final step in bringing together intents, appli-
cations, and activities, and they provide a logical grouping for navigation. Tasks are also
the last part of our foray into the world of the lifecycle and state of Android applications.

Summary

Congratulations, you’ve conquered part 1 of Android in Practice, and you should now
have a good background to prepare you for developing applications on Android!

Here we’ve focused on what an Android application is, and on the lifecycle of the
Activity. Activities are the primary component of any Android application, and
working within this lifecycle to control how components are created and destroyed is
essential. Parallel to lifecycle, it’s also critical to know how to maintain and restore
instance state for activities. This can make or break the user experience. And it can be
tricky to manage this in an environment that doesn’t guarantee your application will
run until you shut it down, and instead destroys and creates components on demand.

Another key thing we’ve discussed here is how Android groups activities together
according to the user’s objective, regardless of the applications involved, and treats
them as a task. Tasks are important because they’re logical navigation points for users,
and they bring things full circle to with the stack of activities they contain.

These concepts—applications, activities, tasks, processes, and maintaining state—
complete our final venture into building the foundation of your Android understand-
ing. This chapter rounds out part one of the book, and is the final cornerstone of the
basic information you’ll need to get started with the more involved practical examples
in parts 2 and 3 of the book.

Part 2

Real world recipes

In the second part of Android in Practice, you’ll move beyond the basics and
build many complete example applications that will cover, in depth, many of the
most common application features and requirements. In chapter 4, you’ll start
with the user interface. This will cover resources and views, and additional con-
cepts such as using styles and themes, and supporting different screen sizes.
Chapter 5 will show you how to effectively multitask on Android using back-
ground services. Chapter 6 will continue the theme by presenting an overview of
threads and concurrency including working with threads and handlers, asyn-
chronous tasks, and more. Chapter 7 will then change gears to focus on storing
data locally. Here, you’ll use the file system, the internal and external storage,
shared preferences, and a database. Chapter 8 will shift to sharing data between
applications using content providers. Here, you’ll both consume content from
other applications, and learn how to create your own provider and expose data to
others. Chapter 9 will take your data beyond the local device and delve into net-
working. Here, you’ll learn how to cope with the instability that is inherent in
mobile data connections, as well as how to work with HTTP and web services
using JSON and XML. Chapter 10 will then navigate into location-based services
and working with location providers. Here, you’ll learn how to determine what
providers are available and how to switch between them, and how to work with
map based data and activities. Chapter 11 will bring in multimedia, where you’ll
work with audio and video, and learn a little about files, resources, and animation
too. Chapter 12 will extend the animation and visual elements to teach you about
2D and 3D drawing, including working with the canvas, and using OpenGL.

Getting the puxels perfect

In this chapter

® Rendering views

= Creating layouts

® Working with themes and styles

= Creating interfaces for mobile apps

I don’t know answers, I just do eyes. You Nexus, huh? I design your eyes.

—Blade Runner

This chapter is about all things visual. We’ll see how views are laid out in a hierar-
chy and drawn to screen in several passes. We’ll also explore more about the layout
managers Android provides, and how layout parameters are applied. We’ll then
learn how to use themes and styles to customize an application, how to draw cus-
tom buttons and other window elements, and how to make user interfaces scale to
different devices. Finally, most importantly, we’ll see how to deal with common
problems arising in all of these areas along the way. Be aware that this is one of the
longest chapters in this book, but don’t fret! It’s also one of the most fundamental
and widely applicable, so you’ll find plenty of material here that’ll make your
Android developer life easier.

101

102

4.1

CHAPTER 4 Getting the pixels perfect

The MyMovies application

To carry us through the examples in this chapter, we’ll be starting a new sample appli-
cation, MyMovies. The DealDroid application we introduced in chapter 2 served us
well to demonstrate most of Android’s core elements, but in fairness wasn’t the pretti-
est Droid to look at. Smartphone users are humans, not Androids, and humans are
visual beings—we love a bit of bling in our applications! That’s why this time around,
we’ll focus on presentation and deal less with functionality.

GRAB THE PROJECT: MYMOVIES You can get the source code for
this project, and/or the packaged APK to run it, at the Android in
Practice code website. Because some code listings here are short-
ened to focus on specific concepts, we recommend that you
download the complete source code and follow along within
Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/7]xQ, APK File: http://mng.bz/26DZ

The task is to write a simple application that keeps track of your personal movie collec-
tion. To achieve that, we’ll present the user with a list of movie titles, each of which can
be flagged as haveor don’t haveby tapping the list entry. As mentioned earlier, we’ll keep
it simple featurewise. In later chapters, we’ll make it truly useful by extending the fea-
ture set introduced here. Using the example application, we’ll learn how to create
highly customized user interfaces, which not only work and scale well, but also look
good. To whet your appetite, figure 4.1 shows a B @ 12:08m
screen shot of the application you’ll complete by
the end of this chapter.

Asyou cansee, the list of movies that are known
to the application takes the majority of the screen.
We’ll accomplish this by using a ListView (which
we met in chapter 2) that has been customized to
add a translucent background and a gradient list
selector with rounded corners that changes color

The Shawshank Redemption (1994) .

The Godfather (1972)

when it’s clicked. We’ve also added a background
image and a title image that automatically scale QUENERMENEAERSINTEIL)
with the screen width and orientation. These
changes are by no means specific or limited to this I{‘;ﬁ%;’ﬁ?-} the'Bad, and the Ugly
particular application. Anything you learn in this '

chapter can be applied to your own applications.

8 8 8

Pulp Fiction (1994)

Butfirst things first: let’s make sure we understand

what’s happening under the hood when Android
renders a user interface. Therefore, before dis-
cussing the MyMovies implementation, we’ll dis- ~ Figure 4.1 The MyMovies application

title screen. Note how we’ve customized
)) the user interface to use features such
in detail. as a translucent list selector.

cuss view rendering, layouts, and layout managers

http://mng.bz/7JxQ
http://mng.bz/26DZ

4.2

4.2.1

View hierarchies and rendering 103

View hierarchies and rendering

View rendering is an integral aspect of any application that involves a UI. We all love
nifty-looking applications, but your application will spend a lot of time drawing its var-
ious interface elements. Therefore, it’s important to understand what happens under
the hood so you can avoid performance pitfalls. It’s bad if your applications are beau-
tiful, but slow. Though we’ve already introduced and used views, we're going to expand
on their features. Specifically, we’ll explain how they’re organized, how they’re drawn,
and what sort of things you should keep an eye on in order to keep the UI snappy.

View hierarchies

We know that views in Android are typically defined in a declarative fashion using
XML. XML structures information into trees; all nodes extend and branch from a sin-
gle root node. It’s no coincidence that Android employs this kind of representation,
apart from XML’s general popularity. Internally, the user interface of any Android
application is represented as a tree of View objects. This is known as the view hierarchy
or view tree. At the root of every view tree—and every application Ul—sits a single
DecorView. This is an internal framework class that you can’t use directly; it represents
the phone window you’re currently looking at. The DecorView itself consists of a sin-
gle LinearLayout, which branches into two FrameLayouts: one to hold the title sec-
tion of the currently visible Activity, and one to holds its content (FrameLayouts
block out an area on the screen to display a single item). Content here means anything
that’s defined in the current activity’s layout XML. To illustrate, let’s examine the XML
layout for the MyMovies main screen (res/layout/main.xml):
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”

android:layout width="fill parent”
android:layout_height="fill parent"s

<ListView android:id="@android:id/list"
android:layout width="fill parent"”
android:layout_height="fill parent"
/>

</LinearLayout>

To understand how the hierarchy of view elements works for this screen, we’ll use the
hierarchyviewer tool that comes with the SDK. You can launch this tool either from the
command line, or if you’re using the latest version of the ADT, via the Hierarchy View
perspective in Eclipse. Either method will connect to a running emulator instance or
connected device and then present multiple options about your layouts. Figure 4.2
shows the view hierarchy for the main layout seen earlier.

The single dark box sitting in the center of figure 4.2 is the LinearLayout with which
we began the XML file. As you can see from the hierarchy, LinearLayout has a Frame-
Layout parent for the content node (identified by the android.R.1id.content resource
ID). This is Android’s way of representing the content area of the screen—the area

104

CHAPTER 4 Getting the pixels perfect

L
e — Mo

Lt

1548

CheckedTestVimw ‘

CheckedTestVima
RN
e

Figure 4.2 The view hierarchy for the MyMovies main layout created using the hierarchyviewer tool.
The left branch represents the window’s title bar, the right branch the current activity’s contents.

which will make up most of your application’s user interface. The majority of the time,
you’ll only be concerned with this branch—anything extending from the content node.
The sibling FrameLayout for the title node (to the left) is also shown; this layout makes
up the window’s title bar. Underneath MyMovie’s root LinearLayout, we see the List-
View we defined in listing 4.1, which in turn has a child LinearLayout for each item in
the list.

Whenever an Activity is started, its layout view tree is inserted into the applica-
tion view tree by a call to the Activity’s setContentView (int layoutId). This effec-
tively replaces everything beneath the current content node with the view tree
identified by layoutId, which, as we’ve seen, is a layout as defined in a layout XML file.
The process of loading a layout and merging it into the current view tree is referred to
as layout inflation. This is done by the LayoutInflater class, which resembles a tree
growing in nature. Once in a while, a new branch grows, and from that branch grows
another branch, and so on. Layouts aren’t directly inflated from XML because
Android converts XML into an efficient binary format before compilation (you’ll learn
about Android’s build logic in chapter 14).

When a View has been inflated, it becomes part of the rendering chain, which
means it can be drawn to the screen, unless it’s obscured by another view. Android
uses a two-pass algorithm to do that, which we’re going to look at briefly now.

4.2.2

View hierarchies and rendering 105

View rendering

Once a view tree is in memory, Android must draw it. Each view is responsible for
drawing itself, but how the view is laid out and positioned on the screen can only be
determined by looking at it as part of the whole tree. This is because the position of
every view affects the position of the next. In order to figure out where to draw a view
and how big it should be, Android must do the drawing in two separate passes: a mea-
sure pass and a layout pass.

MEASURE PASS

During the measure pass, each parent view must find out how big their child views
want to be by calling their measure method. This includes pushing a measure specifi-
cation object down the tree that contains the size restrictions imposed by a parent
view on a child. Every child must then find out how big it wants to be, while still obey-
ing these restrictions.

LAYOUT PASS

Once all views have been measured, the layout pass is entered. This time, each parent
must position every child on the screen using the respective measurements obtained
from the measure pass by calling their layout method. This process is illustrated in
figure 4.3.

The layout and measuring of views happens transparently to the developer, unless
you’re implementing your own View, in which case you must override onMeasure and
onLayout and hence actively take part in the rendering passes. Knowing about the com-
plexity of view rendering makes one thing obvious: drawing views is expensive, espe-
cially if many views are involved and the view tree grows large. Unfortunately, your
application will spend a fair amount of time in Android’s drawing procedures. Views
are invalidated and redrawn all the time, either because they’re obscured by other
views or they change state. There isn’t much you can do about this, but what you can do
is be aware of the overhead when writing your code and try to reduce unnecessary

Step 1: measure pass Step 2: layout pass

layout
S

measurg
NSRS

child of

chald of
—

child 1

child 2.1 child 2.2 child 2.1

Figure 4.3 Views are rendered using a two-pass traversal of the view tree. Pass one collects
dimension specifications (left); pass two does the positioning on the screen (right).

106

4.3

CHAPTER 4 Getting the pixels perfect

rendering. Table 4.1 lists some best practices for trying to optimize performance when

working with views.

Table 4.1 Best practices when working with Views

Advice

The cheap-
est View is
the one that’s
never drawn

Avoid View
cluttering

Try to reuse

Why

If a View is hidden by default, and only appears in reaction to a user interface event
such as a tap/click, you may want to consider using a ViewStub instead (a place-
holder view). You can also dynamically add/remove a view from the rendering chain by
setting its visibility to View.GONE.

Along the lines of the previous advice, think twice about using a view and simplify your Ul
when you can. Doing so will keep screen layouts clean, and improve performance.

Often you can avoid extra inflation and drawing by caching and reusing views. This is

Viewswhere | important when rendering lists, where many items are displayed at once and state

possible changes frequently (like when scrolling the list). The convertView and
ViewHolder pattern can help here, and is covered in technique 1 of this chapter.

Avoid exces- Some developers use nested LinearLayouts to arrange elements relative to each

sive nesting other. Don’t do that. The same result can usually be achieved by using a single

of layouts RelativeLayout or TableLayout.

Avoid If you find yourself copying view definitions in order to use them in more than one lay-

duplication out, consider using the <include> tag instead. Similarly, nesting layouts of the same

kind is in most cases useless duplication, and can be avoided using the <merge> tag.

View performance should always be on your mind when working with views and layouts.
Some things may be obvious to you if you already have experience with Android, but we
wouldn’t have mentioned them if we didn’t see applications violating these rules on a
regular basis. A good idea is to always double-check your layouts for structural weak-
nesses using the layoutopt tool that ships with the SDK. It’s by no means the only thing
you should rely on, but it’s fairly clever about finding smells in your layouts.

Mobile applications are all about user interaction: your application will likely
spend most of its time in drawing its various interface elements and reacting to user
input, so it’s important that you have a solid understanding of what drives your UL
Now that we’ve seen how views and layouts are organized in memory, and what algo-
rithms Android uses to measure and position views before it draws them on the
screen, we’ll next turn to more detail about layouts themselves.

Arranging views in layouts

Whenever you implement the user interface for an Activity, you're dealing with that
Activity’s layoul. As we’ve already noted, layouts arrange views on screen. A layout is
like a blueprint for a screen: it shows which elements the screen consists of, how they’re
arranged, what they look like, and so on. Hence, when implementing a screen for your
application, thinking about layout is one of the first things you should do. Knowing
your layout managers is crucial if you work with designers. You’ll probably get mockups
or wireframes for each screen, and you should know how to map a design to Android’s
layout managers.

4.3.1

Arranging views in layouts 107

LAYOUT VERSUS LAYOUT MANAGER

When speaking of layout, we mean the set of all views for a single Activity as ar-
ranged by its layout XML file located in the res/layout folder. This is not to be con-
fused with a certain layout class, called a layout manager. An Activity’s layout may
involve more than one layout manager at a time, depending on its complexity. As
we’'ve already discussed, a layout manager is another View (a ViewGroup more pre-
cisely) that serves as a container and arranges views in a specific manner.

In the next section, we’re going to give you a detailed rundown of general layout anat-
omy, plus a complete overview of the layout managers Android supports.

Layout anatomy

You’ve already seen several layouts at this point, such as the Hello Android layout
from chapter 1 and the DealList layout from chapter 2. We’ve discussed the basics of
these layouts, but we haven’t specifically addressed which elements can be placed in
layout files and how they’re structured overall. We also haven’t touched on the param-
eters and attributes layouts support. We’ll look at these aspects now.

COMPOSITION OF LAYOUT FILES
Every layout file starts with an XML preamble, where you can define the file’s encod-
ing, typically UTF-8. Like any other XML document, a layout consists of a single root
node with zero or more children, depending on whether the root node is a View-
Group, which is the case for all layout managers, or a simple View, in which case it must
be the only view defined in the layout. Node names correspond to class names, so you
can put anything in a layout that’s a concrete class inheriting from android.
view.View. By default, class names are looked up in the android.view (SurfaceView,
ViewStub, and so on) and android.widget (TextView, ListView, Button, and so on)
packages. For other views that aren’t part of the framework, such as those you define
yourself, you have to use the fully qualified class name instead (such as com.myapp.
MyShinyView). This becomes particularly important if you want to embed a Google
Maps MapView (we’ll learn about location and MapView in chapter 10). This class con-
tains Google proprietary code and isn’t distributed along with the core framework.
Therefore, you have to use MapView using its fully qualified name:
<com.google.android.maps.MapView

android:id="@+id/mapview"

android:layout width="fill parent”

android:layout height="fill parent"”

android:clickable="true"

android:apiKey="Your Maps API Key"
/>
LAYOUT ATTRIBUTES AND PARAMETERS
Every view in a layout can take two different kinds of attributes: those that are specific
to the view class and its parent classes, and those that are specific to the layout man-
ager it’s being placed into. Which attributes a view can take may be obtained from the

108

CHAPTER 4 Getting the pixels perfect

view’s documentation (or Eclipse’s completion). A TextView, for instance, defines the
android:text attribute, which allows you to define its default text value. It also under-
stands the android:padding attribute, because that attribute is inherited from
Android’s View base class.

AVAILABLE VIEW ATTRIBUTES You can look up all view attributes exposed by
Android in one place in the documentation of the android.R.attr class.

Layout parameters are different: you can tell them apart from normal attributes by
their layout_ prefix. They define how a View should be rendered while participating
in the layout. Unlike normal attributes, which apply to the View directly, layout param-
eters are hints to the view’s parent view in the layout, usually a layout manager. Don’t
confuse a view’s parent view in a layout with a view’s parent class; the former is a sepa-
rate view in the layout in which the view is embedded, whereas the latter refers to the
view’s type hierarchy. All layout managers, and also some other views such as the Gal-
lery widget, define their own layout parameters using an inner class called Layout -
Params. All LayoutParams support the android:layout _width and android:layout_
height attributes, and all layout manager parameters further support the android:
layout margin attributes.

MARGIN AND PADDING Margin and padding can also be defined separately for
each edge. In that case, define any of these attributes for a view:

= android:layout marginLeft
= android:layout marginTop
= android:layout marginRight

= android:layout marginBottom
The same approach works for the android:padding attribute.

Any other parameters are specific to the various LayoutParams implementations
found across the framework. The width and height parameters are special in two ways:
they must always be present on any view or Android will throw an exception. More-
over, they can take not only numeric values (pixels), but also two reserved values:

= fill parent—Indicates that the View would like to take up as much room as
possible inside its parent view. It’ll try to grow as big as its parent (minus pad-
ding and margins), regardless of how much room its own children occupy. If,
for instance, the parent is a square of 100px and neither margins nor padding
were defined, the child will be a square of 100px, too. Note that fill_parent
has been deprecated and is now called match parent. You’ll likely want to sup-
port older versions of Android, so stick to £111_parent until older platform ver-
sions disappear.

= wrap_content—Indicates that the View would like to take only as much room
inside its parent, as it needs to fully render its own content. If for instance, the
parentis again a square of 100px, and the view’s own children only occupy a 50px
square, then the view itself will only be a square of 50px.

4.3.2

Arranging views in layouts 109

Now that we’ve seen several layout files in action, and have touched on how they’re
composed and the attributes and parameters they support, our next step is to dig fur-
ther into layouts while we also examine the available layout managers in more detail.

Layout managers

Android currently defines four different layout managers that you can use to arrange
views on the screen. You're free to implement your own if you need something more
elaborate, but we won’t cover that here. They can be divided into structured and
unstructured, or by complexity, as summarized by table 4.2.

Table 4.2 Available built-in Android layout managers

Complexity Unstructured Structured
Lower FrameLayout LinearLayout
Higher RelativeLayout TableLayout

There’s also a fifth layout manager, AbsoluteLayout, but it has been deprecated and
shouldn’t be used, because it doesn’t scale to different screen configurations (which is
important, as we’ll see in section 4.7). With the exception of AbsoluteLayout, we're
now going to visit each of these types briefly. Let’s start with the simplest, FrameLayout,
and work our way up to RelativeLayout, the most complex.

FRAMELAYOUT

This is the simplest of all layout managers. FrameLayout doesn’t do any real layout
work, but serves as a container (a frame). FrameLayout displays a single child element
at a time. It supports multiple children, but they’re placed in a stack. Child elements
are slapped to the top-left corner and drawn on top of each other in their order of
declaration. Does that sound useless to you? To be frank, FrameLayout is rarely useful
for anything beyond a mere container or box-style layout. One case where it is useful
is for fitting floating views next to a screen layout (for instance, the ignition library,
which is a useful set of Android utilities and enhanced components, uses this tech-
nique to render “sticky notes” that can be attached to any widget). The following list-
ing shows how to define a FrameLayout holding two TextView views.

Listing 4.1 An example FrameLayout containing two TextViews

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"”
android:layout_height="fill_ parent"s>
<TextView
android:layout width="150px"
android:layout_height="150px"
android:background="@android:color/darker_gray"
/>
<TextView
android:layout_width="75px"

110 CHAPTER 4 Getting the pixels perfect

android:layout height="75px"
android:background="@android:color/white"
>

</FraméLayout> ﬁ %m]ﬁ 6:39 PM
You may wonder how these two text views are '
being rendered as part of this layout. Have alook
at figure 4.4, where you can see how they’re laid
out on top of each other, with the topmost view
being the last rendered.

It goes without saying that FrameLayout isn’t
only the simplest, but also the fastest layout man-
ager, so always think twice before jumping to
more complex ones! Let’s move on to amore use-
ful layout manager, one that we’ve already seen
used a few times, and one that you’ll probably
spend some quality time with: LinearLayout.

LINEARLAYOUT

LinearLayout is the most commonly used
(sometimes overused) layout manager. It’s sim-
ple, easy to use, and serves many purposes. As
we’ve noted, in a LinearLayout, all views are

o K K) Figure 4.4 Two views arranged using
arranged in lines, either horizontally or verti- grameLayout. Note how one view lays

cally, depending on the value of the android: on top of the other and both are pinned to
the top-left corner.

orientation attribute. If you don’t explicitly
specify the orientation, it’ll default to horizontal. LinearLayout has two additional lay-
out parameters to be used by its children, as seen in table 4.3.

Table 4.3 Layout parameters specific to LinearLayout

Attribute Effect

android:layout_weight Tells the layout manager how much room this View should occupy
relative to its siblings. The size of the View will be determined
based on the relation of all weights to each other. If, for example,

all views define the same weight, then the available space will be
distributed equally among them. Which axis (width or height) should
be affected can be controlled by setting the respective size to a value
of 0px.

Note that weights don’t have to add up to 1, although it's common to
distribute layout weight over all children as fractions of 1 (percentage
semantics). The relation between all weights is what matters.

android:layout_gravity | Tells the layout manager in which direction the View likes to be
floated inside its container. This attribute is only meaningful when the
View's size on the same axis is either fixed to a constant value or
setto wrap_content.

Arranging views in layouts 111

In the listing 4.2, we define a layout similar to what we did with FrameLayout in list-
ing 4.1, but this time using the LinearLayout layout manager. You can also see how we
use the weight attribute to distribute the available space equally among the two text
views in the next listing.

Listing 4.2 An example LinearLayout with weighted children

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent”
android:layout _height="fill_ parent"s>
<TextView
android:layout width="0px"
android:layout_height="100px"
android:layout_weight="0.5"
android:background="@android:color/darker_gray"
/>
<TextView
android:layout width="0px"
android:layout_height="100px"
android:layout_weight="0.5"
android:background="@android:color/white"
/>

</LinearLayout>

Figure 4.5 shows how this layout is rendered. hﬁ @il @ 6:32pPm
Note how the two views take up exactly the dEedegre
same space across the horizontal screen axis.
Again, the relation of the weights is all that mat-
ters: setting both to 1 would have the same
effect, because 0.5 /05=1/1=1.
LinearLayout is simple but effective. It’s well
suited to solving typical layout problems such as
arranging buttons next to each other. You can
also use it to create grids and tables, but there’s
amore convenient way to do this: TableLayout.

TABLELAYOUT

TableLayout is a LinearLayout (it inherits
from it) with additional semantics that make it
useful for rendering tables or grids. It intro-
duces a special View class called TableRow,
which serves as a container for table cells. Each
cell must consist only of a single View. This
View can again be a layout manager or any

Figure 4.5 Two views arranged using
LinearLayout. You can see how both views
are sized to take the same amount of
simple TableLayout with a single row. space and are aligned horizontally.

other ViewGroup. The following listing shows a

112 CHAPTER 4 Getting the pixels perfect

Listing 4.3 An example TableLayout with a single row

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"

android:layout height="fill parent">

<TableRow>
<TextView
android:layout_width="150px"
android:layout_height="100px"
android:background="@android:color/darker_gray"
/>
<TextView
android:layout_width="150px"
android:layout_height="100px"
android:background="@android:color/white"
/>
</TableRow>
</TablelLayout>
Figure 4.6 illustrates what our table definition a M@ 10:15PM
looks like onscreen. The differences to the leL;
LinearLayout example are marginal, for the
aforementioned reasons.

From figure 4.6, you can see how each
TableRow child View becomes a column in the
table. You’d need significantly more code to
arrive at the same layout using LinearLayout,
so remember to use this layout manager when-
ever you need cells for tables or grids.

At this point, we’ve seen the first three lay-
out managers Android provides out of the box,
and we still don’t know how to create truly
complex layouts. The layout managers so far
are performing simple tasks; at best, they line
up views next to each other. If you need more
control over how views should be arranged on

the screen, then you need to turn to what’s
arguably the most useful Android layout man-

Figure 4.6 Two views arranged using
ager: RelativeLayout. TableLayout. It differs from Linear-
Layout only in the way you set up the
layout, because TableLayout is merely
RelativeLayout is the most sophisticated of a specialized LinearLayout.

RELATIVELAYOUT

the four layout managers. It allows almost arbi-

trary placement of views by arranging them relative to each other. RelativeLayout
exposes parameters that allow its children to reference each other by their IDs (using
the @id notation). To boil this down, let’s look at another sample to see how
this works.

Arranging views in layouts 113

Listing 4.4 An example RelativeLayout showing the use of relative attributes

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout height="fill parent">
<TextView android:id="@+id/text_view_ 1"
android:layout_width="150px"
android:layout_height="100px"
android:background="@android:color/darker_gray"
/>
<TextView android:id="@+id/text_view 2"
android:layout_width="150px" .
android:layout_height="100px" Att"!’t'te for L.
android:layout_toRightOf="@id/text_view 1" relative positioning
android:layout centerVertical="true"
android:background="@android:color/white"
/>
</RelativeLayout>
In listing 4.4, text view 2 declares that it should be drawn “to the right of” text
view 1 using the layout toRightOf attribute @. This demonstrates how Relative-
Layout views reference each other to define their positions. This is an effective and scal-
able way of positioning views, but it has a subtle side effect: because you can only
reference views using @id/view_id that have already been defined, you may find your-
self in a situation where you need to shuffle around View definitions to reference them.
This can quickly become awkward with complex layouts. To solve this problem, you can

use a special ID notation to tell the framework to create any IDs that don’t yet exist.

HANDLING IDS IN LAYOUTS

Consider again the example from listing 4.4. If text_view 1 were to reference
text_view_2 instead, you’d have to swap their definitions, or you’d get an error about
text_view_2 not being defined. To avoid this problem, you can use the special @+id
notation when declaring an ID. When you add the +, Android will create a new ID for
any View that doesn’t exist yet.

NOTE Though it may sound awkward, because IDs are used to identify
resources, IDs themselves are also resources. This means that as with any
other resources such as strings, you can create an ids.xml file in res/values
and use it to predefine blank IDs (IDs that have a name, but don’t reference
any other resources yet). The @+id notation is then no longer needed to use
these IDs, because they already exist (but using it doesn’t hurt, either). To
define an ID in an ids.xml resource file, use the item tag:

<item type="id" name="my id" />

What @+id does is create a new ID in Android’s internal ID table, but only if it doesn’t
yet exist. If it does already exist, it references the existing ID (it doesn’t cause an
error). You may use + on the same ID as often as you like, but the ID will only be cre-
ated once (we say it’s an idempotent operation). This means you can use this notation

114

CHAPTER 4 Getting the pixels perfect

to reference a View that’s defined further
down in a layout XML file. Android will create
any such ID when you use it for referencing
the View, and when the View is finally defined,
it’ll reuse it.

To complete our discussion about layout
managers, figure 4.7 shows the two TextView
views from the previous examples arranged
using RelativeLayout.

With the four builtin layout managers
Android provides, you should be able to create
almost any layout you need, even fairly com-
plex ones. Once you start building more
involved layouts, it’s also a good idea to go
back to the layoutopt tool and let it guide you
with any issues it might uncover (we noted this
previously, but it’s easy to use, and often over-
looked, so it bears repeating).

That covers our views and layouts 101. We
feel that we’ve equipped you with enough
background knowledge that you should be
able to understand what makes an Activity in
Android, including the layout containing its

a _ Nl & 9:07PM

Figure 4.7 Two views arranged using
RelativeLayout. Note how we can arrive
at almost arbitrary arrangements by
specifying all positioning attributes using
only relative values.

visual elements, and even how it’s drawn to the screen. It’s time to get our hands on

some techniques now. We want to show you advanced techniques that will likely

become good companions in your day-to-day Android UI development. Let’s wrap up

our discussion of layouts with our first technique: merging and including layouts.

The merge and include directives

A handy optimization for your own sanity, and for layouts, is to not repeat yourself.

As your layouts get more and more complex, you’ll increasingly find yourself dupli-

cating parts of your layout code because you want to reuse it elsewhere. A good
example of this is a Button bar with Ok and Cancel buttons. Here’s an example of

such a layout.

Listing 4.5 A layout with a button bar for Ok and Cancel actions

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout width="fill parent”
android:layout height="fill parent">

<TextView android:text="An activity with a button bar"

android:layout width="wrap content"”

TECHNIQUE 1 The merge and include directives 115

android:layout height="wrap_content"
/>
<!-- a button bar -->
<LinearLayout android:orientation="horizontal"
android:layout width="fill parent”
android:layout height="wrap_content">
<Button android:text="@string/ok"
android:layout width="wrap_content"”
android:layout height="wrap_content”
/>
<Button android:text="@string/cancel"
android:layout width="wrap_content”
android:layout height="wrap_content”
/>
</LinearLayout>
</LinearLayout>

Things are well and good if you only need these buttons in a single Activity, but what
happens if you need them in multiple places? As we’ve seen, every Activity defines
its own layout file. You can copy the layout section you need into multiple files, but as
a good programmer, you know that this is a bad idea. Code duplication leads to pro-
grams that are brittle and difficult to maintain.

PROBLEM
You want to share certain parts of a layout with other layout files to minimize code
duplication resulting from copying the same code over and over to other layout files.

SOLUTION
When you notice repetitive sections across different layout files, like this one, it’s time
to check into the special layout <merge> and <include> elements. These elements
allow you to extract commonly used View snippets into their own layout files (think of
view or layout components) that can then be reused in other layouts.

To see how this works, we can extract the button bar related section from listing 4.5
into its own file called button_bar.xml (and put it in res/layout) as shown in the fol-
lowing listing.

Listing 4.6 A reusable button bar component defined in its own layout file

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent”
android:layout height="wrap_content">

<Button android:text="@string/ok"
android:layout width="wrap_content"”
android:layout_height="wrap_content"
/>

<Button android:text="@string/cancel"
android:layout_width="wrap_content"”
android:layout height="wrap_content"
/>

</LinearLayout>

116

CHAPTER 4 Getting the pixels perfect

In order to pull one layout section or component into another file you can then use
the <include> element:

<include layout="@layout/button bar" />

That’s it! The include element doesn’t take any specific parameters other than the
layout. Nevertheless, if you want, you can pass it custom layout parameters or a new ID
to override the attributes defined for the root view of the layout you’re including.

INCLUDE AND LAYOUT ATTRIBUTES GOTCHA When overriding layout_width or
layout_height using include, remember to always override both. If, for
example, you only override layout _width, but not layout_height, Android
will silently fail and ignore any layout_* overridden settings. This isn’t well
documented, and somewhat controversial, but easy to work around once you
know what’s going on.

One question remains: what happens if you want to include views that don’t have a
common parent View or you want to include a layout in different kinds of parent
views? You’d think that you could get rid of the parent LinearLayout and redefine
button_bar.xml from listing 4.6 as follows:

<?xml version="1.0" encoding="utf-8"?>

<Button android:text="@android:string/ok"
android:layout width="wrap content"”
android:layout height="wrap_content"
/>

<Button android:text="@android:string/cancel”
android:layout width="wrap_content"”
android:layout height="wrap_content"

/>

Unfortunately, that’s impossible, because that’s not a valid XML document. Remem-
ber that XML documents are trees, and a tree always has a root. This one doesn’t, so
it'll fail. Android has a solution: the <merge> element is a placeholder for whatever
parent View the views in the (partial) layout will be included into. This means we can
rewrite the previous snippet as follows to make it work:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
<Button android:text="@android:string/ok"
android:layout width="wrap_ content"”
android:layout height="wrap_content"
/>
<Button android:text="@android:string/cancel"
android:layout width="wrap content"”
android:layout_height="wrap_content"
/>

</merge>

Think of <merge> as a wildcard: it’s a glue point, and whatever the layout it wraps will
be inserted into (a LinearLayout, RelativeLayout, and so on) will replace the

4.4

TECHNIQUE 1 Expanding on ListView and Adapter 117

<merge> node at runtime. You can use this technique anytime you’d otherwise have to
include a View under another View of the same kind (which is duplication, and hence
discouraged).

DISCUSSION

We urge you to internalize this technique and apply it to your layout code whenever
you can. It'll keep complex layout files clean and easy to read, and significantly reduce
code duplication and hence maintenance work. A fundamental engineering principle
is to never encode the same information more than once in your application, com-
monly known as the DRY principle (don’t repeat yourself). That being said, <merge>
and <include> help keep your layouts DRY.

One disadvantage of chopping up your layouts like this is that Android’s graphical
layout tool in Eclipse will sometimes get confused and not render the preview correctly.
On the other hand, it should be a question of time until Android’s tool support
improves enough to preview even layouts that are merged together in complex ways.

With this first little technique, we conclude our discussion about layouts in
Android. Remember how we promised to code a full application—one that manages
movie titles and that looks good? We keep our promises. Because MyMovies, like the
DealDroid, is made up from a list view, we’re going to come back one more time to list
views and adapter. There’s more to them then you may have expected.

Expanding on ListView and Adapter

We’ve already seen how a ListView can be used with an Adapter in chapter 2. That
example was simple: we showed a list of deal items, but the data behind that list was
static. Once it was put behind the list, it didn’t change. For MyMovies, we’d like to be
able to tick off Movies that are in our collection. For this to happen, we need to
expand on list views and adapters. We now need a stateful list that includes elements
that can be in two states: checked or not checked. Moreover, we’re going to spice
things up by showing you how to add header and footer elements to lists. Along the
way, we’ll also explore a few optimizations, such as the ViewHolder pattern, which will
make your list render significantly faster and hence scroll more smoothly.

First things first. In order to maintain the checked state we’ll need for MyMovies,
we have to store that the user owns a movie when it’s selected from the list, and
remove it when it’s unselected. For this example, we won’t bother to persist that infor-
mation to a database or file because we haven’t yet introduced the mechanisms to do
so. This means that for now, all movies we’ll add to the “collection” by tapping them
will be lost when we restart the application. This is intentional at this point, so we can
stay focused on understanding how adapters can maintain state. Don’t worry—we’ll
learn about saving information to files and databases, and more, in chapter 7.

To see how the views for our ListView are bound to the data source we’ll use a
static movies file, via our Adapter. For now, we need to return to ListActivity and
review the code for MyMovies.

118

CHAPTER 4 Getting the pixels perfect

Managing a stateful list

Recall from listing 4.1 that the main MyMovies screen is composed of a ListActivity
that takes up the entire screen with a single ListView. Also, each movie in the list con-
tains a check box that can be toggled. This toggle is a simple example of maintaining
state between our model and our views. The question is: where do we store this state?
And how do we reflect updates to this state in the ListView?

PROBLEM

You have a list that’s backed by data coming from an adapter, and you want either
changes coming from the view (such as from a list item click) to be written back into
the data source, or changes to the data reflected back to the view.

SOLUTION

When having to maintain dynamic data that can change in reaction to view events (or
any other event), you’ll have to create your own adapter implementation that per-
forms the following tasks:

= If the data wrapped by the adapter changes, it must inform the view about these
changes so it can redraw itself.

= If the user interacts with the view in a way that’s supposed to update the data, we
must inform the adapter about this and make the according changes to the
data source.

To see how this works, we’ll start with the seemingly sparse code for the main MyMov-
ies screen, as shown in the following listing. Then, we’ll move on to the custom
adapter.

Listing 4.7 The MyMovies.java ListActivity class file

public class MyMovies extends ListActivity { 4—0 Extend ListActivity
private MovieAdapter adapter; Include
public void onCreate (Bundle savedInstanceState) { Adapter

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
ListView listView = getListView() ;

this.adapter = new MovieAdapter (this) ; SetAdawmr
listView.setAdapter (this.adapter) ; on ListView
listView.setItemsCanFocus (false) ;

}

@Override
protected void onListItemClick(ListView 1, View v,
int position, long id) {
this.adapter.toggleMovie (position) ;
this.adapter.notifyDataSetChanged() ;

TECHNIQUE 2 Managing a stateful list 119

Our MyMovies main screen works similarly to the other activities we’ve seen up to this
point, including the fact that it extends ListActivity @ (which we first saw in chap-
ter 2). Also similar to chapter 2, this Activity includes an Adapter @. Before going
further, remember that we use ListActivity because it takes care of many of the
details of managing a ListView. This includes things such as easy access to ListView
via getListView, and easy click handling with onListItemClick. Also, we again set
our Adapter into our ListView to provide the data source for the items the list will
handle ©.

Next, we need to visit the data source and custom MovieAdapter our ListView will
be using. Before setting up the adapter, let’s look at the source of our movie data. We
could fetch data from the Internet (some web services do that kind of thing, as we saw
with the DealDroid, and will see in even more detail in chapter 9), but let’s keep it
simple for this example. We’ll take IMDB’s top-100 movies and store them as an array
resource in our application. To do that, we create a new file called movies.xml in res/
values with the following structure:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="movies">
<item>The Shawshank Redemption (1994)</item>
<item>The Godfather (1972)</item>
<item>The Godfather, Part II (1974)</item>
<item>The Good, the Bad, and the Ugly (1966) (It.)</item>

</string-array>

</resources>

Recalling what we learned about resources in chapter 2, we can now reference this
array in our application as R.array.movies. Note that we could’ve hard-coded the list
as a plain old Java array in one of our application classes. But using Android’s resource
mechanism gives us the advantage of both having full control over when we want to
load the data into memory, and at the same time keeping our application code clean.
After all, application code is supposed to contain logic, not data.

The next step is to get this data to show in the ListView. Because we’re dealing
only with an array, Android’s ArrayAdapter class is a perfect choice to implement
our MovieAdapter (which we assigned to the ListView in listing 4.7). MovieAdapter
is where we’ll track the movies a user adds and provide an interface to its state so
the check box view can update accordingly. The following listing shows how this
is implemented.

Listing 4.8 The MovieAdapter keeps track of selected movies

public class MovieAdapter extends ArrayAdapter<Strings { Extend
ArrayAdapter

private HashMap<Integer, Boolean> movieCollection =
new HashMap<Integer, Boolean>(); Include

HashMap

public MovieAdapter (Context context) {

120

CHAPTER 4 Getting the pixels perfect

super (context, R.layout.movie_item,
android.R.id.textl, context Use super
.getResources () .getStringArray (R.array.movies)) ; constructor

}

public void toggleMovie (int position) Toggle
if (!isInCollection(position)) { movie state
movieCollection.put (position, true);
} else {
movieCollection.put (position, false);
1

}

public boolean isInCollection(int position)
return movieCollection.get (position) == Boolean.TRUE;

@Override .
public View getView(int position, View convertView, OVﬂTMe
ViewGroup parent) { getView

View listItem = super.getView(position, convertView, parent) ;

CheckedTextView checkMark = null; Try to get
ViewHolder holder = (ViewHolder) listItem.getTag() ; ViewHolder
if (holder != null) {
checkMark = holder.checkMark;
} else { 0 Establish
checkMark = (CheckedTextView) 7 view
listItem.findViewById (android.R.id. textl) ;
holder = new ViewHolder (checkMark) ; Setup
listItem.setTag (holder) ; ViewHolder

1
checkMark.setChecked(isInCollection(position)) ;

return listItem;
} Implement inner

private class ViewHolder { ViewHolder class

protected final CheckedTextView checkMark;

public ViewHolder (CheckedTextView checkMark) {
this.checkMark = checkMark;
1

}

The first thing to note about MovieAdapter is that it extends ArrayAdapter @. By
doing this, we need only implement the adapter methods we’re interested in, and we
don’t have to reinvent the wheel. From there we also see that MovieAdapter includes a
local HashMap for storing movie state data @. The user’s movie collection is modeled
as a mapping from positions in the movie list to Boolean values (true meaning the
user owns the movie). Again, this state is transient, so once the user exits the applica-
tion it’ll be lost, but you can see how we could reference a database, the filesystem, or
any other storage mechanism here if we wanted to.

TECHNIQUE 2 Managing a stateful list 121

Next, we see that the constructor makes a call to the ArrayAdapter super construc-
tor, like any good Java subclass, and there provides the context, layout to use for each
item, the ID of a TextView to populate for each item, and the initial data collection ©.
The first method we see is toggleMovie, which is used to update the model’s state 0.
Next is the all-important getView method that we first saw in chapter 2. This method
returns the view needed for each item, and is called whenever a list item must be
(re)drawn @.

Redrawing of the list items happens frequently, for example when scrolling through
the list. Because this behavior can have a lot of overhead, we use the ViewHolder pat-
tern to optimize the way our ListView gets and populates list items. The idea is to elim-
inate extra calls to findviewById because that’s a relatively expensive method. To do so,
we cache findviewById’s resultin a ViewHolder object. ViewHolder is an internal class
that we’ve created to hold the CheckedTextView we need @.

But how do we associate the cached view with the current list item? For that, we use
a handy method called getTag. This method allows us to associate arbitrary data with
a view. We can leverage that method to cache the view holder itself, which in turn
caches the view references. Call the getTag method on the current listItem (we let
the super class decide whether a new one is created or whether it’s recycled from the
convertView) to check if the ViewHolder is present @. If it is, then we get the
CheckedTextItem we need directly from it @. If it isn’t there, we know that we’re not
dealing with a recycled view, and we must call £indviewById to get a reference to the
CheckedTextItem @), create the ViewHolder, and use setTag to stick it onto the
listItem @. The ViewHolder pattern can help make your ListView faster and more
efficient, and should always be considered when you expect to have more than a few
items in the list.

CODE WITH VIEW REUSE IN MIND Because we don’t persist any of this informa-
tion, you may think that it seems contrived to go through the hassle of creat-
ing a custom adapter that only saves data in memory, and which is therefore
going to be thrown away whenever the application is closed. You may also
think that we could toggle the check box view whenever a user taps it and see
the same effect, right? Wrong! That’s because adapters are responsible for
creating the view that represents the element at a certain position of the
underlying data set, and all standard adapter classes such as ArrayAdapter
(and also all wellimplemented custom adapters) cache and reuse item views
via convertView for performance reasons. Consequently, we’d see checked
items reappearing across the list even though we never checked them. Again,
even if that weren’t the case, remember that state should be updated in the
model, not the view.

Note that our custom Adapter is not the solution; it’s a solution (a simple one).
Another perfectly valid approach would be to create a Movie model class, and remem-
ber in these objects whether a movie is owned. We could then get rid of the HashMap

122

CHAPTER 4 Getting the pixels perfect

and instead get the Movie object at a given position and ask the object whether it’s
owned by the user. In fact, we’ll do that in chapter 9, when we extend MyMovies to talk
to an online movie database. In any case, we have to update the model managed by
our new adapter whenever the user clicks a movie item, which is achieved by imple-
menting the ListActivity.onListItemClick handler we saw in listing 4.7.

DISCUSSION

Using adapters this way is a powerful approach for managing dynamic data that’s com-
pletely decoupled from any views, and therefore from how it’s being displayed. Even
though we didn’t write that much code, sometimes this is too much complexity
already. If you only need to ask the user to select from multiple choices in a list (a list
dialog would be a good example), then there’s a much easier way than implementing
your own adapter: the ListView choiceMode attribute. With the choice mode set to
multipleChoice, you can receive any list items the user selected by calling List-
View.getCheckedItemIds (). This roughly corresponds to the map of Boolean values
we maintain. You can also set the choice mode programmatically using List-
View.setChoiceMode. This is one instance where state is only maintained in the views,
without a model behind it, but it’s a limited approach.

There are many different kinds of adapters, some of which you’ll meet in later
chapters. For now it’s sufficient that you’ve learned how to work with them, and how
you can use adapters to arrive at more flexible designs by separating data from its rep-
resentation on the screen. At the same time, you’ve probably noticed that list views,
though useful, can get quite complex. This is why we’ll look at some general tips
coming up, but first, we’ll quickly look at how header and footer views can be added
to a list.

Header and footer views

List views are a great way to cope with large data sets, but the ability to scroll alone
doesn’t always help—your thumbs may be sore by the time you reach the bottom of a
list. It’d be nice, for instance, to have a back-to-top button at the bottom of our list, so
that the user doesn’t have to scroll all the way back through a hundred titles to reach
the top of the list again. But our list contains movie titles, which are text views, not but-
tons. We need a list element that looks and behaves differently from normal entries,
but our adapter is only able to create one type of list element: a movie item. Looks like
we’re stuck.

PROBLEM
You need dedicated list elements at the top or bottom of a list, which scroll with the list
content like a normal entry, but may have entirely different layout and functionality.

SOLUTION

This is what Android’s list header and footer views are for. You can set them using
ListView.addHeaderView and ListView.addFooterView respectively. To see how this
works, we’ll build a back-to-top button for MyMovies. We first define a layout
(list_footer.xml) for our footer view that contains a single button, perhaps like this:

TECHNIQUE 3 Header and footer views 123

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent”
android:layout height="@android:attr/listPreferredItemHeight"
android:gravity="center_vertical"
android:text="Back to top"
android:onClick="backToTop"
/>
Note how we use the onClick attribute in our footer view layout. This tells Android to
look for a public method called backToTop defined in our activity, which takes a single
View object as a parameter. This is a nifty way to wire a click handler to a component
from XML (without having to write the boilerplate code to explicitly assign the han-
dler). This is going to be our callback where we do the scrolling. We then have to
inflate this layout to receive a Button object, and set it as our list’s footer view as seen

in our Activity’s onCreate method:

public void onCreate (Bundle savedInstanceState) {

Button backToTop =
(Button) getLayoutInflater().inflate(R.layout.list_footer, null);
backToTop.setCompoundDrawablesWithIntrinsicBounds (getResources ()
.getDrawable (android.R.drawable. ic_menu_upload), null, null,

null) ;

listView.addFooterView (backToTop, null, true);

} M @ 12:27em

No magic involved here. We add this code
to the middle of the onCreate method we
saw in listing 4.7, directly after we declare
ListView listView = getListView (). This
way, it’s included when our ListActivity
is created, and it’s set before we declare and Mr. Smith Goes to Washington (1939) .
set the adapter. To get an idea of what this
will look like, figure 4.8 shows the list with
the button at the bottom in all its glory.
We’ve also added an icon (we reused a

Ldl JdlRel 130/ [——

The Bicycle Thief (1948, It.) .

The Sting (1973) .

The Great Escape (1963) -

framework icon that has an up-arrow on it)
to the button. In case you’ve wondered
about the allowed number of header and Braveheart (1995) .
footer views: you can add as many header

or footer views as you like. They’ll stack up E;lﬂ B iiioy

and appear before (for header views) or

after (for footer views) the list items.

Figure 4.8 We added a button that returns us
DISCUSSION to the top of the list using a list footer view. The
Header and footer views are useful for dis- button icon can be set using the setCompound-

playing content that’s not part of the list DrawableWithintrinsicBounds method.

124

CHAPTER 4 Getting the pixels perfect

data, but because they’re treated differently from ordinary list elements, you need to
watch for some subtleties. For one, you must add all header and footer views before
adding any data to your list (via ListView.setAdapter); otherwise you’ll get an excep-
tion. This makes header and footer views fairly inflexible, because you can’t add or
remove them at will.

Moreover, even though header and footer views appear as normal list elements,
remember that they’re not representations of adapter data, and hence have no corre-
sponding element in the adapter backing the list. This also means that if you want to
count the list elements visible to the user, you can’t rely on Adapter.getCount any-
more. That method is oblivious to any header or footer views. Always keep in mind
this asymmetry between your list view and its adapter when working with headers
and footers.

We’ve arrived at our first MyMovies development milestone: we have an applica-
tion that displays IMDB’s top 100 movies, and the user can select which titles they
have in their collection! List views are powerful, and now you know their ins and
outs—does it feel good? In all fairness, ListView is a complex beast and there are
many caveats regarding its use. It’s likely that you’ll run into one or more issues as
your list item layouts grow more complex. Hence, in table 4.4 we’ve collected some
common ListView related caveats and their solutions. You may be grateful for them
one day!

Table 4.4 General ListView tips

ListView
caveat

Solution

Don’t use Never use wrap content for a list view's height attribute. A list is a scroll con-
wrap content | tainer, and by definition is infinitely large, so you should always let a ListView £i11_
parent (or let it otherwise expand itself, for example, using layout_weight).

Be careful Generally, when you click a list item, the list item itself receives the click event—the
with clickable | view or container that’s the root element of the item layout. If you place a button inside
list items an item layout, the button steals the focus from the list item, which means while the

button remains clickable, the list item itself can neither be focused nor clicked. You can
mitigate this effect to at least let the entire list item be focusable again by setting
ListView.setItemsCanFocus (false), which will bring back the list highlight
when selecting that item. But any click handling must still be performed on a per-ele-
ment basis inside your item layout.

Pay attention | List views can be performance killers. The getView method of an adapter is used to

to getView | render a list item and is called frequently. You should avoid doing expensive operations
performance | like view inflations, or at least cache them. Reuse views, and consider the ViewHolder

pattern we introduced earlier.

It’s now time to move on to a topic that developers typically fear, but at the same time
is fundamental to a successful mobile application: look and feel. We won’t discuss
graphic design here—that’s probably not what you get your paycheck for, considering

4.5

4.5.1

TECHNIQUE 4 Applying and writing styles 125

you're reading a book on programming—but you still need to know how to set your
application up to make use of design elements. Implementing custom designs on
Android requires a lot of work on the programming side. Hence, the next few sections
will equip you with the knowledge to implement highly customized Android user
interfaces. Pimp my Android!

Applying themes and styles

Let’s not beat around the bush: a typical stock Android application looks unimpres-
sive. With Android 3.0 (aka Honeycomb) and the tablet game, things are getting sig-
nificantly better, but a vanilla pre-3.0 Android installation is visually underwhelming.
Fortunately, Google has given developers the necessary tools to spice up their applica-
tion Uls by means of the myriad of view attributes you can define or override for your
views. As you can probably imagine, this can become a tedious and repetitive task,
which is why Google added a theme engine to Android, and we’ve prepared two tech-
niques to explore it.

Styling applications

First, we should get a common misconception about Android themes and styles out of
the way. Yes, you can deploy custom application themes for users to download and use,
but first and foremost, Android themes are a tool for developers, not end users. Many
applications, such as the Firefox web browser, allow users to create their own themes
and share them with others. That’s because Firefox’s theme engine is meant to be
usable by end users, so it’s not exclusively accessed by the Firefox developers them-
selves. That’s typically not true for Android themes, because theme development is
tightly coupled to the development and deployment of the application itself, and
there’s no mechanism to change an application’s theme unless such functionality has
been built into the application by the developer.

What are Android themes then, and what are styles? Let’s answer that last part first.

Applying and writing styles
It should be mentioned that you could potentially get a super-nifty looking applica-

tion without writing a single style definition. You could. But would you want to? To
understand the problem, consider this view definition:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:text="Hello, text view!"
android:textSize="14sp"
android:textStyle="bold"
android:textColor="#CCC"
android:background="@android:color/transparent”
android:padding="5dip"
android:layout width="wrap_content"”
android:layout_height="wrap_content”

/>

126

CHAPTER 4 Getting the pixels perfect

There’s a lot of noise here. We’ve encoded a lot of information in this view defini-
tion that affects the view’s appearance. Does that belong in a layout file? Layouts are
about structure, not appearance. Plus, what if all our text views are supposed to use
the same font size? Do we want to redefine it for every single text view? This would
mean that if we were to change it, we’d have to touch the code of all of the text
views in our application.

PROBLEM
Customizing view attributes in your layouts, especially those that affect appearance,
leads to code clutter, code duplication, and generally makes them impossible to reuse.

SOLUTION
Whenever you find yourself applying several related attributes directly to a view, con-
sider using a style instead. A style is a surprisingly simple concept.

DEFINITION A stylein Android is a set of view attributes, bundled as a separate
resource. Styles are by convention defined in res/values/styles.xml.

If, for instance, we create a custom style for our text views, we can define any custom-
ized attributes once, in a styles.xml file, like so:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="MyCustomTextView" parent="@android:style/Widget.TextView">
<item name="android:textSize">1l4sp</item>
<item name="android:textStyle"sbold</item>
<item name="android:textColor">#CCC</item>
<item name="android:background">@android:color/transparent</item>
<item name="android:padding">5dip</item>
</style>
</resources>

As you can see, we took all the styling attributes from our view definition and put them
inside a <style> element. A style is defined in terms of style items, each of which refers
to an attribute of the view the style is being applied to. Styles can also inherit from
each other: in this case, we’ve inherited from the default Widget.TextView style,
which is semantically equivalent to copying all attributes from the parent style to our
own style. All attributes that are redefined in our style will overwrite any attributes of
the same name that were defined in the parent style. Finally, styles can be applied to
any view like this:
<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:text="Hello, text view!"

android:layout width="wrap content"”

android:layout_height="wrap_content"

style="@style/MyCustomTextView"
/>
Note how we use the style attribute without the android: prefix. This is intentional:
the style attribute is global and not defined under the android XML namespace. It’s

TECHNIQUE 5 Applying and writing themes 127

important to understand here that styles are a set of view attributes bundled
together. There are no type semantics: if you define attributes in a style and then
apply the style to a view that doesn’t have these attributes, the style will silently fail
but you won’t see an error. It’s up to the developer to design and apply styles in a
meaningful way.

DISCUSSION

Styles are meant to alleviate two common design problems. For one, placing code for
defining appearance and code for defining structure into the same file isn’t a good
separation of concerns. Though you’re building the screen layout, the styling is most
likely being done by someone who does not write application code. Constantly mess-
ing about with the same source code files is almost like asking for merge conflicts dur-
ing commits (you do use a source code control system, don’t you?). Even if you take on
both roles, a good separation of concerns helps keep your code clean, readable, and
easy to maintain.

Speaking of maintenance, this brings us to design problem number two. Defining
attributes for appearance directly in your view XML—or worse, in application code—
makes them impossible to reuse. This means that you’ll end up copying the same style
attributes to other views of the same kind, resulting in code duplication and prolifera-
tion. We’ve said before that this is bad, because it violates the DRY principle. Like the
<merge> and <include> elements, styles in Android help you keep your view code DRY.
You can put shared attributes from your views into a style resource, which can then be
applied to many views while being maintained from a single point of your application.

A question that remains is: what can we style, and which styles already exist so we can
inherit from them? The answer is that anything defined in the android.R.styleable
and android.R.attr classes can become part of a style—may be used as a value for astyle
item’s name attribute. Existing styles are defined in android.R.style, so anything
defined in that class can be used as a value for a style’s parent attribute, or even be
applied directly to a view. As usual, underscores in the R class attribute names translate
to dot-notation in view code, so android.R.style.Widget TextView SpinnerItem
becomes android:style/Widget.TextView.SpinnerItem. Nowyouknow whatstylesin
Android are, but let’s move on to themes.

Applying and writing themes
We’ve already seen how to extract common view attributes into styles, but we’re still
repeating ourselves—violating the DRY principle. If we define a style for text views, we
still have to apply the style manually to every TextView. This is clearly not DRY. Maybe
not wet, perhaps moist, but surely not DRY. It also opens new questions: what if we for-
get to apply the style to one of our views?

PROBLEM

Bundling view attributes to styles is useful, but it’s only half of the solution. We still
need to apply styles to all views that are targeted by the style. This should be done
automatically.

128

CHAPTER 4 Getting the pixels perfect

SOLUTION

The complete solution to this is, you guessed it, themes. Fortunately, explaining
themes is simple. Themes are styles. Yes, it’s as simple as that. The only difference
between a theme and a style such as the one shown in the previous technique is that
themes apply to activities or the entire application (which means, all activities in an
application), and not to single views. The difference therefore is one of scope, not
semantics or even structure.

DEFINITION A theme in Android is a style that applies either to a single activity
or all activities (in which case it becomes the application’s global theme).

Because themes are styles, they behave exactly the same, and are defined exactly the
same: using the <style> tag. Because they’re applied to activities, they take different
style attributes than a widget style. You can identify style attributes meant for theme
definitions by their Theme prefix in android.R.styleable.

Let’s proceed and apply a theme to our MyMovies app. We introduced the style
concept using TextView, which is a good example because it takes many different
attributes (we’ll show you another, even better way of cutting down on TextView attri-
bute bloat coming up). But our example application doesn’t use many TextView ele-
ments, so it would seem contrived to do that. Instead, let’s see if we can make our
movie list look fancier. We want to add a background image to the application—some-
thing related to films would be good. It should blend with the list, letting the window
background shine through. Moreover, we want to make a couple of smaller changes
such as rendering a fast-scroll handle. The following listing shows how to do that using
themes and styles.

Listing 4.9 The style and theme definition file for the MyMovies application

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="MyMoviesTheme" Theme definition "
parent="@android:style/Theme.Black">
<item name="android:listViewStyle">@style/MyMoviesListView</item>
<item name="android:windowBackground">@drawable/film bg</items>
</style>

<style name=" MyMoviesListView"
parent="@android:style/Widget.ListView">
<item name="android:background">#A000</item>

<item name="android:fastScrollEnabled"strue</item> ZgngMn
<item name="android:footerDividersEnabled">false</item> for list views
</style>
</resources>

The theme definition shown in listing 4.9 (which uses the style element, too) applies
custom styling to all ListView instances in the application and sets a custom window
background @. The custom ListView style that’s being applied defines the attributes
that all list views in this application will now share @.

