

Android Cookbook

Android Cookbook

Android Community Experts

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Android Cookbook
by Android Community Experts

Copyright © 2011 Ian Darwin and Contributors. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Ian F. Darwin
Production Editor:
Copyeditor:
Proofreader:

Indexer:
Cover Designer:
Interior Designer:
Illustrators: and

November 2011: First Edition.

Revision History for the First Edition:
See http://oreilly.com/catalog/errata.csp?isbn=9781449388416 for release details.

Android is a trademark of Google, Inc. for their open-source operating environment for mobile devices.
Linux is a trademark of Linus Torvalds. Java is a trademark of Oracle America Corporation (formerly
Sun Microsystems).

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. !!FILL THIS IN!! and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38841-6

[?]

1318018084

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449388416

Table of Contents

Preface . xiii

1. Getting Started . 1
1.1 Introduction: Getting Started 1
1.2 Learning the Java Language 1
1.3 Hello World - Command Line 3
1.4 Hello World - Eclipse Version 5
1.5 Set Up an Android Virtual Device for Apps Testing 10
1.6 Set Up an IDE on Windows to Develop for Android 23
1.7 Android Lifecycle 32
1.8 Opening a Web Page, Phone Number or anything else with an Intent 33
1.9 Email Text From a View 35

1.10 Sending an email with attachments 38
1.11 Installing .apk files on the emulator 40
1.12 Installing apps onto an Android Emulator 40
1.13 Android Epoch HTML/Javascript Calendar 43
1.14 Sharing Java classes from another Eclipse Project 48
1.15 Referencing libraries to implement external functionality 49
1.16 Use SDK Samples to Help Avoid Head Scratching 50
1.17 Keeping the Android SDK Updated 55
1.18 Five Ways to Wire Up an Event Listener 61
1.19 Taking a Screenshot from the Emulator/Android Device 69
1.20 Program: A Simple CountDownTimer example 70
1.21 Program: Tipster, a tip calculator for the Android OS 73

2. Designing a successful Application . 91
2.1 Introduction: Designing a Successful Android application 91
2.2 Keeping a Service running while other apps are on display 95
2.3 Starting a service after phone reboot 97
2.4 Exception Handling 98
2.5 Sending/Receive broadcast message 100

v

2.6 Android's Application Object as a "Singleton" 101
2.7 Keeping data when the user rotates the device 103
2.8 Creating a Responsive Application using Threads 105
2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result 107

2.10 AsyncTask: Do background tasks and modify the GUI 113
2.11 Monitoring the Battery Level of your Android Device 114
2.12 Splash Screens in Android: Method 1 115
2.13 Splash Screens in Android: Method 2 117
2.14 Designing a Conference/*Camp/Hackathon App 123
2.15 Implementing Autocompletion in Android. 124
2.16 Using Google Analytics in Android Application 126
2.17 Using AsyncTask to do background processing 128
2.18 A Simple Torch Light 134
2.19 Adapting Android Phone Application to Tablet 136
2.20 First Run preferences 138
2.21 Formatting the time and date display 139
2.22 Controlling Input with KeyListeners 142
2.23 Android Application Data Backup 145
2.24 Making password fields 151
2.25 Working Without Tooltips: Use Hints Instead 152

3. Testing . 157
3.1 Introduction: Testing 157
3.2 How to TDD(test driven development) Android App 157
3.3 How to troubleshoot "The application has stopped unexpectedly.

Please try again" 158
3.4 Debugging using Log.d and LogCat 161
3.5 Keep Your App Snappy With StrictMode 163
3.6 Barrel of Monkeys 164
3.7 Sending text messages and placing calls between AVDs 165
3.8 Activity LifeCycle Scenarios for Testing 166

4. Content Providers . 175
4.1 Introduction: Content Providers 175
4.2 Retrieving Data from a Content Provider 175
4.3 Writing a Content Provider 177
4.4 Android Remote Service 179

5. Graphics . 185
5.1 Introduction: Graphics 185
5.2 Getting Screenshots 185
5.3 Using a Custom Font 186
5.4 Draw a spinning cube with OpenGL ES 191

vi | Table of Contents

5.5 Adding control to the OpenGL spinning cube 196
5.6 Taking a Picture Using an Intent 199
5.7 Taking a Picture Using android.media.Camera 201
5.8 Using AndroidPlot to display charts and graphs in your Android

application. 205
5.9 Use Inkscape to Create an Android Launcher Icon 207

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET 216
5.11 Android HTML5 RGraph Charting 228
5.12 Simple Raster Animation 232

6. Graphical User Interface . 239
6.1 Introduction: GUI 239
6.2 User Interface Guidelines (placeholder) 240
6.3 SlidingDrawer Overlapping other UI components 240
6.4 Android 3.0 Photo Gallery 244
6.5 Building a UI using Fragments API of Android 3.0 in Android 2.2 246
6.6 Haptic Feedback 250
6.7 Handling Configuration Changes by Decoupling View from Model 254
6.8 Let Them See Stars: Using RatingBar 257
6.9 Invoke an action handler when a Button is pressed 260

6.10 Creating an Alert Dialog. 263
6.11 Customize the SlidingDrawer component to animate/transition

from the top down. 264
6.12 Use a Timepicker widget 266
6.13 Formatting with Correct Plurals 268
6.14 Feed AutoCompleteTextView using a SQLite database query 272
6.15 Change The Enter Key to "Next" on the Soft Keyboard 273
6.16 How to Create a Simple Widget 277
6.17 Make a View Shake 280
6.18 Using CheckBoxes and RadioButtons 281
6.19 Creating a Notification in the Status Bar 286
6.20 Autocompletion with Icons/Images 288
6.21 Creating your own Custom Title Bar 295
6.22 iPhone-like wheel picker for selection 298
6.23 Simple Calendar 302
6.24 Formatting Numbers 310
6.25 Start a Second Screen from the First 314
6.26 Creating a Tabbed Dialog 322
6.27 Creating a Custom Dialog with buttons, images and text 326
6.28 Create a Custom Menu 328
6.29 Loading Screen in between two Activities 330
6.30 Implementing reactions on click of items in a Custom Menu. 333
6.31 Navigate different activities within a TabView 336

Table of Contents | vii

6.32 Drop-down Chooser via the Spinner Class 338
6.33 Effective UI design using Image Buttons 340
6.34 Pinch to zoom 343
6.35 Add a Border with Rounded Corners to a Layout 346
6.36 Creating a ProgressDialog in Android. 347
6.37 Creating a Submenu. 349
6.38 Processing key press events in an Activity. 351
6.39 Constrain EditText Values with Attributes and the TextWatcher

Interface 352
6.40 Gesture Detection in Android 355
6.41 Customizing the Look of a Toast 362
6.42 Using SlidingDrawer to Overlap Other Components 363

7. GUI: ListView . 367
7.1 Introduction: ListView 367
7.2 Building list-based applications with ListView 367
7.3 'No data' View for Lists 372
7.4 Advanced ListView: populating a list with images and text 373
7.5 ListView with Icons/images 379
7.6 Sectioned Headers in ListViews 386
7.7 Making Lists Behave Nicely 392
7.8 Writing A Custom List Adapter 393
7.9 Orientation Changes : From ListView data values to Landscape

Charting 396

8. Multimedia . 407
8.1 Introduction: Multimedia 407
8.2 Play a Youtube Video 407
8.3 Using Gallery with ImageSwitcher 408
8.4 Grabbing a video using MediaRecorder 411
8.5 Android Face Detection 414
8.6 Playing audio from a file 417
8.7 Playing Audio without Interaction 420
8.8 Using Speech to Text 421
8.9 Making the Device Speak with TTS 423

9. Data Persistence . 427
9.1 Listing a Directory 427
9.2 Default shared preferences consistency check 429
9.3 Advanced text search 431
9.4 How to push string-values using Intent.putExtra() 437
9.5 Retrieving data from a Sub-Activity back to your Main Activity 439
9.6 Getting total and free space on the SD card 442

viii | Table of Contents

9.7 Creating a SQLite database in an Android application. 442
9.8 Retrieving data from a SQLite database. 444
9.9 Inserting values into a SQLite database. 445

9.10 Work With Dates in SQLite 445
9.11 Parsing JSON using the Jackson Parser 448
9.12 Parsing an XML document using the DOM API 451
9.13 Parsing an XML document using an XmlPullParser 453
9.14 Accessing data from a file shipped with the App rather than in the

filesystem 456
9.15 Adding a Contact 457
9.16 Reading Contact Data 461
9.17 Parsing JSON using JSONObject 463

10. Telephone Applications . 467
10.1 Introduction: Telephone Applications 467
10.2 Do something when the phone rings 467
10.3 Process outgoing calls 471
10.4 Dialing the phone 475
10.5 Sending single or multipart SMS messages 476
10.6 Receiving an SMS in an Android Application. 478
10.7 Using Emulator Controls to send SMS to the Emulator. 480
10.8 Android TelephonyManager. 480

11. Networked Applications . 491
11.1 Introduction: Networking 491
11.2 Using a RESTful Web Service 491
11.3 Extracting Information from Unstructured Text using Regular

Expressions 494
11.4 Parsing RSS/ATOM feeds parsing with ROME 496
11.5 Using MD5 to Digest Free Text 500
11.6 Converting text into hyperlinks 502
11.7 Accessing a web page through your Android application 503
11.8 Customizing a WebView 505

12. Gaming and Animation . 507
12.1 Introduction: Gaming and Animation 507
12.2 Android Game Programming - Introduction to Flixel-Android 508
12.3 Introduction to Game Programming using AndEngine (Android-

Engine) 510

13. Social Networking . 517
13.1 Facebook Integration 517
13.2 Social Networking Integration using Http 525

Table of Contents | ix

13.3 Loading a user's Twitter timeline (using JSON) 528

14. Location and Map Applications . 533
14.1 Introduction: Location-Aware Applications 533
14.2 Getting Location Information 533
14.3 Access GPS information anywhere in your application 535
14.4 Mocking GPS Coordinates On A Device 537
14.5 Geocoding and Reverse Geocoding 539
14.6 Getting ready for Google Maps development 540
14.7 Using Google Maps in your Android App 547
14.8 How to show your current location in a map 548
14.9 To Add Device's current location to Google Maps 549

14.10 Draw a location marker on a Google MapView 550
14.11 Drawing multiple location markers on a MapView 556
14.12 Creating Overlays for a Google MapView 560
14.13 Changing Views of a MapView. 561
14.14 Draw overlay icon without using Drawable 562
14.15 Location search on Google maps 567
14.16 MapView inside TabView 568
14.17 Handling longpress in a map 572
14.18 Using OpenStreetMap 575
14.19 Creating overlays in OpenStreetMaps 576
14.20 Using a scale on an OpenStreetMap 579
14.21 Handling touch events on an OpenStreetMap Overlay 582
14.22 Getting location updates with OpenStreetMaps 584

15. Accellerometer . 593
15.1 Using the accelerometer to detect shaking of the device 593
15.2 Introduction: Sensors 596
15.3 Checking for device facing up or facing down based on screen

orientation using Accelerometer. 597
15.4 Finding the orientation of an Android device using Orientation

sensor. 598
15.5 Checking for the Presence or Absence of a Sensor 600
15.6 Reading the Temperature Sensor 601

16. Bluetooth . 603
16.1 Introduction: Bluetooth 603
16.2 Connecting to Bluetooth enabled device 603
16.3 Enabling Bluetooth and making the device Discoverable. 606
16.4 Listening for Bluetooth Connection Requests. 607
16.5 Bluetooth Device discovery 609

x | Table of Contents

17. System and Device Control . 611
17.1 Phone network/connectivity information 611
17.2 Changing incoming call notification to Silent, Vibrate, or normal 612
17.3 Rebooting the Device 614
17.4 Running shell commands from your application 616
17.5 Copying text and getting text from the Clipboard 617
17.6 Making LED based notifications 619
17.7 Making the Device Vibrate. 620
17.8 Determining Whether a Given Application is Running 621

18. Other Programming Languages . 623
18.1 Run external/native Linux command 623
18.2 Running Adobe Air/Flex on Android 624
18.3 Getting Started with ''Scripting Layer for Android'' (formerly

Android Scripting Environment) 625
18.4 Running Native Code with JNI on the NDK 627
18.5 Introduction: Other Programming Languages 632
18.6 Intro to Flex 4.5 Android Programming 634
18.7 Sharing your scripts (ASE) using QR codes 636
18.8 Using native handset functionality from webview using Javascript 638

19. Internationalization . 641
19.1 Introduction: Internationalization 641
19.2 Internationalizing Application Text 642

20. Packaging, deploying and selling . 647
20.1 Signing Your Application 647
20.2 How to integrate Admob into your app 648
20.3 Distributing Your Application via the Android Market 652
20.4 Creating a Signing Certificate 654
20.5 Obfuscating and Optimizing with ProGuard 657
20.6 Provide a Link to other Published Apps in the Market 660

21. Other . 663
21.1 Introduction: Everything Else 663
21.2 Sending messages between threads using activity thread queue and

Handler class 663
21.3 Intercommunication amongst Applications 665

22. Contributors . 667
22.1 Names 667

Table of Contents | xi

Preface

Preface
Ian Darwin
Android is "the open source revolution" applied to cellular telephony. At least, part of
it. There are many other attempts to provide open source cell phones, ranging from the
mostly-defunct Openmoko Freerunner through QT Embedded, Moblin, LiMo, Debian
Mobile, Maemo to the recently-open-sourced Symbian OS. Not to mention the estab-
lished non-open-source stalwarts: Blackberry OS, Apple's iPhone, and Microsoft Win-
dows Mobile (these have developer toolkits, but their OS is not available as open
source).

"Nobody's armchair is a good predictor of the future", though, as Mike O'Dell once
said. Does Android have a place in the sun alongside these other players? We think it
does. This book is here to help the Android developer community share the knowledge
that will make it happen. Those who contribute knowledge here are helping make
Android development easier for those who come after.

About Android
Android is a mobile technology platform that provides cell phones, tablets and other
hand-held and mobile devices (even netbooks) with the power and portability of the
Linux operating system and the reliability and portability of a standard high-level lan-
guage and API. Android apps are written in the Java language, using tools such as
Eclipse, compiled against the Android API, and translated into bytecode for the Dalvik
VM.

Android is thus related by OS family to Openmoko, QT Embedded, MeeGo (the 2010
merger of Nokia's Maemo and Intel's MobLin), OPhone, LiMo and other Linux-based
cell phone projects. Android is also related by programming language to Blackberry
and JavaME phones, and to Java and the wider realm of Java Enterprise applications.

Android sales have continued to climb; there is a report from NPD that first-quarter
2010 sales of all Android devices exceeded sales of the iPhone, moving it into second

xiii

http://wiki.openmoko.org
http://news.bbc.co.uk/2/hi/technology/8496263.stm
http://symbian.org
http://www.android.com/
http://www.engadget.com/2010/02/15/meego-nokia-and-intel-merge-maemo-and-moblin
http://www.npd.com/press/releases/press_100510.html
http://www.npd.com/press/releases/press_100510.html

place (although still well behind the Blackberry platform). Surely it was due in part to
major carrier Verizon's 2-for-1 sale, but that doesn't account for all of it...

Who This Book Is From
This book was written by several dozens of Android developers from the Android
community at large. Development occurred in the open, on the web site Android-
Cookbook.com, which I wrote to allow people to contribute, view, review and com-
ment upon, the recipes that would make up this book. A complete list can be found in
Chapter 22. I am deeply grateful to all the contributors, who have helped moved this
book from a dream to the reality that you have in your hands (or on-screen if you are
reading the eBook format). Thank you all!

Who This Book Is For
We assume you know the basics of the Java language. If not, see “Pref-
ace” on page xiii. We also assume you know the basics of the Java Standard Edition
API (since this forms the basis of Android's runtime libraries) as well as the basics of
Android. The terms "activity", "intent", and "content provider", while not necessarily
being what you dream about at night, should at least be familiar to you.

What's in this Book?
Chapter 1, Getting Started, takes you through the steps of setting up the Android de-
velopment environment and building several simple applications of the well-known
"Hello World" type pioneered by Brian Kernighan.

Chapter 2, Designing a successful Application, covers some of the differences in mobile
computing that will hit developers coming from desktop and enterprise software en-
vironments, and talks about how mobile design (in particular Android design) differs
from those other environments.

Testing is often an afterthought for some developers, so we put this early on, in Chap-
ter 3, Testing. Not so you'll skip it, but so you'll read and heed. We talk about unit
testing individual components as well as testing out your entire application in a well-
controlled way.

In Chapter 4, Content Providers, we show you how to make an application that can be
used by other applications through something as simple but ubiquitous (in Android)
as the URL.

Chapter 5, Graphics, covers a range of topics related to graphics, including use of the
graphical drawing and compositing facilities in Android as well as using desktop tools
to develop graphical images, textures, icons, and so on that will be incorporated into
your finished application.

xiv | Preface

http://androidcookbook.com/
http://androidcookbook.com/

Every mobile app needs a GUI, so Chapter 6, Graphical User Interface, covers all the
ins and outs of GUI development for Android. Examples are given both in XML and
in hard-coded GUI development.

Chapter 7, GUI: ListView, focuses on one of the most important Graphical User Inter-
faces in Android, the ListView.

Android is rich in multimedia capabilities. Chapter 8, Multimedia, shows how.

Chapter 9, Data Persistence, shows how to save data into files, databases and so on.
And how to retreive it later, of course.

Android started out as an operating system for mobile telephones. Chapter 10, Tele-
phone Applications, shows how to control and react to the telephone device that is in
most mobile devices nowadays.

Mobile devices are, for the most part, always-on and always-connected. This has a
major impact on how people use them and think about them. Chapter 11, Networked
Applications, shows the coding for traditional networked applications. This is followed
by Chapter 12, Gaming and Animation, and Chapter 13, Social Networking.

The now-ubiquitous Global Positioning System has also had major implications on
how mobile applications work. Chapter 14, Location and Map Applications, discusses
how to find your location, how to get map data from Google and OpenStreetMap, and
how applications can be location-aware in ways that are just now being explored.

Chapter 15, Accellerometer, talks about the sensors built into most Android devices
and how to use them.

There may be a Chapter 16, Bluetooth, if there's enough to say about it, going way
beyond connecting your Bluetooth(TM) headset to your phone. This is followed by
Chapter 17, System and Device Control.

In Chapter 18, Other Programming Languages, we explore the use of other program-
ming languages to write all or part of your Android application. Examples include C,
Perl, Python, Lisp, and other languages.

While this book is in English, and English remains the #1 language worldwide, it is far
from the only one. And most end users would much rather have an application that
has its text in their language and its icons in a form that is culturally correct for them.
Chapter 19, Internationalization, goes over the issues of language and culture and how
it relates to Android.

Most Android developers hope that their applications will be used by other people. But
this won't happen unless users can find your application. Chapter 20, Packaging, de-
ploying and selling, shows how to prepare your application for distribution via the An-
droid Market, and to use that as well as other markets to get your application out to
the people that will use it.

Preface | xv

Finally, Chapter 21, Other, covers a few miscellaneous topics that don't quite fit any-
where else.

Other Books You May Like

Java Books

T.B.A.

Android Books

T.B.A.

Programming and Design Books

T.B.A.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xvi | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Book Title by Some Author. Copyright
2008 O'Reilly Media, Inc., 978-0-596-xxxx-x."

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O'Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O'Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449388416

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reil-
ly Network, see our website at:

http://www.oreilly.com

xviii | Preface

http://www.oreilly.com/catalog/9781449388416
mailto:bookquestions@oreilly.com
http://www.oreilly.com

CHAPTER 1

Getting Started

1.1 Introduction: Getting Started
Ian Darwin

Discussion
The famous "Hello, World" pattern came about when Kernighan and Plaugher wanted
to write a "Recipe" on how to get started in any new programming language and envi-
ronment. This chapter is affectionately dedicated to these fine gentlemen, and to ev-
eryone who has ever struggled to get started in a new programming paradigm.

1.2 Learning the Java Language
Ian Darwin

Problem
Android apps are written in the Java(tm) programming language before they are con-
verted into Android's own class file format, DEX. If you don't know how to program
in Java you will find it hard to write Android apps.

Solution
There are lots of resources available to learn Java. Most of them will teach you what
you need, but will also teach some API classes that are not available. Avoid any sections
in any book that talk about topics in the left-hand column:

Table 1-1. Parts of Java API to Ignore

Java API Android Equivalent

Swing, Applets Android's GUI, see [[Introduction: GUI]]

application entry point main() See [[Android Lifecycle]]

1

Java API Android Equivalent

J2ME/JavaME Most of android.* replaces JavaME API

Servlets/JSP, J2EE/JavaEE Designed for server-side use

Discussion
Here are some books and resources:

• O'Reilly's Java in a Nutshell is a good introduction for programmers, particularly
those immigrating from C/C++. This book has grown from an acorn to a coconut
in size, to keep up with the growth of Java SE over its lifetime.

• Head First Java provides a great visual-learner-oriented introduction to the lan-
guage. O'Reilly.

• Thinking In Java (4th edition) by Bruce Eckel, Prentice-Hall.

• Learning Java Formerly titled Exploring Java, O'Reilly.

• Great Java videos provides a visual introduction to the language.

• Java: The Good Parts From the book's web site: "What if you could condense Java
down to its very best features and build better applications with that simpler ver-
sion? In this book, veteran Sun Labs engineer Jim Waldo reveals which parts of
Java are most useful, and why those features make Java among the best program-
ming languages available..."

• Java Cookbook (disclosure: I wrote this book) is regarded as a good second book
for Java developers. It has entire chapters on Strings, Regular Expressions, Num-
bers, Dates & Time, Structuring Data, I/O and Directories, Internationalization,
Threading and Networking, all of which apply to Android. It has a number of
chapters that are specific to Swing and to some EE-based technologies.

What's needed is for somebody to write a book on Android for non-Java Program-
mers that would include just exactly the right parts of standard Java language and API
along with all the Android stuff. Available now in three volumes, ships in its own cool
retro wooden case... :-).

See Also
This book's editor maintains a list of Java resources online at http://www.darwinsys
.com/java/.

O'Reilly has many of the best Java books around; there's a complete list at http://oreilly
.com/pub/topic/java.

2 | Chapter 1: Getting Started

http://oreilly.com/catalog/9780596007737/
http://oreilly.com/catalog/9780596009205/
http://www.mindview.net/Books/TIJ4
http://oreilly.com/catalog/9780596008734/
http://oreilly.com/catalog/9781600339998/
http://oreilly.com/catalog/9780596803735/
http://oreilly.com/catalog/9780596007010/
http://www.darwinsys.com/java/
http://www.darwinsys.com/java/
http://oreilly.com/pub/topic/java
http://oreilly.com/pub/topic/java

1.3 Hello World - Command Line
Ian Darwin

Problem
You want to create a new Android project without using the Eclipse ADT plug-in.

Solution
Use the Android Development Kit tool android with the create project argument and
some additional arguments to configure your project.

Discussion
In addition to being the name of the platform, Android is also the name of a command-
line tool for creating, updating and managing projects. You can either navigate into the
android-sdk-xxx directory, or you can set your PATH variable to include its tools sub-
directory.

Then, to create a new project, give the command "android create project" with some
arguments. Here is an example run under MS-DOS:

Example 1-1.

C:\Documents and Settings\Ian\My Documents>PATH=%PATH%;"C:\Documents and Settings\Ian\My Documents\android-sdk-windows\tools"
C:\Documents and Settings\Ian\My Documents>android create project --target 1 --package com.example.foo --name Foo --activity FooActivity --path .\MyAndroid
Created project directory: C:\Documents and Settings\Ian\My Documents\MyAndroid
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\src\com\example\foo
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\src\com\example\foo\FooActivity.java
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\bin
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\libs
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values\strings.xml
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout\main.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\AndroidManifest.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\build.xml

C:\Documents and Settings\Ian\My Documents>

The list of arguments for the create project code follows:

Table 1-2. List of Create Project Arguments

Name Meaning Example

--activity Name of your "main class" and default name for the
generated .apk file

--target HelloActivity

--name Name of the project and the generated .apk file --name MyProject

--package Name of Java package for your classes --package com.example.hello

1.3 Hello World - Command Line | 3

Name Meaning Example

--path Path to create the project in (does not create a subdir-
ectory under this)

--path /home/ian/workspace/MyProject (see above for
Windows example)

--target Level of the Android platform to target --target 1

It it cannot complete the requested operation the android command presents a volu-
minous "command usage" message listing all the operations it can do and the arguments
for them. If successful, the android create project command creates the following files
and directories.

Table 1-3. Artifacts Created by Create Project

Name Meaning

AndroidManifest.xml Config file that tells Android about your project

bin generated binaries (compiled class files)

build.properties Editable properties file

build.xml Standard Ant build control file

default.properties

gen Generated stuff

libs Libraries, of course

res important resource files (strings.xml, layouts, etc.)

src source code for your application

src/packagename/ActivytName.java source of "main" starting activity

test copies of most of the above

It is normal and recommended Android practice to create your user interface in XML
using the layout file created under res/layout, but it is certainly possible to write all
the code in Java. To keep this example self-contained, we'll do it the "wrong" way for
now. Use your favorite text editor to replace the contents of the file HelloWorld.java
with the following contents:

Example 1-2.

public class Hello extends Activity {

 /**
 * This method gets invoked when the activity is instantiated in
 * response to e.g., you clicked on the app's Icon in the Home Screen.
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Create a TextView for the current Activity
 TextView view = new TextView(this);
 // Make it say something

4 | Chapter 1: Getting Started

 view.setText("Hello World");
 // Put this newly-created view into the Activity
 // sort of like JFrame.setContentPane()
 setContentView(tv);
 }
}

Assuming you have the Apache Software Foundation Ant Build Tool installed, you can
now (in a command-line window) change directory into the project directory (...MyDo
cuments\MyAndroid in the above example) and issue the command:

ant debug

This will create an archive file named e.g., MyAndroid.apk (apk standing for Android
Package) in the bin directory.

Assuming you have either the Emulator running, or your device plugged in and recog-
nized via USB, you can then do

adb -e install -r bin/MyAndroid.apk

The -e flag is for the emulator; use -d for a real device.

If you are handy with shell scripts or batch files, you'll want to create one called, say,
download, to avoid typing the adb invocation on every build cycle.

You will probably find it most convenient to create an icon for your app on the home
screen of the device or emulator; this icon will survive multiple "install -r" cycles so it's
the easiest way to test running your application.

See Also
Recipe 1.4. The blog "a little madness" has a more detailed formulation. The official
Android reference site has a page on developing without Eclipse.

1.4 Hello World - Eclipse Version
Ian Darwin

Problem
You want to use Eclipse to develop your Android application.

Solution
Install Eclipse, the Android SDK and the ADT plug-in. Create your project and start
writing your app. Build it, and test it under the Emulator, from within Eclipse.

Discussion
Once you have these items installed, you are ready to begin:

1.4 Hello World - Eclipse Version | 5

http://ant.apache.org/
http://www.alittlemadness.com/2010/05/31/setting-up-an-android-project-build/
http://developer.android.com/guide/developing/other-ide.html
http://developer.android.com/guide/developing/other-ide.html
http://www.eclipse.org/
http://developer.android.com/sdk/
http://developer.android.com/sdk/eclipse-adt.html

• Eclipse IDE

• The Android SDK

• The ADT plug-in

To get started, create a new project from the File->New menu.

Click Next. Give your new project a name, and select an SDK version to target. 1.5
gives you almost all the devices in use today; 2.1 or 2.2 gives you the latest features.
You decide.

This figure shows the project structure expanded in the Project Panel at the right. It
also shows the extent to which you can use Eclipse Auto-completion within Android -
I added the 'gravity' attribute for the label, and Eclipse is offering a full list of possible
attribute values. I chose center-horizontal, so the label should be centered when we get
the application running.

Figure 1-1.

6 | Chapter 1: Getting Started

http://www.eclipse.org/
http://developer.android.com/sdk/
http://developer.android.com/sdk/eclipse-adt.html

Figure 1-2.

1.4 Hello World - Eclipse Version | 7

In fact, if you set gravity to center_vertical on the LinearLayout and set it to cen
ter_horizontal on the TextView, the text will be centered both vertically and horizon-
tally. Here's the version of the layout file main.xml which achieves this:

Example 1-3.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal"

Figure 1-3.

8 | Chapter 1: Getting Started

 />
</LinearLayout>

As always, Eclipse generates a compiled version whenever you save a source file. Also,
in an Android project, it also runs an Ant Build to create the compiled, packaged APK
that is ready to run. So you only need to run it. Right click on the project itself, and do
Run As -> Android Project.

This will start the Android Emulator if it's not already running. The emulator will start
with the word Android in typewriter text, then switch to the fancier Android Font with

Figure 1-4.

1.4 Hello World - Eclipse Version | 9

a moving white patch over blue lettering - remember the Microsoft Windows'95 start-
up?

After a little longer, your application should start up (and here we'll only show the
screen shot of the application itself, since the rest of the Emulator view is redundant).

See Also
Recipe 1.3

1.5 Set Up an Android Virtual Device for Apps Testing
Daniel Fowler

Problem
Successful Apps must run on a wide range of Android devices and versions.

Figure 1-5.

10 | Chapter 1: Getting Started

Figure 1-6.
1.5 Set Up an Android Virtual Device for Apps Testing | 11

Solution
Use the Android SDK's device emulation toolkit to configure combinations of devices
and operating systems. Testing on various combinations reduces issues related to hard-
ware differences in devices.

Discussion
Android devices are manufactured to cover a wide market, from low cost to high spec-
ification and high value. Android has also been in the marketplace for more than a
couple of years. For these reasons there are a wide range of devices with a wide range
of hardware options and operating system versions being used. A successful Applica-
tion (App) will be one that can run on such a range of devices. An App developer will
only be able to test on a very small range of physical devices. Fortunately a developer's
confidence in their App can be boosted by using an Android Virtual Device (AVD).

A complied App can be tested on a physical device or a virtual device. An AVD is an
emulation of an Android platform on a host machine, usually the development ma-
chine. AVDs simplify testing for these reasons:

• Multiple AVD configurations can be created to test an App on different versions
of Android.

• Different (emulated) hardware configurations can be used, for example GPS or no
GPS.

• An AVD is automatically launched and your compiled App is installed on to it
when the 'Run' button is pressed in Eclipse.

• You can test your App on many more combinations of Android version and hard-
ware versions than physical devices you possess.

• Testing on AVDs greatly reduces the amount of testing required on physical devi-
ces.

• AVDs can be used alongside a physical device.

• You don't need to handicap you physical device to induce error conditions, e.g.
testing on a device with no SD card, just set up an AVD with no SD card.

• An AVD can simulate network events without the costs involved in using a physical
device, e.g. simulate phone calls or send an SMS between two AVDs.

• Simulate GPS data from an AVD from different physical locations without moving
from your desk.

• When App users report bugs you can try and mimic their hardware configurations
using AVDs.

Please note that on older development machines and when emulating larger Android
devices the performance of an AVD will be less than that of a physical device.

12 | Chapter 1: Getting Started

An AVD can be configured using the 'SDK Manager' program (opened directly from
the file system or from within Eclipse). It is also possible to create AVDs from the
command line.

To create an AVD with the 'SDK Manager' load the program. When using Eclipse select
'Window' from the menu bar and then select 'Android SDK and AVD Manager'.

The program can also be started directly from the file system. For example in Windows
open 'C:\Program Files\Android\android-sdk\SDK Manager.exe'. If started directly
from the file system 'SDK Manager' will check for SDK updates, in which case press

Figure 1-7.

1.5 Set Up an Android Virtual Device for Apps Testing | 13

'Cancel' to go to the main window, titled 'Android SDK and AVD Manager'. If opened
from Eclipse the main Window will show without the check for updates to the SDK.

The left hand column of the main window will list 'Virtual Devices', 'Installed packages'
and 'Available packages'. 'Virtual Devices' should already be selected, if not select 'Vir-
tual Devices', any existing defined AVDs will be listed in the right hand table. If the
Android SDK has just been installed no AVDs may be listed.

To create an AVD select the 'New' button. The 'Create new Android Virtual Device
(AVD)' window will load.

The following fields are used to define an AVD:

Name

Give a name to the new Android device that is to be emulated. Make the name de-
scriptive, for example if emulating a device with a version 2.1 operating system and
medium resolution screen (HVGA) a name such as Android-v2.1-HVGA is better than
AndroidDevice.

Target

This is the version of the Android operating system than will be running on the emulated
device, as an example for a device running version 2.1 this will be set to "Android 2.1-
update1 - API Level 7".

SD Card

Here you specify the size of the devices emulated Secure Digital (SD) card, or select an
existing SD card image (allowing the ability to share SD card data amongst different
AVD emulations). To specify a new SD card enter the size in MiBs for the card. Re-

Figure 1-8.

14 | Chapter 1: Getting Started

Figure 1-9.

1.5 Set Up an Android Virtual Device for Apps Testing | 15

member that the bigger the number the bigger the file created on the host computer
system to mimic the SD card. Alternatively select the 'File' option and browse to an
existing SD card image (on a Windows machine the 'sdcard.img' files will be found in
the sub-folders of the 'avd' directory under the '.android' directory in the logged on
users folder).

Snapshot

Check the 'Enabled' box if you want the runtime state of the emulated device to persist
between sessions, useful if a long running series of tests are being performed and when
the AVD is closed you do not want to have to start the tests from the beginning. It also
speeds up the start up time of an AVD.

Skin

Here you select the screen size for the device, a list of common screen sizes is presented
e.g. HVGA, QVGA etc. The list will vary depending on the operating system version.
Alternatively a custom resolution can be entered.

Hardware

The table under the hardware option allows the AVD to be configured with or without
certain hardware features. To change features first add them to the table using the 'New'
button (a couple of features will be added and default automatically based on the 'Tar-
get' selected). A dialog will open to allow the selection of a hardware property.

For example select 'GPS support' then 'OK'. Select 'yes' next to 'GPS support in the table
and change it to 'no'. The AVD will not support GPS.

Figure 1-10.

16 | Chapter 1: Getting Started

The AVD supported properties are:

Table 1-4. AVD Supported Properties

Description

Camera support

Boolean

yes or no

This determines if the AVD supports the detection of a camera.

Max VM application heap size

integer

megabyte value

The maximum size of the heap an App might allocate before being shut down by the system.

Abstracted LCD density

integer

120/160/240/320

Approximate density (dots per inch) of the AVD screen, 120 is low density, 160 for standard or normal density, 240 is high density
and 320 is extra high density.

Cache partition size

integer megabytes

xxxMB

This sets the size of cache used by the browser.

SD Card support

Boolean

yes or no

Support for a SD card.

Cache partition support

Boolean

yes or no

This determines whether a browser uses a cache.

Keyboard support

Boolean

yes or no

This controls emulation of a physical keyboard (as opposed to an on screen one).

Audio playback support

Boolean

yes or no

Support for audio play back.

1.5 Set Up an Android Virtual Device for Apps Testing | 17

Description

Keyboard lid support

Boolean

yes or no

Can the emulated keyboard be opened and closed.

Audio recording support

Boolean

yes or no

Support for recording audio.

DPad support

Boolean

yes or no

This indicates emulation of a directional pad.

Maximum vertical camera pixels

integer

pixels height

This determines the height of photos taken with the camera.

Accelerometer

Boolean

yes or no

Can a tilt and movement device be detected.

GPS support

Boolean

yes or no

Can Global Positioning System data be provided.

Device ram size

integer

megabytes

This determines size of the AVD's memory.

Touch screen support

Boolean

yes or no

This determines if the AVD supports operation via the screen.

Proximity support

Boolean

yes or no

18 | Chapter 1: Getting Started

Description

Support for a proximity sensor.

Battery support

Boolean

yes or no

Support for simulated battery power.

GSM modem support

Boolean

yes or no

This determines emulation of telephony abilities.

Trackball support

Boolean

yes or no

Support for a trackball.

Maximum horizontal camera pixels

integer

pixels width

This determines the width of photos taken with the camera.

When the required fields have been defined the 'Create AVD' button is pressed to gen-
erate the AVD. The AVD will now be listed on the 'Android SDK and AVD Manager'
window.

The AVD is ready to be launched using the 'Start...' button. It is also ready to be selected
in a project configuration to test an App under development. When the 'Start...' button
is pressed the 'Launch Options' window is shown.

The options at launch are:

Scale the display to real size
On larger computer monitors you will not normally need to change the AVD scale.
The dpi of the Android screens is greater than the standard dpi on computer mon-
itors; therefore the AVD screen will appear larger than the physical device. If nec-
essary this can be scaled back to save screen space. Use this option to get the AVD
to display at an approximate real size on the computer monitor. The values need
to be set so that the AVD screen and keyboard is not too small to be used.

Wipe user data
When the AVD is started the user data file is reset, any user data generated from
previous runs of the AVD is lost.

1.5 Set Up an Android Virtual Device for Apps Testing | 19

Figure 1-11.

20 | Chapter 1: Getting Started

Launch from snapshot
If 'Snapshot' has been 'Enabled' for an AVD then after it has been first launched
subsequent launches are quicker. The AVD is loaded from a snapshot and the
Android operating system does not need to start up again. Although when the AVD
is closed the shutdown is longer because the snapshot has to be written to disk.

Save to snapshot
When the AVD is closed the current state is saved for quicker launching next time;
although close down is slower as the snapshot is written to disk. Once you have a
snapshot you can uncheck this option so closing an AVD is quick as well, though
any changes since the last snapshot will be lost.

Use the 'Launch' button to start the AVD. Once loaded it can be used like any other
Android device and driven from the keyboard and mouse of the host computer.

Error Message on Windows when Launching
When trying to launch an AVD on a Windows installation an error with the de-
scription beginning invalid command-line parameter may occur.

To fix this problem change the path to the Android SDK directory so that it does
not contain any spaces. The default installation path for the SDK is in C:\Program
Files\Android. The space in Program Files needs to be removed. To do this and
maintain a valid directory name Program Files needs to be converted to its Micro-
soft DOS format (also referred to as 8.3 format). This is usually the first six letters
in upper case followed by a tilde and the number 1, i.e. PROGRA~1. If other di-
rectories start with Program followed by a space then the number may need to be
increased. To see the DOS format for the Program Files directory on your machine
open a Command Prompt (via Start->All Programs->Accessories). Change to root

Figure 1-12.

1.5 Set Up an Android Virtual Device for Apps Testing | 21

Figure 1-13.

22 | Chapter 1: Getting Started

(type cd\ and press Enter) and run dir/x, the directories DOS name will be displayed
next to its full name.

In Eclipse use the Windows->Preferences menu option and select Android, in the
SDK Location field change Program Files to its DOS version.

See Also
http://d.android.com/guide/developing/devices/emulator.html

1.6 Set Up an IDE on Windows to Develop for Android
Daniel Fowler

Figure 1-14.

1.6 Set Up an IDE on Windows to Develop for Android | 23

Problem
Some owners of Android mobile phones, tablets and other devices may want to try and
develop their own Android applications. They may use a Windows PC, a concise guide
to setting up an IDE for that platform is useful.

Solution
The use of the Eclipse IDE is recommended when developing Android Apps. Config-
uring Eclipse on Windows is not a single shot install, several stages need to be com-
pleted. A single concise guide to setting up the IDE on Windows is helpful, particularly
for those with limited software development experience.

Figure 1-15.

Figure 1-16.

24 | Chapter 1: Getting Started

Discussion
To develop applications for Android it is recommended that Eclipse is used. Eclipse
provides an Integrated Development Environment (IDE) for Java. An Android Devel-
opment Tools plug-in is available to enhance Eclipse. The ADT plug-in uses the An-
droid Software Development Kit which provides essential tools to develop Android
software. To set-up a development system you will need to download and install:

1. Java Standard Edition Development Kit

2. Eclipse for Java Development

3. Android Software Development Kit

4. Android Development Tools Plug-in (from within Eclipse)

These stages in more detail for a PC running Windows (tested on 32 bit XP and Vista):

1. Install JDK (Java Development Kit)

Go to the Java download page at:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Select the 'Java' icon to access the JDK downloads:

The list of JDK downloads will be shown. Click the 'Accept License Agreement' radio
button, otherwise you cannot download the JDK.

Download and run the file jdk-7-windows-i586.exe (or jdk-7-windows-x64.exe for 64
bit Windows). You may need to select the location of the download site. Accept any
security warnings that appear but only if you are downloading from the official Java
download web page.

When the download has completed and is run you will need to go through the install
screens clicking Next until the JDK installer has finished. You should not need to change
any options presented. When the JDK installer has completed click the Finish button.
A product registration web page may load, this can be closed or you can choose to
register your installation.

Figure 1-17.

1.6 Set Up an IDE on Windows to Develop for Android | 25

2. Install Eclipse for Java Development

Got to the Eclipse Downloads web page at:

http://www.eclipse.org/downloads/

Windows needs to be selected in the Packages dropdown, select the relevant Eclipse
IDE for Java Developers download link.

Download and open the zip file. In the file there will be an eclipse directory containing
several files and sub-directories. Copy the eclipse directory and all its contents as it
comes. The usual place to copy the files to is either the root of the C drive or under C:
\Program Files, you may need to select continue when Windows asks permission for
the copy.

Figure 1-18.

26 | Chapter 1: Getting Started

Make a shortcut to eclipse.exe.

Run Eclipse so that it sets up a workspace and to check that both Java and Eclipse
installed correctly. When running Eclipse a security warning may be diplayed, select
Run to continue. Accept the default workspace location or use a different directory.

3. Install Android SDK (Software Development Kit)

Go to the Android Software Development Kit download page at:

http://developer.android.com/sdk/index.html

Choose the Windows EXE package (installer_r12-windows.exe) and select Run. Accept
the security warning only if you are downloading from the official Android SDK web
site. The Android SDK Tools installer will show some screens, select the Next button

Figure 1-19.

Figure 1-20.

1.6 Set Up an IDE on Windows to Develop for Android | 27

on each screen, you should not need to change any options. You may see a Java SE
Development Kit (JDK) not found screen. Although the JDK has been installed this is a

Figure 1-21.

28 | Chapter 1: Getting Started

bug in the Android SDK installer. The work around is to select the Back button and
then the Next button again.

When the Install button is pressed a progress screen will briefly display while the An-
droid files are copied, usually to C:\Program Files\Android\android-sdk unless the install
location was changed. Some users have experienced minor issues with the SDK installed
under C:\Program Files because of the space in the directory name. There is a work
around described below, alternatively install to C:\Android\android-sdk. Click the final
Next button and the Finish button at the end of the installation. If you left the Start
SDK Manager checkbox ticked then the SDK Manager will run. Otherwise select SDK
Manager from the Android SDK Tools program group (Start->All Programs->Android
SDK Tools->SDK Manager).

When the SDK Manager runs a progress dialog will be shown while the Android pack-
ages available to download are checked. Then a list of all available packages are shown
with many pre-selected for download. You should not need to change the initial selec-
tion. Click Install and the selected packages will download and be configured for use.
This may take a few minutes.

You may see a message box titled ADB Restart, if this is still the first run of SDK Manager
you can select No. Select Close on the completed progress screen. Close SDK Manager
by clicking the X button in the top corner of the window.

4. Android Development Tools (ADT) Plug-in

Installing the ADT Plug-in is done via Eclipse. To install the ADT Plug-in Eclipse must
be run from the Administrator accout. Use the shortcut created earlier or eclipse.exe
from the eclipse folder. In either case bring up the context menu (usually right-click)
and select Run as administrator, accept any security warnings. When Eclipse has loaded
open the Help menu item and select Install New Software....

Figure 1-22.

1.6 Set Up an IDE on Windows to Develop for Android | 29

On the Install screen enter the following address into the Work with box:

https://dl-ssl.google.com/android/eclipse/

Click the Add button. An Add Repository screen appears, in the Name box type some-
thing meaningful, such as ADT plug-in (the above address will be displayed in the
Location box below).

Click the OK button. The screen will update after briefly showing Pending in the
Name column of the table.

Check the box next to Developer Tools. Then select the Next button at the bottom of
the screen.

Figure 1-23.

30 | Chapter 1: Getting Started

A list of the items to be installed will be displayed. Select Next again.

A screen displays the licenses, ensure that each license has been accepted (select I accept
the terms of the license agreements radio button). Then click the Finish button. A security
warning will need to be accepted to complete the installation, select OK to this warning
(the address entered above is a secure address).

Eclipse will ask you for a restart. Select the Restart Now button and Eclipse will close
and reload.

Figure 1-24.

1.6 Set Up an IDE on Windows to Develop for Android | 31

Use the Window menu option in Eclipse and select Preferences. On the Preferences
dialog select Android. A Google Android SDK usage monitoring question may appear.
If you are happy with usage monitoring select the Proceed button, otherwise remove
the tick on the check box and then select Proceed.

In the SDK Location box enter the location selected in step three (or use the Browse
button to choose). If that location is C:\Program Files\Android\android-sdk use the
Windows 8.3 format for the Program Files directory, i.e. set it to C:\PROGRA~1\An-
droid\android-sdk. Select the Apply button and the list below the SDK Location will
update. Select OK to close the screen.

Eclipse is now configured to build and debug Android Apps. Use the recipe Rec-
ipe 1.5 to configure an Andriod Emulator; then try the Recipe 1.4 recipe as a sanity
check.

See Also
Recipe 1.5

Recipe 1.4

1.7 Android Lifecycle
Ian Darwin

Problem
Android apps do not have a "main" method; you need to learn how they get started
and how they stop or get stopped.

Solution
The class android.Activity provides a number of well-defined life-cycle methods that
are called when an application is started, suspended, restarted, etc., as well as a method
you can call to mark an Activity as finished.

Discussion
Your Android application runs in its own Unix process, so in general it cannot directly
affect any other running application. The Dalvik VM interfaces with the operating sys-
tem to call you when your application starts, when the user switches to another appli-
cation, and so on. There is a well-defined lifecycle for Android applications.