TECHNIQUE 6 Styling ListView backgrounds 129

We've defined a theme for our application, but we haven’t yet applied it to any-
thing. Recall that themes may be applied to single activities or the entire application
(all activities), so we need to tell Android what we want to style. Themes are applied in
the manifest file using the android:theme attribute. If we were to apply it to a single
activity, we’d set that attribute on an activity element; otherwise we set it on the single
application element, as follows:

<application android:theme="@style/MyMoviesTheme" ...>
</application>

Figure 4.9 shows how MyMovies looks now WD 7:420m
that we’ve slapped some styling onto it.
You can see how the window background is :IF;sycﬁ.b:{'f%O) o
visible through the semitransparent list view
background. You can also see the fast-scroll
handle at the right side of the list. You can Tha Shance of the Lambs (120
grab it to scroll quickly, and it’ll fade away and
Vs
9
2

get out of your way if the scroll has ended. Sunset Boulevard (1950)
DISCUSSION

As you can define view attributes both in XML The Matrix(1999)
and in program code, you can also apply
themes to an activity programmatically using Memento (2000)
Activity.setTheme. Nevertheless, this way of
doing it is discouraged. In general, if some- Dr. Strangelove or: How I Learned To
thing can be done in the XML, it’s good prac- {S;gg:;mrryingand Love the Bomb .
tice to do it in the XML, and not in your

application code. Calling setTheme will also North By Northwest (1959) .
only work before you inflate the activity’s layout;

otherwise the theme’s styles won’t be applied.

i Figure 4.9 The MyMovies title screen
This also means that you can’t change a theme after some styling has been applied.
on-the-fly (such as through the click of a but- Note how we included a transparent
background image and added a fast
scrolling handle.

ton), because you must restart the activity for
it to have an effect.

That covers the basics of defining and using styles and themes. Still, a few things
worth knowing about remain. Remember how we mentioned that ListView is a com-
plex beast and that we’ll come back to it? Here we are. Styling list views has a nasty pit-
fall that almost all developers new to Android step into, so let’s get it out of the way
once and for all.

Styling ListView backgrounds

ListView is a complex widget, and sometimes this complexity gets in your way when
trying to change its appearance. In fact, we weren’t completely honest with you when
we showed you the code for the list view style in listing 4.9. It’s lacking a setting that

130

CHAPTER 4 Getting the pixels perfect

will allow the style to be rendered correctly. If you try to apply a custom background,
or as in our example let the background of the window or another underlying view
shine through, then you may observe visual artifacts such as flickering colors when
performing scrolls or clicks on the list. On a related note, if you try to set its back-
ground to a transparent color, expecting to see the widget rendered underneath the
list, you’ll find that Android still renders the default black background.

PROBLEM
You apply a custom background (color or image) to a ListView, but you don’t get the
desired effect or get visual artifacts when rendering the list.

SOLUTION
These problems can be attributed to a rendering optimization ListView performs at
runtime. Because it uses fading edges (transparency) to indicate that its contents are
scrollable, and this blending of colors is expensive to compute, a list view uses a color
hint (by default the current theme’s window background color) to produce a preren-
dered gradient that mimics the effect. The majority of the time a list view is rendered
using the default color schemes, and in those cases this optimization is effective. Yet,
you can run into the aforementioned anomalies when using custom color values
for backgrounds.

To fix this problem, you need to tell Android which color it should use as the hint
color using the android:cacheColorHint attribute. This is done as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="MyMoviesListView" parent="@android:style/Widget.ListView">
<item name="android:background">#A000</item>
<item name="android:cacheColorHint">#0000</item>

</style>
</resources>
Setting the cacheColorHint properly (or disabling it by setting it to transparent) will

fix any obscure problems you may encounter when working with a list with a custom
background color.

DISCUSSION
Regarding the value for the color hint, if you use a solid list background color, set it to
the same color value as the background. If you want the window background to shine
through, or use a custom graphic, you must disable the cache color hint entirely by
setting its value to transparent (#0000 or android:color/transparent). And that’s
that. This is a rather obscure issue, but you should keep it in mind when working with
ListView implementations that need custom backgrounds.

Understanding the cacheColorHint wraps up our discussion of styles and themes,
almost. We’ve collected one more set of tidbits about styles in Android, which we want
to show you before moving to the next topic.

4.5.2

TECHNIQUE 6 Styling ListView backgrounds 131

Useful styling tidbits

Ready to get even deeper into styling applications? You now know how to create and
apply themes and styles, but we have some extra useful tips and tricks to round out
this discussion. The paragraphs that follow cover things that haven’t been mentioned
yet, in no particular order, but all of which we think make your life easier when work-
ing with styles. In particular, we’ll demystify color values, tell you how to work with text
appearances, and also introduce some rarely seen but useful style notations.

COLOR VALUES

When working with styles, you’ll often find yourself specifying color values, either
directly using hexadecimal syntax or by referencing a color resource—yes, colors
can be resources, too! Any color value in XML is defined using hex notation and
identified by the # prefix, so let’s briefly cover it now. Color values in Android are
defined using the Alpha/Red/Green/Blue color space (ARGB), where each color is
mapped to a 32-bit wide number, with the first 8 bits defining the alpha channel
(the color’s opacity), and the remaining 24 bits representing the three color compo-
nents, with 8 bits for red, green, and blue each. Because each component may use 8
bits of information, the value range for each component is 0 to 255, or 00 to FF in
the hexadecimal system. A color value of #800000FF would therefore represent blue
with 50% opacity.

COLOR VALUE SHORTCUTS In cases where each color channel is represented
by two identical hex digits, you're allowed to use an abbreviated hex string
where every hex digit pair is collapsed into a single digit. For example, the
colors #FFFFFFFF and #AABBCCDD can be abbreviated to #FFFF and #ABCD,
respectively. Moreover, you can always omit the alpha channel, in which case
full opacity is assumed, so #FFFF can be abbreviated even further to #FFF.

Typing out these color values can get tedious. For one, you're repeating yourself,
which as we’ve learned is a bad thing. Worse maybe, these values aren’t intuitive unless
you’re good at mentally mapping hex values to a color space. Hence, you’ll typically
define these values only once, as a color resource, which you can address using a
human-readable identifier. To do that, create a file named colors.xml in your res/
values folder, and add the following code to it:
<?xml version="1.0" encoding="utf-8"?>
<resources>

<color name="translucent_blue">#800000FF</color>
</resources>
You can now reference this color from your views and styles as @color/
translucent blue. Note that Android already defines a handful of colors for you
in this way. A commonly used predefined color is android:color/transparent,
which is equivalent to a color value of #00000000. When in application code, you
can also use the color definitions from the Color class, but you can’t reference these
from XML.

132

CHAPTER 4 Getting the pixels perfect

One last thing about colors. Colors defined as shown here can be used as drawables
in Android. We haven’t covered drawables yet (though we touched on them in chap-
ter 2), but for now, keep in mind that you can also assign color values to attributes that
expect drawables, for example, for backgrounds or list selectors. Colors as drawables
can be powerful, and we’ll show you how as part of section 4.6.

TEXT APPEARANCE

We mentioned before that when working with text styles, there’s a better way than
defining your text styles from scratch: Android’s text appearances. A text appearance is
a style that contains elements that apply to any TextView in your app. Moreover, over-
riding these default styles will immediately affect all text styles in your application. For
example, if you were to change the default text style to bold red across your entire
application, you could do this:

<style name="MyTheme">
<item name="android:textAppearance">@style/MyTextAppearance</items>
</style>

<style name="MyTextAppearance"s>

<item name="android:textColor">#F00</item>

<item name="android:textStyle">bold</item>
</style>
Plenty of text appearance attributes are available for themes, such as textAppearance
for default text, textAppearanceButton for button captions and textAppearance-
Inverse for inverted text (such as highlighted text). But you’ll probably ask yourself,
what’s the difference between this and defining a default style for TextView, as seen
before? The differences are subtle but important. First, the styling defined here will
actually be applied to all TextView views, including subclasses. This isn’t the case for
the textViewStyle attribute—it won’t affect text views such as Button or EditText,
which both inherit from TextView. Second, the textAppearance attribute can
be applied to a theme and a single TextView (and hence, also to a TextView style
definition). This allows you to bundle shared text styles together and apply them
en masse to different kinds of text views—think another layer of styling DRYness for
your code.

By any means, if you start styling text in your application you’ll want to do this
using text appearances. Let them inherit from Android’s default text appearance
styles, and overwrite only what you need to change.

SPECIAL STYLE VALUES

You’ve seen how to reuse styling attributes by bundling them together into styles and
by letting styles inherit from each other. You’ve also seen the @ notation that you use
to reference existing resources. This works well if you want to address the complete
resource, but what if you need only a single value? Consider a text style. For example,
suppose you want to change the link color to the color Android uses for plain text, but
you don’t know that color’s value. Furthermore, the primary text color isn’t exposed
as a color resource because it’s variable; it changes with the theme.

4.6

TECHNIQUE 6 Working with drawables 133

The solution is to use the ? notation, which like @, only works in XML. You can use
it to address style items of the currently applied theme by their name. To stick with the
example, if you want to set your application’s link color to the default text color, you
could do this:

<style name="MyTheme">

<item name="android:textColorLink">?android:attr/textColorPrimary</item>
</style>
The last thing we’d like to mention is the @null value. You can use it whenever you
want to remove a value that’s set by default (in a parent style). This is probably seldom
required, but it makes sense if you want to get rid of a drawable that’s set by default.
For instance, Android will set the windowBackground attribute to a default value, but if
the window background is always obscured by your own views, you can remove it by
setting it to @null. This will result in a slight performance boost, because Android cur-
rently can’t optimize views that are completely obscured away from the rendering
chain, although this limitation may change in future versions.

Styles are a complex topic, and there’s often confusion about the distinction
between themes and styles. Hopefully we’ve solved most of these mysteries. We started
by showing how styles are defined and how they’re applied to views. We then showed
you how you can assign styles globally to your application using themes, and even
sorted out some confusion with background styling in list views. As always, we suggest
you play around with view styling yourself. That’s the best way to get your head around
a problem. Now, let’s move forward and learn about another important concept of
Android’s Ul framework, drawables.

Working with drawables

To be frank, we’ve dodged the concept of drawables up to this point and tried shame-
lessly to sweep it under the rug. It’s difficult to discuss all the user interface topics with-
out touching on drawables. But we can’t fool you, can we? You've already seen several
occurrences of drawables: images (bitmaps) and colors. So what exactly is a drawable?

DEFINITION A drawablein Android, defined by the Drawable class, is a graphi-
cal element displayed on the screen, but unlike a widget is typically noninter-
active (apart from picture drawables, which actually allow you to record
images by drawing onto a surface).

Apart from images and colors, there are drawables for custom shapes and lines, draw-
ables that change based on their state, and drawables that are animated.

Drawables are worth covering separately, because they’re powerful and ubiquitous
in Android. You need them practically everywhere: as backgrounds, widget faces, cus-
tom surfaces, and generally anything involving 2D graphics. We won’t cover every
kind of drawable here, only the most widely used ones. Additionally we’ll come back
to drawables in chapter 12, where we’ll discuss 2D/3D graphics rendering. For now,
we’ll focus on drawables that are important for styling your applications.

134

4.6.1

CHAPTER 4 Getting the pixels perfect

Drawable anatomy

Drawables always live in the res/drawables folder and its various configuration-spe-
cific variants and come in two different formats: binary image files and XML. If you
want to use a custom image file in your app, it’s as easy as dropping it into that folder.
The ADT will discover the drawable and generate an ID for it that’s accessible in Java
through R.drawable.the _file name, (like with any other Android resource). The
same is true for XML drawables, but you’ll have to write these first, and we’ll show you
in a minute how to do that.

If you’ve placed a drawable in the drawables folder, you can access it from an
Activity by a call to getResources () .getDrawable (id). But it’s more likely that
you’ll use drawables in your style or view definitions, for use as backgrounds or other
graphical parts of a widget, and sometimes it’s difficult to identify them as such. Let’s
recall our list style definition from listing 4.9:

<style name="MyMoviesListView" parent="@android:style/Widget.ListView">
<item name="android:background">#A000</item>
<item name="android:fastScrollEnabled"strue</item>
<item name="android:footerDividersEnabled">false</item>
</style>
We’re already using a drawable here. Can you see it? To be fair, it’s not jumping out.
It’s the color we used as the list’s background. For some attributes, Android allows
color values where it usually expects a normal drawable, such as a bitmap image. In
that case, it’ll turn the color into a ColorDrawable internally. Note that for some rea-
son this doesn’t work everywhere. For instance, the android:windowBackground attri-
bute doesn’t accept color values.

We can also define special drawables entirely in XML. When doing so, the root ele-
ment is typically the drawable’s class name with the Drawable part stripped off. For
instance, to define a ColorDrawable you’d use the <color> tag, as we showed you in
the previous section (we’ll see two exceptions to this rule in a moment, admittedly
making this a little confusing). Note that not all kinds of drawables can be used every-
where; list selectors for instance don’t accept a plain color value because a selector has
more than one state and one color drawable isn’t enough to reflect that. Curiously, a
plain image would work here, though.

Creating custom drawables is unfortunately not one of the most well-documented
parts of the platform SDK. We’ll cover three types of custom drawables, each of which
is useful for styling your apps: shape drawables, selector drawables, and nine-patch
drawables.

Working with shape drawables

Sometimes, static images such as PNGs or JPEGs aren’t flexible; they don’t scale well if
the area they’re supposed to cover can change in size. Two examples immediately
come to mind. First example is gradients. The nature of gradients is to start with one
color on one end and have it blend into another color. If you define this as a static

TECHNIQUE 7 Working with shape drawables 135

image, then stretching or squeezing the image will result in rendering problems.
Another good example is dashed outlines and borders. If you define a dashed border
as a background image that has the border painted on it, then the dash length will
stretch along with the view you apply it to. But what if you want the dash length and
dash gaps to remain static while still being able to arbitrarily resize the view? Clearly, in
both cases you’d be better off if those images were generated at runtime.

PROBLEM
You want to render graphics that are difficult to scale, such as gradients or patterns, or
graphics that are easier to manipulate at runtime.

SOLUTION
Ifyou find yourselfin either situation, you may want to use a shape drawable. A shape draw-
able is a declaratively defined and dynamically rendered graphical element that you can
use in any place where drawables are allowed, for instance for view backgrounds.
Shape drawables are represented internally by the GradientDrawable and Shape-

Drawable classes, depending on which kind you use. In XML, they’re always defined
using the <shape> element. We’ve already seen how we can change the selector draw-
able for our list view to a predefined drawable, but this time, let’s create our own, with-
out any help from imaging applications. A gradient list selector sounds like a cool idea
for MyMovies, so let’s do that. In res/drawable, create a new file (let’s call it
list_selector.xml) that contains a new selector as a shape drawable:
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"

android:shape="rectangle">

<gradient android:startColor="#AFFF"

android:endColor="#FFFF"
android:angle="0"/>

<stroke android:color="#CCC" android:width="I1px" />

<corners android:radius="5px" />
</shape>
We set the drawable’s shape to rectangle because that’s what we need. We could’ve
also omitted it because that’s the default shape. The subelements of the shape ele-
ment define its features. For our purpose, we set a custom background gradient
(<gradient>), a border line (<stroke>), and a border radius (<corners>). Now let’s
apply it to our list view style:

<style name="MyMoviesListView" parent="@android:style/Widget.ListView">

<item name="android:listSelector"s>@drawable/list selector</item>
</style>
As you can see, the 1list_selector shape is applied like any other drawable. We've
replaced the former value for the list selector drawable with a reference to our new
gradient shape. Figure 4.10 shows how a selected list element now looks when booting
up MyMovies with that change applied.

136

CHAPTER 4 Getting the pixels perfect

R @ 7:42em

The Shawshank Redemption (1994) .

The Godfather (1972) (¥

The Godfather, Part T (1974)

The Good, the Bad, and the Ugly
(1966) (It.)

Pulp Fiction (1994)

Schindler's List (1993) Figure 4.10 The list view selector using
a custom shape drawable. Note how we
used a custom gradient that goes across
12 Anerv Men (1957) the selector horizontally.

Like what you see? We’ve only just started. There are many more options to create
shape drawables, as we’ll see in a moment.

Gotchas with list selectors

List views use the android:1listSelector attribute to determine which color or im-
age to use as the list selector. Android allows two different ways of rendering this
selector: behind a list element’s layout, or in front of it, as specified by android:
drawListSelectorOnTop. Each approach has its advantages and disadvantages, of
which you should be aware. The default is to draw selectors behind a list element:
this requires that all views in a list element’s layout have a transparent background
(which is the case for most Android views unless you change it). Otherwise, they’'d
obscure the selector. If you render images such as photos as part of a list element,
you have no choice: they’ll obscure it, because a photo is always solid. This means
that when using images or solid backgrounds in your list elements, you probably want
to draw the selector on top. Therefore the selector must be translucent; otherwise it
would itself obscure all views of a list item. Keep this in mind when designing custom
list selectors.

DISCUSSION

Shape drawables are a great way of arriving at neat-looking visual elements without
having to mess about with image-manipulation programs. They're customizable via
the source code, and you as the developer, have full control. Did I hear the design
team scream? Yes, it’s their job to create nice-looking graphics, but if you want to add
an outline to a widget or you need more flexibility, use the color palette assigned by
the designers. That’s teamwork!

TECHNIQUE 7 Working with shape drawables

137

We mentioned that you can create more than boxes and borders. Shape drawables
can take various sizes and shapes, from rectangles and ovals to lines and rings. Table
4.5 summarizes most of the elements you can use to define shape drawables (we’ve

omitted some of the more obscure attributes for brevity).

Table 4.5 Valid elements for defining shape drawables

Element name Description Attributes

<shape>

<gradients>

<solids>

<stroke>

<corners>

<padding>

<size>

The root
element.

Defines the
shape’s
gradient
background.

Gives the
shape a solid
background.

Defines
the border/
outline of
the shape.

Defines
the corner
radius of
the shape.

Defines the
padding for
this shape.

Defines the
size of the
shape.

android:

android:
android:
android:
android:
android:
android:

shape—thetype of shape, rectangle,oval,line, ring

type—the gradient type, 1linear, radial, sweep
startColor—the start color of the gradient
centerColor—an optional third center color for the gradient
endColor—the end color of the gradient

angle—the gradient angle, if type is 1inear
centerX/android:centerY—the center color position,

if one is set

android:

gradientRadius—the gradient’s radius if it's either

radial or sweep.

android:

android:
android:
: dashGap—the gap width if you want the line to be dashed
android:

android

android:
:topLeftRadius, android:topRightRadius,
android:
android:

android

android:
android:

android:

color—the background color

color—the border color
width—the border width

dashWidth—the dash width if you want the line to be dashed

radius—the radius for all four corners

bottomLeftRadius,
bottomRightRadius—the radius of each individual corner

top, android:bottom, android:left,
right—the padding for each side of the shape

width, android:height—uwidth and height of this shape

You can find the full reference at http://mng.bz/vORg

At this point, we’ve created a nice-looking list selector graphic, but there’s a problem
with it. It always looks the same. When interacting with widgets you’d normally expect
some visual feedback as soon as you click or select it. But how would that work? We
only have a single listSelector attribute, which takes exactly one value, but we’d

need at least two in order to use different graphics. The answer is that no, you don’t.

What you need instead is a selector drawable.

http://mng.bz/v0Rg

138

CHAPTER 4 Getting the pixels perfect

Working with selector drawables

Sometimes, you need to display graphical elements that change along with a view’s
state. A good example is a button in Android. If you select one with the D-pad or
trackball it receives focus and a light orange overlay is rendered. When you press it,
the overlay changes its color to a darker orange, and a long press again uses a differ-
ent effect. Because we can only assign one drawable at a time to be used for a back-
ground or highlight, we clearly need some sort of stateful drawable.

PROBLEM
A view exposes an attribute that takes a drawable, but you want that drawable to
change with the view’s state.

SOLUTION

Stateful drawables in Android are called selector drawables, and are declared using
the <selector> element. This special kind of drawable can be thought of as a draw-
able switcher, if you will. Depending on which state a view is in (selected, pressed,
focused, and so on), this drawable replaces one of its managed drawables with
another. A true shape shifter!

Coming back to our application, we want to apply this to our list selector. Instead
of always showing the same gradient, we want the gradient to change its start color
from grey to a light blue whenever a list item is pressed. Because we now have two dif-
ferent list selectors—one for default state one for pressed state—we need to keep
them in separate files (let’s call them list_item_default.xml and list_item_
pressed.xml). Here’s a snippet for the new list_item pressed drawable:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
<gradient android:startColor="#AA66CCFF"
android:endColor="#FFFF"
android:angle="0"/>
<stroke android:color="#CCC" android:width="I1px" />
<corners android:radius="5px" />
</shape>

Nothing terribly new here; we’ve replaced the gradient’s start color with a different
one. Now that we have two drawables, we need to bring them together in a selector
drawable. For that, we modify list_selector.xml from the previous technique to some-
thing like this:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_pressed="true"
android:drawable="@drawable/list_item_default" />
<item android:state pressed="false"
android:drawable="@drawable/list_item_pressed" />
</selector>
What we’ve done here is replace the root element of the list selector from a shape to a
shape switcher—a selector. Selector drawables are defined in terms of <item> elements,

TECHNIQUE 8 Working with selector drawables 139

& 7:47em | Ml & 7:49em

MyMovies MyMovies

The Shawshank Redemption (1994) . The Shawshank Redemption (1994)
The Godfather (1972) . The Godfather (1972)

The Godfather, PartII (1974) dfather, Part IT (1974)

) |
The Good, the Bad, and the Ugly . The Good, the Bad, and the Ugly
(1966) (It.) (1966) (It.)

Pulp Fiction (1994) Pulp Fiction (1994)

Schindler’s List (1993) . Schindler's List (1993)

1?2 Anory Men (M1Q5TY - 12 Anory Men (M1agTy

Figure 4.11 The new list selector in the default (left) and pressed (right) states.
Note how it changes colors when in the pressed state.

each of which takes two arguments: a state, and a drawable to be displayed whenever the
view to which this selector is being applied enters thatstate (you can also use color values
as we’ll see in a minute). Figure 4.11 shows the selector in both states.

You can switch all sorts of drawables using the <selectors> tag, not just shape draw-
ables. The most common examples are nine-patch images, which we’ll cover next. In
fact, Android uses this combination of selectors and nine-patches all over the place to
render its system UL

DISCUSSION

Our example was simple in that it only used two different states: pressed and not
pressed, but there are plenty more states, each representing a Boolean condition.
We’ve summarized them for you in table 4.6 (again, we only list the more commonly
used ones).

Table 4.6 Common selector drawable states

Description

state focused The view has received the focus.
state window_focused | The view's window has received the focus.
state_enabled The view is enabled/activated.

state pressed The view has been pressed/clicked.

140

CHAPTER 4 Getting the pixels perfect

Table 4.6 Common selector drawable states (continued)

Description
state_checkable The view can be checked/ticked (not supported by all views).
state_ checked The view has been checked/ticked (not supported by all views).
state_selected The view has been selected (not supported by all views).

For a more exhaustive list of states, refer to http://mng.bz/Math and http://mng.bz/qzXz.

One thing to watch for is the order of your selector’s state items. To find a drawable in
the selector that matched a view’s current state, Android walks through the list of
items from top to bottom—in the order they’re declared in the selector—and selects
the first one that satisfies the view’s current state. Why is this important? Imagine a
focused and checked CheckBox view that’s skinned with the following selector:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:state_focused="true"

android:drawable= "@drawable/my_checkbox_unchecked" />
<item android:state focused="true” android:state checked="true"
android:drawable= "@drawable/my_checkbox_checked" />

</selector>
You may expect that Android would pick the second drawable, because it clearly
declares that it’s the one that should be used whenever the CheckBox is checked,
right? Wrong! That’s because the first item is less restrictive, and also matches the
view’s state: it only requires the focused state, which is true, and doesn’t require any
specific checked state. Because it’s the first match Android finds, Android will use this
for the CheckBox whenever it receives focus, regardless whether it’s checked or not.
The second item will therefore never match. What does this tell us? It tells us: always
make sure that the leastrestrictive state items are the last items in the state list. Other-
wise they’ll obscure more specific state items.

Here’s another useful hint. We mentioned before that you may use color values in
selectors using the android:color attribute. This is particularly useful when working
with stateful text appearances, where you want the text color or size to change. For
example, if TextView receives focus, you can assign a selector that switches colors with
states to the android:color attribute of a TextView! It’s in these details where it
becomes apparent how flexible and awesome Android’s view system is.

As with shape drawables, selector drawables are mapped to Java framework
classes. When using plain drawables, a selector will become a StateListDrawable,
and a ColorStateList, which curiously is not a Drawable, when using colors. Hence,
when using selectors that switch color values, remember that you can’t use them
in places where drawables are expected, only for color values (but then again
we learned earlier that you can turn colors into drawables easily, so this problem can
be circumvented).

http://mng.bz/Math
http://mng.bz/qzXz

TECHNIQUE 9 Scaling views with nine-patch drawables 141

We’re getting close—we have one kind of drawable left up our sleeves. We’ve men-
tioned nine-patch drawables before, and they’re perhaps the most useful and com-
monly used drawables, so read carefully!

Scaling views with nine-patch drawables

Nine-patch drawables are best explained by example. How about this; in our applica-
tion, we’d like to add some kind of title image above the movie list view that says
“IMDB Top 100”. We can do this by changing the MyMovies main screen as seen in the
following listing.

Listing 4.10 Extending the MyMovies layout to include a title image

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout width="fill parent”
android:layout_height="fill_ parent"s>

<ImageView android:src="@drawable/title" Addlmagthmrandset
android:layout width="fill parent" width to fill_parent
android:layout_height="wrap_content”
android:scaleType="fitXy" /> Scale bitmap to
fit ImageView

<ListView android:id="@android:id/list"
android:layout width="fill parent"”
android:layout_height="fill parent”
/>
</LinearLayout>
In listing 4.10 we’ve added an ImageView that displays our title image (stored as /res/
drawable/title.9.png) @. The title image is a PNG image file, not an XML-based draw-
able. Note how we tell it to £111 parent across the horizontal axis. If the device is in
portrait mode, this has no effect (atleast on a standard screen size, which we assume for
this example), because our image happens to be exactly 320 pixels wide. But if we turn
the device to landscape mode, we want the ImageView to remain stretched across the
whole screen width. Because the layout parameter only affects the ImageView (the wid-
get), but not the image itself (the bitmap), we also set the scaleType to £itXY, which
means that the bitmap should be resized

L~ LR

to fill its ImageView container in width gz e

and height @. The result is shown in
figure 4.12 for both portrait and land-
scape mode.

Note how the text of the title image
gets blurry and loses proportion in land-

scape mode. The white dots turned into Figure 4.12 The MyMovies header image shown
eggs! That’s because Andro]d stretches in portrait (Ieft) and Iandscape (rlght) modes. In
portrait mode, the image won’t stretch; in

> . .] landscape mode it’ll stretch to fill the view
mode, interpolating pixels untl the nhorizontally, resulting in distorted proportions.

the image to fill the screen in landscape

142

CHAPTER 4 Getting the pixels perfect

image is the same size as its container. The result looks horrible, so what can we do to
avoid this problem?

PROBLEM
You want to display a static image on a view that’s variable in width or height, but
stretching the image results in a loss of quality.

SOLUTION
Take an educated guess... correct, nine-patch drawables are the solution. A nine-patch
drawable is a PNG image that defines stretchable areas as part of its image data (the
bitmap), and can be rendered across arbitrary-sized views without any noticeable loss
in quality. Nine-patch PNGs must end in *.9.png. Without this convention, Android
won’t recognize the PNG as a nine-patch image. Turning a conventional image into a
nine-patch image is simple:
= First, take the image you’d like to use and add a one-pixel-wide transparent bor-
der (in fact, any color will work except black).
= Second, define the stretchable areas of your image by marking the top and left
edges of that border at the respective sections using a solid black stroke. The
stretchable area is defined by the box these demarcations form if you extended
them with imaginary lines until they intersect.
= Optionally, you may repeat this step for the right and bottom edges to pad the
image, whereby any areas not marked with black will be used as padding.

Figure 4.13 illustrates the process of defining stretchable areas and adding padding.
The top image in figure 4.13 shows how the stretchable areas of the PNG are defined.
Here, the center box indicates the area that it'll be interpolated in order to resize the
image (you’re allowed to have several of these boxes, not just one). In the lower image,
the center box defines the image’s content area. Anything else is padding; if the image’s

Stretchable area

Figure 4.13
Defining stretchable areas
(top) and padding boxes (bot-
tom) in nine-patch drawables
using the draw9patch tool.
Whereas the stretchable area
is defined using the top-left
strokes, the padding area is
defined using the bottom-right
—\ Padding box strokes (source: http://
{opdopal developer.android.com).

http://developer.android.com
http://developer.android.com

TECHNIQUE 9 Scaling views with nine-patch drawables 143

content outgrows this area, the image will be resized accordingly by duplicating the pix-
els within the content box.

PADDING BOX GOTCHA Be careful if you’re not explicitly defining a padding using
the padding box. Itisindeed optional, but if you omit it, Android will assume the
padding box to be identical to the stretchable area (it copies it), which can have
awkward and unexpected side effects when the image is rendered.

For our title image, we only want the strechable area idicators ;
small areas between the rounded cor- :_.q'/j L\
ners and the text to be stretched,
because they’re all of the same color, —
and hence can be interpolated without

any loss of visual quality. Figure 4.14 . o .
Figure 4.14 MyMovies title image defined as a

shows our title image again, now rede- nine-patch drawable; the corners demarcated by the
fined as a nine-patch and viewed using black lines will be used for scaling (no padding has

the draw9patch SDK tool. Note that Pbeen defined).
the thick lines going straight across
the borders are merely visual guides L R LT
added by that tool and are not part of
the image itself.

We save this file to res/drawable/
title.9.png and restart the application.

title image (fixed in
portrait mode)

Looking at the title image again in fig-

ure 4.15,in both portrait and landscape Figure 4.15 The title image now scales correctly in

modes, shows that we've fixed the prob- landscape mode. This is achieved by stretching only
lem. It scales! those parts of the image that are safe to stretch
(they don’t result in distorted imagery), as defined

We’re pretty good at fixing things,
P Y8 s 8 by the nine-patch format.

aren’t we? Wait, what? You noticed the
skewed background image, right? We didn’t fix that, but you can do it, now that you know
how nine-patch drawables work.

DISCUSSION
Nine-patch drawables are incredibly useful, and they’re ubiquitous in Android itself.
All standard widgets that come with the platform use them. They’re particularly useful
for widgets such as buttons and text fields, which frequently have to scale with their
containing layout. If you want to restyle all standard widgets in your application, a
good approach is to take the existing nine-patch drawables that are part of the
Android open source project and do your modifications around them. A common
example is changing the color of highlights to match the palette of an application’s
brand—the standard orange doesn’t cut it sometimes.

Nine-patch drawables can be created using any kind of imaging software, but thank-
fully, for everyone without a license for fancy commercial image editing software,
Google has added the aforementioned draw9patch tool to the SDK. The draw9patch

144

4.7

CHAPTER 4 Getting the pixels perfect

tool helps you by automatically adding the one-pixel border to an existing image, ren-
dering visual guides such as marking the resulting scaling boxes, and by computing live
previews of your image scaled in all directions with the current modifications.

This section has been all about the visuals. You've seen how to organize your
application’s view attributes in styles and themes, as well as what drawables are and
how to use them to create completely customized, beautiful user interfaces—well, if
your design skills are as good as your programming skills. We’ve talked about scaling
images (on a small scale). But what about scaling the entire user interface? Android
devices come in various screen sizes, and even the most beautiful user interface will
fall apart if it doesn’t render correctly on all devices. Therefore, the next section is all
about making your application’s UI scale with the various kinds of displays and con-
figurations that are available now, and even those that aren’t available yet!

Creating portable user interfaces

When talking about portability, we can mean different things: portability with respect
to software (not all SDK functions are available on all handsets) or hardware capabilities
(notevery Android device has alight sensor or hardware keyboard). In this section, we’ll
talk about portability and scalability with respect to user interfaces and screen sizes.

We started developing for the Android platform in its early Alpha days, when there
wasn’t a single device that would run the platform... unless you count the Nokia Inter-
net tablets that a handful of adventurous developers flashed with prerelease versions
of Android. Then came Google’s G1, aka HTC Dream, and life was good—you only
had one device configuration to care about. Today, there are so many different
devices that we’ve stopped counting, and Android still grows rapidly with more manu-
facturers jumping on the train.

Having to support many devices, as mentioned in chapter 1, is a common criti-
cism leveled at Android. Fortunately, the Android platform introduced support for
different device configurations in a graceful way, making it almost trivial to make an
application work with screens sizes that weren’t around when the application
was developed.

Against this backdrop, the following three techniques show you how to enable
your application to gracefully scale with different screen configurations, from a simple
just-works approach meant for legacy applications to more elaborate, native support
approaches.

Automatically scaling to different screens

All the screenshots of our example application you’ve seen so far have been taken
from the emulator, running with the default screen configuration, the one that was
standard in the pre-1.6 days. With Android 1.6 came support for new configurations,
and with that support, devices using these configurations such as the HTC Tattoo,
which had a QVGA screen that was shorter in height than the previous ones, as seen in
figure 4.16.

TECHNIQUE 10 Automatically scaling to different screens 145

Figure 4.16 Different Android
devices may come with different
display configurations. Whereas
the HTC Magic (left) comes with
a 320x480px (160dpi) 3.4 inch
screen, the HTC Tattoo has a
smaller, lower-resolution 240x
320px (120dpi) 2.8 inch screen.

The question is: if you’ve developed an application on Android 1.5 or earlier, and that
application has already been released on the market, how do you make sure the user
interface is displayed correctly on all these different devices? New devices may not
only have lower or higher resolutions (fewer or more physical pixels), their displays
may also have different pixel densities (fewer or more pixels spread across the same
space). The latter problem may lead to rendering issues on these devices—if a Ul ele-
ment had been defined as being 100 pixels wide, then on a display with a higher den-
sity, that element would appear shrunken, because it occupies less physical space. This
problem is illustrated in figure 4.17 using two speculative screen pixel densities of 3
and 6 dots per inch.

Android 1.6+ implements a set of algorithms that can automatically mitigate these
problems. In a moment, we’ll learn how to proactively solve these problems, but let’s

3 dpi
Figure 4.17 Alinethat’'s 8
pixels long and 1 pixel high
_ on a 3 dpi screen will be
= 8/px | = only half the height and

length on a 6 dpi screen
because a pixel occupies
less physical space. Note
that this example simplifies
dots to pixels, which isn’t
3 3 necessarily true.

146

CHAPTER 4 Getting the pixels perfect

assume for now that we’re lazy and don’t feel like fixing our application manually, and
instead let the Android runtime take care of it somehow.

PROBLEM

Your application was developed with a specific class of displays in mind (specific size
and pixel density), and you now want to target other screen configurations without
having to change your view code.

SOLUTION

You can report the screen sizes and densities your application supports by means of
the <supports-screens> element, which was introduced with Android 1.6. Because
we haven’t developed MyMovies with screen configurations that are different from the
default in mind, we should tell Android about this so that it’s aware of this fact. You set
the configurations you support in the application manifest, as seen here:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" ...>

<uses-sdk android:minSdkVersion="4" />

<supports-screens
android:smallScreens="false"
android:normalScreens="true"
android:largeScreens="false"
android:xlargeScreens="false"
android:anyDensity="false"

/>

</manifest>
We tell Android that we only support devices that fall into the normal screens class.
Note that this doesn’t necessarily imply that our application isn’t installable anymore

on other devices. It doesn’t even mean that it’s doomed to break on them, but it has
other implications as we’ll see in a moment.

WARNING The configuration from listing 4.21 is the one you’d automatically
get when building for Android 1.5 or earlier (as indicated by the <uses-sdk>
element). Hence, the default assumption for applications that run on
Android 1.6 or newer, but which were built with an earlier SDK, is that they
were developed with only the normal screen size and pixel density in mind
because those were standard at that time. This is a sensible default for these
applications. This is not the case if you're targeting an API level of 4 or higher
(Android 1.6+). If you set the minSdkVersion to at least 4, all <supports-
screens> attributes will default to true instead, meaning that if you want to
remain in legacy-mode for one or more screen sizes, then you’ll have to set
the respective values to false explicitly.

What does it mean when we say normal screen? We didn’t mention actual sizes in pix-
els or densities in dpi. That’s because Android collapses all kinds of available displays
into a 4x4 configuration matrix as noted in table 4.7. This matrix is organized around

TECHNIQUE 10 Automatically scaling to different screens 147

a central baseline configuration, which was the sole available configuration before
Android 1.6 came out, and which was used by all 1.5 devices such as the GI.

Table 4.7 Screen configuration matrix with example configurations

Low density Medium density High density Extra high density*
Small screen Sony Xperia Mini
(QVGA 240x320,
2.55")
Normal screen baseline configura- | Google Nexus One

tion Google G1, (WVGA 480x800,
HTC Magic (HVGA | 3.7")

320x480, 3.2")
Large screen HTC Desire HD2
(qHD 540x960, 4.3")
Extra large screen* Motorola Xoom
tablet (WXGA

1280x800, 10.1")

More detailed coverage at http://mng.bz/InPC

*The xlargeScreens and hxdpi configurations were added in Android 2.3 and Android 2.2, respectively.

If your application was developed for the baseline configuration (320x480, 160dpi),
Android ensures that it’ll continue to work on a WVGA device by entering a fallback
mode. This doesn’t work with all configurations though. Understanding which fallbacks
Android uses for which configurations is important.

DISCUSSION

Whenever you specify false for any of the previously mentioned attributes, Android
will enter a fallback mode for the respective screen configurations. What happens in
fallback mode is different for every attribute. If smallScreens is set to false, users
with a device classified as having a small screen won’t see your application on the
Android market anymore (although they’d still be able to install it manually). That’s
because it’s likely that the application’s user interface will break when there’s sud-
denly less room to render it. Keep this in mind, or you may lose a significant portion
of potential users because they can’t even find your application in Android Market!

It’s an entirely different story with large-screen devices such as tablets, because they
have enough display space to render your application in its entirety. More precisely, if
largeScreens is set to false, Android will render your application in letterbox mode,
which means it’ll render it using the baseline size and density and fill any unused
screen space with a black background. Not beautiful, but at least functional.

This leaves the anyDensity flag. Here, things get more elaborate. If set to false,
Android will enter a compatibility mode which takes care of scaling all values specified
in px (absolute pixels) against the baseline density of 160 dpi in order to translate them
to the device’s screen density. If the density is higher, these values are scaled upward,; if
smaller, downward. This is done to ensure that any coordinates or dimensions specified

http://mng.bz/InPC

148

CHAPTER 4 Getting the pixels perfect

in pixels will result in approximately the same physical positions and sizes regardless of
the device’s screen density (recall from figure 4.17 that measurements of screen ele-
ments defined in absolute pixels would normally have different outcomes on displays
with different pixel densities).

Example: Android’s auto-scaling mode

Imagine you want to display a 100px-wide image. Using the baseline configuration
of 320x480 and 160 dpi, one physical pixel is 0.00625 inches wide (1/160), so
this image would be 0.625 inches in width on a device using that configuration. If
you now run this image on a device with a high-res 480x800 240 dpi screen, the
same image would suddenly only be about 0.417 inches wide because with a high-
er pixel density, a single pixel takes less physical space on that screen. To counter
this effect, Android multiplies the original value specified in pixels by 1.5 (240/160)
which is also 0.625, and voila, the image specified as 100 pixels wide uses the
same space on both screens!

Moreover, because a density of 160 dpi is assumed, but the high-res display has sig-
nificantly more pixels at a higher density, Android must report a similarly scaled-down
screen size to the application, or the screen would appear to be larger, with more pix-
els spread across more room. Therefore, Android also downscales the screen size of
the device by 0.75 (160/240) and reports a screen size of 320x533 pixels to the
application, which would fall into the normal screens class.

Who said that lying can’t work out well sometimes?

In addition to these measures, Android will also automatically scale all drawables it
loads from the standard drawables folder, because these are assumed to have been cre-
ated with the baseline configuration in mind. For instance, a 100-pixel-wide PNG
image will now always take up the same room on a screen, scaling up or down depend-
ing on the size and density of the current screen (using the same logic we just dis-
cussed). This is called prescaling and is done when the resource in question is loaded.
Scaling bitmaps comes at a cost, and we’ll show you how to avoid these costly computa-
tions shortly.

To summarize, if you report in your manifest file that you don’t support any but
the baseline configuration, table 4.8 shows what happens.

Table 4.8 A synopsis of supports-screens settings and effects

Attribute set to false

smallScreens On devices with small screens, your application will be filtered from Android
Market. It can still be installed manually, and the same scaling logic discussed
earlier will apply.

normalScreens On devices with normal screens, this will enable Android’s auto-scaling mode.
Unless you specifically develop for small- or large-screen devices, this is pointless.

TECHNIQUE 11 Loading configuration dependent resources 149

Table 4.8 A synopsis of supports-screens settings and effects (continued)

Attribute set to false Effect

largeScreens On devices with large screens, your application will be displayed using the base-
line configuration and scaled to that accordingly. If it still doesn’t occupy the
entire screen, the unused space will be painted in black (letterbox mode).

xlargeScreens Same as largeScreens.

anyDensity On devices with pixel densities deviating from the baseline density, Android will
auto-scale all images (unless specifically prepared, see next technique) and
absolute pixel values to match the different configuration.

Using the appropriate supports-screens, settings can be effective, which makes it easy
to forward-enable legacy applications, but it has its down sides. To do things right you
need to turn to Android’s alternative resources framework.

Loading configuration dependent resources

The mechanisms explained in the previous technique are a great way to easily enable
legacy applications to support almost all screen configurations, without having to
explicitly program for it. Still, this is merely a convenience and should by no means be
considered good practice for applications that you develop today.

The drawbacks are obvious: no visibility on Android Market for small-screen
devices, no guaranteed full-screen mode on large screen devices, and an often notice-
able loss of quality for prescaled images (coupled with a slight loss in load times).
What can you do to better support various display configurations?

PROBLEM

Instead of relying on Android’s image prescaling, you want to supply resources such as
layouts or images created for specific screen sizes or densities, so as to eliminate any
loss of visual quality introduced by Android’s scaling procedures.

SOLUTION

The solution is to leverage Android’s alternative resources framework. We’ve already
touched on how this works in chapter 2, where we mentioned that you can use several
different string resource files for different languages. You do this by using different
resource folders with separate resource values for each permutation you need to sup-
port (for example, /res/values-en for English strings, and /res/values-de for Ger-
man strings). We can leverage the same system to provide configuration-specific
resources such as drawables or layouts to Android. For these resources, Android
assumes that they’ve been designed for that specific configuration and won’t attempt
to prescale them.

Say for instance we were to add a custom icon to MyMovies, one that says “MyMovies”
on it. The problem with this is that, on a mid- to low-resolution screen, this text will be
difficult or even impossible to read. Hence, we only want to show the full text when we
run on an HDPI (high dots per inch) device, and abbreviate the text to “MM” on LDPI
devices (low dots per inch—we don’t change anything for normal configurations). For

150

CHAPTER 4 Getting the pixels perfect

(«]2) 0 = o (%] (e Q
¥ DEVICES Name Date Modified
B silk | b E: assets 28. April 2010 20:55 T\
=) Macintosh HD || » & bin Today, 21:55 l
| > 3 gen 28. April 2010 20:55 ||
VAR {| v @@ res 28. April 2010 20:55 ||
& piuto | » [drawable Today, 21:36 I
A puta Gp) '| v @ drawable-hdpi Today, 21:55 |
¥ PLACES ' & icon.png Today, 21:55 :
Desktop ¥ [drawable-Idpi Today, 22:12 |
N matthias = icon.png Today, 21:53 |
&5 Downloads » [drawable-mdpi Today, 21:14 -
/N Applications » [layout 28. April 2010 20:55
(i Documents L > [values 2. Mai 2010 16:18 N
'y | 3 H v
E‘?—ﬂ Dronbex | E._[;;] src . 28. April 2010 20,‘5::, E
2

Figure 4.18 Supplying different image files for different screen configurations is done by placing them
in the appropriate resource folders for a given configuration. Which folder a resource is loaded from at

runtime is then determined by matching the current device configuration against the folder names.

this we need to create two variations of the standard icon and place them into the draw-
able-hdpi and drawable-1dpi folders respectively, as shown in figure 4.18.
We’re now explicitly targeting low- and high-density devices by providing two new

Sl & 10:03em

icon files specifically created for these screen densities. No more setup is required.
Android will automatically find and load these files for you, even when you’re running
in fallback mode! Figure 4.19 shows how the new icons compare on both a large high-
density screen, and a small low-density screen.

Figure 4.19 The two different icon files as rendered on the configurations they were made for: the icon
with full text for HDPI screens (big picture), and the abbreviated version for LDPI screens (small picture).

TECHNIQUE 11 Loading configuration dependent resources 151

There are plenty of ways you can leverage this technique; you could even load differ-
ent strings (any kind of resource) for different screen sizes, but as you can imagine it’s
useful for images and layouts.

DISCUSSION

Screen densities aren’t the only configuration options you can target. Much more can
be encoded into resource folder names. You can load different resources based on
language, SIM card country, touchscreen type, keyboard type, screen orientation, API
level, and more. You can even combine them. Table 4.9 summarizes those configura-
tion qualifiers that are relevant for screen support.

Table 4.9 Resource qualifiers relevant for screen support

Targeted attribute Qualifiers Examples

Screen size class | small—for small screens (about 2-3 /res/drawables-small

inches) /res/drawables-small-1dpi

normal—fornormal screens (baseline size,

] /res/layouts-normal-land
about 3-4 inches)

large—forlarge screens (about4-7 inches)

xlarge—for very large screens (more than

7 inches)
Extended screen long—Ilonger screens (such as WQVGA, /res/drawables-long
height WVGA, FWVGA)

/res/drawables-large-long
not long—normal aspect ratio (such as

res/layouts-notlong-port
QVGA, HVGA, and VGA) / /lay 9P

Pixel density (dpi) | 1dpi—Ilow density (about 120dpi) /res/drawables-1dpi
mdpi—medium density (about 160dpi) /res/drawables-large-mdpi
hdpi—high density (about 240dpi) /res/layouts-port-hdpi

xhdpi—extra high density (about 320dpi)

nodpi—disable scaling for these resources

For a full list plus qualifier ordering rules, see http://mng.bz/dOM9.

Keep in mind that any qualified resource folder is completely optional. If you don’t
have any prescaled images in the /res/drawable-hdpi folder (or if it doesn’t even
exist), Android will still look for an image in this folder first, but if it can’t find the
image in there, it’ll fall back to the default drawable folder. That means it’s always safe
to put all your stuff in the nonqualified resource folders; that way Android will always
find a resource.

HOW ANDROID SELECTS RESOURCE FOLDERS If more than one folder qualifies
for lookup, Android will load the resource from the folder that most closely
matches the current configuration. The algorithm for this is quite refined,
and is documented at http://mng.bz/7NiH.

http://mng.bz/d0M9
http://mng.bz/7NiH

152

CHAPTER 4 Getting the pixels perfect

Even though this technique can increase the size of your application when multiple
versions of a given resource are bundled with it, it’s a sensible choice for images, such
as icons or window backgrounds that are likely to suffer a loss in quality when scaled.
Consider again an icon being resized from 100 pixels to 150 pixels on an HDPI device.
That’s a 50% increase in pixels, and chances are that the image will look washed out
when scaled. Nine-patch images on the other hand scale well by their nature, and are
less problematic even when Android is in auto-scale mode.

Now that you’ve seen how to let Android handle everything and how to provide
configuration specific resources, there’s one more thing you should learn. It’s last, but
certainly not least: programming your application with different screen configura-
tions up front.

Programming pixel-independently

This is the last technique we’re going to show you in this chapter, and it’s short but
important. The one big question that remains is, if we enable support for all screen
densities in the <supports-screens> element, Android’s auto-scaling logic will be dis-
abled and we again have the problem that any values specified in absolute pixels will
have different outcomes on different devices.

PROBLEM

Explicitly declaring support for screens that don’t have the baseline pixel density will
disable Android’s auto-scaling mode, which means that any values specified in pixels
won'’t scale to these devices.

SOLUTION

The solution is surprisingly simple: don’t use absolute pixel values. Ever. The px unit is
unsafe. As we’ve seen, any value specified in px is tailored toward the device you're
developing on. So how should we specify positions and dimensions then? Android
provides a set of density-independent units that, on a device using the baseline config-
uration, behave exactly as if specified in absolute pixels. On other screens, these same
densities will be auto-scaled as seen before.

Remember how we defined our list selector’s corner radius to be five pixels? Have
a look at figure 4.20. On the left side you see the list selector as it’s supposed to look;
on the right side the corner radius appears to be less than the specified five pixels.
Both screenshots were taken from an emulator instance running with a high-density
screen configuration, but for the left image we used the density-independent pixels unit
(dip or dp) to specify the corner radius, whereas on the right side we used the plain
old px unit.

When specifying values in dip, this value will be considered to be the value in pix-
els you would’ve used to arrange the screen element on a device that uses the baseline
configuration. This means that if you’re running such a device, then you won’t notice
any difference between px and dip, but on devices with other pixel densities, Android
makes sure you get the same result!

TECHNIQUE 12 Programming pixel-independently 153

Ml & o:51em Ml @ o:52em

The Godfather (1972)

The Godfather, Part1I (1974)

Figure 4.20 Corner radii mismatch on a high-density screen. On the left side, the radius was specified
using density-independent pixels (dip), where the right side uses absolute pixels (px), resulting in a
physically smaller corner radius.

DISCUSSION

Whenever possible, you should use density-independent units rather than absolute
units when specifying positions or dimensions. Android defines two units you can use
to auto-scale values:

= dip (alias dp)—Density-independent pixels, useful for specifying positions and
dimensions in a scalable way

= sip (alias sp)—Scale-independent pixels, useful for specifying font sizes in a
scalable way

You can and should use these units anywhere in your layouts or styles. If you need to
specify a pixel value in your program code, but want to achieve the same effect, then
you’ll have to do the scaling yourself (unless you're running in fallback mode),
because the SDK functions typically expect values to be in absolute pixels. The conver-
sion is easy though. Here’s one implementation of a helper function that does the
scaling from dip to pixels for you:

public static int dipToPx(Activity context, int dip) ({

DisplayMetrics displayMetrics =
context.getResources () .getDisplayMetrics() ;

return (int) (dip * displayMetrics.density + 0.5f);
}
With this helper you can write applications that scale across all kinds of displays, and
not have to rely on Android’s fallback mode anymore.
In this last section, we’ve taken you through three techniques that showed you how
to prepare your legacy applications to run on devices with different screen configura-
tions by leveraging Android’s fallback mode. More importantly, we saw how to make

154

4.8

CHAPTER 4 Getting the pixels perfect

newly developed applications scale to different screen sizes and densities gracefully by
means of customized resources and density-/scale-independent pixel units. It’s time
to wrap this chapter up.

Summary

In this chapter, we focused on the user interface. We’ve seen how to configure views in
layouts, and how view hierarchies are drawn to the screen. We’ve also seen how all of
the supplied Android layout managers work, and how they work with attributes to cre-
ate structure. This where the UI starts.

From there we looked more closely at working with ListView to uncover a few
handy features, such as header and footer views, and to see how to maintain state
between views and the data model exposed by an Adapter. This helped us focus on
working more closely with this common and powerful widget. Also, while working
with ListView we saw how to reuse styles rather than repeat look and feel values on
every view, and how to go even further and create and apply themes.

Along with themes, we learned how to take the UI to the next level by working with
and defining drawables. We also learned how to provide device-independent
resources for different device configurations. This allowed us to create pixel-perfect
layouts and images so that our application looks the way we expect on many different
screen sizes.

Overall, we’ve now seen a good deal about the basics of building Android applica-
tions, and how to perfect the form (the UI). Now it’s time to move toward function in
the next chapter, where we’ll depart from the UI and hone in on a new topic: back-
ground services.

Managing background
tasks with Services

In this chapter

® Multitasking with Services
® Creating background tasks
® Reviving tasks that have been killed

I am the greatest. I said that even before I knew I was. Don’t tell me I can’t
do something. Don’t tell me it’s impossible. Don’t tell me I'm not the
greatest. I'm the double greatest.

—Muhammad Ali

Services are a killer feature of Android. That’s a bold statement, but it’s accurate.
It might be more accurate to say that multitasking is a killer feature of Android, and
the way to fully implement multitasking on Android is by using Services. Don’t
take our word on this: watch TV instead. One of the most successful commercials
for the popular Motorola Droid touted its ability to multitask and ridiculed “other”
phones that couldn’t “walk and chew gum at the same time.”

Unfortunately, multitasking is one of the most often misunderstood features,
even from a technical standpoint. For years, we’ve used desktop and laptop comput-
ers. These kinds of computers have defined how we expect multitasking to work. If

155

156

5.1

CHAPTER 5 Managing background tasks with Services

I'start to load a web page in my browser and then change windows to type in a word pro-
cessor, I expect that the web page will continue to load even without my attention. As
programmers, we often begin a build of our code and then switch to another program
while the build goes on. What would we do if the build stopped when we switched to
another window? This is the multitasking world that mobile applications live in. In this
chapter, we’ll learn how Android’s Services allow for multitasking when the traditional
desktop multitasking doesn’t work. First, let’s understand how multitasking works on
Android devices.

It’s all about the multitasking

An easy way to realize how valuable multitasking is on a computing device is to live
without it. For some applications, this is no big deal—everything the application does
is confined to the device anyways. An example of this might be a note-taking applica-
tion. If all the app does is stores notes on your device, then you probably don’t care if
it can multitask. But if your app stores your notes on a remote server so that they can
be accessed (both read and write) from any computer/device, then multitasking starts
to become nice. Why? If your app can run in the background, then it can keep the
notes on the device and on the server in sync. Without this, you’ll need to resync with
the server every time you launch the app. That may not sound like a big deal, but this
is a network operation that could be slow. The user is going to experience this slow-
ness every time they want to use the application. In fact, it may be the first thing they
experience when they launch the application. Can you say bad user experience?

The obvious solution is to let applications run in the background indefinitely, as
desktop applications do. But what works fine on a desktop computer doesn’t work well
on a mobile device. The main problem is memory. A desktop computer has a lot of it.
When it runs low, it uses virtual memory or paging to expand the available memory by
using hard disk or similar storage. When an application isn’t in the foreground, its
real memory is often swapped out for virtual memory. When it comes back into the
foreground, it’ll need to get its data swapped back into real memory. This can be a
slow process and make your computer seem sluggish.

On a mobile device, the amount of real memory available is low. One could imag-
ine many apps going in and out of virtual memory. Suddenly, any time you changed
apps, your device would seem to be bogged down and unresponsive. Nobody wants a
device like that.

On an Android device, when you move an application into the background, it’ll con-
tinue to run much like an application on a desktop computer. It’s possible that it could
run like this for a long time, but this is far from guaranteed. Instead, if or when memory
becomes low, the Android OS will terminate your application. This may seem harsh, but
it’s not really. This removes the need for virtual memory and swapping, as we learned
about in chapter 3. Plus, the OS will also send events to your application to let it know
that this is about to happen. That gives you a chance to save the state of your application.

If this were the end of the multitasking story on Android, then you’d have to agree
that Android wouldn’t qualify as a multitasking OS. You might get lucky and be able to

5.2

Why services and how to use them 157

multitask for a while, but it’d be difficult to design an application around this. Even
worse, there’d be nothing to talk about in this chapter! Fortunately, for all of us, Android
gives you more multitasking options, and these are all built around Services. We first
saw Services in chapter 2, but now it’s time to take a much more detailed look at them.
In this chapter, we’ll look at all of the many aspects of Services.

We’ll start with the basics—how to create Services and how to start them automat-
ically when the device boots up. We’ll learn about two of the most common design pat-
terns for using Services, using them to centralize access to and cache data, and
periodically executing Services to check for remote events and potentially publishing
Notifications about remote events. This will naturally lead us into a discussion about
scheduling Services and how to make sure these schedules are executed even when a
device is asleep or low on memory. Finally, we’ll learn about a new feature in Android 2.2,
Cloud to Device Messaging, and see how we can use our remote servers to schedule and
interact with Services. Let’s get started by discussing why we’d want to use a Service.

Why services and how to use them

We stated this earlier, but it bears repeating: Services are the way to fully implement
multitasking on Android. You’ll need other technologies as well, and we’ll examine
those, but Services are the building blocks for any kind of multitasking on Android.
Now Services aren’t for running indefinitely in the background. If you need to start a
task separate from your main application, consider using a Service. For example, let’s
say that you need to upload some large file to a remote server. This could take a long
time. It’s possible that the user will leave your app before this upload finishes. If the
upload is tied to the app, it might still finish as long as the app runs in the back-
ground. But if the app gets terminated to free up memory, then that upload could
potentially be disrupted in midstream. Another example might be building some kind
of complex data structure. A common example of this would be creating a Content -
Provider for Android’s systemwide search. This may involve downloading some data,
processing it, and then storing it on the device, probably in a SQLite database. This is
a one-time task that could take a long time to execute. You don’t want it tied to your
application’s lifecycle, or this task may never finish correctly. Services are perfect for
these kinds of one-time tasks, as well as any kind of recurring task.

GRAB THE PROJECT: STOCKPORTFOLIO You can get the source
code for this project, and/or the packaged APK to run it, at the
Android in Practice code website. Because some code listings here
are shortened to focus on specific concepts, we recommend that
you download the complete source code and follow along
within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/APOO, APK file: http://mng.bz/4iDX

This all sounds well and good, but let’s consider a more concrete example. In this
chapter, we’ll develop an application called StockPortfolio. It’ll allow the user to track
their stock portfolio—what stocks they own, how many shares of each stock, and how

http://mng.bz/APOO
http://mng.bz/4iDX

158

CHAPTER 5 Managing background tasks with Services

much they paid for the stocks. Further, it’ll allow the user to set alerts, so that if a
stock’s price falls too low or rises too high, they’ll be notified so they can sell or buy.
This is a simple application, but it benefits from multitasking via Services in two ways.
First, it’ll fetch the latest stock data in the background and cache it locally. That way,
when the user launches the app, it’ll immediately display accurate stock data, with no
wait time for the user. Second, by running in the background, it can also compare the
current stock prices to see if they’re at a level where the user wants to receive a notifi-
cation. This way the user can receive the notification without having the application
open. All of this sounds simple enough, but such an application wouldn’t be possible
on some mobile devices. Even on Android, you need to be aware of some “gotchas.”
By the end of the chapter, you’ll understand not only how to create such a Service,
but how to get it run periodically in the background, even under low-memory situa-
tions where the OS may have to kill the Service.

Creating a Service

This chapter is all about Services, and we’ll cover them in great detail. But we’re
going to start off small and discuss the basics. Services have some unique character-
istics, as they’re designed to fill the niche of background processing given the style
of multitasking supported by the Android OS. It comes as no surprise that creat-
ing and starting a Service isn’t as simple as implementing an interface and invok-
ing a method.