An Android application has three states it can be in:

1. Active - the app is visible to the user and is running;

2. Paused - the app is partly obscured and has lost the input focus.

3. Stopped - the app is completely hidden from view

32 | Chapter 1: Getting Started

Your app will be transitioned among these states by Android calling the following
methods on the current Activity at the appropriate time:

Example 1-4.

void onCreate(Bundle savedInstanceState)
void onStart()
void onResume()
void onRestart()
void onPause()
void onStop()
void onDestroy()

For an application's first Activity, onCreate() is how you know that the application has
been started. This is where you normally do constructor-like work such as setting up
the "main window" with setContentView(), add listeners to buttons to do work (in-
cluding starting additional Activities), and so on. This is the one method that even the
simplest Android app needs.

You can see the effects of the various lifecycle methods by creating a dummy project
in Eclipse and overriding all the methods with log "debug" statements.

1.8 Opening a Web Page, Phone Number or anything else with
an Intent
Ian Darwin

Problem
The Intent mechanism is fundamental to Android; it allows one application to have
some entity processed by another application without knowing or caring what that
application is.

Solution
Invoke the Intent constructor; invoke startActivity on the constructed Intent.

Discussion
The Intent constructor takes two arguments, the action to take and the entity to act
on. Think of the first as the verb and the second as the object of the verb. The most
common action is Intent.ACTION_VIEW, for which the String representation is
android.intent.action.VIEW. The second will typically be a URL or as Android likes it
less precisely (more generally) a URI. URIs can be created using the static parse() meth-
od in the URI class. Assuming that the String variable data contains the location we
want to view, the code to create an Intent for it might be something like the following:

1.8 Opening a Web Page, Phone Number or anything else with an Intent | 33

Example 1-5.

Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(data));

That's all! The beauty of Android is shown here - we don't know or care if data contains
a web page URL with http:, a phone number with tel:, or even something we've never
seen. As long as there is an application registered to process this type of intent, Android
will find it for us, after we invoke it. How do we invoke the Intent? Remember that

Figure 1-25.

34 | Chapter 1: Getting Started

Android will start a new Activity to run the intent. Assuming the code is in an Activity,
just call the inherited startIntent method, e.g.,

Example 1-6.

startActivity(intent);

If all goes well, the user will see the web browser, phone dialer, maps application, or
whatever.

XXX Discuss other actions such as ACTION_OPEN

However, if things fail, the user will not see anything. Why not? We basically told
Android that we don't care whether the intent succeeds or fails. To get feedback, we
have to call startActivityForResult:

Example 1-7.

startActivityForResult(intent, requestCode);

The requestCode is an arbitrary number used to keep track of multiple Intent requests;
you should generally pick a unique number for each Intent you start, and keep track
of these numbers to track the results later (if you only have one Intent whose results
you care about, just use the number '1').

Just making this change will have no effect, however, unless we also override an im-
portant method in Activity, that is:

Example 1-8.

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 // do something with the results...
}

It may be obvious, but is important to note, that you cannot know the result of an Intent
until the entire application that was processing it is finished, which may be an arbitrary
time later. However, the onActivityResult will eventually be called,

XXX Cover resultCode

XXX cover use of the passed intent - refer to recipes on passing Extra Data

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/IntentsDemo-src.zip

1.9 Email Text From a View
Wagied Davids

1.9 Email Text From a View | 35

http://projects.darwinsys.com/IntentsDemo-src.zip
http://projects.darwinsys.com/IntentsDemo-src.zip

Problem
Send an Email containing text or images from a View. The data to be emailed is passed
as a parameter using an Intent.

Solution
File: AndroidManifest.xml

Example 1-9.

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity
 android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Required Permission -->
 <uses-permission
 android:name="android.permission.INTERNET" />
 <uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission>
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission>
 </application>
</manifest>

File: main.xml

Example 1-10.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button

36 | Chapter 1: Getting Started

 android:id="@+id/emailButton"
 android:text="Email Text!"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>

 <TextView
 android:id="@+id/text_to_email"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/my_text" />

</LinearLayout>

File: strings.xml

Example 1-11.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string
 name="hello">Hello World, Main!</string>
 <string
 name="app_name">EmailAndroid</string>
 <string
 name="my_text">
 "Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem
 Ipsum has been the industry's standard dummy text ever since the 1500s, when
 an unknown printer took a galley of type and scrambled it to make a type
 specimen book. It has survived not only five centuries, but also the leap into
 electronic typesetting, remaining essentially unchanged. It was popularised in
 the 1960s with the release of Letraset sheets containing Lorem Ipsum passages,
 and more recently with desktop publishing software like Aldus PageMaker
 including versions of Lorem Ipsum."
</string>
</resources>

File: Main.java

Example 1-12.

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class Main extends Activity implements OnClickListener
 {
 private static final String tag = "Main";
 private Button emailButton;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)

1.9 Email Text From a View | 37

 {
 super.onCreate(savedInstanceState);

 // Set the View Layer
 setContentView(R.layout.main);

 // Get referenc to Email Button
 this.emailButton = (Button) this.findViewById(R.id.emailButton);

 // Sets the Event Listener onClick
 this.emailButton.setOnClickListener(this);

 }

 @Override
 public void onClick(View view)
 {
 if (view == this.emailButton)
 {
 Intent emailIntent = new Intent(android.content.Intent.ACTION_SEND);
 emailIntent.setType("text/html");
 emailIntent.putExtra(android.content.Intent.EXTRA_TITLE, "My Title");
 emailIntent.putExtra(android.content.Intent.EXTRA_SUBJECT, "My Subject");

 // Obtain refenerenc to String and pass it to Intent
 emailIntent.putExtra(android.content.Intent.EXTRA_TEXT, getString(R.string.my_text));
 startActivity(emailIntent);
 }
 }
 }

Discussion
1. Modify AndroidManifest.xml to allow for internet connection allowing email to be
sent. 2. Create the the visual presentation layer with Email Button which the user clicks.
3. Attach a OnClickListener to allow the email to be sent when the user clicks the Email
button.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.fil-
efactory.com/file/b43debh/n/EmailAndroid.zip

1.10 Sending an email with attachments
Marco Dinacci

Problem
You want to send an e-mail with attachments.

38 | Chapter 1: Getting Started

http://www.filefactory.com/file/b43debh/n/EmailAndroid.zip
http://www.filefactory.com/file/b43debh/n/EmailAndroid.zip

Solution
We're going to create an Intent, add extended data to specify the file we want to include
and start a new activity to allow the user to send the e-mail.

Discussion
The easiest way to send an e-mail is to create an Intent of type ACTION_SEND.

Example 1-13.

Intent intent = new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_SUBJECT, "Test single attachment");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});
intent.putExtra(Intent.EXTRA_TEXT, "Mail with an attachment");

To attach a single file, we add some extended data to our intent:

Example 1-14.

intent.putExtra(Intent.EXTRA_STREAM, Uri.fromFile(new File("/path/to/file")));
intent.setType("text/plain");

The MIME type can always be set as text/plain but you may want to be more specific
so applications parsing your message will work properly. For instance if you're includ-
ing a JPEG image you should write image/jpeg.

To send an e-mail with multiple attachment the procedure is slightly different:

Example 1-15.

Intent intent = new Intent(Intent.ACTION_SEND_MULTIPLE);
intent.setType("text/plain");
intent.putExtra(Intent.EXTRA_SUBJECT, "Test multiple attachments");
intent.putExtra(Intent.EXTRA_TEXT, "Mail with multiple attachments");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});

ArrayList<Uri> uris = new ArrayList<Uri>();
uris.add(Uri.fromFile(new File("/path/to/first/file")));
uris.add(Uri.fromFile(new File("/path/to/second/file")));

intent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, uris);

First, we need to use Intent.ACTION_SEND_MULTIPLE, which is available since Android
1.6. Second, we need to create an ArrayList with the URIs of the files we want to attach
to the mail and call putParcelableArrayListExtra.

If sending different type of files you may want to use multipart/mixed as MIME type.

Finally, in both cases, you can start a new Activity with the following code:

Example 1-16.

startActivity(Intent.createChooser(intent, "Send mail"));

1.10 Sending an email with attachments | 39

Intent.createChooser is optional but will allow the user to select his favourite appli-
cation to send the e-mail.

1.11 Installing .apk files on the emulator
Rachee Singh

Problem
Many free Android applications provide their .apk files. Installing them on the emulator
is necessary to check out the application.

Solution
Use of command-line to install the .apk on the running emulator(or the connected
Android phone).

Discussion
To install the .apk, follow the following steps:

1. Find the location on your machine where you have installed Android SDK. In the
Android SDK directory, go to tools directory.

2. Look for an executable 'adb' in the tools directory. If it is present then that is the
location of adb, otherwise, there must be a .txt file named 'adb has moved'. The
contents of the file would point you to the location of adb. This file states that adb
is present in the 'platform-tools' directory within the Android SDK installation
directory.

'tools' directory, with adb has moved.txt:

3. Once you have located the adb, open the terminal in that location(for Linux) for
Windows, cd to that location on the command prompt.

4. Use the command: ./adb install location of the apk you want to install for Linux.
For Windows: adb install location of the apk you want to install

5. This should start the installation on the current device running (It could be an
Emulator that is running or an Android device that is connected).

6. After the installation finishes, in the Menu of the Android device/Emulator you
would see the icon of the application you just installed.

1.12 Installing apps onto an Android Emulator
David Dawes

40 | Chapter 1: Getting Started

Problem
App stores are a huge element of the attraction of modern smartphones. Unfortunately,
if you're developing on an emulated version 2.x Android, you can't currently use Goo-
gle's Android App store.

Solution
SlideMe (http://slideme.org/) offers an alternative app store that works with verson 2.x
emulated Androids. This allows you to install other apps (perhaps you want to integrate

Figure 1-26.

Figure 1-27.

1.12 Installing apps onto an Android Emulator | 41

with other apps), and also to test the experience of publishing and downloading your
own apps on your emulated Android. SlideMe also reaches many Android users who
are locked out of the Google Android App Store - like anybody from most of the world
who doesn't happen to live in the right country. It also allows publishing from outside
of the even smaller list of countries supported by Google's Android App Store.

Discussion
There are multiple links showing how to install the Android App Store onto an emu-
lated Android so that you can use it to download apps to your emulated Android.
Unfortunately the only options I can find are for versions 1.6 or below of the Android
SDK platform.

One alternative I was able to find and use for my 2.1 SDK is Slide Me, an alternative
app store - it may not have as many apps as Google's Android App Store, but it does
work with my emulated Android.

Go to the web site using your emulated Android, browse or search through apps, and
click on a free one. After a pause to download, open the download (the little arrow on
the top left) and launch the .apk you've downloaded to install the app. I installed the
SlideMe app, after reviewing the license (typical stuff: it's licensed to me (I don't own
it) exclusively and non-transferably, and only if I accept ALL terms and conditions.
They get to include ads, if I want to buy apps there are further considerations, I have
to abide by all laws, no porn, no messing with SlideMe, no posting viruses, if it messes
anything up it's my problem, not theirs, SlideMe accepts no liability of any sort and
you indemnify them against that (nasty, but a mostly standard clause), etc.)

Once the SlideMe app is installed you can go through the catalog and install more apps
without using the browser. This is much easier, since the presentation is designed for
the Android. Chose a category, scroll through it, and chose an app to install. I have had
some stability problems using it on my emulator - it freezes on occasion - but I was able
to install some simple free apps like "Grocery list."

I noticed in the Android Invasion discussion forum on linkedin.com that many Android
users are disappointed to find that many cell phone providers do NOT include the app
store in their Android cell phone offering, and unless you're comfortable rooting and
flashing your Android phone there's no way to get it. Most consumers are NOT com-
fortable rooting and flashing their phones and for them SlideMe offers an alternative
way to find free and inexpensive apps for their phones.

SlideMe also allows you to publish your apps onto their app store, See (BROKEN XREF
TO RECIPE -1 'Publishing Your App on SlideMe').

See Also
The SlideMe Application Store.

SlideMe Upload for Developers.

42 | Chapter 1: Getting Started

http://slideme.org/
http://slideme.org/
http://slideme.org/
http://slideme.org/applications
https://www.slideme.org/developers

1.13 Android Epoch HTML/Javascript Calendar
Wagied Davids

Problem
Require a custom calendar using Javascript. Also shows how to interact between Java-
script and Java.

Solution
Use a WebView component to load an HTML file containing the Epoch calendar java-
script component. Steps involved:

• Download Epoch DHTML/Javascript calendar http://www.javascriptkit.com/
script/script2/epoch/index.shtml.

• Create an assets directory under your Android Project folder eg. TestCalendar/
assets/

• Code your main HTML file for referencing Epoch calendar

• Create an Android Activity for launching the Epoch calendar.

Note that files placed in Android assets directory are referenced like this: file:///an-
droid_asset/ (NOTE: triple leading slash and singular spelled asset)

Discussion
The solution - to make use of the WebView component for loading an HTML file
containing the Epoch calendar javascript component. To enable interaction between
the Javascript based view layer and the Java-based logic layer, a Java--Javascript bridge
interface is required, MyJavaScriptInterface inner class. The onDayClick() function
shows how to to call a javascript function from an Android actiivity eg. webview.loa-
dUrl("javascript: popup();");

File: calendarview.html

Example 1-17.

<html>
 <head>
 <title>My Epoch DHTML Javascript Calendar</title>
 <style type="text/css">
 dateheader {
 -background-color: #3399FF;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 -border-radius: 10px;
 -padding: 5px;
 }
 </style>

1.13 Android Epoch HTML/Javascript Calendar | 43

 <style type="text/css">
 html {height:100%;}
 body {height:100%; margin:0; padding:0;}
 #bg {position:fixed; top:0; left:0; width:100%; height:100%;}
 #content {position:relative; z-index:1;}
 </style>
 <!--[if IE 6]>
 <style type="text/css">
 html {overflow-y:hidden;}
 body {overflow-y:auto;}
 #page-background {position:absolute; z-index:-1;}
 #content {position:static;padding:10px;}
 </style>
 <![endif]-->

 <link rel="stylesheet" type="text/css" href="epoch_v106/epoch_styles.css" />
 <script type="text/javascript" src="epoch_v106/epoch_classes.js"></script>

 <script type="text/javascript">
 /*You can also place this code in a separate file and link to it like epoch_classes.js*/
 var my_cal;

 window.onload = function () {
 my_cal = new Epoch('epoch_basic','flat',document.getElementById('basic_container'));
 };

 function popup()
 {
 var weekday=new Array("Sun","Mon","Tue","Wed","Thur","Fri","Sat");
 var monthname=new Array("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec");
 var date = my_cal.selectedDates.length > 0 ? my_cal.selectedDates[0] : null;
 if (date != null)
 {
 var day = date.getDate();
 var dayOfWeek= date.getDay();
 var month = date.getMonth();
 var yy = date.getYear();
 var year = (yy < 1000) ? yy + 1900 : yy;

 /* Set the User selected date in HTML form*/
 var dateStr= weekday[dayOfWeek] + ", " + day + " " + monthname[month] + " " + year;
 document.getElementById("selected_date").value= dateStr;

 /* IMPORTANT: Call Android Javascript->Java bridge setting a Java-field variable */
 window.android.setSelectedDate(date);
 window.android.setCalendarButton(date);
 }
 }
 </script>
 </head>
 <body>
 <div id="bg"></div>
 <div id="content">
 <div class="dateheader" align="center">

44 | Chapter 1: Getting Started

 <form name="form_selected_date">
 Selected day:
 <input id="selected_date" name="selected_date" type="text" readonly="true">
 </form>
 </div>
 <div id="basic_container" onClick="popup()"></div>
 </div>
 </body>
</head>>

File: CalendarView.java

Example 1-18.

import java.util.Date;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.webkit.JsResult;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Toast;

import com.pfizer.android.R;
import com.pfizer.android.utils.DateUtils;
import com.pfizer.android.view.screens.journal.CreateEntryScreen;

public class CalendarViewActivity extends Activity
 {
 private static final String tag = "CalendarViewActivity";
 private ImageView calendarToJournalButton;
 private Button calendarDateButton;
 private WebView webview;
 private Date selectedCalDate;

 private final Handler jsHandler = new Handler();

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(tag, "Creating View ...");
 super.onCreate(savedInstanceState);

 // Set the View Layer
 Log.d(tag, "Setting-up the View Layer");
 setContentView(R.layout.calendar_view);

1.13 Android Epoch HTML/Javascript Calendar | 45

 // Go to CreateJournalEntry
 calendarToJournalButton = (ImageView) this.findViewById(R.id.calendarToJournalButton);
 calendarToJournalButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 Log.d(tag, "Re-directing -> CreateEntryScreen ...");
 Intent intent = intent = new Intent(getApplicationContext(), CreateEntryScreen.class);
 startActivity(intent);
 }
 });

 // User-Selected Calendar Date
 calendarDateButton = (Button) this.findViewById(R.id.calendarDateButton);

 // Get access to the WebView holder
 webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings settings = webview.getSettings();

 // Enable Javascript
 settings.setJavaScriptEnabled(true);

 // Enable ZoomControls visibility
 settings.setSupportZoom(true);

 // Add Javascript Interface
 webview.addJavascriptInterface(new MyJavaScriptInterface(), "android");

 // Set the Chrome Client
 webview.setWebChromeClient(new MyWebChromeClient());

 // Load the URL of the HTML file
 webview.loadUrl("file:///android_asset/calendarview.html");

 }

 public void setCalendarButton(Date selectedCalDate)
 {
 Log.d(tag, jsHandler.obtainMessage().toString());
 calendarDateButton.setText(DateUtils.convertDateToSectionHeaderFormat(selectedCalDate.getTime()));
 }

 /**
 *
 * @param selectedCalDate
 */
 public void setSelectedCalDate(Date selectedCalDate)
 {
 this.selectedCalDate = selectedCalDate;
 }

46 | Chapter 1: Getting Started

 /**
 *
 * @return
 */
 public Date getSelectedCalDate()
 {
 return selectedCalDate;
 }

 /**
 * JAVA->JAVASCRIPT INTERFACE
 *
 * @author wagied
 *
 */
 final class MyJavaScriptInterface
 {
 private Date jsSelectedDate;
 MyJavaScriptInterface()
 {
 // EMPTY;
 }

 public void onDayClick()
 {
 jsHandler.post(new Runnable()
 {
 public void run()
 {
 // Java telling Javascript to do things
 webview.loadUrl("javascript: popup();");
 }
 });
 }

 /**
 * NOTE: THIS FUNCTION IS BEING SET IN JAVASCRIPT User-selected Date in
 * WebView
 *
 * @param dateStr
 */
 public void setSelectedDate(String dateStr)
 {
 Toast.makeText(getApplicationContext(), dateStr, Toast.LENGTH_SHORT).show();
 Log.d(tag, "User Selected Date: Javascript -> Java : " + dateStr);

 // Set the User Selected Calendar date
 setJsSelectedDate(new Date(Date.parse(dateStr)));
 Log.d(tag, "java.util.Date Object: " + Date.parse(dateStr).toString());
 }
 private void setJsSelectedDate(Date userSelectedDate)
 {
 jsSelectedDate = userSelectedDate;
 }
 public Date getJsSelectedDate()

1.13 Android Epoch HTML/Javascript Calendar | 47

 {
 return jsSelectedDate;
 }
 }

 /**
 * Alert pop-up for debugging purposes
 *
 * @author wdavid01
 *
 */
 final class MyWebChromeClient extends WebChromeClient
 {
 @Override
 public boolean onJsAlert(WebView view, String url, String message, JsResult result)
 {
 Log.d(tag, message);
 result.confirm();
 return true;
 }
 }

 @Override
 public void onDestroy()
 {
 Log.d(tag, "Destroying View!");
 super.onDestroy();
 }
 }

For debugging purposes, a MyWebChromeClient is created and the onJsAlert() meth-
od is overriden.

1.14 Sharing Java classes from another Eclipse Project
Ian Darwin

Problem
You want to use a class from another project, but don't want to copy-and-paste

Solution
Add the project as a "referenced project", and Eclipse (and DEX) will do the work.

Discussion
You often need to re-use classes from another project. In JPSTrack GPS tracking pro-
gram, the Android version borrows classes like the file I/O module from the Java SE
version. You surely do not want to copy and paste classes willy-nilly from one project
into another, because this makes maintenance improbable.

48 | Chapter 1: Getting Started

All you really have to do is declare the project containing the needed classes (the Java
SE version in this case) as a referenced project on the build path. Select Project->Prop-
erties->Build Path, select Project, and click "Add". In the screenshot I am adding the
SE project "jpstrack" as a dependency on the Android version project "jpstrack.an-
droid".

Since you are probably keeping both projects under source control (if these are pro-
grams you ever ship, you should!), remember to tag both projects when you release the
Android project - one of the points in favor of source control is that you need to be able
to re-create exactly what you shipped.

1.15 Referencing libraries to implement external functionality
Rachee Singh

Problem
You need to reference an external library in your source code

Figure 1-28.

1.15 Referencing libraries to implement external functionality | 49

Solution
Obtain the JAR file for the library that you require and add it to your project

Discussion
As an example, you might require to use AndroidPlot, a library to plot charts and graphs
in your application or use OpenStreetMaps. For this your application needs to reference
these libraries. In Eclipse this can be done in a few simple steps:

• Download the JAR file corresponding to the library you wish to use.

• After creating your Android project in Eclipse, right click on the project name and
select 'Properties' option in the menu.

• From the list on the left side, select 'Java Build Path' and click on the 'Libraries' tab.

• Click on 'Add External JARs' button.

• Provide the location where you downloaded the JAR file for the library you wish
to use.

Now you will see a 'Referenced Libraries' directory appearing in your project. Within
this directory the JARs that you added will appear.

An alternate approach is to create a 'lib' folder in your project, physically copy the Jar
files there, and add them individually as above, but using "Add Jars". This way keeps
everything in one place (especially if your project is shared by a version control system
to others who might even use a different operating system and be unable to locate the
external jars in the same place). However it does raise the burden of responsibility for
license issues on the included jar files.

In either case, if you also build with Ant, be sure to update your build.xml file.

Whichever way you do it, it's pretty easy to add libraries to your project.

1.16 Use SDK Samples to Help Avoid Head Scratching
Daniel Fowler

Problem
Sometimes it is a struggle to code up some functionality, especially when the docu-
mentation is sketchy or does not provide any examples.

Solution
Looking at existing working code will help. The SDK has sample programs that can be
picked apart to see how they work.

50 | Chapter 1: Getting Started

Figure 1-29.

1.16 Use SDK Samples to Help Avoid Head Scratching | 51

Discussion
The Android SDK comes with several sample applications that can be useful when
trying to code up some functionality. Looking through the sample code can be insight-
ful. Once the Android SDK is installed there are several samples available:

• Accelerometer Play

• Accessibility Service

• API Demos

• Backup and Restore

• Bluetooth Chat

• Business Card

• Contact Manager

• Cube Live Wallpaper

• Home

• Honeycomb Gallery

• JetBoy

Figure 1-30.

52 | Chapter 1: Getting Started

• Lunar Lander

• Multiple Resolutions

• Near Field Communication

• Note Pad

• RenderScript

• Sample Sync Adapter

• Searchable Dictionary

• Session Initiation Protocol

• Snake

• Soft Keyboard

• Spinner

• SpinnerTest

• StackView Widget

• TicTacToeLib

• TicTacToeMain

• USB

• Wiktionary

• Wiktionary (Simplified)

• Weather List Widget

• XML Adapters

To open a sample project from Eclipse open the 'File' menu and then select 'Android
Project'.

On the 'New Android Project' dialog select the 'Create project from existing sample'
option. Select the API level/platform version required from the list of available 'Build
Targets'. Select the required sample from the 'Samples' dropdown. If the drop down is

Figure 1-31.

1.16 Use SDK Samples to Help Avoid Head Scratching | 53

not enabled this is because samples for the selected API level have not been installed
or are not available. The SDK Manager can be used to install the samples, or if not
available for that API level select a different API level.

Figure 1-32.

54 | Chapter 1: Getting Started

Click 'Finish', the sample will load into the workspace and build (progress shown on
the status bar).

After a short time the sample will be ready to run and the source code can be browsed
to see how it is all done.

If the samples have been moved from the SDK samples directory use the 'Create project
from existing source' option on the 'New Android Project' dialog to open the sample.

When the sample is first run select 'Android Application' in the 'Run As' dialog that
may appear. It may also be necessary to configure an appropriate AVD to run the sample
(see Recipe 1.5).

Additonal sources of information include:

• The Android Developers web site at http://developer.android.com/index.html

• This Cookbook of course.

• Doing a web search.

Still head scratching, ask someone a question, try:

• Stack Overflow at http://www.stackoverflow.com using the Tag "android".

• Internet Relay Chat (IRC) channel #android-dev on freenode.

1.17 Keeping the Android SDK Updated
Daniel Fowler

Problem
The SDK must be kept updated to allow App developers to work with the latest APIs
on the evolving Android platform.

Solution
Use the Android SDK and AVD Manager to update the existing installed SDK packages
and to install new SDK packages. This includes third party packages for device specific
functionality.

Figure 1-33.

1.17 Keeping the Android SDK Updated | 55

http://developer.android.com/index.html
http://www.stackoverflow.com

Discussion
The Android Operating System (OS) is constantly evolving and therefore so is the An-
droid Software Development Kit (SDK). The ongoing development of Android is driven
by:

• Google's research and development.

Figure 1-34.

56 | Chapter 1: Getting Started

• Phone manufacturers developing new and improved handsets.

• Addressing security issues and possible exploits.

• The need to support new devices (e.g. support for tablets devices was added with
version 3.0).

• Support for new hardware interfaces (e.g. adding support for Near Field Commu-
nication in version 2.3).

• Fixing bugs.

• Improvements in functionality (e.g. a new JavaScript engine).

• Changes in the underlying Linux kernel.

• Deprecation of redundant programming interfaces.

• New uses (e.g. Google TV).

• The wider Android development community.

Installation of the Android SDK has been covered elsewhere (see Recipe 1.6 or http://
developer.android.com/sdk/installing.html). After the SDK is installed on the devel-
opment machine, and the programming environment is running smoothly, once in a
while developers will need to check for updates to the SDK.

The SDK can be kept up to date by running the SDK Manager program. (On a Windows
machine run SDK Manager.exe in the folder C:\Program Files\Android\android-sdk, or
use the Start button, then All Programs, Android SDK Tools and click SDK Manager).
The SDK Manager automatically scans for updates and new packages.

If the SDK Manager is opened from within Eclipse (using the Window menu and selecting
Android SDK and AVD Manager) then the scan has to be manually started. Select Installed
packages in the left hand column, then click the Update All... button.

Available updates and new packages will show in a list. If a package has licence terms
that require accepting they are shown with a question mark. Highlight each package
with a question mark to read the licence terms. The package can be accepted or rejected
using the radio buttons. Rejected packages are marked with a red cross.

Alternatively click on Accept All to accept everything that is available. All packages
and updates ready to download and install will be shown with a green tick.

Click the Install button to begin the download and installation.

Once the downloads and package installations are complete click the Close button.

If the Android SDK and AVD Manager program (SDK Manager.exe) has itself been
updated there will be a message asking to restart the program.

1.17 Keeping the Android SDK Updated | 57

When the SDK Manager program does the scan for updates and new packages there
may be none available; in this case an empty list is displayed which can be closed using
the Cancel button.

The SDK Manager is also used to download additional packages that are not part of
the standard platform. This is used by device manufacturers to provide support for
their own hardware. For example LG Electronics provide a 3D device and to support
3D capability in applications an additional package is provided.

In the Android SDK and AVD Manager dialog click on Available packages. Expand and
tick the required package in the right hand list then click Install Selected to get the
third party package. If a third party package is not listed the URL to a respository.xml
file, provided by the package publisher, will need to be entered via the Add Add-On
Site... button.

On a Windows machine the default location for the SDK is under the Program Files
\Android\android-sdk directory. This is a restricted directory and can cause the SDK
installation to fail. A message dialog with the title "SDK Manager: failed to install" can
appear.

To overcome this error there are several items to check.

• Unplug any Android devices (this may prevent adb.exe from closing).

Figure 1-35.

58 | Chapter 1: Getting Started

• Browse to C:\Program Files\Android\Android-sdk, bring up the Properties for the
tools folder (context menu then Properties). Ensure that the Read Only checkbox
is cleared.

There may be a need to give permission to change the attributes.

Figure 1-36.

Figure 1-37.

1.17 Keeping the Android SDK Updated | 59

A "Confirm Attribute Changes" dialog will be shown, ensure the option Apply changes
to this folder, subfolders and files is selected and press OK.

• Restart the computer.

• Ensure that all other programs are closed, especially any copies of File Explorer.

• Run SDK Manager.exe under the administrator account. Bring up context menu and
select Run as administrator.

Further information on troubleshooting the SDK Manager and Android Eclipse plug-
in can be found on the Android Developers web site.

Figure 1-38.

Figure 1-39.

60 | Chapter 1: Getting Started

See Also
Recipe 1.6

Installing the SDK

Adding SDK Components

ADT Plugin for Eclipse

1.18 Five Ways to Wire Up an Event Listener
Daniel Fowler

Problem
Developers need to be familiar with the different ways to code event handlers, they they
will come across different methods in tutorials, samples and online snippets.

Figure 1-40.

Figure 1-41.

1.18 Five Ways to Wire Up an Event Listener | 61

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/adding-components.html
http://developer.android.com/sdk/eclipse-adt.html

Solution
When writing software very rarely is there only one way to do things, this is true when
wiring up View events, five methods are shown here.

Discussion
When a View fires an event an Application will not respond to it unless it is listening
for it. To detect the event a class that implements a listener is instantiated and assigned
to the View. Take for example the onClick event, the most widely used event in Android
Apps. Nearly every View that can be added to an App screen will fire the event when
the user stabs it with their finger (on touch screens) or presses the trackpad/trackball
when the View has focus. This event is listened to by a class implementing the OnClick

Figure 1-42.

Figure 1-43.

62 | Chapter 1: Getting Started

Listener interface. The class instance is then assigned to the required View using the
View's setOnClickListener method. In the following code an Activity sets the text of
a TextView (textview1) when a Button (button1) is pressed.

1. Member Class

A class called HandleClick implementing OnClickListener is declared as a member of
the Activity (main). This is useful when several listeners require similar processing
than can be handled by a single class.

Example 1-19.

public class main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //attach an instance of HandleClick to the Button
 findViewById(R.id.button1).setOnClickListener(new HandleClick());
 }
 private class HandleClick implements OnClickListener{
 public void onClick(View arg0) {
 Button btn = (Button)arg0; //cast view to a button
 // get a reference to the TextView
 TextView tv = (TextView) findViewById(R.id.textview1);
 // update the TextView text
 tv.setText("You pressed " + btn.getText());
 }
 }
}

Figure 1-44.

1.18 Five Ways to Wire Up an Event Listener | 63

2. Interface Type

In Java an Interface can be used as a type, a variable is declared as an OnClickLis
tener and assigned using new OnClickListener(){...}, behind the scenes Java is cre-

Figure 1-45.

64 | Chapter 1: Getting Started

ating an object (an Anonymous Class) that implements OnClickListener. This has sim-
ilar benefits to the first method.

Example 1-20.

public class main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //use the handleClick variable to attach the event listener
 findViewById(R.id.button1).setOnClickListener(handleClick);
 }

Figure 1-46.

Figure 1-47.

1.18 Five Ways to Wire Up an Event Listener | 65

 private OnClickListener handleClick = new OnClickListener(){
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 };
}

3. Anonymous Inner Class

Declaring the OnClickListener within the call to the setOnClickListener method is
common. This method is useful when each listener does not have functionality that
could be shared with other listeners. Some novice developers find this type of code
difficult to understand. Again behind the scenes for new OnClickListener(){...} Java
is creating an object that implements the interface.

Example 1-21.

public class main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(new OnClickListener(){
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 });
 }
}

4. Implementation in Activity

The Activity itself can implement the OnClickListener. Since the Activity object
(main) already exists this saves a small amount of memory by not requiring another
object to host the onClick method. It does make public a method that is unlikely to be
used elsewhere. Implementing multiple events will make the declaration of main long.

Example 1-22.

public class main extends Activity implements OnClickListener{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(this);
 }
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);

66 | Chapter 1: Getting Started

 tv.setText("You pressed " + btn.getText());
 }
}

5. Attribute in View Layout for OnClick Events

In Android 1.6 and later (API level 4 and upwards) a named class defined in the Activity
can be assigned to the android:onClick attribute in a layout file. This can save writing
a lot of boilerplate code.

Example 1-23.

public class main extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 public void HandleClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
}

In the layout file the Button would be declared with the android:onClick attribute.

Example 1-24.

<Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="HandleClick"/>

The first four methods of handling events can be used with other event types (onLong
Click, onKey, onTouch, onCreateContextMenu, onFocusChange). The fifth method only ap-
plies to the onClick event. The layout file below declares an additonal two buttons and
using the android:onClick attribute no additional code is required than that defined
above, i.e. no additional findViewById and setOnClickListener for each button is re-
quired.

Example 1-25.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click a button."
 android:textSize="20dp"/>

1.18 Five Ways to Wire Up an Event Listener | 67

 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 2"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 3"
 android:onClick="HandleClick"/>
 </LinearLayout>
</LinearLayout>

Deciding which technique to use to wire up a listener will depend on the functionality
required, how much code is reusable across Views and how easy the code would be to
understand by future maintainers. Ideally the code should be succint and easy to view.

One method not shown here is similar to the first method. In the first method it would
be possible to save the listener class in a different class file as a public class. Then
instances of that public class could be used by other Activities, passing the Activity's
context in via the constructor. However, Activities should try and stay self contained
in case they are killed by Android. Sharing listeners across Activities is against the ideals

Figure 1-48.

68 | Chapter 1: Getting Started

of the Android platform and could lead to unnecessary complexity passing references
between the public classes.

1.19 Taking a Screenshot from the Emulator/Android Device
Rachee Singh

Problem
Taking a screen-shot of the application running on an Android Device.

Solution
Use the 'Device Screen Capture' feature of the DDMS View in Eclipse.

Discussion
1. Run the Application in Eclipse and go to the DDMS View (Window Menu->Open

Perspective->Other->DDMS) or Window Menu->Show View->Other->Android-
>Devices; the former is shown in the screenshots in this Recipe).

2. In the DDMS View, go to the Device Screen Capture Icon.

3. A window showing the current screen of the Emulator/Android Device pops up.
You can save the screenshot for the describing the app!

Figure 1-49.

1.19 Taking a Screenshot from the Emulator/Android Device | 69

1.20 Program: A Simple CountDownTimer example
Wagied Davids

Problem
Require a simple count down timer

Solution
Android comes with a built-in class for constructing CountDownTimers. It’s easy to
use, efficient, and works (that goes without saying!).

1. Create a subclass of CountDownTimer.

2. Override the onTick() and onFinish() methods.

3. Instantiate a new instance in your Android Activity,

4. Call the start() method on the new instance created!

Figure 1-50.

70 | Chapter 1: Getting Started

Discussion
File: main.xml

Example 1-26.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/button"
 android:text="Start"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <TableLayout
 android:padding="10dip"
 android:layout_gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableRow>
 <TextView
 android:id="@+id/timer"
 android:text="Time: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/timeElapsed"

Figure 1-51.

1.20 Program: A Simple CountDownTimer example | 71

 android:text="Time elapsed: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </TableRow>
 </TableLayout>
</LinearLayout>

File: Main.java

Example 1-27.

package com.examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class Main extends Activity implements OnClickListener
 {
 private static final String tag = "Main";
 private MalibuCountDownTimer countDownTimer;
 private long timeElapsed;
 private boolean timerHasStarted = false;
 private Button startB;
 private TextView text;
 private TextView timeElapsedView;

 private final long startTime = 50000;
 private final long interval = 1000;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startB = (Button) this.findViewById(R.id.button);
 startB.setOnClickListener(this);

 text = (TextView) this.findViewById(R.id.timer);
 timeElapsedView = (TextView) this.findViewById(R.id.timeElapsed);
 countDownTimer = new MalibuCountDownTimer(startTime, interval);
 text.setText(text.getText() + String.valueOf(startTime));
 }

 @Override
 public void onClick(View v)
 {
 if (!timerHasStarted)
 {

72 | Chapter 1: Getting Started

 countDownTimer.start();
 timerHasStarted = true;
 startB.setText("Start");
 }
 else
 {

 countDownTimer.cancel();
 timerHasStarted = false;
 startB.setText("RESET");
 }
 }

 // CountDownTimer class
 public class MalibuCountDownTimer extends CountDownTimer
 {

 public MalibuCountDownTimer(long startTime, long interval)
 {
 super(startTime, interval);
 }

 @Override
 public void onFinish()
 {
 text.setText("Time's up!");
 timeElapsedView.setText("Time Elapsed: " + String.valueOf(startTime));
 }

 @Override
 public void onTick(long millisUntilFinished)
 {
 text.setText("Time remain:" + millisUntilFinished);
 timeElapsed = startTime - millisUntilFinished;
 timeElapsedView.setText("Time Elapsed: " + String.valueOf(timeElapsed));
 }
 }
 }

The result looks like this:

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/cbbbc38/n/SimpleCountDownTimerExample.zip

1.21 Program: Tipster, a tip calculator for the Android OS
Sunit Katkar

1.21 Program: Tipster, a tip calculator for the Android OS | 73

http://www.filefactory.com/file/cbbbc38/n/SimpleCountDownTimerExample.zip
http://www.filefactory.com/file/cbbbc38/n/SimpleCountDownTimerExample.zip

Figure 1-52.

74 | Chapter 1: Getting Started

Problem
A tip calculator is quite a simple application. When you go with friends to a restaurant
and wish to divide the check and tip, you simply add the tip percentage to the total and
divide by the number of diners. Tipster is an implementation of this in Android, to
show a complete application.

Solution
This is a simple exercise to use the basic GUI elements in Android and then piecing
them together with some simple calculation and some event driven UI code to tie it all
together. We will use the following GUI components:

• TableLayout - provides a good control over screen layout. This layout allows us to
use the HTML Table tag paradigm to layout widgets

• TableRow - this defines a row in the TableLayout. Its like the HTML TR and TD
tag combined.

• TextView - this View provides a label for displaying static text on the screen

• EditText - this View provides a text field for entering values.

• RadioGroup - this groups together radio buttons

• RadioButton - this provides a radio button

• Button - this is the regular button

• View - we will use a View to create a visual separator with certain height and color
attributes

Discussion
Android uses XML files for the Layout of widgets. In our example project, the Android
plugin for Eclipse generates a main.xml file for the layout. This file has the XML based
definitions of the different widgets and their containers.

There is a strings.xml file which has all the string resources used in the application. A
default icon.png file is provided for the application icon.

Then there is the R.java file which is automatically generated (and updated when any
changes are made to main.xml). This file has the constants defined for each of the layout
and widget. Do not edit this file manually. The plugin is does it for you when you do
a clean build.

In our example we have Tipster.java as the main Java file or the Activity.

Google tutorials highlight how to use the plugin. Using the Eclipse plugin, create an
Android project named Tipster. The end result will be a project layout like the following
screen shot.

1.21 Program: Tipster, a tip calculator for the Android OS | 75

Creating the Layout and placing the Widgets The end goal is to create a layout as shown
in the following screen shot.

For this screen layout we will use the following layouts and widgets:

• TableLayout - provides a good control over screen layout. This layout allows us to
use the HTML Table tag paradigm to layout widgets

• TableRow - this defines a row in the TableLayout. Its like the HTML TR and TD
tag combined.

• TextView - this View provides a label for displaying static text on the screen

• EditText - this View provides a text field for entering values.

• RadioGroup - this groups together radio buttons

• RadioButton - this provides a radio button

• Button - this is the regular button

• View - we will use a View to create a visual separator with certain height and color
attributes

Familiarize yourself with these widgets as you will be using these quite a lot in appli-
cations you build. When you go to the Javadocs for each of the above, do look up the
XML attributes. This will help you correlate the usage in the main.xml layout file and
the Java code (Tipster.java and R.java) where these are accessed.

I came across a UI tool Droid Draw, that lets you create a layout by drag-and-drop of
widgets from a palette, just like any form designer tool. However, I would recommend
that you create the layout by hand in XML, at least in your initial stages of learning
Android. Later on you, as you learn all the nuances of the XML layout API, you can
delegate the task to such tools.

The Layout file - main.xml This file has the layout information. I have posted the file
below. The source code comments make the file quite self-explanatory.

A TableRow widget creates a single row inside the TableLayout. So we use as many
TableRows as the number of rows we want. In this tutorial we use 8 TableRows - 5 for
the widgets till the visual separator below the buttons and 3 for the results area below
the buttons and separator.

/res/layout/main.xml

Example 1-28.

<?xml version="1.0" encoding="utf-8"?>
<!-- Using table layout to have HTML table like control over layout -->
<TableLayout
 android:id="@+id/TableLayout01"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 xmlns:android="http://schemas.android.com/apk/res/android">

76 | Chapter 1: Getting Started

 <!-- Row 1: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl1"/>
 <EditText
 android:id="@+id/txtAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="decimal"
 android:layout_column="2"
 android:layout_span="2"
 />
 </TableRow>
 <!-- Row 2: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl2"/>
 <EditText
 android:id="@+id/txtPeople"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="integer"
 android:layout_column="2"
 android:layout_span="3"/>
 </TableRow>
 <!-- Row 3: This has just one text label placed in column zero -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textLbl3"/>
 </TableRow>
 <!-- Row 4: RadioGroup for RadioButtons placed at column zero
 with column span of three, thus creating one radio button
 per cell of the table row. Last cell number 4 has the
 textfield to enter a custom tip percentage -->
 <TableRow>
 <RadioGroup
 android:id="@+id/RadioGroupTips"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

1.21 Program: Tipster, a tip calculator for the Android OS | 77

 android:layout_column="0"
 android:layout_span="3"
 android:checkedButton="@+id/radioFifteen">
 <RadioButton android:id="@+id/radioFifteen"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt15"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioTwenty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt20"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioOther"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxtOther"
 android:textSize="15sp" />
 </RadioGroup>
 <EditText
 android:id="@+id/txtTipOther"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:numeric="decimal"/>
 </TableRow>
 <!-- Row for the Calculate and Rest buttons. The Calculate button
 is placed at column two, and Reset at column three -->
 <TableRow>
 <Button
 android:id="@+id/btnReset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:text="@string/btnReset"/>
 <Button
 android:id="@+id/btnCalculate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="3"
 android:text="@string/btnCalculate"/>
 </TableRow>

 <!-- TableLayout allows any other views to be inserted between
 the TableRow elements. So inserting a blank view to create a
 line separator. This separator view is used to separate
 the area below the buttons which will display the
 calculation results -->
 <View
 android:layout_height="2px"
 android:background="#DDFFDD"
 android:layout_marginTop="5dip"
 android:layout_marginBottom="5dip"/>

 <!-- Again table row is used to place the result textviews
 at column zero and the result in textviews at column two -->

78 | Chapter 1: Getting Started

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl4"/>
 <TextView
 android:id="@+id/txtTipAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl5"/>
 <TextView
 android:id="@+id/txtTotalToPay"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl6"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl6"/>
 <TextView
 android:id="@+id/txtTipPerPerson"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>
 <!-- End of all rows and widgets -->
</TableLayout>

TableLayout and TableRow After examining the main.xml, you can gather that the
TableLayout and TableRow are straightforward to use. You create the TableLayout
once, then insert a TableRow. Now you are free to insert any other widgets like Text-
View, EditView, etc. inside this TableRow.

Do look at the attributes, especially android:stretchColumns, android:layout_column,
android:layout_span which allow widget placement like the way you would use use a

1.21 Program: Tipster, a tip calculator for the Android OS | 79

regular HTML table. I recommend that you follow the links to these attributes and read
up on how they work for a TableLayout.

Controlling input values Look at the EditText widget in the main.xml file at line 19.
This is the first text field for entering the 'Total Amount' of the check. We want only
numbers here. We can accept decimal numbers because real restaurant checks can be
for dollars and cents, and not just dollars. So we use the android:numeric attribute with
a value of decimal. So this will allow whole values like 10 and decimal values 10.12,
but will prevent any other type of entry.

This is a simple and concise way to control input values, thus achieving two things,
saving us the trouble of writing validation code in the java file Tipster.java, and ensuring
that the user does not enter erroneous values. This XML based constraints feature of
Android is quite powerful and useful. You should explore all possible attributes that
go with a particular widget to extract maximum benefits from this XML shorthand way
of setting constraints. In a future release, unless I have missed it completely in this
relase, I wish that Android allows for entering ranges for the adroid:numeric attribute,
so that we can define what range of numbers we wish to accept.

Since ranges are not currently available (to the best of my knowledge), you will see later
on that we do have to check for certain values like zero or empty values to ensure our
tip calculation arithmetic does not fail.

Examining Tipster.java Next we look at the Tipster.java file which controls our appli-
cation. This is the main class which does the layout, the event handling and the appli-
cation logic.

Application code - Tipster.java The Android Eclipse plugin creates the Tipster.java file
in our project with default code as follows -

Code Snippet 1 of /src/com/examples/tipcalc/Tipster.java

Example 1-29.

package com.examples.tipcalc;

import android.app.Activity;

public class Tipster extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The Tipster class extends the android.app.Activity class. An activity is a single, focused
thing that the user can do. The Activity class takes care of creating the window and
then laying out the UI. You have to call the setContentView(View view) method to put

80 | Chapter 1: Getting Started

your UI in the Activity. So think of Activity as a outer frame which is empty, and you
populate it with your UI.

Now look at the snippet of the Tipster.java class. First we define the widgets as class
members. Look at lines 3 to 12 of the code snippet 2 below for reference.