PROBLEM
You need to monitor the prices of stocks at all times, not only when the user has the
application open in the foreground.

SOLUTION
The Android way of performing background processing is to use a Service. If all you
cared about was retrieving data in the background while the user had the application
open, then you could spawn a thread from your Activity. If you wanted it to run con-
tinuously, then you could use a java.util.Timer. You might also want to consider
Android’s AsyncTask as a convenient way to orchestrate the spawned thread and its
interaction with the UL (Chapter 6 has a lot more information about threads and
AsyncTasks.) The problem with this approach is that once your application leaves the
foreground, the OS could terminate it at any time.

It might seem like this isn’t the case in practice. It’s easy to create an app that starts
a Timer that continues to run when the application leaves the foreground. You could
let it run on a test devise for a long time, but it will only appear as if it’s never killed.
This is misleading though, since it’s atypical usage. Typically, users are using lots of dif-
ferent apps, making calls, sending emails, and so on. All of these require memory and
make it more likely that the OS will terminate your application. So don’t be fooled: if
you need to keep running in the background, you need a Service. To create a Ser-
vice, you’ll need to declare it in your manifest file. The following listing shows how
the Service for our stock portfolio, called PortfolioManagerService, is declared.

TECHNIQUE 13 Creating a Service 159

Listing 5.1 Declaring the PortfolioManagerService

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.manning.aip.portfolio"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".ViewStocks"
android:label="@string/app_name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity> Declare Service
and process

<service android:process=":stocks_background"
android:name="PortfolioManagerService" <——¢D Service’s class
android:icon="@drawable/icon" Icon and user-
android:label="@string/service_name"/> friendly name
</application>

<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET"/>
</manifest>
This is a straightforward manifest, so we’ll focus on the Service declaration. Services
are important enough in Android that they get their own tag! The first part of this dec-
laration is significant. The firstattribute that we declare @ is the Service’s process, spec-
ifying the OS-level process that the Service will run in. This is an optional attribute—
if you don’t specify it, then the Service will run in the same process as your application.

Having a Service in the same process as your main application will change the way
the OS classifies your application process. This is generally good (it’ll be less likely that
your application process will be killed to free up memory). But it also means that your
application and Service share the same memory allocated to the process that they
run in. This can cause your application to run low on memory more often and cause
more garbage collections. That can lead to a laggy/jerky user experience, as some-
times the UI will be frozen while garbage collection occurs. By putting the Service in
its own named process, you avoid this potential problem.

All you have to do is supply a process attribute. Now you might notice that the
value of this attribute is :stocks_background. The colon prefix is significant—it indi-
cates that this separate process is private to the application. The only application that
can start or interact (bind) with the Service is going to be your application. If we
removed the colon, then the Service would still be in its own process, but it would be
a global process. If your Service provides some feature that you want other applica-
tions to have access to, then you might want to do this. We’ll look at global Services
later in this chapter.

Getting back to listing 5.1, the next thing we declare is the Service’s name attri-
bute @. This is the only attribute that’s required in a Service declaration. It specifies

160

CHAPTER 5 Managing background tasks with Services

the class of the Service (relative to the package
of your application, like for activities). Next, we
declare two more optional attributes for our Ser-
vice. These are the icon and label @. The
Android OS allows users to see all running
Serviceson their device and potentially stop
them. The OS uses the icon and label when the
user views this list of running Services, as shown
in figure 5.1

. m Video Chat

Now that we’ve declared our Service, we still 1 process and 1 service
need to implement it. This is as easy as extend- u payPal
ing android.app.Service. You aren’t required processand
to do much in this extension, but you’ll often g Google Voice
want to override the Service’s lifecycle meth- S :
ods. Here’s the basic structure of the Portfolio- 1640 e vy
ManagerService.

Figure 5.1 Viewing running Services

Listing 5.2 Declaring the PortfolioManagerService

public class PortfolioManagerService extends Service

@override Starif
public void onCreate() { Service
//
1 . o
@0override 43 Establish communication
public IBinder onBind(Intent intent) { channel
//
1
@Ooverride Release resources
public void onDestroy() { when Service is killed
//

}

}

The code in listing 5.2 shows the outline of our Service (we’ll look at the details of its
methods later). You only need to implement one method: onBind @. This method
allows other components—typically activities or perhaps other Services—to commu-
nicate with the Service. Remember, a Service will usually be running in its own
process, so communicating with itisn’t as simple as invoking its methods. Interprocess
communication (IPC) is necessary. The onBind method is where the IPC channel
is established.

The other methods that we chose to override in listing 5.2 are onCreate and
onDestroy. These are optional. If your Service does all of its work within the onBind
(an example might be uploading data to a remote server), then you may not need to
override onCreate. If you need to do some processing outside the context of an
onBind call, then you’ll probably set that up in the onCreate method. Finally, as the

TECHNIQUE 14 Starting a Service automatically 161

name suggests, onDestroy is called when a Service is being killed. You should release
any resources being used by your Service here.

DISCUSSION

You’ve seen all the basics of declaring and creating a Service. There are some key
things to take away from this. First, the Service will run in its own process. This
decouples it from the application’s process, so that it won’t be terminated when the
application is terminated. Second, because it’s in its own process, you can only com-
municate with it through IPC. We’ll get into the mechanics of how to do this on
Android later in this chapter. Before we do, one more lifecycle method is worth men-
tioning. Many applications will want to implement the onStartCommand (or the depre-
cated onStart, if you’re developing for pre-Android 2.0 devices). This allows
additional parameters to be passed to the Service when it’s first started. If you want to
expose some configuration parameters of your Service, this is a common way to do it.
An example might be to let the user decide on how often to check for new stock data.
This assumes that you want to manually start the Service from your application.
Often you’ll want to automatically start the Service with no interaction from the user.
Our next technique shows how to do this.

Starting a Service automatically

One common use for a Service is periodically downloading information and poten-
tially raising a Notification if a given condition is met. Services are well suited for
this, but the question of when to start the Service now becomes significant.

PROBLEM

We want to show the user notifications if the price of a stock goes above or below cer-
tain levels. But we don’t want to require the user to launch the application just to
enable Notifications. Instead, we’d like our Service to begin running automatically,
right after the device has booted up.

SOLUTION

The solution is to use a BroadcastReceiver to listen for Android’s BOOT COMPLETED
event. This event is fired by the OS right after the device finishes booting up, which
gives us an easy way to do something when the device is booted. To make this happen
we need to declare it in our manifest as shown in the following listing.

Listing 5.3 Declaring a BroadcastReceiver for the boot complete event

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com. flexware.stocks"
android:versionCode="1"

android:versionName="1.0"> Declare
Broadcast-
<receiver android:name="PortfolioStartupReceiver" Receiver
android:process=":stocks_background"> Put in same
<intent-filter> process as Service

<action android:name=

162

CHAPTER 5 Managing background tasks with Services

"android.intent.action.BOOT_COMPLETED"/>

. . Declare
</intent-filters> event to
</receivers listen for
</applications>
</manifest>

In listing 5.3, we start off by declaring the BroadcastReceiver. This is similar to
declaring a Service (it has many of the same attributes). We once again declare the
class for the BroadcastReceiver by using the name attribute @. Next, we declare that
we want the BroadcastReceiver to be in a different process from our main applica-
tion @. If you compare this to listing 4.1, you’ll see that we want it to be in the same
process as our Service.

Going back to listing 5.3, the last important thing for us to declare about our
BroadcastReceiver is what kind of events that it should listen to €. We do this using
the (hopefully) now familiar intentfilter paradigm. The BOOT COMPLETED event (or
action) is a predefined event in Android. In fact, there may be many other
BroadcastReceivers listening for this event as well, and they’ll all get a chance to do
their thing when the device boots. Now that we’ve declared our BroadcastReceiver,
we need to implement it. The next listing shows its implementation.

Listing 5.4 Starting our Service with a BroadcastReceiver

public class PortfolioStartupReceiver extends BroadcastReceiver {
@Override
public void onReceive (Context context, Intent intent) {
Intent stockService =
new Intent (context, PortfolioManagerService.class);
context .startService (stockService) ; <i—o Start Service

}

Our BroadcastReceiver couldn’t be simpler. It creates a new Intent and uses
that Intent to start the Service @. This will cause the onCreate and then the
onStartCommand methods to be invoked on our Service, and then return back to
the BroadcastReceiver. Since a BroadcastReceiver should return quickly, those
two methods on our Service should execute quickly as well. So if you need to
do anything time-consuming in those methods, it’s better to do such things in their
own thread.

About installing on the SD card

One of the most-requested features for Android 2.2 was the ability to install apps on
the SD card instead of on the internal memory. This seems like a great option for
users, since much more space is available on the SD card than on the internal memory.
If you choose to enable this though, be careful about relying on the device boot event
as we've described in this section.

TECHNIQUE 15 Communicating with a Service 163

(continued)

The BOOT COMPLETED event will be fired before the SD card is mounted, before your
application is available. But there’s another, similar event that you can listen for: the
ACTION EXTERNAL APPLICATIONS AVAILABLE event. This event will be fired after the
SD card is mounted. If your app is on the SD card, it can listen for this event and start
services at that point.

At the time this book was written, there was an open bug in Android (8485) that could
prevent an app on the SD card from receiving this broadcast.

DISCUSSSION

You may be asking why we need to run the BroadcastReceiver in a different process.
The answer is that it’s often desirable to share objects between a Service and the
BroadcastReceiver that started it or invoked it. We want the BroadcastReceiver and
Service to be in the same process, so we don’t have to use IPC. We’ll see this tech-
nique later in this chapter when we discuss best practices for keeping your Service
running continuously. In this case, it’s not absolutely necessary. We’ll see other cases
where a BroadcastReceiver is invoked by the system’s AlarmManager or by a push
notification coming from Google’s Cloud to Device Messaging service and then used
to start our Service using this technique.

Finally, note that starting a Service at device boot isn’t useful only for Services
that can trigger Notifications to be sent. It’s also useful if you’re prefetching and
caching data in the Service. When the user first opens your app, all of their data will
already be loaded and ready to use—which is a positive experience for the user.

Communicating with a Service

A Service can be used to perform useful tasks in the background. We saw a simple
example in chapter 2 where the Service published Notifications for the user. But
you’ll usually want to send data back and forth to a Service. This is the case for our
StockPortfolio service.

PROBLEM

We need to tell our Service what stocks to watch. For each stock, the Service needs
to know two things: the ticker symbol, and the price levels at which the user should be
notified. Since our Service is going to run in a different process, passing data to it
isn’t as simple as invoking a method on an object. We need some type of interprocess
communication (IPC). Fortunately, the Android OS provides this.

SOLUTION

To send data to our Service, we need to use Android’s IPC mechanism. This mecha-
nism allows Services to be exposed to other processes and for serialized data to be
sent between the processes. This is similar to enterprise IPC mechanisms such as
CORBA and Windows COM. Those systems consist of an interface definition language

164

CHAPTER 5 Managing background tasks with Services

(IDL) to describe the interface of what’s being exposed and a proxy class to be used by
clients of the interface. Android uses a similar pattern. It even has its own IDL, known
as Android IDL or AIDL. Here’s an AIDL description of the interface that we want to
expose to our Service.

Listing 5.5 IStockService.aidl: The external interface into the stock portfolio service

package com.flexware.stocks.service;

Import
import com.flexware.stocks.Stock; another AIDL
interface IStockService({

void addToPortfolio(in Stock stock) ; Operations that
List<Stock> getPortfolio() ; will be exposed

}

As you can see from listing 5.5, AIDL looks a lot like Java. It uses packages and imports,
like Java. The main difference is that you can only import other AIDL definitions.
You’ll notice in this case that we’re importing a Stock object @. This is the same
Stock class that we’ll use in the UI of our application (we’ll see how this is done
shortly). Our interface is simple. It only exposes two methods to the outside world @.
Note how this method uses the Stock type and how we mark this input parameter as
in. This indicates that the parameter will be passed in, but its value won’t be returned
to the caller. It’s needed here because Stock is a complex type. If it were a Java primi-
tive type, it wouldn’t be needed.

AIDL types and parameters

Marking an input parameter as in is similar to marking it as £inal in Java. You can
modify the value of any input parameter, but if it’'s marked in, then its new value
won’t be passed back to the caller. The in modifier is known as a directional tag.
There are two other possible values: out and inout. The out modifier indicates that
whatever data you pass in will be ignored. A blank/default value will be created by
the Service, and its final value will be passed back. An inout value indicates that
a value should be passed in, and that it can be modified with its new value passed
back. It's important to figure out what you need. Data sent through IPC must be mar-
shalled and unmarshalled, which can be an expensive process. A parameter marked
as inout will be marshalled/unmarshalled twice. As mentioned, you don’t need to
specify a directional tag for primitive values. These are in only—they’re always im-
mutable values.

This small definition can be used to generate a lot of code. If you’re using the command
line then you’ll want to use the aidl tool. If you're using Eclipse, it’'ll automatically
generate code from any .aidl files it finds in your project. It'll put the generated Java
classes in the /gen directory (the same place it puts the generated R.java file.) For this
to work, it needs to resolve that import reference. You’ll need another .aidl file for this:

TECHNIQUE 15 Communicating with a Service 165

package com.flexware.stocks;
parcelable Stock;

This file (Stock.aidl) declares the Stock class reference in listing 5.5. It declares the
package of the class, as AIDL does in listing 5.5, but all it does is reference a Parcel-
able. This Java class can be used in your application, but it can also be turned into an
android.os.Parcel—serialized so that instances of this class can be sent between pro-
cesses. The following listing shows this Stock class.

Listing 5.6 The Stock class, a Parcelable class that can be sent over IPC

public class Stock implements Parcelable(Implement
// user defined Parcelable interface
private String symbol;
private double maxPrice;
private double minPrice;
private double pricePaid;
private int quantity;
// dynamic retrieved
private String name;
private double currentPrice;
// db assigned

private int id; Private constructor

private Stock (Parcel parcel) { for Parcel
this.readFromParcel (parcel) ;
}
public static final Parcelable.Creator<Stock> CREATOR = Static
new Parcelable.Creator<Stock>() { factory
public Stock createFromParcel (Parcel source) { Eﬂ::}OR
return new Stock (source) ;
}
public Stock[] newArray(int size) {
return new Stock[size];
}
Vi
public int describeContents () {
return O;
} -
@override Serialize
public void writeToParcel (Parcel parcel, int flags) { to Parcel
parcel.writeString (symbol) ;
parcel.writeDouble (maxPrice) ;
parcel.writeDouble (minPrice) ;
parcel.writeDouble (pricePaid) ;
parcel.writelnt (quantity) ;
} Deserialize
from Parcel

public void readFromParcel (Parcel parcel) {
symbol = parcel.readString() ;
maxPrice = parcel.readDouble() ;
inPrice = parcel.readDouble () ;
pricePaid = parcel.readDouble () ;

166

CHAPTER 5 Managing background tasks with Services

quantity = parcel.readInt () ;

}

This listing shows all of the basics of making of a class that’s a Parcelable. The inter-
face @ only states that you need to implement the writeToParcel method 0. As
the name of this method implies, this is the method where you serialize an instance
of your class into a Parcel @. As you can see from the listing, the Parcel class has
useful methods for serializing primitives and strings. This is all you have to imple-
ment so that an instance of the class can be sent to another process. But you need to
deserialize that Parcel back into a Stock. To do this, the Android runtime will look
for a static field called CREATOR @ that will be of type Parcelable.Creator. This
interface defines a factory method called createFrompParcel. In listing 5.6, we’ve
given our Parcelable class its own readFromParcel method © that the Creator
delegates to. Once again, the Parcel class has several methods to assist you in
retrieving the serialized data from the Parcel. One key thing to notice here is that
you must read values from the Parcel in the same order as you wrote them to the
Parcel. For example, the symbol field is the first value written to the Parcel in
the writeToParcel method, so it’s also the first field read from the Parcel in the
readFromParcel method.

Now we have a data structure that can be sent back and forth between the process
where our main application runs and the process where our background service runs.
In listing 5.5, we defined the operations that the background service exposes to the
main application. A Java interface can be generated from the interface defined in the
.aidl file. You can generate this manually using the aidl tool, or it’ll be generated for
you automatically if you’'re using Eclipse and the Android Developer Tools. In the fol-
lowing listing, you can see what this generated code looks like.

Listing 5.7 Java interface generated from AIDL interface

package com.flexware.stocks.service;

public interface IStockService extends android.os.IInterface

/** Local-side IPC implementation stub class. */ Stub

public static abstract class Stub extends android.os.Binder class
implements com.flexware.stocks.service.IStockService

// generated code

}

public void addToPortfolio(com.flexware.stocks.Stock stock)
throws android.os.RemoteException;

public java.util.List<com.flexware.stocks.Stock> getPortfolio()
throws android.os.RemoteException;

1

This is what you’d expect from the AIDL in listing 5.5. The interface and its two opera-
tions are directly translated. The only thing interesting is the Stub abstract class @. As
the name implies, this is a classic stub class that implements the interface (but not the

TECHNIQUE 15 Communicating with a Service 167

operations, which are still abstract), adding lots of generated boilerplate code. You’ll
want to extend this abstract class, implementing the IStockService methods, to lever-
age the generated boilerplate code. You’ll also want to return your implementation
class from the onBind method of your Service’s class. Take a look at the following to
see how this works.

Listing 5.8 The PortfolioManagerService class
Extend

public class PortfolioManagerService extends Service ({ Service

private final StocksDb db = new StocksDb (this) ; QAAW Helper class for

// Other methods omitted persisted data

@Override

public IBinder onBind(Intent intent) { Return class that
return new IStockService.Stub() { extends stub class

public void addToPortfolio(Stock stock)
throws RemoteException {
db.addStock (stock) ;
}

public List<Stock> getPortfolio()
throws RemoteException {
return db.getStocks () ;
}

}

The PortfolioManagerService class shows you a typical Service that supports
remote communication. You might recall that in chapter 2, we saw a Service that
didn’t support remote communication, so its onBind method returned null. Here, (1)
we’re supporting IPC, so we need to return a class that extends the generated Stub
class from listing 5.7. In our example, we used an anonymous inner class that
extended Stub, as our implementation is simple: we’re delegating to a helper class
StocksDb. This class uses Android’s embedded SQLite database to save the stocks that
the user wants retrieved on demand. A call to addToPortfolio will execute an insert
statement and a getPortfolio call will execute a simple query. The last thing we want
to do is show how this is used by the main application. The following listing shows the
application’s main Activity and how it binds and calls the Service.

Listing 5.9 The main Activity binding to the Service

public class ViewStocks extends ListActivity {

Generated service

private ArrayList<Stocks> stocks; .
interface

private IStockService stockService;
private ServiceConnection connection = new ServiceConnection () {

public void onServiceConnected (ComponentName className,
IBinder service)
stockService = IStockService.Stub.asInterface(service) ;

168

CHAPTER 5 Managing background tasks with Services

try {
stocks = (ArrayList<Stocks>)
stockService.getPortfolio() ;
if (stocks == null)
stocks = new ArrayList<Stocks>(0) ;
} Refresh Ul when
refresh() ; data is retrieved

} catch (RemoteException e) ({
Log.e (LOGGING_TAG, "Exception retrieving
portfolio from service",e);
}
}

public void onServiceDisconnected (ComponentName className) {
stockService = null;

i

@Override

public void onStart (Bundle savedInstanceState)
super.onStart () ;

bindService (new Intent (IStockService.class.getName()), connection,
Context.BIND AUTO_CREATE) ; Bind to remote
// UI code omitted service

}

The code in listing 5.9 is a sampling of code from a ListActivity. The first thing we
do in listing 5.9 is define a ServiceConnection, a delegate that will reflect the lifecycle
of our connection to our remote service. We use the generated stub to take the
remote service interface (represented as an android.os.IBinder) and get an imple-
mentation of the local interface. Next, in our Activity’s onStart method, we use the
bindservice method @, available on any Context object (such as an Activity or
Service) to bind to the remote service. We pass in the name of the class of the service
that we want to bind to, our connection delegate, and a flag indicating to automati-
cally create the service if necessary. Invoking a service running in another process is
much faster than making a call over the network, but it’s still a slow operation that
shouldn’t be done on the main UI thread (bindService will cause this binding to hap-
pen asynchronously). The onServiceConnected method in the ServiceConnection
acts as a callback to this asynchronous binding of the service. When it’s called, we
know that our service is bound and we can retrieve data from it and refresh the Ul @.

Visible processes and bound Services

In our example, the application and Service each run in their own process, but
there’s only so much memory to be spread out among these processes. For first-
generation Android devices, this is generally 16 MB per process, and 24 MB per pro-
cess on second-generation devices. So when all of those 16 or 24 MB pieces of the
pie have been handed out, the OS must kill some processes. Different processes are
viewed as being more or less important, as we discussed in chapter 3.

TECHNIQUE 16 Using a Service for caching data 169

DISCUSSION

Communicating with a remote service is one of the more complicated techniques that
you’ll see. There are several steps in the process, but they’re quite straightforward.
Still, you can’t be blamed for wondering whether it’s worth all the trouble. What
makes it more complex is that you’re communicating across processes. That means
that a channel for communication must be created and data must be marshalled and
unmarshalled as it goes between the processes. This is definitely worth it if you want to
decouple the execution of your application from the user interacting with it. It’s one
of the features of the Android platform that give it an advantage over its competitors.
One common use case for this is to use a Service to manage and cache data from
remote servers.

Using a Service for caching data

A Service often needs to work with the same data as your main application. Both
components can retrieve and manage this data. But as we saw in the previous section,
it’s possible for your main app to communicate with a Service. This makes it possible
to have the Service manage all of the data, and if the data comes from over the Web,
the Service can cache the data from the server.

PROBLEM

You have an application that also has a background Service. Both the main applica-
tion and the Service need to use data from a remote server. You want to centralize
the access to this data in one place and cache it, since retrieving it over the network is
slow and expensive. You want to do this from the background Service, so that it can
retrieve the data even when the main application isn’t being used and so that it can be
exposed to the main application via IPC with the background Service.

SOLUTION

This is a common application pattern for Android apps. Part of why it’s so common is
because it’s fairly straightforward. It builds on the other techniques that we’ve dis-
cussed so far. Your background Service can be started at device boot. Then it can
retrieve data over the network. This can be done periodically, as needed. Finally, once
the user launches your application, one of your app’s activities can bind to the Ser-
vice and invoke one of its methods to return the data that the Service downloaded
from the network.

This simple pattern is followed by many popular Android apps. So how would we
apply it to our stock portfolio application? For that application, the list of stocks that
the user wants to track is managed locally, stored in a local SQLite database. To track
the current price of the stock, we’ll download this data over the network. To make all
of this happen, we only need to modify our Service. Here’s the new version.

Listing 5.10 Stock Service now with caching

public class PortfolioManagerService extends Service { .
private final StocksDb db = new StocksDb (this) ; Keep timestamp
private long timestamp = OL; of last update

170

CHAPTER 5 Managing background tasks with Services

private static final int MAX CACHE_AGE = 15*60%*1000;

// 15 minutes Cache data up
@override to 15 minutes
public IBinder onBind(Intent intent) {

return new IStockService.Stub() ({

public Stock addToPortfolio(Stock stock)
throws RemoteException {

Stock s = db.addStock (stock) ; Refresh cache
updateStockData () ; whenever stock added
return s;

}

public List<Stocks> getPortfolio() throws RemoteException {

ArrayList<Stock> stocks = db.getStocks() ;

long currTime = System.currentTimeMillis() ; Use cached if

if (currTime - timestamp <= MAX_CACHE_AGE) { fresh enough
return stocks;

}

Stock[] currStocks = new Stock[stocks.size()];
stocks.toArray (currStocks) ;

try {
ArrayList<Stock> newStocks = Get data
fetchStockData (currStocks) ; from server
updateStockData (newStocks) ; Persist
return newStocks; fresh data

} catch (Exception e) {
Log.e ("PortfolioManagerService",
"Exception getting stock data",e);
throw new RemoteException() ;

}
}i

// code for retrieving stock data omitted

The code in listing 5.10 expands on the Service first shown in listing 5.2. To allow for
caching, we need a couple of things. We want to set a time limit @ on how stale our
cache can be before we bypass it and go back to the server. To determine the freshness
of our cache, we need to keep track of the last time @ we downloaded data from the
server. Next, we need to add some cache management code to our two operations that
we expose, addToPortfolio and getPortfolio. For addToPortfolio, we add the
Stock to the local database, and then we call updateStockData €. This method will
retrieve data from the network, and then update the stocks stored in our local data-
base. We’ll look at its code shortly. Because we added a new stock, we need to get
information about it from the network, so we might as well get information about all
of our stocks and update our cache.

For the getPortfolio method, we start by retrieving the cached data from our
local database and see if this data is fresh enough. In the previous listing, we set a sim-
ple policy of allowing cached data to be used if it’s less than 15 minutes old. You could
imagine a much more sophisticated caching policy, where you’d be more aggressive if
the current time was during stock market trading hours, but otherwise passive. This

TECHNIQUE 17 Creating notifications 171

policy is good enough for our application, so we check if the current time minus the
last timestamp is less than 15 minutes 0. If so, then we return the cached data. Other-
wise, we retrieve data from the network @ and then update our cache 0 with the
fresh data. We do this by calling another variant of updateStockData.

Listing 5.11 Updating cached stock data

private void updateStockData() throws IOException({

ArrayList<Stock> stocks = db.getStocks () ; <@ Get stocks
Stock[] currStocks = new Stock[stocks.size()];
currStocks = stocks.toArray (currStocks) ;
stocks = fetchStockData (currStocks) ; <1—0 Get fresh data
updateStockData (stocks) ; Update

1 cached data

private void updateStockData (ArrayList<Stocks> stocks) {
timestamp = System.currentTimeMillis() ;
Stock[] currStocks = new Stock([stocks.size()];
currStocks = stocks.toArray (currStocks) ;
for (Stock stock : currStocks) { Update latest
db.updateStockPrice (stock) ; pﬁceofthestock

}

checkForAlerts (stocks) ;

}

These two methods are what the Service uses to refresh its cached data. The first
method takes no arguments and is used when the user adds a new stock. It retrieves
the full list of stocks @ that the user is monitoring by retrieving this data from the
local database. Then it uses the fetchStockData method @ to get the latest informa-
tion on the Stock from the network. Finally, it delegates to the second method @,
which takes in a list of Stock objects and updates their prices in the database. This
method then iterates over the list of Stocks, and updates the price of each Stock 0.

DISCUSSION

Caching of data can make a huge difference in the performance of any application. The
more expensive that data is to retrieve, the bigger the benefit of caching it will be. This
is true for mobile applications, which often rely heavily on data from remote servers. The
network connection speeds on mobile networks are generally never great, and are often
quite slow. Storing data in a local database is a great way to cache that data. Putting all
of the management of that data into a background Service allows its retrieval /updates
to be done in the background, and not be tied to the user using the application. Having
this data in the background Service allows that Service to do other things with that
data. A common example of this is to create notifications based on the data that’s
retrieved from the server.

Creating notifications

Notifications are one of the most significant features of mobile applications. They
allow your application to interact with users in an asynchronous manner—the users
don’t have to be directly interacting with your application (have it open) in order for

172

CHAPTER 5 Managing background tasks with Services

your application to communicate important, time-critical information. It should come
as no surprise that background Services are integral to such notifications, as they’re
the key feature of the Android platform that enables your application to operate in an
asynchronous manner.

PROBLEM

You want to alert your user when some significant events happen, even if your users
aren’t using your application at the time of that event. You want to provide them with
detailed information about this event, and make it actionable so that they can imme-
diately use your application to respond appropriately to the event. The event may
come from a remote system, or it might be local to the device. Either way, you want to
incorporate all of the various capabilities of Android to alert users, so that they can act
on the event in a meaningful way.

SOLUTION

The Android platform offers a flexible and extensible notification system. The sim-
plest type of notification offered by Android is known as a toast notification, or a toast.
Toasts are often used by an Activity to alert the user to an event, but they can also be
launched from a Service. Toasts are designed to display information to the user—
they’re not interactive. To get the kind of interactivity we desire, we need to use an
android.app.Notification. A Notification allows the user to interact with your
application by wrapping an Intent. It can be displayed on the status bar, create a
sound, vibrate the phone, and even trigger custom colored flashing LEDs.

For our stock portfolio application, users can enter a minimum and maximum
price level for each of the stocks in their portfolio. Each time we download the latest
price information from the network, we want to check whether any of the stock prices
have gone below the minimum price or exceeded the maximum price. The following
listing shows how we can add this logic to our Service.

Listing 5.12 Checking maximum and minimum levels

private void updateStockData (List<Stock> stocks) {
// existing code omitted J Check for alerts
checkForAlerts (stocks) ; after update

}

private void checkForAlerts (Iterable<Stock> stocks) {
for (Stock stock : stocks) {
double current = stock.getCurrentPrice() ;

if (current > stock.getMaxPrice()) { Iﬁgppr@e
createHighPriceNotification (stock) ; notification
continue;
}
if (current < stock.getMinPrice()) { LOV‘.’ PI’IC'e
notification

createLowPriceNotification (stock) ;

}

TECHNIQUE 17 Creating notifications 173

The easiest way to add the price alert checking logic is to call it @ after we update our
locally cached data with new data from the network. This involves iterating over each
stock and creating a specific Notification depending on whether the current price is
higher @ than the user’s maximum or lower € than the user’s minimum price. Note
that we’ve created a specific method for creating each of these different Notifica-
tions. Here’s how we create high-price Notifications.

Listing 5.13 Creating a high price Notification

private static final int HIGH PRICE _NOTIFICATION = 1;

private void createHighPriceNotification(Stock stock) ({ . .
Get Notification

NotificationManager mgr = (NotificationManager) .
getSystemService (Context . NOTTFICATION SERVICE) ; service

int dollarBill = R.drawable.dollar_icon; Notification

String shortMsg = "High price alert: " + stock.getSymbol () ; with ticker

long time = System.currentTimeMillis(); info

Notification n = new Notification(dollarBill, shortMsg, time);
String title = stock.getName () ;

String msg = "Current price $" + stock.getCurrentPrice() +

" is high"; Intent for
Intent i = new Intent (this, NotificationDetails.class) ; launch
i.putExtra("stock", stock); Expanded
PendingIntent pi = PendingIntent.getActivity(this, 0, i, 0); Notification
n.setLatestEventInfo (this, title, msg, pi); info
n.defaults |= Notification.DEFAULT_SOUND; Add
long[] steps = {0, 500, 100, 200, 100, 200}; sound
n.vibrate = steps; Vibrate
n.ledARGB = 0x80009500; phone
n.ledOnMS = 250;
n.ledOffMS = 500;
n.flags |= Notification.FLAG SHOW_LIGHTS; Flash
mgr.notify (HIGH PRICE_NOTIFICATION, n); lights

}

The method in listing 5.12 shows many of the options available for creating Notifica-
tions. At its most basic, you need to create the information that will be shown on the
status bar (ticker). This includes an icon (image) @, a short message, and when the
Notification should be shown. We could stop here, but we want the Notification to
be actionable. To do this, we want to start an Activity when the user selects the Noti-
fication. To do that, we need an Intent @. Note that the Stock object that the
Notification pertains to is added to the Intent as an extra. We can do this because
the Stock class is a Parcelable, the OS can easily serialize/deserialize a Stock object.
The Intent then gets wrapped in a PendingIntent—an Intent that will be activated
sometime in the future.

The rest of the code shows some of the other options available to you for making
the user notice your Notifications. You can have the device play a sound ©. In this
case, we used the default sound that the user has set for Notifications. You could
also include a sound file with your application and use it here instead. Next, we have

174

CHAPTER 5 Managing background tasks with Services

the device vibrate @ when the Notification is sent. We pass in an array of longs for
this. The first value in the array is how long to wait until the vibration start. After that,
it’s a pattern of values, alternating how long the vibration should be on and then how
long it should be off. Once the end of the array is reached, the phone will stop vibrat-
ing. Finally, we can also make the LEDs on the phone flash @. The presence and type
of these lights varies from device to device, but if you specify something that the
device can’t do, the OS will degrade this appropriately. In this case, we specified an
ARGB hexadecimal color (green) for the LED, and then an on/off pattern. In this
case, the pattern will be repeated indefinitely.

If/when the user expands the status bar to see more information about the Not1i-
fication, they’ll be shown the contentTitle and contentText.Inlisting 5.12, we spec-
ified these values using the setLatestEventInfo method. This method also takes the
PendingIntent that we created, so that if the user taps on the Notification then the
Intent that was wrapped by the PendingIntent will be used to start the Activity asso-
ciated with it. This is a convenience method that allows you to specify these values and
combines them with a predefined view. You can also specify your own custom view. The
next listing shows a custom view being used to create the Notification for low prices.

Listing 5.14 Creating a low price Notification

private static final int LOW_PRICE_NOTIFICATION = O;

private void createLowPriceNotification (Stock stock) {
NotificationManager mgr = (NotificationManager)

getSystemService (Context . NOTIFICATION_SERVICE) ;

int dollarBill = R.drawable.dollar_icon;
String shortMsg = "Low price alert: " + stock.getSymbol () ;
long time = System.currentTimeMillis() ;
Notification n = new Notification(dollarBill, shortMsg, time);
String pkg = getPackageName () ;

RemoteViews view = Get .
new RemoteViews (pkg, R.layout.notification_layout) ; RemoteViews
String msg = "Current price $" + stock.getCurrentPrice() +
" is low"; Settgxt
view.setTextViewText (R.1d.notification_message, msg) ; on View
n.contentView = view; Set View to
Intent i = new Intent(this, NotificationDetails.class) ; be used
i.putExtra("stock", stock);
PendingIntent pi = PendingIntent.getActivity(this, 0, i, 0);
n.contentIntent = pi; Set
n.defaults |= Notification.DEFAULT_SOUND; Pendinglntent
long[] steps = {0, 500, 100, 500, 100, 500, 100, 500};

n.vibrate = steps;

n.ledARGB 0x80A80000;
n.ledOnMsS = 1;
n
n

.1edOffMS = 0;
.flags |= Notification.FLAG_SHOW_LIGHTS;
mgr.notify (LOW_PRICE_NOTIFICATION, n);

TECHNIQUE 17 Creating notifications 175

The createLowPriceNotification in listing 5.13 is similar to createHighPrice-
Notification. The messaging, icons, vibration pattern, and lights are a little differ-
ent, but these are the same APIs that we saw in listing 5.12. The significant difference
is that we no longer use the setLastEventInfo method on the Notification object.
Instead, we use a custom View. The tricky part about creating a View in this situation is
that we’re creating it from our background Service, which is running in a separate
process from whatever application that the user is currently viewing. In fact, since this
is executing from within a Service, we can’t even use the layout inflater system ser-
vice, since it needs an Activity to inflate a View. Fortunately, Android has the
RemoteViews class to deal with this situation. It only needs the package name of our
application and an XML view @ to inflate the View. Here’s the View that we’re going
to inflate.

Listing 5.15 Custom XML layout used for a Notification

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/notification_layout_root"
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout height="fill parent"”
android:padding="5dp">
<ImageView android:id="@+id/notification_icon_left"
android:layout width="wrap_content”
android:layout height="fill parent”
android:layout_marginRight="5dp"
android:src="@drawable/radioactive_icon"
/> TextView to
<TextView android:id="@+id/notification_message" ﬁsNaynussage
android:layout width="wrap_content”
android:layout _height="fill parent”
android:textColor="#000"
/>
<ImageView android:id="@+id/notification_icon_right"
android:layout width="wrap_content”
android:layout height="fill parent"
android:layout marginLeft="5dp"
android:src="@drawable/radiocactive_icon"
/>

</LinearLayout>

The View for the Notificationis a simple LinearLayout that flows horizontally. It has
a text message © flanked by icons to its left and right. For the text message, we use a
TextView with an ID so that we can retrieve it and set its text. This needs to be done
from the setLowPriceNotification method, but that’s part of our background Ser-
vice. The familiar findviewById method is only available from an Activity, not from
a Service. Fortunately, the RemoteViews class has a variety of methods to work around
this. Back in listing 5.13, you can see that we used the setTextViewText method to set

176

5.3

CHAPTER 5 Managing background tasks with Services

the text value of the message that will be shown in our Notification. The Remote-
Views class has several other similar methods to handle variations on this situation.

Once the View is created and ready, it’s set as the contentView of the Notifica-
tion. Also note that we needed to set the contentIntent of the Notification as well.
We didn’t have to do this in the setHighPriceNotification method because we used
the setLastEventInfo method that took care of this for us.

DISCUSSION

Android provides application developers with a rich set of APIs for creating and man-
aging and Notifications. We've gotten a good look at many of them in this tech-
nique. Now do you really want to play a sound, vibrate the phone for several seconds,
and flash the LEDs every time you need to send a Notification? This is a rhetorical
question on the way to the bigger question: what’s the point of all these literal bells
and whistles for Notifications? After all, if you compare it to other popular mobile
platforms, you get many more capabilities, but is that necessarily a good thing? Like
any other feature, it’s possible to go overboard. But these rich capabilities give you
many opportunities to create distinctive Notifications for your application, and
that’s valuable.

Remember that Notifications are usually raised while the user is using a different
application, or perhaps even more commonly, while the user is not using the phone at
all. Maybe it’s sitting in their pocket or lying on the desk in front of them. If your
Notification is distinctive, they’ll recognize that a Notification is from your appli-
cation without even viewing it on their phone. This makes them much more likely to
react to your Notification, and in turn your application—which is a good thing.

The combination of background Services and Notifications is powerful and
compelling. But to make it work effectively we need to understand scheduling and
how this interacts with your Service’s lifecycle.

Scheduling and Services

Running in the background on a traditional desktop computer or server is fairly
straightforward. It’s much more complicated on a mobile operating system like
Android, where memory is more scarce. Anything that’s running in the background
could be killed by the OS to free up memory to be used by an application that the user
is interacting with. This feature of the OS is great for the user, as it ensures that their
applications are always responsive, but it doesn’t make life easy on application devel-
opers. If you want to run in the background indefinitely, then you can’t assume that
you can start a Service and let it go. You must assume that the OS will kill it and that
you’ll need to resurrect it. You need some hooks into the OS to do this, and fortu-
nately, Android provides them. Traditionally, this has been accessing the system alarm
services via Android’s android.app.AlarmManager class. With the introduction of
Android’s Cloud to Device Messaging service in Android 2.2, developers have another
way of doing this by sending wake-up calls from their servers to their Service on a

TECHNIQUE 18 Using the AlarmManager 177

specific device. In this section, we’ll learn about various techniques for using these
parts of the Android platform to make your background Services more robust.

Using the AlarmManager

The Linux gurus out there will surely be familiar with Linux’s system-level alarms and
timers. These utilities are available to Android processes as well. But you don’t need to
read the manual. Instead, Android provides a simple Java API for setting system-level
alarms, including both one-time and repeating alarms. It’s the key API in Android for
executing your program at some point in the future and making sure it happens even
if your application or Service isn’t running at that time.

PROBLEM

Your Service needs to execute code at some point in the future. But even though
your Service may be currently running, you can’t guarantee that it’ll still be running
at that point. If that was the case—or if it was okay for your code to not execute if your
Service isn’t running in the future—then you could use a combination of Java’s
Timer and TimerTask along with Android’s Handler. The following listing shows such
a naive implementation.

Listing 5.16 Using a Timer and a Handler to schedule Services (DON’T DO THIS!)

Calendar when = Calendar.getInstance() ;
when.add (Calendar.MINUTE, 2);
final Handler handler = new Handler() ;
TimerTask task = new TimerTask () {
@Override
public void run() {
handler.post (new Runnable () {
public void run() {
updateStockData () ;

1) i

1
}i
Timer timer = new Timer () ;
timer.scheduleAtFixedRate (task, when.getTime (), 15*60%*1000) ;
If you can live with your Service and scheduled operations being killed by the OS,
then use code like listing 5.15. This code will call the updateStockData method that
we saw in listing 5.11. The first call will be two minutes from the current time. After
that, it’ll be called every 15 minutes, for as long as the Service is running. This is the
desired behavior, except for the “for as long as the Service is running” part. Instead
we’d like to change this “for as long as the device is turned on.”

SOLUTION

To ensure that our code is executed at the desired time, we can’t rely on the Service
because the OS could kill the Service to free up memory. We must use the OS to sched-
ule the execution, and to do this we must use the android.app.AlarmManager class.
This system service is like the layout inflator or notification manager services. In our

178

CHAPTER 5 Managing background tasks with Services

stock portfolio application, we’ve already created a BroadcastReceiver that’s invoked
when the device finishes booting up. Currently it starts the Service at that time, but
here you see a new version that instead schedules the Service to be executed.

Listing 5.17 Using a device boot receiver to schedule Service execution

public class PortfolioStartupReceiver extends BroadcastReceiver {
private static final int FIFTEEN_MINUTES = 15*60%*1000;

@Override
public void onReceive (Context context, Intent intent) {
AlarmManager mgr = (AlarmManager) Get
AlarmManager

context .getSystemService (Context .ALARM SERVICE) ;

Intent i = new Intent (context, AlarmReceiver.class);
PendingIntent sender = PendingIntent.getBroadcast (context, O,
i, PendingIntent.FLAG_CANCEL_CURRENT) ; Create Intent to

Calendar now = Calendar.getInstance() ; be scheduled

now.add (Calendar.MINUTE, 2);

mgr.setRepeating (AlarmManager.RTC_WAKEUP,

now.getTimeInMillis () , FIFTEEN_MINUTES, sender) ; Schedule
} Intent

}
If you compare listings 5.16 and 5.4, you’ll see that we’ve changed the implementation
of the onReceive method. Now instead of starting the Service, we’ll schedule it. We
create an Intent @ for the BroadcastReceiver that will receive the alarm from the
AlarmManager. Note that we once again wrap the Intent in a PendingIntent, similar to
what we did for aNotification. This is because the Intent won’t be executed now, but
in the future. Then we use the AlarmManager @ to schedule the PendingIntent for
execution. By specifying the type of alarm as RTC_WAKEUP, we re instructing the OS to
execute this alarm even if the device has been put to sleep (that’s what the wakeup suffix
represents; the RTC part says we’re measuring start time in absolute system time). We’ve
set the alarm to first go off in two minutes from the current time, and then to go off
every 15 minutes subsequently. Note that our Intent wasn’t for the Service directly,
but instead for a class called AlarmReceiver. The following listing shows this class.

Listing 5.18 AlarmReceiver, a BroadcastReceiver for handling system alarms

public class AlarmReceiver extends BroadcastReceiver {

@Override
public void onReceive (Context context, Intent intent) {
Intent stockService =
new Intent (context, PortfolioManagerService.class) ;
context.startService (stockService) ;

}

This class should look familiar. It’s equivalent to the original PortfolioStartup-
Receiver class shown in listing 5.4. All it does is create an Intent for the Portfolio-
ManagerService and then immediately start that Service. But now we want that

TECHNIQUE 18 Using the AlarmManager 179

Service to update the stock data and check whether it needs to send Notifications
to the user. The next listing shows how we need to modify the Service.

WHAT'S IN THE INTENT? You might notice that the AlarmReceiver’s
onReceive method has an Intent passed in to it, per the onReceive
method’s specification from BroadcastReceiver. This is the same Intent
you created in the PortfolioStartupReceiver, wrapped in a Pending-
Intent. It’s not exactly the same, because it could be serialized and then
deserialized. But any extended data added (using the Intent’s putExtra
methods) to the Intent created in listing 5.16 will be present in the
Intent received in listing 5.18, and can be retrieved using the get-
Extra methods.

Listing 5.19 Modified Service to work with system alarms

public class PortfolioManagerService extends Service {
// other code omitted

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
updateStockData () ;
return Service.START NOT STICKY;

}

To get our Service to work properly with the system alarms, we need to override
another of android.app.Service’s lifecycle methods: the onStartCommand method.
This method will be invoked each time a client context calls startService, such as in
listing 5.18, even if the Service is already running. All we want to do is call our update-
StockData method, since it’'ll take care of retrieving fresh data from the network,
updating the locally cached data in our database, checking whether we need to send
out Notifications, and send them out if so.

Note that this method must return an integer. The value of that integer tells the OS
what to do with the Service if it’s killed by the OS. The START NOT_ STICKY flag indi-
cates that the OS can forget about this Service if it has to kill it. That makes sense in
this example, since we know that we have an alarm scheduled to restart the Service
later. Alternatively, we could’ve returned START STICKY. This would instruct the OS to
restart the Service itself.

SERVICE ONSTART VERSUS ONSTARTCOMMAND If you dig around the Internet
looking for examples of starting a Service periodically, you mightsee code that
overrides onStart instead of overriding onStartCommand as we did in list-
ing 5.18. This older lifecycle method was deprecated in Android 2.0. It has no
return value, unlike onStartCommand, so it can’t provide the OS any information
on what to do if the Service is killed. You should always use onStartCommand,
unless you need to write code specifically for devices running pre-2.0 versions
of Android.

180

CHAPTER 5 Managing background tasks with Services

DISCUSSION

Using the AlarmManager sounds harmless enough. After all, it’s another set of APIs
that are part of the Android platform. But it’s powerful. It allows us to decouple the
execution of background code from the process executing that background code.
Take a look at the Service that we’ve developed up to this point. It'll start up two min-
utes after a device boots, and will then poll data from the Internet every 15 minutes
until the device shuts down. The device could even be asleep, and our alarm will still
execute. To get this behavior, all we had to do was specify an alarm type (RTC_WAKEUP)
when we scheduled the alarm.

Behind the scenes, the AlarmManager must obtain a wake lock to prevent the device
from going to sleep. This wake lock is held while the onReceive method of the Broad-
castReceiver that receives the alarm is executing. In this case, that Broadcast-
Receiver is our AlarmReceiver class shown in listing 5.17. But once its onReceive
method returns, it again becomes possible for the device to go to sleep, and for your
Service to stop executing. Our next technique discusses how you can prevent this
from happening.

Keeping Services awake

In the previous technique, we learned about the AlarmManager, and in particular
how it can help us to resurrect our killed Service. But that resurrection could be
short-lived. Having the alarm go off isn’t good enough. We also want to make sure
that we finish the work that the Service needs to do—retrieve fresh stock data from
the Internet and send out Notifications if needed. To do this, we’ll need to use
some of Android’s power management APIs, and we’ll need to think carefully about
Android processes.

PROBLEM

If a device is asleep, we still want our Service to execute. We want it to keep the device
awake long enough to create Notifications for the user. We don’t want our users to
not receive Notifications because their device was asleep in their pocket.

SOLUTION

To solve this problem, we’ll need to use Android’s PowerManager API. This is another
system service on Android, and it allows us to control the power state on the device.
Using this API, we can acquire what Android calls a wake lock. Acquiring a WakeLock
allows your application to prevent the OS from putting the device to sleep (turning off
the CPU). This is a significant capability that the OS provides to developers, and you
must list it as a <uses-permission> in your AndroidManifest.xml file. Obviously if you
misuse this, you’ll severely affect the battery life of a device. With that in mind, there
are several different types of wake locks. The most common type is the PARTIAL
WAKE_LOCK. This turns on the CPU, but keeps the screen (and if the device has a physi-
cal keyboard, the keyboard’s backlight) turned off. Considering that the screen on a
device is typically the single biggest drain on the battery, it’s best to use a PARTIAL_
WAKE LOCK when possible. It also has the advantage that it won’t be affected if the user

TECHNIQUE 19 Keeping Services awake 181

presses the power button on the device. The other types of wake locks—SCREEN_DIM_
WAKE_LOCK, SCREEN BRIGHT WAKE LOCK, and FULL WAKE LOCK—all turn the screen on,
but because of that, the user pressing the power button can also dismiss them. It
should come as no surprise that for a background Service, we definitely want to use
a PARTIAL WAKE LOCK.

At this point, the solution to our problem may seem obvious. We can add code to
our Service to acquire a WakeLock during its onStartCommand method, and then
release it after we finish checking for Notifications. But there’s a big problem with
that approach. If the device is asleep, then the WakeLock acquired by the AlarmMan-
ager will be released once the onReceive method of our AlarmReceiver class finishes.
This can (and will) happen before the onStartCommand of our Service is invoked.
The device could go back to sleep before we even get a chance to acquire a WakeLock.
Therefore, we must acquire a WakeLock in the onReceive method of AlarmReceiver,
since that’s the only place we’re guaranteed that execution won’t be suspended.

Here’s the new modified version of AlarmReceiver.

Listing 5.20 Modified AlarmReceiver, now with power management
Shared

public class AlarmReceiver extends BroadcastReceiver {
private static PowerManager.WakeLock wakeLock = null; WakeLock
private static final String LOCK_TAG = "com.flexware.stocks";
public static synchronized void acquireLock (Context ctx) { Static
if (wakeLock == null) { method for
PowerManager mgr = (PowerManager) acquiring

ctx.getSystemService (Context . POWER_SERVICE) ;
wakeLock =
mgr .newWakeLock (PowerManager . PARTTAL WAKE_LOCK,
LOCK_TAG) ;
wakeLock.setReferenceCounted (true) ;

}

wakeLock.acquire () ;

} Static metfhod
public static synchronized void releaseLock () { for releasing
if (wakeLock != null) {
wakeLock.release () ;
1
}
@Override
public void onReceive (Context context, Intent intent) {
acquireLock (context) ; AcquheVtheLock
Intent stockService = before starting Service

new Intent (context, PortfolioManagerService.class);
context.startService (stockService) ;

}

The AlarmReceiver has received a major makeover. It has a WakeLock instance as a
static variable. In addition, it also has two methods for acquiring and releasing the
WakeLock. We used a static WakeLock with static acquire/release methods so that this
can be shared between the AlarmReceiver instance and our background Service.

182

CHAPTER 5 Managing background tasks with Services

Normally, to share with a Service that you’re starting, you’d pass it as part of the
Intent (typically as an extra), but anything passed as part of the Intent must be a
Parcelable. A WakeLock is a representation of a system setting, it’s definitely not a
Parcelable. So we use static variables and static methods to work around this.

Keep in mind that for this technique to work, AlarmReceiver and our Service
must be running in the same process, or you’ll face a tricky bug. If this is the case,
then the same class loader will load them, and they’ll share the static WakeLock. Other-
wise they’ll be in different class loaders and will have different copies of the WakeLock.
Here’s the declaration of AlarmReceiver from our AndroidManifest.xml file:
<receiver android:name="AlarmReceiver"

android:process=":stocks_background" />
Now compare this to listing 5.1, and in particular the declaration of the Portfolio-
ManagerService. Both components have android:process=":stocks_background".
Both will be run in a process outside of the main application process, and will be in
the same process. With this configuration, the technique will work. Now we need to
add code to PortfolioManagerService to release the WakeLock so that the device can
go back to sleep. The following listing shows the modified checkForAlerts method,
now with power management code.

Listing 5.21 Releasing the WakeLock after checking for alerts

private void checkForAlerts (Iterable<Stock> stocks) {

try{
for (Stock stock : stocks) {
double current = stock.getCurrentPrice() ;
if (current > stock.getMaxPrice())
createHighPriceNotification (stock) ;
continue;
1
if (current < stock.getMinPrice())
createLowPriceNotification (stock) ;
1
}
} finally {
AlarmReceiver.releaseLock() ;
stopSelf () ;

}

The main thing that we’ve done to this method is wrap its code in a try-finally
sequence. Inside the finally block, we invoke the releaseLock static method from
AlarmReceiver, and release the WakeLock that we acquired during AlarmReceiver’s
onReceive method.

DISCUSSION

It’s important to think about the effect that the preceding code will have on battery
life. The CPU is going to be woken up to make a network call, update a local database,
and possibly create Notifications. Without the power management code we added,

TECHNIQUE 20 Using Cloud to Device Messaging 183

this wouldn’t happen when the device is asleep. This whole process could take a few
seconds, since it involves a network call. But we didn’t turn on the screen, minimizing
how much extra power is consumed.

Another thing to keep in mind is that a couple of other flags can be set on WakeLocks.
These flags determine whether acquiring the WakeLock should cause the screen to turn
on. Normally WakeLocks keep the screen from turning off, but with these extra flags they
can also cause it to turn on if it’s turned off. But those flags don’t work with the
PARTIAL WAKE LOCK type that we used. The PARTIAL WAKE LOCK is made for the “wake
up, butstay in the background” kind of task like we’re trying to accomplish with our Ser-
vice. It’s important that the Notifications that we create do more than create ticker
text on the screen. The screen may be turned off, and we can’t turn it on, so the user
wouldn’t see such Notifications. That’s not a problem in our application, where our
Notifications make a sound, vibrate the phone, and flash its LEDs. We didn’t need to
do all three of those things, but it’s good that we did at least one of them.

Using Cloud to Device Messaging

So far in this section, we’ve concentrated on how we can use the Android OS to sched-
ule execution of our Service. The main driver for this was that we wanted our service
to poll an Internet server to get fresh data about stocks. But polling is inherently inef-
ficient. Most of your polls don’t result in data that requires your Service to generate a
Notification, so you poll too much. On the other hand, there will always be some
window of time where an event has happened that you’d like to give your user a Noti-
fication about, but your Service hasn’t polled yet, so you don’t know about the
event yet. You don’t poll enough. In our application we’re polling every 15 minutes.
But you can imagine that with the volatility of the stock market, this interval may be
unsatisfactory to the user. We can poll more often, but this will definitely have an
effect on the battery life of the device. Android’s Cloud to Device Messaging service
provides an elegant alternative to this.

PROBLEM

We want to immediately notify our users of important events. The less time between
when the event happens and when the user sees aNotification, the more valuable our
application will be to the user. But extremely frequent polling will have a negative effect
on battery life, and may also overly tax the servers that our background Service is poll-
ing. Further, as we’ve seen, the code to make background polling robustis complicated.

SOLUTION

If you took a poll of Android developers and asked them what the most important new
feature in Android 2.2 (Froyo) was, many of them would instantly say Cloud to Device
Messaging (C2DM). This is Android’s answer to Apple Push Notification Service (APNS),
only it has many advantages over APNS. With C2DM, remote web servers can send
Intents to specific applications on specific Android devices. For our sample application,
we can use C2DM to allow a server to tell our background Service to refresh its cache

184

CHAPTER 5 Managing background tasks with Services

and check for Notifications. To use C2DM requires a few steps of setup and several per-
missions. Here are some of the new additions to our AndroidManifest.xml.

Listing 5.22 Update manifest with C2DM permissions

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com. flexware.stocks"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app_name">

<!-- Code omitted -->
<receiver android:name=".PushReceiver"
android:permission= Ded?re
"com.google.android.c2dm.permission.SEND"> recelver
<intent-filter> What
<action android:name= messages
"com.google.android.c2dm.intent .RECEIVE" /> receiver
<category android:name="com.flexware.stocks" /> should get
</intent-filters>
<intent-filters> Handle C2DM
<action android:name= registration
"com.google.android.c2dm.intent .REGISTRATION"/> messages
<category android:name="com.flexware.stocks" />
</intent-filter> Check for
</receivers </applications> Android 2.2

<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET"/>

<permission android:name="com.example.myapp.permission.C2D_MESSAGE"
android:protectionLevel="signature" /> Permissions

<uses-permission android:name= for C2DM
"com.example.myapp.permission.C2D_MESSAGE"/>

<uses-permission android:name=

"com.google.android.c2dm.permission.RECEIVE"/> Access
<uses-permission android:name= accounts
"android.permission.MANAGE_ACCOUNTS"/>
<uses-permission Need power
android:name= "android.permission.WAKE_LOCK"/> management
</manifest>

Our manifest has a new BroadcastReceiver declared @), called PushReceiver. We’ll
take a closer look at that class momentarily. It'll handle both registration messages €
from the C2DM servers and app-specific messages @ from our app servers, routed
through the C2DM servers. We also need several new permissions for C2DM @. Finally,
we’re going to access account information @ as well. This isn’t required for C2DM,
but there are advantages to using this information, as we’ll see shortly. Now that we
see the permissions and declarations needed, let’s take a look at initiating the C2DM
registration process.

Listing 5.23 Requesting C2DM registration Your

email

public class PortfolioStartupReceiver extends BroadcastReceiver { dd
adadress

private static final String DEVELOPER_EMAIL_ADDRESS = "...";

TECHNIQUE 20 Using Cloud to Device Messaging 185

@Override
public void onReceive (Context context, Intent intent) {
Intent registrationIntent =
new Intent ("com.google.android.c2dm.intent.REGISTER") ;
registrationIntent.putExtra ("app",
PendingIntent.getBroadcast (context, 0,
new Intent (), 0));
registrationIntent.putExtra ("sender", DEVELOPER_EMAIL_ADDRESS) ;
context.startService (registrationIntent) ;

}

As you can see in listing 5.22, we’ve once again modified the PortfolioStartup-
Receiver class that gets invoked when the device boots up. Now instead of using the
AlarmManager here to schedule the execution of our Service, we’re going to rely on
C2DM. But we need to register for C2DM messages. This is a process where we tell the
C2DM servers that our app wants to receive C2DM messages. The C2DM servers will
respond by providing a registration ID. The code in listing 5.22 starts this process by
requesting a registration ID. Most of this is generic code, and the only thing that you
must supply is the email address @ that you’ve used in conjunction with your Android
apps. Once the device boots up, the receiver will send out this registration request. We
need another BroadcastReceiver to handle the response from the C2DM servers (we
saw this receiver declared in listing 5.21). In the next listing, you can see how
it’s implemented.

Listing 5.24 Registration and messaging receiver

public class PushReceiver extends BroadcastReceiver ({
@Override
public void onReceive (Context context, Intent intent) {
AlarmReceiver.acquireLock (context) ;
if (intent.getAction() .equals (
"com.google.android.c2dm.intent .REGISTRATION")) {
onRegistration (context, intent);
} else if (intent.getAction() .equals(
"com.google.android.c2dm.intent .RECEIVE"))
onMessage (context, intent) ;

}

}

// code omitted
}
Our PushReceiver class is a BroadcastReceiver, so we must implement its onReceive
method. Note that when we receive a message, we acquire the static WakeLock in a
manner similar to the previous technique. There are two types of messages that it’ll
receive: one for registration events and one for events from your application server.
To distinguish them, we look at the Intent that was sent from the C2DM server, and in
particular at its action property. If we see it’s a registration event, we invoke the
onRegistration method as shown next.