Then we use the findViewById(int id) method to locate the widgets. The ID of each
widget, defined in your main.xml file, is automatically defined in the R.java file when
you clean and build the project in Eclipse. (If you have set up Eclipse to Build Auto-
matically, then the R.java file is instantaneously updated when you update main.xml)

Each widget is derived from the View class, and provides special graphical user interface
features. So a TextView provides a way to put labels on the UI, while the EditText
provides a text field. Look at lines 24 to 41 in the code snippet 2 below. You can see
how findViewById() is used to locate the widgets.

Code Snippet 2 of /src/com/examples/tipcalc/Tipster.java

Example 1-30.

public class Tipster extends Activity {
 // Widgets in the application
 private EditText txtAmount;
 private EditText txtPeople;
 private EditText txtTipOther;
 private RadioGroup rdoGroupTips;
 private Button btnCalculate;
 private Button btnReset;

 private TextView txtTipAmount;
 private TextView txtTotalToPay;
 private TextView txtTipPerPerson;

 // For the id of radio button selected
 private int radioCheckedId = -1;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Access the various widgets by their id in R.java
 txtAmount = (EditText) findViewById(R.id.txtAmount);
 //On app load, the cursor should be in the Amount field
 txtAmount.requestFocus();

 txtPeople = (EditText) findViewById(R.id.txtPeople);
 txtTipOther = (EditText) findViewById(R.id.txtTipOther);

 rdoGroupTips = (RadioGroup) findViewById(R.id.RadioGroupTips);

 btnCalculate = (Button) findViewById(R.id.btnCalculate);
 //On app load, the Calculate button is disabled

1.21 Program: Tipster, a tip calculator for the Android OS | 81

 btnCalculate.setEnabled(false);

 btnReset = (Button) findViewById(R.id.btnReset);

 txtTipAmount = (TextView) findViewById(R.id.txtTipAmount);
 txtTotalToPay = (TextView) findViewById(R.id.txtTotalToPay);
 txtTipPerPerson = (TextView) findViewById(R.id.txtTipPerPerson);

 // On app load, disable the 'Other tip' percentage text field
 txtTipOther.setEnabled(false);

Addressing 'ease of use' or Usability concerns Our application must try to be as usable
as any other established application or web page. In short, adding Usability features
will give a good user experience. To address these concerns look at the code snippet 2
again.

Look at line 26 where we use the method requestFocus() of the View class. Since Ed-
itText widget is derived from the View class, this method is applicable to it. This is
done to so that when our application loads, the 'Total Amount' text field will receive
focus and the cursor will be placed in it. This is similar to popular web application login
screens where the cursor is present in the username textfield.

Now look at line 35 where the 'Calculate' button is disabled by calling the setEna-
bled(boolean enabled) method on the Button widget. This is done so that the user
cannot click on it before entering values in the required fields. If we allowed the user
to click Calculate without entering values in the 'Total Amount' and 'No. of People'
fields, then we would have to write validation code to catch these conditions. This
would entail showing an alert popup warning the user about the empty values. This
adds unnecessary code and user interaction. When the user sees the 'Calculate' button
disabled, its quite obvious that unless all values are entered, the tip cannot be calculated.

Look at line 44 in the code snippet 2. Here the 'Other Percentage' text field is disabled.
This is done because the '15% tip' radio button is selected by default when the appli-
cation loads. This default selection on application load is done via the main.xml file.
Look at line 66 of main.xml where the following statement selects the '15% tip' radio
button.

Example 1-31.

android:checkedButton="@+id/radioFifteen"

The RadioGroup attribute android:checkedButton allows you to select one of the Ra-
dioButton widgets in the group by default.

Most users, who have used popular applications on the desktop as well as the web, are
familiar with the 'disabled widgets enabled on certain conditions' paradigm..

Adding such small conveniences always makes the application more usable and the
user experience richer.

82 | Chapter 1: Getting Started

Processing UI events Like popular Windows, Java Swing, FLex, etc. UI frameworks,
Android too provides an Event model which allows to listen to certain events in the UI
caused by user interaction. Let us see how we can use the Android event model in our
application.

Listening to radio buttons First let us focus on the radio buttons in the UI. We want to
know which radio button was selected by the user, as this will allow us to determine
the 'Tip Percentage' in our calculations. To 'listen' to radio buttons, we use the static
interface OnCheckedChangeListener(). This will notify us when the selection state of
a radio button changes.

In our application, we want to enable the 'Other Tip' text field only when the 'Other'
radio button is selected. When the 15% and 20% buttons are selected we want to
disable this text field. Besides this, we want to add some more logic for sake of usability.
As discussed before, we should not enable the 'Calculate' button till all required fields
have valid values. In case of the three radio buttons, we want to ensure that the Calculate
button gets enabled for the following two conditions -

Other radio button is selected and the 'Other Tip Percentage' text field has valid values
15% or 20% radio button is selected and 'Total Amount' and 'No. Of People' text fields
have valid values. Look at the code snippet 3 which deals with the radio buttons. The
source code comments are quite self explanatory.

Code Snippet 3 of /src/com/examples/tipcalc/Tipster.java

Example 1-32.

 /*
 * Attach a OnCheckedChangeListener to the
 * radio group to monitor radio buttons selected by user
 */
 rdoGroupTips.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 // Enable/disable Other Percentage tip field
 if (checkedId == R.id.radioFifteen
 || checkedId == R.id.radioTwenty) {
 txtTipOther.setEnabled(false);
 /*
 * Enable the calculate button if Total Amount and No. of
 * People fields have valid values.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 }
 if (checkedId == R.id.radioOther) {
 // enable the Other Percentage tip field
 txtTipOther.setEnabled(true);
 // set the focus to this field
 txtTipOther.requestFocus();
 /*

1.21 Program: Tipster, a tip calculator for the Android OS | 83

 * Enable the calculate button if Total Amount and No. of
 * People fields have valid values. Also ensure that user
 * has entered a Other Tip Percentage value before enabling
 * the Calculate button.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 }
 // To determine the tip percentage choice made by user
 radioCheckedId = checkedId;
 }
 });

Monitoring key activity in text fields As I mentioned earlier, the 'Calculate' button must
not be enabled unless the text fields have valid values. So we have to ensure that the
Calculate button will be enabled only if the 'Total Amount', 'No. of People' and 'Other'
tip percentage text fields have valid values. The Other tip percentage text field is enabled
only if the Other Tip Percentage radio button is selected.

We do not have to worry about the type of values, i.e. whether user entered negative
values or alphabetical characters because the android:numeric attribute has been de-
fined for the text fields, thus limiting the types of values that the user can enter. We
have to just ensure that the values are present.

So we use the static interface OnKeyListener(). This will notify us when a key is pressed.
The notification reaches us before the actual key pressed is sent to the EditText widget.

Look at the code snippet 4 and 5 which deals with key events in the text fields.

The source code comments are quite self explanatory.

Code Snippet 4 of /src/com/examples/tipcalc/Tipster.java

Example 1-33.

/*
 * Attach a KeyListener to the Tip Amount, No. of People and Other Tip
 * Percentage text fields
 */
txtAmount.setOnKeyListener(mKeyListener);
txtPeople.setOnKeyListener(mKeyListener);
txtTipOther.setOnKeyListener(mKeyListener);

Notice that we create just one listener instead of creating anonymous/inner listeners
for each textfield. I am not sure if my style is better or recommended, but I always write
it in this style if the listeners are going to perform some common actions. Here the
common concern for all the text fields is that they should not be empty, and only when
they have values should the Calculate button be enabled.

84 | Chapter 1: Getting Started

Example 1-34.

/*
 * KeyListener for the Total Amount, No of People and Other Tip Percentage
 * fields. We need to apply this key listener to check for following
 * conditions:
 *
 * 1) If user selects Other tip percentage, then the other tip text field
 * should have a valid tip percentage entered by the user. Enable the
 * Calculate button only when user enters a valid value.
 *
 * 2) If user does not enter values in the Total Amount and No of People,
 * we cannot perform the calculations. Hence enable the Calculate button
 * only when user enters a valid values.
 */
private OnKeyListener mKeyListener = new OnKeyListener() {
 @Override
 public boolean onKey(View v, int keyCode, KeyEvent event) {

 switch (v.getId()) {
 case R.id.txtAmount:
 case R.id.txtPeople:
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 break;
 case R.id.txtTipOther:
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 break;
 }
 return false;
 }

};

In line 18 of code snippet 5, we examine the ID of the View. Remember that each widget
has a unique ID as we define it in the main,xml file. These values are then defined in
the generated R.java class.

In line 19 and 20, if the key event occured in the Total Amount or No. of People fields
then we check for the value entered in these fields. We are ensuring that the user has
not left the fields blank.

In line 24 we check if the user has selected Other radio button, then we ensure that the
Other text field is not empty. We also check once again if the Total Amount and No.
of People fields are empty.

So the purpose of our KeyListener is now clear - ensure that all text fields are not empty
and only then enable the Calculate button.

Listening to Button clicks Next we look at the 'Calculate' and Reset buttons. When the
user clicks these buttons, we use the static interface OnClickListener() which will let
us know when a button is clicked.

1.21 Program: Tipster, a tip calculator for the Android OS | 85

As we did with text fields, just one listener is created and within it we detect which
button was clicked. Depending on the button clicked, the calculate() and reset() meth-
ods are called.

Code snippet 6 shows how the click listener is added to the buttons.

Code Snippet 6 of /src/com/examples/tipcalc/Tipster.java /* Attach listener to the Cal-
culate and Reset buttons */ btnCalculate.setOnClickListener(mClickListener); btnRe-
set.setOnClickListener(mClickListener);

Code snippet 7 shows how to detect which button is clicked by checking for the ID of
the View that receives the click event.

Code Snippet 7 of /src/com/examples/tipcalc/Tipster.java

Example 1-35.

/**
 * ClickListener for the Calculate and Reset buttons.
 * Depending on the button clicked, the corresponding
 * method is called.
 */
private OnClickListener mClickListener = new OnClickListener() {

 @Override
 public void onClick(View v) {
 if (v.getId() == R.id.btnCalculate) {
 calculate();
 } else {
 reset();
 }
 }
};

Resetting the application When the user clicks the Reset button, the text fields should
be cleared, the default 15% radio butto should be seleced and any results calculated
should be cleared.

Code snippet 8 shows the reset() method.

Code Snippet 8 of /src/com/examples/tipcalc/Tipster.java

Example 1-36.

/**
 * Resets the results text views at the bottom of the screen as well as
 * resets the text fields and radio buttons.
 */
private void reset() {
 txtTipAmount.setText("");
 txtTotalToPay.setText("");
 txtTipPerPerson.setText("");
 txtAmount.setText("");
 txtPeople.setText("");
 txtTipOther.setText("");

86 | Chapter 1: Getting Started

 rdoGroupTips.clearCheck();
 rdoGroupTips.check(R.id.radioFifteen);
 // set focus on the first field
 txtAmount.requestFocus();
}

Validating the input to calculate the tip As I said before, we are limiting what type of
values the user can enter in the text fields. However, the user could still enter a value
of zero in the Total Amount, No. of People and Other Tip Percentage text fields, thus
causing error conditions like divide by zero in our tip calculations.

If the user enters zero then we must show an alert popup asking the user to enter non-
zero values. We handle this with a method called showErrorAlert(String errorMessage,
final int fieldId), but more about it later.

First, look at code snippet 9 which shows the calculate() method. Notice how the values
entered by the user are parsed as Double values.

Checking for zero values Notice line 11 and 16 where we check for zero values. If the
user enters zero, then we show an alert popup to warn the user. Next look at line 37,
where the Other Tip Percentage text field is enabled because the user selected the Other
radio button. Here too, we must check for the tip percentage being zero.

State of radio buttons When the application loads, the 15% radio button is selected by
default. If the user changes the selection, then we saw in code snippet 3, in the On-
CheckedChangeListener, that we assign the ID of the selected radio button to the
member variable radioCheckedId.

But if the user accepts the default selection, then the radioCheckedId will have the
default value of -1. In short, we will never know which radio button was selected.
Offcourse, we know which one is selected by default and could have coded the logic
slightly differently, to assume 15% if radioCheckedId has the value -1. But if you refer
the API, you will see that we can call the method getCheckedRadioButtonId() on the
RadioGroup and not on individual radio buttons. This is because the OnChecked-
ChangeListener readily provides us with the ID of the radio button selected.

Showing the results Calculating the tip is simple. If there are no validation errors, the
boolean flag isError will be false. Look at lines 49 to 51 in code snippet 9 for the simple
tip calculations. Next, the calculated values are set to the TextView widgets from line
53 to 55.

Code Snippet 9 of /src/com/examples/tipcalc/Tipster.java

Example 1-37.

/**
 * Calculate the tip as per data entered by the user.
 */
private void calculate() {
 Double billAmount = Double.parseDouble(
 txtAmount.getText().toString());

1.21 Program: Tipster, a tip calculator for the Android OS | 87

 Double totalPeople = Double.parseDouble(
 txtPeople.getText().toString());
 Double percentage = null;
 boolean isError = false;
 if (billAmount < 1.0) {
 showErrorAlert("Enter a valid Total Amount.",
 txtAmount.getId());
 isError = true;
 }

 if (totalPeople < 1.0) {
 showErrorAlert("Enter a valid value for No. of people.",
 txtPeople.getId());
 isError = true;
 }

 /*
 * If user never changes radio selection, then it means
 * the default selection of 15% is in effect. But its
 * safer to verify
 */
 if (radioCheckedId == -1) {
 radioCheckedId = rdoGroupTips.getCheckedRadioButtonId();
 }
 if (radioCheckedId == R.id.radioFifteen) {
 percentage = 15.00;
 } else if (radioCheckedId == R.id.radioTwenty) {
 percentage = 20.00;
 } else if (radioCheckedId == R.id.radioOther) {
 percentage = Double.parseDouble(
 txtTipOther.getText().toString());
 if (percentage < 1.0) {
 showErrorAlert("Enter a valid Tip percentage",
 txtTipOther.getId());
 isError = true;
 }
 }
 /*
 * If all fields are populated with valid values, then proceed to
 * calculate the tips
 */
 if (!isError) {
 Double tipAmount = ((billAmount * percentage) / 100);
 Double totalToPay = billAmount + tipAmount;
 Double perPersonPays = totalToPay / totalPeople;

 txtTipAmount.setText(tipAmount.toString());
 txtTotalToPay.setText(totalToPay.toString());
 txtTipPerPerson.setText(perPersonPays.toString());
 }
}

Showing the alerts Android provides the AlertDialog class to show alert popups. This
lets us show a dialog with upto three buttons and a message.

88 | Chapter 1: Getting Started

Code snippet 10 shows the showErrorAlert method which uses this AlertDialog to show
the error messages. Notice that we pass two arguments to this method - String error-
Message and int fieldId. The first argument is the error message we want to show to
the user. The fieldId is the ID of the field which caused the error condition. After the
user dismissed the alert dialog, this fieldID will allow us to request the focus on that
field, so the user knows which field has the error.

Code Snippet 10 of /src/com/examples/tipcalc/Tipster.java

Example 1-38.

/**
 * Shows the error message in an alert dialog
 *
 * @param errorMessage
 * String the error message to show
 * @param fieldId
 * the Id of the field which caused the error.
 * This is required so that the focus can be
 * set on that field once the dialog is
 * dismissed.
 */
private void showErrorAlert(String errorMessage,
 final int fieldId) {
 new AlertDialog.Builder(this).setTitle("Error")
 .setMessage(errorMessage).setNeutralButton("Close",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog,
 int which) {
 findViewById(fieldId).requestFocus();
 }
 }).show();
}

Conclusion Developing for the Android OS is not so different than developing for any
other UI toolkit like Microsoft Windows, X Windows, Java Swing, Adobe Flex, etc. Of
course Android has its differences and overall a very good design. The XML layout
paradigm is quite cool and useful to build complex UIs using simple XML. The event
handling model is simple, feature rich and intuitive to use in code.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.vidyut
.com/sunit/android/tipster.zip

Binary Download URL
The executable code for this example may be downloaded from this URL: http://www
.vidyut.com/sunit/android/tipster.zip

1.21 Program: Tipster, a tip calculator for the Android OS | 89

http://www.vidyut.com/sunit/android/tipster.zip
http://www.vidyut.com/sunit/android/tipster.zip
http://www.vidyut.com/sunit/android/tipster.zip
http://www.vidyut.com/sunit/android/tipster.zip

CHAPTER 2

Designing a successful Application

2.1 Introduction: Designing a Successful Android application
Colin Wilcox

Discussion
This chapter is about design guidelines for writing imaginative and useful Android
applications. There are several recipes that describe specific aspects of successful de-
sign. This Preface will list some others.

One purpose of this document is to explain the benefits of developing native Java An-
droid applications in preference to other methods of delivering rich content on mobile
devices.

Mobile Phone Market Growth

The mobile phone market is predicted to growth by up to 27% over the next three
years. The original dominating platforms such as Symbian and Windows Mobile will
count for a largely reduced percentage of the mobile handset market than in past years
with recent newcomers Android and Apple iOS (iPhone and iPad) accounting for al-
most two thirds of the market by 2015.

Industry predictions for each of the key mobile handset platforms are shown in the
table below.

Example 2-1.

XXX Make this a real table please
 Android Apple Symbian Blackberry Microsoft Other
2010 22.7% 15.7% 37.6% 16.0% 4.2% 3.8%
2011 38.5% 19.4% 19.2% 13.4% 5.6% 3.9%
2012 49.2% 18.9% 5.2% 12.6% 10.8% 3.4%
2015 48.8% 17.2% 0.1% 11.1% 19.5% 3.3%

91

Predictions for the number of mobile handset sales for each of the main handset plat-
forms (x thousand units), is shown in the table below.

Example 2-2.

 Android Apple Symbian Blackberry Microsoft Other
2010 67,225 46,598 111,577 47,452 12,378 11,417
2011 179,873 90,560 89,930 62,600 26,346 18,392
2012 310,088 118,848 32,666 79,335 68.156 21,383
2015 539,318 189,924 661 122,864 215,998 36,133

Requirements of a Native Handset Application There are a number of key requirements
needed for successfully delivering any mobile handset application regardless of the
platform it will be deployed onto, namely:

• Ease of installation, removal and update on a device.

• An application should address the user needs in a compelling, unique and elegant
way.

• Feature rich whilst remaining usable by both novice and expert users.

• An application should be familiar to users who have accessed the same information
through other routes, e.g. website.

• Key areas of functionality should be readily accessible.

• Application should have a common look and feel with other native applications
on the handset conforming to the target platform standards and style guidelines.

• An application should be stable, scalable, useable and responsive.

• A great application should use the targets capabilities tastefully when it makes the
users experience more compelling.

Android Application Design The Android application design will exploit the features
and functions unique to the Android OS platform. In general the application will be an
Activity based solution allowing independent and controlled access to data on a screen
by screen basis. This approach helps to localise potential errors and allows sections of
the flow to be readily replaced or enhanced independently of the rest of the application.

Navigation will use a similar approach to that of the Apple iPhone solution in that all
key areas of functionality will be accessed from a single navigation bar control. The
navigation bar will be accessible from anywhere within the application allowing the
user to freely move around the application.

The Android solution will exploit features inherent to Android devices, supporting the
touch screen features, support for the hardware button to switch the application into
the background and provide support for application switching.

Android provides the ability to jump back into an application at the point where it was
switched out. This will be supported, when possible within this design.

92 | Chapter 2: Designing a successful Application

The application will use only standard Android user interface controls to make it as
portable as possible. The use of themes or custom controls is outside the scope of this
design document.

The application will be designed such that it interfaces to a thin layer of RESTFUL web
services that provide data in a JSON format. This interface will be the same as used by
the Apple iPhone, as well as application written for other platforms.

The application will adopt the Android style and design guidelines wherever possible
to provide an application that fits in with other Android application on the device.

Data that is local to each view will be saved when the view is exited and automatically
restored with the corresponding user interface controls repopulated when the view is
next loaded.

There are a number of important device characteristics that should be considered:

Screen size and density

In order to categorize devices by their screen type, Android defines two characteristics
for each device: screen size (the physical dimensions of the screen) and screen density
(the physical density of the pixels on the screen, or dpi (dots per inch). To simplify all
the different types of screen configurations, the Android system generalizes them into
select groups that make them easier to target.

The design should take into account the most appropriate choices for screen size and
screen density when designing the application

By default, your application is compatible with all screen sizes and densities, because
the Android system makes the appropriate adjustments to your UI layout and image
resources. However, you should create specialized layouts for certain screen sizes and
provide specialized images for certain densities, using alternative layout resources, and
by declaring in your manifest exactly which screen sizes your application supports.

Input configurations

Many devices provide a different type of user input mechanism, such as a hardware
keyboard, a trackball, or a five-way navigation pad. If your application requires a par-
ticular kind of input hardware,. However, it is rare that an application should require
a certain input configuration.

Device features

There are many hardware and software features that may or may not exist on a given
Android-powered device, such as a camera, a light sensor, Bluetooth, a certain version
of OpenGL, or the fidelity of the touch screen. You should never assume that a certain
feature is available on all Android-powered devices (other than the availability of the
standard Android library.

2.1 Introduction: Designing a Successful Android application | 93

The Android application will provide instances of the two types of menus provided by
the Android framework depending on the circumstances.

1. Options menus contain primary functionality that applies globally to the current
activity or starts a related activity. It is typically invoked by a user pressing a hard
button, often labelled MENU. An Options menu is for any commands that are
global to the current activity.

2. Context menus contain secondary functionality for the currently selected item. It
is typically invoked by a user's touch & hold on an item. Like on the Options menu,
the operation can run either in the current or another activity.

A Context menu is for any commands that apply to the current selection.

The commands on the Context menu that appears when you touch & hold on an item
should be duplicated on the activity you get to by a normal press on that item.

• Place the most frequently used operations first.

• Put only the most important commands fixed on the screen.

The system will automatically lay the menus out and provides standard ways for users
to access them ensuring that the application will conform to the Android user interface
guidelines. In this sense, they are familiar and dependable ways for users to access
functionality across all applications.

The Android application will make extensive use of Googles Intent mechanism for
passing data between Activity objects. Intents are used not only to pass data between
views within a single application but also allow data, or requests, to be passed to ex-
ternal modules. As such much functionality can be adopted by the Android application
by embedded functionality from other applications invoked by Intent calls. This re-
duces the development process and maintains the common look and feel and func-
tionality behaviour across all application.

Data Feeds and Feed Formats

It is not intended to interface directly to any third party data source. The normal ap-
proach would be to mitigate the data, from several sources in potentially multiple data
formats, through a middleware which then passes data to an application through a
series of RESTFUL web service APIs in the form of JSON data streams.

Typically data is provided in such formats as XML, SOAP or some other XML-derived
representation. Such representations such as SOAP are heavyweight and as such trans-
ferring data from the backend servers in this format increases development time sig-
nificantly as the responsibility of converting this data into something more manageable
falls on either the handset application or an object on the middleware server.

Mitigating the source data through a middleware server also helps to break the de-
pendency between the application and the data. Such a dependency has the disadvant-
age that if, for some reason, the nature of the data changes or cannot be retrieved the

94 | Chapter 2: Designing a successful Application

application may be broken and become unusable and such changes may require the
application to be republished. By mitigating the data on a middleware server, the ap-
plication will continue to work, albeit possibly in a limited fashion, regardless of
whether the source data exists or not. The link between the application and the miti-
gated data will remain. This can be seen from the abstracted diagram below:

2.2 Keeping a Service running while other apps are on display
Ian Darwin

Problem
You want part of your application to continue running in the background while the
user switches to interact with other apps.

Solution
Create a Service class to do the background work; start the Service from your main
application. Optionally provide a Notification icon to allow the user either to stop the
running service or to resume the main application

Discussion
A Service class (android.app.Service) runs as part of the same process as your main
application, but has the property that it will keep running even if the user switches to
another app or even goes to the Home screen and starts up a new app.

As you know by now, Activity classes can be started either by an Intent that matches
their Content Provider, or by an intent that mentions them by class name. The same is
true for Services. This recipe focuses on starting a service directly; a second recipe will
cover starting a service implicitly. The example is taken from JpsTrack, a GPS tracking
program for Android. Once you start tracking, you don't want the tracking to stop if
you answer the phone or have to look at a map(!), so we made it into a Service. The
service is started by the main Activity when you click the Start Tracking button, and
stopped by the Stop button, Note that this is so common that startService() and stop-
Service() are built into the Activity class.

Example 2-3.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 Intent theIntent = new Intent(this, GpsService.class);
 Button startButton = (Button) findViewById(R.id.startButton);
 startButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 startService(theIntent);

2.2 Keeping a Service running while other apps are on display | 95

 Toast.makeText(Main.this, "Starting", Toast.LENGTH_LONG).show();
 }
 });
 Button stopButton = (Button) findViewById(R.id.stopButton);
 stopButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 stopService(theIntent);
 Toast.makeText(Main.this, "Stopped", Toast.LENGTH_LONG).show();
 }
 });
 ...
 }

The GpsService class directly extends Service, so it has to implement the abstract on-
Bind() method. This is not used when the class is started directly, so it can be a stub
method. You will typically override at least the onStartCommand() and onUnbind()
methods, to begin and end some activity. Our example starts the GPS service sending
us notifications that we save to disk, and we do want that to keep running, hence this
Service class.

Example 2-4.

public class TrackService extends Service {
 private LocationManager mgr;
 private String preferredProvider;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 initGPS(); // sets up the LocationManager mgr

 if (preferredProvider != null) {
 mgr.requestLocationUpdates(preferredProvider, MIN_SECONDS * 1000,
 MIN_METRES, this);
 return START_STICKY;
 }
 return START_NOT_STICKY;
 }

 @Override
 public boolean onUnbind(Intent intent) {
 mgr.removeUpdates(this);
 return super.onUnbind(intent);
 }

XXX Discuss return values from onStartCommand

96 | Chapter 2: Designing a successful Application

See Also
Note that a service will not do anything while the phone is suspended; see the Device
from Sleeping.

2.3 Starting a service after phone reboot
Ashwini Shahapurkar

Problem
You have a service in your app and you want it to start after the phone reboots.

Solution
You need to listen to intent for boot events and start the service when event occurs.

Discussion
Whenever the platform boot is completed, an intent with
android.intent.action.BOOT_COMPLETED action is broadcasted. You need to register
your application to receive this intent. For registering add this to your AndroidMani-
fest.xml

Example 2-5.

<receiver android:name="ServiceManager">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
</receiver>

So you will have ServiceManager as broadcast receiver to receive the intent for boot
event. The ServiceManager class shall be as follows:

Example 2-6.

public class ServiceManager extends BroadcastReceiver {

 Context mContext;
 private final String BOOT_ACTION = "android.intent.action.BOOT_COMPLETED";

 @Override
 public void onReceive(Context context, Intent intent) {
 //All registered broadcasts are received by this
 mContext = context;
 String action = intent.getAction();
 if (action.equalsIgnoreCase(BOOT_ACTION)) {
 //check for boot complete event & start your service
 startService();
 }

2.3 Starting a service after phone reboot | 97

 }

 private void startService() {
 //here, you will start your service
 Intent mServiceIntent = new Intent();
 mServiceIntent.setAction("com.bootservice.test.DataService");
 mContext.startService(mServiceIntent);
 }
}

2.4 Exception Handling
Ian Darwin

Problem
Java has a well-defined exception handling mechanism, but it takes some time to learn
to use it effectively without frustrating either users or tech support people.

Solution
Learn about the Exception hierarchy. Learn about Dialogs and Toasts.

Discussion
Java has had two categories of Exceptions (actually of its parent, Throwable) from the
beginning, checked and unchecked. In Java Standard Edition the intention was appa-
rently to force the programmer to face the fact that, while certain things could be de-
tected at compile time, others could not. For example, if you were installing a desktop
application on a large number of PC's, there would certainly be some on which the disk
was almost full, and trying to save data could fail, and others on which some file the
application depended upon would go missing, not due to programmer error but to user
error, filesystem happenstance, gerbils chewing on the cables, or whatever. So the cat-
egory of IOException was created as a "checked exception", meaning that the pro-
grammer would have to check for it, either by having a try-catch clause inside the file-
using method or by having a throws clause on the method definition. The general rule,
which all well-trained Java developers memorize, is the following:

Exception, and all of its subclasses other than RuntimeException or any of its subclasses,
is checked. All else is unchecked.

So that means that Error and all of its subclasses are unchecked. If you get a VMError,
for example, it means there's a bug in the runtime. Nothing you can do about this as
an application programmer. "Nothing here, move along." And RuntimeException sub-
classes include things like the excessively-long-named ArrayIndexOutOfBoundsEx-
ception - this and friends are unchecked because it is your responsibility to catch them
at development time - using (BROKEN XREF TO RECIPE -1 'Unit Testing').

98 | Chapter 2: Designing a successful Application

So here is a diagram of the Throwable hierarchy:

Where to Catch Exceptions

The early (over)use of checked exceptions lead a lot of early Java developers to write
code that was sprinkled with try/catch blocks, partly because the use of the "throws"
clause was not emphasized early enough in some training and books. As Java itself has
moved more to Enterprise work and newer frameworks such as Hibernate and Spring
have come along emphasizing use of unchecked exceptions, this early problem has been
corrected. It is now generally accepted that you want to catch exceptions as close to
the user as possible. Code that is meant for re-use - in libraries or even in multiple
applications - should not try to do error handling. What it can do is what's called
"exception translation" - that is, turning a technology-specific (and usually checked)
Exception into a generic, unchecked exception. The basic pattern is:

Example 2-7.

public String readTheFile(String f) {
 BufferedReader is = null;
 try {
 is = new BufferedReader(new FileReader(f));
 String line = is.readLine();
 return line;
 } catch (FileNotFoundException fnf) {
 throw new RuntimeException("Could not open file " + f, fnf);
 } catch (IOException ex) {
 throw new RuntimeException("Could not read file " + f, ex);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch(IOException grr) {
 throw new RuntimeException("Error on close of " + f, grr);
 }
 }
 }
}

Note how the use of checked exceptions clutters even this code: it is virtually impossible
for the is.close() to fail, but since you want to have it in a finally block (to ensure it gets
tried if the file was opened but then something went wrong), you have to have an
additional try/catch around it. SO: Checked Exceptions are generally a bad thing,
should be avoided in new APIs, and should be paved over with unchecked exceptions
when using code that requires them.

There is an opposing view, espoused by the official Oracle site and others. Al Sutton
points out that "Checked exceptions exist to force developers to acknowledge that an
error condition can occur and that they have thought about how they want to deal with
it. In many cases there may be little that can be done beyond logging and recovery, but
it is still an acknowledgment by the developer that they have considered what should

2.4 Exception Handling | 99

happen with type of error. The example shown ... stops callers of the method from
differentiating between when a file doesn't exist (and thus may need to be re-fetched),
and when there is a problem reading the file (and thus the file exists but is unreadable),
which are two different types error conditions."

Android, wishing to be faithful to the Java API, has a number of these checked excep-
tions (including the ones shown in the example), so they should be treated the same
way.

What to do with Exceptions

Always report.

Dialog or Toast.

Examples of both.

2.5 Sending/Receive broadcast message
Vladimir Kroz

Problem
You want to make an activity which receives a simple broadcast messages sent by an-
other activity

Solution
1. Setup a broadcast receiver

2. Instantiate message receiver object

3. Create IntentFilter

4. Register your receiver with an activity which must receive broadcast message

Discussion

1. Setup broadcast receiver

Example 2-8.

// Instantiate message receiver object. You should
// create this class by extending android.content.BroadcastReceiver
// The method onReceive() of this class will be called when broadcast is sent
MyBroadcastMessageReceiver _bcReceiver = new MyBroadcastMessageReceiver();

// Create IntentFilter
IntentFilter filter = new IntentFilter(
MyBroadcastMessageReceiver.class.getName());

// And register your receiver with your activity which must receive broadcast message

100 | Chapter 2: Designing a successful Application

// Now whenever this type of message is generated somewhere in the system -
// _bcReceiver.onReceive() method will be called within main thread of myActivity
myActivity.registerReceiver(_bcReceiver, filter);

2. Publish broadcast event

Example 2-9.

Intent intent = new Intent(
MyBroadcastMessageReceiver.class.getName());
intent.putExtra("some additional data", choice);
someActivity.sendBroadcast(intent);

2.6 Android's Application Object as a "Singleton"
Adrian Cowham

Problem
In the all too common case when you need to access "global" data from within your
Android app, the best solution is to to use subclass android.app.Application and treat
it as a Singleton with static accessors.

Solution
Every Android app is guaranteed to have exactly one android.app.Application instance
for the lifetime of the app. If you choose to subclass android.app.Application, Android
will create an instance of your class and invoke the android.app.Application life cycle
methods on it. Because there's nothing preventing you from creating another instance
of your subclassed android.app.Application, it isn't a genuine Singleton, but it's close
enough.

Having objects such as Session Handlers, Web Service Gateways, or anything that your
application only needs a single instance of, globally accessible will dramatically simplify
your code. Sometimes these objects can be implemented as singletons, and sometimes
they cannot because they require a Context instance for proper initialization. In either
case, it's still valuable to add static accessors to your subclassed android.app.Applica-
tion instance so that you consolidate all globally accessible data in one place, have
guaranteed access to a Context instance, and easily write "correct" singleton code with-
out having to worry about synchronization.

Discussion
When writing your Android app you may find it necessary to share data and services
across multiple Activities. For example, if your app has session data, such as the cur-
rently logged in user, you will likely want to expose this information. When developing
on the Android platform, the pattern for solving this problem is to have your an-

2.6 Android's Application Object as a "Singleton" | 101

droid.app.Application instance own all global data, and then treat your Application
instance as a Singleton with static accessors to the various data and services.

When writing an Android app, you're guaranteed to only have one instance of the
android.app.Application class so it's safe (and recommended by the Google Android
team) to treat it as a Singleton. That is, you can safely add a static getInstance() method
to your Application implementation. Below is an example.

Example 2-10.

public class AndroidApplication extends Application {

 private static AndroidApplication sInstance;

 private SessionHandler sessionHandler;

 public static AndroidApplication getInstance() {
 return sInstance;
 }

 public SessionoHandler getSessionHandler()
 return sessionHandler;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 sInstance = this;
 sInstance.initializeInstance();
 }

 protected void initializeInstance() {
 // do all you initialization here
 sessionHandler = new SessionHandler(
 this.getSharedPreferences("PREFS_PRIVATE", Context.MODE_PRIVATE));
 }
}

This isn't the classical Singleton implementation but given the constraints of the An-
droid framework, this is the closest thing we have, it's safe, and it works.

Using this technique in my app has simplified and cleaned up our implementation.
Also, it has made developing tests much easier. Using this technique in conjunction
with the Robolectric testing framework, mock out our entire execution environment in
a straight forward fashion.

Also, don't forget to add the application declaration to your AndroidManifest.xml file.

Example 2-11.

<application android:icon="@drawable/app_icon"
 android:label="@string/app_name"
 android:name="com.company.abc.AbcApplication">

102 | Chapter 2: Designing a successful Application

http://pivotal.github.com/robolectric/

See Also
http://mytensions.blogspot.com/2011/03/androids-application-object-as.html

2.7 Keeping data when the user rotates the device
Ian Darwin

Problem
When the user rotates the device, Android will normally destroy and re-create the cur-
rent Activity. You want to keep some data across this destroy-re-create cycle, but all
the fields in your activity are lost during it.

Solution
There are several approaches. If all your data are either primitive types, Strings, or are
Serializable, you can save them in onSaveInstanceState() into the Bundle that is passed
in.

There is also a solution that lets you return a single arbitrary Object Implement onRe-
tainNonConfigurationInstance() in your activity to save some values; call getLastNon-
ConfigurationInstance() near the end of your onCreate() to see if there is a previous
saved value and, if so, assign your fields accordingly.

Discussion

Using onSaveInstanceState()

See the recipe (BROKEN XREF TO RECIPE -1 'Normal Life-cycle Methods').

Using onRetainNonConfigurationInstance()

The getLastNonConfigurationInstance() method's return type is Object, so you can
return any value you want from it. You might want to create a Map or write an inner
class to store the values in, but it's often easier just to pass a reference to the current
Activity, e.g, using this.

Example 2-12.

 /** Returns arbitrary single token object to keep alive across
 * the destruction and re-creation of the entire Enterprise.
 */
 @Override
 public Object onRetainNonConfigurationInstance() {
 return this;
 }

2.7 Keeping data when the user rotates the device | 103

The above method will be called when Android destroys your main activity. Suppose
you wanted to keep a reference to another object that was being updated by a running
Service, that is referred to by a field in your Activity. There might also be boolean to
indicate if the service is active. In the above, we return a reference to the Activity, from
which all of its fields can be accessed (even private fields, of course, since the outgoing
and incoming Activity objects are of the same class). In my geotracking app JPSTrack,
for example, I have a FileSaver class which accepts data from the Location Service; I
want it to keep getting the location, and saving it to disk, in spite of rotations, rather
than having to restart it every time the screen rotates. Rotation is unlikely if your device
is anchored in a car dash mount (we hope), but quite likely if the person not driving,
or a pedestrian, is taking pictures or other notes while geotracking.

After Android creates the new instance, if of course calls onCreate() to notify the new
instance that it has been created. In onCreate you typically do constructor-like actions
such as initializing fields and assigning event listeners. Well, you still need to do those,
so leave them alone. Near the end of onCreate(), however, you will add some code to
get the old instance, if there is one, and get some of the important fields from it. The
code should look something like this:

Example 2-13.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 saving = false;
 paused = false;

 // lots of other initializations...

 // Now see if we just got interrupted by e.g., rotation
 Main old = (Main) getLastNonConfigurationInstance();
 if (old != null) {
 saving = old.saving;
 paused = old.paused;

 // this is the most important line: keep saving to same file!
 fileSaver = old.fileSaver;
 if (saving) {
 fileNameLabel.setText(fileSaver.getFileName());
 }
 return;
 }

 // I/O Helper
 fileSaver = new GPSFileSaver(...);
}

The fileSaver object is the big one, the one we want to keep running, and not re-create
every time. If we don't have an old instance, we create the fileSaver only at the very end

104 | Chapter 2: Designing a successful Application

of onCreate(), since otherwise we'd be creating a new one just to replace it with the old
one, which is at least bad for performance.

When the onCreate method finishes, we hold no reference to the old instance, so it
should be eligible for Java GC.

The net result is that the Activity appears to keep running nicely across screen rotations,
despite the re-creation.

An alternative possibility is to set android:configChanges="orientation" in your An-
droidManifest.xml, but this is a bit riskier.

See Also
Recipe 2.6

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/jpstrack.android

2.8 Creating a Responsive Application using Threads
Amir Alagic

Problem
How to create a responsive application.

Solution
A successful Android application has to be responsive and since all Activities, Broadcast
Receivers and Services are running on the main application thread (UI thread), any
time-consuming operations will block the UI. If such an operation takes more than five
seconds, in Activities, the Android OS will show the standard "Application ... is not
responding" error alert/dialog, often called an ANR for short.

Discussion
To make your application responsive while some time-consuming operations are run-
ning on Android OS you have a few options. If you already know Java then you know
that you can create class that extends Thread class and overrides public void run()
method and then call start method on that object to run some time-consuming process.
If your class already extends another class you can implement Runnable interface. And
another different approach is to create your own class that extends Androids AsyncTask
class but we will talk about AsyncTask in another recipe.

First we will discuss usage of Thread class.

2.8 Creating a Responsive Application using Threads | 105

http://projects.darwinsys.com/jpstrack.android
http://projects.darwinsys.com/jpstrack.android

Example 2-14.

public class NetworkConnection extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Thread thread = new Thread(new Runnable(){
 public void run() {
 getServerData();
 }
 });
 thread.start();
 }
}

As you see, when we start our activity in onCreate method we create a thread object
that is constructed with a Runnable object. The Runnable method run() will be exe-
cuted after we call start() method on the thread object. From here you can call another
method or few other methods and operations that are time-consuming and that would
otherwise block the main thread and make your application look unresponsive.

Often when we are done with the thread we get results that we want to present to the
application user. If you try to update the GUI from the thread that you started (not the
main thread) your application will crash. You can read error messages and see that the
problem is in fact a thread other than the main UI thread tried to change UI on the
main thread.

Of course it is possible to change UI with help of a Handler class.

In your activity create a final Handler object and within your public void run() method
call its post() method.

Example 2-15.

final Handler handler = new Handler();

Thread thread = new Thread(new Runnable(){
 public void run() {
 handler.post(new Runnable(){
 public void run() {
 //textView is a UI control created on the main thread
 textView.setText("Change Text");
 }

 });
 }
 });
thread.start();

106 | Chapter 2: Designing a successful Application

Threads created and started in this way will continue to run even if the user leaves your
application. To be sure that your thread(s) stop when the user leaves your application,
before you call start() method on thread object set thread as daemon thread.

Example 2-16.

thread.setDaemon(true);

Beside that sometimes it can be useful to name the thread.

You can give a name to your thread(s) when you create the thread object

Example 2-17.

Thread thread = new Thread();
Thread thread = new Thread(runnable, "ThreadName1");

or you can call setName() method on thread object.

Example 2-18.

thread.setName("ThreadName2");

These names will not be visible to the user, but will show up in various diagnostic logs,
to help you find which thread is causing problems.

2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result
Daniel Fowler

Problem
Any time consuming or intensive code in an event listener will make the UI appear slow
and potentially cause an Application Not Responding error.

Solution
The main UI thread should just be that, keeping the UI going and updated. Any heavy
duty, regularly executing or potentially slow code needs shoving to a background task,
the Android AsyncTask class is ideal for that job.

Discussion
When Android starts an application it assigns it to run on a single main thread, also
known as the User Interface (UI) thread. The UI thread, as the name suggests handles
the interface, posting events for the various widgets on the screen and then running the
code in the listeners for those events. If the code executing from a listener takes too
long it will slow down event processing, including the UI events that tell widgets to
redraw, the UI becomes unresponsive. The slow code running on the UI thread ulti-
mately results in the Application Not Responding (ANR) error. This can occur if screen

2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result | 107

elements do not get a chance to process their pending requests after about five seconds.
When an ANR appears the user can then forcibly close the App (and then probably
remove it which would be a nasty result).

Tasks that can chew up UI CPU cycles included:

• Accessing large amounts of data, especially through slow connections or periph-
erals.

• Jittery connections when accessing networks and Internet services.

• The need to run some recurring code, for animation, polling, timing.

• Parsing large data files or XML files.

• Creating, reading, updating, deleting large databases records.

• Code with too many loops.

• Intensive graphics operations.

In the following code an Activity with a TextView and Button is calling a method,
ThisTakesAWhile(), which mimics a slow process. The code tries to keep the UI updated
on progress by updating the TextView. This is the layout for the screen:

Example 2-19.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" >
 <Button android:id="@+id/button1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="GO"
 android:textSize="14sp"
 android:textStyle="bold" />
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Press GO to start."
 android:textSize="14sp"
 android:textStyle="bold"
 android:gravity="center_horizontal" />
</LinearLayout>

And the code:

Example 2-20.

public class main extends Activity {
 TextView tv; //for class wide reference to update status
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

108 | Chapter 2: Designing a successful Application

 //get the references to on screen items
 tv=(TextView) findViewById(R.id.textview1);
 //handle button presses
 findViewById(R.id.button1).setOnClickListener(new doButtonClick());
 }

 class doButtonClick implements OnClickListener {
 public void onClick(View v) {
 tv.setText("Processing, please wait.");
 ThisTakesAWhile();
 tv.setText("Finished.");
 }
 }

 private void ThisTakesAWhile() {
 //mimic long running code
 int count = 0;
 do{
 SystemClock.sleep(1000);
 count++;
 tv.setText("Processed " + count + " of 5.");
 } while(count<5);
 }
}

When this code is run and the Button pressed the text only changes after five seconds
to "Finished". The messages that are meant to provide feedback are never shown. This
illustrates how the UI can be blocked by code executing on the main thread. In fact
bash the button a few times and an ANR occurs.

The solution is to run the time consuming code away from UI events. To help achieve
this there are standard Java classes, such as the Timer, the Thread and the Scheduled
ThreadPoolExecutor. Android also provides helpful classes with the CountDownTimer, the
Handler and Service. Ideally for potentially slow operations we want to start them from
the UI in a background thread, get regular reports on progress, cancel them if need be
and get a result when they have finished. In Android the AsyncTask class does all of that
easily without having to crank out a lot of code.

With AsyncTask the time consuming code is placed into a doInBackground() method,
there are onPreExecute() and onPostExecute() methods that can be overridden (for pre
and post task work), and an onProgressUpdate() method can be overridden to provide
feedback. The background task can be cancelled by calling the cancel() method (caus-
ing the overridden onCancelled() to execute). The above example is changed to a use
an AsyncTask object. First the count variable is moved to module level and a couple
more module variables are added:

Example 2-21.

 int count; //number of times process has run, used for feedback
 boolean processing; //defaults false, set true when the slow process starts
 Button bt; //used to update button caption

2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result | 109

The button reference is set up in onCreate():

Example 2-22.

 bt=(Button) findViewById(R.id.button1);

The method used to run the slow process is replaced with an AsyncTask object:

Example 2-23.

 //AsyncTask can take any type here arg0, arg1, arg2 all integers
 class ThisTakesAWhile extends AsyncTask<Integer, Integer, Integer> {

Figure 2-1.

110 | Chapter 2: Designing a successful Application

 int numcycles; //total number of times to execute process
 @Override
 protected void onPreExecute(){
 //Executes in UI thread before task begins
 //Can be used to set things up in UI such as showing progress bar
 count=0; //count number of cycles
 processing=true;
 tv.setText("Processing, please wait.");
 bt.setText("STOP");
 }
 @Override
 protected Integer doInBackground(Integer... arg0) {
 //Runs in a background thread
 //Used to run code that could block the UI
 numcycles=arg0[0]; //Run arg0 times
 //Need to check isCancelled to see if cancel was called
 while(count < numcycles && !isCancelled()) {
 //wait one second (simulate a long process)
 SystemClock.sleep(1000);
 //count cycles
 count++;
 //signal to the UI (via onProgressUpdate)
 //class arg1 determines type of data sent
 publishProgress(count);
 }
 //return value sent to UI via onPostExecute
 //class arg2 determines result type sent
 return count;
 }
 @Override
 protected void onProgressUpdate(Integer... arg1){
 //called when background task calls publishProgress
 //in doInBackground
 if(isCancelled()) {
 tv.setText("Cancelled! Completed " + arg1[0] + " processes.");
 } else {
 tv.setText("Processed " + arg1[0] + " of " + numcycles + ".");
 }
 }
 @Override
 protected void onPostExecute(Integer result){
 //result comes from return value of doInBackground
 //runs on UI thread, not called if task cancelled
 tv.setText("Processed " + result + ", finished!");
 processing=false;
 bt.setText("GO");
 }
 @Override
 protected void onCancelled() {
 //run on UI thread if task is cancelled
 processing=false;
 bt.setText("GO");
 }
 }

2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result | 111

The button click handler now uses the new object. The execute() method starts the
ball rolling. While the ThisTakesAWhile object executes the slow process the button can
be used to stop it with cancel():

Example 2-24.

 class doButtonClick implements OnClickListener {
 ThisTakesAWhile ttaw;//defaults null
 public void onClick(View v) {
 if(!processing){
 ttaw = new ThisTakesAWhile();
 ttaw.execute(5); //loop five times
 } else {
 ttaw.cancel(true);
 }
 }
 }

With the slow process wrapped up in the AsynTask object the UI thread is freed from
waiting and the feeback messages get displayed to tell the users what is happening:

When cancel is called the background process may not stop immediately. For example
two cycles have completed and the third starts just as cancel is called. Then the third
cycle could still complete. In some scenarios the third process may need to be thrown
away, rolled back, or handled differently. With version 3.0 of Android AsyncTask was
extended to provide an onCancelled(Object) method that can be overridden, also called
when cancel() is executed. This version of onCancelled takes the same object as that
returned by doInBackground. This allows the program to determine the state of the

Figure 2-2.

112 | Chapter 2: Designing a successful Application

background task when cancel was called. If this version was being used then the over-
ridden onCancelled could be:

Example 2-25.

 @Override
 protected void onCancelled(Integer result) {
 //run on UI thread if task is cancelled
 //result comes from return value of doInBackground
 tv.setText("Cancelled called after "+ result + " processes.");
 processing=false;
 bt.setText("GO");
 }

Thus in the above scenario it would be known that cancelled was called after two
process completed even though the third then completed.

This recipe has shown how to move code that could potentially frustrate users and
cause poor performance into the useful AsyncTask object. For more details on Asyn-
cTask see the Android Reference web site.

See Also
http://developer.android.com/reference/android/os/AsyncTask.html

2.10 AsyncTask: Do background tasks and modify the GUI
Roberto Calvo Palomino

Problem
If you run a thread to execute some source code, you can't use or change any graphical
widget from this thread and you don't know when the thread has finished.

Figure 2-3.

2.10 AsyncTask: Do background tasks and modify the GUI | 113

http://developer.android.com/reference/android/os/AsyncTask.html

Solution
You can use AsyncTasks to develop and run background tasks and modify the GUI
from this AsyncTask. It's often used to show progress dialog when the data is down-
loaded

Discussion
(NOT FINISHED YET)

Example 2-26.

private class getDataTask extends AsyncTask<Void, Void, Void> {

 ProgressDialog pd;

 // In this method you can modify any graphical widget
 protected void onPreExecute() {
 pd = ProgressDialog.show(Main.this,"Please wait...", "Retrieving data ...", true);
 }

 @Override
 protected Void doInBackground(Void... params) {

 }

 // In this method you can modify any graphical widget
 protected void onPostExecute(Void unused) {
 if (!isFinishing())
 {
 pd.dismiss();
 }
 }
 }

See Also
http://developer.android.com/reference/android/os/AsyncTask.html

2.11 Monitoring the Battery Level of your Android Device
Pratik Rupwal

Problem
Requirement of detecting the battery level for notifying the user when the battery level
goes down a certain threshold.

114 | Chapter 2: Designing a successful Application

Solution
A broadcast receiver to receive the broadcast message sent when battery status changes
can identify the battery level and can be used for issuing alerts for the users.

Discussion
Sometimes we need to show an alert to the user when the battery level of the device
goes below a certain limit. The following code sets the broadcast message to be sent
whenever the battery level changes and creates a broadcast receiver to receive the
broadcast message which can alert the user when battery gets discharged below a cer-
tain level.

Example 2-27.

public class MainActivity extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /**This registers the receiver for a broadcast message to be sent when the battery level is changed*/

 this.registerReceiver(this.myBatteryReceiver,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

 /**Intent.ACTION_BATTERY_CHANGED can be replaced with Intent.ACTION_BATTERY_LOW for broadcasting
a message only when battery level is low rather than sending a broadcast message every time battery level changes*/
}

 private BroadcastReceiver myBatteryReceiver
 = new BroadcastReceiver(){

 @Override
 public void onReceive(Context arg0, Intent arg1) {
 // TODO Auto-generated method stub
 int bLevel = arg1.getIntExtra("level", 0);// this variable gets the battery level in integer
 Log.i("Level", ""+bLevel);
 }
 };
}

2.12 Splash Screens in Android: Method 1
Rachee Singh

Problem
Most applications require an introductory opening screen.

2.12 Splash Screens in Android: Method 1 | 115

Solution
Such introductory screens are called Splash screens. An activity that is finished within
a span of 2-3 seconds or dismissed on the click of a button is a splash screen.

Discussion
The splash screen displays for 2 seconds and then the main activity of the application
appears. For this, we add a java class that displays the splash screen. It uses a thread to
wait for 2 seconds and then it uses an intent to start the next activity.

Example 2-28.

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 Thread mythread = new Thread() {
 public void run() {
 try {
 while (splashActive && ms < splashTime) {
 if(!paused)
 ms=ms+100;
 sleep(100);
 }
 } catch(Exception e) {}
 finally {
 Intent intent = new Intent(SplashScreen.this, Splash.class);
 startActivity(intent);
 }
 }
 };
 mythread.start();
 }

}

The layout of the splash activity, splash.xml is like:

Example 2-29.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:src="@drawable/background"
 android:id="@+id/image"
 android:layout_width="wrap_content"

116 | Chapter 2: Designing a successful Application

 android:layout_height="wrap_content" />
 <ProgressBar android:id="@+id/progressBar1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/image"
 android:layout_gravity="center_horizontal">
 </ProgressBar>
</LinearLayout>

The splash screen looks like:

In 2 seconds, this activity leads to the next activity, which is the standard Hello World
Android activity :

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rE
SQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en
_US&authkey=COOL9NwM

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rE
SQKgad5LMDQyYjE0ZTMtZGZkMy00ZWE2LTk3YWYtM2U2YjdmMTc1Yjkw&hl
=en_US&authkey=COGIiroM

2.13 Splash Screens in Android: Method 2
Rachee Singh

Problem
Most applications require an introductory opening screen.

Solution
Such introductory screens are called Splash screens. An activity that is finished within
a span of 2-3 seconds or dismissed on the click of a button is a splash screen.

Discussion
The splash screen displays untill the Menu button the Android device is not pressed
and then the main activity of the application appears. For this, we add a java class that
displays the splash screen.

2.13 Splash Screens in Android: Method 2 | 117

https://docs.google.com/leaf?id=0B_rESQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en_US&authkey=COOL9NwM
https://docs.google.com/leaf?id=0B_rESQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en_US&authkey=COOL9NwM
https://docs.google.com/leaf?id=0B_rESQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en_US&authkey=COOL9NwM
https://docs.google.com/leaf?id=0B_rESQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en_US&authkey=COOL9NwM
https://docs.google.com/leaf?id=0B_rESQKgad5LMDQyYjE0ZTMtZGZkMy00ZWE2LTk3YWYtM2U2YjdmMTc1Yjkw&hl=en_US&authkey=COGIiroM
https://docs.google.com/leaf?id=0B_rESQKgad5LMDQyYjE0ZTMtZGZkMy00ZWE2LTk3YWYtM2U2YjdmMTc1Yjkw&hl=en_US&authkey=COGIiroM
https://docs.google.com/leaf?id=0B_rESQKgad5LMDQyYjE0ZTMtZGZkMy00ZWE2LTk3YWYtM2U2YjdmMTc1Yjkw&hl=en_US&authkey=COGIiroM
https://docs.google.com/leaf?id=0B_rESQKgad5LMDQyYjE0ZTMtZGZkMy00ZWE2LTk3YWYtM2U2YjdmMTc1Yjkw&hl=en_US&authkey=COGIiroM

We check for the pressing of Menu key by checking the Key code and then finishing
the activity.

Figure 2-4.

118 | Chapter 2: Designing a successful Application

Figure 2-5.

2.13 Splash Screens in Android: Method 2 | 119

Example 2-30.

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 super .onKeyDown(keyCode, event);
 if(KeyEvent.KEYCODE_MENU == keyCode) {
 Intent intent = new Intent(SplashScreen.this, Splash.class);
 startActivity(intent);
 }
 if(KeyEvent.KEYCODE_BACK == keyCode) {
 finish();
 }
 return false;
 }
}

The layout of the splash activity, splash.xml is like:

Example 2-31.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:src="@drawable/background"
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <ProgressBar android:id="@+id/progressBar1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/image"
 android:layout_gravity="center_horizontal">
 </ProgressBar>
</LinearLayout>

The splash screen looks like:

In 2 seconds, this activity leads to the next activity, which is the standard Hello World
Android activity.

120 | Chapter 2: Designing a successful Application

Figure 2-6.

2.13 Splash Screens in Android: Method 2 | 121

Figure 2-7.

122 | Chapter 2: Designing a successful Application

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LOTQ1Nzg1YWItN2Ux
My00OTI1LTliZGMtNjRkNzFkZTMyMTE3&hl=en_US&authkey=CIyI8_8F

2.14 Designing a Conference/*Camp/Hackathon App
Ian Darwin

Problem
You want to design an app for use at a Conference, BarCamp, or Hackathon.

Solution
See the checklist below.

Discussion
A good conference app needs at least the following functions:

• Building Map, showing the rooms where meetings are held, food service, wash-
rooms, emergency exits, and so on. Extra points if you provide a visual slider for
moving up or down if your conference takes place on more than one floor or level
in the building (think about a 3D fly-through of San Francisco's Moscone Center,
including the huge escalators).

• Exhibit Hall map (if there is a show floor, have a map and an easy way to find a
given exhibitor). Ditto for poster papers if your conference features these.

• Schedule view. Highlight changes in red as they happen; additions, last-minute
cancellations, room changes.

• If your conference has BOFs, you might want a signup button and maybe even a
"Suggest a new BOF" activity.

• Local Area Map. Something more detailed than the standard Map functions. Add
folklore, points of interest, navigation shortcuts, etc. Limit it to a few blocks so you
can get the details right. A University Campus is about the right size.

• City Overview map - again, not the Google map, but an artistic, neighborhood/
zone view with just the highlights.

• Tourist Attractions within an hour of the site. Your mileage may vary.

• Food Finder. People always get tired of convention food and set out on foot to find
something greater to eat.

2.14 Designing a Conference/*Camp/Hackathon App | 123

https://docs.google.com/leaf?id=0B_rESQKgad5LOTQ1Nzg1YWItN2UxMy00OTI1LTliZGMtNjRkNzFkZTMyMTE3&hl=en_US&authkey=CIyI8_8F
https://docs.google.com/leaf?id=0B_rESQKgad5LOTQ1Nzg1YWItN2UxMy00OTI1LTliZGMtNjRkNzFkZTMyMTE3&hl=en_US&authkey=CIyI8_8F
https://docs.google.com/leaf?id=0B_rESQKgad5LOTQ1Nzg1YWItN2UxMy00OTI1LTliZGMtNjRkNzFkZTMyMTE3&hl=en_US&authkey=CIyI8_8F

• Friend Finder. If Latitude were open you could tie into it. If it's a security confer-
ence, implement this functionality yourself.

• Private voice chat. If it's a small security gathering, provide a SIP server on a well-
connected host, with carefully controlled access; it should be possible to have al-
most walkie-talkie-like service.

• Signups for impromptu group formation for trips to the tourist attractions or any
other purpose.

• Functionality to post comments to Twitter, Facebook, LinkedIn.

• Note-taking! Many people will have Android on large-screen tables, so a "Notepad"
equivalent, optionally linked to the session the notes are taken in, will be useful.

• FastFood - a way of signalling your chosen friends that you want to eat (at a certain
time, in so many minutes, RIGHT NOW), with (type of food, restaurant name),
and seeing if they're also interested - interactive.

See Also
The rest of the book shows how to implement most of these functions.

2.15 Implementing Autocompletion in Android.
Rachee Singh

Problem
Save the user from typing entire words, instead auto-complete the entries.

Solution
Using the widget: AutoCompleteTextView that acts as something in between EditText
and a Spinner, enabling auto completion.

Discussion
This layout includes a TextView which supports auto-completion. Auto-completion is
done using a AutoTextCompleteTextView widget. Here's what the layout XML code
looks like:

Example 2-32.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView

124 | Chapter 2: Designing a successful Application

 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView
 android:id="@+id/autocomplete"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="2"/>

</LinearLayout>

The completionThreshold field in the AutoCompleteTextView sets the minimum
number of characters that the user has to enter in the TextView so that auto-completion
options corresponding to his/her inout start showing up.

The Activity (in which we are implementing auto-completion) should implement Text-
Watcher so we can override onTextChanged() method:

Example 2-33.

public class AutoComplete extends Activity implements TextWatcher {

We would need to override the unimplemented methods: onTextChanged, after-
TextChanged and afterTextChanged.

We also require 3 fields:

1. A handle on to the TextView

2. A handle on to the AutoCompleteTextView

3. A list of String items within which the auto-completion would happen.

Example 2-34.

private TextView field;
private AutoCompleteTextView autocomplete;
String autocompleteItems [] = {"apple", "banana", "mango", "pineapple","apricot", "orange", "pear", "grapes"};

Example 2-35.

@Override
 public void onTextChanged(CharSequence arg0, int arg1, int arg2, int arg3) {
 field.setText(autocomplete.getText());
 }

In the onCreate method of the same activity, we get a handle on the TextView and the
AutoCompleteTextView components of the layout. To the AutoCompleteTextView
we will set a String adapter.

Example 2-36.

setContentView(R.layout.main);
field = (TextView) findViewById(R.id.field);
autocomplete = (AutoCompleteTextView)findViewById(R.id.autocomplete);

2.15 Implementing Autocompletion in Android. | 125

autocomplete.addTextChangedListener(this);
autocomplete.setAdapter(new ArrayAdapter<String>(this, android.R.layout.simple_dropdown_item_1line, autocompleteItems));

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMD
diMzA0NjhiNGRk&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LY2Q0ZjhkZGYtOTRh
Ni00YWE5LTk0MDYtNDRmMWQxYTE2YTU4&hl=en_US

2.16 Using Google Analytics in Android Application
Ashwini Shahapurkar

Problem
Often developers want to track their application in terms of features used by users.
How can one find which feature is most used by the App's users?

Solution
We can use Google Analytics to track the App based on defined criteria, similar to the
website tracking mechanism.

Discussion
Before we use Google Analytics in our app, we need an Analytics account and the
Google Analytics SDK.

Download the Analytics SDK from http://code.google.com/mobile/analytics/down-
load.html. Unzip the SDK and add libGoogleAnalytics.jar to your project's build path.

Add following permissions in your project's AndroidManifest.xml.

Example 2-37.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Now, sign into your analytics account and create a website profile for the App. The
website URL can be fake but shall be descriptive enough. It is suggested that you use
the reverse package name for this. For example, if the application package name is
com.example.analytics.test; then the website URL for this app can be http://test.ana-
lytics.example.com. After successful creation of website profile, a web property ID is

126 | Chapter 2: Designing a successful Application

https://docs.google.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMDdiMzA0NjhiNGRk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMDdiMzA0NjhiNGRk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMDdiMzA0NjhiNGRk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2Q0ZjhkZGYtOTRhNi00YWE5LTk0MDYtNDRmMWQxYTE2YTU4&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2Q0ZjhkZGYtOTRhNi00YWE5LTk0MDYtNDRmMWQxYTE2YTU4&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2Q0ZjhkZGYtOTRhNi00YWE5LTk0MDYtNDRmMWQxYTE2YTU4&hl=en_US

generated for that profile. Note it down as we will be using this in our app. This web
property ID, also known as UA number of your tracking code, uniquely identifies the
website profile.

Note: You must mention in your App that you are collecting anonymous user data in
your App to track your App.

After this setup, we are ready to track our application. Obtain the singleton instance
of the tracker by calling GoogleAnalyticsTracker.getInstance() method. Then start
tracking by calling its start() method. Usually, we will want to track more than
activities in the App. In such a scenario it is a good idea to have this tracker instance in
OnCreate() method of the Application class of the app.

Example 2-38.

public class TestApp extends Application {

/*define your web property ID obtained after profile creation for the app*/
private String webId = "UA-XXXXXXXX-Y";

/*Analytics tracker instance*/
GoogleAnalyticsTracker tracker;

@Override
 public void onCreate() {
 super.onCreate();
 //get the singleton tracker instance
 tracker = GoogleAnalyticsTracker.getInstance();
 //start tracking app with your web property ID
 tracker.start(webId,getApplicationContext());
 //your app specific code goes here
 }

 /* This is getter for tracker instance. This is called in activity to get reference to tracker instance.*/
 public GoogleAnalyticsTracker getTracker() {
 return tracker;
 }

}

You can track pageviews and events in the activity by calling trackPageView() and
trackEvent() methods on tracker instance.

Example 2-39.

public class MainActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //track the page view for activity
 GoogleAnalyticsTracker tracker = ((TestApp)getApplication()).getTracker();
 tracker.trackPageView("/MainActivity");

2.16 Using Google Analytics in Android Application | 127

 /*You can track events like button clicks*/
 findViewById(R.id.actionButton).setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 GoogleAnalyticsTracker tracker = ((TestApp)getApplication()).getTracker();
 tracker.trackEvent("Action Event","Action Button", "Button clicked",0);
 tracker.dispatch();
 }
 });
 //your stuff goes here
 }
}

Remember, your events and pageviews will not be sent to the server until you call the
dispatch() method on tracker. In this way we can track all the activities and events
inside them.

2.17 Using AsyncTask to do background processing
Johan Pelgrim

Problem
You have to do some heavy processing, or load resources from the network and want
to show the progress and results in the UI.

Solution
Use AsyncTask and ProgressDialog to achieve this

Discussion

Introduction

As we can read in the Processes and Threads section of the Android Dev Guide we know
blocking the UI thread or or accessing the Android UI toolkit from outside the UI thread
are not done. Not... Ever... NEVER! Bad things will happen to you when you do...
(you cannot repeat this often enough).

There are several methods to run processes in the background and updating the UI
inside the UI thread (a.k.a. main thread) but using the AsyncTask class is very con-
venient and should be in every Android Developer's toolkit.

It boils down to creating a class which extends AsyncTask. AsyncTask itself is abstract
and has one abstract method, Result doInBackground(Params... params);. The Asyn-
cTask simply creates a callable working thread in which your implementation of doIn
Background runs. Result and Params are two of the types we need to define in our class
definition. The third is the Progress type which we will talk about later.

128 | Chapter 2: Designing a successful Application

http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html

Let's revisit the Recipe 9.13 recipe. The processing bit processes the content of a web
page, which is an XML document, and returns the result as a list of Datum objects.
Typically something we want to do outside of the UI thread.

Our first implementation will do everything in the background, showing the user a
spinner in the title bar and updating the ListView once the processing is done. This is
the typical use case, not interfering with the user's task at hand and updating the UI
when you have retrieved the result.

The second implementation will use a modal dialog to show the processing progressing
in the background. In some cases we want to prevent the user from doing anything else
when some processing takes place and this is a good way to do just that.

We will create a UI which contains three Buttons and a Listview. The first button is to
kick of our first refresh process. The second for the other refresh process and the third
to clear the results in the ListView

Example 2-40.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:text="Refresh 1" android:id="@+id/button1"
 android:layout_width="fill_parent" android:layout_height="wrap_content" android:layout_weight="1"></Button>
 <Button android:text="Refresh 2" android:id="@+id/button2"
 android:layout_width="fill_parent" android:layout_height="wrap_content" android:layout_weight="1"></Button>
 <Button android:text="Clear" android:id="@+id/button3"
 android:layout_width="fill_parent" android:layout_height="wrap_content" android:layout_weight="1"></Button>
 </LinearLayout>
 <ListView android:id="@+id/listView1" android:layout_height="fill_parent"
 android:layout_width="fill_parent"></ListView>
</LinearLayout>

We assign these UI elements to various fields in onCreate and add some click listeners.

Example 2-41.

 ListView mListView;
 Button mClear;
 Button mRefresh1;
 Button mRefresh2;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mListView = (ListView) findViewById(R.id.listView1);
 mListView.setTextFilterEnabled(true);
 mListView.setOnItemClickListener(this);

2.17 Using AsyncTask to do background processing | 129

 mRefresh1 = (Button) findViewById(R.id.button1);

 mClear = (Button) findViewById(R.id.button3);
 mClear.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 mListView.setAdapter(null);
 }
 });

 }

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 Datum datum = (Datum) mListView.getItemAtPosition(position);
 Uri uri = Uri.parse("http://androidcookbook.com/Recipe.seam?recipeId=" + datum.getId());
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 this.startActivity(intent);
 }

Use Case 1: Processing in the background

First we create an inner class which extends AsyncTask

Example 2-42.

 protected class LoadRecipesTask1 extends AsyncTask<String, Void, ArrayList<Datum>> {

 }

As we can see we must supply three types to the class definition. The first is the type
of the parameter which we will provide when starting this background task, in our case
a String, containing a URL. The second type is used for progress updates (we will use
this later). The third type is the type which is returned by our implementation of the
doInBackground method, and typically something you can update a specific UI element
with (a ListView in our case).

Let's implement the doInBackground method

Example 2-43.

 @Override
 protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 try {
 datumList = parse(urls[0]);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 return datumList;
 }

130 | Chapter 2: Designing a successful Application

As you can see this is pretty simple. The parse method -- which creates a list of Datum
objects -- is described in the Recipe 9.13 recipe. The result of the doInBackground method
is then passed as an argument to the onPostExecute method in the same (inner) class.
In this method we are allowed to update the UI elements in our layout, so we set the
adapter of the ListView to show our result.

Example 2-44.

 @Override
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this, R.layout.list_item, result));
 }

Now we have to somehow start this task. We do this in the mRefresh1's onClickLis
tener by calling the execute(Params... params) method of AsyncTask (exe
cute(String... urls) in our case).

Example 2-45.

 mRefresh1.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LoadRecipesTask1 mLoadRecipesTask = new LoadRecipesTask1();
 mLoadRecipesTask.execute("http://androidcookbook.com/seam/resource/rest/recipe/list");
 }
 });

Now, when you start the app it indeed retrieves the recipes and fills the ListView but
the user has no idea that something is happening in the background. We can set the
progress bar indeterminate window feature in this case, which displays a small progress
animation in the top-right of our app title bar.

To do this we request this feature by calling the following method in onCreate: reques
tWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);

Then we can start the progress animation by calling the setProgressBarIndeterminate
Visibility(Boolean visibility) method from within a new method in our inner class,
the onPreExecute method.

Example 2-46.

 protected void onPreExecute() {
 MainActivity.this.setProgressBarIndeterminateVisibility(true);
 }

We stop the spinning progress bar in our window title by calling the same method from
within our onPostExecute method, which will become:

Example 2-47.

 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this, R.layout.list_item, result));

2.17 Using AsyncTask to do background processing | 131

 MainActivity.this.setProgressBarIndeterminateVisibility(false);
 }

We're done! Take your app for a spin (pun intended).

(BROKEN XREF TO RECIPE -1 'image:use-case-1.png')

A nifty feature for creating a better user experience!

Use Case 2: Processing in the foreground

In our second example we show a modal dialog to the user which displays the progress
of loading the recipes in the background. Such a dialog is called a ProgressDialog. First
we add it as a field to our activity.

Example 2-48.

 ProgressDialog mProgressDialog;

Then we add the onCreateDialog method to be able to answer showDialog calls and
create our dialog.

Example 2-49.

 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_KEY: // 1
 mProgressDialog = new ProgressDialog(this);
 mProgressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL); // 2
 mProgressDialog.setMessage("Retrieving recipes..."); // 3
 mProgressDialog.setCancelable(false); // 4
 return mProgressDialog;
 }
 return null;
 }

1. We should handle the request and creation of all dialogues here. The DIALOG_KEY
is an int constant with an arbitrary value (we used 0) to identify this dialog.

2. We set the progress style to STYLE_HORIZONTAL, which shows a horizontal progress
bar. The default is STYLE_SPINNER

3. We set our custom message, which is displayed above the progress bar

4. By calling setCancable with argument false we simply disable the back-button,
making this dialog modal

Then our new implementation of AsyncTask

Example 2-50.

 protected class LoadRecipesTask2 extends AsyncTask<String, Integer, ArrayList<Datum>> {

 @Override
 protected void onPreExecute() {

132 | Chapter 2: Designing a successful Application

 mProgressDialog.show(); // 1
 }

 @Override
 protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 for (int i = 0; i < urls.length; i++) { // 2
 try {
 datumList = parse(urls[i]);
 publishProgress((int) (((i+1) / (float) urls.length) * 100)); // 3
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 }
 return datumList;
 }

 @Override
 protected void onProgressUpdate(Integer... values) { // 4
 mProgressDialog.setProgress(values[0]); // 5
 }

 @Override
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this, R.layout.list_item, result));
 mProgressDialog.dismiss(); // 6
 }
 }

We see a couple of new things here.

1. Before we start our background process we show the modal dialog. 2. In our back-
ground process we loop through all the urls, expecting to receive more than one. This
will give us a good indication on our progress. 3. We can update the progress by calling
publishProgress. Notice that the argument is of type int, which will be autoboxed to
the second type defined in our class definition, Integer. 4. The call to publishProgress
will result in a call to onProgresUpdate which again has arguments of type Integer. You
could of course use String or something else as the argument type by simply changing
the second type in the inner class defition to String and of course in the call to publish
Progress. 5. We use the first Integer to set the new progress value in our ProgressDia
log 6. Finally we dismiss the dialog, which removes it

Now we can all bind this together by implementing our onClickListener for our second
refresh button.

Example 2-51.

 mRefresh2.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {

2.17 Using AsyncTask to do background processing | 133

 LoadRecipesTask2 mLoadRecipesTask = new LoadRecipesTask2();
 String url = "http://androidcookbook.com/seam/resource/rest/recipe/list";
 showDialog(DIALOG_KEY); // 1
 mLoadRecipesTask.execute(url, url, url, url, url); // 2
 }
 });

1. We show the dialog by calling showDialog with the DIALOG_KEY argument, which
will trigger our previosly defined onCreateDialog method.

2. We execute our new task with 5 URLs, simply to show a little bit of progress.

It will look something like this.

(BROKEN XREF TO RECIPE -1 'image:use-case-2.png')

Conclusion

Implementing background tasks with AsyncTask is very simple and should be done for
all long running processes which also need to update your user interface.

See Also
Recipe 9.13 http://developer.android.com/guide/topics/fundamentals/processes-and-
threads.html

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/RecipeList.zip

2.18 A Simple Torch Light
Saketkumar Srivastav

Problem
How can we use our smart phone to behave as a torch lamp when there is no light or
a power failure.

Solution
A simple solution will be to use the camera flash present in our smartphone or android
phone to use it as a torch lamp.

Discussion
To begin with, let's see the design of the application.

• Access the Camera object of the phone.

134 | Chapter 2: Designing a successful Application

https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip
https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip

• Access the parameters of our Camera

• Get the flashmodes supported by our camera

• Set the flashlight parameter in ON state to FLASH_MODE_TORCH and
FLASH_OFF on OFF state.

The following code implements the logic required for the application.

Example 2-52.

if(context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA_FLASH)){
 mTorch = (ToggleButton) findViewById(R.id.toggleButton1);
 mTorch.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

 try{
 if(cam != null){
 cam = Camera.open();
 }
 camParams = cam.getParameters();
 List<String> flashModes = camParams.getSupportedFlashModes();
 if(isChecked){
 if (flashModes.contains(Parameters.FLASH_MODE_TORCH)) {
 camParams.setFlashMode(Parameters.FLASH_MODE_TORCH);
 }else{
 showDialog(MainActivity.this, FLASH_TORCH_NOT_SUPPORTED);
 }
 }else{
 camParams.setFlashMode(Parameters.FLASH_MODE_OFF);
 }
 cam.setParameters(camParams);
 cam.startPreview();
 }catch (Exception e) {
 e.printStackTrace();
 cam.stopPreview();
 cam.release();
 }
 }
 });
 }else{
 showDialog(MainActivity.this, FLASH_NOT_SUPPORTED);
 }

The basic logic implemented below is as follows:

• Check for the existence of the flash in the device.

• Get the camera object and open it to access it.

• Get the parameters of the captured camera object.

• Check the supported flash modes available from the current camera object using
getSupportedFlashModes().

2.18 A Simple Torch Light | 135

• If the toggle state is ON the set the flash mode of the camera as
FLASH_MODE_TORCH otherwise set it as FLASH_MODE_OFF .

Example 2-53.

public void showDialog (Context context, int dialogId){
 switch(dialogId){
 case FLASH_NOT_SUPPORTED:
 builder = new AlertDialog.Builder(context);
 builder.setMessage("Sorry, Your phone does not support Flash")
 .setCancelable(false)
 .setNeutralButton("Close", new OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 });
 alertDialog = builder.create();
 alertDialog.show();
 break;
 case FLASH_TORCH_NOT_SUPPORTED:
 builder = new AlertDialog.Builder(context);
 builder.setMessage("Sorry, Your camera flash does not support torch feature")
 .setCancelable(false)
 .setNeutralButton("Close", new OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 });
 alertDialog = builder.create();
 alertDialog.show();
 }

 }

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/SaketSrivastav/SimpleTorchLight

2.19 Adapting Android Phone Application to Tablet
Pratik Rupwal

Problem
I have developed an application for my smart phone. Is there a way to run it gracefully
on a tablet without any significant changes to my code?

136 | Chapter 2: Designing a successful Application

https://github.com/SaketSrivastav/SimpleTorchLight
https://github.com/SaketSrivastav/SimpleTorchLight

Solution
Following a few guidelines for porting a smartphone application to a tablet makes the
application appear graceful on tablet.

Discussion
Assuming that you have android SDK installed on your computer, follow these in-
structions,

1. Launch the Android SDK and AVD Manager and install the following: a. SDK Plat-
form Android 3.0 b. Android SDK Tools, revision 10 c. Android SDK Platform-tools,
revision 3 d. Documentation for Android SDK, API 11 e. Samples for SDK API 11

2. Create an AVD for a tablet-type device, if you do not have an actual device yet. Set
the target to "Android 3.0" and the skin to "WXGA" (the default skin).

3. Open your manifest file and update the uses-sdk element to set android:targetSdk-
Version to "11". For example:

Example 2-54.

<manifest ... >
 <uses-sdk android:minSdkVersion="4"
 android:targetSdkVersion="11" />
 <application ... >
 ...
 <application>
</manifest>

By targeting the Android 3.0 platform, the system automatically applies the holographic
theme to each activity when your application runs on an Android 3.0 device. The holo-
graphic theme provides a new design for widgets, such as buttons and text boxes, and
new styles for other visual elements. This is the standard theme for applications built
for Android 3.0, so your application will look and feel consistent with the system and
other applications when it is enabled.

4. Build your application against the same version of the Android platform you have
been using previously (such as the version declared in your android:minSdkVersion),
but install it on the Android 3.0 AVD. (You should not build against Android 3.0 unless
you are using new APIs.) Repeat your tests to be sure that your user interface works
well with the holographic theme.

Optional guidelines:

1. Landscape layout: The "normal" orientation for tablet-type devices is usually land-
scape (wide), so you should be sure that your activities offer a layout that's optimized
for a wide viewing area.

2. Button position and size: Consider whether the position and size of the most common
buttons in your UI make them easily accessible while holding a tablet with two hands.

2.19 Adapting Android Phone Application to Tablet | 137

In some cases, you might need to resize buttons, especially if they use "wrap_content"
as the width value. To enlarge the buttons, if necessary, you should either: add extra
padding to the button; specify dimension values with dp units; or use android:lay-
out_weight when the button is in a linear layout. Use your best judgment of proportions
for each screen size-you don't want the buttons to be too big, either.

3. Font sizes: Be sure your application uses sp units when setting font sizes. This alone
should ensure a readable experience on tablet-style devices, because it is a scale-inde-
pendent pixel unit, which will resize as appropriate for the current screen configuration.
In some cases, however, you still might want to consider larger font sizes for extra-large
configurations.

2.20 First Run preferences
Ashwini Shahapurkar

Problem
I have an application which collects app usage data anonymously. I would like to make
user aware of this on first run. How can I achieve this?

Solution
We can use the shared preferences as persistent storage to store the value which gets
updated only once. Each time application launches it shall check for this value in pref-
erences. If value is available, it is not the first run of application, else it is.

Discussion
We can mange application lifecyle by using the Application class of Android frame-
work. We will use shared preferences as persistent storage to store the value of first run.

We will store a boolean flag if it is first run in preferences. When the application is
installed and used for the first time, there are no preferences available for it. That will
be created for us. In that case the flag shall return true value. After getting true flag, we
can update this flag with false value as we no longer need it to be true.

Example 2-55.

public class MyApp extends Application {

 SharedPreferences mPrefs;

 @Override
 public void onCreate() {
 super.onCreate();

 Context mContext = this.getApplicationContext();
 //0 = mode private. only this app can read these preferences

138 | Chapter 2: Designing a successful Application

 mPrefs = mContext.getSharedPreferences("myAppPrefs", 0);

 //here goes your app initialization code
 }

 public boolean getFirstRun() {
 return mPrefs.getBoolean("firstRun", true);
 }

 public void setRunned() {
 SharedPreferences.Editor edit = mPrefs.edit();
 edit.putBoolean("firstRun", false);
 edit.commit();
 }

}

This flag from preferences will be tested in launcher activity like this:

Example 2-56.

 if(((MyApp) getApplication()).getFirstRun()){
 //This is first run
 ((MyApp) getApplication()).setRunned();

 // your code for first run goes here

 }
 else{
 // this is the case other than first run
 }

The updates published to the app will not modify the preferences, so the code works
for only first run after installation. Consequent updates to the app will not bring the
code into picture, unless the user has manually uninstalled and installed the app.

Note: We can use a similar technique for distributing shareware versions of an Android
app. I.e., we can limit the number of trials of the application using similar technique.
In that case, we would use the integer count value in preferences for number of trials.
Each trial would update the preferences. After the desired value is reached, we would
block the usage of application.

2.21 Formatting the time and date display
Pratik Rupwal

2.21 Formatting the time and date display | 139

Problem
I want to display the date and time in different standard formats. What is the the easiest
approach to achieve this?

Solution
DateFormat class provides APIs for formatting time and date in custom format. Using
these APIs requires minimal efforts to fulfil the requirement.

Discussion
Please refer the below code which adds 5 different TextViews for showing the time and
date in different formats.

Example 2-57.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 />

</LinearLayout>

Below code obtains the current time and date using java.util.Date class and then dis-
plays it in different formats (Please refer the comments for sample outputs):

140 | Chapter 2: Designing a successful Application

Example 2-58.

package com.sym.dateformatdemo;

import java.util.Calendar;
import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateFormat;
import android.widget.TextView;

public class TestDateFormatterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView textView1 = (TextView) findViewById(R.id.textview1);
 TextView textView2 = (TextView) findViewById(R.id.textview2);
 TextView textView3 = (TextView) findViewById(R.id.textview3);
 TextView textView4 = (TextView) findViewById(R.id.textview4);
 TextView textView5 = (TextView) findViewById(R.id.textview5);

 String delegate = "MM/dd/yy hh:mm a"; // 09/21/2011 02:17 pm
 java.util.Date noteTS = Calendar.getInstance().getTime();
 textView1.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMM dd, yyyy h:mm aa"; // Sep 21,2011 02:17 pm
 textView2.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMMM dd, yyyy h:mmaa"; //September 21,2011 02:17pm
 textView3.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "E, MMMM dd, yyyy h:mm:ss aa";//Wed, September 21,2011 02:17:48 pm
 textView4.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "EEEE, MMMM dd, yyyy h:mm aa"; //Wednesday, September 21,2011 02:17:48 pm
 textView5.setText("Found Time :: "+DateFormat.format(delegate,noteTS));
 }
}

See Also

Usage

DateUtils

This class contains various date-related utilities for creating text for things like elapsed time and date ranges, strings for days of
the week and months, and AM/ text etc.

Formatter

Utility class to aid in formatting common values that are not covered by java.util.Formatter

Time

The Time class is a faster replacement for the java.util.Calendar and java.util.GregorianCalendar classes.

2.21 Formatting the time and date display | 141

2.22 Controlling Input with KeyListeners
Pratik Rupwal

Problem
My application contains a few text boxes in which I want to restrict the users to enter
only numbers; also in some cases to only positive numbers or even integers as well as
dates. How do I achieve this with minimum efforts?

Solution
Android provides KeyListener classes to help you restrict the users to enter only num-
bers/positive numbers/integers/positive integers and much more.

Discussion
Android.text.method package includes an interface 'KeyListener' and some classes like
DigitsKeyListener,DateKeyListener, etc. which implement this interface.

Below is a sample application which demonstrate few of them:

This layout file creates 5 textviews and 5 edittexts textviews display the input type
allowed for their respective edittexts.

Example 2-59.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 android:text="digits listener with signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText1"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 android:text="digits listener without signs and decimal points"
 />
 <EditText

142 | Chapter 2: Designing a successful Application

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText2"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 android:text="date listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText3"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 android:text="multitap listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText4"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 android:text="qwerty listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText5"
 />
</LinearLayout>

Below is the code for the activity which restricts the edittext input to numbers/positi-
veintgers/etc.(Refer the comments for group of keys allowed):

Example 2-60.

import android.app.Activity;
import android.os.Bundle;
import android.text.method.DateKeyListener;
import android.text.method.DigitsKeyListener;
import android.text.method.MultiTapKeyListener;
import android.text.method.QwertyKeyListener;
import android.text.method.TextKeyListener;
import android.widget.EditText;

2.22 Controlling Input with KeyListeners | 143

public class KeyListenerDemo extends Activity {
 /** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 EditText editText1=(EditText)findViewById(R.id.editText1);
 DigitsKeyListenerdigkl1=DigitsKeyListener.getInstance(true,true);//allows digits with positive/negative signs and decimal points
 editText1.setKeyListener(digkl1);

 EditText editText2=(EditText)findViewById(R.id.editText2);
 DigitsKeyListener digkl2=DigitsKeyListener.getInstance();//allows positive inetger only(no decimal values allowed)
 editText2.setKeyListener(digkl2);

 EditText editText3=(EditText)findViewById(R.id.editText3);
 DateKeyListener dtkl=new DateKeyListener();//allows date only
 editText3.setKeyListener(dtkl);

 EditText editText4=(EditText)findViewById(R.id.editText4);
 MultiTapKeyListener multitapkl=new MultiTapKeyListener(TextKeyListener.Capitalize.WORDS,true);//allows multitap with 12-key keypad layout.
 editText4.setKeyListener(multitapkl);

 EditText editText5=(EditText)findViewById(R.id.editText5);
 QwertyKeyListener qkl=new QwertyKeyListener(TextKeyListener.Capitalize.SENTENCES,true);//allows qwerty layout for typing.
 editText5.setKeyListener(qkl);
 }
}

For using 'MultiTapKeyListener' your phone should support the 12-key layout and it
needs to be activated. To activate this 12-key layout, go to setting->Language and Key-
board -> On screen Keyboard layout -> select 'Phone layout' options.

the above options could be 'Qwerty layout'/'Phone layout'/'Compact qwerty layout'.

See Also

Usage

BaseKeyListener

Abstract base class for key listeners.

DateTimeKeyListener

For entering dates and times in the same text field.

MetaKeyKeyListener

This base class encapsulates the behavior for tracking the state of meta keys such as SHIFT,ALT and SYM as well as the pseudo-
meta state of selecting text.

NumberKeyListener

For numeric text entry.

TextKeyListener

144 | Chapter 2: Designing a successful Application

Usage

This is the key listener for typing normal text.

TimeKeyListener

For entering times in a text field.

2.23 Android Application Data Backup
Pratik Rupwal

Problem
If a user performs a factory reset or converts to a new Android-powered device, the
application loses stored data or application settings.

Solution
Android's Backup Manager helps to automatically restore your backup data or appli-
cation settings when the application is re-installed.

Discussion
Android's Backup mechanism basically operated in two modes, backup and restore.
During a backup operation, Android's Backup Manager (BackupManager class) queries
your application for backup data, then hands it to a backup transport, which then
delivers the data to the cloud storage. During a restore operation, the Backup Manager
retrieves the backup data from the backup transport and returns it to your application
so your application can restore the data to the device. It's possible for your application
to request a restore, which is not necessary as Android automatically performs a restore
operation when your application is installed and there exists backup data associated
with the user. The primary scenario in which backup data is restored when a user resets
their device or upgrades to a new device and their previously installed applications are
re-installed.

Below application describes how to implement BackupManager for your application
so that you can save the current state of your application.

Basic description of procedure in step-by-step form:

1) Create a Project 'BackupManagerExample' in eclipse.

2) Open and insert the following code in layout/backup_restore.xml:

Example 2-61.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

2.23 Android Application Data Backup | 145

 <ScrollView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView android:text="@string/filling_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <RadioGroup android:id="@+id/filling_group"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="20dp"
 android:orientation="vertical">

 <RadioButton android:id="@+id/bacon"
 android:text="@string/bacon_label"/>
 <RadioButton android:id="@+id/pastrami"
 android:text="@string/pastrami_label"/>
 <RadioButton android:id="@+id/hummus"
 android:text="@string/hummus_label"/>

 </RadioGroup>

 <TextView android:text="@string/extras_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/mayo"
 android:text="@string/mayo_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/tomato"
 android:text="@string/tomato_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 </LinearLayout>

146 | Chapter 2: Designing a successful Application

 </ScrollView>

</LinearLayout>

3) Open values/string.xml and insert the following code in it,

Example 2-62.

<resources>
 <string name="hello">Hello World, BackupManager!</string>
 <string name="app_name">BackupManager</string>
 <string name="filling_text">Choose Settings for your application:</string>
 <string name="bacon_label">Sound On</string>
 <string name="pastrami_label">Vibration On</string>
 <string name="hummus_label">Backlight On</string>
 <string name="extras_text">Extras:</string>
 <string name="mayo_text">Use Orientation?</string>
 <string name="tomato_text">Use Camera?</string>
</resources>

4)Your manifest file will look like this:

Example 2-63.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.sym.backupmanager"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9" />

 <application android:label="Backup/Restore" android:icon="@drawable/icon"
 android:backupAgent="ExampleAgent"> <!-- Here you specify the backup agent-->

 <!--Some backup transports may require API keys or other metadata-->
 <meta-data android:name="com.google.android.backup.api_key"
 android:value="INSERT YOUR API KEY HERE" />

 <activity android:name=".BackupManagerExample">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity> </application>

</manifest>

5) The following code completes the implementation of the BackupManager for your
application.

Example 2-64.

package com.sym.backupmanager;

import android.app.Activity;

2.23 Android Application Data Backup | 147

import android.app.backup.BackupManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.RadioGroup;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

public class BackupManagerExample extends Activity {
 static final String TAG = "BRActivity";

 static final Object[] sDataLock = new Object[0];

 static final String DATA_FILE_NAME = "saved_data";

 RadioGroup mFillingGroup;
 CheckBox mAddMayoCheckbox;
 CheckBox mAddTomatoCheckbox;

 File mDataFile;

 BackupManager mBackupManager;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.backup_restore);

 mFillingGroup = (RadioGroup) findViewById(R.id.filling_group);
 mAddMayoCheckbox = (CheckBox) findViewById(R.id.mayo);
 mAddTomatoCheckbox = (CheckBox) findViewById(R.id.tomato);

 mDataFile = new File(getFilesDir(), BackupManagerExample.DATA_FILE_NAME);

 mBackupManager = new BackupManager(this);

 populateUI();
 }

 void populateUI() {
 RandomAccessFile file;

 int whichFilling = R.id.pastrami;
 boolean addMayo = false;
 boolean addTomato = false;

 synchronized (BackupManagerExample.sDataLock) {
 boolean exists = mDataFile.exists();
 try {
 file = new RandomAccessFile(mDataFile, "rw");
 if (exists) {
 Log.v(TAG, "datafile exists");

148 | Chapter 2: Designing a successful Application

 whichFilling = file.readInt();
 addMayo = file.readBoolean();
 addTomato = file.readBoolean();
 Log.v(TAG, " mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 } else {
 Log.v(TAG, "creating default datafile");
 writeDataToFileLocked(file,
 addMayo, addTomato, whichFilling);

 mBackupManager.dataChanged();
 }
 } catch (IOException ioe) {

 }
 }

 mFillingGroup.check(whichFilling);
 mAddMayoCheckbox.setChecked(addMayo);
 mAddTomatoCheckbox.setChecked(addTomato);

 mFillingGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {
 public void onCheckedChanged(RadioGroup group,
 int checkedId) {
 Log.v(TAG, "New radio item selected: " + checkedId);
 recordNewUIState();
 }
 });

 CompoundButton.OnCheckedChangeListener checkListener
 = new CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 Log.v(TAG, "Checkbox toggled: " + buttonView);
 recordNewUIState();
 }
 };
 mAddMayoCheckbox.setOnCheckedChangeListener(checkListener);
 mAddTomatoCheckbox.setOnCheckedChangeListener(checkListener);
 }

 void writeDataToFileLocked(RandomAccessFile file,
 boolean addMayo, boolean addTomato, int whichFilling)
 throws IOException {
 file.setLength(0L);
 file.writeInt(whichFilling);
 file.writeBoolean(addMayo);
 file.writeBoolean(addTomato);
 Log.v(TAG, "NEW STATE: mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 }

2.23 Android Application Data Backup | 149

 void recordNewUIState() {
 boolean addMayo = mAddMayoCheckbox.isChecked();
 boolean addTomato = mAddTomatoCheckbox.isChecked();
 int whichFilling = mFillingGroup.getCheckedRadioButtonId();
 try {
 synchronized (BackupManagerExample.sDataLock) {
 RandomAccessFile file = new RandomAccessFile(mDataFile, "rw");
 writeDataToFileLocked(file, addMayo, addTomato, whichFilling);
 }
 } catch (IOException e) {
 Log.e(TAG, "Unable to record new UI state");
 }

 mBackupManager.dataChanged();
 }
}

Data backup is not guaranteed to be available on all Android-powered devices. How-
ever, your application is not adversely affected in the event that a device does not pro-
vide a backup transport. If you believe that users will benefit from data backup in your
application, then you can implement it as described in this document, test it, then
publish your application without any concern about which devices actually perform
backup. When your application runs on a device that does not provide a backup trans-
port, your application operates normally, but will not receive callbacks from the Backup
Manager to backup data.