186

CHAPTER 5 Managing background tasks with Services

Listing 5.25 Handling C2DM registration events (from PushReceiver class)

private void onRegistration(Context context, Intent intent)

String regId = intent.getStringExtra("registration id");

1 1= . .

if (regld X null) | Get registration In
Intent 1 =

new Intent (context, SendC2dmRegistrationService.class);
i.putExtra("regId", regld);
context.startService (i) ; Send registration ID to
1 server and Service

}

To handle the registration event, we get the registration ID © from the C2DM servers
and send it to our own application servers. We need this ID in order for our app serv-
ers to be able to send events to the C2DM servers. The C2DM servers will use the regis-
tration ID provided by our servers to route the message to the correct device, and then
to the correct BroadcastReceiver on that device. We could send the registration ID to
our servers from this BroadcastReceiver, but a BroadcastReceiver is designed to
execute quickly, so we’ll offload this to an IntentService.

Listing 5.26 IntentService for sending registration info to servers
public class SendC2dmRegistrationService extends IntentService {

private static final String WORKER_NAME = "SendC2DMReg";
public SendC2dmRegistrationService() {
super (WORKER_NAME) ;

@Override
protected void onHandleIntent (Intent intent)
try{ Get regld
from Intent

String regId = intent.getStringExtra ("regId") ;
// TODO: Send the regId to the server

} finally {
AlarmReceiver.releaseLock() ; Make sure to

} release WakeLock

}

This service gets the registration ID @ that was passed in listing 5.24. Then, it sends
this information to your server and releases the WakeLock @ when it’s done. Your server
will use this information whenever it wants to send a message to your app. In addition
to the registration ID from the device, it'll also need a ClientLogin auth token. This is
a generic Google authentication and authorization mechanism. In general, a Client-
Login token allows a particular application to access a Google application/service in the
name of a particular Google account. For C2DM, the service that you need authorization
for is known as ac2dm, and the Google account in question is the account of the devel-
oper using C2DM. Your server will need to request this token using your email address
and password. You might want to create a Google account specifically for your apps. If
you use your personal Google account, then changing the password would affect your
server’s ability to send C2DM messages to Google’s C2DM servers.

5.4

Summary 187

Once your server has the registration ID for a user and the ClientLogin auth
token for your account, you can send messages to the app. As we saw in listing 5.23,
messages from C2DM are processed by the onMessage method:
private void onMessage (Context context, Intent intent) {

Intent stockService =

new Intent (context, PortfolioManagerService.class) ;

stockService.putExtras (intent) ;
context.startService (stockService) ;

}

This is the code to start the Port folioManagerService. In this case, we’ve still acquired
the static WakeLock. But as we saw in the previous technique, the PortfolioManager-
Service will release this WakeLock once it finishes its work.

DISCUSSION
In this example, we use a message pushed from the server to tell our background Ser-
vice to update its cache and generate Notifications as needed. But the data that we
push from the server can be much richer. When your application sends data to the C2DM
servers, it can send arbitrary name-value pairs. Those name-value pairs can then be
accessed from your receiver using the Intent.getXXXExtra methods. For our applica-
tion, we could have our server track the high/low price events, and it could pass this
information as part of the Intent. That could save our background Service from hav-
ing to wait for data from the network, so that it can issue Notifications quicker.
Also, it should be noted that the preceding code doesn’t deal with many of the
error conditions that can arise when using C2DM. Google has developed a small, open
source library for working with C2DM. It’s not part of Android, but can be easily
obtained from Google. This library encapsulates much of the code seen here, elimi-
nating a lot of the boilerplate.

Is C2DM right for you?

C2DM was a huge new feature added in Android 2.2. Our discussion has been brief
but hopefully you can see that C2DM creates many interesting opportunities. But
does that mean you should use it? Keep in mind that C2DM requires that the user’s
device be running Android 2.2 or later. At the time that this book was written, more
than 83% of devices were running 2.2+, and this number will grow over time. Still,
you’ll want to carefully examine the breakdown of Android versions “in the wild” and
the potential impact on your app’s success when you choose what API level to re-
quire. Remember that the Android Market won’t show your app to a user if their de-
vice isn’t capable of running it.

Summary

In this chapter, we’ve talked extensively about what multitasking is, along with the
various tools that Android gives you to enable it in your applications. Providing true
multitasking is one of the things that sets Android apart in the mobile space. But
such a powerful capability has its side effects, and Android walks a fine line between

188

CHAPTER 5 Managing background tasks with Services

empowering applications and maintaining a quality user experience. The result is
that we developers must deal with some complexity. We’re hopeful that you’ll agree
that the result is worth this complexity. With multitasking, you can keep your appli-
cation synchronized with data on your servers. This can make your app richer and
more responsive.

For most of the history of Android to date, developers have walked a tightrope to
get their background Services to be robust enough to judiciously retrieve data from
the network. Some applications even go as far as to establish their own persistent con-
nection with their servers, maintained from their background Service. This has its
own set of pitfalls. But with the advent of Cloud to Device Messaging, the benefits of
always being connected are more accessible to all applications. One of the often-over-
looked features of C2DM is that it’s not only for Notifications. You get a chance to
execute code based on the message pushed to your application from your servers, and
then decide if you want to show a Notification. You may want to synchronize data
with your server, start another Service, and so forth. The fact that you process this
message in the background gives you tremendous flexibility.

Threads and concurrency

In this chapter

m Creating and managing threads
= Communicating between threads
= Timers and message loops

This web of time—the strands of which approach one another, bifurcate,
intersect or ignore each other through the centuries—embrace every possibility.

—The Garden of Forking Paths

You’ve seen in the previous chapter how to run parts of your application asa Service,
which is a great way of performing tasks that don’t require interaction with the user.
These tasks are typically, continuously or periodically, executed routines, which is why
itmakes sense to have them run in the background. When we say background, we mean
they’re notvisible to the user, but it must be stressed that it does not necessarily mean
they run concurrently to an application’s activities. Why is that? We have seen in the
previous chapter that you can run services in separate processes, but that isn’t a
requirement. In fact, unless you specify a process ID explicitly, they won’t.

So what happens if you don’t? Recall that an application’s set of activities makes
up its user interface, and one golden rule about user interfaces is to always remain
responsive. If all activities and services are executed in the same thread, and only one
of these contains an operation that may block (a good example is network I/0O), then
your application’s user interface will inevitably freeze. Say hello to the infamous

189

190

6.1

CHAPTER 6 Threads and concurrency

Activity Not Responding (aka ANR) dialog. Even if you
haven’t yet developed any Android applications,
chances are you’ve seen this exception creeping up
from the more poorly implemented applications on
the Android Market. Figure 6.1 shows it in all its glory.

. . . Sorry!

What a bummer! We have service objects thatrun in o

the background, but by default they’re all executed on :;:‘fi'g[:':r{'ﬂ';?;:fgf:;{ﬂg'rfd)
the main application thread. So unless we want to fork = Houessponcing:

a separate Linux process, which brings its own over- l ——— J[

head (AIDL and IPC, for instance), we need a means to
spawn new threads if we want to run things in parallel.
Fortunately, Android supports all major threading and
synchronization facilities that are part of the Java class
library and even adds a handful of custom helper
classes to that list, making parallel code execution easy

Figure 6.1 If an application be-
K comes unresponsive (for example
and straightforward. because it’s performing expensive

The following sections will discuss Android’s operations on the main application
thread), Android will kill it after a
few seconds and raise an excep-
tion to the user.

threading framework, how to use it to create concur-
rent applications, and problems to watch for. We’ll
start by looking at how basic threading is done in an
Android application using ordinary Java threads. Then, we’ll make our way through
more elaborate techniques such as how to communicate changes to the Ul from custom
threads, how to implement workers using Android’s AsyncTask, how to realize timed
actions such as splash screens, and how to implement custom message queues to pro-
cess events in a concurrent fashion.

Concurrency in Android
To help you understand the demand for concurrent code in an application, imagine
that you want to download one or more files from the web. The easiest way to do that
on Android would be to launch an Activity or Service and run the network code
directly in there, perhaps as this poorly implemented Activity does:
public class PoorlyImplementedActivity extends Activity {

private HttpClient httpClient = new DefaultHttpClient () ;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

HttpGet request = new HttpGet ("http://www.example.com/file") ;
HttpResponse response = httpClient.execute (request) ;

}

So what’s the problem with this code? It’s the call to HttpClient.execute. This is a
blocking operation that may take a potentially long time to complete because it must
open a network connection to a web server using HTTP and transfer data from the
server to the device. When launching your application, Android will spawn a single

TECHNIQUE 21 Basic threading 191

Android system process

| [
; I
[

: Root VM |

| instance :

I (Zygote) .

[
]
launch
P] Figure 6.2
: : main thread By default, only a sin-
| ! gle thread of execu-
i 1 UL ->d i

: VMinstance | el tion will be launched
| ; ! Time in which f lication
] Android Ul I % _> file download ' or an applica
| - 0 Ulisblocked (jower-right box). If
| — ! e S——— this thread executes
: Appl|§at|on | blocking operations,
: routines : \/ the Ul can’t update it-
| |

self in between (top
and bottom sections).

system process running a single thread of execution. Any code will, by default, run in
that thread. As discussed in chapter 3, this thread is called the main application thread,
main user inlerface thread, or UI thread because Android will also draw your application’s
user interface elements in here.

Writing code like this may freeze your application—Android can’t continue draw-
ing your application’s user interface until the download completes because both
download and UI code run in the same thread. This is a fundamental problem com-
mon to all kinds of software that draw a user interface, and is by no means limited to
Android. Figure 6.2 illustrates this problem for the preceding code snippet.

What can we conclude from this? Any non-blocking or fast operation is fine to exe-
cute on the main application thread that’s running when an application starts. Any-
thing else should be executed on a different thread. We’ll show you how this is done
in the next few techniques. Let’s start simple.

Basic threading

We want to download an image file from the web and turn it into an Android Bitmap
object. The download is triggered by a button, and after the download has started, we
want to update a text field to indicate that status. Figure 6.3 shows what this image
downloader could look like.

GRAB THE PROJECT: SIMPLEIMAGEDOWNLOAD You can get the
source code for this project, and/or the packaged APK to run it,
at the Android in Practice code website. Because some code list-
ings here are shortened to focus on specific concepts, we recom-
mend that you download the complete source code and follow
along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/1897, APK file: http://mng.bz/b134

http://mng.bz/1897
http://mng.bz/b134

192

CHAPTER 6 Threads and concurrency

Ml @ 7:58em Ml @ 7:59em

Download file

pad

Figure 6.3 A simple image downloader application. A click on the button will trigger the download and
update the status text. In order for the status text to properly update in time, the download has to be
executed on a thread other than the application’s main Ul thread.

As we just learned, we can’t run the download in our main application thread; other-
wise, the entire user interface would lock up while the download is proceeding. After
clicking the button that initiates the download, Android will give your application no
more than a few seconds to respond to that input event. Otherwise, it’ll kill it and
raise the previously mentioned ANR exception. For BroadcastReceivers, Android is
more forgiving and waits longer before pulling the plug, but it also monitors their
execution time. In any case, this doesn’t sound like a good deal, so let’s see how we
can use a Java thread to prevent this from happening.

PROBLEM

You must execute potentially long-running operations that, when executed on the
main UI thread, may turn your application unresponsive, or even terminate it with an
Activity Not Responding message.

SOLUTION

To circumvent this issue, isolate the blocking code and run it in a new thread that exe-
cutes concurrently to your application’s main thread. The most basic way to do so is to
leverage the java.lang.Thread class. A Thread can be instantiated with a Runnable,
which will carry the code that should be run (the job), and a call to Thread. start will
then execute this code on a new thread inside your application process. Look at the

TECHNIQUE 21 Basic threading 193

following listing, which implements our simple image downloader application without
freezing the user interface.

Listing 6.1 SimplelmageDownload.java uses java.lang.Thread to download an image file

public class SimplelImageDownload extends Activity { Implement job
private Runnable imageDownloader = new Runnable() { as Runnable
public void run() {
try {

URL url = new URL("http://www.android.com/images/froyo.png") ;
Bitmap image = BitmapFactory.decodeStream(url.openStream()) ;

if (image != null) {
Log.i ("DL", "Successfully retrieved file!");
} else {
Log.i("DL", "Failed decoding file from stream") ;
1
} catch (Exception e) ({
Log.i("DL", "Failed downloading file!");
e.printStackTrace () ;
1
} Spawn
bi new
public void startDownload (View source) { d"%ad
new Thread (imageDownloader, "Download thread").start() ; for job
TextView statusText = (TextView) findvViewById(R.id.status) ; Set status
statusText.setText ("Download started..."); text

}

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout .main) ;

}

The layout used for the downloader activity is shown in the next listing.

Listing 6.2 The layout file main.xml defines the button and the status text view

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent”
android:layout_height="fill_ parent”
android:gravity="center">

<Button android:id="@+id/button”
android:layout_width="wrap_content”
android:layout height="wrap_content”
android:layout gravity="center"”
android:text="Download file"
android:onClick="startDownload"
/>

<TextView android:id="@+id/status"”

194

CHAPTER 6 Threads and concurrency

android:layout width="wrap_ content"
android:layout height="wrap_content"
android:layout_gravity="center”
android:text="click to start"
/>
</LinearLayout>
The implementation is surprisingly simple and effective—only a few additional lines of
code were required, involving the creation of a job object implementing the Runnable
interface, and finally passing that object to a new thread instance that executes that code
on a new thread. Look at figure 6.4, which shows the thread and processes view of the
DDMS thread tool (introduced in chapter 1) at the moment the download task is running.
You can also see from figure 6.4 that Android spawns other, internally used
threads, which take care of things such as garbage collection and signal handling, but
you’ll never interact with these directly, so don’t worry about them.

DISCUSSION

When you run the application, you’ll notice that running the download thread
doesn’t lock up the user interface. This can be easily observed by seeing how the status
text changes instantaneously afler we fork the download thread, Consequently, the
user interface still updates itself correctly and responds to user input.

An often-raised question related to the use of Java threads on Android is, how long
does a thread live? Is it bound to the component (Activity or Service) that started it?
What happens if the component that started it terminates before the thread does? Valid
questions indeed. It turns out that a thread lives as long as it takes its run method to ter-
minate. It’s not bound to the component that started it, and can even outlive it. This has
a curious implication: it means that you must be extremely cautious about keeping ref-
erences to things such as an Activity in your thread because the Activity may finish
before your thread terminates. The runtime will keep the Activity object around
because you hold a strong reference to it, but its lifecycle from the perspective of the

@ Devices 2 # OG0 22| QT =02 Theads 2 [Heap| @ Allocation Tracker| i File Explorer
Name 1D/ Tid Status utime stime Name
» g HTO19P801932 Online 2.1-update! 1 1009 wait 134 30 main
¥ & emulator-5554 Online android-2.2 2 1010 vmwait 0 5 HeapWorker
SETRTR HTGEREE 58 8620 *3 1011 vmwait 0 Sigral Catcher
c:m.nn:;'\uid.inputmel 3 _“-‘ ? 3 12 Jm
: 1 system process (hosts Zygote) | main Ul thread 0 Binder Thread #1
com.android.launcher TUraman o 0 Binder Thread #2
com.androld.settings 113 8623 7 1015 native 0 0 Binder Thread #3
android.process.acore 147 8524 8 1016 vmwait] 1 Download thread
com.android.alarmclock 170 8625 ’
com.android.mms 189 8626 - AN
android.process.media 192 8627 | download thread
com.android.defcontainer 212 8628
com.android.email 222 8629
com.android.music 234 BE30
COM.SVOX.pIico raa &A1
ik com.manning.aip application process
i com.android.phone " 5053 (“Refresh)
8632 / 870(R

Figure 6.4 The left side shows the detected devices and the processes they’re running. The process
of our downloader application is highlighted. The right side shows this process’s threads, including the
main Ul thread and the custom download thread.

TECHNIQUE 22 Communicating change between threads 195

framework has ended! This is a common mistake, and we’re going to explore this issue
further in technique 25.

Using Java threads to carry out expensive tasks is good, but often you want to
update the user interface with some form of progress indication. Otherwise, the user
is left in the dark about what’s happening in the background. Now you may ask why
we don’t update the status text after the download is completed instead of logging the
result. The next technique explains why that’s impossible without exploring the
Android threading framework a little deeper.

Communicating change between threads

One of the most common patterns in user interface programming is using visual prog-
ress indicators if an application is performing expensive, long-running tasks, or is oth-
erwise busy. Yes, we all love staring at our progress meters, don’t we? To be fair, this at
least gives the user the feeling that the application is keeping them up-to-date about
what’s happening, and the user interface remains responsive, perhaps even offering
the user the option to cancel the task, should it take too long.

This approach involves at least two threads: the UI thread that updates the prog-
ress indicator and one or more threads that perform the work. Progress information
is then exchanged between these threads by passing update notifications around. Fig-
ure 6.5 illustrates this.

Now, you could argue that if you split up the work to be done into many small
chunks and execute both the worker code and the UI update code on the same
thread, then the UI would still appear to be responsive (assuming the chunks of work
are small enough to be executed swiftly in sequence). Unfortunately, that doesn’t
work because by design it’s impossible to update user interface elements from outside

void work () { void update (progress) {
step () ; redraw (progress) ;
update (10%) ;
step () ; }

update (20%) ;

method call

worker thread N Ul thread

Figure 6.5 One or more worker threads update the Ul thread about their progress by
periodically sending progress updates. The Ul thread listens for these updates and
redraws the user interface accordingly (by advancing a progress meter).

196

CHAPTER 6 Threads and concurrency

the main UI thread. If you do that, Android will throw an exception. There’s a good
reason for this: if you're sharing state between two or more threads (and updating
views using worker progress data is exactly that), you always need to synchronize this
shared data using synchronization primitives such as Java’s synchronize and vola-
tile keywords, or a Lock object. The problem with making every UI routine thread-
safe is that another layer of complexity is added, and performance suffers. Hence a
common simplification enforced by many widgets frameworks, including Android’s, is
that UI elements are always updated from the UI thread. Period.

MORE ABOUT CONCURRENCY Concurrency in computer programs and thread
synchronization are vast and complex topics in their own right, and they range
among the most difficult and complicated areas you can study about program-
ming. Entire books have been written about this (for a Java specific perspective,
we highly recommend Java Concurrency in Practice by Brian Goetz et al., which is
available as an eBook) and going into detail here is beyond the scope of this book.

With the solution from the previous technique we’re now stuck: we’re not allowed to
update the user interface from a worker thread directly, so there’s no way we can
update progress that way. Clearly, we need a way to communicate with the UI thread
from another thread, so that we can send our update messages and have it react to
them. Sounds like we’ve hit another problem.

PROBLEM
You’re executing long-running tasks in separate threads, and you want to update the
user interface with progress information while a task runs.

SOLUTION

You could store progress information in a shared variable and access it from both
threads: the worker thread writes to it, and the UI thread periodically reads from it.
But this would require us to synchronize access to it, which is always cumbersome. It
turns out that there’s an easier way to do these things on Android—Android’s message-
passing facilities. This approach uses message queues to allow interthread communica-
tion in a controlled, thread-safe manner. Progress information can therefore be
passed from a worker to the UI thread by posting update messages to the UI thread’s
message queue using Android’s Handler and Message classes.

A handler is an object that can be bound to an arbitrary thread (the handler thread).
The handler can then be used by other threads to send messages to or even execute
code on the handler thread. Binding is implicit: a handler is always bound to the
thread in which it’s being instantiated. If, for instance, a handler is bound to the UI
thread, it’ll start monitoring that thread’s message queue. A second thread (the
worker) can then use the handler object to send messages to the UI thread by calling
its sendMessage (Message) method, or even ask it to execute a method on the UI
thread by calling the post (Runnable) method. No additional synchronization is
needed—it just works! We can now revisit figure 6.5 and give the update notifications
a concrete shape in the form of messages (see figure 6.6).

TECHNIQUE 22 Communicating change between threads 197

void work() { void handleMessage (m) {
step(); redraw (m.progress) ;
Message m;
m.progress = 10%; }
sendMessage (m) ;
step();

L
progress
message N

;o
worker thread N progres. Ul thread

(using Message) (using Handler)
message queue

Figure 6.6 Using Message and Handler, we can bind a Handler instance to the Ul thread
and send messages to it from another thread. Any kind of data can be exchanged that way,
without manual synchronization.

MESSAGE QUEUES We’ve mentioned several times now that these messages
are posted to a message queue. Don’t worry too much about the details
behind that: we’ll explore this further in technique 27. For now it’s sufficient
to know that the main UI thread maintains a message loop from which mes-
sages can be routed to a Handler.

The receiving thread reacts by implementing the handleMessage (Message) method
defined by the Handler.Callback interface. A common approach is to let an activity
implement Handler.Callback and configure the handler object as the object respon-
sible for processing a message.

This sounds like exactly what we need. We have two threads—a download thread
and the main UI thread—and we want to tell the UI thread that it should update the
status text view whenever the worker state changes. Against the backdrop of what we
just discussed, this means that we must perform the following steps:

1
2
3

Create a Handler object and bind it to the UI thread.

Implement the Handler.Callback interface, for example on the Activity.
From the download thread, use the handler object to send a message contain-
ing the new status text to the UI thread.

In the callback method, read the status text form the message object and
update the text view.

Let’s rewrite our downloader app to use Handler and Message. You can find the full

source code for the Activity in listing 6.3.

198 CHAPTER 6 Threads and concurrency

GRAB THE PROJECT: IMAGEDOWNLOADWITHMESSAGEPASSING You
can get the source code for this project, and/or the packaged APK
to run it, at the Android in Practice code website. Because some code
listings here are shortened to focus on specific concepts, we rec-
ommend that you download the complete source code and follow
along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/PnPD, APK File: http://mng.bz/vRQI1

Listing 6.3 Message passing can be used to communicate state between threads

public class ImageDownloadWithMessagePassing extends Activity

implements Handler.Callback { hnmement

private Handler handler = new Handler (this) ; Fa"baCk
interface
private Runnable imageDownloader = new Runnable() {
Create/bind
private void sendMessage (String what) { handler

Bundle bundle = new Bundle() ;

bundle.putString("status", what); Helper to

Message message = new Message() ; send status

message.setData (bundle) ; message

handler.sendMessage (message) ;

}

public void run() { Call
sendMessage ("Download started") ; helper
try {

URL url = new URL("http://www.android.com/images/froyo.png") ;
Bitmap image = BitmapFactory.decodeStream(url.openStream()) ;

if (image != null) {
sendMessage ("Successfully retrieved filel!");
} else {

sendMessage ("Failed decoding file from stream");
}
} catch (Exception e) {
sendMessage ("Failed downloading file!");
e.printStackTrace() ;

}
}i

public void startDownload(View source) {
new Thread (imageDownloader, "Download thread").start();

}

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

} Handle message

public boolean handleMessage (Message msg) { by updating view

String text = msg.getData () .getString("status");

http://mng.bz/PnPD
http://mng.bz/vRQ1

TECHNIQUE 22 Communicating change between threads 199

TextView statusText = (TextView) findvViewById(R.id.status);
statusText.setText (text) ;
return true;

}

The first step is to implement the callback interface (@ and @). The callback code
reads the string with the key status from the incoming message and updates the status
text view with that. Before being able to send messages, we must create and bind a
Handler object @. We pass a reference to the current activity to it because it
implements the handler callback. Both the handler creation and the callback method
will be executed on the Ul thread. In our download job, we then create a helper
method @ that prepares the message using a Bundle that holds the status text, and
then dispatches the message via the handler object. (Think of a Bundle as being anal-
ogous to Java’s Map, but able to pass key-value-pairs even across thread or process
boundaries.) We then use this helper in the run method to send our status updates @.
These steps are executed on the download thread.

DISCUSSION

Message passing is a powerful and easy way to exchange data between several threads,
without having to bother about synchronization primitives. The data that’s
exchanged can be more complex than a string, too. Because a Bundle is used to wrap
the data, you can pass anything from a simple number to a complex object that’s
either serializable or parcelable (the Parcel class is Android’s recommended way to
marshal data).

Because the callback is executed on the UI thread, and a Bitmap is parcelable (it
implements the Parcelable interface), we could stick the bitmap into the bundle and
pass it over to the callback, too! That way we could immediately update an ImageView
using the downloaded image.

One thing you may have wondered about is why the receiving thread (the UI
thread in this case) seems to immediately receive the message after we sent it. Recall
that message passing doesn’t mean we invoke the callback directly. Instead, we post
the message to a message queue, which means that queue must be polled periodically
by the receiving thread to check for new messages. It turns out that Android handles
this for us by automatically creating a message loop for the application’s UI thread. If
we were to pass messages between two custom threads instead, then we’d have to han-
dle this ourselves (we’ll see how to do that in technique 27).

So we’ve solved the problem of passing information between threads, but our
application still exposes some undesirable behavior: clicking on the button will always
start a new download thread, without us having any control over how many threads
run at once. If, for instance, the user were to click the download button 100 times, the
user would start 100 threads. Doing so would clearly undermine the application
because threads are expensive to create and handle. It would be nice to gain more
control over how threads are managed.

200

CHAPTER 6 Threads and concurrency

Managing threads in thread pools

The image downloader served us well to introduce the concept of threads, but let’s be
honest: it starts to get dull, doesn’t it? Instead, let’s focus on a real application again.
Remember our MyMovies application from chapter 4? Let’s extend it to display a
thumbnail image that plays a scene from the movie, next to the movie titles in the list
view. Figure 6.7 shows how that would look compared to the previous implementation
from chapter 4.

GRAB THE PROJECT: MYMOVIESWITHIMAGES You can get the
source code for this project, and/or the packaged APK to run it,
at the Android in Practice code website. Because some code list-
ings here are shortened to focus on specific concepts, we recom-
mend that you download the complete source code and follow
along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/31]J4, APK File: http://mng.bz/54sf

Because it’d be tedious and resource-intensive to download 100 movie thumbnail
images from the web and bundle them with our application, we instead want to save
an image URL with each movie as part of our data, and then download the image on

N € 12:08¢m Il @ 6:38em

The Shawshank Redemption (1994) .
The Godfather (1972)

The Godfather, Part11(1974)

The Good, the'Bad, and the Ugly !‘E‘ The'Good, the Bad and the

(1966) (It.) Ugly

Pulp Fiction (1994)

Figure 6.7 The previous version of MyMovies without images (left), and the new-and-improved version
with nifty thumbnail images (right) that are loaded on the fly.

http://mng.bz/31J4
http://mng.bz/54sf

TECHNIQUE 23 Managing threads in thread pools 201

the fly as needed. We learned in techniques 21 and 22 that this must happen asyn-
chronously, but what implication does this have on the performance of MyMovies?

As we’ve learned from the previous chapters, every list item is created in the list
adapter’s getView method, and this method is called whenever you scroll the list to
see more items. We could use this method to spawn a thread that downloads the
image thumbnail because if we were to do it in place then getView would block, and
our list view would behave sluggish or exit with an ANR.

But wait. If we scroll the list view quickly, with 100 movies, we’ll spawn dozens of
download threads because getView is called for every list item we see! Sounds like a
bad plan. Obviously, we need some way to restrict the number of concurrent threads
being created, and if possible, reuse them once they’ve completed a task.

PROBLEM
You must execute code in a separate thread, but you don’t have control over the fre-
quency at which this may happen, and you risk running into resource congestion.

SOLUTION
The solution here is to use a thread pool. A thread pool is a set of threads that are man-
aged in a controlled environment, for instance by setting an upper limit on the num-
ber of threads and by forcing the application to reuse threads and distribute the
workload among them.

Thread pools in Java and Android are controlled through a ThreadPoolExecutor.
A ThreadPoolExecutor is an object that can schedule and manage tasks. Tasks
are described by Runnable objects, and are executed in threads taken from a
thread pool. This sounds complicated, but it’s completely transparent to the devel-
oper. Use the executor to start a task and let the executor do the heavy lifting (see
figure 6.8).

execute (Runnable)

Application ThreadPoolExecutor
get free thread
4 N
: = [
(in use) \‘-
thread pool
\ P p,

Figure 6.8 The application posts a Runnable to the executor, which then schedules it for execution.
As soon as a thread becomes available, it’s taken from the pool and used to execute the Runnable.

202

CHAPTER 6 Threads and concurrency

Thread pools can be configured in various ways, from the lower and upper bound of
threads they run to the scheduling rules by which tasks will be distributed among all
threads. A commonly used kind of thread pool is one that manages a fixed number of
threads that execute tasks posted to a shared queue. If there are more tasks than
threads, tasks will have to wait until a thread completes its work and becomes available.

Let’s apply this technique to our MyMovies application and spice it up by down-
loading and displaying movie images for each list element. We only have to change
two things. First, the movie_item.xml layout because we need an ImageView next to
the movie title text view. Second, we need to change the adapter code to trigger the
image download whenever getView is called. The new item layout is expressed in the
next listing.

Listing 6.4 The new movie item layout with image thumbnails next to the title

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout height="?android:attr/listPreferredItemHeight"
android:gravity="center_vertical"
> Will hold movie

<ImageView android:id="@+id/movie_icon" |magethumbnaﬂ

android:layout_width="50dip"

android:layout_height="50dip"

android:scaleType="centerCrop"

/>
<CheckedTextView android:id="@android:id/textl"

android:layout_width="0px"
android:layout_height="fill parent"
android:layout weight="0.9"
android:gravity="center_vertical"
android:paddingLeft="6dip"
android:paddingRight="6dip"
android:checkMark="?android:attr/listChoiceIndicatorMultiple”

/>
</LinearLayout>
Nothing overly spectacular here. Note how we use the scaleType attribute to automat-
ically crop the image to fit in our list element. More interesting is the new adapter
code, shown in the next listing.

Listing 6.5 MoviesAdapter.java has been altered to handle image downloads

public class MovieAdapter extends ArrayAdapter<Strings> {

private HashMap<Integer, Boolean> movieCollection =

new HashMap<Integer, Booleans () ; List of movie
4 image URLs

private String[] movieIconUrls;

private ThreadPoolExecutor executor; Controls
thread pool

TECHNIQUE 23 Managing threads in thread pools 203

public MovieAdapter (Context context) {
super (context, R.layout.movie item, android.R.id.textl, context
.getResources () .getStringArray (R.array.movies)) ;

movieIconUrls = <) Read image URLs into array
context.getResources () .getStringArray (R.array.movie thumbs) ;
executor =
(ThreadPoolExecutor) Executors.newFixedThreadPool (5) ;
} Create new
thread pool
@Override

public View getView (int position, View convertView, ViewGroup parent) {
View listItem = super.getView(position, convertView, parent);

CheckedTextView checkMark =
(CheckedTextView) listItem.findvViewById(android.R.id.textl) ;
checkMark.setChecked (isInCollection (position)) ;

ImageView imageView = (ImageView)
listItem.findViewById(R.id.movie icon) ;

imageView.setTag (position) ;

downloadImage (position, imageView) ;

Link image position
to image view

return listItem;

}

private void downloadImage (int position, ImageView imageView) {
final Handler handler = new ImageHandler (position, imageView) ;
final String imageUrl = movieIconUrls[position];

executor.execute (new Runnable() Schedule new
public void run() { download task
try {

URL url = new URL(imageUrl) ;
Bitmap image = BitmapFactory.decodeStream(url.openStream()) ;
Bundle data = new Bundle() ;
data.putParcelable ("image", image) ;
Message message = new Message () ;
message.setData (data) ;
handler.sendMessage (message) ;
} catch (Exception e) {
e.printStackTrace () ;

}

The first thing we do is create an array that can hold the URLs of the images we need
to download @ and an executor that manages a thread pool @. In the constructor, we
first fill the array with the image URLs €, which we keep in an array XML resource
(/res/values/movie_thumbs.xml), analogous to how we did it for the movie titles in
chapter 4. We also leverage the Executors utility class to initialize our executor to
manage a fixed thread pool of five threads @.

204

CHAPTER 6 Threads and concurrency

Now it gets interesting: in getView, we first get a reference to the image view that’s
supposed to display the image we’re about to download. But hang on, the download
will be asynchronous because it’s run in a different thread, and we learned before that
it’s good to reuse list item views. We’ve done that here by retrieving them from the
super call, during which the caching happens. This means that we could potentially
trigger a download for an image view, and the image view could be reused for another
movie before the first download completes. This is what we call a race condition in con-
current environments, effectively meaning a wrong image could be set for the view!
That’s why we leverage the setTag method ©, which allows us to associate arbitrary
metadata with a view (the position for which we’re about to download an image in this
case), and we’ll see in a moment how this is useful to eliminate this problem. Last but
not least, we trigger the image download, similar to what we’ve learned in the previous
techniques, but this time through our executor service @.

You may have noticed from listing 6.5 that we’re using a custom Handler imple-
mentation to set the image on the view (called ImageHandler). There’s a good reason
for this: it helps us eliminate the problem with the race condition we identified ear-
lier. The next listing offers this solution.

Listing 6.6 ImageHandler.java defines the code to update the ImagevViews
public class ImageHandler extends Handler ({

private int position;

private ImageView imageView;

public ImageHandler (int position, ImageView imageView) {

this.position = position; Remember position
this.imageView = imageView; and view to process
}
@Override
public void handleMessage (Message msg) { Retﬁ?veimage
int forPosition = (Integer) imageView.getTag() ; position
if (forPosition != this.position) { If positions
return; don’t match,
1 return

Bitmap image = msg.getData() .getParcelable("image") ;
imageView.setImageBitmap (image) ;

}

When instantiating the handler, we remember which position in the list we’re about to
download an image for. We also store a reference to the image view so we can change
its image drawable when the download commences @. Whenever a download suc-
ceeds, a message is sent (as seen in listing 6.5) and this handler’s handleMessage
method is triggered. Before reading the downloaded image from the parcel and
updating the view with it, we do a sanity check to make sure that the image view hasn’t
been reused for a different position than the one we triggered the download for. We
do this by reading the ImageView’s current position from its tag @ and comparing it

6.2

Working with AsyncTask 205

to the position that was active when the download was initially triggered €. Only if
these positions match do we proceed and set the image.

NOTE Even though we’re working in a concurrent environment, it’s not nec-
essary to synchronize the calls to setTag and getTag. Think about this for a
second, and if you don’t understand why, consider going back to the previous
techniques and rereading them. Both getView, where we set the tag, and
handleMessage, where we read it, are called on the same thread—the Ul
thread—so there’s no way we could read stale shared state. That’s the whole
idea behind binding a Handler to the UI thread: any code executed in that
Handler will be executed on that same thread, no synchronization required!

That was a fair amount of code. Have you followed everything and implemented it
yourself? If not, why not do it now, or download the full source code from the example
projects, run it, and get a feeling for how this solution behaves on a device.

DISCUSSION

The clear benefit of this solution is that only the images for those movie items that are
currently visible will be downloaded from the web because getview will only be called
for those. As the user keeps scrolling, new downloads will be triggered, reusing down-
load threads where possible or waiting until one has finished, all without blocking UI
routines—an easy and scalable solution.

The solution presented here delivers in that regard, but if you start the application
and use it, you’ll find that user experience is a little flaky, with the images changing
rapidly, overwriting each other while the downloads commence. Also, if you click the
check box on an item, the entire list is redrawn, which in this case means redownload-
ing all images for the visible elements. That’s unnecessary because the state change
will merely affect the check box, not the rest of the element.

Caching images once they're downloaded can mitigate these problems. Whenever
getView is called, instead of retriggering the download, you could query an image
cache first, and when it’s a hit, immediately set the image and return. We won’t get
into caching techniques at this point, but you can already achieve good results using
simple approaches, such as a LinkedHashMap holding SoftReferences to image data,
and an implementation of its removeEldestEntry method that removes entries from
the cache if it’s over capacity.

We’ve seen several approaches and techniques related to threading, from simple
thread creation to thread pools and interthread communication using handlers, but
though this gives us the maximum in flexibility, we need to write a lot of boilerplate
code. Tasks such as spawning progress dialogs or otherwise updating views asynchro-
nously while a thread is running are common, and we want to get more support from
the framework here. Turns out, there is. It’s called AsyncTask.

Working with AsyncTask

The previous techniques should’ve given you a solid understanding of how to deal with
concurrent tasks on Android. We’ve been staying on a fairly generic level, making those
techniques well-suited for a broad range of threading applications. Using handlers,

206

CHAPTER 6 Threads and concurrency

threads, and thread pools directly allows for a high level of control and flexibility, which
is great when you need it, but is flat out annoying when you don’t.

If we look at typical scenarios like the ones from the previous techniques, some
common patterns can be identified:

= One or more jobs need to run concurrently
= Before or after a job completes, you want to update the UI

= You want to report progress about a job to the Ul

Google was aware of this recurring pattern and came up with a solution to simplify
these things: AsyncTask. Let’s see how it works.

Implementing jobs with AsyncTask

According to its documentation, AsyncTask “enables proper and easy use of the Ul
thread ... without having to manipulate threads and/or handlers.” That’s a good sum-
mary. You could also say: if running some task and updating the UI with result or prog-
ress data is all you want to do, then AsyncTask offers an easy-to-use (but more limited)
abstraction of the concepts introduced earlier.

AsyncTask can be thought of as a description of a job or task, where the actual job
will execute in a separate thread, but at several well-defined points will allow the devel-
oper to hook into the UI and update it. These hooks allow you to perform view
updates on the user interface before the job starts, while it’s progressing, and after it
completes, allowing you to easily pop up progress dialogs or otherwise manipulate the
Ul AsyncTask is also backed by a thread pool, so even that bit is handled for you.

PROBLEM

You need to perform an asynchronous job that follows a pre-process/process/post-
process pattern, and are looking for a code template that allows you to report progress
to the user or otherwise update the Ul in each step.

SOLUTION

Like most things, AsyncTask is best explained by example. In the last technique, we
retrieved movie thumbnail images by having a simple downloader helper method fork
a new thread that downloaded the image, and then passed it to a custom handler
object that updated the image on the list view. We also managed a thread pool our-
selves so as to have an upper limit on the number of threads running at once. Let’s
rewrite this code to use an AsyncTask instead, effectively getting rid of the custom
thread pool and the ImageHandler.

GRAB THE PROJECT: MYMOVIESWITHIMAGESASYNCTASK You can
get the source code for this project, and/or the packaged APK to
run it, at the Android in Practice code website. Because some code
listings here are shortened to focus on specific concepts, we rec-
ommend that you download the complete source code and fol-
low along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/VAhI, APK File: http://mng.bz/CAq3

http://mng.bz/VAhI
http://mng.bz/CAq3

TECHNIQUE 24 Implementing jobs with AsyncTask 207

A few words before jumping into the source code. AsyncTask is a generic class—you

instantiate it using type arguments. These are:

1 The argument type for the worker method that performs the actual task, in our

case String, because we’re running a job for
an image URL

2 The type you want to use to report progress,
in our case Void, because we don’t report
any progress

3 The return type for the worker method, in
our case Bitmap, because that’s what we get
after decoding the image stream from the
server, and it’s exactly what we want to pass
over to the Ul thread

By the way, you can use the Void type when you don’t
care about any of these parameters. In addition to
migrating the code to use AsyncTask, we also want to
extend the visuals a wee bit by setting a placeholder
image before a download starts. As the placeholder,
we’re going to use Android’s standard Gallery
thumbnail image (android.R.drawable.gallery
thumb), a little white frame, as seen in figure 6.9.

Let’s get our hands on some code. The follow-
ing listing shows how our download logic could be
implemented using AsyncTask.

M@ 10:05pm

l& The Good, the Bad and the
Ugly

Pulp Fiction

Figure 6.9 We’ll simplify the code
from the previous technique by using
AsyncTask’s built-in user interface
hooks. We'll also added a place-
holder image for those images that
have yet to be loaded.

Listing 6.7 DownladTask.java is our image downloader rewritten using AsyncTask

public class DownloadTask
extends AsyncTask<String, Void, Bitmap> {

private int position;
private ImageView imageView;
private Drawable placeholder;

Inherit from
AsyncTask

public DownloadTask (int position, ImageView imageView) {

this.position = position;
this.imageView = imageView;

Resources resources = imageView.getContext () .getResources() ;

this.placeholder = resources.getDrawable (

android.R.drawable.gallery thumb) ;

}

@Override

protected void onPreExecute() {
imageView.setImageDrawable (placeholder) ;

}

@Override

Called before
task runs

protected Bitmap doInBackground (String... inputUrls) { GAAG) Task logic

208 CHAPTER 6 Threads and concurrency

try {

URL url = new URL(inputUrls([0]) ;

return BitmapFactory.decodeStream(url.openStream()) ;
} catch (Exception e) {

e.printStackTrace () ;

return null;

}

@override Called after
protected void onPostExecute (Bitmap result) { task completes
int forPosition = (Integer) imageView.getTag() ;
if (forPosition == this.position) ({

this.imageView.setImageBitmap (result) ;

}
}

We start by inheriting from AsyncTask, where we also supply the parameter types for the
worker arguments (String), worker progress (Void), and worker result (Bitmap) @.
Because we want to set a placeholder image before the download job runs, we must do
that in onPreExecute @), which will be executed on the UI thread. The actual job is
implemented in doInBackground @, which takes an arbitrary long list of arguments
of the argument type we supplied before and returns a single value of the return type
we also supplied before. Finally, we set the new image once it has been downloaded in
onPostExecute @, which takes, asa single argument, whatever was returned from doIn-
Background. Please note that in production code, you probably shouldn’t use URL.
openStream without first setting proper timeouts. Here, we are simplifying the call to
keep the code focused on the topic at hand.

AsyncTask and thread pools

Unfortunately, AsyncTask manages threads dramatically different in different versions
of Android. With Android 1.6 (Donut), AsyncTask doesn’t launch a single worker thread
anymore, but manages a thread pool, as seen in this example (which we tested and
ran on Android 2.2). With the arrival of tablets and Android 3.0 (Honeycomb), this be-
havior was reverted; AsyncTask only spawns a single thread. If you want to manage
a pool of threads in Honeycomb and beyond, use the executeOnExecutor method
to launch a task (see http://mng.bz/PGxJ).

The question that remains is: where and how do we trigger the task? In the same place
as before, Adapter.getView, which is called whenever a list item must be rendered:

@Override
public View getView(int position, View convertView, ViewGroup parent) {
View listItem = super.getView(position, convertView, parent) ;

ImageView imageView = (ImageView)
listItem.findViewById(R.id.movie icon) ;
imageView.setImageDrawable (null) ;

http://mng.bz/PGxJ

TECHNIQUE 24 Implementing jobs with AsyncTask 209

imageView.setTag (position) ;
String imageUrl = this.movieIconUrls[position];

new DownloadTask (position, imageView) .execute (imageUrl) ;

return listItem;
}
Overall, the code from listing 6.7 isn’t dramatically different from our download
method plus ImageHandler we developed previously. But there are some noteworthy
improvements—first, the absence of any explicit interthread communication using
handlers and messages, and second, a higher code quality achieved by having all code
related to the download task in a single class.

DISCUSSION

AsyncTask has several other useful features. We didn’t display any progress for an
image download, but if you wanted, you could use AsyncTask’s publishProgress and
onProgressUpdate methods to communicate progress (percentage of work done)
between the worker thread and the UI thread.

AsyncTask also tracks state and, more importantly, allows you to cancel a task. This
can be achieved using the onCancelled/isCancelled and cancel methods respec-
tively. For instance, you can use the cancel method to abort the task should any pre-
condition checks performed in onPreExecute not pass.

Though it provides clear benefits, nothing is perfect, and neither is AsyncTask. It
does a good job of simplifying the execution of concurrent jobs that want to update
the UI, but it has its limitations.

First is the thread pool size. Yes, AsyncTask internally does what we did manually in
the previous technique: it manages a thread pool to run newly instantiated tasks. Unfor-
tunately, you can’t configure the size of this thread pool (we traded flexibility for con-
venience, remember?), and this size has even changed across different versions of the
Android platform. To be frank, the AsyncTask example, though well-suited to explain
the purpose of the class, would, in practice, not be a great fit. If you scroll the list
quickly, you can observe how Android spawns more than 30 concurrent download
threads (that’s on Android 2.2). At least 22 will download an image to discard it again
because the ImageView for which it was triggered will have been reused by that time,
and only eight list items are ever visible at once. Have a look at figure 6.10, which shows
the list of threads running when excessively scrolling the list. So although the
AsyncTask interface may be tempting, consider whether it fits your needs!

Another limitation is error handling. By default, doInBackground doesn’t allow
you to throw exceptions because exceptions are part of a method signature in Java,
and the method signature in AsyncTask doesn’t define any. A simple workaround is to
catch any exceptions in doInBackground and pass them to onPostExecute, where you
can handle them on the UI thread by showing an error message.

There’s another, less obvious pitfall related to AsyncTask, which many developers
don’t know about—or if they do, they don’t handle properly. It’s not easily fixed, and
requires diving into activity lifecycle, so we’ve devoted the next technique to it.

210 CHAPTER 6 Threads and concurrency

% Threads 83 (@ Heap| [Allocation Tracker| i File Explorer

(o] Tid Status utime stime Name
1 604 wait 1087 88 main
*2 605 vmwait 13 36 HeapWorker
*3 606 vmwait 0 0 Signal Catcher
*4 607 running 75 202 JDwp
5 608 native 0 Binder Thread #1
& 609 native 0 Binder Thread #2
7 644 timed-wait 23 AsyncTask #35
& 645 timed-wait 24 AsyncTask #36

9 646 timed-wait
10 613 timed-wait
11 647 timed-wait
12 615 timed-wait
13 648 timed-wait
14 649 timed-wait
15 650 timed-wait
16 619 timed-wait
17 651 timed-wait
18 652 timed-wait
19 653 timed-wait
20 654 timed-wait
21 655 timed-wait
22 656 timed-wait
23 657 timed-wait

35 AsyncTask #37
70 AsyncTask #4
21 AsyncTask #38
49 AsyncTask #6
28 AsyncTask #39
29 AsyncTask #40
27 AsyncTask #41
51 AsyncTask #10
33 AsyncTask #42
26 AsyncTask #43
35 AsyncTask #44
6 AsyncTask #45
4 AsyncTask #46
9 AsyncTask #47 Figure 6.10 AsyncTask has a rather
3 AsyncTask #48

0000000000000 0D0D0D0D0D0D0D00O0O

TR 7 AsyncTask #49 high .upper limit on. its internal t'hread

25 659 timed-wait 5 AsyncTask #50 pool in pre-3.0 versions of Android. If your
26 660 timed-wait 4 AsyncTask #51 task runs frequently, you may want to
28.__B3L timed-wak SLAsyncTasic#32 use a custom thread pool instead.

Preparing for configuration changes

We all love beautiful applications. Recently, we downloaded an Android application
for a popular community website from the Android Market, and after booting it up,
we thought: Finally, someone who not only thinks about function, but also form! After
using it for a minute or two, our excitement turned into frustration. The application
was a nice-looking Android front end to that website’s web service, so most screens
were backed by a web service call. Apart from being slow, the application seemed to
lose its memory whenever the screen was turned to landscape mode, with the progress
dialog disappearing even though the call hadn’t returned. Moreover, the vanishing
progress dialog was often followed by an application crash, most likely due to bad syn-
chronization between what was going on in the background and what was currently
visible to the user. Form is good. Always think about form. We told you in some detail
in chapter 4 how to do that. But form isn’t everything: a good application should also
be stable, and the two aren’t mutually exclusive.

We’re talking about concurrency techniques, and by their nature, concurrent pro-
grams are subject to problematic situations that can’t arise in sequential programs,
where everything is executed in order. One example for this is the unexpected death
of a thread, or an object that’s part of that thread’s state. If threads depend on each
other’s output or state, and that state is suddenly gone or becomes invalid (we say
stale), the program may behave erratically.

As it turns out, all Android applications suffer from such an issue by design. An activ-
ity’s lifecycle can be interrupted and even destroyed at any point in time, as we learned
in chapter 3. One common interruption is a screen orientation change. If the screen

TECHNIQUE 25 Preparing for configuration changes 211

changes from say portrait mode to landscape mode, Android will terminate the current
Activity and reload it using the new landscape layout.

ORIENTATION CHANGES ARE CONFIGURATION CHANGES Note that a change in ori-
entation isn’t the only configuration change that can happen. For instance,
there’s a dock configuration that’s triggered when someone puts their
Android phone in a docking station (for example, when in a car). Any config-
uration change will terminate the currently visible Activity and restart it
using the new system configuration, so always be prepared for interruptions.

That being said, consider again the poorly implemented application I mentioned ear-
lier. Apparently, its intention was to load data from a web service in a worker thread
(most likely an AsyncTask), and update a view with the result data. Now what happens
if we start an AsyncTask from an Activity and have it update the Ul in its post-execute
handler, but the Activity gets destroyed before the task can complete (for example,
flipping the screen). If not dealt with properly, you either lose the result of the worker
thread, or worse, the application will crash.

You may have stumbled upon this yourself. The download task from the previous
technique holds a reference to an ImageView. The ImageView holds a reference to its
hosting Activity (all views do), which is the Activity it was created in. If the down-
load task runs longer than our activity exists, manipulating the view will crash the
application because the Activity has become stale—its window has been destroyed!
To help you understand this problem, we’ve illustrated it in figure 6.11.

Imagine a water skier: a motorboat (the worker) drags the skier (the Activity) by
arope over the surface of the water. Usually, the skier holds onto the rope while skiing,

Ul thread worker thread

o ———— create (e.g. AsyncTask)
-

®---1-» Activiy |
\ ,I"

- _ o onPreExecute ()
’F ‘7%:

? 1 onPostExecute ()

Figure 6.11 An instance of MyActivity creates a worker thread and gets destroyed
while the task is running. The worker doesn’t know about that, and keeps a reference
to an activity instance that’s considered terminated by the Android runtime.

212

CHAPTER 6 Threads and concurrency

so the connection from boat to skier is weak, but let’s assume—no masochism
intended!—that the skier is tied tightly to the boat using the rope, so that he can’t
escape. There’s a strong connection between the skier and the boat, and this corre-
sponds to our strong reference to the Activity object. Now what happens should the
skier fall and plunge? He can’t let go anymore.

As you can see from figure 6.11, any manually spawned thread, regardless whether
created via AsyncTask or not, may outlive the Activity that created it. In fact, it can live
aslong as the entire application. If that thread keeps a strong reference to the Activity
that created it, either directly or indirectly (through a view, for example), it risks refer-
encing a stale object, which would’ve already been removed by the garbage collector if
the thread didn’t still hold the reference to it. We not only have a reference to a useless
object, we also risk creating a memory leak because the strong reference from the task
to the old Activity instance keeps it from being garbage collected.

This is clearly a design flaw in the Android platform because we run into a contra-
diction: we’re not allowed to keep references to the Activity in a task, but we need
one to do anything meaningful in the post-execute handler. This is a bit like asking a
painter to paint your wall, but not allowing them to use a brush or roller. Let’s try to
summarize this problem more compactly.

PROBLEM

You need to perform tasks asynchronously and want to ensure that a worker thread
always sees a valid instance of the Activity that created it, even if that Activity has
been destroyed.

SOLUTION

I wish that I could say that Android has you covered, but I can’t. Not even AsyncTask,
which is meant to simplify the implementation of worker threads, solves this problem:
although it makes sure that the onPostExecute callback will be called on the correct
Activity instance when the task completes, it doesn’t provide any means to get a ref-
erence to it, so you’ll have to handle that yourself. You must do that whenever you
want to update the UI after a task finishes because any action performed on the UI
either directly or indirectly goes through the current Activity instance. So how do
we solve that problem? Let’s summarize our findings quickly:

1 We want to keep an Activity reference in the worker class, so that we have full
access to Ul operations in onPostExecute.

2 We learned that this reference can become stale, so we need a way of discon-
necting/reconnecting that reference whenever the Activity gets destroyed
and re-created.

3 If the Activity is re-created while the task is still running, that new Activity
instance has no record of the task object created in the old Activity instance, so
we need a way to pass a worker object from one Activity instance to another.

Ourideais as follows: we’ll keep a reference to an Activityin the worker class, but we’ll
make sure to reset it whenever that Activity instance changes due to a configuration

TECHNIQUE 25 Preparing for configuration changes 213

Ul thread worker thread
LN connect () (e-g. AS)’HCT&SK)
destroy i" 1
.""""l ACtiVity[” ! disconnect ()
\ <
pass ¥
worker ‘b
create T \r‘ cehnsch () '

| s
.'""""| Activity2] ! onPostExecute ()
\ <

Figure 6.12 In order to not risk keeping a stale Activity reference, we set the reference
(connect) when the Activity is created and remove it (disconnect) when it gets destroyed.
Moreover, we pass the worker object between the two different Activity instances instead
of re-creating it.

change. Moreover, we’ll use a peculiar method that Android exposes as an optimization
for quickly passing around data within the lifecycle of a single Activity—it goes by the
unwieldy name of onRetainNonConfigurationInstance. In fact, you may remember
that we used it in chapter 3 to pass around instance state. Figure 6.12 sketches our plan.

Sounds complicated? It’s not as bad as it sounds. Look at this simple application,
which will spawn a worker thread in a manner that gracefully handles configuration
changes. When started, it’ll start the worker, which will work for a few seconds and
then post a status back to the Activity. Give the sample application some stress
by flipping the screen back and forth, and you’ll notice that this won’t affect
the worker.

GRAB THE PROJECT: HANDLINGACTIVITYINTERRUPTIONS You can
get the source code for this project, and/or the packaged APK
to run it, at the Android in Practice code website. Because some
code listings here are shortened to focus on specific con-
cepts, we recommend that you download the complete source
code and follow along within Eclipse (or your favorite IDE or
text editor).

Source: http://mng.bz/61P], APK file: http://mng.bz/71bN

Let’s first look at how the Activity is implemented, and how it manages the worker
instance it’s hosting.

http://mng.bz/6lPJ
http://mng.bz/71bN

214 CHAPTER 6 Threads and concurrency

Listing 6.8 Gracefully managing worker threads across configuration changes
public class WorkerActivity extends Activity ({
private Worker worker;

@Ooverride
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.main) ; Was worker
worker = (Worker) getLastNonConfigurationInstance () ; retained?
if (worker == null) ({
worker = new Worker () ; If no, create
worker.execute () ; new one
1
worker.connectContext (this) ; Bind current
} Activity
@Override
protected void onDestroy()
super.onDestroy () ;
worker.disconnectContext () ; Unbind current
} Activity
@Override
public Object onRetainNonConfigurationInstance() { Pass worker to
return worker; next Activity

}
}

We first check whether a worker object is being passed from a previous instance of this
Activity class by a call to getLastNonConfigurationInstance @. This method can
be explained quickly: it gets whatever is being returned from onRetainNonConfigura-
tionInstance @, in our case, the worker. As explained in chapter 3, this method’s
return value is returned to the next Activity instance, as is.

If the return value of getLastNonConfigurationInstance is null, we know that
the worker hasn’t been retained before, so it must mean that this is a “regular”
Activity start. That’s when we create a new worker instance and start the task @.
Regardless of whether the worker was restored or newly created, we call its connect -
Context method @ (which we’ll introduce in a second) to tell the worker that this is
the current Activity instance.

Conversely, when our Activity is about to die, we call disconnectContext O on
the worker to inform it that this particular Activity instance is about to be destroyed,
and that no more interactions with it should happen.

This leaves the code listing for our custom worker class. For brevity, this worker does
nothing but sleep a few seconds, and then passes a String to the hosting Activity.

Listing 6.9 Worker implementation that can (dis)connect its hosting Activity

public class Worker extends AsyncTask<Void, Void, String> {

private Activity context; Bind newActivity

public void connectContext (Activity context) { instance

this.context = context;

TECHNIQUE 25 Preparing for configuration changes 215

} Release current

public void disconnectContext () { Activity instance
this.context = null;

}

@Override
protected String doInBackground (Void... params) {
try {
Thread.sleep(3000) ;
} catch (InterruptedException e) ({

}

return "Work done!";

}

@Override . .
protected void onPostExecute (String result) { O“VWNtQ?CtWWh
if (context != null) { Ul if Activity is valid

Toast .makeText (context, result, Toast.LENGTH_ LONG) .show() ;

}
}

What our custom Worker does is keep a reference to an Activity, making sure that its
hosting Activity can bind to the worker © and release itself @. That way, we don’t
risk keeping a reference to a destroyed Activity. Moreover, before trying to interact
with the Ul—say, by showing a Toast—we make sure that our Activity instance is still
valid by checking it for null @. This is required in cases where our Activity gets
destroyed without being recreated, as is the case when hitting the back button, or in
out-of-memory situations.

DISCUSSION

We admit that this is a fairly obscure problem, but the solution proved to be simple.
We encourage anyone to use this connect/disconnect pattern (or something equiva-
lent) in their applications because it provides for a smoother user experience.

If you followed this technique closely, you may be asking yourself: Hang on a sec-
ond, we made sure to properly handle the Activity reference, and everything looks
okay after connecting it and before disconnecting it, but what if the task finishes in-
between—while the configuration change is being processed? The Activity reference
will be null at that point, so doesn’t that mean the task’s result data will be lost because
we throw it away in onPostExecute whenever the Activity is null?

No! Finally we can say that Android has you covered here. The reason why this will
work is because Android guarantees that no messages will be processed between a call
to onRetainNonConfigurationInstance of the previous instance and onCreate of the
new instance. This means that we can only have two situations:

1 The task finishes before onRetainNonConfigurationInstance is called, in which
case it’s safe to immediately proceed because the Activity is still alive.

2 The task finishes after onRetainNonConfigurationInstance is called, in which
case the Activity is about to be destroyed, and the call to onPostExecute will
be postponed until the new Activity instance has been fully created and is
ready to process that event.

216

6.3

CHAPTER 6 Threads and concurrency

One restriction our solution has is that it only works for activities. The Service class
doesn’t define the onRetainNonConfigurationInstance method, so it can’t keep
track of task objects it hosts (at least not that way).

Another restriction is that you can’t use the Activity instance in doInBackground
because that method doesn’t run on the UI thread, but the task thread, and it’s not
guaranteed that it will always see the correct Activity instance.

If you absolutely can’t live with these restrictions, we have good news as well. The
ignition Android application library (http://github.com/kaeppler/ignition) defines
an implementation of AsyncTask called IgnitedAsyncTask that allows you to run jobs

that are agnostic to the concrete type of their hosting Context, and which make sure
that in all three callback methods you’ll always see the correct context instance. It also
saves you from writing most of the boilerplate code you’ve seen in this technique.

There’s more good news. You have now learned everything about AsyncTask!
Time to come back to more practical things.