Although you cannot know what the current transport is, you are always assured that
your backup data cannot be read by other applications on the device. Only the Backup
Manager and backup transport have access to the data you provide during a backup
operation.

Caution: Because the cloud storage and transport service can differ from device to
device, Android makes no guarantees about the security of your data while using back-
up. You should always be cautious about using backup to store sensitive data, such as
usernames and passwords.

See Also
Testing Your Backup Agent:

Once you've implemented your backup agent, you can test the backup and restore
functionality with the following procedure, using bmgr.

1. Install your application on a suitable Android system image If using the emulator,
create and use an AVD with Android 2.2 (API Level 8). If using a device, the device
must be running Android 2.2 or greater and have Android Market built in. 2. Ensure
that backup is enabled If using the emulator, you can enable backup with the following
command from your SDK tools/ path:

adb shell bmgr enable true

150 | Chapter 2: Designing a successful Application

If using a device, open the system Settings, select Privacy, then enable Back up my data
and Automatic restore. 3. Open your application and initialize some data

If you've properly implemented backup in your application, then it should request a
backup each time the data changes. For example, each time the user changes some
data, your app should call dataChanged(), which adds a backup request to the Backup
Manager queue. For testing purposes, you can also make a request with the following
bmgr command:

adb shell bmgr backup your.package.name

4.Initiate a backup operation:

adb shell bmgr run

This forces the Backup Manager to perform all backup requests that are in its queue.

5.Uninstall your application:

adb uninstall your.package.name

6.Re-install your application.

If your backup agent is successful, all the data you initialized in step 4 is restored.

2.24 Making password fields
Rachee Singh

Problem
You need to designate an EditText as a password field

Solution
Android provides the password attribute on EditTexts

Discussion
If your application requires the user to enter a password, the EditText being used should
be special. It should hide the characters entered. This can be done by adding this prop-
erty to the EditText in XML:

Example 2-65.

android:password="True"

After doing this, this is how the EditText in which password is being entered looks:

2.24 Making password fields | 151

Figure 2-8.

152 | Chapter 2: Designing a successful Application

2.25 Working Without Tooltips: Use Hints Instead
Daniel Fowler

Problem
Android devices can have small screens, there may not be room for help text, and
tooltips are not part of the platform.

Solution
Android provides the hint attribute for Views.

Discussion
Sometimes an input field needs clarification with regards to the value being entered.
For example a stock ordering application asking for item quantities may need to state
the minimum order size. In desktop programs, with large screens and the use of a
mouse, extra messages can be displayed in the form of tooltips (a popup label over a
field when the mouse moves over it). Alternatively, long descriptive labels may be used.
With Android devices the screen may be small and no mouse is generally used. The
alternative here is to use the android:hint attribute on a View. This causes a "watermark"
containing the hint text to be displayed in the input field when it is empty; this disap-
pears when the user starts typing in the field. The corresponding function for an-
droid:hint is setHint(int resourceId).

The color of the hint text can be set with android:textColorHint with setHintText
Color(int color) being the associated function.

Using these `hints' can also help with screen layouts when space is tight. It can allow
labels to be removed to gain more space as the hints provide the neccessary prompt for
the user. A screen design can sometimes be improved by removing a label and using a
hint.

The EditText definition in the above screen is shown here to see android:hint in use.

Example 2-66.

<EditText android:id="@+id/etQuantity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="Number of boxes of ten"
 android:textSize="18sp"/>

Hints can guide users filling in App fields, though like any feature over use is possible.
Hints must not be used when it is obvious what is required, a field with a label of First
Name would not need a hint such as Enter your first name here.

2.25 Working Without Tooltips: Use Hints Instead | 153

Figure 2-9.

154 | Chapter 2: Designing a successful Application

Figure 2-10.

2.25 Working Without Tooltips: Use Hints Instead | 155

CHAPTER 3

Testing

3.1 Introduction: Testing
Ian Darwin

Discussion
Test early and often is a common cry among advocates of testing. As is the all-im-
portant question "If you don't have a test, how do you know your code works?"

There are many types of testing. Unit Testing checks out individual components in
isolation (not hitting the network or the database). JUnit and TestNG are the leading
frameworks here. Mock Objects are used where interaction with other components is
required; there are several good mocking frameworks for Java.

XXX Other Types ...

Android provides an Application Testing facility. We will have a recipe on it soon.

3.2 How to TDD(test driven development) Android App
kailuo wang

Problem
Lack of mocking support making TDD Android App cumbersome.

Solution
Setup 2 test projects: one created using the Android tool for the UI related tests, and
another standard Unit Test projects for mock supported tests. Extract as much as your
logic to the classes that can be unit tested.

157

Discussion
In the official guide, the test related articles are mostly about testing the UI tests. An
Android test project needs to be created so that it can be instrumented and deployed
and test the app on a simulator environment. It's very cool and necessary for testing
the UI related logic, but it also made mocking very difficult. There is some work around
but they make things a bit ad hoc and potentially painful. If you step back and look at
them from a higher level, these tests are more like integration tests than pure unit tests.
They take longer to run, they require the whole environment up. Without mocking,
they might need to test a lot more than a unit of functionality. All these justify the
decision to make such tests a separate project/module from the normal unit test project/
module. We can call this android tool created project/module the XYZ UI Test project,
whose responsibility is to test only UI logic. Now you can setup another standard Unit
test project as you always do. Let's call it the XYZ Unit Test project. Here you can use
your favorite tools including mock frameworks. Also it's testing only all the non-UI
related logic which avoids all the not-that-test-friendly Android UI API. Now all you
need to do is to extract as much logic out of the nasty UI dependent classes and have
fun TDD :)

See Also
http://developer.android.com/resources/tutorials/testing/helloandroid_test.html

3.3 How to troubleshoot "The application has stopped
unexpectedly. Please try again"
Ulysses Levy

Problem
Your app crashes and you are uncertain as to why.

Solution
Begin by viewing the log.

Discussion

app crash

This is what an app crash looks like.

logcat

We can use adb logcat to view our AVD's log.

158 | Chapter 3: Testing

Example 3-1.

adb remount
adb logcat

Example 3-2.

...

E/DatabaseUtils(53): Writing exception to parcel
E/DatabaseUtils(53): java.lang.SecurityException: Permission Denial: writing com.android.providers.settings.SettingsProvider uri content://settings/system from pid=430, uid=10030 requires android.permission.WRITE_SETTINGS
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.enforceWritePermission(ContentProvider.java:294)
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.insert(ContentProvider.java:149)
E/DatabaseUtils(53): at android.content.ContentProviderNative.onTransact(ContentProviderNative.java:140)
E/DatabaseUtils(53): at android.os.Binder.execTransact(Binder.java:287)
E/DatabaseUtils(53): at com.android.server.SystemServer.init1(Native Method)
E/DatabaseUtils(53): at com.android.server.SystemServer.main(SystemServer.java:497)
E/DatabaseUtils(53): at java.lang.reflect.Method.invokeNative(Native Method)
E/DatabaseUtils(53): at java.lang.reflect.Method.invoke(Method.java:521)
E/DatabaseUtils(53): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860)
E/DatabaseUtils(53): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618)
E/DatabaseUtils(53): at dalvik.system.NativeStart.main(Native Method)
D/AndroidRuntime(430): Shutting down VM
W/dalvikvm(430): threadid=3: thread exiting with uncaught exception (group=0x4001b188)
...

Figure 3-1.

3.3 How to troubleshoot "The application has stopped unexpectedly. Please try again" | 159

Example Solution

In this scenario, we have a permission issue. So the solution to this particular instance
is to add the WRITE_SETTINGS permission to our AndroidManifest.xml file.

Example 3-3.

<manifest ... >
 <application ... />
 <uses-permission android:name="android.permission.WRITE_SETTINGS" />
</manifest>

Example 2 : Null Pointer Exception

The Null Pointer Exception (NPE) is fairly common.

Here's the logcat output:

Example 3-4.

I/ActivityManager(53): Displayed activity com.android.launcher/.Launcher: 28640 ms (total 28640 ms)
I/ActivityManager(53): Starting activity: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=com.aschyiel.disp/.Disp }
I/ActivityManager(53): Start proc com.aschyiel.disp for activity com.aschyiel.disp/.Disp: pid=214 uid=10030 gids={1015}
I/ARMAssembler(53): generated scanline__00000177:03515104_00000001_00000000 [73 ipp] (95 ins) at [0x47c588:0x47c704] in 2087627 ns
I/ARMAssembler(53): generated scanline__00000077:03545404_00000004_00000000 [47 ipp] (67 ins) at [0x47c708:0x47c814] in 1834173 ns
I/ARMAssembler(53): generated scanline__00000077:03010104_00000004_00000000 [22 ipp] (41 ins) at [0x47c818:0x47c8bc] in 653016 ns
D/AndroidRuntime(214): Shutting down VM
W/dalvikvm(214): threadid=3: thread exiting with uncaught exception (group=0x4001b188)
E/AndroidRuntime(214): Uncaught handler: thread main exiting due to uncaught exception
E/AndroidRuntime(214): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.aschyiel.disp/com.aschyiel.disp.Disp}: java.lang.NullPointerException
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2496)
E/AndroidRuntime(214): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2512)
E/AndroidRuntime(214): at android.app.ActivityThread.access$2200(ActivityThread.java:119)
E/AndroidRuntime(214): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1863)
E/AndroidRuntime(214): at android.os.Handler.dispatchMessage(Handler.java:99)
E/AndroidRuntime(214): at android.os.Looper.loop(Looper.java:123)
E/AndroidRuntime(214): at android.app.ActivityThread.main(ActivityThread.java:4363)
E/AndroidRuntime(214): at java.lang.reflect.Method.invokeNative(Native Method)
E/AndroidRuntime(214): at java.lang.reflect.Method.invoke(Method.java:521)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618)
E/AndroidRuntime(214): at dalvik.system.NativeStart.main(Native Method)
E/AndroidRuntime(214): Caused by: java.lang.NullPointerException
E/AndroidRuntime(214): at com.aschyiel.disp.Disp.onCreate(Disp.java:66)
E/AndroidRuntime(214): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1047)
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2459)
E/AndroidRuntime(214): ... 11 more

And the code...

Example 3-5.

import ...

public class Disp extends Activity
{

logcat.

Example Code (with error).

160 | Chapter 3: Testing

 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...

 foo.setText("bar");
 }
}

The above code fails because we forgot to use findViewById().

Once more, with the fix:

Example 3-6.

import ...

public class Disp extends Activity
{
 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...

 foo = (TextView) findViewById(R.id.id_foo);
 foo.setText("bar");
 }
}

The above code should make our error go away.

See Also
Google I/O 2009 - Debugging Arts of the Ninja Masters http://groups.google.com/group/
android-developers/browse_thread/thread/92ea776cfd42aa45

3.4 Debugging using Log.d and LogCat
Rachee Singh

Problem
Many a times even though the Java code compiles without error, running the applica-
tion crashes giving a 'Force Close' (or similar) error message.

Solution
Debugging the code using Log Cat messages is a useful technique that a developer must
be equipped with in such scenarios.

example code (with fix).

3.4 Debugging using Log.d and LogCat | 161

http://developer.android.com/videos/index.html#v=Dgnx0E7m1GQ
http://groups.google.com/group/android-developers/browse_thread/thread/92ea776cfd42aa45
http://groups.google.com/group/android-developers/browse_thread/thread/92ea776cfd42aa45

Discussion
Those familiar with Java programming have probably used System.out.println state-
ments while debugging their code. Similarly, debugging an Android application can be
facilitated by the use of using the Log.d method. This helps print necessary values and
messages in the Log Cat window. Start with the import of the Log class:

Example 3-7.

import android.util.Log;

Then, insert this line in the code at places where you wish to check the status of the
application:

Example 3-8.

 Log.d("Testing", "Checkpoint 1");

'Testing' is the Tag (which appears under the Tag column of Log Cat. 'Checkpoint 1'is
the message (which appears in the Message Column of Log Cat). Log.d takes these 2
arguments. Corresponding to these, an appropriate message is displayed in the Log
Cat. So if you have inserted this as a check point and you get the message displayed in
Log Cat implies that the code works fine till that point.

The Log.d method does not accept variable arguments, so if you wish to format more
than one item, use String concatenation or String.format (but omit the trailing %n):

Figure 3-2.

162 | Chapter 3: Testing

Example 3-9.

 Log.d("Testing", String.format("x0 = %5.2f, x1=%5.2f", x0, x1));

3.5 Keep Your App Snappy With StrictMode
Adrian Cowham

Problem
Making sure your app's GUI is as snappy as possible isn't easy. But with the help of
Android's StrictMode it doesn't seem all that bad.

Solution
Android has a tool called Strict Mode that they introduced in Gingerbread, Strict Mode
will detect all cases where an ANR might occur. For example, it will detect and log to
LogCat all database reads and writes that happen on the main thread (i.e. the GUI
thread).

Discussion
I wish I could've used a tool like StrictMode back when I was doing Java Swing Desktop
development. Making sure our Java Swing App was snappy was a constant challenge,
green and seasoned engineers would invariably perform database operations on the UI
thread that would cause the app to hiccup. Typically we found these hiccups when QA
(or customers) would use the app with a larger dataset than the engineers were testing
with. Having QA find these little defects was unacceptable and ultimately a waste of
everyone's time (and the company's money). We eventually solved the problem by
investing more heavily in peer reviews, but having a tool like StrictMode would have
been comparatively cheaper.

The example code below illustrates how easily StrictMode can be turned on in your app.

Example 3-10.

// make sure you import StrictMode
import android.os.StrictMode;

// In you app's android.app.Applicatoin instance, add the following
// lines to the onCreate(...) method.
if (Build.VERSION.SDK_INT >= 9 && isDebug()) {
 StrictMode.enableDefaults();
}

Please note that the isDebug() implementation has been intentionally omitted, as this
will vary among developers. I recommend only enabling StrictMode when your app is
in Debug mode, it's unwise to put your app in the Market with StrictMode running in
the background and consuming resources unnecessarily.

3.5 Keep Your App Snappy With StrictMode | 163

StrictMode is highly configurable, it allows you to customize what problems to look
for. For detailed information on customizing StrictMode policies, see the StrictMode
link below.

See Also
http://developer.android.com/reference/android/os/StrictMode.html

3.6 Barrel of Monkeys
Adrian Cowham

Problem
Not quite the Turing test, but if your app can pass the monkey test, you deserve a pat
on the back.

Solution
Testing is so easy a monkey can do it, literally. Despite the lack of testing tools for
Android, I have to admit that monkey is pretty cool. If you're not familiar with Android's
monkey, it's a testing tool that comes with the Android SDK and simulates a monkey
(or perhaps a child) using an Android device. Imagine a monkey sitting at keyboard
and flailing away, get the idea? What better way to flush out those hidden ANRs?

Discussion
Running monkey is as simple as starting the emulator (or connecting your development
device to your development machine) and launching the monkey script. I hate to admit
this, but by running monkey on a daily basis we've repeatedly found defects that prob-
ably would've escaped a normal QA pass and would've been very challenging to trou-
bleshoot if found in the field. Or worse yet, caused users to stop using our app.

Here we talk about a few best practices for using monkey in your development process.

First, use monkey.

Second, create your own monkey script that wraps Android's monkey script. This is to
ensure that all the developers on your team are running monkey with the same param-
eters. If you're a team of one, this helps with predictability (discussed below).

Next, you'll want to configure monkey so that it runs long enough to catch defects and
not so long that it's a productivity killer. In our development process, we configured
monkey to run for a total of 50,000 events. This took about 40 minutes to run on a
Samsung Galaxy Tab. Not too bad, but I would've liked it to be in the 30 minute range.
Obviously, faster tablets will have a higher throughput.

164 | Chapter 3: Testing

Monkey is random, so when we first started running monkey every developer was
getting different results and we were unable to reproduce defects. We then figured out
that monkey allows you to set the seed for it's random number generator. So, configure
your wrapper script to set monkey's seed. This will ensure uniformity and predictability
across monkey runs in your development team.

Lastly, once you gain confidence in your app with a specific seed value, change it, you'll
never know what monkey will find.

Below is a monkey script wrapper, and a description of its arguments.

• -p package name will ensure that monkey only targets the package specified

• --throttle is the delay between events

• -s is the seed value

• -v is the verbose option

• 50000 is the number of event monkey will simulate.

Example 3-11.

#!/bin/bash
Utility script to run monkey
#
See: http://developer.android.com/guide/developing/tools/monkey.html

rm tmp/monkey.log
adb shell monkey -p package.name.here --throttle 100 -s 43686 -v 50000 | tee tmp/monkey.log

There are many more configuration options for monkey, we deliberately chose not to
mess around with what types of events monkey generates because we appreciate the
pain. For example, the seed value we chose causes monkey to disable Wifi about half-
way through the run. This was really frustrating at first because we felt like we weren't
getting the coverage we wanted. Turns out, monkey did us a favor by disabling Wifi
and then relentlessly playing with our app. After discovering and fixing a few defects,
we soon had complete confidence that our app operated as expected with no network
connection.

Good monkey.

See Also
http://developer.android.com/guide/developing/tools/monkey.html

3.7 Sending text messages and placing calls between AVDs
Johan Pelgrim

3.7 Sending text messages and placing calls between AVDs | 165

Problem
You have made an app which needs to place or listen for calls or send or receive text
messages and you want to test this.

Solution
Fire up two AVDs and use the process id to send text messages and place calls

Discussion
When you create an app that listens for incoming calls or text messages -- like the one
in recipe Recipe 10.2 -- you can of course use the DDMS perspective in Eclipse to
simulate placing calls or sending text messages, but you can also fire up another AVD!

If you look at the AVD window title you see a number before your AVD's title. This is
the port number which you can use to telnet to your AVD's shell (e.g. telnet localhost
5554). Fortunately for testing purposes this number is your AVDs phone number as well.
So you can use this number to place calls

(BROKEN XREF TO RECIPE -1 'image:call-other-avd.png')

... or send text.

(BROKEN XREF TO RECIPE -1 'image:send-text-to-other-avd.png')

See Also
Recipe 10.2

3.8 Activity LifeCycle Scenarios for Testing
Daniel Fowler

Problem
Apps should be resilient to the Activity Lifecycle. Developers need to know how to
reproduce different lifecycle scenarios.

Solution
Use logging to get a good understanding of the Activity Lifecycle. Lifecycle scenarios
are then easier to reproduce for App testing.

Discussion
Android is designed for life on the go, where a user is engaged in multiple tasks, taking
calls, checking email, sending SMS, social networking, taking pictures, accessing the
Internet, running Apps and more, maybe including some work! As such a device can

166 | Chapter 3: Testing

have multiple Apps and hence many Activities loaded in memory. The foreground App
and its current Activity can be interrupted and paused at any moment. Apps, and hence
Activities, that are paused can be removed from memory to free up space for newly
started Apps. An App has a lifecycle which it cannot control as it is the Android oper-
ating system that starts, monitors, pauses, resumes and destroys the Apps Activities.
Yet an Activity does know what is going on, as Activities are instantiated, hidden and
destroyed various functions are called. This allows the Activity to keep track on what
the operating system is doing to the App, see the recipe Recipe 1.7.

App developers become familar with the functions invoked when an Activity starts:

• onCreate(Bundle savedInstanceState){...};

• onStart(){...};

• onResume(){...};

And the functions called when an Activity is paused and then removed from memory
(destroyed).

• onPause(){...};

• onStop(){...};

• onDestroy(){..};

It is easy to see them in action open the simple program from the Recipe 1.4 recipe.
Then in the Main.java class override the above functions, calling through to the super
class versions. Add a call to Log.d() to pass in the name of the App and the function
being invoked. The code will look like this:

Example 3-12.

public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Log.d("MyAndroid", "onCreate");
 }
 @Override
 public void onStart() {
 super.onStart();
 Log.d("MyAndroid", "onStart");
 }
 @Override
 public void onResume() {
 super.onResume();
 Log.d("MyAndroid","onResume");
 }
 @Override
 public void onPause() {
 super.onPause();
 Log.d("MyAndroid","onPause");
 }

3.8 Activity LifeCycle Scenarios for Testing | 167

 public void onStop() {
 super.onStop();
 Log.d("MyAndroid","onStop");
 }
 public void onDestroy() {
 super.onDestroy();
 Log.d("MyAndroid","onDestroy");
 }
}

Run the program. To see the debug messages the LogCat View needs to be displayed.
This is visible by default in the Dalvik Debug Monitor Server (DDMS) perspective, or
can be opened via the Window menu option. Click Window->Show View->Other, expand
Android and select LogCat. The LogCat view appears on the bottom tabs.

To open the DDMS perspective click the DDMS button in the top right corner of
Eclipse:

The LogCat view will be on the bottom tabs. If not visible use the Window method above
or select Window->Reset Perspective. LogCat can be dragged off into its own window
by dragging the tab from Eclipse. After starting the program the three debug messages
added to the start up functions can be seen.

When the back key is pressed the three teardown messages are seen.

To see only the messages from the App add a LogCat filter. Click on the green plus in
the top right of the LogCat screen. Give the filter a name and type "MyAndroid" in the
by Log Tagtag field.

LogCat will now show a new tab with only the messages explicitly sent from the App.

Figure 3-3.

168 | Chapter 3: Testing

The LogCat output can be cleared by clicking the top right icon that shows a page with
a small red x. Useful to have a clean sheet before perfoming an action to watch for more
messages.

To see the functions called when a program is paused open up an application over the
MyAndroid program. First add the function for onRestart(), and the debug message.

Example 3-13.

@Override
public void onRestart() {
 super.onRestart();
 Log.d("MyAndroid","onRestart");
}

Run the program, click the Home button, then launch the program again from the device
(or emulator).

LogCat shows the usual start up function sequence, then when the Home button is
pressed onPause() and onStop() run, but no onDestroy(). The program is not ending
but effectively sleeping. When the program is run again it is not reloaded so no
onCreate() executes, instead onRestart() is called.

Figure 3-4.

3.8 Activity LifeCycle Scenarios for Testing | 169

Run the program again, on the device or emulator, go into Manage Applications (via
Settings then Applications), select the program and press the Force Close button.
Then start the program again from the device (or emulator).

The usual start up functions are invoked then the Activity "sleeps". No onDestroy() is
seen as the second instance is run.

The above has shown different lifecycle scenarios.

• Normal start up and then finish.

• Start up, pause and then restart.

• Start up, pause, forced removal from memory and then start up again.

These scenarios result in different sequences of lifecycle functions being executed. Us-
ing these scenarios when testing ensures an App performs correctly for a user. The
techniques shown here can be extended when implementing additional overridden
functions. The techniques also apply to using Fragments in an Activity and testing their
lifecycle.

See Also
Recipe 1.7

Recipe 1.4

Figure 3-5.

170 | Chapter 3: Testing

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/util/Log.html

http://developer.android.com/guide/topics/fundamentals/fragments.html

Figure 3-6.

3.8 Activity LifeCycle Scenarios for Testing | 171

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/guide/topics/fundamentals/fragments.html

Figure 3-7.

172 | Chapter 3: Testing

Figure 3-8.

3.8 Activity LifeCycle Scenarios for Testing | 173

Figure 3-9.

174 | Chapter 3: Testing

CHAPTER 4

Content Providers

4.1 Introduction: Content Providers
Ian Darwin

Discussion
The Content Provider is one of Android's more clever ideas. It allows totally unrelated
applications to share data, which is usually stored in an SQLite database, without prior
arrangement, knowing only the names of the tables and fields in the data.

One widely-used Content Provider is the Android Contacts data. The first Recipe in
this chapter thus shows how easy it is to make an initial selection of data (this is done
using an Intent, as you might guess, but it returns a URI, not the actual data). You then
drill down using an SQLite cursor or two.

Then we have a recipe that shows you how to create your own Content Provider. Again
as you might expect, "there's an interface for that".

Finally, while it's not directly related to Content Providers, Android also offers a more
general Remote Procedure mechanism layered on IDL (interface definition language),
and the Recipe for that is at the end of this chapter since it's a similar topic.

4.2 Retrieving Data from a Content Provider
Ian Darwin

Problem
You want to read from a Content Provider such as Contracts.

175

Solution
Create a PICK uri, open it in an Intent using startActivityForResult, extract the URI
from the returned intent, use Activity.getContentProvider(), and process the data using
SQLite Cursor methods.

Discussion
This is part of the Contact selection code from TabbyText, my SMS text message sender
for WiFi-Only Honeycomb tablets (the rest of the code is in the Persistence chapter,
under (BROKEN XREF TO RECIPE -1 'Reading Contacts Data').

First, the main program sets up an OnClickListener to launch the Contacts app from
a "Find Contact" button.

Example 4-1.

 b.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 System.out.println(uri);
 Intent intent = new Intent(Intent.ACTION_PICK, uri);
 startActivityForResult(intent, REQ_GET_CONTACT);
 }
 });

The URI is pre-defined for us; it actually has the value "content://com.android.con-
tacts/contacts". The constant REQ_GET_CONTACT is arbitrary; it's just there to as-
sociate this Intent startup with the handler code, since more complex apps will often
start more than one intent, and need to handle the results differently. Once this button
is pressed, control passes from our app, out to the Contacts app. The user can then
select a contact they wish to SMS. The Contacts app then is backgrounded and control
returns to our app at the onActivityResult() method, to indicate that the activity we
started has completed and delivered a result.

The next bit of code shows how the onActivityResult() method converts the response
from the activity into an SQLite cursor.

Example 4-2.

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:
 // The Contacts API is about the most complex to use.
 // First we have to retrieve the Contact, since we only get its URI from the Intent
 Uri resultUri = data.getData(); // e.g., content://contacts/people/123
 Cursor cont = getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // expect 001 row(s)
 Toast.makeText(this, "Cursor contains no data", Toast.LENGTH_LONG).show();

176 | Chapter 4: Content Providers

 return;
 }

Key things here: make sure the request code is the one you started, and the resultCode
is RESULT_OK or RESULT_CANCELED (if not, pop up a warning dialog). Then,
extract the URL for the response you picked - the Intent data from the returned Intent
- and use that to create a Query, using the inherited Activity method getContentResolv-
er() to get the ContentResolver and its query() method to make up an SQLite cursor.

We expect the user to have selected one Contact, so if that's not the case we error out.
Otherwise we'd go ahead and use the SQLite cursor to read the data. The exact for-
matting of the Contact database is a bit out of scope for this recipe, so it's been deferred
to the Recipe Recipe 9.16.

4.3 Writing a Content Provider
Ashwini Shahapurkar

Problem
Often the application generates data, which can be processed and analyzed by another
application. What is the safest way to achieve this, without giving direct access to our
application's database?

Solution
Writing a custom Content Provider is the Android way to allow other applications to
access data generated by our app.

Discussion
Content providers allow other applications to access the data generated by our app.
For a custom content provider, we need to have the app database built up and we will
be providing the wrapper over it for other applications. To make other apps aware that
a content provider is available, declare it in AndroidManifest.xml as:

Example 4-3.

<provider android:authorities="com.example.android.contentprovider"
 android:name="MyContentProvider" />

Here the name refers to the class MyContentProvider which extends ContentProvider
class. You need to override the following methods in this class.

Example 4-4.

onCreate();
delete(Uri, String, String[]);
getType(Uri);

4.3 Writing a Content Provider | 177

insert(Uri, ContentValues);
query(Uri, String[], String, String[], String);
update(Uri, ContentValues, String, String[]);

Usually these are wrapper functions for SQL queries on the sqlite database. You parse
the input parameters and perform the queries on your database.

Example 4-5.

public class MyContentProvider extends ContentProvider {

 DatabaseHelper mDatabase;
 private static final int RECORDS = 1;
 public static final Uri CONTENT_URI = Uri
 .parse("content://com.example.android.contentprovider");

 public static final String AUTHORITY = "com.example.android.contentprovider";
 private static final UriMatcher matcher = new UriMatcher(
 UriMatcher.NO_MATCH);

 static {
 matcher.addURI(AUTHORITY, "records", RECORDS);
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 // the app specific code for deleting records from database goes here
 return 0;
 }

 @Override
 public String getType(Uri uri) {
 int matchType = matcher.match(uri);
 switch (matchType) {
 case RECORDS:
 return ContentResolver.CURSOR_DIR_BASE_TYPE + "/records";
 default:
 throw new IllegalArgumentException("Unknown or Invalid URI " + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 //your app specific insertion code goes here
 // it can be as simple as follows; inserting all values in database and returning the record id
 long id = mDatabase.getWritableDatabase().insert(Helper.TABLE_NAME,
 null, values);
 uri = Uri.withAppendedPath(uri, "/" + id);
 return uri;
 }

 @Override
 public boolean onCreate() {
 //initialize your database constructs
 return true;

178 | Chapter 4: Content Providers

 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 //build your query with SQLiteQueryBuilder
 SQLiteQueryBuilder qBuilder = new SQLiteQueryBuilder();
 qBuilder.setTables(Helper.TABLE_NAME);
 int uriType = matcher.match(uri);

 //query the database and get result in cursor
 Cursor resultCursor = qBuilder.query(mDatabase.getWritableDatabase(),
 projection, selection, selectionArgs, null, null, sortOrder,
 null);
 resultCursor.setNotificationUri(getContext().getContentResolver(), uri);
 return resultCursor;

 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 // to be implemented
 return 0;
 }

}

By providing a Content Provider you avoid giving access to your database to other
developers and also reduce the chances of database inconsistency.

4.4 Android Remote Service
Rupesh Chavan

Problem
How to write remote service in the android? How to access it from other application?

Solution
Android has provided AIDL based programming interface that both the client and
service agree upon in order to communicate with each other using interprocess com-
munication(IPC).

Discussion
Inter-process communication (IPC) is the key features of the Android programming
model, to achieve the above goal it has provided following two mechanisms:

1. Intent based communication

4.4 Android Remote Service | 179

2. Remote Service based communication

In this recipe we will be concentrating on Remote service based communication ap-
proach. This android feature allows you to make method calls that look "local" but are
executed in another process. They involve use of Android's interface definition lan-
guage(AIDL). The service has to declare a service interface in an aidl file and the AIDL
tool will automatically create a java interface corresponding to the aidl file. The AIDL
tool also generates a stub class that provides an abstract implementation of the service
interface methods. The actual service class will have to extend this stub class to provide
the real implementation of the methods exposed through the interface.

The service clients will have to invoke the onBind() method on the service to be able
to connect to the service. The onBind() method returns an object of the stub class to
the client. Here are the code related code snippets:

The AIDL file:

Example 4-6.

 package com.demoapp.service;

 interface IMyRemoteService {

 String getMessage();
 }

If you are using eclipse, it will automatically generate the Remote interface correspond-
ing to your aidl file. The remote interface will also provide a stub inner class which has
to have an implementation provided by the RemoteService class. The stub class im-
plementation within the service class is as given here:

Example 4-7.

 private IMyRemoteService.Stub myRemoteServiceStub = new IMyRemoteService.Stub() {
 public int getMessage() throws RemoteException {
 return "Hello World!";
 }
 };
 // The onBind() method in the service class:
 public IBinder onBind(Intent arg0) {
 Log.d(getClass().getSimpleName(), "onBind()");
 return myRemoteServiceStub;
 }

Now, let us quickly look at the meat of the service class before we move on to how the
client connects to this service class. My RemoteService class is just returning a string.
Here are the over-ridden onCreate(), onStart() and onDestroy() methods. onCreate()
method of service will be called only once in a service lifecycle. onStart() method will
be called everytime service is started. Note that the resources are all released in the
onDestroy() method.

180 | Chapter 4: Content Providers

Example 4-8.

 public void onCreate() {
 super.onCreate();
 Log.d(getClass().getSimpleName(),"onCreate()");
 }
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 Log.d(getClass().getSimpleName(), "onStart()");
 }
 public void onDestroy() {
 super.onDestroy();
 Log.d(getClass().getSimpleName(),"onDestroy()");
 }

Now coming to the client class - Here, for simplicity sake, I have put the start, stop,
bind, release and invoke methods all in the same client. While in reality, one client may
start and another can bind to the already started service.

There are 5 buttons one each for start, stop, bind, release and invoke actions. A client
needs to bind to a service before it can invoke any method on the service. Here are the
start and the bind methods.

Example 4-9.

 private void startService(){
 if (started) {
 Toast.makeText(RemoteServiceClient.this, "Service already started", Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 startService(i);
 started = true;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "startService()");
 }
 }

An explicit intent is created and the service is started with the Context.startService(i)
method. Rest of the code is to update some status on the UI. There is nothing specific
to a remote service invocation here. It is on the bindService() method that we see the
difference from a local service.

Example 4-10.

 private void bindService() {
 if(conn == null) {
 conn = new RemoteServiceConnection();
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 bindService(i, conn, Context.BIND_AUTO_CREATE);
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "bindService()");
 } else {

4.4 Android Remote Service | 181

 Toast.makeText(RemoteServiceClient.this, "Cannot bind - service already bound", Toast.LENGTH_SHORT).show();
 }
 }

Here we get a connection to the remote service through the RemoteServiceConnection
class which implements ServiceConnection Interface. The connection object is required
by the bindService() method - an intent, connection object and the type of binding are
to be specified. So, how do we create a connection to the RemoteService? Here is the
implementation:

Example 4-11.

 class RemoteServiceConnection implements ServiceConnection {
 public void onServiceConnected(ComponentName className,
 IBinder boundService) {
 remoteService = IMyRemoteService.Stub.asInterface((IBinder)boundService);
 Log.d(getClass().getSimpleName(), "onServiceConnected()");
 }

 public void onServiceDisconnected(ComponentName className) {
 remoteService = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "onServiceDisconnected");
 }
 };

The Context.BIND_AUTO_CREATE ensures that a service is created if one did not
exist although the onstart() will be called only on explicit start of the service.

Once the client is bound to the service and the service has already started, we can invoke
any of the methods that are exposed by the service. Here we have only one method and
that is getMessage(). In this example, the invocation is done by clicking the invoke
button. That would return the text message & update it below the button.

Let us see the invoke method:

Example 4-12.

 private void invokeService() {
 if(conn == null) {
 Toast.makeText(RemoteServiceClient.this, "Cannot invoke - service not bound", Toast.LENGTH_SHORT).show();
 } else {
 try {
 String message = remoteService.getCounter();
 TextView t = (TextView)findViewById(R.id.notApplicable);
 t.setText("Message: "+message);
 Log.d(getClass().getSimpleName(), "invokeService()");
 } catch (RemoteException re) {
 Log.e(getClass().getSimpleName(), "RemoteException");
 }
 }
 }

182 | Chapter 4: Content Providers

Once we use the service methods, we can release the service. This is done as follows
(by clicking the release button):

Example 4-13.

 private void releaseService() {
 if(conn != null) {
 unbindService(conn);
 conn = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "releaseService()");
 } else {
 Toast.makeText(RemoteServiceClient.this, "Cannot unbind - service not bound", Toast.LENGTH_SHORT).show();
 }
 }

Finally we can stop the service by clicking the stop button. After this point no client
can invoke this service.

Example 4-14.

 private void stopService() {
 if (!started) {
 Toast.makeText(RemoteServiceClient.this, "Service not yet started", Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 stopService(i);
 started = false;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "stopService()");
 }
 }

These are the basics of working with a remote service on Android platform. All the best!

Note : If client & service are using different package structures then client has to include
the .aidl file along with the package structure as in the service.

4.4 Android Remote Service | 183

CHAPTER 5

Graphics

5.1 Introduction: Graphics
Ian Darwin

Discussion
Computer Graphics is any kind of display that there isn't a GUI component for. Chart-
ing, displaying pictures, and so on. Android is well provisioned for graphics, including
a full implementation of the OpenGL EL, a subset of OpenGL intended for smaller
devices.

5.2 Getting Screenshots
Ian Darwin

Problem
You need a standard way of getting screenshots for use in the Android Cookbook or
any other documentation.

Solution
Use ddms Device->Screen Capture, and save to disk.

Discussion
The Dalvik Debug Monitor Service has a variety of uses. In this recipe we'll only talk
about using it to get screen shots of your running device or emulator. The device does
not have to be "rooted" for this to work, unlike many other methods of screen capture.

Start DDMS from the command line (it's in the tools directory of the SDK). After a
startup delay you will see the home screen (if you also have Eclipse running (see Rec-

185

http://developer.android.com/guide/developing/tools/ddms.html

ipe 1.4), there will be some conflict messages, which would be bad if you were debug-
ging but are harmless here.

Select the Device menu and Screen Capture.

Ddms will communicate with the device and display the current screen contents in a
dialog.

Click this button's Save button for a standard File Save dialog.

You can then upload the screen shots here, or use them in any other documentation
tool. Here's how the same screen capture above would look.

5.3 Using a Custom Font
Ian Darwin

Figure 5-1.

186 | Chapter 5: Graphics

Problem
The range of fonts that comes with Android 2.x is amazingly miniscule - three variants
of the "Droid" font. You want something better.

Solution
Install a TTF or OTF version of your font in assets/fonts (creating this directory if
needed). In your code, create a Typeface from the "asset", and call the View's setType-
face() method. You're done!

Discussion
You can provide one or more fonts with your application. We have not yet seen a
published way of installing system-wide fonts. So beware of huge fonts, as they will be
downloaded with your application, increasing its size.

Your custom font's format should be TTF or OTF (TrueType or OpenTypeFace, a TTF
extension). You need to create the "fonts" subdirectory under "assets" in your project,
and install the font there.

Figure 5-2.

5.3 Using a Custom Font | 187

While you can refer to the pre-defined fonts just using XML, you cannot refer to your
own fonts using XML. This may change someday, but for now the content model of

Figure 5-3.

188 | Chapter 5: Graphics

Figure 5-4.
5.3 Using a Custom Font | 189

the android:typeface attribute is an XML enumeration containing only "normal",
"sans", "serif" and "monospace" - that's it!

So you have to use code. Basic steps are:

1. Find the View you want to use your font it;

2. Create a Typeface object from one of the Typeface class' static create() methods;

3. Message the Typeface into the View's setTypeface method.

There are several Typeface.create() methods, including:

• create(String familyName, int style);

• create(TypeFace family, inst style);

• createFromAsset(AssetManager mgr, String path);

• createFromFile(File path);

• createFromFile(String path);

You can pretty well see how most of these should work. The parameter "style" is, as in
Java, one of several constants defined on the class representing fonts, here Typeface.
Our code example uses the createFromAsset() method so we don't have to worry about
font locations. You could probably provide a font shared by several locations using an
absolute path into "/sdcard" using the latter two forms; remember to request permission
in the AndroidManifest to read the SD Card! You can create representations of the
built-in fonts, and variations on them, using the first two forms.

The font I used is the nice Iceberg(tm) font, from SoftMaker Software GmbH. This font
is copyright and I do not have permission to redistribute it, so when you download the
project and want to run it, you will need to install a TrueType font file at assets/fonts/
fontdemo.ttf. Note that if the font is invalid, Android will silently ignore it and use the
built-in droid font.

In this demo we provide two text areas, one using the built-in "Serif" font and one using
a custom font. They are defined, and various attributes added, in mainx.xml:

Example 5-1.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/PlainTextView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/plain"
 android:textSize="36sp"
 android:typeface="serif"

190 | Chapter 5: Graphics

http://www.softmaker.de

 android:padding="10sp"
 android:gravity="center"
 />
<TextView
 android:id="@+id/FontView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/nicer"
 android:textSize="36sp"
 android:typeface="normal"
 android:padding="10sp"
 android:gravity="center"
 />
</LinearLayout>

Here is the source code:

Example 5-2.

public class FontDemo extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView v = (TextView) findViewById(R.id.FontView); // 1
 Typeface t = Typeface.createFromAsset(getAssets(), // 2
 "fonts/fontdemo.ttf");
 v.setTypeface(t, Typeface.BOLD_ITALIC); // 3
 }
}

If all is well, it should look like this:

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/FontDemo-src.zip

5.4 Draw a spinning cube with OpenGL ES
Marco Dinacci

Problem
You want to create a basic OpenGL ES application.

5.4 Draw a spinning cube with OpenGL ES | 191

http://projects.darwinsys.com/FontDemo-src.zip
http://projects.darwinsys.com/FontDemo-src.zip

Figure 5-5.

192 | Chapter 5: Graphics

Solution
We're going to create a GLSurfaceView and a custom Renderer that will draw a spinning
cube.

Discussion
Android supports 3D graphics via the OpenGL ES API, a flavor of OpenGL specifically
designed for embedded devices.

The recipe is not an OpenGL tutorial, it assumes the reader has already basic OpenGL
knowledge.

The final result will look like this:

First we write a new Activity and in the onCreate method we create the two funda-
mental objects we need to use the OpenGL API: a GLSurfaceView and a Renderer.

Example 5-3.

public class OpenGLDemoActivity extends Activity {

 @Override

Figure 5-6.

5.4 Draw a spinning cube with OpenGL ES | 193

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 GLSurfaceView view = new GLSurfaceView(this);
 view.setRenderer(new OpenGLRenderer());
 setContentView(view);
 }
}

And this is our Renderer that uses a simple Cube object we'll describe later to display a
spinning cube:

Example 5-4.

class OpenGLRenderer implements Renderer {

 private Cube mCube = new Cube();
 private float mCubeRotation;

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);

 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);
 gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

 mCubeRotation -= 0.15f;
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);

194 | Chapter 5: Graphics

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

Our onSurfaceChanged and onDrawFrame methods are basically the equivalent of the GLUT
glutReshapeFunc and glutDisplayFunc. The first is called when the surface is resized,
for instance when the phone switch between landscape and portrait mode, the second
is called every frame and that's where we put the code to draw our cube.

Example 5-5.

class Cube {

 private FloatBuffer mVertexBuffer;
 private FloatBuffer mColorBuffer;
 private ByteBuffer mIndexBuffer;

 private float vertices[] = {
 -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 -1.0f, 1.0f, 1.0f
 };
 private float colors[] = {
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f
 };

 private byte indices[] = {
 0, 4, 5, 0, 5, 1,
 1, 5, 6, 1, 6, 2,
 2, 6, 7, 2, 7, 3,
 3, 7, 4, 3, 4, 0,
 4, 7, 6, 4, 6, 5,
 3, 0, 1, 3, 1, 2
 };

 public Cube() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);

5.4 Draw a spinning cube with OpenGL ES | 195

 byteBuf.order(ByteOrder.nativeOrder());
 mVertexBuffer = byteBuf.asFloatBuffer();
 mVertexBuffer.put(vertices);
 mVertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(colors.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 mColorBuffer = byteBuf.asFloatBuffer();
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glFrontFace(GL10.GL_CW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer);
 gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE,
 mIndexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 }
}

The Cube uses two FloatBuffer objects to store vertex and color informations and a
ByteBuffer to store the face indices. In order for the buffers to work it is important to
set their order according to the endianness of the platform using the order method.
Once the buffers have been filled with the values from the arrays, the internal cursor
must be restored to the beginning of the data using buffer.position(0).

See Also
http://www.khronos.org/opengles

5.5 Adding control to the OpenGL spinning cube
Marco Dinacci

Problem
You want to interact with an OpenGL polygon using the keyboard of your device.

196 | Chapter 5: Graphics

Solution
We're going to create a custom GLSurfaceView and override the onKeyUp method to
listens to KeyEvent created from the D-pad.

Discussion
This recipe extends on the "Create a spinning cube OpenGL" to show how to control
the cube using a D-pad. We're going to increment the speed rotation along the X and
Y axes using the directional keys of the D-pad.

The biggest change is that we now have our custom class that extends the Surface
View. We do this so we can override the onKeyUp method and be notified when the user
uses the D-pad.

The onCreate of our Activity looks like this:

Example 5-6.

public class SpinningCubeActivity2 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // create our custom view
 GLSurfaceView view = new OpenGLSurfaceView(this);
 view.setRenderer((Renderer)view);
 setContentView(view);
 }
}

Our new GLSurfaceView also implements the Renderer interface. The onSurfaceCre
ated and onSurfaceChanged method are exactly the same as in the previous recipe, most
of the changes occur in the onDrawFrame as we introduce four new parameters: mXrot
and mYrot to control the rotation of the cube along the X and Y axis and mXspeed and
mYSpeed to store the speed of the rotation along the X and Y axis.

Each time the user click on a D-pad button we alter the speed of the cube by modifying
these parameters.

Here's the full code of our new class:

Example 5-7.

class OpenGLSurfaceView extends GLSurfaceView implements Renderer {

 private Cube mCube;
 private float mXrot;

5.5 Adding control to the OpenGL spinning cube | 197

 private float mYrot;
 private float mXspeed;
 private float mYspeed;

 public OpenGLSurfaceView(Context context) {
 super(context);

 // give focus to the GLSurfaceView
 requestFocus();
 setFocusableInTouchMode(true);

 mCube = new Cube();
 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);

 gl.glRotatef(mXrot, 1.0f, 0.0f, 0.0f);
 gl.glRotatef(mYrot, 0.0f, 1.0f, 0.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

 mXrot += mXspeed;
 mYrot += mYspeed;
 }

 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_DPAD_LEFT)
 mYspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_RIGHT)
 mYspeed += 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_UP)
 mXspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_DOWN)
 mXspeed += 0.1f;

 return true;
 }

 // unchanged
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

198 | Chapter 5: Graphics

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);
 }

 // unchanged
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

The Cube is inherited from the previous recipe. Don't forget to call the requestFocus()
and setFocusableInTouchMode(true) in the constructor of the view or else the key events
will not be received.

See Also
Create a spinning cube with OpenGL ES recipe: http://androidcookbook.com/Rec-
ipe.seam?recipeId=1418

Source Download URL
The source code for this example may be downloaded from this URL: http://www.in
transitione.com/intransitione.com/code/android/spinning_cube_controllable.zip

5.6 Taking a Picture Using an Intent
Ian Darwin

Problem
You want to take a picture from within your app and don't want to write a lot of code.

Solution
Create an Intent for MediaStore.ACTION_IMAGE_CAPTURE, tailor it a little, and
call startActivityForResult on this Intent. Provide an onActivityResult() callback to get
notified when the user is done with the camera.

5.6 Taking a Picture Using an Intent | 199

http://www.intransitione.com/intransitione.com/code/android/spinning_cube_controllable.zip
http://www.intransitione.com/intransitione.com/code/android/spinning_cube_controllable.zip

Discussion
The code example below shows the complete Camera Activity from my jpstrack ap-
plication.

Assuming that you want to save the image with your application's data (instead of in
the Media Gallery location), you want to provide a file-based URI referring to the target
location, using intent.putExtra(MediaStore.EXTRA_OUTPUT, uri);. Note that, accord-
ing to discussion on various forum sites, the intent handler may give signicantly dif-
ferent results on different vendors' platforms. On the Motorola Milestone, using the
Android 2.1 load from Telus Canada, with the code shown below, the defined directory
gets a preview-scale image and the Media Gallery gets a 1/4-of-full-resolution
(1280x960) copy. Hopefully this will be cleaned up and standardized in 2.2.

Example 5-8.

import jpstrack.android.MainActivity;
import jpstrack.android.FileNameUtils;

public class CameraNoteActivity extends Activity {

 private File imageFile;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Use an Intent to get the Camera app going.
 Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 // Set up file to save image into.
 imageFile = new File(MainActivity.getDataDir(),
 FileNameUtils.getNextFilename("jpg"));
 Uri uri = Uri.fromFile(imageFile);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, uri);
 intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);
 // And away we go!
 startActivityForResult(intent, 0);
 }

 @Override
 public void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 switch(requestCode) {
 case 0: // take picture
 switch(resultCode) {
 case Activity.RESULT_OK:
 if (imageFile.exists())
 Toast.makeText(this,
 "Bitmap saved as " + imageFile.getAbsoluteFile(),
 Toast.LENGTH_LONG).show();
 else {
 AlertDialog.Builder alert =
 new AlertDialog.Builder(this);
 alert.setTitle("Error").setMessage(

200 | Chapter 5: Graphics

 "Returned OK but image not created!").show();
 }
 break;
 case Activity.RESULT_CANCELED:
 // no blather required!
 break;
 default:
 Toast.makeText(this,
 "Unexpected resultCode: " + resultCode,
 Toast.LENGTH_LONG).show();
 }
 break;
 default:
 Toast.makeText(this,
 "UNEXPECTED ACTIVITY COMPLETION",
 Toast.LENGTH_LONG).show();
 }
 finish(); // back to main app
 }
}

See Also
Recipe 5.7 - doing it this way gives you more control.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.dar
winsys.com/jpstrack/

Binary Download URL
The executable code for this example may be downloaded from this URL: http://www
.darwinsys.com/jpstrack/jpstrack.android.apk

5.7 Taking a Picture Using android.media.Camera
Marco Dinacci

Problem
You want to have more control on the various stages involved when taking a picture.

Solution
Create a SurfaceView and implement the callbacks fired when the user takes a picture
in order to have control over the whole process of image capturing.

5.7 Taking a Picture Using android.media.Camera | 201

http://www.darwinsys.com/jpstrack/
http://www.darwinsys.com/jpstrack/
http://www.darwinsys.com/jpstrack/jpstrack.android.apk
http://www.darwinsys.com/jpstrack/jpstrack.android.apk

Discussion
Sometimes you may want more control over the stages involved when taking a picture
or you may want to access and modify the raw image data acquired by the camera. In
these cases, using a simple Intent to take a picture is not enough.

We're going to create a new Activity and customize the view to make it full screen
inside the onCreate method.

Example 5-9.

public class TakePictureActivity extends Activity {
 private Preview mCameraView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Force screen in landscape mode as showing a video in
 // potrait mode is not easily doable on all devices
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 // Hide window title and go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);

 mCameraView= new Preview(this);
 setContentView(mCameraView);
 }
}

The Preview class is the bulk of the recipe. It handle the Surface where the pixels are
drawn and the Camera object.

We define a ClickListener in the constructor so the user can take a picture by just
tapping once on the screen. Once we get the notification of the click we take a picture
passing as parameters four (all optional) callbacks.

Example 5-10.

class Preview extends SurfaceView implements SurfaceHolder.Callback, PictureCallback {

 private SurfaceHolder mHolder;
 private Camera mCamera;
 private RawCallback mRawCallback;

 public Preview(Context context) {
 super(context);

 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 mRawCallback = new RawCallback();

202 | Chapter 5: Graphics

 setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 mCamera.takePicture(mRawCallback, mRawCallback, null,
 Preview.this);
 }
 });
 }

The Preview class implement the SurfaceHolder.Callback interface in order to be no-
tified when underlying surface is created, changed and destroyed. We'll use these call-
backs to properly handle the Camera object.

Example 5-11.

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {

 Camera.Parameters parameters = mCamera.getParameters();
 parameters.setPreviewSize(width, height);
 mCamera.setParameters(parameters);

 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mCamera = Camera.open();

 configure(mCamera);

 try {
 mCamera.setPreviewDisplay(holder);
 } catch (IOException exception) {
 closeCamera();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 closeCamera();
 }

As soon as the camera is created we call configure in order to set the parameters the
camera will use to take a picture. Things like flash mode, effects, picture format, picture
size, scene mode and so on. Since not all devices support all kind of features always ask
which features are supported before setting them.

Example 5-12.

 private void configure(Camera camera) {
 Camera.Parameters params = camera.getParameters();

5.7 Taking a Picture Using android.media.Camera | 203

 // Configure image format. RGB_565 is the most common format.
 List<Integer> formats = params.getSupportedPictureFormats();
 if (formats.contains(PixelFormat.RGB_565))
 params.setPictureFormat(PixelFormat.RGB_565);
 else
 params.setPictureFormat(PixelFormat.JPEG);

 // Choose the biggest picture size supported by the hardware
 List<Size> sizes = params.getSupportedPictureSizes();
 Camera.Size size = sizes.get(sizes.size()-1);
 params.setPictureSize(size.width, size.height);

 List<String> flashModes = params.getSupportedFlashModes();
 if (flashModes.size() > 0)
 params.setFlashMode(Camera.Parameters.FLASH_MODE_AUTO);

 // Action mode take pictures of fast moving objects
 List<String> sceneModes = params.getSupportedSceneModes();
 if (sceneModes.contains(Camera.Parameters.SCENE_MODE_ACTION))
 params.setSceneMode(Camera.Parameters.SCENE_MODE_ACTION);
 else
 params.setSceneMode(Camera.Parameters.SCENE_MODE_AUTO);

 // if you choose FOCUS_MODE_AUTO remember to call autoFocus() on
 // the Camera object before taking a picture
 params.setFocusMode(Camera.Parameters.FOCUS_MODE_FIXED);

 camera.setParameters(params);
 }

When the surface is destroyed we close the camera and free its resources:

Example 5-13.

 private void closeCamera() {
 if (mCamera != null) {
 mCamera.stopPreview();
 mCamera.release();
 mCamera = null;
 }
 }

The Jpeg callback is the last one called, this is where we restart the preview and save
the file on disk.

Example 5-14.

 @Override
 public void onPictureTaken(byte[] jpeg, Camera camera) {
 // now that all the callbacks have been called it is safe to resume the preview
 mCamera.startPreview();

 saveFile(jpeg);

204 | Chapter 5: Graphics

 }
}

Finally we implement the ShutterCallback and again PictureCallback to receive the
uncompressed raw image data.

Example 5-15.

class RawCallback implements ShutterCallback, PictureCallback {

 @Override
 public void onShutter() {
 // notify the user, normally with a sound, that the picture has
 // been taken
 }

 @Override
 public void onPictureTaken(byte[] data, Camera camera) {
 // manipulate uncompressed image data
 }
}

See Also
Recipe 5.6

5.8 Using AndroidPlot to display charts and graphs in your
Android application.
Rachee Singh

Problem
Depicting data graphically in an Android application.

Solution
There are many 3rd party graph libraries for Android available. In this example we
make use of AndroidPlot library (open source) to depict a simple graph.

Discussion
Step 1: Download AndroidPlot library from here: http://androidplot.com/wiki/Down-
load (any version).

Step 2: Create a new Android project and add the AndroidPlot library to the new
project. To do this, create a new folder in the project folder by the name 'lib'. To this
folder add the downloaded AndroidPlot jar file (named something like this: 'Android-

5.8 Using AndroidPlot to display charts and graphs in your Android application. | 205

plot-core-0.4a-release.jar'). (At this stage you should be having directories like src, res,
gen, lib.)

Step 3: To use the library, it must be added to the build path. For this, in Eclipse, right
click the .jar you added and select the "Build Path -- Add to Build Path" option. This
will show another directory called 'Referenced Libraries' in the Eclipse project.

Step 4: In our sample application, we are hard-coding some data and showing the plot
corresponding to the data in the application. So, we require to add an XY plot to our
XML layout (main.xml). Here's what main.xml looks like with a XYPlot component in
a linear layout:

Example 5-16.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <com.androidplot.xy.XYPlot
 android:id="@+id/mySimpleXYPlot"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 title="Stats"/>
</LinearLayout>

Step 5: Get a reference to the XYplot defined in the XML.

Example 5-17.

 mySimpleXYPlot = (XYPlot) findViewById(R.id.mySimpleXYPlot);

Step 6: Initialize two arrays of numbers for which the plot will be displayed.

Example 5-18.

 // Create two arrays of y-values to plot:
 Number[] series1Numbers = {1, 8, 5, 2, 7, 4};
 Number[] series2Numbers = {4, 6, 3, 8, 2, 10};

Step 7: Turn the above arrays into XYSeries:

Example 5-19.

 XYSeries series1 = new SimpleXYSeries(
 Arrays.asList(series1Numbers), // SimpleXYSeries takes a List so turn our array into a List
 SimpleXYSeries.ArrayFormat.Y_VALS_ONLY, // Y_VALS_ONLY means use the element index as the x value
 "Series1"); // Set the display title of the series
 XYSeries series2 = new SimpleXYSeries(Arrays.asList(series2Numbers), SimpleXYSeries.ArrayFormat.Y_VALS_ONLY,
 "Series2");

Step 8: Create a formatter to use for drawing a series using LineAndPointRenderer:

206 | Chapter 5: Graphics

Example 5-20.

 LineAndPointFormatter series1Format = new LineAndPointFormatter(
 Color.rgb(0, 200, 0), // line color
 Color.rgb(0, 100, 0), // point color
 Color.rgb(150, 190, 150)); // fill color (optional)

Step 9: Add series1 and series2 to the xyplot:

Example 5-21.

 mySimpleXYPlot.addSeries(series1, series1Format);
 mySimpleXYPlot.addSeries(series2, new LineAndPointFormatter(Color.rgb(0, 0, 200), Color.rgb(0, 0, 100), Color.rgb(150, 150, 190)));

Step 10: Make it look cleaner:

Example 5-22.

 // Reduce the number of range labels
 mySimpleXYPlot.setTicksPerRangeLabel(3);

 // By default, AndroidPlot displays developer guides to aid in laying out your plot.
 // To get rid of them call disableAllMarkup():
 mySimpleXYPlot.disableAllMarkup();

 mySimpleXYPlot.getBackgroundPaint().setAlpha(0);
 mySimpleXYPlot.getGraphWidget().getBackgroundPaint().setAlpha(0);
 mySimpleXYPlot.getGraphWidget().getGridBackgroundPaint().setAlpha(0);

Step 11: Run the application! This is how it looks:

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LNTJjMDQ2MTktZjAzMi00ZjBkLWFhOTktZ
jA5OWY4YjE2MTRh&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZmI5ODEyZDgtNGNl
Ni00NTE1LWE3OWMtMjcxYTQwOTg1Y2Vh&hl=en_US

5.9 Use Inkscape to Create an Android Launcher Icon
Daniel Fowler

Problem
Every good Android App deserves a custom a launcher icon.

5.9 Use Inkscape to Create an Android Launcher Icon | 207

https://docs.google.com/leaf?id=0B_rESQKgad5LNTJjMDQ2MTktZjAzMi00ZjBkLWFhOTktZjA5OWY4YjE2MTRh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTJjMDQ2MTktZjAzMi00ZjBkLWFhOTktZjA5OWY4YjE2MTRh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTJjMDQ2MTktZjAzMi00ZjBkLWFhOTktZjA5OWY4YjE2MTRh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZmI5ODEyZDgtNGNlNi00NTE1LWE3OWMtMjcxYTQwOTg1Y2Vh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZmI5ODEyZDgtNGNlNi00NTE1LWE3OWMtMjcxYTQwOTg1Y2Vh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZmI5ODEyZDgtNGNlNi00NTE1LWE3OWMtMjcxYTQwOTg1Y2Vh&hl=en_US

Figure 5-7.

208 | Chapter 5: Graphics

Solution
Inkscape is a free and feature rich graphics program, it supports exporting to a bitmap
file; this can be used to create the different size icons needed for an App.

Discussion
A graphics program is used to design graphical resources used in an Android application
(App). Inkscape is a free multiplatform graphics program and has some very powerful
features. It can be used to generate vector graphic images to a high standard. These
images can then be exported to any required resolution. This is ideal for generating
Android launcher icons (and other graphical resources). See the Inkscape web site at
http://inkscape.org/ for more information on the program and to download the latest
version.

When a project is created in Eclipse a default icon is generated in the res/drawable
folder. This default icon is 48x48 pixels. Icons are stored in the Portable Network
Graphics (PNG) file format. Android supports different screen densities, measured in
Dots Per Inch (dpi). Screen densities are grouped into low density (120 dpi), medium
density (160 dpi), high density (240 dpi) and extra high density (320 dpi). The 48x48
pixel icon is suitable for medium density screens, for all other densities the 48x48 pixel
icon is scaled up or down as required. Ideally for best results (sharp images with no
pixelation) a project will include an icon for all the possible screen densities that an
App will encounter. To do this four drawable folders are created under the res folder,
one for each possible screen density; icon files of the correct size are placed into these
directories:

• 36x36 pixel icon in res/drawable-ldpi for low density screens

• 48x48 pixel icon in res/drawable-mdpi for medium density screens

• 72x72 pixel icon in res/drawable-hdpi for high density screens

• 96x96 pixel icon in res/drawable-xhdpi for extra high density screens

Each icon must include a border around the central image, used for on screen spacing
and minor image protrusions. The recommended border is one twelfth of the icon size.
This means that the space the actual icon image occupies is smaller than the icon pixel
size:

• 36x36 icon the image size is 30x30 pixels

• 48x48 icon the image size is 40x40 pixels

• 72x72 icon the image size is 60x60 pixels

• 96x96 icon the image size is 80x80 pixels

When designing an icon it is better to work with images that are larger than the required
size. A larger image is easier to work with in a graphics package and easily scaled down
when completed. An image that is 576x576 pixels is divisible equally by all the icon

5.9 Use Inkscape to Create an Android Launcher Icon | 209

http://inkscape.org/

sizes and is a reasonable size in which to design. For a vector based graphics package,
such as Inkscape, the image size is irrelevant; it can be scaled up and down without
losing quality. Inkscape uses the open Scalable Vector Graphics (SVG) format. Image
detail is only lost when the final bitmap images are produced from the vector image.

Those wanting to learn to design images in Inkscape can use the many tutorials avail-
able. There are built in tutorials (via the Help menu) and many online, http://inkscape
tutorials.wordpress.com/ is a good tutorial reference.

Once an image has been designed in Inkscape it can exported to a PNG file for use as
an App icon. In the following example the image that is to be converted to icons was
generate from the tutorial at http://vector.tutsplus.com/tutorials/illustration/creating-a
-coffee-cup-with-inkscape/. If the tutorial is followed this cup of coffee image is pro-
duced:

Figure 5-8.

210 | Chapter 5: Graphics

http://inkscapetutorials.wordpress.com/
http://inkscapetutorials.wordpress.com/
http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/
http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/

This can be converted to an icon for a Coffee Ordering/Coffee Break Timer/Coffee
Break Game or whatever coffee related App is currently in the pipeline. For those who
do not want to follow the tutorial the image can be obtain from http://openclipart.org,
a great source (over 33,000) of free images. Search for coffee and you will see various
coffee related images including the one here, uploaded by this recipe's author. Click on
the image, select the View SVG button and use the browsers File->Save Page As (Firefox)
or File->Save As (Internet Explorer) menu to get the cup of coffee image.

The four required icon sizes are generated from the image using the Inkscape Export
Bitmap option. The image is opened and then correctly proportioned for the export.
This can be done for any image designed or opened in Inkscape. Remember that images
for icons should not be overly detailed or have too many colors (detail is reduced during
resizing), and try to fill a square area. Android icon guidelines also suggest images that
are face on with minor drop shadows and a little top lighting, see http://developer.an
droid.com/guide/practices/ui_guidelines/icon_design_launcher.html.

Figure 5-9.

5.9 Use Inkscape to Create an Android Launcher Icon | 211

http://openclipart.org
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

With the image open resize the document to 576x576 pixels. To do this use the Document
Properties option under the File menu. In Custom size set Width and Height to 576
and check Units are set to px (for pixels). Ensure that the Show page border check box
is ticked.

Drag two vertical and two horizontal guides from the rulers (click and drag from any
part of the page ruler). Drag them inside each page border approximately 1/12 of the
width and height of the visible page border. The accurate position of the guides will be
set using the guide properties. If the rulers are not visible use the View->Show/Hide-
>Rulers menu option to display them. Double click each guide and set the following
positions accurately:

Guide x y

Top Horizontal 0 528

Bottom Horizontal 0 48

Left Vertical 48 0

Right Vertical 528 0

With the guides in place the image can be easily adjusted to fit within them. Minor
protruding into the border area is allowable if required for image balance. Use the menu
Edit->Select All or press Ctrl-A to select all the image, drag the image into position
and resize as appropriate to fit within the box outlined by the guides.

Figure 5-10.

212 | Chapter 5: Graphics

With the image created and correctly proportioned the bitmaps for an Android project
can be created. Using Eclipse open the project in which the icons are required. Select
the res folder and create four new folders (menu option File->New->Folder or context
menu New->Folder):

• res/drawable-ldpi

Figure 5-11.

5.9 Use Inkscape to Create an Android Launcher Icon | 213

• res/drawable-mdpi

• res/drawable-hdpi

• res/drawable-xhdpi

The existing drawable folder is used as fallback if an icon cannot be found or for Apps
that can run on Android 1.5.

Back in Inkscape ensure that the image is not selected (click outside the image). Use
the File-Export Bitmap menu option to bring up the Export Bitmap dialog. Select
Page, then under Bitmap Size set Width and Height to 96, the dpi setting does not need
to be changed (it will change as Width and Height are changed). Under Filename browse

Figure 5-12.

214 | Chapter 5: Graphics

to the project directory for the xhdpi icon (res/drawable-xhdpi) and enter icon.png for
the file name. Press the Export button to generate the icon.

For the other three icon resolutions set Width and Height appropriately (72 then 48 and
finally 36) and browse to the correct folder to export each icon. Finally copy the icon
from the res/drawable-mdpi folder into the drawable folder to replace the default icon.
This process will have generated the different size icons required to support different
device screens.

Figure 5-13.

5.9 Use Inkscape to Create an Android Launcher Icon | 215

If Eclipse was open when the icons are generated the open project will need to be
refreshed to see the new icons in the folders, select File->Refresh or press F5.

The Application can be tested on physical and virtual devices to ensure the icons appear
as expected.

The icon files do not need to be called icon.png, see the recipe Recipe 5.10 for infor-
mation on changing the launcher icon file name.

See Also
http://inkscape.org/

http://inkscapetutorials.wordpress.com/

http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/

http://openclipart.org

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Recipe 5.10

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET
Daniel Fowler

Problem
A good icon for an App is important. It helps set an App apart from others and is a
must for an App to appear professional.

Figure 5-14.

216 | Chapter 5: Graphics

http://inkscape.org/
http://inkscapetutorials.wordpress.com/
http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/
http://openclipart.org
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Figure 5-15.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 217

Solution
Developers sometimes struggle to produce good graphics, such as icons, fortunately a
good source of free graphics that can be adapted for icons is available.

Discussion
When an Application is close to being released consideration needs to be given to the
tasks to get it ready for the Android Market. One of those tasks is to provide a good
icon. The icon will usually be the most common graphical representation of the App
that a user encounters. It will represent the App on the Applications screen, in Manage
Applications and as a shortcut if added to the Home Screen. A good icon helps the
initial impression of the App and helps with getting it to stand out from the crowd.
Developers with access to a graphical artist, either professionally or through friends,
or are good artists themselves will have finer control on the graphics within their Ap-
plication. However, there are many who find that doing the graphics in an App is a
chore. This recipe shows how to generate a good icon quickly, though compromising
the fine control provided by a dedicated artist.

The website Open Clip Art Library at http://www.openclipart.org is a great source for
free graphics, over 33,000. The graphics provided are in vector format which make
them great for scaling to icon size. Icons are a raster format so once a suitable graphic
has been chosen it needs to be converted into the Android icon format which is Portable
Network Graphics (PNG).

Taking the Recipe 1.4 as an example App and adding an icon.

First find a suitable free graphic as a starting point. Go to http://www.openclipart.org
and use the Search box. The search results may include graphics that do not always
appear logical. This is because the search not only includes the name of the graphic,
but also tags and descriptions, and partial words; therefore graphics unrelated to the
major search term will appear. As well as contributions with misspellings or named in
a different language. However, this also means that occasionally an unexpected but
suitable graphic will be found. Page through the search results which are provided as
thumbnails with title, contributor and date of submission, and number of downloads.

Figure 5-16.

218 | Chapter 5: Graphics

http://www.openclipart.org
http://www.openclipart.org

When looking for a graphic to use as an icon there are some pointers to keep in mind:

• There is a recommended colour palette to fit in with the Android theme, this is
only a recommendation but a useful guide. Avoid color that is too extreme.

• The graphic will be scaled down dramatically, so not too much detail, the search
thumbnail itself is a good indicator.

• Clear and simple designs with smooth lines and bright, neutral colors will scale
well and look good on a device screen.

• Keep in mind Android design guidelines at http://developer.android.com/guide/prac
tices/ui_guidelines/icon_design_launcher.html, this means graphical representa-
tions that are face on, with a small drop shadow and top lighting.

• Icons are square, so look for an image that if bounded by a square it would fill most
of that square.

For the Hello World App the search term earth was used.

The graphic titled A simple globe was chosen as the basis for the icon from the second
page of search results. Click on the graphic to bring up its details. The graphic can be
saved to the local machine by clicking on it (or click on the View SVG button) and using
the browsers File menu. In Firefox select Save Page As and select its location. In In-
ternet Explorer select Save as..., or both browsers support Ctrl-S. This will save the
file as a vector file, SVG, no good as an icon. Fortunately the images's Open Clip Art
page also has an option to obtain the file as a PNG file.

Figure 5-17.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 219

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Android icons need to be provided in four different sizes. These different sizes are to
allow Android to display the best possible icon for the devices screen density. It is
recommended that an App supplies all the size icons required thus preventing poor
icons being displayed on some devices. The four icon sizes are:

• 36 by 36 pixels for low density displays (120 dpi)

• 48 by 48 pixels for medium density displays (160 dpi)

• 72 by 72 pixels for high density displays (240 dpi)

• 96 by 96 pixels for extra high density displays (320 dpi)

There is also a border to take into consideration, the border area allows for spacing and
image overrun and is recommended to be one twelfth of the icon width.

Figure 5-18.

220 | Chapter 5: Graphics

This means that the practical image size for the icon graphic is smaller than the stated
icon size.

• 30 by 30 pixels for low density

• 40 by 40 pixels for medium density

• 60 by 60 pixels for high density

• 80 by 80 pixels for extra high density

On the Open Clip Art page for the required graphic we can use the PNG button to
obtain a PNG in the four image sizes required. In the box next to the PNG button type
in the first image size required, 80 (for the extra high density icon). We cannot put in
the icon size, 96, because that would not leave any border.

Click on the PNG button and then use the browser's File menu (or Ctrl-S) to save the
generated PNG file. Hit the browsers back button to return to the image's web page.
Clear the box next to the PNG button and enter the size of the next icon graphic re-
quired, in this case 60 for the high density icon. Again click the PNG button and save
the generated file. Do the same with the values 40 and 30 to generate the other two
graphics.

A couple of problems may occur. Sometimes the conversion will still produce the pre-
vious size graphic. If this happens reload the image's Open Clip Art page (click on the
address bar and with the cursor at the end of the address hit enter, using F5 will not
clear the problem). A graphic may also fail to convert to PNG. In Mozilla a message
will be displayed stating that the graphic contained errors, in Internet Explorer a small
box with a cross in it will be displayed. If the graphic fails to convert either select another
image, or download the SVG file and use a graphics application that supports SVG.
Alternatively on the image's Open Clip Art page bring up the context menu on the

Figure 5-19.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 221

graphic itself and save it as a full size PNG (it can then be resized in a graphics appli-
cation and the transparency reset).

After using the PNG button on the selected graphic there will be four files each con-
taining the same image at four resolutions. The graphics files may not be perfectly
square, for example 39 by 40 instead of 40 by 40, but the small difference does not
matter.

The files need to be resized into the correct icon size by adding the empty border. This
is done in a graphics application, such as GIMP (http://www.gimp.org), Inkscape (http:
//www.inkscape.org) or Paint.NET (http://www.getpaint.net - Windows only).

Figure 5-20.

222 | Chapter 5: Graphics

http://www.gimp.org
http://www.inkscape.org
http://www.inkscape.org
http://www.getpaint.net

In Paint.NET open the first graphics file. First the secondary (background) color needs
to be set to transparency. This is done with the Colors dialog, using the Window menu
option select Colors (or press F8). On the Colors dialog ensure that Secondary is selected
in the drop down, then click the More button to see the advanced options. Set the
Transparency option in the bottom right of the Colors dialog to zero.

Next open the Canvas Size dialog by using the Image menu option and selecting Canvas
Size (or press Ctrl-Shift-R). Select the By absolute size radio button, ignore the
Maintain aspect ratio check box, if the graphic is square it can be checked, if not it
should be unchecked. In the Pixel size options set the correct Width and Height for
the icon for the given graphic, both 36 for the 30 by 30 graphic, both 48 for the 40 by
40, both 72 for the 60 by 60, and both 96 for the 80 by 80. Set the Anchor option to
middle. Select OK.

Save the resized image and repeat for the other three graphics to finish up with four
PNG icon files at sizes 36, 48, 72 and 96.

Figure 5-21.

Figure 5-22.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 223

The four files need to be copied into the project where the icons are to be used. In the
project directories each icon is placed into a folder under the res folder for each dpi
setting. If the project is in Eclipse then it is likely that under res there are already folder's
drawable-hdpi, drawable-ldpi and drawable-mdpi, all with the default icon.

The existing icons are replaced with the newly created ones; in the process the folder
for xhdpi is added called drawable-xhdpi. If the App supports Android version 1.5 then
a folder simply called drawable containing the 48 by 48 icon is also required. The fol-
lowing table is a summary:

Table 5-1. Icon Formatting Summary

Folder Icon Size Image Size dpi Android Density Example Screen Notes

drawable-ldpi 36x36 30x30 120 ldpi small QVGA

drawable-mdpi 48x48 40x40 160 mdpi normal HVGA default icon in absence of
anything else

drawable-hdpi 72x72 60x60 240 hdpi normal WVGA800

drawable-xhdpi 96x96 80x80 320 xhdpi custom

Figure 5-23.

224 | Chapter 5: Graphics

Figure 5-24.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 225

Folder Icon Size Image Size dpi Android Density Example Screen Notes

drawable 48x48 40x40 160 mdpi normal HVGA default icon in absence of
anything else

The icon file does not need to be called icon.png. As long as all the file names in all the
'drawable' folders are valid and the same they can be named something else. For ex-
ample the icon files could be called globe.png. If the file name is changed then the
android:icon attribute in the application element in the manifest file will also need
icon changing to globe. Open the AndroidManifest.xml file. Locate the application
element and change android:icon="@drawable/icon" to android:icon="@drawable/
globe".

Remember to give thanks for free stuff, in this case I thank Open Clip Art Library
contributor jhnri4.

Figure 5-25.

226 | Chapter 5: Graphics

See Also
Recipe 1.4

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

http://www.openclipart.org

http://www.getpaint.net

http://www.inkscape.org

http://www.gimp.org

Figure 5-26.

5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET | 227

http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://www.openclipart.org
http://www.getpaint.net
http://www.inkscape.org
http://www.gimp.org

Figure 5-27.

228 | Chapter 5: Graphics

5.11 Android HTML5 RGraph Charting
Wagied Davids

Problem
Need to visualize data in a chart and ability to interaction with the plot/chart via Java-
script.

Solution
Example 5-23.

<html>
<head>
<title>RGraph: HTML5 canvas graph library - pie chart</title>

Figure 5-28.

5.11 Android HTML5 RGraph Charting | 229

 <script src="RGraph/libraries/RGraph.common.core.js" ></script>
 <script src="RGraph/libraries/RGraph.common.annotate.js" ></script>
 <script src="RGraph/libraries/RGraph.common.context.js" ></script>
 <script src="RGraph/libraries/RGraph.common.tooltips.js" ></script>
 <script src="RGraph/libraries/RGraph.common.zoom.js" ></script>
 <script src="RGraph/libraries/RGraph.common.resizing.js" ></script>
 <script src="RGraph/libraries/RGraph.pie.js" ></script>

 <script>
 window.onload = function ()
 {
 /**
 * These are not angles - these are values. The appropriate angles are calculated
 */
 var pie1 = new RGraph.Pie('pie1', [41,37,16,3,3]); // Create the pie object
 pie1.Set('chart.labels', ['MSIE 7 (41%)', 'MSIE 6 (37%)', 'Firefox (16%)', 'Safari (3%)', 'Other (3%)']);
 pie1.Set('chart.gutter', 30);
 pie1.Set('chart.title', "Browsers (tooltips, context, zoom)");
 pie1.Set('chart.shadow', false);
 pie1.Set('chart.tooltips.effect', 'contract');
 pie1.Set('chart.tooltips', [
 'Internet Explorer 7 (41%)',
 'Internet Explorer 6 (37%)',
 'Mozilla Firefox (16%)',
 'Apple Safari (3%)',
 'Other (3%)'
]
);
 pie1.Set('chart.highlight.style', '3d'); // Defaults to 3d anyway; can be 2d or 3d

 if (!RGraph.isIE8()) {
 pie1.Set('chart.zoom.hdir', 'center');
 pie1.Set('chart.zoom.vdir', 'up');
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.labels.sticks.color', '#aaa');
 pie1.Set('chart.contextmenu', [['Zoom in', RGraph.Zoom]]);
 }

 pie1.Set('chart.linewidth', 5);
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.strokestyle', 'white');
 pie1.Draw();

 var pie2 = new RGraph.Pie('pie2', [2,29,45,17,7]); // Create the pie object
 pie2.Set('chart.gutter', 45);
 pie2.Set('chart.title', "Some data (context, annotatable)");
 pie2.Set('chart.linewidth', 1);
 pie2.Set('chart.strokestyle', '#333');
 pie2.Set('chart.shadow', true);
 pie2.Set('chart.shadow.blur', 3);
 pie2.Set('chart.shadow.offsetx', 3);
 pie2.Set('chart.shadow.offsety', 3);
 pie2.Set('chart.shadow.color', 'rgba(0,0,0,0.5)');
 pie2.Set('chart.colors', ['red', 'pink', '#6f6', 'blue', 'yellow']);
 pie2.Set('chart.contextmenu', [['Clear', function () {RGraph.Clear(pie2.canvas); pie2.Draw();}]]);

230 | Chapter 5: Graphics

 pie2.Set('chart.key', ['John (2%)', 'Richard (29%)', 'Fred (45%)', 'Brian (17%)', 'Peter (7%)']);
 pie2.Set('chart.key.background', 'white');
 pie2.Set('chart.key.shadow', true);
 pie2.Set('chart.annotatable', true);
 pie2.Set('chart.align', 'left');
 pie2.Draw();
 }
 </script>
</head>
<body>

 <div style="text-align: center">
 <canvas id="pie1" width="420" height="300">[No canvas support]</canvas>
 <canvas id="pie2" width="440" height="300">[No canvas support]</canvas>
 </div>

</body>
</html>

File: main.xml

Example 5-24.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFFFF">

 <WebView
 android:id="@+id/webview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 </WebView>
</LinearLayout>

File: Main.java

Example 5-25.

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class Main extends Activity
 {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {

5.11 Android HTML5 RGraph Charting | 231

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Obtain reference to the WebView holder
 WebView webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings webSettings = webview.getSettings();

 // Enable Javascript for user interaction clicks
 webSettings.setJavaScriptEnabled(true);

 // Display Zoom Controles
 webSettings.setBuiltInZoomControls(true);
 webview.requestFocusFromTouch();

 // Set the client
 webview.setWebViewClient(new WebViewClient());
 webview.setWebChromeClient(new WebChromeClient());

 // Load the URL
 webview.loadUrl("file:///android_asset/rgraphview.html");
 }

 }

Discussion
As an alternative to creating Android charts in pure Java, an interesting possibility exists
for creating charts using the handy old WebView and HTML/Javascript approach.

Note: RGraph uses the HTML5 Canvas component, which is not accommodated in
the webkit packaged with Android 1.5. RGraph works nicely and tested with Android
2.1 and 2.2.

Steps involved:

1. Create an assets directory for HTML files; Android internally maps it to file:///
android_asset/ (note triple slash and singular spelling of "asset")

2. Copy rgraphview.html into it: res/assets/rgraphview.html

3. Create a javascript directory: res/assets/RGraph

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b3f2ffc/n/TestAndroidRGraph.zip

5.12 Simple Raster Animation
Daniel Fowler

232 | Chapter 5: Graphics

http://www.filefactory.com/file/b3f2ffc/n/TestAndroidRGraph.zip
http://www.filefactory.com/file/b3f2ffc/n/TestAndroidRGraph.zip

Figure 5-29.

5.12 Simple Raster Animation | 233

Problem
There is a need to add an animated image to a screen.

Solution
Android has good support for user interface animation; it is easy to sequence images
using the AnimationDrawable class.

Discussion
To achieve the animation first images to be sequenced are generated using a graphics
program. Each image represents one frame of the animation, they will usually be the
same size with changes between each frame as required.

This animation recipe will sequence some traffic light images. The images can be gen-
erated using the open source vector graphics program Inkscape (see http://ink-
scape.org). A copy of the image used is available from the Open Clip Art Library (http://
www.openclipart.org/), searching for Traffic Lights Turned Off, select the image, click
on the View SVG button and save the file from your browser. Open the file in Inkscape.

Four images will make up the animation, they will show the sequence of traffic lights
as used in the United Kingdom, red, red and yellow, green, yellow and back to red. The
SVG image has all the lights available, they are just hidden behind a translucent circle.
To generate the first image select the circle covering the red light and delete it. Then
from the Edit menu use Select All to highlight the whole image. Using the File menu
select Export Bitmap. In the Export Bitmap dialog under Bitmap size enter 150 in
the Height box, choose a directory and file name for the file to be generated, e.g.
red.png. Click the Export button to export the bitmap. Delete the circle covering the
yellow light, select all again and export as before to a file, e.g. red_yellow.png. Use the
Edit menu and choose Undo (twice) to cover the red light and yellow light and then
delete the circle covering the green light. Export to green.png. Again use undo to cover
the green light and delete the circle covering the yellow light. Export the bitmap to
yellow.png.

Four files are now ready for the animation.

Start an Android project. Copy the four generated files into the res/drawable directory.
An animation-list needs to be defined in the same directory. Create a new file in res/
drawable called uktrafficlights.xml. In this new file add the following.

Example 5-26.

<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/red" android:duration="2000" />
 <item android:drawable="@drawable/red_yellow" android:duration="2000" />

234 | Chapter 5: Graphics

 <item android:drawable="@drawable/green" android:duration="2000" />
 <item android:drawable="@drawable/yellow" android:duration="2000" />
</animation-list>

This lists the images to be animated in the order of the animation and how long each
one needs to be displayed (in milliseconds). If the animation needs to stop after running
through the images then the attribute android:oneshot is set to true.

In the layout file for the program a ImageView is added whose source is given as
@drawable/uktrafficlights (i.e. pointing to the created file).

Example 5-27.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

Figure 5-30.

Figure 5-31.

5.12 Simple Raster Animation | 235

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:id="@+id/imageView1"
 android:src="@drawable/uktrafficlights"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"/>
</LinearLayout>

In the Activity class an AnimationDrawable (the Android class that performs the anima-
tion) is declared. In onCreate it is assigned to the drawable that the ImageView uses.
Finally the animation is started by calling the AnimationDrawable start() method
(there is a stop() method available to end the animation if required). The start method
is called in onWindowFocusChanged to ensure everything has loaded before the animation
starts (if could easily have been started with a Button or other type of input).

Example 5-28.

public class main extends Activity {
 AnimationDrawable lightsAnimation;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView lights = (ImageView) findViewById(R.id.imageView1);
 lightsAnimation=(AnimationDrawable) lights.getDrawable();
 }
 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 lightsAnimation.start();
 }
}

Image animations can be useful to add interest to screens and can be used in games or
cartoons.

See Also
http://inkscape.org

http://www.openclipart.org

236 | Chapter 5: Graphics

Figure 5-32.

5.12 Simple Raster Animation | 237

CHAPTER 6

Graphical User Interface

6.1 Introduction: GUI
Ian Darwin

Discussion
When Android was being invented, its designers faced many choices whose outcome
would determine the success or failure of their project. Once they had rejected all the
other smartphone operating systems, both closed and open source, and decided to
build their own atop the Linux kernel, they were faced with somewhat of a blank canvas.
One important choice was which user interface technology to deploy: JavaME, Swing,
SWT, or none of the above.

JavaME is the Java Micro Edition, Sun/Oracle's official standard API for cell phones
and other small devices. JavaME is actually a pretty big success story: tens or hundreds
of millions of cell phones have a Java Micro Edition runtime inside. And every Black-
berry made since around 2000, and all Blackberry applications in the world, are based
on JavaME. But the JavaME GUI was regarded as too limiting, having been designed
for the days when cell phones had really tiny screens.

Swing is the Java Standard Edition ("Desktop Java", JavaSE, a.k.a. JDK or JRE) GUI. It
is based atop the earlier AWT. It can make some beautiful GUI music in the right
hands, but is just too large and uses too much overhead for Android.

SWT is the GUI layer developed for use in the Eclipse IDE itself and in Eclipse Rich
Clients. It is an abstraction layer, and depends on the underlying operating-specific
toolkit (e.g., Win32 in the Microsoft arena, GTK under Unix/Linux, etc.).

The final option, and the one ultimately chosen, was to go it alone. The Android de-
signers thus built their own Graphical User Interface toolkit designed specifically for
smartphones. But they took many good ideas from the other toolkits, and learned from
the mistakes that had been made along the way.

239

http://java.sun.com/javame/index.jsp
http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html
http://filthyrichclients.org/
http://filthyrichclients.org/
http://www.eclipse.org/

To learn any new GUI framework is, necessarily, a lot of work. One set of guidelines
that can help is the Android Patterns site, which is not about coding but about showing
designers how the Android visual experience is supposed to work, Illustrated, crowd-
sourced, and recommended!

See Also
Designing Visual Interfaces: Communication Oriented Techniques by Muller and Sano
is a thorough discussion of the design issues. The examples are from mostly desktop
applications (Mac, Unix, Windows) but the principles spelt out here will be useful in
dealing with human-computer interaction issues.

6.2 User Interface Guidelines (placeholder)
Ian Darwin

Problem
Lots of developers, even good ones, are very bad at user interface design.

Solution
This needs a real recipe; this is just a placeholder to save a few notes, which can
be copied into the final recipe (or not...) and then I will delete this one.

Discussion
UI Guidelines have been around almost since Xerox PARC invented graphical user
interfaces in the 1980's and gave them to Microsoft and Apple. A given set of guidelines
must be appropriate to the platform. General guidelines for mobile devices are available
from several sources. Android.com publishes advice too.

...

For some thoughtful UI pattern notes, see http://android-developers.blogspot.com/2010/
05/twitter-for-android-closer-look-at.html.

See Also
There is an article from Research in Motion that is somewhat specific to the Blackberry
platform but may be useful: see http://na.blackberry.com/eng/developers/resources/
Newsletter/2010/Featured_Story_Jan_2010.jsp?html

6.3 SlidingDrawer Overlapping other UI components
Wagied Davids

240 | Chapter 6: Graphical User Interface

http://androidpatterns.com
http://www.amazon.com/dp/0133033899
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html

Problem
You want the SlidingDrawer to overlap other UI components eg. ListView

Solution
File: main.xml

Example 6-1.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <ListView
 android:id="@+id/list_journal"
 android:layout_width="fill_parent"
 android:layout_height="365dip" />

 <SlidingDrawer
 android:id="@+id/slidingDrawer"
 android:handle="@+id/drawerHandle"
 android:content="@+id/contentLayout"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <ImageView
 android:id="@+id/drawerHandle"
 android:src="@drawable/help_tab_selector"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </ImageView>

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/contentLayout"
 android:gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="@drawable/bg">
 <ImageView
 android:src="@drawable/icon"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center">
 </ImageView>
 </LinearLayout>
 </SlidingDrawer>
</LinearLayout>

File: list_item.xml

6.3 SlidingDrawer Overlapping other UI components | 241

Example 6-2.

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item"
 android:gravity="center"
 android:textColor="@color/white"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
</TextView>

File: Main.java

Example 6-3.

import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.SlidingDrawer;
import android.widget.SlidingDrawer.OnDrawerCloseListener;
import android.widget.SlidingDrawer.OnDrawerOpenListener;

public class Main extends Activity implements OnDrawerOpenListener,
 OnDrawerCloseListener {

 private ListView listView;
 private SlidingDrawer slidingDrawer;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the View Layer
 setContentView(R.layout.main);

 List<String> data= getData();

 // Get reference to ListView
 listView = (ListView) this.findViewById(R.id.list_journal);
 ArrayAdapter<String> arrayAdapter = new ArrayAdapter<String>(this, R.layout.list_item, data);
 listView.setAdapter(arrayAdapter);

 // Get reference to SlidingDrawer
 slidingDrawer = (SlidingDrawer) this.findViewById(R.id.slidingDrawer);
 slidingDrawer.setOnDrawerOpenListener(this);
 slidingDrawer.setOnDrawerCloseListener(this);
 }

 /**

242 | Chapter 6: Graphical User Interface

 * Get some data
 * @return
 */
 private List<String> getData()
 {
 List<String> data= new ArrayList<String>();
 for(int i= 0; i < 20; i++)
 {
 data.add(String.valueOf(i));
 }
 return data;
 }

 @Override
 public void onDrawerOpened() {
 listView.setVisibility(ListView.GONE);
 }

 @Override
 public void onDrawerClosed() {
 listView.setVisibility(ListView.VISIBLE);
 }

}

Discussion
The default behaviour of the SlidingDrawer component is to maximize to a height of
the position of the last component on the screen. But if the last component is at the
very bottom, then the SlidingDrawer will not be apparently visible!

The Solution: Manipulating Androids View layer to hide/reveal components! listview
- a reference to the ListView component declared in your XML-layout file. sliding-
Drawer - a reference to the SlidingDrawer component in our XML-layout file.

// Get reference to SlidingDrawer slidingDrawer = (SlidingDrawer) this.findView-
ById(R.id.slidingDrawer); slidingDrawer.setOnDrawerOpenListener(this); sliding-
Drawer.setOnDrawerCloseListener(this);

@Override public void onDrawerOpened() { listView.setVisibility(List-
View.GONE); }

@Override public void onDrawerClosed() { listView.setVisibility(ListView.VISI-
BLE); }

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b49a47h/n/TestSlidingDrawerOverList.zip

6.3 SlidingDrawer Overlapping other UI components | 243

http://www.filefactory.com/file/b49a47h/n/TestSlidingDrawerOverList.zip
http://www.filefactory.com/file/b49a47h/n/TestSlidingDrawerOverList.zip

6.4 Android 3.0 Photo Gallery
Wagied Davids

Problem
Display a photo gallery

Solution
File: main.xml

Example 6-4.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 >

 <Gallery
 android:id="@+id/gallery1"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:spacing="10dip"
 >
 </Gallery>
</LinearLayout>

File: Main.java

Example 6-5.