Miscellaneous techniques

Are your eyes getting weary? We warned you that this chapter would be technical. But
now you can feel prepared for any threading madness you may face in your own appli-
cations. To make for some diversity, this last section is a mixed bag: it contains two
techniques that didn’t quite fit elsewhere, but are both useful in their own right.

Did you ever think about adding a splash screen to your application or performing
other tasks that are based on timers? What about creating custom message loops,
which is useful in game development? If your answer to either question is yes, then
you’ll find it’s worth sticking around a while longer.

Displaying splash screens with timers

Sometimes it’s useful to run a task, not immediately or in immediate reaction to a user
interface event, but only after a certain amount of time has passed. We sometimes call
this a delayed job or delayed task. Obviously, we need a separate thread for this because
you can only measure how much time has passed by constantly polling for it, and we
can’t do this on the main UI thread because an active loop is a blocking operation. A
good example for using a delayed job is a splash screen—an activity that’s started
when the application starts, and after a certain amount of time gets replaced by the
application’s landing screen.

PROBLEM
You want to execute a delayed task that executes its logic only after a certain amount
of time has passed.

SOLUTION

You could use a standard Java Thread as seen in technique 21 and implement the poll-
ing yourself by following a check time, sleep, repeat approach. That’s tedious though, and
surely there’s already something that does that for us. There is; it’s part of the Java
class library, and it’s called Timer.

http://github.com/kaeppler/ignition

TECHNIQUE 26 Displaying splash screens with timers 217

A Timer can be thought of as a task direc- B 1000

tor class: it schedules jobs (implemented

using TimerTask) for execution, and when
the specified time has passed, it executes
them on a separate thread. A TimerTask is a MyMovies
special kind of Runnable: it exposes a run
method, but adds additional functionality
such as the ability to cancel it while it’s still
waiting in the execution queue. Let’s imple-

ment a splash screen for MyMovies using

Figure 6.13 A simple splash screen for the
))) MyMovies app. We removed the title bar
simple splash screen in action. using the windowNoTitle theme attribute.

Timer and TimerTask. Figure 6.13 shows our

GRAB THE PROJECT: MYMOVIESWITHSPLASH-SCREEN You can get
the source code for this project, and/or the packaged APK to run
it, at the Android in Practice code website. Because some code list-
ings here are shortened to focus on specific concepts, we recom-
mend that you download the complete source code and follow
along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/a0DD, APK File: http://mng.bz/H8LM

The ingredients we need for our recipe are:

= A splash image (such as a PNG, let’s call it splash.png)
= An activity, full screen, with no title bar
= A new entry in the manifest for the splash screen activity

The splash image can be dropped in the res/drawables folder, as you learned
already. The layout for a splash screen Activity is also rather minimalistic; it could be
as simple as this:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
<ImageView android:scaleType="fitXY"
android:layout_width="fill parent"
android:layout height="fill parent"”
android:src="@drawable/splash" />
</merge>

Simple and straightforward. We also need to define the new Activity in the manifest
file. Because it'll be the first Activity that’s launched, it'll take the place of the
MyMovies Activity.

Listing 6.10 AndroidManifest.xml defines the new splash screen Activity
<application android:icon="@drawable/icon"

android:label="@string/app_name"
android:theme="@style/MyMoviesTheme">

http://mng.bz/a0DD
http://mng.bz/H8LM

218 CHAPTER 6 Threads and concurrency

<activity android:name=".SplashScreen" Splash screen now
android:label="@string/app _name" launched first
android:theme="@style/SplashScreen">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>

</activity> Former main activity
<activity android:name=".MyMovies" /> reduced to this

</applications>

You may have noticed that we applied a custom style to the splash screen Activity.
That’s because activities, by default, have a title bar. We want the splash screen to be
fullscreen, so add the following code to your styles.xml:

<style name="SplashScreen" parent="@android:style/Theme.Black">
<item name="android:windowNoTitle">true</item>
</style>

So far, so good. This was all setup code; the meat is in the Activity code in the next
listing—after all this chapter is about threading techniques.

Listing 6.11 Timer can be used to launch a screen after some time has passed

public class SplashScreen extends Activity {
public static final int SPLASH TIMEOUT = 1500;

@Ooverride
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.splash_screen) ;

new Timer () .schedule (new TimerTask() {
@Override
public void run() {
startActivity (new Intent (SplashScreen.this, MyMovies.class)) ;
finish() ;

}

}, SPLASH TIMEOUT) ;

}

Pretty straightforward. We schedule a new task using the Timer class, which will make
sure that the task will be executed after SPLASH_TIMEOUT milliseconds have passed—in
this case 1500, or 1.5 seconds. The task itself creates an Intent to launch our landing
screen (the MyMovies main Activity). Amazingly simple and effective!

We could make the splash screen even cooler: for instance, many users like to skip
them, soit’d be sensible to implementa touch listener thatimmediately skips to the land-
ing screen when the splash screen is tapped. We’ll leave that exercise to you this time.

TECHNIQUE 27 Implementing custom message loops 219

DISCUSSION

The Timer class is more than an “execute-task-X-after-Y-seconds” scheduler. It can man-
age many tasks at once by queuing them up or executing a single task periodically. All
tasks are always executed sequentially on a single thread. When executing a task peri-
odically, the normal behavior (the one implemented by the schedule method that takes
aperiodargument) is to schedule tasks for execution with relative semantics: the next exe-
cution of the task will be scheduled atleast X milliseconds from the start time of the pre-
vious execution. We say “at least,” because if the system is under heavy load, the real-
world time delay can actually be more than the supplied number because the Timer
didn’t get enough time to schedule the next execution on time.

This is unlike the second scheduling strategy implemented in the scheduleAt-
FixedRate method. This mode has absolute semantics, meaning that the delay of a task
execution will be measured using absolute time. In this case, if the Timer doesn’t get
enough CPU time because of a busy system, it'll try to catch up and schedule missed
executions directly after one another if they should normally be already running.
Regardless of which strategy you choose for periodic executions, in both cases the
delay at which a task will be executed is unreliable, which is why you shouldn’t rely on
this technique if your application has real-time requirements.

Similar to a normal Thread, a Timer thread can also be run as a daemon thread. Dae-
mon threads are threads for which the application won’t wait to finish when it’s exit-
ing, which makes them a sensible choice for threads that are used to control or direct
other threads, or implement a certain kind of service. You shouldn’t create daemon
threads to perform important application logic or writing data because it could leave
the application in an inconsistent state.

The classes used in this technique aren’t Android-specific; they’re part of the Java
platform API. Because Thread and ThreadPool are useful for things such as splash
screens, we thought they were worth mentioning here. Let’s get back to Android spe-
cifics now. The next technique is about a more advanced way of using the previously
introduced Handler and Message classes: implementing custom message loops.

Implementing custom message loops

So we talked about Handler and Message in technique 22, which explained how to
pass messages between two threads. Well, that’s not entirely correct: we explained how
you can pass messages from a worker thread to the UI' thread. If you think we’re nitpick-
ing here, we’re not. Using that technique alone, you wouldn’t be able to send a mes-
sage the other way—from the UI thread to the worker thread!

Why is that? Because of something we only mentioned briefly along the way: the
main user interface thread implements a message queue, and continuously polls this
queue for new messages in an endless loop. By default, only the main UI thread does
that, but not any thread you create yourself (not even one managed by AsyncTask).

For many applications, this is sufficient because handling asynchronous user inter-
face events such as taps or scrolls is the most common kind of event in an Android
application, and the existing message loop created for you by Android already takes

220

CHAPTER 6 Threads and concurrency

care of handling these. But what if you have more complex requirements? Take games
for example. Games often implement custom loops to handle events specific to the
game logic that may be too expensive to consume on the thread that also handles user
input events. (Remember that you should always keep the UI as responsive as possible,
which means that the UI thread should never do any expensive operations or other
frequently executed jobs unrelated to the user interface.) But this is one example of
what, in computer science, is a widely known pattern applied to many kinds of concur-
rent programs: the producer-consumer scenario.

In the producer-consumer scenario, you have two concurrent threads: a producer
thread that generates objects and writes them to a shared message queue, and a consumer
thread that consumes these objects. This is what happens when you use a Handler to
update something on the UI thread: your worker (the producer) sends an object (the
Message) to a shared message queue, which is then handled by the UI thread (the con-
sumer). Let’s see how you can apply this pattern to two arbitrary threads.

PROBLEM
You’re writing an application in which several threads must exchange messages, as in a
producer-consumer scenario.

SOLUTION

We’ve already seen how to bind a handler and use it to send messages. The interesting
question that remains is how to implement a custom message loop to consume these
messages outside the UI thread. In Android, message loops for threads are created
using the Looper class. We can only say that what sounds frightening and complicated
at first isn’t complicated at all—the solution is simple, thanks to Looper doing all the
heavy lifting for us.

Use cases for the producer-consumer pattern are usually application-specific, so
instead of coming up with a specific example, we’ll keep things simple here and write
one that focuses on the pattern and leave it to you to decide how to apply it to your
applications. In our simple example, we’ll have two producer threads that generate
random numbers and a consumer thread (running a message loop) that receives
these numbers and prints a log statement if they’re even.

GRAB THE PROJECT: PRODUCERCONSUMERWITHLOOPER You can
get the source code for this project, and/or the packaged APK to
run it, at the Android in Practice code website. Because some code
listings here are shortened to focus on specific concepts, we rec-
ommend that you download the complete source code and fol-
low along within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/91Bu, APK File: http://mng.bz/7y13

The source code for the entire application is in the following listing.

Listing 6.12 A simple producer-consumer scenario implemented using Looper

public class ProducerConsumer extends Activity { Create shared

private Handler handler; handler reference

http://mng.bz/9lBu
http://mng.bz/7y13

}

TECHNIQUE 27 Implementing custom message loops 221

private class Consumer extends Thread (

@Override

public void run() { Create message

Looper.prepare () ; loop for consumer

handler = new Handler() ({ Bind handler
@Override to consumer
public void handleMessage (Message msg) {
int number = msg.what;
if (number % 2 == 0) {
Log.d ("Consumer", number + " is divisible by 2");
} else {
Log.d ("Consumer", number + " is not divisible by 2");
1

}

bi Run message

Looper.loop () ; loop

}

private class Producer extends Thread (

public Producer (String name) {
super (name) ;
}

@Override
public void run() {
Random random = new Random() ;
while (true) { Generate
int number = random.nextInt (100) ; number
Log.d ("Producer " + getName (), Integer.toString(number)) ;
handler.sendEmptyMessage (number) ; Send number
try { to consumer
Thread.sleep(500) ;
} catch (InterruptedException e) {

}

}

@Override
public void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;

new Consumer () .start(); Start producers
new Producer ("A") .start () ;

and consumer
new Producer ("B") .start () ;

The first step is to create a shared reference to the handler, which the producers will
use to send their numbers to the consumer @. In the consumer thread, we create the
message loop @ and bind the handler, before we start the message loop @ that will
keep listening for incoming numbers @. On the producer side, we keep generating

222

CHAPTER 6 Threads and concurrency

numbers between 0 and 100 in an endless loop @, with short periods of inactivity in
between using the Thread.sleep method, and send the numbers to the consumer’s
message queue @. For brevity, we use sendEmptyMessage (int) here because an int is
the only thing we send. Finally, we launch all three threads in onCreate @.

Figure 6.14 shows the output of our number crunching program, visible through the
LogCat view of the Eclipse DDMS perspective, or by running adb logcat on the shell.

All right, checking whether a number is even may not be the most useful exercise.
We give you that. It should be clear though, that this pattern can be used to distribute
computations or other kinds of work between an army of worker threads and have
them post back results to another worker (the “supervisor” collecting the results).
We’ll leave it to your imagination to determine what you can do with this display of
sheer distributed computing power—SETI on Android perhaps?

DISCUSSION
The important things have been said about Looper, but we think these two points
shouldn’t go unnoticed:

First, the Looper interface allows you to register an IdleHandler to a looper
thread’s message queue. IdleHandler defines a single callback method that gets
invoked when no more messages are currently waiting in the queue. That way, you can
find out if a looper thread is sitting there and waiting, wasting precious resources. You
can register an IdleHandler with a message queue by calling Looper.myQueue () .
addIdleHandler ().

Second, you can get a reference to the application’s main looper by a call to
Looper.getMainLooper. If you’re developing a performance-critical application, this

LogCat 53 5% Outline] Properties|] Console

Time pid tag Message

07-04 16:21:54.223 D 296 Consumer 15 is not divisible by 2

07-04 16:21:54.269 D 296 Producer B 1

07-04 16:21:54.269 D 296 Consumer 11 is not divisible by 2

07-04 16:21:54.719 D 296 Producer A 64

07-04 16:21:54.719 D 296 Consumer 64 is divisible by 2

07-04 16:21:54.769 D 296 ProducerB 65

07-04 16:21:54.769 D 296 Consumer 65 is not divisible by 2

07-04 16:21:55.227 D 296 Producer A 45

07-04 16:21:55.229 D 296 Consumer 45 is not divisible by 2

07-04 16:21:55.269 D 296 ProducerB 28

07-04 16:21:55.269 D 296 Consumer 28 is divisible by 2

07-04 16:21:55.729 D 296 Producer A 21

07-04 16:21:55.729 D 296 Consumer 21 is not divisible by 2

07-04 16:21:55.776 D 296 Producer B 64 Figure 6.14 The log
07-04 16:21:55.776 D 296 Consumer 64 is divisible by 2 output produced by the
07-04 16:21:56.231 D 296 Producer A 55

07-04 16:21:56.231 D 296 Consumer 55 is not divisible by 2 Prc.-)c?ucerConsu.mer
07-04 16:21:56.279 D 296 Producer B 65 activity. Two producers
07-04 16:21:56.279 D 296 Consumer 65 is not divisible by 2 post random numbers
07-04 16:21:56.729 D 296 Producer A 80 to the consumer’s mes-
07-04 16:21:56.729 D 296 Consumer 80 is divisible by 2 sage queue, which can
07-04 16:21:56.779 D 296 ProducerB 61

07-04 16:21:56.779 D 296 Consumer 61 is not divisible by 2 then be processed

07-04 16:21:57.235 D 296 Producer A 98 by the consumer.

6.4

Summary 223

can be useful in combination with IdleHandler because it lets you find out when the
user interface looper is sleeping, so you can use its thread to perform other tasks and
not let the resources consumed by that thread go to waste. Remember that you
shouldn’t use this approach for performing expensive tasks because user interface
events may pile up in the UI looper’s message queue while it’s busy working on your
custom job.

Summary

In this chapter, we showed you how to keep your applications responsive by doing
expensive work in separate threads. We started simple, with Java’s basic concurrency
facilities like the Thread class and moved ahead to show you how to let a worker
thread update the user interface using Android’s message passing duo Handler and
Message. We also beefed up MyMovies to asynchronously download movie thumb-
nails, as an example of how to manage multiple download threads in a resource sensi-
tive way using Java’s thread pools and executors.

Though this gave us a lot of flexibility, job classes are often cookie-cutter classes
and contain a lot of boilerplate code, which we removed by simplifying worker thread
scenarios using Android’s AsyncTask class. We wrapped up the chapter by learning
how scheduled delayed jobs can be used to implement splash screens, and how to cre-
ate custom message loops to communicate freely between any number of threads,
without using a single object lock or other synchronization primitives. What a ride!

The next chapter is about the most precious thing in your application: its data!
Learn how to work with Android’s filesystem, how to store semistructured data using
shareable preference files, how to realize preference screens, and how to persist and
manage data using SQLite databases. Read on.

Stoning data locally

In this chapter

® Reading and writing files

m Setting and remembering shared preferences
= Working with SQLite databases

Data is a precious thing and will last longer than the systems themselves.
—Tim Berners-Lee

Data is essential to any application, and Android provides several local storage ave-
nues. But Android doesn’t stop there—you also have access to data from other
applications on the device and the network, which we’ll learn about in upcoming
chapters. First, we’ll focus on local data storage.

To explore local data storage we’ll start with the filesystem. Don’t forget:
Android devices are small computers, and they have filesystems. We’ll see how you
can check whether the filesystem is available, how you can use it, how permissions
come into play, and the differences between internal and external storage. After
basic files, we’ll visit SharedPreferences, which is a helpful class for storing key-
value pair data. SharedPreferences uses the filesystem, but it hides some of the
details and makes for a more convenient approach in some cases. Once we under-
stand files, we’ll look at more sophisticated data storage using Android’s built-in

224

7.1

711

Reading and writing files 225

database, SQLite. SQLite isn’t the same as your typical server side relational database,
but it’s no slouch either. We’ll explore how to use it, how to create a data access layer
around it, and how it differs from what you may be used to.

Our first steps with local data storage will take us back to some of the concepts we
discussed in chapter 1, user IDs and permissions, which always matter when working
with the filesystem.

Reading and writing files

The most fundamental type of local storage in Android is the filesystem to read and
write files. You can use this mechanism to persist and share data among different
application components as well as across different application instances. If your appli-
cation is killed, it’ll lose all its nonpersistent state (as we touched on in chapter 3), but
it won’t lose anything stored in the filesystem.

If you're familiar with java.io, you already know the basics of file storage, but
here we’ll cover some Android specifics, additional details such as permissions and
the difference between internal and external storage.

Internal versus external storage

The first thing to get out of the way before we start reading and writing files is under-
standing the difference between internal and external storage on Android. At a high
level, the differences are as follows:

= Internal storageis on the internal device memory; it’s private and always available
= Lxternal storage may be on removable media; it’s not private and not always
available

Internal storage is the easiest to work with because it’s always there (it’s never
unmounted), and it’s secure. External storage isn’t guaranteed to be available, and
isn’t secure. Availability varies because users can dismount and remove their external
storage, or mount it as USB storage that makes it unavailable to the device. To get a
better idea of what a mount point is and how different resources are mounted with var-
ious properties, let’s run the mount command against a device running Android 2.2, as
seen in figure 7.1.

ccollins@crotalus:~$ adb -d shell

mount

rootfs on / type rootfs (ro,relatime)

tmpfs on /dev type tmpfs (rw,relatime,mode=755)

devpts on /dev/pts type devpts (rw,relatime,mode=600)

proc on /proc type proc (rw,relatime)

sysfs on /sys type sysfs (rw,relatime)

none on /acct type cgroup (rw,relatime,cpuacct)

tmpfs on /mnt/asec type tmpfs (rw,relatime,mode=755,9id=1000)

none on /dev/cpuctl type cgroup (rw,relatime,cpu)

fdev/block/mtdblock3 on /system type yaffs2 (ro,relatime)
/dev/block/mtdblock5 on /data type yaffs2 (rw,nosuid,nodev,relatime)
/dev/block/mtdblockd4 on /cache type yaffs2 (rw,nosuid,nodev,relatime)
/sys/kernel/debug on /sys/kernel/debug type debugfs (rw,relatime)
/dev/block/vold/179:1 on /mnt/sdcard type vfat (rw,dirsync,nosuid,nodev,noexec,relatime,uid=100
@, codepage=cp437,iocharset=1508859-1, shortname=mixed,utf8,errors=remount-ro)

Figure 7.1 The mount command shows some of the locations and types of filesystems Android uses.

226

CHAPTER 7 Storing data locally

This partial output of the mount command shows us that Android uses several types of
filesystems mounted at different locations, each with a different set of properties. First
it uses rootfs for the / partition. This is a special partition that allows all other devices
to attach under one tree. Another special partition is the system partition, which like
/ is marked ro, or read only. These partitions contain essential operating system files
and data. You won’t typically use these partitions directly; instead you’ll use the other
locations such as /data and /cache.

The /data and /cache mount pointsare the internal storage locations, and
they’re mounted using various filesystem types (the figure shows Yet Another Flash File
System 2, yaffs2, which is designed for use on embedded flash memory devices, but
the type can vary based on the device). These are writable, as indicated by the rw, or
read-write notation.

Along with these and several other special partitions, we see the /mnt/sdcard
location mounted with type vfat. That’s the external location, and the fact that it’s
using a FAT (File Allocation Table) type of filesystem is significant. FAT is simple, and
almost every operating system can read and write to it. This is why so many memory
cards and cameras use it. Also, it can be mounted through a USB connection and used
as a virtual drive with almost any host operating system. The simplicity it provides sac-
rifices security.

Many times the external location also uses a removable media format such as a
Secure Digital (SD) card (hence the sdcard path name). Yet, it’s important to under-
stand that this isn’t always the case. Some devices have no removable storage, and
some devices have internal storage they treat as external in Android terms, and some
have both. This means, in effect, there are two types of external storage: removable and
nonremovable. Android only mounts and deals with one at a time (and most prefer
the internal-external storage when available, because it’s thought to be more reliable,
per discussions on the group mailing lists).

We’ll learn more about the security aspects and paths as we start reading and writ-
ing files, beginning with internal storage.

Using internal storage

Now that we’ve seen the difference between internal and external storage, and dis-
cussed how internal storage is more secure and reliable, you might reasonably wonder
why you wouldn’t use it for everything! Like anything else, there are tradeoffs.

Internal storage space is limited, and when it’s used up, no further applications
can be installed. Because of this, savvy users will check how much space your applica-
tion takes up, and they’ll rightly scoff if you’re storing a lot of data on the internal
memory. It’s understandable if your application is Google Earth and it takes up a few
megabytes. Yet, if your fantasy football application takes up 30 megabytes, you've
failed, and users will notice.

TECHNIQUE 28 Using internal storage

RUNNING YOUR APP ON EXTERNAL STORAGE Android API level 8 and above
(2.2) supports running applications from the external storage area. This
capability is enabled in the manifest with the android:installLocation attri-
bute. If this is set to preferExternal or auto, then certain application com-
ponents may be placed on an encrypted separate mount point on the
external storage. Other data such as databases and user private data aren’t
placed on the external storage. This saves the user’s internal space, and users
appreciate that. Performance isn’t affected. The only drawback is that if the
user mounts the external storage via USB, any running applications that are
on external storage will be stopped. This means that applications that need to
maintain running services, register alarms, or which may otherwise be

227

affected by being stopped, shouldn’t use this approach.

Due to space constraints, you must decide what data rates high enough for internal stor-

age and what can be moved to external storage. The clearest way to make that distinction

is to decide what your application can and can’t
live without. If you need to cache images, it might
be better to do so on external storage and show
placeholders when it’s not available. On the other
hand, the data model for your application—
names, places, movies, football teams, and so on—
probably needs to be on internal storage (though
you should still try to keep it as slim as possible).

PROBLEM

You understand the differentlocations where you
can store files and other data, and you want to use
the internal storage. You also want to be able to
explore and verify data that has been stored.

SOLUTION

This time we’ll use a sample application to read
and write data to and from the internal storage
location, and then we’ll use the adb shell to exam-
ine the data. Figure 7.2 shows the simple screens
for FileExplorer. Once again, our sample applica-
tion isn’t pretty, but it gets the job done.

Use Internal storage

Use external storage

To understand recursion, you must
first understand recursion]

Write
- = oal B 1233

Figure 7.2 The FileExplorer application
shows writing and reading of a text file
stored on the internal storage.

GRAB THE PROJECT: FILEEXPLORER You can get the source code
for this project, and/or the packaged APK to run it, at the
Android in Practice code website. Because some code listings here
are shortened to focus on specific concepts, we recommend that
you download the complete source code and follow along

within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/FRV9, APK File: mng.bz/XuAp

http://mng.bz/FRV9
http://mng.bz/XuAp

228

CHAPTER 7 Storing data locally

The first Activity in FileExplorer is a screen that allows users to choose whether to
work with the internal or external storage. That code is simple, so we won’t show it
here (it’s available with the project download). If the user chooses the internal storage
path, we then go to an Activity named InternalStorage. This Activity includes
the EditText, TextView, and buttons we see in figure 7.2. There the user enters some
text and clicks the Write button to store that text to a file. When they click Read, the
file is read back and displayed. The code for these methods, shown in the next listing,
is the interesting part.

Listing 7.1 The read and write methods of the InternalStorage.java Activity

public static final String LINE SEP = System.getProperty("line.separator");

private void write() { Use
FileOutputStream fos = null; openFileOutput
try {

fos = openFileOutput ("test.txt", Context.MODE_PRIVATE) ;
fos.write (input.getText () .toString() .getBytes()) ;
Toast .makeText (this, "File written", Toast.LENGTH_SHORT) .show () ;
input.setText ("") ;
output.setText ("") ; Write data
} catch (FileNotFoundException e) { to file
Log.e (Constants.LOG_TAG, "File not found", e);
} catch (IOException e) {
Log.e (Constants.LOG_TAG, "IO problem", e);

} finally {
try { Close
fos.close() ; FileOutputStream

} catch (IOException e) {
}
}
}

private void read() {
FileInputStream fis = null;
Scanner scanner = null;
StringBuilder sb = new StringBuilder () ;

try { Use
fis = openFileTnput ("test.txt"); openfFilelnput PassgnlelnputStream
scanner = new Scanner (fis) ; to a Scanner
while (scanner.hasNextLine()) ({
sb.append (scanner.nextLine() + LINE_SEP);

}

Toast.makeText (this, "File read", Toast.LENGTH SHORT) .show() ;
} catch (FileNotFoundException e) {

Log.e (Constants.LOG_TAG, "File not found", e); Read data
} finally { from file
if (fis != null) {
try { Close

fis.close() ; FileInputStream

} catch (IOException e) {
}
}

if (scanner != null)

TECHNIQUE 28 Using internal storage 229

scanner.close() ;
}

}

output.setText (sb.toString()) ;
}
The easiest way to write simple files to internal storage is to use the input and output
stream convenience methods provided by Context. This makes reading and writing
files work much the same as it would with typical java.io code.

First, you obtain a FileOutputStream with openFileoutput @. This special
method creates the file in the correct internal location for your application if it
doesn’t exist and allows you to set the permissions mode. Most often you’ll keep inter-
nal files private, but you do have the option of making them MODE WORLD READABLE or
even MODE_WORLD_WRITABLE as well. Once you have the stream, you write data to it 0,
and then make sure to close it when done €.

REMINDER: LOOK OUT FOR OVERSIMPLIFIED EXAMPLES In our file-handling
example activities you may notice a subtle potential problem. We’re perform-
ing I/O operations from the main UI thread. This is almost never a good idea.
Reading and writing data to and from filesystem, internal or external, can
block the main UI thread. In a real implementation, you’ll want to do this
from a Handler or an AsyncTask (passing in the file reference). We haven’t
here because we want to keep each example as short and focused as possible
(we learned about threading in chapter 6).

If we crack open the adb shell and go to the internal location /data/data/<package-
name>/files, we can see the file written by the InternalStorage class. For example,
after typing in the text seen in figure 7.2 and then pressing the Write button, we can see
the file permissions details and contents via shell commands as shown in figure 7.3.
One other notable aspect of the internal storage is that the Context provides several
other convenience methods for listing and deleting files, and for getting the internal
cache directory. We’ll touch on the significance of cache directories in technique 30.

DISCUSSION

Overall, internal storage is straightforward; the key is to use Android’s convenience

methods so files end up in the correct location or automatically created if necessary.

From there, reading and writing data involves standard java.io operations. And, as

we’ve seen, the shell is helpful for exploring data and troubleshooting (you can use

the command-line shell or the file explorer provided by the ADT plugin in Eclipse).
Our next step is using the external storage.

ccollins@crotalus:~$ adb -e shell

cd /data/data/com.manning.aip.fileexplorer/files

#1s -1

-rw-rw---- app_31 app_31 62 2010-12-08 00:33 test.txt

cat test.txt

To understand recursion, you must first understand recursion. #]

Figure 7.3 The adb shell examines a file written to the internal storage location by FileExplorer.

230

CHAPTER 7 Storing data locally

Using external storage

As we’ve already noted, the external storage on Android (whether removable or not)
is mounted with a different filesystem than the internal. It’s inherently less secure, but
it’s also easy to use and keeps things out of the scarce internal storage space. For many
application files, backup data, caches, images, and so on, you’ll want to use the exter-
nal storage. And you can use the external storage to store data you want to make

accessible to other applications.

PROBLEM

You want to store data on the external storage.
Also, you want to be able to easily determine
when the external storage is and isn’t available,
regardless of the version of the Android SDK
you’re using.

SOLUTION

To see the external storage in action, we’re
going to continue with the FileExplorer sample
application and repeat the same operations we
used for the internal storage example. We’ll
write some text into a text box that’s saved to a
file, and then we’ll read it back. From the UI
standpoint, this looks identical to using the
internal storage, as seen in figure 7.4.

The ExternalStorage Activity class, in the
next listing, is much the same as the Internal-
Storage class, but it has different implementa-
tions in the read and write methods.

% wl W 1208

If I could remember the names of
all these particles, I'd be a botanist.
-- Albert Einstein|

Figure 7.4 The FileExplorer application
shows writing and reading of a text file
on the internal storage.

Listing 7.2 The read and write methods of the ExternalStorage Activity class

private void write() { Is external
if (FileUtil.isExternalStorageWritable()) storage writable?
File dir =
FileUtil.getExternalFilesDirAllApiLevels (Get recommended
this.getPackageName ()) ; file path
File file = new File(dir, "test.txt");
FileUtil.writeStringAsFile(input.getText () .toString(), file);

Toast .makeText (this, "File written", Toast.LENGTH_SHORT) .show () ;

input.setText ("") ;
output.setText ("") ;
} else {

Write string
as file

Toast .makeText (this, "External storage not writable",

Toast . LENGTH_SHORT) .show () ;

TECHNIQUE 29 Using external storage 231

}

private void read() ({ Is external
if (FileUtil.isExternalStorageReadable()) storage readable?
File dir =
FileUtil.getExternalFilesDirAllApiLevels (Get file

this.getPackageName ()) ; path again
File file = new File(dir, "test.txt");
if (file.exists() && file.canRead()) { Readﬁh
output .setText (FileUtil.readFileAsString(file)) ; as string

Toast .makeText (this, "File read", Toast.LENGTH_SHORT) .show() ;

} else {
Toast .makeText (this, "Unable to read file: "
+ file.getAbsolutePath(), Toast.LENGTH_ SHORT) .show() ;
}
} else {

Toast .makeText (this, "External storage not readable",
Toast . LENGTH_SHORT) .show () ;

}

The first thing of note in the ExternalStorage read and write methods is that we’re
using a FileUtil class in several places. This is an example of a small utility class that
we’ve included in our application. It contains some useful methods that we may use
for more than one Activity, and even for more than one application. We’ll see the
code for it next, after we get through the read and write methods.

The first thing we do with FileUtil in the write method is check whether the
external storage is writable @ (if you're using an emulator for this example you’ll
have to make sure that you created an SD card for the instance you’re working with).
Then, if it is, we use it again to get a reference to the File that represents the recom-
mended external path for our application @. That path will be /sdcard/Android/
data/<packagename>/files. You might notice a pattern there—this path mirrors the
internal data directory path (with a different mount point and parent). After we have
the path, we create a File and write to it ©. Later in the read method, we use a simi-
lar approach. We check whether the external storage is readable @, then get the path
© and read the data @. If we open the shell, we can see the file at the specified loca-
tion on the external storage, as demonstrated in figure 7.5.

ccollins@crotalus:~% adb -e shell
cd /sdcard/Android/data/com.manning.aip.fileexplorer/files

#1s -1

----rwxr-x system sdcard_rw 91 2018-12-88 00:38 test.txt

cat test.txt

If I could remember the names of all these particles, I'd be a botanist. -- Albert Einstein# Jj

Figure 7.5 The adb shell examines a file written to the external storage location by the FileExplorer
sample application.

232

CHAPTER 7 Storing data locally

The guts of the file I/O code can be found in FileUtil itself, which is shown in the
next listing.

Listing 7.3 The FileUtil class that performs reusable file related operations

public final class FileUtil {

private static final String

EXT_STORAGE_PATH_PREFIX = "/Android/data/"; Define constants
private static final String to represent
EXT _STORAGE_FILES_PATH SUFFIX = "/files/"; paths
private static final String
EXT_STORAGE_CACHE_PATH _SUFFIX = "/cache/";
public static final Object[] DATA_LOCK = new Object [0]; Object array
private FileUtil() { for lock

}

public static boolean isExternalStorageWritable() {

return Environment.getExternalStorageState() .equals (Environment
Environment . MEDIA_MOUNTED) ; determines
} read- and
write-ability
public static boolean isExternalStorageReadable() {
if (isExternalStorageWritable()) {

return true;
return Environment.getExternalStorageState() .equals (
Environment . MEDIA MOUNTED READ_ONLY) ;

}

public static File getExternalFilesDirAllApiLevels(
final String packageName) {
return FileUtil.getExternalDirAllApiLevels (

packageName, EXT_STORAGE_FILES PATH_SUFFIX) ; Get file/cache
) dir passing type
public static File getExternalCacheDirAllApiLevels (
String packageName) {
return FileUtil.getExternalDirAllApiLevels (
packageName, EXT STORAGE _CACHE_PATH SUFFIX) ;
J 43 Private method
private static File getExternalDirAllApiLevels (to get/create

String packageName, String suffixType)
File dir = new File (Environment.getExternalStorageDirectory ()
+ EXT_STORAGE_PATH_PREFIX + packageName + suffixType) ;
synchronized (FileUtil.DATA LOCK) ({
try {
dir.mkdirs () ;
dir.createNewFile() ;
} catch (IOException e) {
Log.e (Constants.LOG_TAG, "Error creating file", e);
1

}

return dir;

TECHNIQUE 29 Using external storage 233

Define

public static boolean writeStringAsFile (. A .
writeStringAsFile

String fileContents, File file) ({
boolean result = false;

try {
synchronized (FileUtil.DATA LOCK) {

if (file != null) ({
file.createNewFile() ;
Writer out =
new BufferedWriter (new FileWriter (file), 1024);
out.write(fileContents) ;
out.close() ;
result = true;

}
}

} catch (IOException e)
Log.e (Constants.LOG_TAG,
"Error writing string data to file " + e.getMessage(), e);

}

return result;
} Define

public static String readFileAsString(File file) ({ readFileAsString

StringBuilder sb = null;

try {
synchronized (FileUtil.DATA_LOCK) ({

if ((file != null) && file.canRead())
sb = new StringBuilder() ;
String line = null;
BufferedReader in =
new BufferedReader (new FileReader (file), 1024);
while ((line = in.readLine()) != null) {
sb.append(line + System.getProperty("line.separator")) ;

}
}
} catch (IOException e)

Log.e (Constants.LOG_TAG,
"Error reading file " + e.getMessage(), e);

}
if (sb != null) {
return sb.toString() ;

}

return null;

}

At the start, FileUtil defines several constants for the recommended external storage
file paths @. We’ll see why these are necessary in a moment. After that it also defines
an Object [] array that it'll later use as a lock for synchronized blocks @. Because
these utility methods may be accessed by different threads and could possibly touch
the same files, we’ll synchronize them to avoid concurrent modification problems.
Then, it defines the methods we used earlier, such as those that check whether the
external storage is writable and readable ©. This is done using the Environment class,
which has utility methods to return this information. We could call Environment from

234

CHAPTER 7 Storing data locally

our activities (and sometimes that makes sense), but here we chose to put the logic in
one place so as not to have to repeat it.

After the state-checking methods, we then see the methods getExternalFiles-
DirAllApiLevels and getExternalCacheDirAllApiLevels methods @), which are
wrappers around the private getExternalDirAllApiLevels @. This is all done to pro-
vide a backward-compatible way to get to the recommended paths we’ve already seen.
If we knew we’d always be running our code on devices that support API level 8 or
later, we could call Context.getExternalFilesDir or Context.getExternal-
CacheDir. But we don’t know that. Many users still have devices that run earlier ver-
sions of Android, so we shouldn’t rely on those methods. That’s why we created the
utility methods that give us the same thing, for any API version. This is done using the
getExternalStorageDirectory method (which all versions have) and then append-
ing the recommended paths via the constants we noted earlier.

WHY THE RECOMMENDED PATHS? If you've used Android for any length of
time and poked around on the external storage area of your device, you've
likely seen files stuffed in all sorts of different directories. This is because the
first several versions of Android had no recommended paths and each appli-
cation chose what it wanted to use. This was problematic because it caused an
explosion of directories, and because none of these files were deleted when
applications were uninstalled. If you use the recommended path, things will
be more organized, users (and other applications) will know the convention,
and files can be cleaned up by the platform.

After those helper methods, we then use the writeStringAsFile and readFileAs-
String methods. These don’t have any Android-isms in them. Instead they use stan-
dard java.io and they’re passed the File references they require. Specifically, we use
FileWriter @ and FileReader @ for reading and writing file data, respectively. For
either case, if we needed more control, such as specifying the file encoding, we
could’ve used the lower-level FileInputStream and or FileOutputStream classes.
Instead we chose the reader and writer because they’re less verbose and we’re fine
with the system encoding in this case.

Even though these use less code than other Java IO classes, they aren’t exactly tidy.
This isn’t code we’d want to repeat in multiple Android components. This is one rea-
son we’ve moved these operations into a utility class.

HIDING APPLICATION DATA If you’re storing images, music, or anything else
that might be picked up by the Android media scanner on the external stor-
age, you might want to also include a .nomedia file in the same directory. This
file is hidden (which is why the name starts with dot), and it tells the media
scanner to skip the present directory. If you don’t do this, your application
images will end up in the Gallery application. This may not be what you want.

Along with using the recommended external storage paths we’ve noted, there are
also several conventions for data if you want to make it public. If you want to share a
file on the external storage, you start with the same getExternalStorageDirectory

TECHNIQUE 30 Using cache directories 235

path, and then you append the correct directory convention. These include /Music,
/Movies, /Pictures, and more. We’ll learn more about multimedia, and the public
paths for sharing data using the external storage, in chapter 11.

DISCUSSION
Storing external data is similar to storing internal data. You need to start with Android’s
convenience methods to get to the correct locations, and then you’ll use java.io to
perform operations. The exceptions with external data are that you’ll need to make
sure the external paths are available before trying to use them (and have fallbacks, such
as placeholder images, for when they aren’t), and that everything is readable /writable
(there’s no security). You can also explore and troubleshoot the external storage the
same way as you would the internal, starting from the /sdcard path.

With the basics of reading and writing files in general wrapped up, the next thing
we need to address is cache directories.

Using cache directories

Android provides cache directories on both the internal and external storage. So what
makes these directories special, and why are they necessary? Fundamentally they’re
directories that are marked for some level of management by the platform. That man-
agement includes being deleted if an associated application is deleted and sometimes
being automatically pruned if space requirements dictate it.

PROBLEM
You need to store some type of temporary data, and you’d like that data to be in a pre-
defined recommended location so that the Android platform can help manage it.

SOLUTION

If you have data that you want to keep around for some period of time but not perma-
nently, such as images from web service feeds, you should use the internal and exter-
nal cache directories. Caching is an art, so it depends on the context—what needs to
be cached and how it should be maintained—but Android tries to help by providing
specific cache directories on both the internal and external file systems.

The Context.getCacheDir method will return a reference to the /data/data/
<packagename/cache internal storage cache directory. Even though the cache direc-
tory can be cleaned up by the system if it needs to reclaim the space, you shouldn’t
rely on that behavior. Instead, your application still needs to keep an eye on the cache
and not allow the directory size to grow beyond a reasonable maximum (the docu-
mentation recommends 1MB as the maximum).

Similarly, Context .getExternalCacheDir is available, for API levels 8 and above, to
get a reference to the external cache directory. If you want to make sure earlier API
versions will work, you can also do something similar in listing 7.3 and manually con-
struct the same path that getExternalCacheDir creates.

DISCUSSION
Rather than creating your own special caching locations, you should try to use the
platform-recommended paths because they’re managed. When applications use the

236

CHAPTER 7 Storing data locally

platform cache directories properly, the system can manage space as needed. First the
system can prune files to save space as necessary, and second it completely removes
such cache directories when the application referring to them is uninstalled. This
helps organize and control files and allows applications to work together and share
resources more efficiently.

Knowing how and where to save files, even particular types of files such as those
intended for a cache, is essential. Unfortunately, it’s not the only thing you need to
consider. To be absolutely sure your files are saved to disk when you need them to be,
you also need to be aware of how to sync them.

Making sure files are saved with sync

Most Android devices up to version 2.2 use filesystems that don’t buffer aggressively
(such as YAFFS). When you save a file, it’s immediately written to disk. Some newer
devices (and custom ROMs), particularly those running Android 2.3, may use jour-
naled filesystems such as ext4. These types of filesystems use more buffering, which
means files aren’t always immediately written to disk. The buffering allows the filesys-
tem to be more robust (handle crashes better), and to more efficiently handle writing
blocks of data, but it can also be a headache for developers at times.

PROBLEM
You need to guarantee that file data is written to disk immediately, regardless of the
filesystem in use and the platform version.

SOLUTION
There are times when you need to guarantee that your file data is written to disk before
moving on to other operations. For example, if you write file data in one process, and
need to read that same file from another process, you’ll want to make sure the data is
written before trying to read it. To guarantee the file is written immediately, regardless
of the filesystem involved, you can manually call sync. Syncing ensures that the buffer
catches up with the physical disk. You might be surprised to learn that FileOutput-
Stream methods such as flush, write, and even close don’t ensure this, but it’s true.
The FileDescriptor object in Java is where you’ll find the sync method. File-
Descriptor is a low-level handle to operations on the underlying machine-specific
filesystem. You can get a FileDescriptor reference from FileOutputStream, and
then sync, as shown in the next listing.

Listing 7.4 Using a FileDescriptor to guarantee data is written to the filesystem

public static boolean syncStream(FileOutputStream fos) {
try {
if (fos != null) {
try {
fos.getFD() .sync () ;
} catch (IOException e) {
Log.e (Constants.LOG_TAG,
"Error syncing fos " + e.getMessage (), e);

TECHNIQUE 32 Reading and writing preference data 237

return true;

}

return false;
}
You don’t always want to sync files immediately, because there’s overhead to doing so,
and it’s not necessary if you’re writing to a single file from one process. But it’s impor-
tant to know that you can (and should) when you need to guarantee the file data is
written immediately.

DISCUSSION
If you use your own file storage on Android, you need to keep the filesystem and sync
situation in mind. On the other hand, if you use other Android APIs such as a SQLite
database, or SharedPreferences (both of which we’ll visit in upcoming sections in
this chapter), the syncing is handled for you.

Now that we’ve seen the differences between internal and external storage, done
some basic I/0, discussed caching, and dealt with syncing, our next point of interest is
the next level of abstraction with storage, the aforementioned SharedPreferences.

7.2 Maintaining preferences

Android provides an easy-to-use data storage class called SharedPreferences that
allows you to read and write primitive key-value pairs. The not-so-secret secret is that
shared preferences are files that the platform helps to manage. The preference level is
an easier, less verbose wrapper around storing simple persistent items in files.

Reading and writing preference data

SharedPreferences allow you to read and write data, and to set access modes on the
files that contain them. This means you can use them to share data among different
components (activities, services, and more), and even among different applications
(though that should be uncommon because it requires the applications to know each
others’ package names and use world-writable files or shared user IDs, all of which
should only be done in special circumstances).

PROBLEM

You want an easy way to store simple information, such as strings and primitive values.
SOLUTION

You can use SharedPreferences to easily store and retrieve data. The following listing
is an example.

Listing 7.5 Using SharedPreferences to write and read data

SharedPreferences prefs = getSharedPreferences ("myPrefs",
Context .MODE_PRIVATE) ;

Editor editor = prefs.edit();

editor.putString ("HW_KEY", "Hello World");

editor.commit () ;

//. . . later, or from another component
String helloWorld = prefs.getString("HW_KEY", "default value");

238

CHAPTER 7 Storing data locally

To use preferences, you first get a reference to a SharedPreferences object (via the
Context), then you use an Editor to write data and simple get methods to read data.

DISCUSSION

SharedPreferences objects are useful and easy to work with. You can create your own,
as we’ve done in listing 7.5, or you can use one of several convenience methods the
framework supplies to make this even simpler. The default preferences are available
from any component using PreferenceManager.getDefaultSharedPreferences
(Context c). This returns a preference object using the package name the context
represents. You can also use Activity.getPreferences (int mode), which will return
an object using the class name. Remember, under the covers SharedPreferences are
XML files that are stored at the /data/data/<PACKAGE_NAME>/shared_prefs location
on the internal file system (if you need to edit them manually, or just want to check
them out, that’s where you can find them).

SharedPreferences also support listeners. You can attach an OnSharedPrefer-
enceChangeListener that acts as a callback to notify you when preferences are
changed. We’ll see how that works inside a more useful example where we’ll include a
PreferenceActivity.

Using a PreferenceActivity

Android takes preferences one step further than allowing them to store data and
be shared among components: it can automatically wire them into onscreen
selections for user preferences. To do this, Android uses a specialized activity class—
PreferenceActivity.

PROBLEM
You need to allow users to set preferences for your application and easily persist them
to SharedPreferences files.

SOLUTION
You’ve probably seen PreferenceActivityin action. In fact, the main Android settings
screen uses it and so do many other built-in applications. Here we’ll see how it works so
you too can leverage it, and we’ll also see how to make it more useful by having it show
the current preference (rather than a description) and immediately reflect changes.
To do this, we’ll be extending the MyMovies project we worked with in chapter 4.
We’ll create a new version of that project that changes MyMovies in several notable
ways. We’ll add a database to it and making it dynamic by retrieving data from the
web. We’ll learn more about those features soon, but first, we want to include a prefer-
ence screen that allows us to enable or disable the splash screen.

GRAB THE PROJECT: MYMOVIESDATABASE You can get the source
code for this project, and/or the packaged APK to run it, at the
Android in Practice code website. Because some code listings here
are shortened to focus on specific concepts, we recommend that
you download the complete source code and follow along within
Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/5M06, APK File: mng.bz/03ta

http://mng.bz/5M06
http://mng.bz/03ta

TECHNIQUE 33 Using a PreferenceActivity 239

= ol & 9:04
[MyMoviespatahase |

Application Settings

Splash Screen
E d

= il B 9:05

Hﬁ?ﬁ3ﬁ:ﬁaﬁmﬁﬂgllllllllllllllllll

Application Settings
Splash Screen

Figure 7.6 The preferences screen for
MyMoviesDatabase shows the current
enabled/disabled status of the splash

screen.

Our Preferences Activity for MyMoviesDatabase, which will be accessible via the
menu once we’re done, is seen in figure 7.6.

There are two parts to making the preference activity screen work. There’s a pref-
erence resource XML file that defines the elements, and there’s a PreferenceActivity.
This is the same arrangement as with a standard layout resource or Activity, butit’s spe-
cialized for preferences. We’ll start by examining the XML resource, shown in listing 7.6.

Listing 7.6 The preferences.xml resource file used to define the preference hierarchy

PreferenceScreen

<?xml version="1.0" encoding="UTF-8"?> .
is root

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">

<PreferenceCategory Preferences

android:title="Application Settings"> can be grouped
<CheckBoxPreference android:title="Splash Screen"

android:key="showsplash" android:summary="Disabled"
android:defaultValue="rfalse" /> Object definition

</PreferenceCategorys> and attributes

</PreferenceScreen>

Every preference XML resource starts with a root PreferenceScreen element @), and
then includes categories with titles @ and preference elements. There are several types
of builtin preference objects including DialogPreference, ListPreference, Edit-
TextPreference, and the one we’re using, CheckBoxPreference ©. Each preference
object has a title, key, value, and summary. Most often the summary is left as static text
such as “Enable or disable the splash screen.” We’re going to demonstrate how to make
this dynamic and use it to show the current setting (such as in figure 7.6). The other
half of all this is the PreferenceActivity class, shown in the following listing.

Listing 7.7 The Preferences.java Activity in the MyMoviesDatabase application

public class Preferences extends PreferenceActivity ({ Extend

Include

private CheckBoxPreference showSplash; QE PreferenceActivity
CheckBoxPreference

@Override

240 CHAPTER 7 Storing data locally

public void onCreate(final Bundle savedInstanceState) Invoke
super.onCreate (savedInstanceState) ; addPreferences-
addPreferencesFromResource (R.layout.preferences) ; FromResource
showSplash = (CheckBoxPreference) Use
getPreferenceScreen() .findPreference ("showsplash") ; findPreference
setCheckBoxSummary (showSplash) ; Get default
SharedPreferences prefs = SharedPreferences
PreferenceManager.getDefaultSharedPreferences (this) ;
prefs.registerOnSharedPreferenceChangelListener (Attach
new OnSharedPreferenceChangeListener () listener
public void onSharedPreferenceChanged (
SharedPreferences prefs, String key)
if (key.equals ("showsplash")) {
setCheckBoxSummary (showSplash) ;
)) Update
b ; preference
! summary
} based on
private void setCheckBoxSummary (CheckBoxPreference pref) { state
if (pref.isChecked()) {
pref.setSummary ("Enabled") ;
} else {

pref.setSummary ("Disabled") ;

}

}

Right up front, we take the help Android provides us by extending Preference-
Activity @. PreferenceActivity shows a hierarchical list of Preference objects to
the user, and automatically saves the selections to a backing SharedPreferences file.
As we saw with the XML file, preference objects such as CheckBoxPreference are used
from within the activity @.

Here we only have the one preference, so it’s simple, but the pattern is the same
no matter how many you may have. We set the XML preference hierarchy in the activ-
ity with addPreferencesFromResource €. To obtain a reference to a specific prefer-
ence object that’s declared in the XML, we use findPreference @. This is much like
findviewById, butit’s for preferences.

After our initial setup, we then access the default SharedPreferences object (5}
because that’s where PreferenceActivity saves data, and we attach an OnShared-
PreferenceChangeListener @. Every time a preference is updated, this event is fired
with the preferences and key that was changed. Within the listener, we check whether
the key is the one we’re interested in. If it is, we change the preference objects sum-
mary with an internal helper method named setCheckBoxSummary @. If we had mul-
tiple checkboxes, we could use this same method for each.

DISCUSSION
With a PreferenceActivity and its backing SharedPreferences file, we not only now
have a preferences screen, but it updates automatically to show the user what the

7.3

Working with a database 241

current state/setting is. Even though we don’t have many preferences here, our users
will appreciate the fact that by default the splash screen is shown only once, and after
that we allow them to enable it if they want (we don’t force them to look at it every
time they open the application).

At this point we’ve seen several forms of accessing and using SharedPreferences,
and we’ve kicked off the MyMoviesDatabase sample application. Next up we’ll include
a SQLite database to store movie selections locally and to live up to the Database part
of our sample application’s name.

Working with a database

When you need to store more complex data for your application, using a relational
database is often a good choice. Databases are built for taking care of details such as
inserting data with transactions and allowing multiple connections at once. Most
developers are familiar with a relational database management system (RDBMS) of
one form or another. They’re a common and powerful way to structure and store
data, built on the principles of relational algebra.

To see a database in use with an Android application, we’re going to change the
MyMovies application we’ve seen in previous chapters. We’ll modify it so that it
includes a local database to store movie data rather than using a flat text resource file,
and we’ll allow users to search for movies to add to their collection. We’ll be pulling
data from a web service to get movie information, and we’ll store it in several database
tables. We’ll focus on the database aspects of this version of MyMovies, but the code
download has the networking and XML parsing portions if you're interested—we’ll
cover those concepts in chapter 9. The finished MyMoviesDatabase product will look
like figure 7.7.

To store local movie data for MyMov-
iesDatabase, we’ll create a layered archi-
tecture to allow our application compo-
nents (activities in this case) to easily save
and retrieve plain Java objects to and =
from a database. We’ll walk through the SSRGS
layers and look at each level up close, but Gerks
first we’ll touch on the database system | [SEIE TS
Android provides that will ultimately O strang T
store our data: SQLite. o

What’s SQLite? Most database systems
are large server-based applications. For

Cool Runnings

The Man

example many web applications use mul-
tiple servers and clusters of databases on

the server side. Android can access these

systems through the network, but as we Figure 7.7 The MyMoviesDatabase application

noted in chapter 1, it also provides a displays a movie list, search, and detail screens.

242

7.3.1

CHAPTER 7 Storing data locally

small open source embedded database named SQLite. SQLite is often used within appli-
cations to manage local data. Apple OS X, DropBox, Firefox, and Chrome all use it, as
do many other applications and products.

SQLite uses the Structured Query Language (SQL), as its name implies, to allow you to
create and maintain tables and to insert and select data. Though SQLite uses SQL, it
isn’t meant to replace the large server offerings that Oracle, Microsoft, IBM, and oth-
ers supply. Instead, it’s designed to be small, fast, and easy to use for in-process data. If
you’ve worked with SQL before, you’ll be right at home with most of what SQLite
offers. If you haven’t, that’s okay too because it’s a great way to get started learning
SQL without the overhead of larger systems.

Even though it’s small and fast, SQLite is powerful. It supports transactions (which
are atomic even after system crashes), foreign keys, functions, triggers, and more.
We’ll learn about many of these features as we use them in the MyMoviesDatabase
application. In addition, although SQLite has many features other SQL systems have, it
doesn’t have them all. SQLite doesn’t support certain join types (right outer, full
outer), some alter statements, and it treats data types more loosely than other systems.
We won’t cover every facet of SQLite here, but we hope to get you started and provide
information on the most common patterns you're likely to need when working with it
on the Android platform. For full information on SQLite, you’ll want to check the
excellent online documentation: http://www.sqlite.org/.

To use SQLite we’ll need to first define what we want to store, then create a data-
base, and finally build several layers to hide the hairy details and make data persis-
tence easy for our application components. We’ll start with a tour of the database

related packages Android provides.

Android data packages

Android provides two main packages for working with databases. The first,
android.database, isn’t specific to a particular underlying database type. In this pack-
age you’ll find the Cursor interface, base implementations, several types of data and
content observers, and some helper classes. The second, android.database.sqlite,
is specific to SQLite. Therein, you’ll find the SQLite cursor implementation, classes for
creating and updating SQLite databases, classes for querying data, and more. Table 7.1
provides a high-level outline of these packages; for complete information see the
API documentation.

If you haven’t worked with cursors before, or aren’t familiar with the term, don’t
worry; they’re simple. Cursor objects provide a way to traverse database result sets. In
essence, cursorsiterate over result sets and provide access to data one row ata time. We’ll
see how this works as we get into code examples shortly. In addition, we’ll touch on all
of the other key classes involved in creating and using a SQLite database on Android.

That said, we don’t intend to cover all of the classes in the Android data APIs in this
chapter, nor do we plan to get into basic SQL details. We’ll focus on the big picture
and the main Android classes. We’ll talk more about the APIs as we progress, but let’s
start with a grander scheme, an overall pattern that will serve as our data access layer.

http://www.sqlite.org/

7.3.2

Working with a database 243

Table 7.1 An overview of the Android database related packages and some of the main classes

Package Class Description
android.database Cursor/ Cursor defines random
AbstractCursor read/write access to a result set.

AbstractCursor provides a base
implementation.

DatabaseUtils Many utility methods for creating
properly escaped query strings, work-
ing with Cursors, and running com-
mon but simple queries.

android.database.sglite | SQLiteCursor A Cursor implementation that
deals with results from a
SQLiteDatabase.
SQLiteDatabase A wrapper that exposes SQLite data-

base methods, including opening and
closing connections, and performing
queries and statements.

SQLiteOpenHelper A helper class designed to create and
update databases and manage
schema versions.

SQLiteQueryBuilder | A helper class for creating SQLite
queries.

SQLiteStatement A SQLite type of precompiled SQL
statement.

Designing a data access layer

In the next few sections, we’re going to define the tables we need and create a data-
base. From there, we’ll use SQL to insert, update, select, and delete data. But before
we get to that, we’ll take a step back and think about architecture and design.

We don’t want to get carried away with architecture. We aren’t planning a space
shuttle mission; we’re building a small embedded data access layer. Yet we still want to
encapsulate all the details so that our application components don’t have to speak
SQL themselves, and so they don’t have to know anything about the persistence mech-
anism. We’ll want simple plain Java objects (which we’ll call model objects), and a simple
interface for saving and retrieving those objects. If you’ve used the Data Access Object
(DAO) pattern before, this should sound familiar. We’re going to create DAOs for our
model objects, and we’re also going to create a data manager layer to wrap around
those DAOs and nicely corral all the data-handling details in one place.

We’ll get our hands dirty with Android SQL statements too, but we’ll do so inside
our DAOs so that they’re focused on what they need to do. Ultimately, we’ll have a lay-
ered architecture as depicted in figure 7.8.

244 CHAPTER 7 Storing data locally

Data Manager layer

DAO layer

Table objects

i

SQLiteDatabase
SQLiteOpenHelper Figure 7.8 A diagram of the organization of
the key parts of our data access approach,
from SQLiteOpenHelper through other
_ J

components, and to the database itself

SERVER-SIDE-ISH, BUT NOT TOO SERVER-SIDE-ISH Scott Adams once had Dilbert’s
infamous boss ask him to make a web site “more webbish, but not too webbish”
(http://search.dilbert.com/comic/Webbish). In the next few sections we’ll
outline a set of data access principles we find helpful on Android because they
nicely separate responsibilities and keep code focused. But we need to keep in
mind that this isn’t the only way to use a database on Android. We also don’t
want to take the server-side patterns and analogues too far—we need to keep
in mind that this isn’t the server side; it’s a small embedded database.

We’ll start by designing our tables, then the model objects to go with those tables, and
then the DAOs. Finally, we’ll wrap the DAOs from within a data manager interface
implementation that will be in charge of saving and retrieving data.

Creating a database and model objects

Before an Android application can start using a database, it has to create one. And
before we can create a database, we need to have an idea of what we want to store, and
what the relationships are. To do this we’ll need table definitions and model objects
our main application code can use first. Then, we’ll create several helper classes to
define the necessary SQL statements.

PROBLEM

You want to create a database and model objects to store and retrieve, and you’d like to
keep the definition of the tables separate from each other and from the main database
creation code. This is useful because it helps keep each class focused on a particular
function, which can make database-related code easier to understand and maintain.

http://search.dilbert.com/comic/Webbish

TECHNIQUE 34 Creating a database and model objects 245

SOLUTION
Android provides a lot of convenience when it comes to creating and using databases,
but a few extra classes of our own can help even more. Here, we’ll start by diagram-
ming the tables we’ll want our database to have. Then, we’ll create model objects we
can use to save and store data in those tables. From there, we’ll create a separate class
for each table that will hold the code needed to create and update our database
schema, and we’ll use the classes from an implementation of a SQLiteOpenHelper (a
base class Android provides for creating and updating databases, and accessing data).
After we have our tables defined, our model objects built, and our database ready
to be created with a SQLiteOpenHelper, we’ll define our DAOs and data manager
interface. We’ll start by defining the tables we’ll need.

Tables

To lay out our required tables we’ll use an entity relationship diagram (ERD). For MyMov-
iesDatabase we’ll have only three tables, so it’s a small diagram, but it still helps to visu-
alize it, as seen in figure 7.9.

The three tables we’ll use are Movie, MovieCategory, and Category. The Movie and
Category tables have a unique ID named _id that’s significant for Android. If you want
to share your data across different Android applications, like the builtin Contacts
database does, you’ll need to create a ContentProvider. We’ll learn about Content-
Providers in the next chapter. For now, we need to keep in mind that if we want to
use a ContentProvider to expose our tables later, they must have an _id column,
which is the primary key (the unique ID for the table).

WHEN TO USE A CONTENTPROVIDER You can also use a ContentProvider
within your application to access your local database. This raises the question:
when should you use a direct local database, and when you should go the
extra mile and create a ContentProvider? Like many nuanced questions,
there’s no correct answer. ContentProviders have some nice features, but
they’re more complicated than direct local database access. In general, if you
need to share your data with other applications you must create a Content-
Provider. And, if you don’t need to share data, it’s usually simpler to use a
database directly.

Movie
+_id Integer
°homepage Text
*name Text
°rating Integer
otagline Text [Moviecategory | Category

1 1
°thumbUrl Text tmovie_id Integer - ¢+ id Integer
°imageUrl Text ‘category id Integer *name Text
°Trailer Text

ourl Text
oyear Integer

Figure 7.9 The ERD diagram for the MyMoviesDatabase database tables

246

CHAPTER 7 Storing data locally

The Movie table also has other attributes you might expect: homepage, name, rating,
and so on. We’ll use all of these attributes to sort and display movies. The Category
table is even simpler than the movie table: it’s id and name. We’ll display the movies’
categories when we show the detail information, and we could use it for sorting and so
on. The MovieCategory table is the odd man out here. It’s not used for direct display
purposes; rather it’s a linking table. It allows us to express the many-to-many relation-
ship we need—one movie can be in many categories, and one category can represent
many movies (and we don’t need to repeat the category names all over the place; our
data is normalized).

Model objects

Along with tables, we’ll create JavaBean-style model objects to represent our data enti-
ties. These will be the classes our activities and other code will use when saving,
retrieving, and displaying movies. These won’t match our tables exactly, but they’ll be
pretty close. We’ll include objects for both Movie and Category. Our Movie model
object is shown in the next listing.

Listing 7.8 The Movie JavaBean style model object

public class Movie extends ModelBase {

private String providerId;
private String name;
private int year;

private double rating;
private String url;
private String homepage;
private String trailer;
private String tagline;
private String thumbUrl;
private String imageUrl;
private Set<Categorys> categories;

// . . . constructor, getters/setters, equals/hashCode omitted for brevity

}

The difference between our database tables and our model objects is the relationship
between movies and categories. As we see in listing 7.8, the Movie class has a collec-
tion of Category as a member (and there’s no MovieCategory class). Our tables on
the other hand were separate. We’ll handle this difference between the way our data-
base and Java represent the relationship inside our SQL statements when we come to
that. Category is similar to Movie; it’s a bean, but it has only one property, String
name. The ModelBase class, which both Movie and Category extend, contains only
a long id.

SQLiteOpenHelper

So now that we know what data we want to store, we need to somehow tell Android to
build these tables when our application starts. This is done by extending SQLiteOpen-
Helper, as shown in the next listing.

TECHNIQUE 34 Creating a database and model objects 247

Listing 7.9 The SQLiteOpenHelper used for creating and updating databases

public class OpenHelper extends SQLiteOpenHelper { Extend
private Context context; SQtheOpenHeIper
OpenHelper (final Context context) {

super (context, DataConstants.DATABASE NAME, null,

DataManager . DATABASE_VERSION) ; Provide db name
this.context = context; and version
1
@Override
public void onOpen(final SQLiteDatabase db) { onOpen available
super.onOpen (db) ; if needed
1
@Override Override onCreate
public void onCreate(final SQLiteDatabase db) { to create tables
CategoryTable.onCreate(db) ; <+
CategoryDao categoryDao = new CategoryDao (db) ;
String[] categories = Populate
context.getResources () .getStringArray (Category
R.array.tmdb_categories) ; with initial
for (String cat : categories) { data
categoryDao.save (new Category (0, cat));
}
Create tables with (5]
MovieTable.onCreate (db) ; Table objects <—
MovieCategoryTable.onCreate (db) ; <+
}
@Override .
public void onUpgrade (final SQLiteDatabase db, Override
final int oldVersion, final int newVersion) ({ onUpgrade
MovieCategoryTable. onUpgrade (db, oldVersion, newVersion) ; <
MovieTable.onUpgrade (db, oldVersion, newVersion) ; <G
CategoryTable. onUpgrade (db, oldVersion, newVersion) ; P

}

SQLiteOpenHelper is provided by Android for setting up databases and opening con-
nections. To use a local database, we start by extending it @. Within its constructor
we then provide a database name and version @, and we call through to the super
constructor.

Then we can implement the lifecycle-style methods OpenHelper provides as
needed. These include onopen € (which is optional to override, and we show for
completeness, though we aren’t doing anything special with it), onCreate @, and
onUpgrade @. The framework will call these methods as needed, returning a connec-
tion on normal use, creating the database when it doesn’t already exist, and upgrad-
ing it when the version number is higher than the current one.

Within onCreate we come to a pattern that we find helpful when working with
Android local databases: using table-specific classes for each table we’ll work with.

248

CHAPTER 7 Storing data locally

We’ll see what these classes look like in the next few listings, but the idea here is to
keep the responsibilities for defining, creating, and upgrading each table separate
from the OpenHelper. This isn’t required, but it prevents OpenHelper from becoming
a large complicated class, and allows us to easily reuse the tables for other projects if
we need to. Each table object has a static method for onCreate and onUpgrade (5]
that’s called from OpenHelper’s methods.

Priming a database with predefined data

Along with setting up the database in listing 7.9, inside onCreate we also read a
resource file, R.array.tmdb_categories, and use the CategoryDao object to store that
data in our database @. We do this so our database will have some initial categories as
soon as it’s created. Some databases need this type of seed data. Typically, you may use
this approach for things such as countries, states, roles, categories, and so on. For
small amounts of data this works fine. If you need to include larger amounts of already
defined data with your application, then this isn’t a good idea because it’ll be too slow
(individual insert statements for each data item). Instead, for large volumes of data,
you can create your SQLite db file ahead of time (each SQLite database is stored as a
single file) and ship it as part of the assets included with your application. You can
then copy that file over to the database file your application needs (be sure to do this
only once!). At runtime each application database is stored in a file at the /data/
data/<packagename>/databases/ internal storage location.

SQLiteDatabase

Once we have a SQLiteOpenHelper, we can use it from anywhere in our application to
create a SQLiteDatabase object. The SQLiteDatabase object is the keystone of
Android SQLite database operations. This is where we’ll create connections and per-
form data operations such as select, update, insert, and delete.

We’ll see how this is done when we discuss the DataManager interface and imple-
mentation object our application will use to wrap up all of our data operations meth-
ods in technique 35, but for now here’s an example of using our OpenHelper to obtain
a SQLiteDatabase reference:

SQLiteOpenHelper openHelper = new OpenHelper (this.context) ;

SQLiteDatabase db = openHelper.getWritableDatabase() ;

The getWritableDatabase method of SQLiteOpenHelper will call onCreate the first
time it’s called, and thereafter will call onOpen. So this is how the helper methods get
kicked off and the chain reaction is started. You can call this method as many times as
you want (the instance is cached), but you should make sure to call close when you’'re
done using a database instance.

Table classes

Having the openHelper implementation gets us rolling, but because it hands off to the
table classes, we still haven’t seen the real database dirty work. Here, we’ll step into the
details a bit more, starting with MovieTable in listing 7.10.

TECHNIQUE 34 Creating a database and model objects 249

Listing 7.10 The MovieTable class with static methods and inner class MovieColumns

public final class MovieTable { Define table
public static final String TABLE _NAME = "movie"; hame
public static class MovieColumns implements BaseColumns { Include
public static final String HOMEPAGE = "homepage"; columns
public static final String NAME = "movie name"; class
public static final String RATING = "rating";
public static final String TAGLINE = "tagline";
public static final String THUMB_URL = "thumb_url";
public static final String IMAGE_URL = "image url";
public static final String TRAILER = "trailer";
public static final String URL = "url";
public static final String YEAR = "year";
} Include
public static void onCreate (SQLiteDatabase db) { onCreate

StringBuilder sb = new StringBuilder() ;
sb.append ("CREATE TABLE " + MovieTable.TABLE NAME + " (");

sb.append (BaseColumns._ID + " INTEGER PRIMARY KEY, "); Use SQL
sb.append (MovieColumns . HOMEPAGE + " TEXT, "); CREATE
// movie names aren't unique, TABLE

// but for simplification we constrain

sb.append (MovieColumns.NAME + " TEXT UNIQUE NOT NULL, ");
sb.append (MovieColumns.RATING + " INTEGER, ");

sb.append (MovieColumns . TAGLINE + " TEXT, ");

sb.append (MovieColumns. THUMB_URL + " TEXT, ");

sb.append (MovieColumns.IMAGE _URL + " TEXT, ");

sb.append (MovieColumns . TRAILER + " TEXT, ");

sb.append (MovieColumns.URL + " TEXT, ");

sb.append (MovieColumns.YEAR + " INTEGER") ;

sb.append (") ;") ;

db.execSQL(sb.toString()) ;

}

public static void onUpgrade (SQLiteDatabase db,
int oldversion,
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS "
+ MovieTable.TABLE_NAME) ; Use SQL DROP TABLE
MovieTable.onCreate (db) ; and re-create

Include
onUpgrade

}

The first thing we do in each of our table classes is define a constant for the table
name @. Then we include a nested inner class that implements BaseColumns and
defines the column names with more constants @. BaseColumns is provided by
Android, and it defines the id column we mentioned earlier. Once the names are
out of the way, we include static onCreate € and onUpgrade @ methods, where we
use SQL commands to CREATE and/or update our table 0. Note that our current
onUpgrade implementation DROPs the table and recreates it @. This probably won’t be
what you want in production applications (you’ll need to do more, such as extract the
current data first, update the schema, and then reinsert the data as necessary).

250

CHAPTER 7 Storing data locally

The table CREATE command is fairly understandable, but remember it’s not
intended for any database—it’s SQLite-specific. Within it, we’re defining the data type.
such as TEXT and INTEGER, for each of our columns, and we’ve used a few constraints
such as UNIQUE and NOT NULL. The constraints are self-explanatory, but requiring the
name to be unique is an oversimplification. Obviously, not all movies have unique
names. Our database could support multiple movies with the same name, using differ-
ent primary key IDs, but that would complicate our example in several areas. Because
of this we’ve chosen to support only unique names to keep it simple.

SQLITE “DYNAMIC” DATA TYPES One peculiarity of SQLite versus many other
database systems is that it uses dynamic data types. That means you can declare
a column of type TEXT and still put a number into it. And, you can put text into
an INTEGER column as well. This is because SQLite uses storage classes that have
affinity to particular types, but it converts any data it’s handed as best it can.
This can be confusing if you’re not used to it, and it can affect the way sort
order and operators work. For complete details, see the SQLite documentation
on data types: http://www.sqlite.org/datatype3.html.

The other table classes follow the exact same pattern. CategoryTable is simple; it has
only an ID and a unique category name (so we won’t bother including it here). Mov-
ieCategoryTable is more complicated in that it includes foreign key references. It’s
shown in the next listing.

Listing 7.11 The MovieCategory class showing the declaration of foreign key references

public final class MovieCategoryTable ({

9.
public static final String TABLE_NAME = "movie category"; 3:;:ment
public static class MovieCategoryColumns { BaseColumns

public static final String MOVIE _ID = "movie id";
public static final String CATEGORY_ID = "category id";

}

public static void onCreate (SQLiteDatabase db)
StringBuilder sb = new StringBuilder() ;

sb.append ("CREATE TABLE " + MovieCategoryTable.TABLE NAME + " (");
sb.append (MovieCategoryColumns.MOVIE_ID + " INTEGER NOT NULL, ");
sb.append (MovieCategoryColumns.CATEGORY_ID + " INTEGER NOT NULL, ");
sb.append ("FOREIGN KEY (" + MovieCategoryColumns.MOVIE ID + "
REFERENCES " + MovieTable.TABLE_NAME + " ("
+ BaseColumns._ID + "), ");
sb.append ("FOREIGN KEY (" + Define foreign
MovieCategoryColumns .CATEGORY_ID + ") key references
REFERENCES " + CategoryTable.TABLE NAME + " ("
+ BaseColumns._ID + ") , ");

sb.append ("PRIMARY KEY (" + MovieCategoryColumns.MOVIE_ID + ", "
+ MovieCategoryColumns.CATEGORY_ID + ")"); Define compound
sb.append (") ;") ; primary key

db.execSQL (sb.toString()) ;

http://www.sqlite.org/datatype3.html

TECHNIQUE 34 Creating a database and model objects 251

}

public static void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS " + MovieCategoryTable.TABLE_ NAME) ;
MovieCategoryTable.onCreate (db) ;

}

The MovieCategoryTable class starts off the same way as our other table classes: it
declares a constant for the table name, and then includes a static nested class to repre-
sent the columns (which are also constants). The difference this time is that the col-
umns class doesn’t implement BaseColumns @. This is because this table won’t use the
_id key, and won’t ever need to be exposed via a ContentProvider (it’s an internal
mapping table; it doesn’t represent a data entity on its own).

The next significance to the MovieCategoryTable is that it contains FOREIGN_KEY
mappings with REFERENCES to other tables @. In this case the mapping table has
movie ID and category ID columns that reference the Movie and Category tables. Why
would we do this? Why do we want foreign keys? For referential integrity. These keys
will make sure our table relationships remain meaningful. We won’t be able to delete
aMovie, for instance, and leave its Category reference unattached €. We could make
do without these, and have our own checks, but it’s easier to use what the database
offers and fail fast if a condition we don’t expect is encountered.

SQLite foreign key support

It should be noted here that not all versions of SQLite enforce foreign key constraints.
Specifically Android 1.5, 1.6, and 2.1 include SQLite 3.5.9, which can parse foreign
key constraint statements, but doesn’t enforce them. Newer Android versions, 2.2
and 2.3, both support SQLite version 3.6.22, which does enforce foreign keys. Most
of the time it doesn’t hurt to include foreign key statements in any Android version;
remember that they aren’t always enforced. Often, such lack of enforcement won’t
hurt you, if you're not relying on it for conditional processing or cascading deletes,
and so on. If you need to guarantee enforcement, you can query the state of the for-
eign key support when the database is created, and fall back to triggers.

DISCUSSION
Overall we now have an idea of what we want to store and what the relationships are.
We have model objects for working with the data in our application’s Java code and
table objects to keep the details for each table separate from one another. We also
have a SQLiteOpenHelper implementation that can be used to create and update our
database, and to provide references to the SQLiteDatabase objects we’ll later use to
store and retrieve data.

Most of this is standard fare. Model objects are a common way to represent data
(and though ours are intentionally anemic, they can also contain operations), and
Android requires you to include a SQLiteOpenHelper. The only thing that isn’t

252

CHAPTER 7 Storing data locally

standard or required here is our use of separate table objects. These are our own cre-
ation, but we think they’re a nice way to keep the code clean and focused.

With our OpenHelper and our table classes, we now have a database that’s ready for
action. What’s next? We need a way to store and retrieve data, and for that we’ll turn
to the DataManager helper class and DAOs we’ve mentioned a few times.

Creating DAOs and a data manager

Android gives you many ways to access SQL data. As we’ll see, the SQLiteDatabase
object provides both low-level methods, such as execSql (String sql), various higher-
level query and insert methods, access to SQLiteStatement for compiled SQL state-
ments, methods to set transaction boundaries, and more. Still, we don’t want to litter
our main application code with low-level database-related operations. In fact, if we can
help it, we don’t even want our main application code to know the persistence mecha-
nism is a database.

PROBLEM
You want to create a simple APIyour application can use to store and retrieve data, rather
than include SQL statements and other data operations next to application logic.

SOLUTION

By creating DAOs to hide SQL details for each table, and creating a larger data man-
ager layer that application components can use to access data, you can separate main
application code from persistence details, avoid duplication, and keep code more
focused. To see how this works we’re going to start with a DAO for each table, and
then we’ll define our data manager layer.

DATA ACCESS OBJECTS
Many developers are probably familiar with the DAO pattern. DAOs are used to repre-
sent various levels of interaction with tables and the database, and definitions of the
term vary. Here we’ll use one DAO per table, and we’ll keep each DAO focused on only
its table (not the relationships between the tables). This keeps the level of abstraction
of the DAO well defined and provides an interface on top of the persistence mecha-
nism for data operations.

The DAO interface that we’ll use for the MyMoviesDatabase application is shown in
the next listing.

Listing 7.12 The DAO interface that defines common data operations

public interface Dao<T>
long save (T type) ;
void update (T type) ;
void delete (T type) ;
T get (long id) ;
List<T> getAll() ;

}

Our DAO interface is simple and fairly typical. The only notable thing about it is that
it’s parameterized. The type T represents the data model class it’ll operate on (which

TECHNIQUE 35 Creating DAOs and a data manager 253

will end up being our Movie and Category classes we noted earlier). With this inter-
face and the related implementations, we’ll be able to save and update our model
objects with ease—hiding all the details inside the DAOs.

One thing to note here is that DAOs aren’t always the right approach. DAOs are
somewhat coarse-grained and can lead to more data being returned than is required
in every situation. For example, if we needed to populate a selection of choices with
only the name of each movie in our system, we’d have to return all the data (rather
than the names). We can mitigate this by extending our interface in DAOs that need
other data access methods, but the point is that DAOs aren’t perfect. Also, DAOs do
create a few more classes and a little more code, but we think the clean separation and
ease of use they provide are often (not always) worth this overhead.

To explore our DAO implementations, we’ll look at the most involved one we have
for MyMoviesDatabase, the MovieDao. This DAO, the first part of which is seen in the
following listing, touches on a lot of the different types of SQL usage an Android appli-
cation might need.

Listing 7.13 The first portion of the MovieDao class—saving a new movie

public class MovieDao implements Dao<Movies { Implement DAO

private static final String INSERT = interface for Movie

"insert into " + MovieTable.TABLE_NAME

+ "(" + MovieColumns.HOMEPAGE + ", " + MovieColumns.NAME + ", "
+ MovieColumns.RATING + ", " + MovieColumns.TAGLINE + ", "
+ MovieColumns.THUMB_URL + ", "+ MovieColumns.IMAGE URL + ", "
+ MovieColumns.TRAILER + ", " + MovieColumns.URL + ", "
+ MovieColumns.YEAR + ")

values (?, 2, 2, ?, ?, 2, ?, ?, 2)"; String with binding

private SQLiteDatabase db; placeholders

private SQLiteStatement insertStatement; Pass SQLiteDatabase

public MovieDao (SQLiteDatabase db) { in constructor

this.db = db;
insertStatement = db.compileStatement (MovieDao.INSERT) ;

) Compile
insert
@override statement
public long save (Movie entity) {
insertStatement.clearBindings () ; Perform
insertStatement .bindString(l, entity.getHomepage()) ; insert in
insertStatement.bindString entity.getName()) ; save
insertStatement.bindDouble

(2

(3, entity.getRating()) ; method
insertStatement .bindString (4, entity.getTagline()) ;
insertStatement.bindString (5, entity.getThumbUrl ()) ;
insertStatement.bindString (6, entity.getImageUrl())
insertStatement .bindString (7, entity.getTrailer())
insertStatement.bindString (8, entity.getUrl());
insertStatement.bindLong (9, entity.getYear()) ;
return insertStatement.executelnsert () ;

i

i

254

CHAPTER 7 Storing data locally

To start off, MovieDAO implements our DAO interface @. Then, it includes a SQL
insert String constant that explicitly lists each column where we’ll store data and
includes question marks for placeholders for the values @®. Next, in our constructor,
we pass in the SQLiteDatabase object we’ll use to connect to the database and per-
form operations ©, and we’ll compile our insert String into a SQLiteStatement 0.

Using a compiled statement, as opposed to a raw SQL insert, will be faster because
the framework can precompute and reuse the execution plan. But you can only use
compiled statements for tasks that don’t return any rows or that return only one row
and column (a single long or String). Because they offer good performance, yet
can’t return multiple rows, compiled statements are a perfect fit for insert operations.

After the constructor, we see the save method, where our insertStatement is put
to work @. First we clear any previous bindings, and then we bind each of the place-
holders in the statement with the correct value from our model object. Once the bind-
ings are set, we call executeInsert and we pass along the ID it returns (which is the ID
of the row in the Movie table for the inserted data). That’s it for insert; when one table
is involved it’s simple.

The next part of our MovieDAO class is the update method in the next listing.

Listing 7.14 The second portion of the MovieDao class—updating a movie

public void update (Movie entity) { Use
final ContentValues values = new ContentValues() ; ContentValues
values.put (MovieColumns . HOMEPAGE, entity.getHomepage()) ;
values.put (MovieColumns.NAME, entity.getName()) ;
values.put (MovieColumns.RATING, entity.getRating()) ;
values.put (MovieColumns.TAGLINE, entity.getTagline()) ;
values.put (MovieColumns . THUMB_URL, entity.getThumbUrl ()) ;
values.put (MovieColumns.IMAGE_URL, entity.getImageUrl()) ;
values.put (MovieColumns.TRAILER, entity.getTrailer ()
values.put (MovieColumns.URL, entity.getUrl());
values.put (MovieColumns.YEAR, entity.getYear());
db.update (MovieTable.TABLE_NAME, values,
BaseColumns._ID + " = ?", new Stringl[] { Invoke

String.valueOf (entity.getId()) }); update

7

)
1
1
)

}

For an update operation, we first set up a ContentValues object that saves key-value
pairs of the column names and data we want to update @. contentvalues is a class
that we’ll see again when we deal with creating content providers in the next chapter.
For now, think of it as a map for data you need to update. Once we’re ready, we use
the update method on our SQLiteDatabase object, passing it a table name, values, a
where clause, and where clause arguments 0.

The update is standard Android stuff, much like the delete method, shown in the
next listing.

Listing 7.15 The third portion of the MovieDao class—deleting a movie

@Override
public void delete (Movie entity) ({
if (entity.getId() > 0) {

TECHNIQUE 35 Creating DAOs and a data manager 255

db.delete (MovieTable.TABLE NAME,
BaseColumns._ID + " = ?", new Stringl] Invoke
{ string.valueOf(entity.getId()) }); delete

}

The delete method works much the same way as the update method, except it
doesn’t involve values. We pass it a table name, where clause, and where clause argu-
ments @. After the delete method, next up are the get and getAll methods, which
query the Movie table and return Movie objects using a Cursor.

Listing 7.16 The fourth portion of the MovieDao class—getting movies

@Override
public Movie get(long id) ({
Movie movie = null;

Cursor ¢ =
db.query (MovieTable. TABLE NAME, Query method
new Stringl[] returns Cursor

BaseColumns._ID, MovieColumns.HOMEPAGE,

MovieColumns.NAME, MovieColumns.RATING, MovieColumns.TAGLINE,
MovieColumns . THUMB_URL, MovieColumns.IMAGE_URL,
MovieColumns.TRAILER, MovieColumns.URL, MovieColumns.YEAR },

BaseColumns._ID + " = ?", new String[] { String.valueOf(id) },
null, null, null, "1");
if (c.moveToFirst())
movie = this.buildMovieFromCursor (c) ; Create Move
} Movie to first
if (!lc.isClosed()) from position
c.close () ; Close Cursor
} Cursor

return movie;

}

@Override
public List<Movie> getAll() {
List<Movie> list = new ArrayList<Movies>();
Cursor c =
db.query (MovieTable. TABLE_NAME, new Stringl[] ({
BaseColumns._ID, MovieColumns.HOMEPAGE,
MovieColumns.NAME, MovieColumns.RATING, MovieColumns.TAGLINE,
MovieColumns . THUMB_URL,MovieColumns . IMAGE_URL,
MovieColumns.TRAILER, MovieColumns.URL, MovieColumns.YEAR },
null, null, null, null, MovieColumns.NAME, null) ;

if (c.moveToFirst()) {
do { Use do/while loop
Movie movie = this.buildMovieFromCursor (c) ; for multiple rows
if (movie != null)

list.add(movie) ;

}

} while (c.moveToNext()) ; Move to

next row

1
if (lc.isClosed()) {
c.close();

256 CHAPTER 7 Storing data locally

return list;

} Include

private Movie buildMovieFromCursor (Cursor c) { buildMovieFromCursor

Movie movie = null;
if (¢ != null) {
movie = new Movie() ;
movie.setId(c.getLong(0)); Get methods
movie.setHomepage (c.getString (1)) ; for typed data
movie.setName (c.getString(2)) ;
movie.setRating(c.getInt(3));
movie.setTagline (c.getString (4
movie.setThumbUrl (c.getString
(
7

)i
movie.setImageUrl (c.getString) ;
movie.setTrailer (c.getString(
movie.setUrl (c.getString(8)) ;

movie.setYear (c.getInt(9)) ;

))
5)
6)
))

7

}

return movie;
}
The get methods are more involved than the last few we’ve seen. The first thing of
note is that the query methods return a Cursor @. If you've done Java JDBC work,
then you’ve probably used a ResultSet object. A ResultSet is a cursor, wrapped with
some additional functionality (and some of the methods will be familiar for Java devel-
opers). Cursors are part of most databases, SQLite included. Because we aren’t using
JDBC with Android, we don’t have ResultSet.

WHY NOT JDBC? There are pros and cons to JDBC. If Android supported JDBC
it would be easier to have portable code or reuse code that you may already
have with SQLite. But Android intentionally doesn’t support JDBC, presum-
ably because of the overhead it adds and the fact that there’s already a simple
to use API in place via the android.database.sqglite package. If you promise
not to mention it to anyone we’ll let you in on a secret though: Android does
include a SQLite JDBC driver, and it does work, but it’s undocumented and
unsupported (because it may not be available on every device). Even though
it’s there, and we mention it because you may stumble across it, we strongly
suggest that you avoid any unsupported part of the Android platform.

The query methods themselves (there are several overloaded variants on the SQLite-
Database object) take in the table name, selection clause, and selection clause argu-
ments. They also offer several more options, such as order by, group by, having, and
limit. These SQL select constructs allow you to tailor your query as needed.
Ultimately, after each query method is parsed, a select statement is issued, and a Cur-
sor is returned.

For our get method, we use query @, and then if the Cursor it returns has a first
result row @, we call the buildMovieFromCursor method @ to create a Movie from
the row’s data €. Finally, we close the Cursor object when we’re done 0. Closing the
cursor is essential. If we don’t close it, we’ll leak it, and potentially hang on to the call-
ing component and cause all sorts of havoc.

TECHNIQUE 35 Creating DAOs and a data manager 257

Along with the get method, we also have a getAll method. The difference with
getall is that the select query it uses isn’t constrained by an ID, and so it’ll return all
the movie rows. We handle these multiple rows with a do-while loop @ using the cur-
sor’s moveToNext method @. Inside each loop iteration we again call the buildMovie-
FromCursor method. Within this method we process the row by calling the necessary
typed get methods to retrieve each field of data.

Now that we have save, update, delete, get, and getAll methods @ for our DAO,
we’re nearly done. The only thing we have left is an addition to the interface that
we’ve included to find a movie by its name.

Listing 7.17 The final portion of the MovieDao class—finding a movie by name

public Movie find(String name) {
long movieId = 0L;

String sgl = "select _id from " + MovieTable.TABLE_NAME

+ " where upper(“ + MovieColumns.NAME + “) = ? limit 1";
Cursor c¢ = db.rawQuery (sqgl,
new Stringl] Use rawQuery
{ name.toUpperCase() }); Use upper to find Movie
if (c.moveToFirst()) ({ functions

movieId = c.getLong(0) ;

}

if (lc.isClosed()) {

c.close(); . L.
} Call existing
return this.get (movieId) ; get"mthOd

}

The find method, which is used to search for movies already saved in the database,
works much the same as our other data retrieval methods, except it uses a rawQuery (1}
We don’t have to use a raw query here, but we wanted to demonstrate that this approach
is available, and it’s an easy way to include the 1imit statement in our query and use a
SQLite function.

In this case, we’re using the SQLite upper function to compare the database field,
converted to all uppercase characters @, to our String (also converted to upper-
case). This will make sure our comparison matches regardless of the case, and it shows
that SQLite does support functions, like many other databases (for a complete list, see
the documentation).

The last thing of note with the find method is that it makes two trips to the data-
base. Our first query gets the movie ID we’re interested in, and then another query is
issued when we call our own previously defined get method @. This isn’t the most
efficient way to retrieve data, but we accept that. This is an easy to understand and
maintain approach, and for such a small amount of data it’s a reasonable trade-off. If
we notice a performance issue later we can always make this code do its work with a
single query, but there’s no need to optimize it before we have a problem.

The MovieDAO is our most involved DAO class. It inserts, updates, deletes, and
selects data in multiple ways. Our other DAO, CategoryDAO does much the same thing

258

CHAPTER 7 Storing data locally

for the Category table. So are we ready to roll? Should we start using this DAO from
our activities and other components? Well, not quite. First, as we’ve discussed, we’ll
create one more layer to wrap the DAOs in an easy to use data manager.

Creating a data manager

Our DAO objects represent the individual data entities our application needs, Movie
and Category. Yet they intentionally don’t worry about the relationships between the
different tables involved. For example, if we want to save a new Movie, the model
object comes in with a List<Category>, but the MovieDAO doesn’t touch that (its only
job is to handle the Movie table).

Because our DAOs are each unaware of any table other than their own, we’re also
going to create a DataManager interface, an implementation class that will wrap the
multiple DAOs and take care of the remaining duties from one place. Such duties will
include storing data in multiple tables and dealing with transactions. Our application
components will ultimately use this class to save and retrieve data. This technique,
shown in the next listing, will keep all of the SQL and logic out of our application com-
ponents and views.

Listing 7.18 The DataManager interface defines all possible operations

public interface DataManager {

public Movie getMovie (long movieId) ;
public List<Movie> getMovieHeaders() ;
public Movie findMovie (String name) ;
public long saveMovie (Movie movie) ;
public boolean deleteMovie (long movieId) ;

public Category getCategory(long categoryId) ;
public List<Category> getAllCategories() ;
public Category findCategory (String name) ;
public long saveCategory (Category category) ;
public void deleteCategory (Category category) ;

}
Our data manager interface is pretty basic. It has a set of methods relating to common
data operations such as get, save, and delete for each of our main model objects—
Movie and Category. Our application components will use references to this interface
to perform data operations.

The more interesting parts of this layer are within the database-backed implemen-
tation of this class, which uses our DAOs. This first portion of this is shown in the next
listing.

Listing 7.19 The first part of DataManagerImplimplements the DataManager interface

public class DataManagerImpl implements DataManager { Define

private static final int DATABASE VERSION = 1; DataManagerimpl

private Context context;

Specify database
private SQLiteDatabase db; version

TECHNIQUE 35 Creating DAOs and a data manager 259

private CategoryDao categoryDao;
private MovieDao movieDao;

9 Include needed

private MovieCategoryDao movieCategoryDao; DAOs
public DataManager (Context context) {
this.context = context;
SQLiteOpenHelper openHelper = Construct
new OpenHelper (this.context) ; OpenHelper
db = openHelper.getWritableDatabase () ;
Get
categoryDao = new CategoryDao (db) ; SQLiteDatabase
movieDao = new MovieDao (db) ; reference

movieCategoryDao = new MovieCategoryDao (db) ;

// . . . remainder of class in next listing

The DataManagerImpl isn’t extending or building on any Android support, it’s our
own invention that implements our DataManager interface @ . Within it, we include a
constant to define the current database version @ and member variables that refer-
ence each of our DAOs €. Also, inside its constructor we instantiate the SQLiteOpen-
Helper class we built earlier @, and use it to connect to our database @.

Once the member variables and initial wiring are out of the way, we then move on
to DAO wrapper methods.

Listing 7.20 The rest of DataManagerImpl, with data methods to wrap the DAOs

public Movie getMovie(long movieId) { Wrap DAOs
Movie movie = movieDao.get (movieId) ; to get Movie
if (movie != null) {

movie.getCategories () .addAll (
movieCategoryDao.getCategories (movie.getId())) ;
}
return movie;
} Get Movie

public List<Movie> getMovieHeaders () { headers

return movieDao.getAll () ;

}

public Movie findMovie (String name) {
Movie movie = movieDao.find (name) ;
if (movie != null) {
movie.getCategories () .addAll (
movieCategoryDao.getCategories (movie.getId())) ;

}

return movie;

} Wrap for

public long saveMovie (Movie movie) { saveMovie

long movieId = 0L;
Begin

try { .
transaction

db.beginTransaction() ;

260 CHAPTER 7 Storing data locally

movieId = movieDao.save (movie) ; Save

if (movie.getCategories().size() > 0) ({ movie

for (Category c : movie.getCategories()) ({
long catId = 0L;
Category dbCat = categoryDao.find(c.getName ()) ;
if (dbCat == null) {
catId = categoryDao.save(c) ;
} else {
catId = dbCat.getId() ;
}

MovieCategoryKey mcKey =
new MovieCategoryKey (movieId, catId);

if (!movieCategoryDao.exists (mcKey)) { Save (.:at.egory
movieCategoryDao.save (mcKey) ; association

Save new
categories

} Set transaction

db.setTransactionSuccessful () ; successful status
} catch (SQLException e) {

Log.e (Constants.LOG_TAG,

"Error saving movie (transaction rolled back)", e);
movieId = 0OL;
} finally { ﬁ End
db.endTransaction () ; transaction

}

return movieId;

} Wrap for
public boolean deleteMovie (long movieId) { delete
boolean result = false;
try {
db.beginTransaction() ;
Movie movie = getMovie (movieId) ;
if (movie != null) {
for (Category c : movie.getCategories()) ({
movieCategoryDao.delete (
new MovieCategoryKey (movie.getId (), c.getId()));

1
movieDao.delete (movie) ;
}
db.setTransactionSuccessful () ;
result = true;
} catch (SQLException e) {
Log.e (Constants.LOG_TAG,
"Error deleting movie (transaction rolled back)", e);
} finally {
db.endTransaction() ;
1

return result;

}

public Category getCategory(long categoryId) {
return categoryDao.get (categoryId) ;
}

TECHNIQUE 35 Creating DAOs and a data manager 261

public List<Categorys> getAllCategories() ({
return categoryDao.getAll () ;
}

public Category findCategory (String name) {
return categoryDao.find (name) ;
}

public long saveCategory (Category category) ({
return categoryDao.save (category) ;
}

public void deleteCategory (Category category) {
categoryDao.delete (category) ;
}

// . . . OpenHelper inner class in listing 7.7

}

At the heart of the DataManagerImpl class are the data management methods that
use our DAO objects. These include the getMovie method @), which uses both the
MovieDao and the CategoryDao to return a complete single Movie. The getMovie-
Headers method, on the other hand, returns a collection of movies without the
categories @ (these “headers” can be used to list movie data when underlying detail
isn’t required).

One of the most interesting aspects of the DataManagerImpl class, and another
reason we’re using a separate manager layer, can be seen in the saveMovie method
©. Here we again use separate DAOs, but we do so within a transaction. A transaction
ensures that if one part of our operation fails, the entire thing will be rolled back. This
prevents us from ending up with an inconsistent state. For example if we are able to
insert a new movie @ and the categories its associated with 0, but for some reason
couldn’t insert its category associations @, we then wouldn’t want anything to be
saved (we don’t want to save the movie or categories without the correct associations).
The transaction makes sense here, at this level, but it may not be appropriate for
the DAO itself (the manager has the contextual information to know a transaction
is needed).

To control the transaction, we explicitly begin it 0, sect its status as successful if we
don’t have any exceptions @, and end it @. Note that there’s no rollback method.
Instead, once the beginTransaction method has started the process, if the endTrans-
action method is encountered before setTransactionSuccessful has been called, a
rollback will happen implicitly (and endTransaction is inside a finally block, so it’ll be
called even if there’s an earlier exception).

After the saveMovie method, our manager has a similar deleteMovie method that
also has transaction support). Then we include similar wrapper methods for catego-
ries (though they only need to use one DAO because they’re simpler, we still use the
manager as an access point). The remaining DAO wrapper methods, and the internal
OpenHelper class which we saw earlier, round out the DataManager class and complete
our data management layer.

262

74

CHAPTER 7 Storing data locally

Using the DataManager

How do we use our new data management layer from within the MyMoviesDatabase
application? We create an instance of it inside the Application object that all our
activities and other components have access to, and we call it as needed. For instance
the MyMovies activity is still the main ListView our application needs. But instead of
using an Adapter that’s backed with List<String>, we change to one that uses
List<Movie> and we get that data from our database as follows:

private MovieAdapter adapter;
private List<Movie> movies;

movies.addAll (app.getDataManager () .getMovieHeaders()) ;

adapter.notifyDataSetChanged() ;
Another alternative we might've chosen would’ve been to implement a Cursor-
Adapter. A CursorAdapter is an adapter that can pull data from a database. Some-
times this is convenient, such as when multiple things might modify the underlying
database. With a CursorAdapter, a ListView can manage the cursor and automatically
update the view items as data is added. One downside with CursorAdapter is that data-
base concepts such as Cursor leak into the logic of the activity (for example, when a
list item is clicked). So usage of a CursorAdapter makes sense sometimes, and other
times it’s easier to do without it. For MyMoviesDatabase we’ve included both
approaches in the source code for the project (see the comments in the MyMovies
activity to switch between them).

DISCUSSION

We can now easily use our model objects and our DataManager interface implementa-
tion, which wraps our DAOs, from any of our application components. We’ve encapsu-
lated all the database-related code in one place, and we’ve hidden the underlying
details. In fact, we could change the implementation of our DataManager to use files,
or to use web service calls (which might not be a good idea, but it’s a strained theoret-
ical example), and our main application code (our activities and so on) wouldn’t
need to be touched.

Behind the manager layer, we’ve also created separate classes to create and update
our tables, and to create and open our database. We have all the layers we discussed
earlier, and along the way we’ve touched on many of the details of working with data-
bases on the Android platform. With our database layer in hand, we’ll now move on to
how to inspect and troubleshoot a SQLite database.

Inspecting SQLite databases

Outside of your application, there are many times when you’ll want to access and
inspect your SQLite database directly. You’ll want to make sure your tables are there,
and that they have the structure you intended. And you’ll want to run test queries and
experiment with the results. For these times you’ll need data tools.

In the next few sections, we’ll review mymovies.db using the command-line
SQLite shell and a third-party GUI tool, SQLiteManager. There are many third-party

Inspecting SQLite databases 263

SQLite GUI tools; we’ve chosen SQLiteManager as an example because it’s cross-
platform (it’s a Firefox browser extension), open source, and free.

SQLITE SHELL

SQLite comes with its own command shell, a command-line utility named sqlite3. This
tool is the Swiss-Army knife for SQLite. To access sqlite3 on an Android device or emu-
lator, you need to first connect with the adb shell, and then invoke the SQLite shell on
the database you’re interested in. Figure 7.10 shows this process for MyMoviesDatabase
and the mymovies.db file.

From the adb shell session started in figure 7.10, we first navigate to the /data/
data/<packagename>/databases file location, and then we list the contents. There we
see the mymovies.db file. Next, we invoke the SQLite shell with sqlite3 mymovies.db.
Once we’re in the SQLite shell, we have access to all of the commands it provides.
Some of the most useful commands to remember are shown in table 7.2.

Table 7.2 Useful sqlite3 shell commands for working with SQLite databases

sqlite3 command Description
.help List all commands and options
.tables Show tables for current database
.schema Show CREATE statements used to create tables for current database
.explain Parse and analyze SQL statement showing execution plan

You’ll also often be running direct SQL statements in the shell, such as select, insert,
delete, and so on. If you want to know more about sqlite3, which is a powerful tool, you
can find the complete documentation online at http://www.sqlite.org/sqlite.html.

SQLiteManager

If you’d rather use a GUI tool to inspect and manipulate your database, one of the eas-
iest to use is the SQLiteManager Firefox extension. To use this tool, you’ll need Fire-
fox and the extension at http://mng.bz/iG6q. Once you have installed the extension,
you can access SQLiteManager from the Firefox Tools menu. When you first launch it,

ccollins@crotalus:-$ adb -e shell

cd /data/data/com.manning.aip.mymoviesdatabase/databases

#1s -1

-rW-rw---- app 33 app_33 13312 2019-12-20 02:55 mymovies.db

sglited mymovies.db

SOLite version 3.6.22

Enter ®.help® for instructions

Enter SQL statements terminated with a =;*

sglite= .tables

android metadata category movie movie_category

sqlite> .schema

CREATE TABLE android metadata (locale TEXT);

CREATE TABLE category (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL):

CREATE TABLE movie (_id INTEGER PRIMARY KEY, homepage TEXT, movie name TEXT UNIQUE NOT NULL, rating INTEGER, tagline TEXT, thusb url TEXT,
image_url TEXT, trailer TEXT, url TEXT, year INTEGER);

CREATE TABLE movie category (movie id INTEGER NOT WULL, category_id INTEGER NOT WULL, FOREIGN KEY(movie id) REFERENCES movie(_id), FOREIGN
KEY{category id) REFERENCES category{_id) , PRIMARY KEY { movie id, category id)};

sqlite> select * from movie;

1| |Cool Hand Luke|7|[http://hwedn. themoviedb.org/posters/813/4bc90el8817a3c57 feBB5813/ cool-hand- Luke- thumb. jpg|http:/ hwedn. themoviedb.org/
posters/813/4bc90el0817a3c57 fefB5013/ cool - hand- Luke-cover. jpg|http: //www. youtube, comfwatch?v=13CPz21NzUc |http://www . themoviedb.org/movie /98
3|1967

Figure 7.10 Using the SQLite shell tool, sqlite3, on the mymovies.db database

http://www.sqlite.org/sqlite.html
http://mng.bz/iG6q

264

CHAPTER 7 Storing data locally

Rla -
Pull File from Device =
MName Size Date Time Peri—
¥ LU ainiuTuraLsyseeEmuan LUTU-TEUT UuLY urw
b @ com.android.term 2010-12-07 00:29 drw
b @8 com.android.wallpaper.livepicker 2010-12-07 00:29 drw
I @ com.manning.aip.fileexplorer 2010-12-20 02:50 drw
+ @@ com.manning.aip.mymoviesdatabase 2010-12-20 02:51 drw

= @ databases 2010-12-20

Figure 7.11

Copy the database file
from a running device or
emulator to the local host
computer using DDMS.

b @lib 2010-12-20 02:51
b @ shared prefs 2010-12-19 16:28

it'll show a new blank window. To do anything with it, you need to point it at a SQLite
database file.

There isn’t a convenient (or secure) way to automatically connect to a running
device or emulator and browse the database file, so to do this you’ll need to copy the file
to your local computer. This can be done with the adb pull command, or with the
Android file explorer provided in the Eclipse ADT or DDMS tools, as seen in figure 7.11.

Once you have the database file available, it’s a simple matter of opening the file with
SQLiteManager. You can click and browse through the database contents, check the set-
tings, and even execute SQL commands. Figure 7.12 shows us exploring mymovies.db.

All told, there are many ways to access and inspect SQLite databases. The SQLite
shell is always available, and it’s connected to live data. Other tools, such as SQLite-
Manager, provide an easy-to-work-with GUI approach.

'sQLite Manager - fhome jccallins/Desktop/mymovies.db : EEE
Database Table Index View Trigger Tools Help
XD £mw @ o Directory * | (Select Profile Database) = | Go
_—
mymovies.db % | | Structure | Browse & Search | Execute SQL DB Settings
P Master Table (1) TABLE |movie Search Showall | add | | Duplicate Edit Delete
= Tables (4) 2 - .
b android_metadata _id home... movi... rating tagline thum... o
b category 1 |coolHa... |7 | httpsffh... |
2 |cool Run... |8 |one drea... |httpz/fh... ; |
_id 3 [The afri... |78 | |hetps/fh... . |httpefiw... l19s52 |
homepage 5 |serenity |88 |can't sto... http:/ih... http:/fw... |2005 |
movie_name 6 htep://w... [The Men...|6.6 |Mo Goat... |https/fh... . |heepeffw... |2009 |
rating 7 |Blade Ru...|s |Man has ... [httpsffh... .. |heepefiw... |1982 |
tagline 8 |The squi... |76 | soink cus... [httpsffh... . |heepfpw... |2008 |
thumb_url 9 |coya'sG... [6.6 | https/fh... http://w... |2006 |
image_url 10 https/fw... |No Coun... |8 |There ar... |http:/fh... . |nttp:/fw... |2007 |
trailer
url
year
b movie_category
b Wiews (0)
b indexes {3)
b Triggers (0}
1to9of 9
sQUte3.7.1 Gecko19.213 065 Exclusive Number of files inselected directory: 10 ET:1ms

Figure 7.12 Use SQLiteManager to explore a SQLite database file.

7.5

Summary 265

Now that we have a working sample application complete with preferences using files,
data access layer, DAOs, and database, and we’ve seen how to explore our data and use
tools to verify the schema, run sample queries, and even explain the processing plan,
our journey through local data storage on Android is complete.

Summary

We’ve covered a good bit of data storage and persistence territory. We haven’t touched
on every possibility, because there are too many, but we’ve dealt with the most common
and often most useful ways to store and retrieve local data for an Android application.

We started with the filesystem, and the basics of reading and writing data to files.
We then looked at the file-backed but easier-to-use SharedPreferences mechanism
Android provides, and finally we topped it off with using a local SQLite database. We
went into a lot of detail on the database side of things because that’s the most power-
ful local storage mechanism Android provides. There, we separated the responsibili-
ties for creating our database and the individual tables, and we used Data Access
Objects (DAOs) for containing data logic, as well as a data manager to wrap it all up.
In all, we built a layered architecture around our database and hid the gory details
from our application components. Finally, we topped off our local data excursion with
a look at exploring and troubleshooting databases from the command shell, and with
external tools.

We did all of this in order to take the MyMovies sample application we’d seen in
previous chapters to the next level. We modified it to be able to search for data, to use
preferences, and to store data in a database. Now, it’s not using predefined data stuck
in a resources file; it’s dynamic and user-defined.

Next, in chapter 8, we’ll look beyond storing data locally and learn how to consume
data from other applications, such as the builtin Contacts manager, and we’ll also learn
how to share our own data—these are both the realm of the ContentProvider.

Sharing data
between apps

In this chapter

m Sharing between processes
= Shared preferences files
®m Accessing shared data

People have really gotten comfortable not only sharing more information and
different kinds, but more openly and with more people.

—Mark Zuckerberg

You can do a lot in a single Android application. The possibilities are almost end-
less. But one of the differentiating features of the Android platform is that it
allows—nay, encourages—applications to work together. In chapter 5, we talked
extensively about how powerful multitasking is on Android. Consequently, you can
assume that other applications are running at the same time as yours and vice versa.
This leads to interesting possibilities. Multiple applications working together pro-
vides greater value to the user than any single application could by itself.

An essential ingredient to application integration is data sharing. There are oth-
ers, such as flow of control, but not much can happen without being able to share

266

8.1

Process-to-process sharing 267

data between apps in some way. It should come as no surprise that Android
provides multiple ways to do this, empowering you the developer to share data in a
way that makes the most sense for your use case. The main purpose of this chapter is
to catalogue and detail the various ways there are to share data between Android apps,
and describe the type of situations that you would want to apply these data sharing
techniques.

Process-to-process sharing

In chapter 6, we talked about many of the Android facilities that make concurrent
programming easier. Let’s start off by reviewing this type of sharing so that we can con-
trast it to the process-to-process sharing that we’ll discuss in detail. In general, concur-
rency is easy until you must share data. The type of concurrent programming that
we’ve discussed so far has been multithreaded programming. When data is shared, it’s
shared between multiple threads running inside the same virtual machine, and the
same Linux process. Figure 8.1 shows the different ways of doing this.

Now we’ll focus on data being shared by different processes instead of different
threads. Figure 8.2 depicts the ways that this can be done.

With threads, there’s the option of threads reading from the same locations in
local memory. This is the most intimate way to share data, but it can also be the most

Process
(™
Data
Data
Data
Data
Thread Thread Thread
\ v
Process
(N\
Figure 8.1 Shared
Thread Thread data and threafls, using
\ message passing and

common data

268 CHAPTER 8 Sharing data between apps

Process Process
Thread Thread Thread I Thread Thread Thread

o o o o
Q QU QU QU
g g & 8
[Q Q Q

v

Process

IR

Thread Thread Thread Thread Thread Thread

Figure 8.2 Sharing data and processes, using message (data) passing and common data

dangerous. Android’s Handler API provides a safer way to share data between threads.
When it comes to sharing data between processes (apps), we can’t read from the same
place in local memory. This dangerous option isn’t available. Instead, we must send
data across process boundaries. The first and most common way of doing this is by
using Intents.

=, 13 Using Intents

By now you’re familiar with Intents. The most common use for intents is for navigat-
ing between activities within an application. Intents can also hold data to pass to activ-
ities. This is a key feature because intents can be used to navigate to activities from
other apps and share data with other apps.

PROBLEM

You need to send a request with data to another application, or you need to send a
response to a request from another application. The application making the request
will cede control to another application in order to accomplish this task.

SOLUTION

Aswe mentioned earlier, there are a number of ways to share data between applications.
So it’s key to understand the subtle differences between these techniques. In this case,
we need another application to do something for us and we’re willing to allow the other
application to take control of the user interface to do this. To demonstrate the kind of
situations where you’d use this technique, let’s look at two sample apps.

TECHNIQUE 36 Using Intents 269

The first app is called GoodShares and allows the user to pick a photo from their
phone and then pass this photo off to our other sample app, ImageMash. This app
performs an affine transformation on the image based on scale and rotation values
input by the user. Figure 8.3 shows what the GoodShares app looks like.

An affine what?

Affine transformation is a term for applying some simple two-dimensional geometry
to an object (image). In our example, we scale the image vertically and horizontally,
and then rotate it. If you're familiar with linear algebra, an affine transform can be
represented using matrix multiplication.

In the figure, the user has selected an image that they want to transform. Now press-
ing the Transform! button launches our second app, the ImageMash app. Figure 8.4
shows what it looks like.

As you can see in figure 8.4, the user sees the image that’s being transformed. This
is the image sent from the GoodShares app—it’s the data that has been shared by that
app. Now, the user can input the transformation values and Mash It! Figure 8.5 shows
the result.

2l B 12201 O % ull B 12:02

Transform!

Figure 8.3 The GoodShares app, image Figure 8.4 The ImageMash app with an
selected image sent to it

270

CHAPTER 8 Sharing data between apps

| GoodShares

Gallery

GoodShares

ImageMash

Figure 8.5 Transformed picture Figure 8.6 Sending data between apps
shown by the GoodShares app using Intents

Figure 8.5 shows the transformed picture. Note that GoodShares is displaying the
transformed. The ImageMash app not only transforms the picture, it then sends the
transformed picture back to the GoodShares app, which then displays it. The Image-
Mash app also shares the result with the GoodShares app. All of this sharing is done
using Intents. Figure 8.6 shows the Intent-based data flow.

One thing we didn’t show in the preceding screenshots is how the user selects a
picture to use. As you can see from figure 8.6, we use the Gallery app, using the code
in the following listing.

Listing 8.1 Using Gallery to select a photo (from ShareActivity.java)

public class ShareActivity extends Activity ({

Uri photoUrio;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.share) ;
Button button = (Button) findviewById(R.id.btno0) ;
button.setOnClickListener (new OnClickListener () {

@Override
public void onClick (View v) {
Intent request = new Use standard Intent

Intent (Intent.ACTION_GET_CONTENT) ; for Get_Content

TECHNIQUE 36 Using Intents 271

request.setType ("image/*") ;
startActivityForResult (request, 0); Launch separate app,
1 give up control flow

)

@Override
protected void onActivityResult (int requestCode, int resultCode,

Intent data) .
{ Retrieve data sent

if (requestCode == 0) {
photoUri0 = by Gallery
(Uri) data.getParcelableExtra (Intent.EXTRA STREAM) ;
ImageView imgViewO = (ImageView) findViewById(R.id.picO) ;

imgView0.setImageURI (photoUrioO) ;

}

The code in listing 8.1 is a selection of the ShareActivity class, which is GoodShares’
main Activity. It’s the code behind the UI shown in figure 8.3. The main thing it does
is hook up an event listener to the button seen in figure 8.3.

When the button is clicked, an Intent is created whose action is set to
Intent.ACTION GET CONTENT @. Thisis one of manystandard Intentsin Android that
launch activities for common tasks such as selecting a photo from the Gallery. We
declare that we want to get an image by setting the type property of the Intent. This
will cause our Intent to be routed to the Gallery. Then we use the Activity’s start-
ActivityForResult method @. This will start the appropriate Activity (in Gallery, in
adifferent process) and pass control flow to it. startActivity would do the same thing.

The key difference here is that once the other Activity gives up control, the con-
trol flow will return to our Activity. Further, the other Activity will be able to set a
result, and our Activity will be able to access this result and the data associated with
it. This is done in our Activity’s onActivityResult method. The Gallery app sets the
response data in another Intent that it passes back to our app. Our app can retrieve
this data from the Intent @ by using one of its getXXxXExtra methods. This requires
us to know the name of the extra (key) for the data that the Gallery app passed back,
and to know its type. In this case, this is documented in the Android SDK, in the Java-
Doc for android.content.Intent. There we see that the constant
Intent .EXTRA_STREAM will be the key and that the value will be an android.net.Uri
that will point to the selected image. Once we have the image, we show it to the user,
as shown in figure 8.3. Then the user can tap another button to send this image to the
ImageMasher app, using the code in this next listing.

Listing 8.2 Invoking the ImageMasher app (from ShareActivity.java)

public class ShareActivity extends Activity ({
Uri photoUrio;
@Override
public void onCreate (Bundle savedInstanceState) ({

Button buttonl = (Button) findviewById(R.id.btnl);

272

CHAPTER 8 Sharing data between apps

buttonl.setOnClickListener (new OnClickListener () ({ Custom
@Ooverride Action
public void onClick (View v) { route to
Intent request = hnqg?Mash
new Intent ("com.manning.aip.mash.ACTION") ; Activity
request .addCategory (Intent . CATEGORY DEFAULT) ;
request .putExtra ("com.manning.aip.mash.EXTRA PHOTO",
photoUrio) ; Set data
startActivityForResult (request, 1); to send
}
P i
}
@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data)
if (requestCode == 1) { Retrieve
Uri photoUril = (Uri) data.getParcelableExtra (data sent by
"com.manning.aip.mash.EXTRA RESULT") ; ImageMash
ImageView imgViewl = (ImageView) findViewById(R.id.picl);

imgViewl.setImageURI (photoUril) ;

}

The code in listing 8.2 is similar to the code in listing 8.1. It follows the same pattern,
but instead of using a commonly known action, it uses a custom action @ to route the
Intent to our ImageMash app. In this case, we need to share some data with the other
app, so we put an extra in our Intent @. The other app (ImageMash) will need to
know what name we used for the extra so that it can retrieve it from the Intent €.
Finally, when control returns from the other app, we can retrieve the mashed image
from the Intent that it supplies. Let’s take a look at what happens in between in the
ImageMash app.

Interprocess communication and Parcelables

You might have noticed that in listings 8.1. and 8.2, we used the getParcelable-
Extra method on the Intent object. If you've read chapter 5, then you’re already
familiar with Parcelables. It’s Android’s equivalent of a Java Serializable object.
Any object that you wish to serialize, either to pass between processes or save to
disk, must be a Parcelable. In the preceding examples, we passed an android.
net .Uri object between processes and we can do that because it's a Parcelable.
You can make your custom objects Parcelable as well. See chapter 5 for an exam-
ple on how to do this.

We saw what the ImageMash app looks like in figure 8.4. For another app to invoke it,
they must use the com.manning.aip.mash.ACTION action in an Intent like we did in
listing 8.2. That means that we must use an Intent filter:

<activity android:name=".MashActivity"

android:label="@string/app name">
<intent-filters>

TECHNIQUE 36 Using Intents 273

<action android:name="com.manning.aip.mash.ACTION" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>

Now we need to handle this inbound data in our Activity. The following listing
shows how to do this.

Listing 8.3 Mashing the inbound image

public class MashActivity extends Activity
public static final String EXTRA PHOTO =
"com.manning.aip.mash.EXTRA PHOTO";

private static final int RESULT ERROR = 99;

@Override

public void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;
setContentView (R.layout .main) ;
Intent request = getIntent();

if (request != null &&
request.hasExtra (EXTRA PHOTO)) { Get URI of
final Uri uri = !nbound
(Uri) request.getParcelableExtra (EXTRA PHOTO) ; image
ImageView image = (ImageView) findvViewById(R.id.image) ;

image.setImageURI (uri) ;

Button button = (Button) findvViewById(R.id.button) ;
button.setOnClickListener (new OnClickListener () {
@Override

public void onClick (View v) .
e Load image
ry {

Bitmap bmp = BitmapFactory.decodeStream(Mt Mmemory

getContentResolver () .openInputStream(uri)) ;

Bitmap mashed = mash (bmp) ;

Uri resultUri = saveImage (mashed) ;

Intent response = new Intent();

response.putExtra (Put URI to
"com.manning.aip.mash.EXTRA RESULT", mashed image
resultUri) ; into Intent

MashActivity.this.setResult (Activity.RESULT_OK,

response) ;
} catch (FileNotFoundException e) {
Log.e("MashActivity", "Exception mashing pic", e);
MashActivity.this.setResult (RESULT ERROR) ;

}

finish(); Release Set result, pass
} control

b ; back Intent

}

The code in listing 8.3 is from the main Activity in ImageMash. The code retrieves
the Uri of the image that we want to mash @ by pulling it out of the Intent that was
used to start the Activity. Then, once the user has finished setting values and taps on

274

CHAPTER 8 Sharing data between apps

the mash button, it loads the image @, transforms it (mashes it), and saves the image
back to the SD card by using the saveImage method (not shown). This method
returns the Uri to the mashed image, and we store this to a new Intent © that we
send back to the caller of this Activity. We then call the setResult method on the
Activity @, saying that the result was okay and passing in the Intent to give back to
the caller. Finally, we pass control back to the caller Activity by calling this Activ-
ity’s finish method @.