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.Gallery;
import android.widget.Toast;

public class Main extends Activity implements OnItemClickListener
 {
 private static final String tag = "Main";
 private Gallery _gallery;
 private ImageAdapter _imageAdapter;

 /** Called when the activity is first created. */

244 | Chapter 6: Graphical User Interface

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setTitle("Android Honeycomb Photo Gallery Example");

 _gallery = (Gallery) this.findViewById(R.id.gallery1);
 _imageAdapter = new ImageAdapter(this);
 _gallery.setAdapter(_imageAdapter);
 _gallery.setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> arg0, View view, int position, long duration)
 {
 int resourcId = (Integer) _imageAdapter.getItem(position);
 Drawable drawable = getResources().getDrawable(resourcId);
 Bitmap bitmap = BitmapFactory.decodeResource(getResources(), resourcId);

 Toast.makeText(this, "Selected Image: " + getResources().getText(resourcId) + "\nHeight: " + bitmap.getHeight() + "\nWidth: " + bitmap.getWidth(), Toast.LENGTH_SHORT).show();
 }
 }

File: ImageAdapter.java

Example 6-6.

public class ImageAdapter extends BaseAdapter
 {
 private Context _context = null;
 private final int[] imageIds = { R.drawable.formula, R.drawable.hollywood, R.drawable.mode1, R.drawable.mode2, R.drawable.mother1, R.drawable.mother2, R.drawable.nights, R.drawable.ontwerpje1,R.drawable.ontwerpje2, R.drawable.relation1,
 R.drawable.relation2, R.drawable.renaissance, R.drawable.renaissance_zoom };
 public ImageAdapter(Context context)
 {
 this._context = context;

 }

 @Override
 public int getCount()
 {
 return imageIds.length;
 }

 @Override
 public Object getItem(int index)
 {
 return imageIds[index];
 }

 @Override
 public long getItemId(int index)
 {
 return index;

6.4 Android 3.0 Photo Gallery | 245

 }

 @Override
 public View getView(int postion, View view, ViewGroup group)
 {
 ImageView imageView = new ImageView(_context);
 imageView.setImageResource(imageIds[postion]);
 imageView.setScaleType(ScaleType.FIT_XY);
 imageView.setLayoutParams(new Gallery.LayoutParams(400, 400));
 return imageView;
 }
 }

Discussion
1. Download the preview release of Android 3.0 using either the SDK download man-
ager (preferred) or from within the Eclipse IDE using Android SDK and AVD manager.
2. Create an AVD to run the emulator 3. Create an Android project (Important: set the
Min. SDK Version to "Honeycomb") and Click Finish! 4. Create a main entry point java
file eg. Main.java 5. Create an ImageAdapter.java file 6. Create an XML layout file:
main.xml 7. Package and Run the Android app.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b58cf27/n/TestHoneycombGallery.zip

6.5 Building a UI using Fragments API of Android 3.0 in Android
2.2
Saketkumar Srivastav

Problem
You want to add Fragments to the UI in Android 2.0+ versions, though they were
originally only available in 3.0+. Fragments, as the name suggests, are nothing but the
small chunks of UI which constitutes a single activity. It can be treated as individual
portlets of a portal page. It is very similar to activity in terms of its looks, lifecycle, etc
but it is also different than Activity in the sense that 'A fragment should always reside
in an Activity'; fragments cannot exist independently as Activities.

Solution
The Fragments API was not supported by previous versions to Android 3.0. When
Google released the compatibility package, it was possible to build applications using
this Fragments API.

246 | Chapter 6: Graphical User Interface

http://www.filefactory.com/file/b58cf27/n/TestHoneycombGallery.zip
http://www.filefactory.com/file/b58cf27/n/TestHoneycombGallery.zip

Discussion
To create a Fragment, we need to extend the class with Fragment. There are different
kinds of Fragments available such as: ListFragment (ListActivity) DialogFragment
(Dialog Interface) PreferenceFragment (PreferenceActivity)

Lets start with the FragmentTestActivity class. In onCreate() method we set the list
adapter to hold a string array of magazine titles of EFY group. We also set the listener
on the list items so that we can perform some action when an item from the list is
clicked.

In the onItemClickListener() method we perform the main task of managing the Frag-
ment. We obtain the instance of the fragment passing the position of the clicked item.
Now we need to replace the fragment element that we have in main.xml with the new
fragment TestFragment which has a meaning full UI associated with it. To accompolish
this we get the instance of FragmentTransaction class, this API allows us to add, remove
and replace a fragment programmatically. We replace the R.id.the_frag which corress-
ponds to the <fragment> element of main.xml with the newly created fragment 'f' set-
Transition() method signifies the kind of transition that happens with the fragment.
addToBackStack() method adds the fragment transaction to back of the fragment stack
so that when the back button is pressed on the device, you go to the last transaction of
the fragment and not exiting the application. After all the transaction is being made we
commit the transaction.

Now let us setup the fragment class, the TestFragment class. We initialize the position
of the clicked item from the list to a variable magznumber. As we discussed earlier if a
fragment is being associated with a UI then onCreateView() method is used to inflate
the view to the fragment. Here, we create a linear layout for the fragment and then load
it with the appropriate image of the magazine in an ImageView and this ImageView is
added to the linear layout.

FragmentTestActivity.java

Example 6-7.

public class FragmentTestActivity extends FragmentActivity implements OnItemClickListener {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ListView l = (ListView) findViewById(R.id.number_list);
 ArrayAdapter<String> magzTitles = new ArrayAdapter<String>(getApplicationContext(),
 android.R.layout.simple_list_item_1, new String[]{"Electronics For You",
 "Linux For You",
 "Facts For you"});
 /* ArrayAdapter<String> magzTitles = new ArrayAdapter<String>(getApplicationContext(),
 android.R.layout.simple_list_item_1, R.array.magz_titles);*/

6.5 Building a UI using Fragments API of Android 3.0 in Android 2.2 | 247

 l.setAdapter(magzTitles);
 l.setOnItemClickListener(this);
 }

 /**
 * Called when a number gets clicked
 */
 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 Fragment f = new TestFragment(position+1);

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();
 ft.replace(R.id.the_frag, f);
 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 ft.addToBackStack(null);
 ft.commit();
 }
}

TestFragment.java

Example 6-8.

public class TestFragment extends Fragment {

 private int magznumber;

 public TestFragment() {

 }

 /**
 * Constructor for being created explicitly
 */
 public TestFragment(int position) {
 this.magznumber = position;
 }

 /**
 * If we are being created with saved state, restore our state
 */
 @Override
 public void onCreate(Bundle saved) {
 super.onCreate(saved);
 if (null != saved) {
 magznumber = saved.getInt("magznumber");
 }
 }

 /**
 * Save the number of Androids to be displayed
 */
 @Override
 public void onSaveInstanceState(Bundle toSave) {
 toSave.putInt("magznumber", magznumber);

248 | Chapter 6: Graphical User Interface

 }

 /**
 * Make a grid to view the magazines
 */
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle saved) {

 Context c = getActivity().getApplicationContext();

 LinearLayout l = new LinearLayout(c);
 LayoutParams params = new LayoutParams(LayoutParams.WRAP_CONTENT, LayoutParams.MATCH_PARENT, 0);

 l.setLayoutParams(params);

 ImageView i = new ImageView(c);

 switch(magznumber){
 case 1:
 i.setImageResource(R.drawable.efymag);
 break;
 case 2:
 i.setImageResource(R.drawable.lfymag);
 break;
 case 3:
 i.setImageResource(R.drawable.ffymag);
 break;
 }

 l.addView(i);

 return l;
 }
}

See Also
http://developer.android.com/guide/topics/fundamentals/fragments.html

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/SaketSrivastav/AndroidFragmentDemo

Binary Download URL
The executable code for this example may be downloaded from this URL: https://sites
.google.com/site/iamsaketsrivastav/publications/FragmentTest.apk?attredirects=0&d=1

6.5 Building a UI using Fragments API of Android 3.0 in Android 2.2 | 249

https://github.com/SaketSrivastav/AndroidFragmentDemo
https://github.com/SaketSrivastav/AndroidFragmentDemo
https://sites.google.com/site/iamsaketsrivastav/publications/FragmentTest.apk?attredirects=0&d=1
https://sites.google.com/site/iamsaketsrivastav/publications/FragmentTest.apk?attredirects=0&d=1

6.6 Haptic Feedback
Adrian Cowham

Problem
Building user confidence that their actions had an effect is a requirement for any app
on any platform. The canonical example is displaying a progress bar to let users know
their action took effect and it's being processed. For touch interfaces this technique still
applies, but the advantage of a touch interface is that developers have the opportunity
to provide physical feedback, users are capable of actually feeling the device react to
their actions.

Figure 6-1.

250 | Chapter 6: Graphical User Interface

Solution
I've played with many apps on Android phones and tablets, and the thing I appreciate
most is knowing that touching the screen had an effect. I like to know immediately that
the app recognized and is reacting to my touch. This reaction comes in three forms,
visual, audio, or physical. This recipe discusses how to increase use confidence in your
app by providing instant physical feedback through the use of Android's haptic con-
trols.

Discussion
Android has some stock haptic controls, but if these don't satisfy your needs you can
gain control of the device's vibrator for custom feedback.

Custom control of the device's vibrator requires permission, this is something
you'll have to explicitly list in your AndroidManifest.xml (example below). If you're
paranoid about asking for permission or if you already have a long list of permissions,
you may want to use the stock Android haptic feedback options.

Please note, the Motorola Xoom doesn't have a vibrator, therefore the examples below
will compile and run, but you will not receive haptic feedback.

I'll start by showing the more complicated example first, custom haptic feedback.

Custom haptic feedback using the device's vibrator

1.) First Step, request the permission. Add the following line to you AndroidMani-
fest.xml.

Example 6-9.

<uses-permission android:name="android.permission.VIBRATE" />

2.) Now define a listener to respond to touch events. It's not shown here but the Cus-
tomHapticListener class is actually a private non-static inner class of my Activity. This
is because it needs access to the Context.getSystemService(...) method.

Example 6-10.

private class CustomHapticListener implements OnTouchListener {

 // Duration in milliseconds to vibrate
 private final int durationMs;

 public CustomHapticListener(int ms) {
 durationMs = ms;
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN){
 Vibrator vibe = (Vibrator) getSystemService(VIBRATOR_SERVICE);

6.6 Haptic Feedback | 251

 vibe.vibrate(durationMs);
 }
 return true;
 }
}

Lines 13 and 14 are the important ones. Line 13 gets a reference to the Vibrator service
and line 14 vibrates the device. If you have requested the vibrate permission, line 14
will throw an exception.

3.) Lastly, register the listener. In your Activity's onCreate(...) method. You'll need to
get a reference to the GUI element you want to attach haptic feedback to and then
register the OnTouchListener we defined above.

Example 6-11.

@Override
public void onCreate(Bundle savedInstance) {
 Button customBtn = (Button) findViewById(R.id.btn_custom);
 customBtn.setOnTouchListener(new CustomHapticListener(100));
}

That's it you're now in control of the haptic feedback, now onto using stock Android
haptic feedback.

Stock Haptic Feedback Events

First things first: to use stock Android haptic feedback events you must enable this on
View-by-View basis. That is, you must explicitly enable haptic feedback for each View.
Enabling haptic feedback can be done declaratively in your layout file or programmat-
ically in Java. To enable haptic feedback in your layout, simply add the android:hap-
ticFeedbackEnabled="true" attribute to your View(s). Here's an abbreviated exam-
ple:

Example 6-12.

<button android:hapticFeedbackEnabled="true">
</button>

Here's how you do the same thing in code:

Example 6-13.

Button keyboardTapBtn = (Button) findViewById(btnId);
keyboardTapBtn.setHapticFeedbackEnabled(true);

Now that haptic feedback has been enabled, the next step is to register an OnTou-
chListener and then perform the actual feedback. Below is an example of registering
an OnTouchListener and performing haptic feedback when a user touches the View.

252 | Chapter 6: Graphical User Interface

Example 6-14.

// Initialize some buttons with the stock Android haptic feedback values
private void initializeButtons() {
 // intialize the buttons with the standard Haptic feedback options
 initializeButton(R.id.btn_keyboardTap, HapticFeedbackConstants.KEYBOARD_TAP);
 initializeButton(R.id.btn_longPress, HapticFeedbackConstants.LONG_PRESS);
 initializeButton(R.id.btn_virtualKey, HapticFeedbackConstants.VIRTUAL_KEY);
}

// helper method to initialize single buttons and register an OnTouchListener
// to perform the haptic feedback
private void initializeButton(int btnId, int hapticId) {
 Button btn = (Button) findViewById(btnId);
 btn.setOnTouchListener(new HapticTouchListener(hapticId));
}

// Class to handle touch events and respond with haptic feedback
private class HapticTouchListener implements OnTouchListener {

 private final int feedbackType;

 public HapticTouchListener(int type) { feedbackType = type; }

 public int feedbackType() { return feedbackType; }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // only perform feedback when the user touches the view, as opposed
 // to lifting a finger off the view
 if(event.getAction() == MotionEvent.ACTION_DOWN){
 // perform the feedback
 v.performHapticFeedback(feedbackType());
 }
 return true;
 }
}

You'll notice on lines 3 - 5 I'm initializing 3 different buttons with three different haptic
feedback constants. These are Android's stock values, 2 of the 3 seem to provide exactly
the same feedback. The example code above is part of a test app I wrote to demonstrate
haptic feedback and I could not tell the difference between HapticFeedbackConst
ants.LONG_PRESS and HapticFeedbackConstants.KeyboardTap. Also, HapticFeedback
Constants.VIRTUAL_KEY do not appear to provide any feedback when tested.

Line 31 is where the haptic feedback is performed. All in all, providing haptic feedback
is pretty simple, if you want control of the device's vibrator make sure you request
permission in your AndroidManifest.xml. If you choose to use the stock Android haptic
feedback options, make sure you enable haptic feedback for your Views either in the
layout or programmatically.

6.6 Haptic Feedback | 253

See Also
http://mytensions.blogspot.com/2011/03/androids-haptic-feedback.html

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0BwH86cQEzwiZZjZiMThmM2EtZDk3Zi00NTViLTk0NjYtN
DU2YzI5MjVmMzYw&hl=en&authkey=CJu58JcL

6.7 Handling Configuration Changes by Decoupling View from
Model
Alex Leffelman

Problem
When your device's configuration changes (most frequently due to an orientation
change), your Activity is destroyed and recreated, making state information difficult to
maintain.

Solution
Decouple your user interface from your data model so that the destruction of your
Activity doesn't affect your state data.

Discussion
It's a situation that every Android developer runs into with their very first application:
"My application works great, but when I change my phone's orientation everything
resets!"

By design, when a device's configuration (read: orientation) changes, the Android UI
Framework destroys the current Activity and recreates it for the new configuration.
This enables the designer to optimize the layout for different screen orientations and
sizes. However, this causes a problem for the developer who wishes to maintain the
state of the Activity as it was before the orientation change destroyed the screen. At-
tempting to solve this problem can lead to many complicated solutions, some more
graceful than others. But if we take a step back and design our application wisely, we
can write cleaner, more robust code that makes life easier for everyone.

A Graphical User Interface (GUI) is exactly what its name describes. It is a graphical
representation of an underlying data model that allows the user to interface with and
manipulate the data. It is NOT the data model itself. Let's talk our way through an
example to illustrate why that is an important point to make.

254 | Chapter 6: Graphical User Interface

https://docs.google.com/leaf?id=0BwH86cQEzwiZZjZiMThmM2EtZDk3Zi00NTViLTk0NjYtNDU2YzI5MjVmMzYw&hl=en&authkey=CJu58JcL
https://docs.google.com/leaf?id=0BwH86cQEzwiZZjZiMThmM2EtZDk3Zi00NTViLTk0NjYtNDU2YzI5MjVmMzYw&hl=en&authkey=CJu58JcL
https://docs.google.com/leaf?id=0BwH86cQEzwiZZjZiMThmM2EtZDk3Zi00NTViLTk0NjYtNDU2YzI5MjVmMzYw&hl=en&authkey=CJu58JcL

Consider a Tic-Tac-Toe application. A simple main Activity for this would most likely
include at bare minimum a GridView (with appropriate Adapter) to display the board
and a TextView to tell the user whose turn it is. When the user clicks a square in the
grid, an appropriate X or O is placed in that grid cell. As a new Android developer, we
find it logical to also include a 2-dimensional array containing a representation of the
board to store its data so that we can determine if the game is over, and if so, who won.

Example 6-15.

public class TicTacToeActivity extends Activity {

 private TicTacToeState[][] mBoardState;

 private GridView mBoard;
 private TextView mTurnText;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 setContentView(R.layout.main);

 mBoardState = new TicTacToeState[3][3];

 mBoard = (GridView)findViewById(R.id.board);
 mTurnText = (TextView)findViewById(R.id.turn_text);

 // ... Set up Adapter, OnClickListeners, etc, for mBoard.
 }
}

This is easy enough to imagine and implement, and everything works great. Except that
when you turn your phone sideways in the middle of an intense round of Tic-Tac-Toe,
you have a fresh board staring you in the face and your inevitable victory is postponed.
As described earlier, the UI Framework just destroyed your Activity and recreated it,
calling onCreate() and resetting the board data.

While reading the above code, you might have said to yourself, "Hey, that 'Bundle
savedInstanceState' looks promising!" And you'd be right. For this painfully, almost
criminally simple example, you could stick your board data into a Bundle and use it to
reload your screen. There's even a pair of methods, onRetainNonConfigurationIn
stance() and getLastNonConfigurationInstance(), that let you pass any Object you
want from your old, destroyed Activity, to your newly created one. For this example
you could just pass your mBoardState array to your new Activity and you'd be all set.
But we're going to write big, successful, amazing apps any day now, and that just doesn't
scale well with complicated interfaces. We can do better!

This is why separating your GUI from your data model is so handy. Your GUI can be
destroyed, recreated, and changed, but the underlying data can survive unharmed
through as many UI changes as you can throw at it. Let's separate our game state out
into a separate data class.

6.7 Handling Configuration Changes by Decoupling View from Model | 255

Example 6-16.

public class TicTacToeGame {

 private TicTacToeState[][] mBoardState;

 public TicTacToeGame() {
 mBoardState = new TicTactoeState[3][3];
 // ... Initialize
 }

 public TicTacToeState getCellState(int row, int col) {
 return mBoardState[row][col];
 }
 public void setCellState(int row, int col, TicTacToeState state) {
 mBoardState[row][col] = state;
 }

 // ... Other utility methods to determine whose turn it is, if the game is over, etc.
}

This will not only help us maintain our application state, it's generally just good Object
Oriented Design.

Now that we have our data safely outside of the volatile Activity, how do we access it
to build our interface? There are two common approaches: 1) Declare all variables in
TicTacToeGame as static, and access them through static methods. 2) Design TicTac
ToeGame as a Singleton, allowing access to one global instance to be used throughout
our application.

I prefer the second option purely from a design preference perspective. We can turn
TicTacToeGame into a Singleton by making the constructor private and adding the fol-
lowing lines to the top of the class:

Example 6-17.

private static TicTacToeGame instance = new TicTacToeGame();
public static TicTacToeGame getInstance() {
 return instance;
};

Now all we have to do is obtain the game data, and set our UI elements to appropriately
display the data. It's most useful to wrap this in its own function - refreshUI(), perhaps
- so that it can be used whenever your Activity makes a change to the data. For example,
when a user clicks a cell of the board, there need only be two lines of code in the listener:
one call to modify the data model (via our TicTacToeGame singleton), and one call to
refresh the UI.

It may be obvious, but it is worth mentioning that your data classes survive only as long
as your application's process is running. If it is killed by the user or the system, naturally
the data is lost. That situation necessitates more persistent storage through the file
system or databases and is outside the scope of this recipe.

256 | Chapter 6: Graphical User Interface

This approach very effectively decouples your visual representation of the data from
the data itself, and makes orientation changes trivial. Simply calling refreshUI() in your
onCreate(Bundle) method is enough to ensure that whenever your Activity is destroyed
and recreated, it can access the data model and display itself correctly. And as an added
bonus, you're now practicing better Object Oriented Design and will see your code
base become cleaner, more scalable, and easier to maintain.

6.8 Let Them See Stars: Using RatingBar
Ian Darwin

Problem
You want the user to choose from a number of identical GUI elements in a group to
indicate a value such as a "rating" or "evaluation"

Solution
Use the RatingBar widget; it lets you specify the number of stars to appear, the default
rating, be notified when the user changes the value, and retrieve the rating.

Discussion
RatingBar provides the newly-familiar "Rating" user interface experience, where a user
is asked to rank or rate something by a number of stars (the RatingBar doesn't display
the thing to be rated; that's up to the rest of your app). RatingBar is a subclass of
ProgressBar, extended to display a whole number of icons ("the star") in the bar. Its
primary properties are:

• numStars - the number of stars to display (int)

• rating - the user's chosen rating (float, because of stepSize)

• stepSize - the increment for selection (float, common values are 1.0 and 0.5, de-
pending on how fine-grained you want the rating to be).

• isIndicator - boolean, set to true to make this read-only

These are normally set in the XML:

Example 6-18.

<RatingBar
 android:id="@+id/serviceBar"
 android:gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="5"
 android:rating="3"
 android:stepSize="1.0"

6.8 Let Them See Stars: Using RatingBar | 257

 android:isIndicator='false'
 />

The RatingBar maintains its rating value internally. You can find out how the user has
rated the item in two ways:

• invoke the getRating() method, or

• provide a change notification listener of type OnRatingBarChangeListener.

The OnRatingBarChangeListener has a single method, onRatingChanged, called with
three arguments:

• RatingBar rBar - the event source, a reference to the particular RatingBar;

• float fRating - the rating that was set;

• boolean fromUser - true if set by a user, false if set programmatically

The example program simulates a Customer Survey; it creates two RatingBars, one to
rate Service and another to rate Price (the XML for both is identical except for the
android:id). In the main program, an OnRatingBarChangeListener is created, to dis-
play touchy-feely--sounding feedback for the given rating (the rating is converted to int
and a switch statement is used to generate a message for Toast).

Example 6-19.

public class Main extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 OnRatingBarChangeListener barChangeListener = new OnRatingBarChangeListener() {
 @Override
 public void onRatingChanged(RatingBar rBar, float fRating, boolean fromUser) {
 int rating = (int) fRating;
 String message = null;
 switch(rating) {
 case 1: message = "Sorry you're really upset with us"; break;
 case 2: message = "Sorry you're not happy"; break;
 case 3: message = "Good enough is not good enough"; break;
 case 4: message = "Thanks, we're glad you liked it."; break;
 case 5: message = "Awesome - thanks!"; break;
 }
 Toast.makeText(Main.this,
 message,
 Toast.LENGTH_LONG).show();
 }
 };
 final RatingBar sBar = (RatingBar) findViewById(R.id.serviceBar);
 sBar.setOnRatingBarChangeListener(barChangeListener);
 final RatingBar pBar = (RatingBar) findViewById(R.id.priceBar);
 pBar.setOnRatingBarChangeListener(barChangeListener);

258 | Chapter 6: Graphical User Interface

 Button doneButton = (Button) findViewById(R.id.doneButton);
 doneButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View arg0) {
 String message = String.format(
 "Final Answer: Price %.0f/%d, Service %.0f/%d%nThank you!",
 sBar.getRating(), sBar.getNumStars(),
 pBar.getRating(), pBar.getNumStars()
);
 // Thank the user
 Toast.makeText(Main.this,
 message,
 Toast.LENGTH_LONG).show();
 // And upload the numbers to a database, hopefully...

 // That's all for this Activity, hence this App.
 finish();
 }
 });
 }
}

Since there is more than one RatingBar, we don't save the value in the listener, since an
incomplete survey is not useful in our scenario; in the Done Button action listener, we
fetch both values, display them, and this would be the place to save them. Your mileage
may vary: it may make more sense to save them in the OnRatingBarChangeListener.

If you're not used to printf-like formatting, the String.format call uses %.0f to format
the float as an int, instead of casting it (since we have to do nice formatting anyway).
Ideally the format message should be from the XML strings, but it's only a demo pro-
gram.

The main UI looks like this: displaying a feedback rating:

.

When the user clicks the Done button, they will see the Farewell message displayed on
the desktop window:

XXX TODO - discuss behavior with fractional increment!

When you wish both to display the current "average" or similar measure ratings from
a community and allow the user to enter their own rating, it is customary to display
the current ratings read-only, and to create a pop-up dialog to enter their particular
rating. This is described at the Android Patterns Site.

See Also
RatingBar in the 'Form Stuff' tutorial on Android.com

An MVC tutorial that also shows how to construct your own RatingBar-like View com-
ponent.

6.8 Let Them See Stars: Using RatingBar | 259

http://www.androidpatterns.com/uap_pattern/rating-stars
http://developer.android.com/resources/tutorials/views/hello-formstuff.html#RatingBar
http://www.wiseandroid.com/post/2010/07/19/Use-MVC-and-develop-a-simple-Star-Rating-widget-on-Android.aspx
http://www.wiseandroid.com/post/2010/07/19/Use-MVC-and-develop-a-simple-Star-Rating-widget-on-Android.aspx

Figure 6-2.

260 | Chapter 6: Graphical User Interface

Figure 6-3.
6.8 Let Them See Stars: Using RatingBar | 261

6.9 Invoke an action handler when a Button is pressed
Ian Darwin

Problem
You need to do something when the user presses a Button.

Solution
Create a Button in your layout. In onCreate(), find it by ViewID. Call its onClickLis-
tener(). In the OnClickListener implementation, check for the ViewID and perform the
relevant action.

Discussion
Creating a Button in your layout is simple. Assuming XML layout:

Example 6-20.

<Button android:id="@+id/start_button"
 android:text="@string/start_button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

In your activity's onCreate(), find the button by its ViewIDm (in this example,
R.id.start_button. Call its onClickListener() method with an OnClickListener.

In the OnClickListener implementation, check for the ViewID and perform the relevant
action.

Example 6-21.

public class Main extends Activity implements OnClickListener {
 public void onCreate() {
 startButton = findViewById(R.id.start_button);
 startButton.setOnClickListener(this);
 ...
 }

 @Override
 public void onClick(View v) {
 switch (v.getId()) {
 case R.id.start_button:
 // Start whatever it is the start button starts...
 ...
 case R.id.some_other_button:
 // etc
 }
 }
}

262 | Chapter 6: Graphical User Interface

Any experienced Java programmer would expect to use an anonymous inner class for
the onClickListener, as has been done in AWT and Swing since Java 1.1. Due to effi-
ciency, early Android documentation recommended against this, simply having the
Activity implement OnClickListener and checking the ViewID (i.e., the Java 1.0 way
of doing things), As with Swing, however, the power of devices has gotten much faster,
and such old-style ways of doing things are becoming less popular, though you will still
see both styles in use for some time.

6.10 Creating an Alert Dialog.
Rachee Singh

Problem
The programmer wishes to prompt the user of certain unsaved changes in the appli-
cation through an alert sending mechanism.

Solution
Use of Alert Doalog in Android. It permits giving suitable options to the user, in case
of unsaved changes scenario the options would be:

1. Save

2. Discard Changes

3. Cancel.

Discussion
Through the AlertDialog class, the user can be provided with 2 options that can be used
in any scenario:

1. Positive Reaction

2. Neutral Reaction

3. Negative Reaction. If the user ahs entered some data in an EditText and is then
attempting the cancel that activity, the application should prompt the user to either
Save his changes, Discard them or calcel the alert dialog itself.

Here is the code that would implement this kind of an AlertDialog along with appro-
priate click listeners on each button on the dialog.

Example 6-22.

alertDialog = new AlertDialog.Builder(this)
.setTitle(R.string.unsaved)
.setMessage(R.string.unsaved_changes_message)
.setPositiveButton(R.string.save_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {

6.10 Creating an Alert Dialog. | 263

 saveInformation();
 }
 })
.setNeutralButton(R.string.discard_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 })
.setNegativeButton(android.R.string.cancel_dialog, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 alertDialog.cancel();
 }
 })
 .create();
 alertDialog.show();

6.11 Customize the SlidingDrawer component to animate/
transition from the top down.
Wagied Davids

Problem
You want to customize the SlidingDrawer component to animate/transition from the
top down.

Solution
Android's SlidngDrawer component's default behavior is to transition from the bottom
and then move upwards on a user clicking the panel handle. To accomodate the tran-
sition from the top moving downwards, an animation is required. Use is made of the
open-source org.panel package to accomplish this task.

Discussion
Steps:

• Include the org.panel easing interpolator package (source included in the given
download link)

• Include as a new namespace such as panel in your Android view XML, e.g.,
xmlns:panel="http://schemas.android.com/apk/res/org.panel"

• Use the tag set instead of the Android SlidingDrawer component!

File: main.xml

Example 6-23.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout

264 | Chapter 6: Graphical User Interface

 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:panel="http://schemas.android.com/apk/res/org.panel"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <org.panel.Panel
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/topPanel"
 android:paddingBottom="20dip"
 panel:position="top"
 panel:animationDuration="1000"
 panel:linearFlying="true"
 panel:openedHandle="@drawable/top_switcher_expanded_background"
 panel:closedHandle="@drawable/top_switcher_collapsed_background">
 <Button
 android:id="@id/panelHandle"
 android:layout_width="fill_parent"
 android:layout_height="33dip" />
 <LinearLayout
 android:id="@id/panelContent"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:text="From the Top -> Down"
 android:textSize="16dip"
 android:padding="4dip"
 android:textStyle="bold" />

 <ImageView
 android:src="@drawable/android_skateboard"
 android:layout_gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 </LinearLayout>
 </org.panel.Panel>

 </LinearLayout>
</FrameLayout>

File: Test.java

Example 6-24.

import android.app.Activity;
import android.os.Bundle;

6.11 Customize the SlidingDrawer component to animate/transition from the top down. | 265

public class Test extends Activity
 {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 }

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b48823e/n/Android-SlidingDrawer-TopDown.zip

6.12 Use a Timepicker widget
Pratik Rupwal

Problem
Sometimes we need to ask the user to enter the time for processing some element in
the application. Accepting time in Text boxes is not graceful as well as requires vali-
dation.

Solution
Timepicker widget can be used for accepting time from the user. It makes the appear-
ance graceful and reduces the requirement of validation.

Discussion
Below code explains how to show the current time on the screen and gives a button,
clicking on which produces the timepicker widget to the user for accepting the time.

Example 6-25.

public class Main extends Activity
{

private TextView mTimeDisplay;
private Button mPickTime;

private int mHour;
private int mMinute;

static final int TIME_DIALOG_ID = 0;

 /** Called when the activity is first created. */

266 | Chapter 6: Graphical User Interface

http://www.filefactory.com/file/b48823e/n/Android-SlidingDrawer-TopDown.zip
http://www.filefactory.com/file/b48823e/n/Android-SlidingDrawer-TopDown.zip

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // capture our View elements
 mTimeDisplay = (TextView) findViewById(R.id.timeDisplay);
 mPickTime = (Button) findViewById(R.id.pickTime);

 // add a click listener to the button
 mPickTime.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 showDialog(TIME_DIALOG_ID);
 }
 });

 // get the current time
 final Calendar c = Calendar.getInstance();
 mHour = c.get(Calendar.HOUR_OF_DAY);
 mMinute = c.get(Calendar.MINUTE);

 // display the current date
 updateDisplay();
 }

 // The below overridden method gets invoked when 'showDialog()' is called inside 'onClick()' method defined
 // for handling the click event of button 'change the time'

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case TIME_DIALOG_ID:
 return new TimePickerDialog(this,
 mTimeSetListener, mHour, mMinute, false);
 }
 return null;
 }

 // updates the time we display in the TextView
 private void updateDisplay() {
 mTimeDisplay.setText(
 new StringBuilder()
 .append(pad(mHour)).append(":")
 .append(pad(mMinute)));
 }

 // the callback received when the user "sets" the time in the dialog
 private TimePickerDialog.OnTimeSetListener mTimeSetListener =
 new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(android.widget.TimePicker view, int hourOfDay, int minute) {
 mHour = hourOfDay;
 mMinute = minute;
 updateDisplay();
 }

6.12 Use a Timepicker widget | 267

 };

 private static String pad(int c)
 {
 if (c >= 10)
 return String.valueOf(c);
 else
 return "0" + String.valueOf(c);
 }
}

The below screenshot shows the timepicker appearing on the screen after clicking on
'change the time' button.

6.13 Formatting with Correct Plurals
Ian Darwin

Problem
You're displaying something like "Found "+ n + " items", but in English, "Found 1
reviews" is ungrammatical. You want "Found 1 review" for the case n == 1.

Solution
For simple, English-only results, use a conditional statement. For better results, that
can be internationalized, use a ChoiceFormat. On Android, you can use <plural> in an
XML Resources file.

Discussion
The "quick and dirty" answer is to use Java's ternary operator (cond ? trueval : false
val) in a string concatenation. Since in English, for most nouns, both zero and plurals
get an 's' appended to the noun in English ("no books, one book, two books"), we need
only test for n==1.

Example 6-26.

// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);
}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("Found " + n + " item" + (n==1?"":"s"));
}

Running this on JavaSE as a main program shows the following output:

268 | Chapter 6: Graphical User Interface

Figure 6-4.

6.13 Formatting with Correct Plurals | 269

Example 6-27.

$ java FormatPlurals
Found 0 items
Found 1 item
Found 2 items
$

The final println statement is short for:

Example 6-28.

if (n==1)
 System.out.println("Found " + n + " item");
else
 System.out.println("Found " + n + " items");

This is a lot longer, in fact, so Java's ternary conditional operator is worth learning.

Of course you can't use this arbitrarily, because English is a strange and somewhat
idiosyncratic language. Some nouns like bus require 'es', while others like "cash" are
collective knows with no plural (you can have two flocks of geese or two stacks of cash,
but you cannot have "two cashes"). Some nouns, like "fish", can be considered plural
as-is, although "fishes" is also a correct plural.

A Better Way

The ChoiceFormat class from java.text is ideal for handling plurals; it lets you specify
singular and plural (or, more generally, range) variations on the noun. It is capable of
more, but here I'll show only a couple of the simpler uses. I specify the values 0, 1, and
2 (or more), and the string values to print corresponding to each number. The numbers
are then formatted according to the range they fall into:

Example 6-29.

import java.text.*;

/**
 * Format a plural correctly, using a ChoiceFormat.
 * @author Ian F. Darwin, http://www.darwinsys.com/
 * @version $Id: FormatPluralsChoice.java,v 1.7 2010/06/22 16:31:20 ian Exp $
 */
public class FormatPluralsChoice extends FormatPlurals {

 // ChoiceFormat to just give pluralized word
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "reviews", "review", "reviews"};
 static ChoiceFormat pluralizedFormat =
 new ChoiceFormat(limits, formats);

 // ChoiceFormat to give English text version, quantified
 static ChoiceFormat quantizedFormat = new ChoiceFormat(
 "0#no reviews|1#one review|1<many reviews");

270 | Chapter 6: Graphical User Interface

 // Test data
 static int[] data = { -1, 0, 1, 2, 3 };

 public static void main(String[] argv) {
 System.out.println("Pluralized Format");
 for (int i : data) {
 System.out.println("Found " + i + " " +
 pluralizedFormat.format(i));
 }

 System.out.println("Quantized Format");
 for (int i : data) {
 System.out.println("Found " +
 quantizedFormat.format(i));
 }
 }
}

Either of these loops generates similar output to the basic version. The code using the
ChoiceFormat is slightly longer, but more general, and lends itself better to interna-
tionalization. Put the string for the "quantized" form constructor into strings.xml and
it will be part of your localization actions.

Best Way of All (Android-only)

Create a file in /res/values/somefilename.xml containing something like:

Example 6-30.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<plurals name="numberOfSongsAvailable">
<item quantity="one">One item found.</item>
<item quantity="other">%d items found.</item>
</plurals>
</resources>

In your code you then use the following:

Example 6-31.

int count = getNumberOfsongsAvailable();
Resources res = getResources();
String songsFound = res.getQuantityString(R.plurals.numberOfSongsAvailable, count);

(This part suggested by Tomas Persson.)

See Also
For the Android-only way, see http://developer.android.com/guide/topics/resources/
string-resource.html#Plurals.

6.13 Formatting with Correct Plurals | 271

http://developer.android.com/guide/topics/resources/string-resource.html#Plurals
http://developer.android.com/guide/topics/resources/string-resource.html#Plurals

Source Download URL
The source code for this example may be downloaded from this URL: http://javacook
.darwinsys.com/javasrc/numbers/FormatPluralsChoice.java

6.14 Feed AutoCompleteTextView using a SQLite database
query
Jonathan Fuerth

Problem
Although the Android documentation contains a complete working example of using
AutoCompleteTextView with an ArrayAdapter, just substituting a SimpleCursorA-
dapter into the example does not work.

Solution
There are two extra twists to using SimpleCursorAdapter instead of ArrayAdapter:

1. You need to tell the adapter which column to use for filling the text view after the
user selects a completion.

2. You need to tell the adapter how to requery based on the user's latest input in the
text field. Otherwise, it shows all rows returned by the cursor and the list never shrinks
to include the items of actual interest.

Discussion
The following example code would typically be found in the onCreate() method of the
Activity that contains the AutoCompleteTextView. It retrieves the AutoComplete-
TextView from its activity's layout, creates a SimpleCursorAdapter, configures that
SimpleCursorAdapter to work with the AutoCompleteTextView, then assigns the
adapter to the view.

The two important differences from the ArrayAdapter example in the Android dev
guide are marked "important difference 1" and "important difference 2" in the code
example. They are each covered by a short discussion following the example.

Example 6-32.

final AutoCompleteTextView itemName = (AutoCompleteTextView) findViewById(R.id.item_name_view);

SimpleCursorAdapter itemNameAdapter = new SimpleCursorAdapter(
 this, R.layout.completion_item, itemNameCursor, fromCol, toView);

// important difference 1
itemNameAdapter.setStringConversionColumn(
 itemNameCursor.getColumnIndexOrThrow(GroceryDBAdapter.ITEM_NAME_COL));

272 | Chapter 6: Graphical User Interface

http://javacook.darwinsys.com/javasrc/numbers/FormatPluralsChoice.java
http://javacook.darwinsys.com/javasrc/numbers/FormatPluralsChoice.java

// important difference 2
itemNameAdapter.setFilterQueryProvider(new FilterQueryProvider() {

 public Cursor runQuery(CharSequence constraint) {
 String partialItemName = null;
 if (constraint != null) {
 partialItemName = constraint.toString();
 }
 return groceryDb.suggestItemCompletions(partialItemName);
 }
 });

itemName.setAdapter(itemNameAdapter);

Important difference 1: With ArrayAdapter, there is no need to specify how to convert
the user's selection into a String. However, SimpleCursorAdapter supports using one
column for the text of the suggestion, and a different column for the text that's fed into
the text field after the user selects a suggestion. Although the most common case is to
use the same text for the suggestion as you get in the text field after picking it, this is
not the default. The default is to fill the text view with the toString() representation of
your cursor-something like android.database.sqlite.SQLiteCursor@f00f00d0.

Important difference 2: With ArrayAdapter, the system takes care of filtering the
alternatives to display only those strings that start with what the user has typed into
the text field so far. The SimpleCursorAdapter is more flexible, but again, the default
behaviour is not useful. If you fail to write a FilterQueryProvider for your adapter, the
AutoCompleteTextView will simply show the initial set of suggestions no matter what
the user types. With the FilterQueryProvider, the suggestions work as expected.

TODO: there is a potential cursor leak in the code example. Update with fix and add
a discussion item.

6.15 Change The Enter Key to "Next" on the Soft Keyboard
Jonathan Fuerth

Problem
Several apps, including the Web Browser and the Contacts app, replace the "Enter" key
on the on-screen keyboard with a "Next" key that gives focus to the next data entry
view. How do you add this kind of polish to your own apps?

Solution
Set the appropriate Input Method Editor (IME) attribute on the views in question.

6.15 Change The Enter Key to "Next" on the Soft Keyboard | 273

Discussion
Here is a simple layout with three text fields (EditText views) and a submit button:

Note the enter key in the bottom right. Pressing it causes the currently-focused text
field to expand vertically to accommodate another line of text. Not what you normally
want!

Here is the code for that layout:

Example 6-33.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 1" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>

Here's a better version of the same UI, with a Next key where Enter used to be:

Besides being more convenient for users, this also prevents people from entering mul-
tiple lines of text into a field that was only intended to hold a single line.

Here's how to tell Android to display a Next button on your keyboard. Note the
android:imeOptions attributes on each of the three EditText views:

Example 6-34.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

274 | Chapter 6: Graphical User Interface

Figure 6-5.

6.15 Change The Enter Key to "Next" on the Soft Keyboard | 275

Figure 6-6.
276 | Chapter 6: Graphical User Interface

 android:text="Field 1"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3"
 android:imeOptions="actionDone" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>

Finally, notice the actionDone on the third text field: the button that follows is not
focusable in touch mode, and if it was, it wouldn't display a keyboard anyway. As you
might guess, actionDone puts a Done button where the enter key normally goes. Pressing
the Done button simply hides the keyboard.

There are a number of refinements you can make to the appearance of the software
keyboard, including hints about the input type, suggested capitalization, and even se-
lect-all-on-focus behaviour. They are all worth investigating. Every little touch can
make your app more of a pleasure to use.

See Also
The Android API documentation from TextView, especially the section on ImeOptions.

6.16 How to Create a Simple Widget
Catarina Reis

Problem
Widgets are simple graphical user interfaces that allow users to easily interact with an
existing application (activity and/or service). It's rather simple to create one. Just try it!

Solution
A guided list of steps with a simple example that allows you to create a widget that
starts a service that updates its visual components.

Example: CurrentMoodWidget. A simple solution that presents the current mood in the
form of a smiley text in a widget. The current mood smiley changes to a random mood
smiley whenever the user clicks the update button (smiley image button).

6.16 How to Create a Simple Widget | 277

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions

(BROKEN XREF TO RECIPE -1 'File:device_0.png|thumb|alt=Initial|Initial Mood')

(BROKEN XREF TO RECIPE -1 'File:device_1.png|thumb|alt=Mood Updated|Cur-
rent Mood')

Discussion
Following these steps you will be able to create a widget that calls a service and updates
its visual components.

1. Create a new Android Project (CurrentMoodWidgetProject) :* "Current Mood" as the
application name; :* oreillymedia.cookbook.android.spikes for the package name; :*
do not create an activity; :* and min SDK version: 8 (for Android 2.2).

2. Add the text support required for the widget under the resources files (res/values/
string.xml), according to the following name-value pairs. :* widgettext - "current
mood:" :* widgetmoodtext - ":)"

3. Add the image(s) that will appear in the widget's button under the res/drawable
structure (smile_icon.png). (BROKEN XREF TO RECIPE -1 'File:smile_icon.png|
thumb|alt=smile_icon.png|')

4. Create a new layout file inside res/layout, under the project structure, that will define
the widget layout (widgetlayout.xml) according to the following structure.

Example 6-35.

 <TextView android:text="@string/widgettext"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.8"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
 <TextView android:text="@string/widgetmoodtext"
 android:id="@+id/widgetMood" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.3"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
 <ImageButton android:id="@+id/widgetBtn" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.5" android:src="@drawable/smile_icon"
 android:layout_gravity="center_vertical"></ImageButton>

5. Now, you should provide the widget provider setup configuration:

• Create the res/xml folder under the project structure

• Create a xml file (widgetproviderinfo.xml) with the following parameters:

Example 6-36.

 <appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"

278 | Chapter 6: Graphical User Interface

 android:minWidth="220dp"
 android:minHeight="72dp"
 android:updatePeriodMillis="86400000"
 android:initialLayout="@layout/widgetlayout">
 </appwidget-provider>

6. Now you should create the service that reacts to the user interaction with the smiley
image button (CurrentMoodService.java).

Example 6-37.

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStart(intent, startId);
 updateMood(intent);
 stopSelf(startId);
 return START_STICKY;
 }

 private void updateMood(Intent intent) {
 if (intent != null){
 String requestedAction = intent.getAction();
 if (requestedAction != null && requestedAction.equals(UPDATEMOOD)){
 this.currentMood = getRandomMood();
 int widgetId = intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, 0);
 AppWidgetManager appWidgetMan = AppWidgetManager.getInstance(this);
 RemoteViews views = new RemoteViews(this.getPackageName(),R.layout.widgetlayout);
 views.setTextViewText(R.id.widgetMood, currentMood);
 appWidgetMan.updateAppWidget(widgetId, views);
 }
 }
 }

7. After defining the service, it is time to implement the widget provider class (Current
MoodWidgetProvider.java).

Example 6-38.

 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 super.onUpdate(context, appWidgetManager, appWidgetIds);

 for (int i=0; i<appWidgetIds.length; i++) {
 int appWidgetId = appWidgetIds[i];
 RemoteViews views = new RemoteViews(context.getPackageName(), R.layout.widgetlayout);
 Intent intent = new Intent(context, CurrentMoodService.class);
 intent.setAction(CurrentMoodService.UPDATEMOOD);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 PendingIntent pendingIntent = PendingIntent.getService(context, 0, intent, 0);
 views.setOnClickPendingIntent(R.id.widgetBtn, pendingIntent);
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
 }

6.16 How to Create a Simple Widget | 279

8. Finally it is necessary to declare the Service and the App Widget Provider in the
Manifest (AndroidManifest.xml).

Example 6-39.

 <service android:name=".CurrentMoodService">
 </service>
 <receiver android:name=".CurrentMoodWidgetProvider">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widgetproviderinfo" />
 </receiver>

Source Download URL
The source code for this example may be downloaded from this URL: http://sites.google
.com/site/androidsourcecode/src/CurrentMoodWidgetProject.rar

6.17 Make a View Shake
Ian Darwin

Problem
You want a View component to shake for a few seconds to catch the user's attention.