DISCUSSION

This sample app shows how Intents can be used to send data between apps. We’ve
seen both how to use one of the many standard Intents to pass data back and forth
between core apps like the Gallery, and how to do this between two custom apps.
Intents provide a lot of flexibility. You don’t need to know the name or class of the
Activity that you want to integrate with; you need to know the name of the action
(and optionally its category.) You may also need to know the names and types of
parameters that are expected for inputs and uses for outputs. This is all industry stan-
dard for loosely coupled systems.

You might be wondering what happens if more than one app declares that it
can handle a particular action. In that case, the Android OS will display a dialog to
the user allowing them to choose which app to use. This implies that other apps
could hijack Intents that are supposed to go to your app. If that’s unacceptable,
then you might want to use a different technique for sharing data, such as remote
procedure calls.

Making remote procedure calls

The key characteristic of the previous technique was that your app surrendered con-
trol flow to another application and waited until the user finished interacting with
that application. That won’t work if you want to maintain control flow within your
application. In this case, you’ll want to use some form of remote procedure call. We’ll
talk about two flavors of remote procedure calls supported by Android: synchronous
and asynchronous.

PROBLEM

You need to pass data to another app so that it can perform some operation on that
data and return a result back to your app. You don’t want to give up control flow to
this other application; you want to interact with it unseen.

SOLUTION

The key differentiator in this technique is that your application stays in control. It inter-
acts and shares data with another application, but this process is invisible to the user.
The key technology is to use an Android Service and there are two major variations
here. Do you want the interaction to be synchronous or asynchronous? We’ll examine
both of these variations by modifying our GoodShares application. We’ll create a
remote procedure call (RPC) variant of the Activity shown in figure 8.3. Figure 8.7
shows what the RPC Activity looks like.

TECHNIQUE 37 Making remote procedure calls 275

The key difference between the user inter- G % al B
face shown in figure 8.3 and figure 8.7 is that
you now supply the X and Y scales and the
angle of rotation, instead of supplying those in
the ImageMash app. Then the Activity calls
the ImageMash app to do all of the mashing;
when it gets the result back, it shows it to the
user. For this to work, the ImageMash app
must expose a Service that can be called by
the GoodShares app’s Activity shown in fig-
ure 8.7. There are a couple of ways that we can
do the necessary integration.

Synchronous Integration

The first way this integration can be done is
synchronously. The GoodShares app calls the
ImageMash Service and waits for a response.
After receiving a response, GoodShares
updates the Ul To enable this kind of inter-
action, the GoodShares Activity must bind
to the Service and directly invoke an opera-
tion on the Service. The necessary code is in
the following listing. Figure 8.7 Sharing, the RPC way

Listing 8.4 Synchronous invocation of another app’s Service

public class ShareRpcActivity extends Activity {

Uri photoUrioO;
IMashService mashService; Generated interface
Button mashButton; representing remote Service
int bindCount = 0;
ServiceConnection conn = new ServiceConnection() {

@Override

public void onServiceConnected (ComponentName

className, IBinder service) {
mashService = IMashService.Stub.asInterface(service) ;

mashButton.setEnabled (true) ;
} Callback once

@Ooverride Service is bound

public void onServiceDisconnected (ComponentName className) {
mashService = null;
mashButton.setEnabled (false) ;

}i

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.share_rpc) ;

276 CHAPTER 8 Sharing data between apps

mashButton = (Button) findViewById(R.id.button) ;

CheckBox syncBox = (CheckBox) findviewById(R.id.syncBox) ;
syncBox.setOnCheckedChangeListener (new OnCheckedChangeListener () {
@Override

public void onCheckedChanged (CompoundButton button,
boolean checked) {
if (checked)
mashButton.setEnabled (false) ;
bindService (new Intent ("com.manning.aip.mash.ACTION"),

conn,
BIND_AUTO_CREATE) ; Bind to remote
bindCount += 1; Service

} else {} }}
)

mashButton.setOnClickListener (new OnClickListener () {

@Override
public void onClick(View v) {
EditText input0 = (EditText) findViewById(R.id.input0) ;

float scaleX =

Float.parseFloat (input0.getText () .toString()) ;
EditText inputl = (EditText) findViewById(R.id.inputl) ;
float scaleY =

Float.parseFloat (inputl.getText () .toString()) ;
EditText input2 = (EditText) findvViewById(R.id.input2) ;
float angle =

Float.parseFloat (input2.getText () .toString()) ;
Uri result;
if (bindCount > 0){

try {
result = mashService.mash (photoUrio, Invoke
scaleX,
lev remote
sca-et, Service
angle) ;

ImageView image =
(ImageView) findViewById(R.id.image) ;
image.setImageURI (result) ; Use result to
} catch (RemoteException e) {} }}});:}} update Ul

The code in listing 8.4 shows how to synchronously send and receive data between two
applications by using a Service. To begin with, we need an interface that represents
the remote Service and describes the operations that it provides @. To describe an
interface to a remote Service, we use AIDL, as we learned about in chapter 5. Here’s
the AIDL for the ImageMash Service:

package com.manning.aip.mash;
import android.net.Uri;

interface IMashService({
Uri mash(in Uri uri, float scaleX, float scaleY, float angle);

}

It’s almost pure Java! Your app will need a copy of this AIDL file, and the Android tools
will generate a stub for you that you can reference from your application. This is the

TECHNIQUE 37 Making remote procedure calls 277

key part of this subtechnique. To share data with another app’s Service in a synchro-
nous manner; your app must have the AIDL that describes that Service. Similarly, if
you want to allow other apps to integrate with a Service in your app, you must pro-
vide an AIDL.

Going back to listing 8.4, the next thing the Activity needs is a ServiceConnec-
tion to the remote Service @. This is a callback interface to let you know when your
Activity has bound itself to the Service, and that it’s safe to start invoking opera-
tions on that Service. In our example, we initiate the binding process (3) during the
onCreate method of the Activity. We provide a check box to indicate whether we
want the communication to be synchronous. If it’s synchronous tapping the Mash It!
button, will invoke Service @. Because the call is synchronous, the invocation
returns a response and the Ul is immediately updated @.

We’ve only scratched the surface of Services, AIDL, and so on. For much more
information on these topics, you’ll want to revisit chapter 5. Note that we didn’t use
Intents to share data synchronously. AIDL takes the place of an Intent—and pro-
vides some clear advantages over it with regards to the names and types of the data
being shared.

Asynchronous integration
The alternative to synchronous invocation is an asynchronous one that’s based on
Intents. The next listing shows this asynchronous variation.

Listing 8.5 Asynchronous invocation of a remote Service

public class ShareRpcActivity extends Activity
Button mashButton;
int bindCount = 0;

@Override
protected void onCreate (Bundle savedInstanceState) ({
mashButton = (Button) findvViewById(R.id.button) ;
mashButton.setOnClickListener (new OnClickListener(){
@Override
public void onClick (View v) {
// get data from form widgets
if (bindCount > 0){ // invoke synchronous
} else {
Intent request =
new Intent ("com.manning.aip.mash.ACTION") ;
request .putExtra ("com.manning.aip.mash.EXTRA PHOTO",

Create Intent

photoUrio) ;

request.putExtra ("com.manning.aip.mash.EXTRA_SCALE X",
scaleX) ;

request .putExtra ("com.manning.aip.mash.EXTRA SCALE Y",
scaleY) ;

request.putExtra ("com.manning.aip.mash.EXTRA ANGLE",
angle) ; Add data as

startService (request) ; extras to Intent

278

CHAPTER 8 Sharing data between apps

13K
mashButton.setEnabled (true) ;
BroadcastReceiver receiver = new BroadcastReceiver () {
@Override
public void
onReceive (Context context, Intent intent) {
Uri result = intent.getParcelableExtra (
"com.manning.aip.mash.EXTRA RESULT") ;

Implement BroadcastReceiver

ImageView image = (ImageView) findViewById(R.id.image) ;
image.setImageURI (result) ;
} Pull data from
Vi extras

IntentFilter filter = new IntentFilter();
filter.addAction("com.manning.aip.mash.ACTION RESPONSE") ;
registerReceiver (receiver, filter); Register with
} IntentFilter
}
The asynchronous path starts by creating an Intent and specifying its action @. As with
Intents being sent to activities, the action will be used to route the Intent to the correct
Service. Also similar to the Intents we used in technique 36, we set the data that we
want to share by using the putExtra method @.

As before, this means that we need to know what names and types to use for these
extras. The Service will need to pull them out, so we must know what it expects. Once
we’ve properly constructed the Intent, we call startService (instead of startActiv-
ityForResult like we did in technique 36). This is an asynchronous invocation. The
Service will receive it and respond by broadcasting an Intent with the response data
in it. To receive that response, we use a BroadcastReceiver’s onReceive method O s
the callback method for this asynchronous invocation of Service. We’ll receive the
Intent sent by Service, and unpack the response data from it @. We use that to
update the Ul Finally, for the Receiver to get the Intent sent by Service, we need to
register it with an IntentFilter based on the action that will be used by Service @.
The corresponding code in the Service is in the next listing.

Listing 8.6 Handling Intents in the ImageMash Service

public class MashService extends Service {

@Override
public int onStartCommand (Intent intent, ‘ Handle
int flags, int startId) { Intents Get data
Uri imageUri =
intent.getParcelableExtra ("com.manning.aip.mash.EXTRA PHOTO") ;
float scaleX =
intent.getFloatExtra ("com.manning.aip.mash.EXTRA SCALE X", 1.0f);
float scaleY =
intent.getFloatExtra("com.manning.aip.mash.EXTRA SCALE_Y", 1.0f);
float angle =
intent.getFloatExtra ("com.manning.aip.mash.EXTRA ANGLE", 0.0f);
try {
Uri resultUri = stub.mash(imageUri, scaleX, scaleY, angle);

TECHNIQUE 37 Making remote procedure calls 279

Intent response =
new Intent ("com.manning.aip.mash.ACTION _RESPONSE") ;
response.putExtra ("com.manning.aip.mash.EXTRA RESULT",

resultUri); Put data in
sendBroadcast (response) ; outbound Intent
} catch (RemoteException e) {
Log.e("MashService", "Exception mashing image async", e);
}
return START STICKY; Create Intent

}

This is a subset of the MashService code, only showing the part that processes
inbound Intents like the one sent in listing 8.5 These are all handled by the onStart -
command method @. In this case, only one type of Intent is being sent in, but if there
were more than one then you could check what the action is to figure out what kind of
request it is. Once you know the request type, you can pull out the appropriate data
from the Intent @. When you’ve processed this data and have a response to send
back, you create a new Intent to do so €. You must put the appropriate action on
this Intent, so it can be routed to the right receiver. Then you add all of the appropri-
ate data to the Intent using the now-familiar putExtra method @. Finally, you broad-
cast this Intent using the sendBroadcast method.

DISCUSSION

There are some obvious and major differences between the synchronous and asyn-
chronous ways of exchanging data with another app’s Service. Obviously there’s the
synchronous versus asynchronous nature. The question of the interface is significant.
In the synchronous mode, the interface is explicit and defined—in the AIDL. You
know exactly how to call the Service and the response is immediate (in the sense that
your thread will block until the Service gets a response—be careful about doing this
on the main Ul thread). In the asynchronous case, nothing is as explicit. You still must
know the names and types of the data that the Service expects and produces, but this
doesn’t come in the form of code (AIDL). This arrangement can be more error prone.
Furthermore, you also need to know the name of the action to use to send it to the
Service, as well as the name of the action to use to register a BroadcastReceiver to
get the response back from the Service.

Synchronous and asynchronous don’t need to be mutually exclusive. For example,
let’s say you expose a Service for synchronous usage via AIDL. But suppose that one
of your operations could take a long time. Now the Activity that binds to the Ser-
vice could do so from an AsyncTask or similar, so that the UI thread isn’t blocked
while your Service does all of its work. So it might be okay for this operation to take a
long time. But you could alternatively return a message saying that request was
received, but that some or all of the response will come later. Then your Service
could broadcast an Intent with more data later on as it becomes available. This is a
common technique to use if your Service contains a local cache of data that’s ulti-
mately stored somewhere in the cloud.

280

CHAPTER 8 Sharing data between apps

We’ve now seen several useful ways to share data between apps using Intents.
These techniques can be applied by any two apps with only limited knowledge of each
other (actions, extras, and so forth). But if the apps have a more intimate knowledge
of each other, another option is available to you: the apps can share a Context.

Share data (and more) by sharing Context

This chapter is mostly about process-to-process sharing, and so technically this tech-
nique doesn’t belong here because it involves sharing data between apps in a single
process. In this technique, we’ll have multiple apps sharing a single process. Why would
we want to do that? As mentioned before, every application on Android is assigned a
unique Linux user ID, and an exclusive system process will be spawned for every appli-
cation you start. We also mentioned that Android does this for security reasons, to iso-
late code and resources of different, unrelated applications from each other.

Sometimes this behavior can get in your way. It’s like allowing you to enter your
kitchen but locking you out of the living room—both are distinct rooms, and they’re
both yours, and you should be allowed to move freely! What if you have developed two
applications that depend on each other and would like to share a private configura-
tion file, or even code? Imagine for instance that while developing an application, you
want to deploy a second one, a developer dashboard that allows you to control your
main application’s internal settings. A good example would be controlling whether an
application that connects to a web service API should contact the live servers or the
staging or development servers—a feature which shouldn’t be part of the final appli-
cation, which is why it makes sense to outsource it to a second application. There’s no
security risk here. You wrote both applications, and you trust your own code, no? How
can we get past this behavior in a controlled way?

PROBLEM

You have two or more applications that are closely related and depend on each other.
You want them to share private resources such as files or code that must not be visible
to other applications, but due to Android’s strict sandboxing rules, they’re not
allowed to.

SOLUTION
We said before that this doesn’t work for two reasons:

1 Different applications run in different Linux system processes.
2 Different applications are mapped to different Linux user IDs.

The solution is to let these applications share the same application process and the
same user ID. Let’s assume we have two applications (for simplicity let’s call them
Appl and App2) where App2 wants to reuse resources that are part of Appl. More
precisely, it wants to load classes that are bundled with Appl (Appl’s APK file) and
read any settings Appl stores in SharedPreferences.

We’ll keep things fairly simple, so as to not complicate the problem at hand.
Hence, Appl merely does the following: it writes a small text snippet to a preference

TECHNIQUE 38 Share data (and more) by sharing Context 281

D8 7:21em
app1 data -

Hello from App1 toString()!

Figure 8.8 Appl shares code and preference data with App2 by using Android’s shared process and
shared user ID model.

file that it wants to share with App2, and implements a custom toString method that
should be invokable by App2. Check out the sample project, and note how App2 is
able to read data that would normally be confined to Appl (see figure 8.8).

GRAB THE PROJECTS You can get the source
code for these projects, and/or the packaged
APK to run it, at the Android in Practice code web-
site. Because some code listings here are short-
ened to focus on specific concepts, we
recommend that you download the complete
source code and follow along within Eclipse (or your favorite IDE or text editor).

Note that this time we have two sample applications that are closely related to
each other. To see the desired effect, start SharedProcessAppl first, then start
SharedProcessApp2.

Source: http://mng.bz/x5a0, http://mng.bz/5141

APK Files: http://mng.bz/16sP, http://mng.bz/CXgT

Appl is the data provider in this scenario, so let’s look at how to implement it first.

http://mng.bz/x5a0
http://mng.bz/5141
http://mng.bz/16sP
http://mng.bz/CXgT

282

CHAPTER 8 Sharing data between apps

Listing 8.7 Appl.java implements toString () and writes a shared preference file

public class Appl extends Activity {

@Override
public void onCreate (Bundle savedInstanceState) { Open shared
super.onCreate (savedInstanceState) ; preference file

setContentView (R.layout.main) ;

SharedPreferences prefs = getSharedPreferences (
"applprefs", MODE_PRIVATE) ;

String value = "Hello from Appl preference filel!";

prefs.edit () .putString("shared_value", value).commit () ; Write value
1 to file
@Override
public String toString() ﬁ Implement custom

return "Hello from Appl toString()!"; toString() method

}
}
We first create a shared preference file @, which is an XML-based configuration file
that lives in Appl’s application data folder (see chapter 7). We create it using
MODE_PRIVATE, which means that only components (such as activities or services) of
Appl have access to that file. We then write a value to that file using the key
shared value @. We also implement a custom toString method @.

So far, so good. We’ve created a shared preference file, but it’s only accessible
from within Appl, because it'll be created on the filesystem using the Linux user
ID mapped to Appl. Moreover, we created it in private mode so only that user
(the application) may access it. We could’ve created it in world-readable mode
instead, but then any application would be able to read it, not only ours. If
you’re curious, table 8.1 summarizes how the file permission masks are mapped
to the different open modes (read chapter 1 again if you forgot how Linux handles
file permissions).

Table 8.1 SharedPreferences file mode mapping

Permission mask (u-g-o) Permission mask (octal)
MODE_PRIVATE rw-rw---- 660
MODE_WORLD READABLE | rw-Iw-Ir-- 664
MODE_WORLD_WRITABLE YW-Yw--w- 662

*The mode is a bitmask—these flags can be combined using the bitwise OR-operator ('[').

The same permissions apply for our toString method, which sends out a nice wel-
come to the world. It’s trapped in Appl’s class loader, so no one can see it. Based on
what we’ve observed so far, two problems need to be solved in order for App2 to be
able to both call Appl’s tostring method and access Appl’s preference file:

TECHNIQUE 38 Share data (and more) by sharing Context 283

1 We somehow must get hold of the resources bundled with Appl—calling get-
Resources in App2 will only return its own!

2 We must somehow get the right to access these resources. Even if we find a way
to reference them, they still belong to App1, not App2!

The answer to the first problem is the createPackageContext method defined on the
android.content.Context class. This method allows us to create a handle to a con-
text object that represents an application package other than the one we’re currently
in. Using the context object returned by that method, we can then get a reference to
its class loader and load classes from that application and instantiate them. We can
also use that context object to get a handle to its resource package or shared prefer-
ences. Listing 8.8 has the source code.

Listing 8.8 App2.java accesses Appl’s context using createPackageContext ()

public class App2 extends Activity

private Context appl;

Store ref
@Override to external
public void onCreate (Bundle savedInstanceState) { context
super.onCreate (savedInstanceState) ;
setContentView (R.layout .main) ; . L9a¢
instantiate
try { external class
appl = createPackageContext (
"com.manning.aip.appl", CONTEXT_ INCLUDE_ CODE) ;
Class<?> applActivityCls =
appl.getClassLoader ()
.loadClass ("com.manning.aip.appl.Appl") ;
Object applActivity = applActivityCls.newInstance() ;
Toast .makeText (this, applActivity.toString(), Show result
Toast . LENGTH_LONG) .show () ; in toast
} catch (Exception e) ({
e.printStackTrace() ;
return;
} J Load
SharedPreferences prefs = preference file
appl.getSharedPreferences ("applprefs", MODE PRIVATE) ;
TextView view = Read value from
(TextView) findViewById(R.id.hello); external file

String shared = prefs.getString("shared value", null);
if (shared == null) {
view.setText ("Failed to share!");
} else {
view.setText (shared) ;
}

}

We first store a reference to Appl, which is an object of type Context @. We can now
access Appl’s class loader, instantiate its classes, and call methods as if these classes were
part of our own application (@ and @). The same works for resource or shared pref-
erences, which we can also access through the external application context (@ and @).

284

CHAPTER 8 Sharing data between apps

The code from listing 8.8 looks like what we need to solve problem 1, but it won’t
work yet. The reason is obvious: we haven’t solved problem 2 on our list yet, which is
allowing App2 to do all that. The key to this lies in two attributes we’ve set in the man-
ifest files of both applications: android:process and android:sharedUserId. The for-
mer allows us to specify the system process in which an application will run (its process
affinity), whereas the latter tells Android which Linux user ID it should use to install
the application and to create files for. For both applications, we need to set these to
identical values:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="..."
android:sharedUserId="com.manning.aip">

<application android:process="com.manning.aip">
<activity .. />
</applications>

</manifest>

Try launching both applications again, and see how we succeeded! You should see
both the Toast and the text view in App2 get updated with values that were bundled
with Appl. You can also verify that it works by switching to the DDMS perspective (or
by running adb shell ps) and checking that only one new process will be spawned,
even if both applications are running simultaneously!

DISCUSSION

As you can probably imagine, this opens a whole new world of possibilities. The
android:process attribute is defined for components as well as for the <applica-
tion> element. You can control it freely—it not only allows you to run two applica-
tions in the same process, as seen in this technique, but you could also run every
service or activity of an application in its own system process. Before you jump to con-
clusions, we must say that we discourage you from doing so. Maintaining system pro-
cesses is even more expensive than managing threads. Each will run their own Dalvik
VM instance, which in turn means higher memory and battery consumption.

The keen eye may also have spotted a gross limitation of the way we shared code in
this example. The problem with our approach is that we need to rely on the Java reflec-
tion API to instantiate classes, but remember that App2 doesn’t bundle these classes
itself. That’s a crucial aspect: it means Appl’s classes aren’t in App2’s classpath. That
means that we can’t downcast these objects to any type other than Object!
(Class<T>.newInstance() returns Object, which must be downcasted to call any
other method than those defined on Object.) There are two solutions to this problem.
One common approach is to define a set of Java interfaces that the classes you want to
share must implement and bundle these in a JAR file. This interface JAR file can then
be bundled with both applications, which allows you to downcast to an interface type
in App2 and still call the implementation from Appl. The second solution, especially

8.2

TECHNIQUE 39 Using standard ContentProviders 285

if you rely on a lot of cross-application function calls, would be to use Android’s RPC
mechanisms, as we saw in technique 37.

Before we wrap up this technique, you should be aware of one more pitfall. If you
plan to share code or resources between applications using this method, make sure
you design your applications to support this technique from the get-go. If you already
have an application in Android Market that didn’t have a custom process affinity
defined, you won’t be able to publish an update to it that suddenly uses different pro-
cess and user IDs. Your users would need to manually uninstall the older version first,
because the Android Market updater doesn’t remove preference and database files
created by your applications (to not lose any user data), so the new version can’t write
to these files anymore. For that reason, it’s always a good idea to define the
android:process attribute for all your applications. You're then always free to add
compatible applications to your portfolio at any time!

Now that we’ve explored the various ways to interact with another application in
order to send and receive data from that application, let’s look at a somewhat simpler
topic. Let’s look at exposing data that can be accessed in a more direct, low-level way.

Accessing common data

So far in this chapter, we’ve focused on having our app directly interact with another
app, either by using Intents to communicate with another app’s activities and ser-
vices, or by loading another app’s Context and using that to access its private data or
even invoke its application code. You could describe the Intent (or AIDL) based
integration as an interface-level integration (often associated with service-oriented
architectures), and the shared Context approach as a binary-level integration.
Another common form of application integration is data-level integration, akin to
what Martin Fowler called the Integration Database. By having all apps read and write
from the same data store, you avoid the need for any kind of application code to sit
on top and manage the integration. This style of integration is well-suited for
Android, because it includes the SQLite database. Let’s take a look at how this work,
starting with how to use the standard integration databases that are present on every
Android device.

Using standard ContentProviders

The integration database idea isn’t some concept we invented for the sake of this book.
It’s not even some application pattern that we’ve extrapolated from third-party apps.
It’s a key part of Android itself. Not only is it used by many of the bundled Android apps,
the SDK itself includes APIs for using and creating integration databases: the
android.content.ContentProvider abstract class. Furthermore, it includes several
implementations of ContentProvider, and you must use these for many common tasks
in Android. Let’s start our discussion of ContentProviders by examining how to use
one of the standard providers in Android: the contacts provider.

286

CHAPTER 8 Sharing data between apps

PROBLEM

You need to look up one or more contacts from a user’s address book. You also need
to look up detailed information about a particular contact from the user’s address
book.

SOLUTION

For our example, we’ll create a simple app that mimics a registration task. We require
that the user provide us with their first and last name, along with their phone number
and email address so that they can register with our service. You don’t want to create
too much friction for the user, so you'd like to make this as painless as possible.
Chances are they already have all of this information in their address book. So the
idea is to look up and suggest a contact based on information that they’ve typed in.
Figure 8.9 shows what this will look like.

As you can see in figure 8.9, as the user types their phone number, we retrieve all of
the matching phone numbers from their address book. If they see their phone num-
ber, then they can tap on it and it’'ll finish filling in the number for them. Figure 8.10
shows what that looks like.

As you can see, the user may only have to type in a few numbers and then make a
single tap to complete their registration form. To make this work, we need to query

AutoForm AutoForm
Enter your contact info to get started Enter your contact info to get started
Your phone number Your phone number
650 6789362237
650,
e First name Last
6505559876
6509066389 Charlie Collins
6508149324
6508149324 Email address
6502923876
charlie.collins@gmail.com

6508149324
1

4 GHI

. 7 PG

Figure 8.9 Auto-suggesting a contact Figure 8.10 Auto-completed registration
based on a phone number form

TECHNIQUE 39 Using standard ContentProviders 287

the contacts database, so we must use the ContactsContract ContentProvider. The
next listing shows how we use this ContentProvider to get the list of phone numbers
for the AutoCompleteTextView shown in figure 8.9.

Listing 8.9 Finding possible phone numbers

import android.provider.ContactsContract.CommonDataKinds;
public class ContactManager {
private final ContentResolver resolver;

Use ContentResolver
to query

public ArrayList<Contact> findByPhoneSubString (String phoneSubstr) {
String[] projection = {Phone.CONTACT ID, Phone.NUMBER};
String selection = Data.IN_VISIBLE_GROUP + "=1 AND " +
Phone.NUMBER + " LIKE ?";
String[] selectionArgs = {"%" + phoneSubStr + "$"};
if (phoneSubStr == null) {
selection = null;
selectionArgs = null;
}
Cursor phoneCursor = null;
ArraylList<Contact> contacts = new ArrayList<Contacts>() ;

try{
phoneCursor = resolver.query (Phone.CONTENT URI, Execute
projection, query
selection,
selectionArgs,
null) ;

int idCol = phoneCursor.getColumnIndex (Phone.CONTACT ID) ;
int numCol = phoneCursor.getColumnIndex (Phone.NUMBER) ;

while (phoneCursor.moveToNext ()) { Iterate
long id = phoneCursor.getLong (idCol) ; over
String phoneNum = phoneCursor.getString(numCol) ; result
Contact contact = new Contact () ; set

contact.phone = phoneNum;
contact.id = String.valueOf(id) ;
contacts.add (contact) ;

}
} finally {

if (phoneCursor != null) phoneCursor.close() ;
}

return contacts;

}

If you’ve ever worked with databases, this is fairly straightforward. To perform a query,
we need an android.content.ContentResolver @. Then, we construct a query pro-
grammatically. First we create a projection—specify which columns from the database
we want. This is specified as an array of strings. Each of the strings that we’re selecting
are defined as constants in ContactsContract.CommonDataKinds.Phone. This is a pat-
tern you’ll see repeated over and over with ContentProviders. The names of columns
will be defined as constants, as a way to document the schema of the database. Next we
construct the Where clause for the query. Our example is exotic in that we use a LIKE
expression as part of this Where clause. This will return all contacts with a phone

288

CHAPTER 8 Sharing data between apps

number that contain the input string. Our Where clause contains a placeholder (a ques-
tion mark); this is replaced using arguments passed in to the query. We use the percent-
age signs around the phone number string to indicate that the substring we’ve passed
in can come anywhere in the full phone number. Now we can query the Content-
Provider using ContentResolver @. Note that we passed in Phone . CONTENT URI as the
first argument to the query method. This is another constant, only this time it’s a URI.
If you like to think in terms of databases, you can think of the URI as a combination of
database plus schema plus table. It uniquely identifies the data we’re querying against.
Also note that we left the final argument in the query method null. This is a sort param-
eter that we decided not to use. What we get back from the query is a Cursor. We can
iterate over this Cursor € and retrieve the data from it. We then store the values in a
data structure and pass them back to the caller. This gives the user a list of phone num-
bers that can be thought of as suggestions for the contact that identifies them, as we saw
in figure 8.9.

CONTACTS PROVIDER, NOW AND THEN This example uses the android.pro-
vider.ContactsContract provider. If you look at the android.provider
package, you may also notice the Contacts provider. This was the provider to
use up until Android 2.0. It’s deprecated now, but still part of the SDK. If you
need to support Android 1.6 or earlier and you need to work with contacts,
then you’ll need to work with both providers. You can check the
android.os.Build.VERSION at runtime to determine what version of the OS
is running on the user’s phone, and pick the appropriate provider.

Once the user selects one of the phone numbers from the list of suggestions, we want
to populate the rest of the data as seen in figure 8.10. The next listing does this.

Listing 8.10 Querying contact details

public class ContactManager {
public Contact getContact (Contact partial) {

Contact contact = new Contact() ;

contact.id = partial.id;

contact.phone = partial.phone;

String[] projection = new String[] {StructuredName.GIVEN_NAME,
StructuredName . FAMILY NAME,
StructuredName . RAW_CONTACT _ID,
StructuredName.CONTACT _ID};

String selection = StructuredName.CONTACT ID+ " = ? AND " +
Data.MIMETYPE + " = '" + StructuredName.CONTENT_ITEM_TYPE +"'";
String[] selectionArgs = new String[] {contact.id};
Cursor nameCursor = null;
try{
nameCursor = resolver.query (Data.CONTENT URT, Query first
projection, and last name
selection,
selectionArgs,
null) ;
if (nameCursor.moveToFirst ()) {

contact.firstName = nameCursor.getString/(

TECHNIQUE 39 Using standard ContentProviders 289

nameCursor.getColumnIndex (
StructuredName . GIVEN_NAME)) ;
contact.lastName = nameCursor.getString(
nameCursor.getColumnIndex (
StructuredName . FAMILY NAME)) ;

1
} finally {

if (nameCursor != null) nameCursor.close() ;
}

projection = new String[] {Email.DATAI1, Email.CONTACT ID};

selection = Email.CONTACT ID + " = ?";
Cursor emailCursor = null;
try{
emailCursor = resolver.query(Email.CONTENT URT, Query email
null, address
selection,
selectionArgs,
null) ;
if (emailCursor.moveToFirst ())
contact.email = emailCursor.getString(

emailCursor.getColumnIndex (Email.DATAL)) ;

}
} finally{

if (emailCursor != null) emailCursor.close() ;
}

return contact;

}

In the method shown, we start by querying for the user’s first and last name @. Note
how this is stored in a different table, represented by ContactsContract.Data.
CONTENT_URI. Thisis a generic data table that contains many different types of data that
could be associated with a given contact, including their first name (GIVEN _NAME) and
last name (FAMILY NAME). We must specify the kind of data we want to look up for this
contact by specifying the Data.MIMETYPE as part of the Where clause. We then use the ID
that we retrieved in listing 8.9.

Once we have the first and last name, we then query for the contact’s email
address @. Note here that as part of the projection (array of database columns), we
specified Email.DATAL. This is an unusual name for the contact’s email address. In
Android 3.0, a new constant was added to ContactsContract.CommonDataKinds.
Email: ADDRESS. Its value is the same as Email.DATA1 (it’s “datal”). The preceding
code was targeted at Android 2.2, so we must use Email.DATAl instead of
Email.ADDRESS. Finally, note that we again queried a different URI (table). All told,
we queried three different tables to retrieve the data needed to register the user.

DISCUSSION

We mentioned earlier that one of the chief advantages of using an integration database
is that you remove the need for integration code. That means that for an app to read
contacts information, all it needs to do is query the appropriate ContentProvider. The
ContentProvider API is a thin layer on top of a SQLite database, hence the need to

290

CHAPTER 8 Sharing data between apps

work with Cursors. But once you’ve worked with one ContentProvider, working with
others is fairly straightforward. You get other database benefits as well. For example,
note how we were able to use a LIKE $XYZ% clause to do a text search of the data.

This example showcased using the ContactsContract provider. The android.pro-
vider package also contains providers for the calendar and for multimedia. In chap-
ter 11, we’ll take a closer look at using a ContentProvider to query all of the music
files on the user’s device. As you’ll see, it’s similar to our earlier contacts example.
You’ll follow a similar pattern when working with any given ContentProvider, includ-
ing custom ones. Let’s take a look at how to create your own ContentProvider and
expose it for others to use.

Working with a custom ContentProvider

We saw in the previous technique how to consume a ContentProvider. Given that
many useful Android features, such as the address book and calendar, are exposed via
ContentProviders, this is essential knowledge. Furthermore, once you’re used to
working with the standard Android ContentProviders, working with any custom Con-
tentProviders from other applications is relatively straightforward. But you may also
want to create your own ContentProvider, as another way to allow other apps to share
data with your app.

PROBLEM

You want to expose data collected by your app to other apps, and even allow them to
add to this data. You want to give other apps flexibility in how they query this data, and
you don’t want to maintain an application/service layer for doing this.

SOLUTION

You want to create your own custom ContentProvider. Let’s look at an example of
doing this. Our example is an application that allows the user to enter in movies and
store them using a custom ContentProvider. The provider could then be used by
another application that may be interested in the movies a user has an interest in. Fig-
ure 8.11 shows what the application looks like.

Tapping on any of the movies in the list shown in figure 8.11 brings up a detail view
of the movie. Figure 8.12 shows this movie detail view.

The detail view gives you an idea of the kind of data we’re going to store as part of
our custom ContentProvider. Now let’s look at how we implement a ContentPro-
vider to allow apps (including our own!) to use this data. First, we must declare our
custom ContentProvider in our AndroidManifest .xml:

<provider android:name =
"com.manning.aip.mymoviesdatabase.provider.MyMoviesProvider"
android:authorities = "com.manning.aip.mymoviesdatabase" />

Now, we need to subclass the abstract class android.content.ContentProvider. We
must implement its query, insert, update, and delete methods to provide all of the
usual CRUD (create read update delete) operations. For our example, we’ll concen-
trate on the query features.

TECHNIQUE 40 Working with a custom ContentProvider 291

esD e

The Social Network

*+ MyMovies @ bl

il Harry Potter and the
Chamber of Secrets

E Momento

Pulp Fiction

The Social Network

Figure 8.11 List of the user's movies Figure 8.12 Movie detail view

Listing 8.11 The query interface to the movies ContentProvider

public class MyMoviesProvider extends ContentProvider { ReftoSQLk?db
private SQLiteDatabase db; where data is stored
@Override

public Cursor query (Uri uri, final String[] projection, String selection,
String[] selectionArgs, String sortOrder) ({
HashSet<String> projectionCols = new HashSet<String>();
if (projection != null) f{
projectionCols = new HashSet<Strings (Arrays.asList(projection)) ;
if (!MyMoviesContract.Movies.MovieColumns.projectionMap.keySet () .
containsAll (projectionCols)) Is projection
throw new IllegalArgumentException (valid?
"Unrecognized column(s) in projection") ;

}
SQLiteQueryBuilder gb = new SQLiteQueryBuilder() ;
switch (uriMatcher.match (uri)) {
case MOVIES:
gb.setTables (MovieTable. TABLE _NAME) ;
return gb.query (db,
projection,
selection,
selectionArgs,
null,

Query all
movies

292 CHAPTER 8 Sharing data between apps

null,
sortorder) ; Query particular
case MOVIE_ID: movie
long movieId = ContentUris.parseId(uri) ;
StringBuilder tables = new StringBuilder (MovieTable.TABLE_NAME)
.append (" as outer movie") ;
LinkedList<String> newSelectionArgs = new LinkedList<Strings () ;
newSelectionArgs.add (String. valueOf (movielId)) ;
if (selectionArgs != null) ({
newSelectionArgs.addAll (Arrays.asList(selectionArgs)) ;
}
String[] allSelectionArgs =
newSelectionArgs.toArray (new Stringl[0]) ; Join category
if (projectionCols.contains (table
MyMoviesContract.Movies.MovieColumns.CATEGORIES)) {
tables.append (" left outer join (select group concat (")
.append (CategoryColumns . NAME)

.append (") as names from ")

.append (MovieCategoryTable. TABLE NAME)
.append (", ")

.append ategoryTable TABLE_NAME)

.append (" where ")
.append Mov1eCategoryTable TABLE_NAME)

("

(

(

(

(

(
.append (".")
.append (MovieCategoryColumns . MOVIE_ID)
.append ("= ? and ")
.append (MovieCategoryTable. TABLE _NAME)
.append (".")
.append (MovieCategoryColumns . CATEGORY_ID)
.append ("=")
.append (CategoryTable. TABLE NAME)
.append (".")
.append (CategoryColumns._ID)
.append (") mcat");

}

StringBuilder where = new StringBuilder ()
.append ("outer_movie.")
.append (MovieColumns._ID)
.append ("= ?");
gb.setProjectionMap (
MyMoviesContract.Movies.MovieColumns.projectionMap) ;
gb.setTables (tables.toString()) ;
gb.appendWhere (where.toString()) ;
return gb.query (db,
projection,
selection,
allSelectionArgs,
null,
null,
sortOrder) ;
case UriMatcher.NO _MATCH:
default:
throw new IllegalArgumentException ("unrecognized URI " + uri);

8.3

Summary 293

The code in listing 8.11 looks verbose and complex, but it’s pretty straightforward.
First of all, you need a SQLite database O for storing and querying this data. This is set
up as part of the onCreate method of the provider (not shown here; download the
full code). Next, when we process a query, we must check that the caller hasn’t asked
for a column that doesn’t exist @. If they did ask for a column we haven’t heard of,
then we throw an exception.

Now we need to figure out what to query from our database. We use the URI that
the user supplied to determine whether they’re asking for all of the movies (like we
saw in figure 8.8) or asking for the details of a particular movie (like we see in fig-
ure 8.9). If they’re asking for all of the movies ©, then we can use the query method
parameters to directly query the SQLite database. Alternatively, if they asked for the
details on a particular movie @), then we need to parse the URI to get the ID of that
movie, so we can use it as part of the query. We must also check whether they asked
for the categories associated to the movie @, as these are stored in a separate (join)
table. If they do ask for the categories, then our query gets more complex, as we must
perform a join.

DISCUSSSION
The code in listing 8.11 gets complex when creating a join. This complexity shields the
users of the provider, making it seem simple for them to ask for categories and not have
to make multiple calls to the ContentProvider. Compare this with our contacts exam-
ple from the previous technique, where we had to make three different queries to get
four pieces of data. The ContentProvider made us manually do the joins ourselves. If
you’re creating your own ContentProvider, you can choose the right balance between
exposing the underlying database schema to your user or providing abstractions.
Once you’ve created a ContentProvider, the question becomes how other apps
will use it. All the clients need to know is the URI(s) of the provider, plus the names
and types of the columns (schema). Some variant of this information is what’s needed
for any kind of data sharing, whether by Intents, AIDL, or ContentProviders. You
could provide this information as a set of classes with everything supplied as constants,
similar to what’s provided in the Android SDK. You could even package this minimal
set of classes as a JAR or maybe even a library project, to make it easy for others to inte-
grate into their apps.

Summary

This chapter could’ve easily been called “Android application integration.” Being able
to integrate apps together to create greater value to the end user is one of the key fea-
tures of Android that sets it apart from other mobile operating systems. By default
Android’s security model can make your app “run in a silo.” All of its data is locked
away from other applications. You don’t have to do anything special to get that kind of
security and lockdown. But for the times when you want to allow other apps to share
data and integrate with your app, you have a lot of options. There’s no need to hack
around the OS: the possible integration points are clearly defined.

294

CHAPTER 8 Sharing data between apps

In our first app back in chapter 2, we allowed users to share the daily deal they
were looking at it with other applications. Which apps? It depended on what the user
had on their device, as we used an Intent to do the sharing. If you’ve used Android
much for your personal smartphone needs, then you may have noticed that this kind
of sharing has become the norm. Whether it’s a web page, a picture, or some plain
text, users expect to be able to use other apps to share it with their friends. And this is
a good thing. Now that we’ve examined the many ways for apps on the same device to
talk to each other, let’s take a deeper look at how our apps can talk to other computers
over the network.

HTTP networking
and web services

In this chapter

®m Networking with HTTP

® Parsing XML and JSON

= Dealing with network failures

It’s not a big truck. It’s a series of tubes.
—Ted Stevens

Without a doubt, one of the most exciting technological advancements of mobile
phones has been the leap from slow, limited mobile network stacks such as GPRS
(General Packet Radio Service) plus WAP (the Wireless Access Protocol) to full-
blown web clients. Even though the Web existed and rapidly grew back in those
days, WAP was born out of sheer compromise: GPRS data connections were slow,
and phones back then had small displays and weren’t particular powerhouses
either, making a desktop-like web experience impossible. The compromise was that
WAP didn’t allow you to access the entire Web, but instead locked you down to spe-
cial, trimmed-down sites written in the Wireless Markup Language (WML), not HTML.

295

296

9.1

CHAPTER 9 HTTP networking and web services

As we’re writing these lines, 4G data connections with transfer rates of about 100Mbit
per second are on the rise. That’s more than enough to stream high-definition videos
to your phone. The Motorola Atrix 4G sports a 1 GHz CPU, plenty of RAM, and a high-
resolution OLED screen roughly as big as your palm. That’s more high-tech in a few
inches than you’d find in most desktop machines available when WAP was introduced.
This allows us to run the full web protocol stack plus a full-featured web browser on
mobile phones today. Any given minute, you're carrying the entire World Wide Web
in your pocket—think about it!

Clearly, this opens up a wide range of possibilities for mobile application develop-
ment on a modern platform such as Android. You can render web pages in your appli-
cation or pull live content from web services using standard web protocols such as
HTTP. More and more websites make their contents available to web clients in
machine-readable formats such as XML and JSON, often free of charge. Examples of
websites that already expose free, public web services include (and are by no means
limited to) Amazon, Twitter, eBay, Netflix, and Qype. This allows you to create your
own book browser, your own Twitter client, your own movie or local reviews applica-
tion. The possibilities are practically endless.

Android has a wide range of framework classes that support you here, from moni-
toring your phone’s Wi-Fi and data connections to HTTP messaging and marshalling
data from and to XML and JSON. This chapter shows you all of that in eight bite-sized
techniques. We’ve divided this chapter into three sections: section one deals with
HTTP as the web’s driving protocol and how to send HTTP requests on Android. Sec-
tion two then shows you how to parse XML and JSON documents, the two most com-
monly used data interchange formats used in web services these days. Finally, section
three wraps up the chapter with more advanced networking techniques such as how
to gracefully recover from network failures, and how to properly react to changes in
connectivity while the user is on the move.

Basic HTTP networking

If you find yourself loading content from the Web, chances are it’ll traverse the wire
using HTTP. The Hypertext Transfer Protocol, an application layer protocol (OSI layer 7)
that was initially created to merely transfer HTML pages from a web server to a web
browser, has become the driving force behind web-based content today. It’s even begun
to replace more specialized protocols, such as FTP, for reliable data transfer. HTTP is a
prime example of how strikingly powerful even a simple solution can be. HTTP mes-
sages are text-based, so humans can read them. HTTP is also flexible and can be
adopted to many different domains by leveraging features such as HTTP header fields
to transmit domain-specific metadata alongside the message payload. HTTP also has an
extremely simple interface: only seven different commands are supported—the HTTP
verbs, which can be thought of as functions. These are GET, POST, PUT, DELETE, HEAD,
OPTIONS, and TRACE, of which only the first three are widely used. Success or failure in
an HTTP conversation is mapped to a series of standardized status codes, which again

TECHNIQUE 41 HTTP with HttpURLConnection 297

GET /go-mobile HTTP/1.1 }requesnine

Host: www.qype.com

¢ header fields Figure 9.1 AnHTTP requestis a
Accept: text/html few lines of ASCII text containing
instructions and options, plus an
optional request body (the mes-
sage payload). HTTP has become
a primary means not only for
requesting web pages, but also

for transferring binary data or
invoking web services and
remote methods.

are generic enough that they can be mapped to different domain requirements easily.
Figure 9.1 shows what a typical HTTP request looks like. It’s all plain text; go ahead and
try it. Go to the command line, telnet to qype.com on port 80, and type in the request
line and header fields (send the request by hitting the Return key twice; this will gen-
erate the character sequence CR+LF+CR+LF, which demarcates an HTTP request).

For these reasons, HTTP has also been adopted to serve as the typical vehicle of
communication between a web client and a web service, where it’s sometimes used as
a first-class protocol (as is the case for RESTful web services, where HTTP steers the
communication). Often, HTTP is (ab)used as a mere transport (as is the case with
most SOAP or XML/RPC-based web services, where HTTP usually merely carries the
payload). We won’t turn this into a discussion about the nature of different web ser-
vices, but it’s important to stress how fundamental HTTP is for mobile applications
that want to connect to the Web.

First, let’s focus on the basics. We’ll start in technique 41 by demonstrating how to
send simple HTTP requests to a web server using Java’s standard HTTP networking
facilities, a fast and simple approach that comes with the least overhead. We’ll then
introduce the more complex Apache HTTP components bundled with Android. This
is your full-fledged but heavyweight HTTP solution on Android, and we’ll make this
more approachable by revisiting the MyMovies application (yes, again) over the
course of this chapter, starting with maintaining a simple HTTP connection to a web
service in technique 42. Technique 43 will then show you how to tweak HTTP connec-
tions to fit our mobile use case. Let’s go unlock the Web!

(request data) message payload

HTTP with HttpURLConnection

Before jumping directly to more complex solutions, it should be said that the stan-
dard Java class library already comes with a mechanism for sending and receiving
HTTP messages. These classes, or more precisely, an open source implementation of
them, also come with Android’s Java class library. Java’s HTTP implementation is sim-
ple and bare bones in its structure, and supports features such as proxy servers, cook-
ies (to some degree), and SSL. Moreover, alternative HTTP solutions are often

298

CHAPTER 9 HTTP networking and web services

wrappers around the standard Java interfaces. If you don’t need all the abstraction
provided by, for example, the Apache HttpClient interfaces (which we’re going to
cover in the next technique) the stock Java classes may not only be sufficient for sim-
ple tasks. They also perform well, thanks to a slim, low-level implementation.

PROBLEM

You need to perform simple networking tasks via HTTP, such as downloading a file,
and you want to avoid the performance penalty imposed by the more high-level,
much larger and more complex Apache HttpClient implementation.

SOLUTION

In these cases, Java’s baked in HTTP classes are a good choice. More precisely, the two
classes you want to turn to are URL and HttpURLConnection, both of which can be
found in the java.net package. These two classes work in conjunction with each
other; you can’t use one without the other. To send an HTTP request, you first define
the URL the request should go to, and then use the same URL object to get a handle to
a matching HttpURLConnection. URL therefore, acts as a factory class: you pass it the
schematics (the web address) and it spits out a fitting connection object. Codewise,
this may look like the following:

URL url = new URL("http://www.example.com/") ;
HttpURLConnection conn = (HttpURLConnection) url.openConnection() ;
conn.connect () ;

conn.disconnect () ;

Wait, you say. Can’t a URL represent an address to any kind of server, not just HTTP?
Correct! As it turns out, HttpURLConnection inherits from the more generic URLCon-
nection, which represents a general-purpose data connection to some server using
some protocol. Now, how does URL know what kind of connection to return? The sim-
ple answer is that it depends on the URL’s scheme (such as http). A protocol handler
class looks at the scheme and tries to find a matching connection implementation.
The Java class library (and Android) already provides protocol handlers for all com-
mon schemes such as HTTP(S), FTP, MAILTO, FILE, and so on, so typically you don’t
have to worry about that. This also means that you’re free to create your own protocol
handlers that instantiate your own custom URLConnection, but this is something you
rarely need to do, so we’re not going to cover it here.

Another thing worth mentioning is that URLConnection uses TCP sockets and the
standard java.io stream classes. That means I/O is blocking, so remember to never
run them on the main UI thread.

Let’s see how it works in a practical example. We want to extend the MyMovies
application to display a message dialog with the latest news downloaded from a web
server, so that the user is always up-to-date about what has changed in the latest
release. For this to work, we have to place a text file containing the update notes some-
where on a web server, download and read the file, and display its text in a message
dialog. Figure 9.2 shows what that will look like.

TECHNIQUE 41 HTTP with HttpURLConnection 299

M@ 9:42.am

o What's new

this is new:
- latest update news
- get movie details from IMDB

Figure 9.2 On every application start, we show a message
dialog to the user with the latest update notes. The text in the
dialog is fetched from a web server instead of being bundled
with the APK.

GRAB THE PROJECT: MYMOVIESWITHUPDATENOTICE You can get the
source code for this project, and/or the packaged APK to run it,
at the Android in Practice code website. Because some code listings
here are shortened to focus on specific concepts, we recommend
that you download the complete source code and follow along
within Eclipse (or your favorite IDE or text editor).

Source: http://mng.bz/mvwd, APK file: http://mng.bz/DRKz

For simplicity, we’ll show the dialog on every application start, a detail that would
probably annoy your users if this was a production release, but that serves our pur-
poses well enough. The plan is to write an AsyncTask that establishes a connection to
an HTTP server via HttpURLConnection and download the file containing the update
notes text. We then send this text via a Handler object to our main activity so we can
show an AlertDialog with that text. Let’s first look at the MyMovies activity class,
which contains the callback for the handler to show the pop-up dialog. Apart from the
code that creates the dialog, this should all be familiar to you by now (code that didn’t
change from previous listings has been omitted for brevity).

Listing 9.1 MyMovies.java has been modified to show an update pop-up dialog

public class MyMovies extends ListActivity implements Callback {
private MovieAdapter adapter;

public void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState) ;

setContentView (R.layout.main) ;

Starts new
new UpdateNoticeTask (new Handler (this)) .execute () ; download task

http://mng.bz/mvwd
http://mng.bz/DRKz

300

}

CHAPTER 9 HTTP networking and web services

{ Reads

public boolean handleMessage (Message msg)
update text

String updateNotice = msg.getData() .getString("text");
AlertDialog.Builder dialog = new AlertDialog.Builder (this);
dialog.setTitle ("What's new") ;
d%alog.setMessage(up?ateNotice); . . . Setsupdate
dialog.setIcon(android.R.drawable.ic_dialog_info) ; text
dialog.setPositiveButton (getString(android.R.string.ok),
new OnClickListener () {
public void onClick(DialogInterface dialog, int which) {
dialog.dismiss () ;
}

I
dialog.show () ;
return false;

Except for the few lines of code that spawn the dialog, this should all look familiar to
you from reading the previous chapters. More interesting is the UpdateNoticeTask

that we launch in the last line of onCreate because that’s where the download pro-

ceeds. The source code follows.

Listing 9.2 An AsyncTask that downloads update text via Ht tpURLConnection

public class UpdateNoticeTask extends AsyncTask<Void, Void, Strings>

private static final String UPDATE URL =
"http://android-in-practice.googlecode.com/files/update notice.txt";

private HttpURLConnection connection;
private Handler handler;

public UpdateNoticeTask (Handler handler) {
this.handler = handler;
}

@Override
protected String doInBackground (Void... params) { Getin“a“CQOf
try { HttpURLConnection
URL url = new URL(UPDATE_URL) ;
connection = (HttpURLConnection) url.openConnection() ;
connection.setRequestMethod ("GET") ;
connection.setRequestProperty ("Accept", "text/plain"); Configure
connection.setReadTimeout (10) ; request
connection.setConnectTimeout (10) ;
connection.connect () ;
int statusCode = connection.getResponseCode () ; Establish
if (statusCode != HttpURLConnection.HTTP OK) { connection
return "Error: Failed getting update notes";
}
return readTextFromServer () ; Read Hange
} catch (Exception e) { text from ::nl- 00
return "Error: " + e.getMessage() ; response PY
} finally {

if (connection != null) {

TECHNIQUE 41 HTTP with HtthURLConnection 301

connection.disconnect () ; Close

} connection

}

private String readTextFromServer () throws IOException {
InputStreamReader isr =
new InputStreamReader (connection.getInputStream()) ;
BufferedReader br = new BufferedReader (isr) ;

StringBuilder sb = new StringBuilder();
String line = br.readLine();
while (line != null) {

sb.append(line + "\n");

line = br.readLine() ;

}

return sb.toString() ;

}

@Ooverride Pass retrieved

protected void onPostExecute (String updateNotice) { text to activity
Message message = new Message() ;
Bundle data = new Bundle() ;
data.putString("text", updateNotice) ;
message.setData (data) ;
handler.sendMessage (message) ;

}

After reading the URL from the parameters, the first thing we have to do is use that URL
object to retrieve an instance of a fitting URLConnection instance @ (an HttpURL-
Connection in this case because our URL has the http:// scheme). Note that the call
to openConnection doesn’t yet establish a connection to the server; it merely instanti-
ates a connection object. We then configure our HTTP request @. We first tell it that it
should use the GET method to request the file (we could’ve omitted this call because
GET is the default), and set an HTTP Accept header to tell the server what kind of doc-
ument we expect it to return (plain text in this case). We also set proper timeouts so
that the call won’t block eternally when there are connectivity problems. The request
is now configured and can be sent to the server by a call to connect €. Depending on
the server reply, we either return an error message if we receive a status message that
wasn’t 200/0K @ or proceed to read the text from the response body @. Don’t forget
to close the connection when you’re done processing the response @. Finally, we send
the text we received from the server to our main Activity using the Handler, in the same
manner as shown in chapter 6 @.

DISCUSSION

The example here was extremely simple, the simplest kind of request you can send. For
these scenarios, Ht tpURLConnection does the job well, and it comes with practically no
overhead. One problem we see with it is its class architecture. HttpURLConnection
shares a large part of its interface with the general purpose URLConnection (because it
inherits from it), which means that some abstraction is required for method names. If
you’ve never used HttpURLConnection before, you've probably pondered the call to

302

CHAPTER 9 HTTP networking and web services

setRequestProperty, which is the way to set HTTP headers—not intuitive. This is
because implementations for other protocols may not even have the concept of header
fields, but would still share the same interface, so the methods in this class all have
rather generic names.

Though this may sound purely cosmetic at first, it introduces another problem:
URLConnection’s lack of a proper separation of concerns. The request, response, and
the mechanisms to send and receive them are merged into a single class, often leaving
you wondering which methods to use to process which part of this triplet. This is like
putting a five-course meal into a blender: you can still serve it, but it’s disgusting. It
also makes each part difficult to customize and even more difficult to mock out when
writing unit tests, something we’ll focus on in chapter 13. It’s not a beaming example
of good object-oriented class design.

There are more practical problems with this class. If you find yourself in a situation
where you need to intercept requests to preprocess and modify them, HttpURLCon-
nection isn’t a good choice for sending HTTP requests. A good example is message
signing in secure communication environments, where the sender needs to compute
a signature over a request’s properties and then modify the request to include the sig-
nature. That’s because request payload is sent unbuffered, so there’s no way to get
your hands on it in a nonintrusive way. Last but not least, HttpURLConnection in
Apache Harmony has bugs—serious bugs. One of the major bugs is detailed in the
sidebar “HttpURLConnection and HTTP header fields.”

HttpURLConnection and HTTP header fields

As you already know, the Java class library bundled with Android is based on Apache
Harmony, the open source Java implementation driven by the Apache foundation. In
Android releases up to and including 2.2 (FroYo, API level 8), there’s a serious bug
that affects HTTP messaging using Ht tpURLConnection: it sends HTTP header field
names in lowercase. This doesn’t conform to the HTTP specification, and breaks many
HTTP servers because they’ll drop these header fields. This can have a wide array of
effects, from documents being served to you, which aren’t in the format you requested
(for example, the Accept header field was ignored) or requests to protected resources
fail entirely because the server didn’t recognize the Authorization header field. The
issue has been resolved in Android 2.3 (Gingerbread, API level 9), but often you want
to support older platform versions, too. A workaround is to not use Ht tpURLConnec-
tion at all, and use Apache HttpClient instead, which we're going to introduce in
the next technique. You can find the official issue report at http://mng.bz/6T1l.

To summarize, HttpURLConnection is a simply structured, but low-level way of doing
HTTP messaging. A few negative aspects about it stand out:

= Its clunky interface makes it difficult to use

= Its monolithic design and lack of object-orientation impede testability and con-
figuration/customization

= It suffers from bugs that can turn out to be show stoppers

http://mng.bz/6T1I

TECHNIQUE 42 HTTP with Apache HttpClient 303

For simple tasks such as the file download shown here, it’s fine and comes with the
least overhead (it doesn’t take a sledgehammer to crack a nut). But if you want to do
more complex things such as request interception, connection pooling, or multipart
file uploads, then don’t bother with it. There’s a much better way to do this in the Java
world, and thanks to the engineers at Google, it’s bundled with Android!

HTTP with Apache HttpClient

If you find that Ht tpURLConnection doesn’t cut it for you, but you don’t want to add
another 200 KB of library dependencies to your application, then we have good news:
you don’t have to. As part of the SDK, Android ships the Apache HTTP Components
libraries, an open source Java implementation of the HTTP specification that rose
from the Apache Jakarta and Apache Commons umbrella projects.

The Apache HTTP Components are composed of two parts: HttpCore, a set of low-
level classes for handling HTTP connections, and HttpClient, a more high-level set of
classes built on top of HttpCore, which is used to implement typical HTTP user agent
software (any applications that connect to a web server). Think of HttpCore as the
chassis, the underpinnings, whereas HttpClient is the final package, including
chrome rims and wide-base tires. Unlike the slim and bare-bones Ht t pURLConnection,
the Apache implementation is high-level, heavy, and powerful, and lets you perform
complex tasks using few lines of code. It has standard, ready-to-use facilities to cope
with things such as concurrent requests and connection pooling, retrying and inter-
cepting requests, and more. Compared to HttpURLConnection, it also exposes much
nicer, strictly object-oriented interfaces, making it easy and intuitive to use at the same
time—a beautiful beast!

PROBLEM

You're implementing an HTTP user agent, such as a web service consumer, and you
want a fully featured, powerful, yet easy-to-use solution to handle the HTTP communi-
cation with the server.

SOLUTION

In this technique, we’ll rewrite the code from the previous technique to use Apache
HttpClient instead of HttpURLConnection to perform the file download. This exer-
cise will give you a feel for their key differences.

GRAB THE PROJECT: MYMOVIESWITHHTTPCLIENT You can get the
source code for this project, and/or the packaged APK to run
it, at the Android in Practice code website. Because some code
listings here are shortened to focus on specific concepts, we rec-
ommend that you download the complete source code and fol-
low along within Eclipse (or your favorite IDE or text editor).

Note that all changes introduced by the techniques in the
remainder of this chapter are already part of this APK, so this is
the last file you need to download in this chapter.

Source: http://mng.bz/iR21, APK file: http://mng.bz/QLuf

http://mng.bz/iR21
http://mng.bz/QLuf

304 CHAPTER 9 HTTP networking and web services

.optional
LS
s)\
HttpContext
HttpRequest
S hmpEnity 3 [T] = T5
HtpClient ~ N HTTP
server
HttpResponse
ey s [T
. S =
application S

Figure 9.3 The key objects in an Apache HttpClient-based HTTP conversation. Note
how each part of the client/server conversation is represented by a separate class.

Communication with an HTTP server via Apache HttpClient typically involves five
different interfaces that are fundamental to request execution so you will deal with
them frequently. These are HttpRequest (and its implementations HttpGet, Http-
Post, and so forth) for configuring requests, HttpClient for sending requests,
HttpResponse for processing a server response, HttpContext to maintain state of the
communication, and HttpEntity, which represents the payload that’s sent with a
request or response. The library has many more classes, but you’ll work with these
most often. Figure 9.3 shows how these classes play together to establish and process
an HTTP connection.

Unlike with HttpURLConnection, which is an HTTP client, connection, request and
response in one single unit, here you have to think about proper scoping of the
objects represented in figure 9.3. Typically you have one HttpClient object per appli-
cation (it makes sense to encapsulate it in your Application class or maintain it as a
static field), one HttpContext object per request-response group, and one Http-
Request and HttpResponse respectively per request you make.

NOTE HttpContext is used to maintain state across several request-response
pairs, but don’t confuse it with traditional HTTP sessions (often implemented
via HTTP cookies). HttpContext is a mere client-side execution context; think
of it as attributes you can maintain and track across several requests. If you
don’t know what this is useful for then chances are you won’t need it. In fact,
because most people don’t need it, the default execute method of HttpCli-
ent will create and maintain an execution context for you, so you can ignore
it. For these reasons, we won’t mention HttpContext again.

Let’s rewrite our simple update notes feature to use HttpClient instead of Ht tpURL-
Connection. We’ve encapsulated all HTTP-specific code to the doInBackground

TECHNIQUE 42 HTTP with Apache HttpClient 305

method of our task, so we’ll focus on that. Here’s the new code (again, we’ve left out
the parts that didn’t change from the previous listing).

Listing 9.3 UpdateNoticeTask rewritten to use HttpClient for downloading the file

public class UpdateNoticeTask extends AsyncTask<Void, Void, String>

@Ooverride GET request
protected String doInBackground (Void... params) { from URL

try {

HttpGet request = new HttpGet (UPDATE URL) ; Configure
request .setHeader ("Accept", "text/plgin"); requeStheader
HttpResponse response = MyMovies.getHttpClient ()

.execute (request) ; Send
int statusCode = response.getStatusLine () .getStatusCode () ; request
if (statusCode != HttpStatus.SC OK)

return "Error: Failed getting update notes";
}
return EntityUtils.toString(response.getEntity()) ; Read
} catch (Exception e) ({ response
return "Error: " + e.getMessage(); into
} string
}
@Override

protected void onPostExecute (String updateNotice) {

}

}

We first create a GET request from the given URL @ (see also listing 9.2), and config-
ure it to expect a plain text file ®. We then “exchange” the request object for a
response object using a call to HetpClient.execute €. Note that we get this object
from the main Activity using a static getter. We’ll learn in the next technique how
this shared HttpClient instance is set up. The call to execute will effectively open the
connection and send the request using a default execution context (there’s also a vari-
ant of this method that takes a custom HttpContext), but it won’t yet retrieve the
response body. To read the text from the response body (represented as an Http-
Entity if you recall from figure 9.3), we use a helper function shipped with the library
that reads from an InputStream into a string 0, which means it does much the same
thing we did manually in the previous technique.

DISCUSSION

It should be clear that HttpClient exposes a much friendlier interface than
HttpURLConnection if you need to do HTTP messaging on Android. We also find
good separation of concerns: we have separate objects for request and response, we
have a client object to send and receive them, and we have the entity object that
wraps the message payload. We also have helper classes at our disposal that allow us
to instantly process a response by reading it into a string (as shown in the listing), a

306

CHAPTER 9 HTTP networking and web services

byte array, and so on. Another great feature of HttpClient is that if you want sim-
ple, you get simple. If you want to flip every bit, then you can also do that. It’s a good
example of the convention-over-configuration pattern: it works well out of the box
with little setup required, but if your demands are high, you still have the flexibility
to configure every detail. As mentioned before, this comes at a cost: it’s slower and
has a larger memory footprint, so choose carefully which tasks you want to perform
using the swift-but-ugly HttpURLConnection, and which should use the friendly-but-
heavy Apache HttpClient classes.

In this technique, we haven’t paid attention to the concrete type of the HttpClient
instance we used. The most commonly used one is DefaultHttpClient, which sets a
couple of sane defaults for connections based on the HTTP/1.1 protocol version.
These include things such as a default HTTP user agent header, a default TCP socket
buffer size, a default request-retry handler that retries sending a request up to three
times if it’s safe to do so (if we’re dealing with idempotent requests), and so forth. It
also registers a handler for HTTPS (HTTP over SSL) URLs on port 443.

Although it may be tempting to use this default implementation everywhere
because it’s so simple to use (the constructor doesn’t even take arguments, could it get
any simpler?), we’d usually advise against using it in its default configuration. That’s
because it has a major pitfall many developers aren’t aware of, severe enough that
Google decided to ship an alternative implementation with Android 2.2 (API level 8)
that developers are encouraged to use instead. Not all applications can rely on the
recent API level 8 and hence have no access to it, so we’ve decided to add the follow-
ing technique, which shows you how to avoid said problems by properly configuring
the default implementation.

ATTENTION! As mentioned previously, the following technique contains hints
and instructions that for the most part don’t need to be carried out manually
when using Android 2.2 (API level 8) or later because they’re already part of
the AndroidHttpClient class (see the previous Discussion section). If you
plan to develop applications that only target Android 2.2 or newer, you may
consider skipping this technique. We still encourage you to work through this
section because it provides insight into HttpClient and how to tune it to suit
your needs.

Configuring a thread-safe HttpClient

We mentioned in the previous technique that it’s common to maintain only one
instance of HttpClient across an entire application. You could create a singleton
accessor for it and keep a reference in your single application context, or even a static
field somewhere. Doing so means that all parts of your application request the same
HttpClient instance if they need to access the Web. Now imagine you’re running
a couple of AsyncTasks that all use this shared object to communicate with a
web server. Threading and shared state? Does this ring your alarm bells? If not, go back
and read chapter 6 again. Sharing state between different threads always requires

TECHNIQUE 43 Configuring a thread-safe HttpClient 307

synchronization through object locks or volatile fields; otherwise your application may
behave erroneously. The symptoms can be anything from unexpected exceptions to
connection lockups.

The evildoer here is DefaultHttpClient: without further customization, it’ll use a
SingleClientConnManager to handle HTTP connections. This manager doesn’t man-
age anything because it’ll hold only one connection object that will be used for all
HTTP connections. If more than one thread is trying to request the connection at a
time, they’ll race for the single connection object and end up using it all at the same
time! That’s like trying to send two letters to two different recipients on a fax machine
at the same time—it’s not going to work.

Clearly, we need a more sensible way of handling connections if there’s a risk of
several threads trying to access the same HttpClient instance simultaneously.

PROBLEM

You’re running threads that need to communicate with a web server through a single
shared instance of HttpClient, and you must therefore make sure that connections
are established in a mutually exclusive, thread-safe manner.

SOLUTION

The trick here is to tell HttpClient which connection manager to use—preferably a
thread-safe one (one that was designed with parallel access in mind). Fortunately, we
don’t have to implement it ourselves; it’s already part of the library, and is aptly
named ThreadSafeClientConnManager. This connection manager doesn’t handle a
single connection, but a pool of them, where each connection can be taken from
the pool, allocated to a thread (which then has exclusive access to it), and returned
to the pool once the thread yields it. If the same or another thread claims a connec-
tion for the same route, then a connection can be immediately reused from the pool
without the need to first close and reopen it, thereby avoiding the overhead of the
handshake performed by HTTP when establishing a new connection. Figure 9.4 illus-
trates how that works.

_:%%(HittpClient

| ThreadSafeClientConnManager I

Figure 9.4 Using

/ \ ThreadSafeClient-

L —"execute) gotfree ConnManager, a free

L — LS

wokarthesd N Srrvchon connectlop is taken from
a connection pool when-

~

—_— ever a thread wants to
I T send an HTTP request.

Once the thread closes

I R @ I the connection, the man-
\/ N) ager doesn’t close it, but
connection pool puts it back into the pool

for other threads to reuse.

308

CHAPTER 9 HTTP networking and web services

NOTE Connection pooling isn’t based on thread identity (the same thread get-
ting the same connection back every time), but on routes. A request’s route in
HttpClient is defined by the series of hosts it’ll traverse (the hops, such as when
using proxy servers) and whether it’s layered or tunneled, which is the case when
doing HTTP over SSL (HTTPS). This means that a connection for a request can
only be reused from the pool when the request goes to the same target host via
the same intermediate hosts using the same layering or tunneling parameters.

One caveat with setting a connection manager manually is that you need to supply a
set of HTTP configuration parameters and a protocol scheme registry, even if you
don’t want these things to be different from what DefaultHttpClient uses by default
with its SingleClientConnManager.

WHERE CAN XML CONFIGURATION BE USED? A question we’ve heard before is:
Because Android supports defining and configuring strings, layouts, views,
and more in XML files, does this mean I can configure all parts of the plat-
form in XML rather than programmatically in code? The answer, unfortu-
nately, is no. XML, as a means of configuration, can only be used for resources
such as views and the application manifest. Anything else you’ll have to write
out in Java code, including your HTTP configuration.

The following shows what a minimal setup could look like, and again, we’ll step
through the code (here we’ve decided to manage the client object as a static reference
in the MyMovies activity).

Listing 9.4 You can use a static initializer to set-up a thread-safe Ht tpClient instance
public class MyMovies extends ListActivity implements Callback { Create static

private static final AbstractHttpClient httpClient; . ref to client

. Static

static { initializer creates object
SchemeRegistry schemeRegistry = new SchemeRegistry();
schemeRegistry.register (new Scheme ("http", PlainSocketFactory

.getSocketFactory (), 80)); .
Register default
ThreadSafeClientConnManager cm = scheme
new ThreadSafeClientConnManager (Create thread-
new BasicHttpParams(), schemeRegistry) ; safe manager
httpClient = new DefaultHttpClient (cm, null); Create
} customized
DefaultHttpClient

public static HttpClient getHttpClient () {
return httpClient;

}

}

Unlike the previous technique, we don’t create the DefaultHttpClient using the
default constructor. Instead we hold a final static reference to it @ and do the custom

TECHNIQUE 43 Configuring a thread-safe HttpClient 309

setup in the static initializer block @. We can pass this instance around using a public
static getter method. For setting up the client object, we first must provide a scheme
registry €. The scheme registry is responsible for resolving a URI scheme (such as
http or https) and port number (80) to a TCP socket created by an appropriate
socket factory. Using the scheme registry and a default set of connection manager
parameters, we can create the ThreadSafeClientConnManager 0, which we can then
use to configure the HTTP client object @. Note how we pass a new instance of Basic-
HttpParams to the manager instance, but pass null for the parameters to the new
instance of DefaultHttpClient. This is an inconsistency in the library: passing null to
the client constructor implies that it’ll create a parameter set itself and set some sane
defaults. We’re not allowed to pass null to the manager though; it expects a valid
HttpParams instance. If it doesn’t have any values set, the manager will still fall back to
the defaults. Either way, we’re using the default parameter values chosen by the library
here. If you find the HttpParams confusing, don’t worry; we’ll come back to that with
some more examples.

DISCUSSION

As you can see, it only takes a couple of lines of code to get a client implementation
that’s safe to use in concurrent applications. Unless you’re certain that no more than
one thread will ever try to open a connection, you should always use the approach
shown here because it makes sure that connection handling is properly isolated
between threads using Java’s synchronization mechanisms. Using this setup, you can
fire away HTTP requests in one thread without having to worry about other threads
doing the same thing at the same time!

As said previously, we were using default parameters for the connection manager
and the client instance. But what does that mean, and what parameters are there to
choose from? First, any HttpParams instance is a map of key/value pairs. Which
entries are of concern for the object you pass that map to (the connection manager)
is solely defined by that object itself. For example, any ClientConnManager defines the
parameters it supports in the ConnManagerParams class, where you find helper meth-
ods to get and set the parameters.

ThreadSafeClientConnManager for instance sets the default values for the maxi-
mum number of total connections to 20, and the maximum number of connections per
route to 2. Because we want to prepare our MyMovies application to communicate with
aweb service in the forthcoming techniques, let’s choose more sensible numbers here:

HttpParams connManagerParams = new BasicHttpParams();
ConnManagerParams.setMaxTotalConnections (connManagerParams, 5) ;

ConnManagerParams . setMaxConnectionsPerRoute (connManagerParams,
new ConnPerRouteBean (5)) ;

ThreadSafeClientConnManager cm =
new ThreadSafeClientConnManager (connManagerParams,
schemeRegistry) ;
We’ve taken the setup code from listing 9.4 and set the maximum number of both
per route and total connections to the same value because all requests will go to the

310

CHAPTER 9 HTTP networking and web services

same host via the same port, so it makes sense to set them to the same value. We’ve
also reduced the value to 5 because we don’t want too many concurrent connec-
tions at once.

So far so good, but we can customize even more—the client object itself for
instance. It always makes sense to set a default HTTP user agent, so the application can
identify itself to the web service. We also want to reduce the timeouts for establishing a
connection and idle time when retrieving data because this can happen frequently on
a mobile device:

HttpParams clientParams = new BasicHttpParams() ;

HttpProtocolParams.setUserAgent (clientParams, "MyMovies/1.0");

HttpConnectionParams.setConnectionTimeout (clientParams, 15 * 1000) ;

HttpConnectionParams.setSoTimeout (clientParams, 15 * 1000) ;

httpClient = new DefaultHttpClient (cm, clientParams) ;
You can customize plenty more, but these are good defaults when accessing a web ser-
vice. Your mileage may vary, depending on the kind of communication you plan to do.
Now that you’ve seen how to fully customize an HTTP client instance, we can tell you:
if you're targeting Android 2.2 or above, you don’t have to do anything shown in this
technique yourself! As we mentioned briefly before, Android bundles a custom imple-
mentation of HttpClient called AndroidHttpClient with that version. This imple-
mentation has already been optimized for mobile use, and it does all the stuff like
setting proper timeouts and a thread-safe connection manager. It also supports HTTPS
by default. In order to use it, you'd replace the code at @ in listing 9.4 with this:

httpClient = AndroidHttpClient.newInstance ("MyMovies/1.0");

You can again customize it further using any of the parameters you’ve learned in this
technique; after all, it’s another implementation of HttpClient, so it accepts the same
calls and parameters. Note that the string we pass to newInstance will become the
HTTP User Agent header field sent with every HTTP request. This is equivalent to the
call to HttpProtocolParams.setUserAgent (clientParams, "MyMovies/1.0") from
the previous code snippet.

On top of choosing good configuration defaults, AndroidHttpClient also sup-
ports gzipped message payload (web services often compress their responses to con-
serve bandwidth for the client) and a cURL logger; which prints every request out in the
format used by the ¢URL tool, so you can easily repeat requests on the command line. If
you’re not using Android 2.2 or later, but still don’t want to handle all this stuff your-
self, you may want look a the ignition utility library (https://github.com/kaeppler/
ignition), which bundles most of these optimizations as part of its IgnitedHttp class
(with a few other abstractions and features that make HTTP even easier to use
on Android).

Looks like we’re set to connect the MyMovies application to a web service. How

about fetching some movie data from the live Web? Let’s see how that works.

https://github.com/kaeppler/ignition
https://github.com/kaeppler/ignition

9.2

Consuming XML and _JSON web services 311

Consuming XML and JSON web services

In the first section of this chapter, you saw how to connect to the Web and download
data via HTTP. This is sufficient if you want to download a file to store it on the device
or display its contents as-is, as with our update notification downloader. Most mobile
applications that connect to the Web do so for a different reason though: They want
to retrieve data from a web service.

DEFINITION A web serviceis a set of server-side interfaces exposed on the Inter-
net using web technologies such as HTTP for data transfer or XML and JSON
for data serialization. Unlike web sites, web services are meant to be con-
sumed by machines, not human beings.

Because the data backing a web service is always structured (it’s typically served from a
database-driven back end), it must be serialized in some way so that it can be trans-
ferred over the wire and reconstructed on the client side without losing this structure.
Data serialization (also called marshalling) is therefore the task of turning data such as
table rows or objects into some ordered, well-structured, stable format. The client can
then deserialize the service response into a representation of the data it can under-
stand (such as a Java object). Figure 9.5 illustrates how communication between a web
service and a mobile client typically looks.

This process is like writing a letter to someone: you're bringing your thoughts,
which are stored safely in your head (the “database”), to paper by writing one word
after another on a sheet of paper: you're serializing your thoughts! You may have
noticed that we made two fundamental assumptions for this process to work: first, the

data flow <?xml ... 7>
—_——— <object>
<a»l : i
hunk application
</object>
Web service I|a_1 object

HTTP

b = "hunk" o

object table object in relational form

1, hunk
object serialized to XML

database

object deserialized to Java

Figure 9.5 A typical data serialization/deserialization scenario in a web
environment. An application requests an object from a web service via HTTP, where
the object is first read from a database table, is then serialized to XML, transferred
via HTTP, and finally deserialized by the application into a Java object.

312

CHAPTER 9 HTTP networking and web services

sender and receiver must speak the same language, and second, they must both use
the same medium to exchange information; otherwise the communication will fail.
We call a format that can be used to exchange information in a way understandable by
many a common inlerchange format, and the transmission medium or format the trans-
port. In our analogy, the language is the common interchange format, whereas the let-
ter is the transport. On the Web, the common interchange format is usually either
XML (the Extensible Markup Language) or JSON (JavaScript Object Notation),
whereas the transport is usually HTTP.

We’ve already seen how to transmit data using HTTP in the previous section. Now,
we’ll show you how to consume XML and JSON responses coming from a web service.

NOTE We’re talking about XML and JSON in the context of web services here,
because we’re going somewhere with this as part of the overall chapter. This
does not mean that the techniques in this section are only meaningful in a
web context! Anything related to parsing XML or JSON in this chapter can be
used to parse such documents from any source, including a simple file on the
device. We think it’s fun to connect to a web service in order to demonstrate
these techniques.

The roadmap for the remainder of this section is as follows: we’ll start with XML parsers

because it’s the most common format used on the Web for exchanging information.

Specifically, we’ll show you two different ways of
. . G @ 5:51em

parsing XML: SAX (technique 44) and XmlPull

(technique 45). If you're familiar with XML APIs,

note that we decided not to discuss the DOM API,

because it has performance problems that make it

poorly suited for a mobile device. If you need a solu-
tion that like DOM buffers the document in memory
entirely, there’s a much more lightweight approach: IMDb rating for "Inception"
JSON, which we’ll discuss in technique 46. To make
things more interesting, we’ll add a new feature to 8_8
the MyMovies application: long pressing a list ele-
ment will now fetch live data in form of a movie rat-
ing from the TMDb (The Movie Database) web
service. Parsing the response will then be imple-
mented using the three alternatives presented here.
Figure 9.6 shows what it’s going to look like.

To cope with this somewhat complex new fea-

Figure 9.6 Long pressing any of the
o . .) movie list elements will dispatch a
existing classes in the application: call to the TMDb movie web service

ture, we had to make some small changes to the

1 We added a Movie class (a POJO with ID, title, and r etrieve mfo"flat'on al.aout that
movie. From that information, we

and rating fields) where the toStringmethod ghow the official IMDb rating in a
returns the movie title. pop-up dialog.

Consuming XML and _JSON web services 313

2 We changed the list adapter to manage Movie objects, not strings (we changed
its type from ArrayAdapter<Strings to ArrayAdapter<Movies). If you put any-
thing that’s not a string in an ArrayAdapter, the adapter will then use the
object’s toString method to get the label for the list item (in our case, the
movie name), so nothing will change in terms of behavior.

3 We added the OnItemLongClickListener interface to the MyMovies activity
where we start a new AsyncTask that will communicate with the TMDb web ser-
vice. The source code for this task will be shown in a second.

We’ll spare you the details of these changes here because they’re minimal and don’t
contain anything new or relevant for this chapter (you can look at the full source code
online if you’re interested), but the new task class which connects to TMDDb is worth
alook.

Listing 9.5 GetMovieRatingTask retrieves a movies’s IMDb rating from a Web service

public class GetMovieRatingTask extends AsyncTask<String, Void, Movies> {

private static final String API_KEY =
"624645327£33£7866355b7b728£9cd98";

private static final String API_ENDPOINT =
"http://api.themoviedb.org/2.1";

private static final int PARSER _KIND SAX = 0;
private static final int PARSER_KIND XMLPULL = 1;
private static final int PARSER KIND JSON = 2;

private int parserKind = PARSER KIND_ SAX;
private Activity activity;

public GetMovieRatingTask (Activity activity) {
this.activity = activity;

} Input: IMDb ID;
@Ooverride output: Movie
protected Movie doInBackground(String... params) { object
try .
{ Movie’s

String imdbId = params[0];
HttpClient httpClient = MyMovies.getHttpClient () ;
String format = parserKind == PARSER KIND JSON ? "json" : "xml";
String path =

"/Movie.imdbLookup/en/" + format + "/" + API KEY + "/";

address

Send
HttpGet request = new HttpGet (API_ENDPOINT + path); service
HttpResponse response = httpClient.execute (request) ; request
InputStream data = response.getEntity () .getContent () ;
switch (parserKind) ({ Parse
case PARSER KIND SAX: response

return SAXMovieParser.parseMovie (data) ;
case PARSER KIND XMLPULL:

return XmlPullMovieParser.parseMovie (data) ;
case PARSER KIND JSON:

314

CHAPTER 9 HTTP networking and web services

return JsonMovieParser.parseMovie (data) ;
default:
throw new RuntimeException ("unsupported parser") ;
}
} catch (Exception e) {
e.printStackTrace () ;
return null;

}

@Override Show result
protected void onPostExecute (Movie movie) { in pop-up
if (movie == null) {
Toast .makeText (activity, "Error!", Toast.LENGTH SHORT) .show() ;

}
Dialog dialog = new Dialog(activity) ;
dialog.setContentView (R.layout.movie dialog) ;

dialog.setTitle ("IMDb rating for \"" + movie.getTitle() + "\"");

TextView rating =
(TextView) dialog.findViewById(R.id.movie dialog rating) ;
rating.setText (movie.getRating()) ;

dialog.show () ;

}

This task resolves a movie’s IMDb ID (passed as a String) to a Movie object, which is a
Java object with a couple of fields, such as ID, title, and rating @. We must first con-
struct the path by which this movie is being addressed on the TMDb web service. For
lookups by IMDb ID, the service expects a couple of parameters that are part of the
URL, such as the language (/en) and the response format (/xml). We must also
include the API key, which identifies our application on the web service, and the
movie’s ID @. Note that the API key is shared among all users of the application; you
don’t need to have a key per-user, only per-application. We then send a GET request to
that URL, as learned in the previous techniques €. Now comes the interesting part:
we pass the response body to one of several different parser classes, all of which have
yet to be created @. We’ll develop these parser classes in the following three tech-
niques. If parsing succeeded, we read the relevant fields from the Movie object and
show them in a pop-up dialog @.

This entire class won’t change over the course of this section, except for those two
lines of code that defines the response format in the target URL and the parser invoca-
tion. That’s why we won’t come back to this class again; it’s the glue we use to invoke
our parsers (our focus here), which we’ll focus on hereafter.

Parsing XML with SAX

Let’s forget about the web service for a minute and come back to the topic at hand.
We have an XML document (wherever it comes from)—text structured into a tree
using element nodes and content nodes—and we must somehow turn this textual rep-
resentation into a Java object that we can then use in our application.

TECHNIQUE 44 Parsing XML with SAX 315

There are plenty of ways to do that, and different kinds of XML parsers differ in the
way they process a document. Android bundles three different kinds of parser APIs
(DOM, SAX, and XmlPull), each with their own pros and cons. So what are the differ-
ences between each of these?

STAX SUPPORT Android doesn’t bundle a StAX parser (Streaming API for
XML), which is now part of the official Sun JDK 6 (recall that the Android
class library is based on Java 5). The StAX specification defines another pull-
parser API that can be understood as the standardized successor to XmlPull,
but it’s functionally equivalent and because it’s not part of Android, will be
ignored hereafter.

One aspect by which different kinds of parsers can be classified is whether they need
to load the entire XML document into memory up front. Parsers based on the Docu-
ment Object Model (DOM) do that: they parse XML documents into a tree structure,
which can then be traversed in-memory to read its contents. This allows you to tra-
verse a document in arbitrary order, and gives rise to some useful APIs that can be
slapped on top of DOM, such as XPath, a path query language that has been specifi-
cally designed for extracting information from trees. XPath APIs weren’t part of
Android before the Android 2.2 (FroYo, API level 8) release, so unless you're writing
applications for Android 2.2 or later, you’d have to bundle an XPath implementation
such as Jaxen with your application. Using DOM alone isn’t much of a benefit because
its API is clunky and it’s expensive to always read everything into memory even if you
don’t need to. Hence, DOM parsers are, in most cases, not the optimal choice to parse
XML on Android.

Which brings us to the opposite class of parsers—those that don’t need to load a
document up front. These parsers are stream-based, which means they process an XML
document while still reading it from the data source (the Web or a disk). This implies
that you do not have random access to the XML tree as with DOM because no internal
representation of the document is being maintained. Stream parsers can be further
distinguished from each other. There are push parsers that, while streaming the docu-
ment, will call back to your application when encountering a new element. SAX pars-
ers, discussed in this technique, fall into this class. Then there are pull parsers, which
are more like iterators or cursors: here the client must explicitly ask for the next ele-
ment to be retrieved (XmlPull parsers do that, and will be discussed in the next tech-
nique). Table 9.1 summarizes these parser types.

Table 9.1 The different kinds of XML parsers bundled with Android

XML API XmiPull
Internal model tree-based stream-based stream-based
Retrieval type pull / query push pull

Random access Yes no no

316

CHAPTER 9 HTTP networking and web services

In this technique, we’ll use a SAX parser on Android. SAX is an event-driven push-
parser specification and operates at a low level, so it doesn’t bring any unnecessary
overhead. SAX has been around for ages—since XML got popular—and this reflects to
some extent in its API: it’s somewhat clunky, but also simple and fast.

PROBLEM

You’re looking for a lightweight way to parse XML documents without having to keep
them in-memory at all times. You specifically want a parser that calls back to your
application whenever an element is encountered in the XML document (push).

SOLUTION

Because parsing, using the SAX (Simple API for XML) model, is event-driven, you can
distinguish between the parser that fires the events and the object that receives these
events. The latter is called a SAX handler and must implement the ContentHandler
interface. That’s what we have to do. A convenient way is to inherit from Default-
Handler and only override those parts of its interface that we need. Figure 9.7 shows
how a SAX parser works on a conceptual (and simplified) level.

<?xml ... 2>

<object> L.oe<arl. ..
<arl @0 ———— —
hunk

</object>

Figure 9.7 A SAX
parser streams an XML
document from a Java
InputStream and calls
° callback back to a C.ontent—
Hander object whenever
it has read an entity such
as an XML element or a
text node. It’s in that
sense, event-based,
and pushes content
to the handler.

SAX parser

event: found element "a"

event: found element text "1"

ContentHandler

Before parsing an XML document, we should have an idea of how it’s structured—
what kind of tags we’ll find and how we want to process their values (we may, for
instance, want to parse a numeric string into a Java numeric type). Because the exam-
ple in this chapter fetches the XML from the TMDb service, we should take a closer
look at a typical TMDb XML response to a single movie lookup request (the following
listing has some details shortened for readability).

Listing 9.6 XML response format of TMDb’s Movie.imdbLookup method

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription
xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">
<opensearch:Query searchTerms="tt1375666"/>
<opensearch:totalResults>1</opensearch:totalResults>
<moviess>
<movies

TECHNIQUE 44 Parsing XML with SAX 317

<popularity>3</popularitys>
<translated>true</translated>
<adult>false</adult>
<language>en</language>
<names>Inception</name>
<alternative name>Eredet</alternative names>
<types>movie</type>
<id>27205</id>
<imdb_id>tt1375666</imdb_id>
<urlshttp://www.themoviedb.org/movie/27205</url>
<overview>In a world where technology exists to enter
the human mind through dream invasion, a single idea within
one's mind can be the most dangerous weapon or the most
valuable asset.</overviews
<rating>9.0</rating>
</movies>
</movies>
</OpenSearchDescription>

Nothing overly surprising here. We get the movie’s title, ID, genres, runtime, rating
(that’s what we’re after), and a few other things. In order to parse this document
using SAX, we must react to the handler events when an XML element we’re interested
in is encountered. In general, the SAX events you want to catch are usually related to
document boundaries, element boundaries, and simple text nodes. These events and
the ContentHandler methods they map to are summarized in table 9.2.

Table 9.2 SAX events and their method counterparts in the ContentHander interface

SAX event ContentHander callback method
document start/end startDocument, endDocument
element (tag) open/close startElement, endElement
text found characters

SAX defines more events—for example namespace bindings and processing instruc-
tions—but they’re of no interest to us here.

The usual approach is to do setup work in startDocument, such as creating an
empty object that will hold the data parsed from the document (a Movie object in our
case), then collect text content in characters (such as a movie title) and use the text
content in endElement to populate the respective field of the object.

We’re only interested in the movie rating, and the title maybe for the sake of com-
pleteness. Here’s how our SAX parser handler might look.

Listing 9.7 SAXMovieParser parses a TMDb movie document using SAX

public class SAXMovieParser extends DefaultHandler { Inherit from

. . . DefaultHandler
private Movie movie; efaultHandle!

318

CHAPTER 9 HTTP networking and web services

private StringBuilder elementText;

public static Movie parseMovie (InputStream xml) Helper method
throws Exception { to parse stream
SAXMovieParser parser = new SAXMovieParser () ;
Xml.parse(xml, Encoding.UTF_8, parser);
return parser.getMovie() ;

}

public Movie getMovie() {
return movie;

@override Do setup
public void startDocument () throws SAXException { work here
elementText = new StringBuilder () ;

@Override

public void startElement (String uri, Create new

String localName, String gName, movie object

Attributes attributes) throws SAXException
if ("movie".equals(localName)) {
movie = new Movie() ;

}

@Ooverride Set current

public void characters(char[] ch, int start, int length) value

throws SAXException {
elementText .append(ch, start, length);

}

@Override

public void endElement (String uri, String localName, CoHestchanuter
String gName) data in buffer

throws SAXException {
if ("name".equals(localName)) ({
movie.setTitle (elementText.toString () .trim()) ;

} else if ("rating".equals(localName)) {
movie.setRating (elementText.toString() .trim()) ;
}

elementText .setLength(0) ;

}

As said before, it’s easiest to inherit from DefaultHandler @ because you get default
implementations for every interface method (the default implementations are no-ops
by the way) and must implement only those callbacks that you’re interested in. It also
makes sense to define a helper method to trigger the parsing ®, which instantiates
our handler object and passes it to Android’s Xml.parse utility method. This method
will instantiate a SAX parser for us and start parsing. When parsing commences, we
know the Movie instance will have all fields set, so we can return it to the caller.

The parser callbacks used here are for one startDocument © where we do some
setup work. To demonstrate, we’ve also overridden startElement O to look for a

TECHNIQUE 45 Parsing XML with XmlPull 319

<movie> tag, which when encountered, will create a new Movie instance. We only
parse a single movie here, so this could have happened elsewhere, but if you ever
need to parse a list of elements, then you should do as shown here.

The characters method @ will be called whenever text that’s not a structural ele-
ment (like a tag or preamble) is encountered. Note that this could also be whitespace
between two tags, not necessarily element content, so it makes sense to do sanity
checks, such as skipping whitespace characters. Moreover, two adjacent text fragments
that belong to the same text node may trigger several text events instead of one, so we
must collect all text fragments in a buffer until the closing tag is encountered in order
to capture the entire text node. Whenever a tag is closed, endElement is called 0. At
this point we know that our text buffer must contain the text of that element, so we
can use the buffer contents to set the respective fields, such as title or rating. We also
reset the text buffer so it doesn’t accumulate the text of all elements.

DISCUSSION

Once you come to grips with SAX’s event-based approach, parsing smaller documents
with it is straightforward. Moreover, because SAX is a streaming parser, it doesn’t main-
tain an internal representation of the document, making it efficient for parsing even
large documents.

At the same time, this is the biggest problem with SAX parsers, because you get little
contextual information about where a parser event occurs. For instance, what if there
are multiple tags with the same name in a document? In the example XML from list-
ing 9.6 there’s a tag called name (the movie title). Imagine that the category name
weren’t stored as an attribute, but as a tag itself (that’s perfectly valid). If you then get
an event about the start of an element called name, you have no idea which it is—the
movie name or the category name. This means that for more complex documents with
amedium to high depth, you’ll have to maintain state in your handler about where you
are while the document is being parsed. You could set boolean flags to remember
when you’re inside a category element. This can get tedious and painful to manage.

Another criticism leveled at SAX parsers is that you always receive callbacks about
any kind of event—even if you’re not interested. You have to implement all callbacks
(although, at least you don’t have to spell everything out since there’s the SAX
DefaultHandler and even more helpers in the android.sax package.) One way to cir-
cumvent this would be to explicitly move forward through an XML document bit by
bit, and skip any entity you encounter in which you’re not interested. That’s what a
pull parser does, which we cover in the next technique.

Parsing XML with XmlPull

Sometimes you're interested in a specific snippet of information buried somewhere in
a bigger XML document. You want to jump to the element in question, read its value,
and then stop processing the document. Other times you may want to parse the entire
document, but don’t want to rely on callbacks—you want more control over the docu-
ment traversal by explicitly asking for another element to be fetched. In both cases,
Android’s pull parser implementation may be what you’re looking for.

320

CHAPTER 9 HTTP networking and web services

PROBLEM

You’'re looking for a lightweight way to parse XML documents without having to keep
them in memory at all times. You specifically want a parser that fetches the next
token (such as an element or text) from the document explicitly rather than via call-
backs (pull).

SOLUTION

Android bundles a pull parser implementation (KXML2) based on the XmlIPull speci-
fication (http://www.xmlpull.org). Unlike SAX, no callback handler needs to be
informed about parsing events such as processing an element. Instead, parsing is
entirely in the hands of the client, which has to explicitly ask for the next token to be
retrieved, a retrieval model you may be familiar with because it’s the same as Java iter-
ators or relational database cursors. The beauty of this model is its speed and simplic-
ity: few instructions are required to parse a document. Here’s a small pseudo-code
snippet showing how an XML document can be parsed using XmlPull in Java:

int event = parser.getEventType() ;
while (event != XmlPullParser.END DOCUMENT) {
switch (event)
case XmlPullParser.START DOCUMENT:
doSetupWork () ;
break;
case XmlPullParser.START_ TAG:
readElementText (parser.nextText ()) ;
break;

}

event = parser.next () ;
}
The benefitof this modelis thatit’s easy to skip forward until a certain elementisreached,
read its value, and then exit early if that’s all you need. You can still process the entire
document element-by-element by calling the next method, which fetches the next token
from the XML document. This iterator-like behavior is illustrated in figure 9.8.

To have a direct comparison to SAX, we’ll implement an XmlPull counterpart to
the previous example: extracting movie title and rating from a TMDb response. The

<?xml ... ?>
abject> .ss<arle/a>, ..,
o <adic/a> 2 e —m————— XmlPull parser
hunk
</object>
_____ Figure 9.8 Unlike SAX,
e 2 = 3 an XmlPull parser only
| <object> | .. .hunk. .. | reads the next entity
<azle/an A #1 XmiPull parser ! from a document on-
e hunk | 1 1
| | I demand by a call to the
|

\ -/object>

next function. In this
sense, it behaves like a
Java iterator or a
database cursor.

parser.next()

http://www.xmlpull.org

TECHNIQUE 45 Parsing XML with XmlPull 321

solution couldn’t be more straightforward, and is shown next. XmlPullParser and its
related classes are—unlike SAX or DOM—not part of the standard JDK 5. They’re bun-
dled with Android as a third-party library in the org.xmlpull.v1l package.

Listing 9.8 XmlPullMovieParser parses a TMDb movie document using XmiPull

public class XmlPullMovieParser {
private XmlPullParser Xpp;

public static Movie parseMovie (InputStream xml) <F4j’ Hemerﬁnmﬂon
throws Exception { to invoke parser
return new XmlPullMovieParser () .parse (xml) ;

}

Instantiate
public Movie parse (InputStream xml) throws Exception { new pull
Movie movie = new Movie() ; parser
xpp = XmlPullParserFactory.newInstance () .newPullParser() ;
xpp.setInput (xml, "UTF-8");
skipToTag ("name") ; Skip to name tag
movie.setTitle (xpp.nextText ()); and read value
skipToTag ("rating") ;
movie.setRating (xpp.nextText ()) ;
return movie; Helper
} to skip to
given tag

private void skipToTag(String tagName) throws Exception {
int event = xpp.getEventType() ;
while (event != XmlPullParser.END DOCUMENT
&& !tagName.equals (xpp.getName ())) {
event = xpp.next();

}

Similar to the SAX handler, we define a static helper method to invoke the pull parser,
but here it’s simplified to one line of code that instantiates and invokes our movie
parser @. The work is done in the parse instance method. We first create and initial-
ize the XxmlPullParser object @. Note that you'd typically want to cache this instance
somewhere instead of re-creating it every time. As with SAX, this is done by going
through a factory because Java only defines the interfaces in the XML packages,
whereas their implementations are library-specific. For instance, the Sun JDK ships a
different SAX parser implementation than Apache Harmony and Android. Likewise,
you could decide to instantiate a different Xml1PullParser implementation here—you
most likely don’t want to, but it’s good to know it’s possible.

The rest of the parse method is strikingly simple. We’re only interested in two fields,
movie name and rating, so we can skip ahead to these tags and use their element text
to populate the fields of the Movie object €. The skipToTag helper method @ enters
a loop that terminates either when there’s nothing more to parse (end of document
reached) or when the tag that was requested has been found. The next method

322

CHAPTER 9 HTTP networking and web services

advances to the next token (element, text, processing instruction, and so on), deter-
mines what kind of token it is, and checks the numeric constant that it returns. Once
we’ve found everything we want, we can quit.

DISCUSSION

Though the general performance of XmlPull is similar to that of SAX (both are signif-
icantly faster than DOM, as plenty of benchmarks indicate), XmlPull will outperform
SAX on large documents where you only want to read a small piece of the entire docu-
ment because you don’t receive callbacks for every kind of event. Moreover, the pars-
ing can be aborted at any point in time, allowing you to drop out early.

Another benefit over SAX is its simple and intuitive interface. It follows a strict you-
get-what-you-ask-for design, often resulting in code that’s easier to write and under-
stand. It also is more convenient at times: for instance, XmlPull won’t return ignor-
able whitespace unless you ask for it (unlike SAX), saving you calls to the trim method
as seen in listing 9.7.

A drawback that XmlPull shares with SAX is its lack of an internal data structure to
represent the document being parsed. This means you won’t be able to perform ran-
dom access into the document, and if documents get more complex, you’ll have to
maintain state about the whereabouts of the element you’re currently looking at.
XmlPull can support you here with the getDepth method, which tells you how deep
you are into the XML tree. These are the trade-offs you have to take for choosing a
stream-based parser.

NOTE It should be mentioned that SAX can be seen as an abstraction of
XmlPull because every SAX implementation can be implemented using a
pull parser (and in fact, all of them are because they must first read a token
from the stream before doing a callback). In that way, XmIPull can be under-
stood as operating at an even lower level, but at the same time keeping a
nice, easy interface.

Although both SAX and XmlPull have support for validating a document and even
data types (given there’s a schema file against which can be validated), the only data
type they know on the API level is text, which means you have to transform strings to
numbers or even subtrees to objects yourself. Recall the category subelement of a
movie, which we may want to parse into a separate object.

We’ve talked to some extent about XML now. There’s an entirely different solution
to the problems discussed so far, one which is able to read a document into memory as
a single data structure which can then be easily traversed, but without the perfor-
mance penalties of the DOM. It’s time to leave the realm of XML and enter the world
of JavaScript. Wait, JavaScript? Enter JSON.

Parsing JSON

The Ajax (Asynchronous JavaScript and XML) craze that accompanied the rise of
Web 2.0 was a key element to giving modern websites a desktop application-like user
experience. Interestingly, like the XMLHttpRequest object (never before has the

TECHNIQUE 46 Parsing JSON 323

invention—or rediscovery—of a single class made such a difference), AJAX made
another thing popular, one which had been around for years, but the full potential
of which had never been recognized: JSON, the JavaScript Object Notation.

JSON has been around since 1999, but was largely unknown outside the web devel-
opment community until a few years ago. Like XML, JSON is an open, standardized
data interchange format based on a subset of the JavaScript programming language.
In fact, every JSON object is a valid JavaScript object, but not necessarily vice versa. It is
by its nature a good choice for serializing data from a web server to a JavaScript host
environment such as a web browser because a JSON server response can be executed
as-is by the client using JavaScript’s eval function. Because of its lean and simple, yet
powerful way of representing all sorts of data, developers outside the JavaScript/
HTML world have discovered its potential to serve as a generic data representation
and interchange format, particularly for use with web services that can be consumed
by any client, not only web browsers. Though it’s being used less often for storing data
locally in a text-based form, more web services, such as Twitter, Qype, and Yahoo!
FireEagle, have adopted JSON as a response format.

PROBLEM

You either want to integrate with a web service that only supports J[SON, or you want to
take advantage of JSON’s benefits such as being able to efficiently create and manage
textual representations of data structures in memory.

SOLUTION
Before looking at the J[SON API bundled with Android, let’s have a closer look at how
JSON represents objects. If you're already familiar with JavaScript, then this will look
familiar. If not, then JSON can still be quickly explained.

You can think of JSON objects as maps or object hashes. They have a single root ele-
ment, and other elements (the values) are mapped to identifiers (the keys). Here’s
how this book could be modeled in JSON:

{

"title": "Android in Practice",
"price": 49.99,
"authors": [

{ "name": "C. Collins" },

{ "name": "M. Galpin" },

{ "name": "M. Kaeppler" }

]
}
This simple data structure already combines all the kinds of syntax elements that JSON
knows. Finally, something that’s dead simple and tremendously useful at the same
time—you seldom find that in computers these days!

Curly braces in JSON demarcate objects. An object is a map: it maps keys (the
quotes are mandatory) to values. A value can again be an object, a string (any value
put in double quotes becomes a string; you’ll therefore have to escape double quotes
that are part of the string itself as \"Hello!\"), or a number (with or without decimal

324

CHAPTER 9 HTTP networking and web services

point). Moreover, a value can also be an array of any of these. Arrays are demarcated
using square brackets, and we’ll see one in a second in listing 9.9.

Even though it’s simple enough, you don’t have to parse JSON documents yourself.
Android comes with the reference JSON implementation from json.org, so you can
use that straight away. Before showing you how to use it to parse JSON data, recall that
we get our data from the TMDb web service, which incidentally also supports JSON.
Let’s look at what the response from listing 9.6 looks like when requested as JSON
instead of XML (again we’ve left out some elements for brevity):

Listing 9.9 JSON response format of TMDb’s Movie.imdbLookup method
[

"popularity":3,

"translated":true,

"adult":false,

"language":"en",

"original name":"Inception",

"name" :"Inception",

"alternative name":"Eredet",

"movie type":"movie",

"id":27205,

"imdb_id":"tt1375666",

"url":"http://www.themoviedb.org/movie/27205",

"wvotes":52,

"rating":9.0,

"certification":"PG-13",

"overview":"Dom Cobb (Leonardo DiCaprio) is a skilled thief,
the best in the dangerous art of extraction: stealing valuable
secrets from deep within the subconscious during the dream
state when the mind is at its most vulnerable. ...",

"released":"2010-07-16",

"runtime":148,

"version":226,

"last modified at":"2010-08-19 16:04:03",

]

As we can see, the result is an array with a single element because we’ve only requested
a single movie. Now we need to turn this into a Movie object, so we finally need to use
Android’s JSON parser. Here’s how that could look.

Listing 9.10 JsonMovieParser parses a TMDb movie document using JSON

public class JsonMovieParser {

public static Movie parseMovie (InputStream json) throws Exception {
BufferedReader reader = new BufferedReader (
new InputStreamReader (json)) ;
StringBuilder sb = new StringBuilder(); Holds server

try { response as string

String line = reader.readLine() ;

TECHNIQUE 46 Parsing JSON 325

while (line != null) {
sb.append (line) ;
line = reader.readLine() ;

}

} catch (IOException e)

throw e;
} finally {

reader.close () ; THK“ .
} string into a
JSONArray jsonReply = new JSONArray (sb.toString()) ; JSONObject
Movie movie = new Movie () ;
JSONObject jsonMovie = jsonReply.getJSONObject (0) ; Get movie
movie.setTitle (jsonMovie.getString ("name")) ; JSONObject

movie.setRating (jsonMovie.getString("rating")) ;

return movie;

}

The JSON parser relies on the data being in memory entirely, so we have to read the
response string into a buffer first @. We can then use this string to instantiate a JSON
object (a JSONArray in this case, because the root element is an array), which effec-
tively parses the JSON string into an internal key-value map @. We're interested in the
first and only element of the array, so we get the JSONObject at position 0, which is the
movie we're after €. Any such JSONObject has accessor methods to read its values
such as strings, numbers, and other JSON objects or arrays.

DISCUSSION

You may have noticed a pattern here: our movie parser has been shrinking with every
technique in this chapter! JSON is the most straightforward and simple way to parse a
web service response. It’s also efficient and lightweight: it’s nothing more than a Java
HashMap mapping strings to other objects. If you can use the Java Map interface, then
you can use Android’s JSON classes.

One implication of this is that the json.org parser may not be optimal if you need
to access a small amount of data from a large document. You probably don’t want to
parse several megabytes of text into a JSON object because it’'ll be in memory all at
once. In that sense, it’s similar to what DOM is for XML; the document is kept in mem-
ory entirely. If you can’t live with that, then XmlPull is probably your best bet.

JSON STREAMING PARSERS If your documents are large, but you absolutely must
rely on JSON for some reason (say the data you want to access is only available in
JSON), you may want to look for a stream-based JSON parser such as Jackson
(http://jackson.codehaus.org) or Google's gson (http://code.google.com/p/
google-gson). This means adding another dependency to your project, so
choose wisely.

You should be aware of one subtlety when using Android’s JSON parser: you should
always know up front which values will definitely be part of the response when you
parse it. That’s because the get* methods of a JSONObject will throw an exception if

http://jackson.codehaus.org
http://code.google.com/p/google-gson
http://code.google.com/p/google-gson

326

9.3

CHAPTER 9 HTTP networking and web services

you try to access a field which isn’t there. For elements that can exist in some
responses, but not in others (optional elements), you should use the opt* methods
instead, which return null if the field you’re trying to access doesn’t exist. (For exam-
ple, use optString instead of getString for accessing an optional string field.) We’ve
covered a lot of ground here! You’ve not only seen how to connect to a real-world web
service, we’ve also shown you how to parse a typical response using different kinds of
parsers, each with their own pros and cons. You should now be well equipped for any-
thing related to the consumption of web services in an Android application.

That only leaves a few more things to round it all up. We’ve talked about HTTP and
the two popular data-interchange formats XML and JSON, but for a real-world applica-
tion, you must be prepared to run into real-world problems, such as having to cope
with network failures. The last section of this chapter contains techniques that,
though maybe not as intriguing as connecting to a movie web service, are fundamen-
tal to any application dealing with HTTP networking. It’s the icing on the cake, the
things that make your application great instead of good, so even if “handling connec-
tion failover” sounds dusty to you, sticking around a while longer is going to be well
worth it for you (and your application’s users).

How to gracefully recover from network failures

If you’ve made it here, you already know everything you need to do HTTP-based net-
working on Android, and even how to parse the most common response formats. But
this wouldn’t be a good recipe book if we didn’t venture past the basics, would it?

One thing we’ve ignored so far, and which is definitely going to happen (trust me)
when taking your fancy web-enabled Android application on the streets, is network
interruptions. Remember that users won’t necessarily sit on their couch when using
your applications. It’s likely that they move around, and moving around can quickly
mean roaming from one Wi-Fi network to the next, one cell-tower to another, or
switching, say, from 3G to 2G because the signal strength is dropping. One tricky case
is roaming from Wi-Fi to a data connection or vice versa because requests sent via the
mobile carrier may be required to go through a proxy server, whereas when they may
not when using Wi-Fi. This means two things:

1 We must employ a sensible logic for retrying failed requests (technique 47).
2 We must react to changes in the network configuration (technique 48).

We’ll start by showing you how to implement an HTTP request-retry handler that is
well suited for mobile use.

Retrying requests using request-retry handlers

Pretend for a moment that you’re in your office and want to go to lunch. While mak-
ing your way to the street, you pull out your Android phone and fire up your favorite
app and start browsing for nearby restaurants. Your phone is connected to your com-
pany Wi-Fi, but as you step outside, still searching for a good lunch spot, the connec-
tion suddenly breaks. The Wi-Fi’s signal strength was too weak, so Android decided to
switch over to the mobile data connection.

TECHNIQUE 47 Retrying requests using request-retry handlers 327

This is a common scenario: if your application makes heavy use of data connec-
tions, requests will fail all the time. A mobile network connection is flaky by nature.
The question is this: what does that mean for your application? What happens when
you try to send an HTTP request and the connection fails in between? You could catch
the error and tell your user about it. But that’s not trying hard, is it? If the request
failed because your phone was switching over from Wi-Fi to 3G, then it’s likely that the
next request will succeed. So instead of bothering the user with an error dialog and
asking them to try again, we can do it ourselves—using a proper request retry logic.

PROBLEM

Realizing that HTTP requests can fail when the user is on the move, you want to put a
proper request-retry system in place so that when a request fails because of a flaky net-
work, you can silently resend it.

SOLUTION

Assuming that you’re going to use Apache HttpClient, and not Java’s Ht tpURLCon-
nection, we have good news: it ships with a simple system for retrying requests baked
right in. Now, it sounds as if our problems are solved, but that’s not quite true. We’ll
show you how the feature works, and then explain why that’s often not sufficient, and
how we can make it better.

AbstractHttpClient is the default base class that’s part of the Apache HttpClient
library. Any HttpClient implementation inheriting from AbstractHttpClient,
including DefaultHttpClient (see techniques 42 and 43), will determine whether a
request should be resent when an I0Exception occurred, and only then. Request fail-
ures because of other exceptions being raised will bubble up to the caller and not be
retried at all. Whether a request will be retried is decided by an object of type HttpRe-
questRetryHandler. It defines a method called retryRequest, which is a decision
method: it returns true if a request should be retried, or false if not. This method
receives the exception that was raised, the number of attempts for sending that were
already made, and the execution context for this request as arguments, so it can
decide, based on this information, whether to retry a request.

If you don’t want to provide custom decision logic for this, and if you're using
DefaultHttpClient, then you don’t have to: DefaultHttpClient defines a
DefaultHttpRequestRetryHandler for you, which has a sensible default algorithm to
decide this. Here are the cases in which it wont retry a request:

= Execution count—Don’t retry a request if the maximum number of retries has
been reached

= Unrecoverable failures—Don’t retry a request if it failed because the host couldn’t
be resolved (DNS failure), the request timed out, the connection was explicitly
refused by the server, or an SSH handshake failed

= Request idempotency—Don’t retry a request if it’s not idempotent (unsafe to send
a second time, which is almost always the case for POST and DELETE), unless this
check was disabled

328

CHAPTER 9 HTTP networking and web services

You can customize the maximum number of attempts (default is 3) and whether sent
requests should be retried even if that may be unsafe (defaultis false) directly in the
request-retry handler; we’ll show you how in a second. Customizing beyond that
means you’ll have to provide your own implementation.

Though these checks are fine, from a mobile point of view, there’s one problem
with the retry handler system in general: retries happen immediately after a request
failed. To stick with the example of moving from Wi-Fi to 3G, which can take at least a
second or more, this often means that the retry system in place is useless because it
retries sending the request too quickly. You could alleviate this issue by setting the
maximum number of retries to a much higher number, say 20, but what we’re after is
something based on time. A better solution would be to define a custom requestretry
handler that reuses the decision logic from the default handler, but adds a short
amount of idle time to give the phone a chance to properly recover from whatever
caused the connection failure. That code follows.

Listing 9.11 MyMovies has been augmented to specify a custom request-retry handler

public class MyMovies extends ListActivity implements Callback,

OnItemLongClickListener { Change type to
private static final AbstractHttpClient httpClient; AbstractHttpClient
private static final HttpRequestRetryHandler retryHandler; Declare
static { request-

retry
o ,) , handler
httpClient = new DefaultHttpClient (cm, clientParams) ;
retryHandler = Inherit from
new DefaultHttpRequestRetryHandler (5, false) ({ default handler

public boolean retryRequest (IOException ex, int execCount,
HttpContext context) {

if (!super.retryRequest (ex, execCount, context)) Is
Log.d ("HTTP retry-handler", "Won't retry"); resend
return false; desired?
}
try {
Thread.sleep(2000) ; Sleep before
} catch (InterruptedException e) { next execution
}
Log.d ("HTTP retry-handler", "Retrying request...");
return true;
} Configure
bi object to

httpClient.setHttpRequestRetryHandler (retryHandler) ; use handler

}

public static HttpClient getHttpClient () {
return httpClient;
}

TECHNIQUE 47 Retrying requests using request-retry handlers 329

We must first change the declared type of HttpClient to AbstractHttpClient @
because the methods required to set custom handler objects aren’t part of the Http-
Client interface. We also store a static reference to our custom handler object @ In
the static initializer where we set up our client object, we now initialize the request-
retry handler by inheriting from the default implementation ©. At this point, we also
pass 5 as the maximum number of attempts that should be made to retry a request
(we leave the requestSentRetryEnabled parameter at false). We leave the decision
whether to retry a request to the default implementation O because it does a good
job at doing that, as mentioned earlier. We want to add an idle time of two seconds,
after which we retry the request, so we let the thread sleep for this time ©. We must
also tell HttpClient to use our custom handler instead of the built-in one @.

DISCUSSION

Let’s recap what we’ve done here: by implementing and setting a custom HttpReques-
tRetryHandler, we’ve told HttpClient what to do should a web server drop the con-
nection on us while we’re trying to send a request. Dropping connection here means
anything resulting in a Java IOException while the request is being processed in the
network stack. In our case, we retry the request up to five times, whereas we leave it to
the DefaultHttpRequestRetryHandler implementation to decide whether a request
should be retried at all. Before we allow the request to be resent, we let the thread
sleep for a brief period to give the device a chance to recover from situations such as
changing the network connection from Wi-Fi to mobile network.

This code will work fine in most situations, but still has one limitation: it doesn’t
cope with connection failures that are purely caused by the web server. If a web server
is under high load, it may decide to send a 5xx response code to the client. For
instance, 503 (service unavailable) and 504 (gateway timeout) are common symptoms
of systems that are under heavy load, and often indicate temporary failures. An exam-
ple would be a web service where the application server waits for the database to
respond, but it doesn’t do in a timely manner. These timeouts can be short because a
database server is expected to usually respond quickly.

In this case, it’s likely that a subsequent request will succeed after waiting a second
or two, so it makes sense to retry these requests as well. Unfortunately, this doesn’t work
with our current solution because it’ll only try to recover from I/0 errors, but a 5xx is
a valid and complete HTTP response that, from the perspective of HttpClient, isn’t a
failure at all. If you want to write a truly robust web service connector, you’ll probably
want to add a second retry layer around HttpClient that you’ll have to write yourself.
This can be as simple as a loop that sleeps for a few seconds and resends the request a
certain number of times.

We’ve mentioned in the section opening that connection failures aren’t the only
issue we have to deal with. If we resend a request after the network configuration
changed (such as the proxy server settings) then this and all subsequent attempts
could also fail. The following technique explains what to look out for and how to deal
with it.

330 CHAPTER 9 HTTP networking and web services

Handling network configuration changes

We explained in the previous technique thatretry-
ing failed requests is a sensible thing to do for a
mobile application. One example we mentioned
where it makes sense to retry requests is when the

B ® 6:59em

Edit access point

device switches over from a Wi-Fi access point to Name
amobile data access point (APN) because the user b
moved out of Wi-Fi range, or switching from one APN

APN to another while roaming between carrier
networks. There’s one caveat here: retrying a
failed request using the new network connection
(carrier APN instead of Wi-Fi) may resultin it fail-

Proxy

ing again, but this time for another reason—the Port
new APN uses different settings. '
Even if the user isn’t roaming between net- Username
works, an APN can still have special settings spe- '
cific to that APN that your application may need Password

to account for when sending requests over it.
These include APN usernames and passwords, or

Server

proxy servers through which requests will be
sent. Figure 9.9 shows Android’s default inter- Figure 9.9 Via the Edit Access Point
face for changing APN settings on your phone screen, users can configure their
(screenshot taken from the Android emulator). carrier S_APN .settm.gs for mobile data
connections, including proxy servers.
In any event, you must somehow get hold of Whenever the user saves these settings

these settings, and be notified when, for exam- while your application is running, it's a
good idea to handle them to ensure your

le, the proxy server changes while your applica-
p P Y 8 ¥ PP requests won’t suddenly fail.

tion is running, so that you can update
HttpClient to send requests through the new
Proxy server.

PROBLEM

Being on the move means that network configuration may change while your applica-
tion is running. To make sure that your networking code remains functional, you
must handle changes to these settings.

SOLUTION

Changes to APN configuration or changes in connectivity such as connection loss are
managed by a framework class called ConnectivityManager. In these events, Connec-
tivityManager will send a broadcast message to all subscribers, including the details
of the network state change. Broadcast messages in Android are sent using broadcast
Intents, so you need a BroadcastReceiver object to handle them. First, let’s look at
how you’d register such a receiver from an Activity:

TECHNIQUE 48 Handling network configuration changes 331

public void onCreate (Bundle savedInstanceState) {

registerReceiver (new ConnectionChangedBroadcastReceiv