Solution
Create an animation in the XML, then call the View object's startAnimation(), using
the convenience routing loadAnimation() to load the XML.

Discussion
The Animation specification is created in XML files in the anim directory. In this ex-
ample I want the text entry field to be able to shake either left-to-right (to emulate a
person shaking their head side-to-side, meaning "no" or "I disagree" in many parts of
the world) or up and down (a person nodding agreement). So I create two animations,
horizontal.xml and vertical.xml. Here is horizontal.xml:

Example 6-40.

<?xml version="1.0" encoding="utf-8"?>
<translate
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXDelta="0"
 android:toXDelta="10"
 android:duration="1000"
 android:interpolator="@anim/cycler"
 />

280 | Chapter 6: Graphical User Interface

http://sites.google.com/site/androidsourcecode/src/CurrentMoodWidgetProject.rar
http://sites.google.com/site/androidsourcecode/src/CurrentMoodWidgetProject.rar

The file vertical.xml is identical except it uses fromYDelta and toYDelta.

The Interpolator - the function that drives the animation - is contained in another file,
cycler.xml, shown below.

Example 6-41.

<?xml version="1.0"?>
<cycleInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:cycles="5"/>

To apply one of the two animations to a View component, you need a reference to it.
You can of course use the common findViewById(R.id.XXX). You can also use the Ac-
tivity method getCurrentFocus() if you are dealing with the current input (focus) view
component; this avoids coupling to the name of a particular component, if you know
that your animation will always apply to the current input object. In my code I know
this is true because the animation startup is done in an onClick() method. Thirdly, you
could use the View that is passed into the onClick() method, but that would make the
Button shake, not the text field.

I won't show the whole application, but here is the onClick() method which contains
all the animation code:

Example 6-42.

@Override
public void onClick(View v) {
 String answer = answerEdit.getText().toString();
 if ("yes".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.vertical));
 return;
 }
 if ("no".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.horizontal));
 return;
 }
 Toast.makeText(this, "Try to be more definite, OK?",
 Toast.LENGTH_SHORT).show();
}

The shaking effect is convenient for drawing the user's attention to an input that is
incorrect, but it can easily be overdone. Use judiciously!

6.18 Using CheckBoxes and RadioButtons
Blake Meike

6.18 Using CheckBoxes and RadioButtons | 281

Problem
You want to offer the user a set of choices that is more limited than a list.

Solution
Use CheckBoxes, RadioButtons or Spinners as appropriate

Discussion
These Views are probably familiar to you from other user interfaces. They allow the
user to choose from multiple options. CheckBoxes are typically used when you want
to offer multiple selections with a yes/no or true/false choice for each. RadioButtons
are used when only one choice is allowed at a time.

Spinners are similar to "combo boxes' in some GUI frameworks, and are now covered
in the Recipe (BROKEN XREF TO RECIPE -1 'Dropdown Choooser with the Spinner
class'). Android has adapted these familiar components to make them more useful in
a touchscreen environment. The screenshot above shows the three types of multiple-
choice Views laid out on an Android application, with the Spinner pulled down to show
the options. The layout XML file that created the screen in the figure looks like this:

Example 6-43.

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <CheckBox
 android:id="@+id/cbxBox1"
 android:layout_width="20dp"
 android:layout_height="20dp"
 android:checked="false"
 />
 <TextView
 android:id="@+id/txtCheckBox"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="CheckBox: Not checked"
 />
 <RadioGroup
 android:id="@+id/rgGroup1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RadioButton android:id="@+id/RB1" android:text="Button1" />
 <RadioButton android:id="@+id/RB2" android:text="Button2" />
 <RadioButton android:id="@+id/RB3" android:text="Button3" />
 </RadioGroup>
 <TextView

282 | Chapter 6: Graphical User Interface

Figure 6-7.

6.18 Using CheckBoxes and RadioButtons | 283

 android:id="@+id/txtRadio"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="RadioGroup: Nothing picked"
 />
 <Spinner
 android:id="@+id/spnMusketeers"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="2dp"
 />
 </LinearLayout>

The XML file just lists each View we want on the screen along with the attributes we
want. A RadioGroup is really a ViewGroup, so it contains the appropriate RadioButton
Views. Here is the Java file that responds to user clicks.

Example 6-44.

package com.oreilly.select;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import com.google.android.maps.GeoPoint;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.AdapterView.OnItemSelectedListener;

public class SelectExample extends Activity {
 private CheckBox checkBox;
 private TextView txtCheckBox, txtRadio;
 private RadioButton rb1, rb2, rb3;
 private Spinner spnMusketeers;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 checkBox = (CheckBox) findViewById(R.id.cbxBox1);
 txtCheckBox = (TextView) findViewById(R.id.txtCheckBox);
 txtRadio = (TextView) findViewById(R.id.txtRadio);
 rb1 = (RadioButton) findViewById(R.id.RB1);
 rb2 = (RadioButton) findViewById(R.id.RB2);
 rb3 = (RadioButton) findViewById(R.id.RB3);
 spnMusketeers = (Spinner) findViewById(R.id.spnMusketeers);

284 | Chapter 6: Graphical User Interface

 // React to events from the CheckBox
 checkBox.setOnClickListener(new CheckBox.OnClickListener() {
 public void onClick(View v){
 if (checkBox.isChecked()) {
 txtCheckBox.setText("CheckBox: Box is checked");
 }
 else
 {
 txtCheckBox.setText("CheckBox: Not checked");
 }
 }
 });
 // React to events from the RadioGroup
 rb1.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 1 picked");
 }
 });
 rb2.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 2 picked");
 }
 });
 rb3.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 3 picked");
 }
 });
 // Set up the Spinner entries
 List<String> lsMusketeers = new ArrayList<String>();
 lsMusketeers.add("Athos");
 lsMusketeers.add("Porthos");
 lsMusketeers.add("Aramis");
 ArrayAdapter<String> aspnMusketeers =
 new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item,
 lsMusketeers);
 aspnMusketeers.setDropDownViewResource
 (android.R.layout.simple_spinner_dropdown_item);
 spnMusketeers.setAdapter(aspnMusketeers);
 // Set up a callback for the spinner
 spnMusketeers.setOnItemSelectedListener(
 new OnItemSelectedListener() {
 public void onNothingSelected(AdapterView<?> arg0) { }
 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 // Code that does something when the Spinner value changes
 }
 });
 }
}

These three Views work as follows:

CheckBox

6.18 Using CheckBoxes and RadioButtons | 285

The CheckBox View takes care of flipping its state back and forth and displaying the
appropriate checkmark when the state is true. All you have to do is create an OnClick-
Listener to catch click events, and you can add whatever code you want to react.

RadioGroup

As mentioned earlier, the RadioGroup View is really a ViewGroup that contains any
number of RadioButton Views. The user can select only one of the buttons at a time,
and you capture the selections by setting OnClickListeners for each RadioButton. Note
that clicking on one of the RadioButtons does not fire a click event for the RadioGroup.

Taken together, these three Views let you provide a short set of choices and have the
user select one or multiple choices from the choices offered.

6.19 Creating a Notification in the Status Bar
Ian Darwin

Problem
You want to place a notification icon in the notice bar at the top of the screen, to call
the user's attention to an event that occurred or to remind them of a service that is
running in the background.

Solution
Create a Notification object, provide it with a PendingIntent which wraps a real Intent
for what to do when the user selects the Notification. At the same time you pass in the
PendingIntent you also pass a title and text to be displayed in the notification area. You
should set the AUTO_CANCEL flag unless you want to remove the notification from
the notice bar manually. Finally, you find and ask the NotificationManager to display
(notify) your Notification, associating with it an ID so that you can refer to it later, e.g
to remove it.

Discussion
Notifications are normally used from a running Service class to notify (hence the name)
the user of some fact. Either an event has occurred (receipt of a message, loss of contact
with a server, or whatever), or, you just want to remind the user that a long-running
Service is still running.

Create a Notification object; the constructor takes an Icon id, the text to display briefly
in the Notice bar, and the time at which the event occurred (timestamp in milliseconds).
Before you can show the Notification you have to provide it with a PendingIntent for
what to do when the user selects the Notification, and ask the NotificationManager to
display your Notification.

286 | Chapter 6: Graphical User Interface

The following shows doing the right thing in the wrong place; Notifications are
normally shown from Services. This Recipe is just focusing on the Notification
API.

Example 6-45.

public class Main extends Activity {

 private static final int NOTIFICATION_ID = 1;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 int icon = R.drawable.icon; // Preferably a distinct icon

 // Create the notification itself
 String noticeMeText = getString(R.string.noticeMe);
 Notification n =
 new Notification(
 icon, noticeMeText, System.currentTimeMillis());

 // And the Intent of what to do when user selects notification
 Context applicationContext = getApplicationContext();
 Intent notIntent = new Intent(this, NotificationTarget.class);
 PendingIntent wrappedIntent =
 PendingIntent.getActivity(this, 0,
 notIntent, Intent.FLAG_ACTIVITY_NEW_TASK);

 // Condition the Notification
 String title = getString(R.string.title);
 String message = getString(R.string.message);
 n.setLatestEventInfo(applicationContext, title,
 message, wrappedIntent);
 n.flags |= Notification.FLAG_AUTO_CANCEL;

 // Now invoke the Notification Service
 String notifService = Context.NOTIFICATION_SERVICE;
 NotificationManager mgr =
 (NotificationManager) getSystemService(notifService);
 mgr.notify(NOTIFICATION_ID, n);
 }
}

The following is the file strings.xml:

Example 6-46.

<resources>
 <string name="app_name">NotificationDemo</string>
 <string name="hello">Hello World, Main!</string>
 <string name="noticeMe">Lookie Here!!</string>
 <string name="title">My Notification</string>

6.19 Creating a Notification in the Status Bar | 287

 <string name="message">This is my message</string>
 <string name="target_name">Notification Target</string>
 <string name="thanks">Thank you selecting the notification.</string>
</resources>

The "noticeMe" string appears briefly (a few seconds only) in the status bar:

Then the main view will appear;

When the user drags the status bar down, it expands to show the details, which includes
the icons and the title and message strings (unless you are using a custom view, see
below).

If you have set auto-clear, the notification will no longer appear in the status bar. If the
user selects the notification box, the PendingIntent becomes current. Ours simply
shows a simple Thank You notification. If the user clicks the Clear button, however,
the Intent does not get run (even with Auto-Clear, which can leave you in a bit of a
lurch).

TODO updating the status.

TODO Other flags, e.g., LED colors.

TODO Custom View.

See Also
The official tutorial is at http://developer.android.com/guide/topics/ui/notifiers/notifica
tions.html.

6.20 Autocompletion with Icons/Images
Wagied Davids

Problem
Searching for items/entries, that can occur in more that a single category. Perform au-
tocompletion and simultaneously make the difference in categories immediately ap-
parent using icons. For example, the term Pain (in bold) occurs in both Symptoms
category as well as Reactions category, but also text in the Notes category. Categories:

Symptoms: Pain, Depression, Weakness Reactions: Pain, Inflammation, Itchiness
Notes: I had a pain in my buttocks.

Solution
Visualize the categories and items to be searched simultaneously using category icons.

File: search_bar_fragment.xml

288 | Chapter 6: Graphical User Interface

http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html

Figure 6-8.

6.20 Autocompletion with Icons/Images | 289

Figure 6-9.
290 | Chapter 6: Graphical User Interface

Figure 6-10.
6.20 Autocompletion with Icons/Images | 291

Figure 6-11.
292 | Chapter 6: Graphical User Interface

Example 6-47.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <AutoCompleteTextView
 android:id="@+id/autoCompleteSearch"
 android:hint="Enter search term ..."
 android:singleLine="true"
 android:maxLines="1"
 android:layout_weight="1.0"
 android:layout_width="220dip"
 android:layout_height="wrap_content"
 android:layout_marginLeft="5dip">
 </AutoCompleteTextView>

 <ImageButton
 android:id="@+id/searchButton"
 android:src="@drawable/search_icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </ImageButton>

</LinearLayout>

File: SearchArrayAdapter.java

Example 6-48.

import java.util.ArrayList;
import java.util.List;

import android.content.Context;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

import com.pfizer.android.R;
import com.pfizer.android.model.JournalEntry;
import com.pfizer.android.utils.CategoryIconRetriever;

public class SearchItemArrayAdapter extends ArrayAdapter<JournalEntry>
 {
 private static final String tag = "SearchItemArrayAdapter";
 private JournalEntry journalEntry;
 private TextView autoItem;
 private ImageView categoryIcon;
 private int journalEntryTypeId;

6.20 Autocompletion with Icons/Images | 293

 private List<JournalEntry> journalEntryList = new ArrayList<JournalEntry>();
 private final CategoryIconRetriever iconRetriever;

 /**
 *
 * @param context
 * @param textViewResourceId
 * @param objects
 */
 public SearchItemArrayAdapter(Context context, int textViewResourceId, List<JournalEntry> objects)
 {
 super(context, textViewResourceId, objects);
 iconRetriever = new CategoryIconRetriever(context);
 journalEntryList = objects;
 Log.d(tag, "Search List -> journalEntryList := " + journalEntryList.toString());
 }

 @Override
 public int getCount()
 {
 return this.journalEntryList.size();
 }

 @Override
 public JournalEntry getItem(int position)
 {
 JournalEntry journalEntry = this.journalEntryList.get(position);
 Log.d(tag, "*-> Retrieving JournalEntry @ position: " + String.valueOf(position) + " : " + journalEntry.toString());
 return journalEntry;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent)
 {
 View row = convertView;
 LayoutInflater inflater = LayoutInflater.from(getContext());

 if (row == null)
 {
 row = inflater.inflate(R.layout.search_listitem_icon, parent, false);
 }

 journalEntry = this.journalEntryList.get(position);
 String searchItem = journalEntry.title;
 autoItem = (TextView) row.findViewById(R.id.search_auto_item);
 autoItem.setText(searchItem);

 // Get a reference to ImageView holder
 categoryIcon = (ImageView) row.findViewById(R.id.category_icon);
 categoryIcon.setImageBitmap(iconRetriever.getJournalEntryTypeIcon(journalEntry.typeId));

 return row;
 }
 }

294 | Chapter 6: Graphical User Interface

Discussion
TODO: EXPLANATION CODE

6.21 Creating your own Custom Title Bar
Shraddha Shravagi

Problem
You cannot have any buttons or any custom text in the standard title bar.

Solution
Here's how to implement your own TitleBar:

1. Create an XML file for title bar

2. Create a class that uses the title bar and implements the button functionality

3. Change your layout files

4. Extend your activities from the custom class that you created in step 2

Discussion

1. Create an XML file for title bar

Here is an maintitlebar.xml file which has one textview and 3 image buttons. It has
orientation = horizontal.

Example 6-49.

 <RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="40dp"
 android:orientation="horizontal" android:paddingLeft="5dp"
 >

 <TextView android:id="@+id/title" android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Symphony's GHealth Demo"
 />
 <View android:id="@+id/View01" android:layout_width="1dp"
 android:layout_height="500dip"
 android:background="#2B497B" android:layout_toLeftOf="@+id/facebookBtn">
 </View>
 <!-- Facebook button -->
 <ImageView android:src="@drawable/icon_facebook"
 android:layout_toLeftOf="@+id/twitterBtn" android:layout_width="28dp"
 android:layout_height="28dp" android:id="@id/facebookBtn"
 android:clickable="true" />

6.21 Creating your own Custom Title Bar | 295

Figure 6-12.

296 | Chapter 6: Graphical User Interface

 <!-- Twitter button -->
 <ImageView android:src="@drawable/icon_twitter"
 android:clickable="true"
 android:layout_width="28dp" android:layout_height="28dp" android:id="@id/twitterBtn"
 android:layout_marginLeft="3dp" android:layout_marginRight="3dp"
 android:layout_toLeftOf="@+id/linkedinBtn" />
 <!-- Linkedin button -->
 <ImageView android:src="@drawable/icon_linkedin"
 android:layout_width="28dp"
 android:layout_height="28dp" android:clickable="true"
 android:layout_alignParentRight="true"
 android:id="@id/linkedinBtn" />
</RelativeLayout>

2. Create a class that uses the title bar and implements the button functionality

Here is the class which is the most important one.

1. First we will have to request the custom title bar

2. Set your layout file

3. Set the title bar

Example 6-50.

 public class CustomWindow extends Activity {
 protected TextView title;
 protected ImageView icon;
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request for custom title bar
 this.requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 //set to your layout file
 setContentView(R.layout.main);
 //Set the titlebar layout
 this.getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.maintitlebar);
 public void facebookBtnClicked(View v)
 {
 //Implement the button click event
 }
 public void twitterBtnClicked(View v)
 {
 //Implement the button click event
 }
 public void linkedinBtnClicked(View v)
 {
 //Implement the button click event
 }
 }

3. Change your layout files

For every layout file where you want to implement the custom title bar use match_pa-
rent in layout_height and layout_width, e.g.:

6.21 Creating your own Custom Title Bar | 297

Example 6-51.

 <LinearLayout android:id="@+id/LinearLayout01"
 android:layout_width="match_parent" android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:background="#E5E5E5">

4. Extend your activities from the custom class that you created in step 2

Example 6-52.

//CustomWindow will take care of loading the title bar
public class Credentials extends CustomWindow
{
//set the layout file
setContentView(R.layout.login);
}

And here's how your activity will look like:

Although there is no obligation to use a separate class for the titlebar implementation
but it is good coding practice.

Thus you have your own custom title bar shown in your activity is few easy steps

6.22 iPhone-like wheel picker for selection
Wagied Davids

Problem
Want a selection UI component similar to iPhone wheel picker.

Solution
File: Main.java

Example 6-53.

import kankan.wheel.widget.ArrayWheelAdapter;
import kankan.wheel.widget.OnWheelChangedListener;
import kankan.wheel.widget.OnWheelScrollListener;
import kankan.wheel.widget.WheelView;
import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;
import android.widget.TextView;

public class Main extends Activity
 {
 // TODO: Externalize string-array
 String wheelMenu1[] = new String[]{"Right Arm", "Left Arm", "R-Abdomen", "L-Abdomen", "Right Thigh", "Left Thigh"};
 String wheelMenu2[] = new String[]{"Upper", "Middle", "Lower"};

298 | Chapter 6: Graphical User Interface

Figure 6-13.

6.22 iPhone-like wheel picker for selection | 299

 String wheelMenu3[] = new String[]{"R", "L"};

 // Wheel scrolled flag
 private boolean wheelScrolled = false;

 private TextView text;
 private EditText text1;
 private EditText text2;
 private EditText text3;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.empty_layout);

 initWheel1(R.id.p1);
 initWheel2(R.id.p2);
 initWheel3(R.id.p3);

 text1 = (EditText) this.findViewById(R.id.r1);
 text2 = (EditText) this.findViewById(R.id.r2);
 text3 = (EditText) this.findViewById(R.id.r3);
 text = (TextView) this.findViewById(R.id.result);
 }

 // Wheel scrolled listener
 OnWheelScrollListener scrolledListener = new OnWheelScrollListener()
 {
 public void onScrollStarts(WheelView wheel)
 {
 wheelScrolled = true;
 }

 public void onScrollEnds(WheelView wheel)
 {
 wheelScrolled = false;
 updateStatus();
 }
 };

 // Wheel changed listener
 private final OnWheelChangedListener changedListener = new OnWheelChangedListener()
 {
 public void onChanged(WheelView wheel, int oldValue, int newValue)
 {
 if (!wheelScrolled)
 {
 updateStatus();
 }
 }
 };

 /**
 * Updates entered PIN status

300 | Chapter 6: Graphical User Interface

 */
 private void updateStatus()
 {
 text1.setText(wheelMenu1[getWheel(R.id.p1).getCurrentItem()]);
 text2.setText(wheelMenu2[getWheel(R.id.p2).getCurrentItem()]);
 text3.setText(wheelMenu3[getWheel(R.id.p3).getCurrentItem()]);

 text.setText(wheelMenu1[getWheel(R.id.p1).getCurrentItem()] + " - " + wheelMenu2[getWheel(R.id.p2).getCurrentItem()] + " - " + wheelMenu3[getWheel(R.id.p3).getCurrentItem()]);
 }

 /**
 * Initializes wheel
 *
 * @param id
 * the wheel widget Id
 */

 private void initWheel1(int id)
 {
 WheelView wheel = (WheelView) findViewById(id);
 wheel.setAdapter(new ArrayWheelAdapter(wheelMenu1));
 wheel.setVisibleItems(2);
 wheel.setCurrentItem(0);
 wheel.addChangingListener(changedListener);
 wheel.addScrollingListener(scrolledListener);
 }

 private void initWheel2(int id)
 {
 WheelView wheel = (WheelView) findViewById(id);
 wheel.setAdapter(new ArrayWheelAdapter(wheelMenu2));
 wheel.setVisibleItems(2);
 wheel.setCurrentItem(0);
 wheel.addChangingListener(changedListener);
 wheel.addScrollingListener(scrolledListener);
 }

 private void initWheel3(int id)
 {
 WheelView wheel = (WheelView) findViewById(id);

 wheel.setAdapter(new ArrayWheelAdapter(wheelMenu3));
 wheel.setVisibleItems(2);
 wheel.setCurrentItem(0);
 wheel.addChangingListener(changedListener);
 wheel.addScrollingListener(scrolledListener);
 }

 /**
 * Returns wheel by Id
 *
 * @param id
 * the wheel Id
 * @return the wheel with passed Id
 */

6.22 iPhone-like wheel picker for selection | 301

 private WheelView getWheel(int id)
 {
 return (WheelView) findViewById(id);
 }

 /**
 * Tests wheel value
 *
 * @param id
 * the wheel Id
 * @param value
 * the value to test
 * @return true if wheel value is equal to passed value
 */
 private int getWheelValue(int id)
 {
 return getWheel(id).getCurrentItem();
 }
 }

Discussion
Now you can with Android-Wheel the iPhone-like WheelPicker for Android: Android-
Wheel: http://code.google.com/p/android-wheel/ It comes with a handy ScrollListener
for listen to touch events on the wheel component.

6.23 Simple Calendar
Wagied Davids

Problem
You desire a simple and native Month view Calendar, which can easily be skinned.

Solution
File: simple_calendar_view.xml

Example 6-54.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="@drawable/bg">

 <Button
 android:id="@+id/selectedDayMonthYear"
 android:textColor="#FFFFFF"
 android:textAppearance="?android:attr/textAppearanceMedium"

302 | Chapter 6: Graphical User Interface

 android:background="@drawable/button_blue_background"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <ImageView
 android:id="@+id/prevMonth"
 android:src="@drawable/left_cal_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </ImageView>
 <Button
 android:id="@+id/currentMonth"
 android:layout_weight="0.8"
 android:textColor="#FFFFFF"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:background="@drawable/button_blue_background"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
 <ImageView
 android:id="@+id/nextMonth"
 android:src="@drawable/right_cal_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </ImageView>
 </LinearLayout>

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <ImageView
 android:id="@+id/calendarheader"
 android:src="@drawable/blue_bg_with_text"
 android:layout_gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </ImageView>
 </LinearLayout>

 <GridView
 android:id="@+id/calendar"
 android:horizontalSpacing="-1px"
 android:verticalSpacing="-1px"
 android:numColumns="7"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </GridView>

6.23 Simple Calendar | 303

</LinearLayout>

File: day_gridcell.xml

Example 6-55.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/day_gridcell"
 android:layout_gravity="center"
 android:textColor="#FFFFFF"
 android:background="@drawable/calendar_button_selector"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </Button>
</LinearLayout>

File: Main.java

Example 6-56.

import java.util.ArrayList;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.List;
import java.util.Locale;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.graphics.Color;
import android.os.Bundle;
import android.text.format.DateFormat;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.view.View.OnClickListener;
import android.widget.BaseAdapter;
import android.widget.Button;
import android.widget.GridView;
import android.widget.ImageView;
import android.widget.Toast;

public class Main extends Activity implements OnClickListener
 {
 private static final String tag = "Main";
 private Button selectedDayMonthYearButton;

304 | Chapter 6: Graphical User Interface

 private Button currentMonth;
 private ImageView prevMonth;
 private ImageView nextMonth;
 private GridView calendarView;
 private GridCellAdapter adapter;
 private Calendar _calendar;
 private int month, year;
 private final DateFormat dateFormatter = new DateFormat();
 private static final String dateTemplate = "MMMM yyyy";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.simple_calendar_view);

 _calendar = Calendar.getInstance(Locale.getDefault());
 month = _calendar.get(Calendar.MONTH);
 year = _calendar.get(Calendar.YEAR);

 selectedDayMonthYearButton = (Button) this.findViewById(R.id.selectedDayMonthYear);
 selectedDayMonthYearButton.setText("Selected: ");

 prevMonth = (ImageView) this.findViewById(R.id.prevMonth);
 prevMonth.setOnClickListener(this);

 currentMonth = (Button) this.findViewById(R.id.currentMonth);
 currentMonth.setText(dateFormatter.format(dateTemplate, _calendar.getTime()));

 nextMonth = (ImageView) this.findViewById(R.id.nextMonth);
 nextMonth.setOnClickListener(this);

 calendarView = (GridView) this.findViewById(R.id.calendar);

 // Initialised
 adapter = new GridCellAdapter(getApplicationContext(), R.id.day_gridcell, month, year);
 adapter.notifyDataSetChanged();
 calendarView.setAdapter(adapter);

 }

 @Override
 public void onClick(View v)
 {
 if (v == prevMonth)
 {
 if (month <= 1)
 {
 month = 11;
 year--;
 } else
 {
 month--;

6.23 Simple Calendar | 305

 }

 adapter = new GridCellAdapter(getApplicationContext(), R.id.day_gridcell, month, year);
 _calendar.set(year, month, _calendar.get(Calendar.DAY_OF_MONTH));
 currentMonth.setText(dateFormatter.format(dateTemplate, _calendar.getTime()));

 adapter.notifyDataSetChanged();
 calendarView.setAdapter(adapter);
 }
 if (v == nextMonth)
 {
 if (month >= 11)
 {
 month = 0;
 year++;
 } else
 {
 month++;
 }

 adapter = new GridCellAdapter(getApplicationContext(), R.id.day_gridcell, month, year);
 _calendar.set(year, month, _calendar.get(Calendar.DAY_OF_MONTH));
 currentMonth.setText(dateFormatter.format(dateTemplate, _calendar.getTime()));
 adapter.notifyDataSetChanged();
 calendarView.setAdapter(adapter);
 }
 }

 // Inner Class
 public class GridCellAdapter extends BaseAdapter implements OnClickListener
 {
 private static final String tag = "GridCellAdapter";
 private final Context _context;
 private final List<String> list;
 private final String[] weekdays = new String[] { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
 private final String[] months = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" };
 private final int[] daysOfMonth = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
 private final int month, year;
 private int daysInMonth, prevMonthDays;
 private final int currentDayOfMonth;
 private Button gridcell;

 // Days in Current Month
 public GridCellAdapter(Context context, int textViewResourceId, int month, int year)
 {
 super();
 this._context = context;
 this.list = new ArrayList<String>();
 this.month = month;
 this.year = year;

 Log.d(tag, "Month: " + month + " " + "Year: " + year);
 Calendar calendar = Calendar.getInstance();
 currentDayOfMonth = calendar.get(Calendar.DAY_OF_MONTH);

306 | Chapter 6: Graphical User Interface

 printMonth(month, year);
 }

 public String getItem(int position)
 {
 return list.get(position);
 }

 @Override
 public int getCount()
 {
 return list.size();
 }

 private void printMonth(int mm, int yy)
 {
 // The number of days to leave blank at
 // the start of this month.
 int trailingSpaces = 0;
 int leadSpaces = 0;
 int daysInPrevMonth = 0;
 int prevMonth = 0;
 int prevYear = 0;
 int nextMonth = 0;
 int nextYear = 0;

 GregorianCalendar cal = new GregorianCalendar(yy, mm, currentDayOfMonth);

 // Days in Current Month
 daysInMonth = daysOfMonth[mm];
 int currentMonth = mm;
 if (currentMonth == 11)
 {
 prevMonth = 10;
 daysInPrevMonth = daysOfMonth[prevMonth];
 nextMonth = 0;
 prevYear = yy;
 nextYear = yy + 1;
 } else if (currentMonth == 0)
 {
 prevMonth = 11;
 prevYear = yy - 1;
 nextYear = yy;
 daysInPrevMonth = daysOfMonth[prevMonth];
 nextMonth = 1;
 } else
 {
 prevMonth = currentMonth - 1;
 nextMonth = currentMonth + 1;
 nextYear = yy;
 prevYear = yy;
 daysInPrevMonth = daysOfMonth[prevMonth];
 }

 // Compute how much to leave before before the first day of the

6.23 Simple Calendar | 307

 // month.
 // getDay() returns 0 for Sunday.
 trailingSpaces = cal.get(Calendar.DAY_OF_WEEK) - 1;

 if (cal.isLeapYear(cal.get(Calendar.YEAR)) && mm == 1)
 {
 ++daysInMonth;
 }

 // Trailing Month days
 for (int i = 0; i < trailingSpaces; i++)
 {
 list.add(String.valueOf((daysInPrevMonth - trailingSpaces + 1) + i) + "-GREY" + "-" + months[prevMonth] + "-" + prevYear);
 }

 // Current Month Days
 for (int i = 1; i <= daysInMonth; i++)
 {
 list.add(String.valueOf(i) + "-WHITE" + "-" + months[mm] + "-" + yy);
 }

 // Leading Month days
 for (int i = 0; i < list.size() % 7; i++)
 {
 Log.d(tag, "NEXT MONTH:= " + months[nextMonth]);
 list.add(String.valueOf(i + 1) + "-GREY" + "-" + months[nextMonth] + "-" + nextYear);
 }
 }

 @Override
 public long getItemId(int position)
 {
 return position;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent)
 {
 Log.d(tag, "getView ...");
 View row = convertView;
 if (row == null)
 {
 // ROW INFLATION
 Log.d(tag, "Starting XML Row Inflation ... ");
 LayoutInflater inflater = (LayoutInflater) _context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 row = inflater.inflate(R.layout.day_gridcell, parent, false);

 Log.d(tag, "Successfully completed XML Row Inflation!");
 }

 // Get a reference to the Day gridcell
 gridcell = (Button) row.findViewById(R.id.day_gridcell);
 gridcell.setOnClickListener(this);

 // ACCOUNT FOR SPACING

308 | Chapter 6: Graphical User Interface

 Log.d(tag, "Current Day: " + currentDayOfMonth);
 String[] day_color = list.get(position).split("-");
 gridcell.setText(day_color[0]);
 gridcell.setTag(day_color[0] + "-" + day_color[2] + "-" + day_color[3]);

 if (day_color[1].equals("GREY"))
 {
 gridcell.setTextColor(Color.LTGRAY);
 }
 if (day_color[1].equals("WHITE"))
 {
 gridcell.setTextColor(Color.WHITE);
 }
 if (position == currentDayOfMonth)
 {
 gridcell.setTextColor(Color.BLUE);
 }

 return row;
 }

 @Override
 public void onClick(View view)
 {
 String date_month_year = (String) view.getTag();
 Toast.makeText(getApplicationContext(), date_month_year, Toast.LENGTH_LONG).show();
 selectedDayMonthYearButton.setText("Selected: " + date_month_year);
 }
 }
 }

Discussion
Logic layer: Standard use of the Calendar (java.util.Calendar) is used for creating a
calendar object, and setting the next and previous months and year.

For the GridView a custom adapter called, GridCellAdapter is created, GridCellAdap-
ter(getApplicationContext(), R.id.day_gridcell, month, year), which takes as parame-
ters a Context, text view resource identifier, integer for month and year.

For previous month, the onClick event is intercepted and the month is decremented
by 1, and for the next month it is incremented by 1. Special circumstances for the
December are included, where the previous month would be November of the same
year, and the next month would be January of the following year.

View layer: The calendar month view is created using a GridView component, con-
taining a GridView cell element modelled in day_gridcell.xml.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b460e9h/n/SimpleCalendar.zip

6.23 Simple Calendar | 309

http://www.filefactory.com/file/b460e9h/n/SimpleCalendar.zip
http://www.filefactory.com/file/b460e9h/n/SimpleCalendar.zip

6.24 Formatting Numbers
Ian Darwin

Problem
You need to format numbers, because the default formatting of Double.toString() and
friends do not give you enough control over how the results are displayed.

Solution
Use String.format() or one of the NumberFormat subclasses.

Discussion
The printf() function was included in the C programming language in the 1970's, and
used in many other languages since, including Java. Here's a simple printf example in
Java SE:

Example 6-57.

System.out.printf("Hello %s at %s%n", userName, time);

This could be expected to print something like

Example 6-58.

Hello Robin at Wed Jun 16 08:38:46 EDT 2010

Since we don't use System.out in Android, you'll be relieved to note that you can get
the same String that would be printed, for putting it into a View, by using:

Example 6-59.

String msg = String.format("Hello %s at %s%n", userName, time);

If you haven't seen printf before, the first argument is obviously the format code string,
and all the other arguments (userName and time) are values to be formatted. The format
codes begin with a percent sign ('%') and have at least one "type" code; common type
codes are shown in the table.

Table 6-1. Some common format codes

Character Meaning

s String (convert primitive values using defaults; convert objects by toString)

d Decimal integer (int, long)

f Floating point (float, double)

n Newline

t Time/Date formats, Java-specific; see below

310 | Chapter 6: Graphical User Interface

The default date formatting is pretty ugly, so we often need to expand on it. The printf
formatting capabilities are actually housed in the java.util.Formatter class, to which
reference should be made for the full details of its formatting language.

Unlike printf in other languages you may have used, all these format routines optionally
allow you to refer to arguments by their number, by putting a number plus a dollar sign
after the '%' lead-in but before the formatting code proper, for example "%2$3.1f"
means to format the second argument as a decimal number with three characters and
one digit after the decimal place. This numbering can be used for two purposes: to
change the order in which arguments print (often useful with internationalization), and
to refer to a given argument more than once. The date/time format character 't' requires
a second character after it, such as Y for the year, 'm' for month, and so on. Here we
take the time argument and extract several fields from it:

Example 6-60.

msg = String.format("Hello at %1$tB %1$td, %1$tY%n", time);

This might format as July 4, 2010.

To print numbers with a specific precision, you can use 'f' with a width and a precision,
such as

Example 6-61.

msg = String.format("Latitude: %10.6f", latitude);

This might yield:

Example 6-62.

Latitude: -79.281818

While such formatting is OK for specific uses such as latitudes and longitudes, for
general use such as currencies, it may give you too much control.

General Formatters

Java has an entire package, java.text, full of formatting routines as general and flexible
as anything you might imagine. As with printf, it has an involved formatting language,
described in the online documentation page. Consider the presentation of numbers. In
North America, the number "one thousand twenty-four and a quarter" is written
1,024.25, in most of Europe it is 1 024,25, and in some other part of the world it might
be written 1.024,25. Not to mention how currencies and percentages are formatted!
Trying to keep track of this yourself would drive the average small software developer
around the bend rather quickly.

Fortunately, the java.text package includes a Locale class, and, furthermore, the Java
or Android runtime automatically sets a default Locale object based on the user's en-
vironment; this code works the same on desktop Java as it does in Android. To provide

6.24 Formatting Numbers | 311

formatters customized for numbers, currencies, and percentages, the NumberFormat
class has static factory methods that normally return a DecimalFormat with the correct
pattern already instantiated. A DecimalFormat object appropriate to the user's locale
can be obtained from the factory method NumberFormat.getInstance() and manipu-
lated using set methods. Surprisingly, the method setMinimumIntegerDigits() turns
out to be the easy way to generate a number format with leading zeros. Here is an
example:

Example 6-63.

import java.text.NumberFormat;

/*
 * Format a number our way and the default way.
 */
public class NumFormat2 {
 /** A number to format */
 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 public static void main(String[] av) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Tailor it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it.
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form. We show
running it as a main program instead of in an Android application just to isolate the
effects of the NumberFormat.

$ java NumFormat2 0.0 formats as 000.00 1.0 formats as 001.00 3.142857142857143
formats as 003.1429 100.2345678 formats as 100.2346

You can also construct a DecimalFormat with a particular pattern or change the pattern
dynamically using applyPattern(). Some of the more common pattern characters are
shown in this table.

Table 6-2. DecimalFormat pattern characters

Character Explanation

Numeric digit (leading zeros suppressed)

312 | Chapter 6: Graphical User Interface

Character Explanation

0 Numeric digit (leading zeros provided)

. Locale-specific decimal separator (decimal point)

, Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

' Escapes one of the above characters so it appears as itself

Anything else Appears as itself

The NumFormatTest program uses one DecimalFormat to print a number with only two
decimal places and a second to format the number according to the default locale:

Example 6-64.

import java.text.DecimalFormat;
import java.text.NumberFormat;

public class NumFormatTest {
 /** A number to format */
 public static final double intlNumber = 1024.25;
 /** Another number to format */
 public static final double ourNumber = 100.2345678;

 public static void main(String[] av) {

 NumberFormat defForm = NumberFormat.getInstance();
 NumberFormat ourForm = new DecimalFormat("##0.##");
 // toPattern() will reveal the combination of #0., etc
 // that this particular Locale uses to format with
 System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
 System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
 System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
 System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");
 }
}

This program prints the given pattern and then formats the same number using several
formats:

Example 6-65.

$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25

6.24 Formatting Numbers | 313

100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format

See Also
Chapter Ten of the Java Cookbook; Part VI of Java I/O by Elliotte Rusty Harold.

6.25 Start a Second Screen from the First
Daniel Fowler

Problem
New App developers need a simple example on how to open another screen, thus
understanding how Android handles UI creation.

Solution
Building upon the Hello World Eclipse example another screen is loaded from a new
button to demonstrate the principles of starting a new UI screen.

Discussion
An Android application (App) will interact with a user through one or more screens.
Each screen presenting information and user interface (UI) elements, such as buttons,
lists, sliders, edit boxes and many others. The number of screens depends upon the
required functionality of the App and the type of Android device. A low cost Android
phone may have a 2.5 inch display, an expensive phone may have a 4.5 inch display,
and a tablet may have a 7 inch or 10 inch display. An App may only need one screen
for functionality on a tablet, two or three screens on the high end phone, four or five
on a low cost phone.

Each screen presented to the user is controlled by an Activity. The Activity is respon-
sible for creating and displaying the screen and managing the UI elements. The Android
View is the basic building block for UIs. Each screen element, such as a Button or
EditText, is provided in the package android.widget. Screen elements are derived from
View. They are placed on to the screen within containers derived from a ViewGroup, for
example a LinearLayout (ViewGroups are also derived from View). A variety of View-
Group layouts can be used, horizontal, vertical, table, grid and others.

The home screens can hold special types of View commonly referred to as Widgets;
these are small UI gadgets that can be used to provide feedback from an App to the
user without the need for a full App to be open. These App Widgets should not be
confused with the package android.widget. The latter holds the various types of screen
elements, the former is the commonly used name for home screen gadgets. App Widgets
are defined using RemoteViews which are also part of the android.widget package.

314 | Chapter 6: Graphical User Interface

http://oreilly.com/catalog/9780596007010/
http://oreilly.com/catalog/9780596527501/

It is possible to see the many types of Views and ViewGroups available in Android by
opening or creating an Android layout resource file in Eclipse (in the project folder res/
layout). When the resource file is open click on the Graphical Layout tab at the bottom
of the editor. A toolbar of all available UI elements will be shown on the left of the
editor. It is possible to filter by API level using the drop down towards the top right of
the editor pane.

A Fragment can be defined which is a reusable piece of screen. A Fragment is also laid
out using ViewGroups and Views. A Fragment can then be used on more than one
screen, thus defining a section of UI once when the same section needs to be used on
several screens.

Figure 6-14.

6.25 Start a Second Screen from the First | 315

As soon as an App has more than one screen defined there will be a need to load the
second screen from the first. In other operating systems a second screen is often loaded
directly by the first screen. Due to the design of Android an App can never directly start
a new screen; it has to ask the Android operating system to start it. This is because
Android was designed for mobility from the start. Android needs full control of an App
to enable efficient handling of events outside of the App. Events that must interrupt
the user, such as a telephone call or low battery condition; events that notify the user,
such as incoming mail or a reminder firing, and the user leaving the App to deal with
that notification. The user may also open another App. A variety of things can happen
that will need Android to have fine control of how an App executes and responds.
When Android starts a screen it knows what is running and their state. Android can
dispatch messages to the activities and they can react to unexpected events accordingly.
This is also why an App does not have a main method for programs as on other systems
(as mention in the Recipe 1.7 recipe). A main method is not required because Android
itself is controlling the start up.

To get a screen up and running in an App the following is required:

1. The definition of the screen must be composed in a layout.

2. An Activity must be defined in a Java class file to handle the screen.

3. Android must be notified that the Activity exists, via the Apps manifest file.

4. The App must tell Android when it is required to start the new screen.

As an example we can add another screen to the 'MyAndroid' App in the Recipe 1.4
recipe. The new screen will also contain a simple message and will be started when a
button is pressed on the opening screen. Open Eclipse and open the MyAndroid project
as created in the Hello World recipe. First we will add three strings, one for the new
screen's title, one for the message on the new screen and one for the caption for the
button that will be used to start the new screen. In the project tree in the Package
Explorer open the strings.xml file in the res/values folder. Add three strings, one with
the name screen2Title with value Screen 2, one named hello2 with the value Hello!
Again., and one named next with the value Next. The strings.xml file will look like this:

Example 6-66.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello World, Main!</string>
 <string name="app_name">MyAndroid</string>
 <string name="screen2Title">Screen 2</string>
 <string name="hello2">Hello! Again.</string>
 <string name="next">Next</string>
</resources>

From the File menu (or using the context menu on the project tree) select New and then
Android XML File. Set the following fields in the dialog that opens keeping all others
as default:

316 | Chapter 6: Graphical User Interface

''File'' secondscreen.xml

''Type of Resource'' Layout

''Folder'' /res/layout

Select finish.

With secondscreen.xml open either drag a TextView on to the screen in the Graphical
Layout pane, or in the XML pane enter the TextView code. Set the TextView properties
as follows:

Layout width fill_parent

Layout height wrap_content

Text @string/hello2

Figure 6-15.

6.25 Start a Second Screen from the First | 317

Text size 10pt

The secondscreen.xml file should contain the following.

Example 6-67.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello2"
 android:gravity="center_horizontal"
 android:textSize="10pt"></TextView>
</LinearLayout>

Open the main.xml in the res/layout folder. Either drag a Button on to the screen in the
Graphical Layout or add the Button in the XML view. Set the Button properties as
follows:

Layout width wrap_content

Layout height wrap_content

Id @+id/nextButton

Text @string/next

Example 6-68.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal" />
 <Button
 android:id="@+id/nextButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next" />
</LinearLayout>

From the File menu (or using the context menu on the project tree) select New and then
Class. Set the following fields in the dialog that opens keeping all others as default:

318 | Chapter 6: Graphical User Interface

Source folder MyAndroid/src

Package com.example

Name Screen2

Select Finish.

Figure 6-16.

6.25 Start a Second Screen from the First | 319

Within the Screen2.java file we extend the class to be a subclass of Activity and override
the onCreate method, the same way as in the Main class. We then call setContent
View passing the new secondscreen layout. All resource references are accessed via a
generated Java class named R, hence the reference to the new screen's layout is via
R.layout.secondscreen (the R class is generated from the files and folders under the
res folder). With the required imports the Screen2.java file will look like this:

Example 6-69.

package com.example;

import android.app.Activity;
import android.os.Bundle;

public class Screen2 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondscreen);
 }
}

The button needs code to tell Android of our intention to start the activity that contains
the new screen. This can be achieved by passing the name of the required activity in an
Intent object to the startActivity method when the button is pressed. The startAc-
tivity method is available on the Context object; Context has a host of useful methods
which provide access to the environment in which the App is executing. Activity is a
subclass of Context so the startActivity method is always available within an Activity.
By using startActivity Android gets the opportunity to perform any required house-
keeping and then fire up the Activity class that was defined in the App.

The recipe Recipe 6.9 shows how to add a handler for button presses. Here instead of
getting the Main class to implement the onClick method it will be done with an inner
class.

Within onClick the code is needed to start the Screen2 Activity. An Intent declaration
requires a Context and Activity (Screen2). Since Main is an Activity, which is derived
from Context, we can use this (in this case Main.this because of the inner class for the
onClick handler). With all the imports the Main.java code will be:

Example 6-70.

package com.example;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;

public class Main extends Activity {

320 | Chapter 6: Graphical User Interface

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.nextButton).setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(Main.this, Screen2.class);
 startActivity(intent);
 }});
 }
}

Alternatively to make the code easier to understand the object to handle the button
presses can be declared seperately.

Example 6-71.

public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.nextButton).setOnClickListener(new handleButton());
 }
 class handleButton implements OnClickListener {
 public void onClick(View v) {
 Intent intent = new Intent(Main.this, Screen2.class);
 startActivity(intent);
 }
 }
}

(The handler example in the Recipe 6.9 recipe can also be adapted for this example).

Finally to register the new screen with Android an activity definition is add to the
AndroidManifest.xml file in the project, after the activity declaration for Main. The
activity section will be:

Example 6-72.

<application android:icon="@drawable/globe" android:label="@string/app_name">
 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".Screen2"
 android:label="@string/screen2Title">
 </activity>
</application>

6.25 Start a Second Screen from the First | 321

The dot in front of Main and Screen2 signifies that the activity is within the application
package. If the activity was defined in another package then the activity name would
include the full package name.

When the App runs the first screen will show:

And pressing the Next button shows:

A button is not required to go back to the first screen. Android automatically provides
a back button for all screens as part of the platform.

See Also
Hello World - Eclipse Version Invoke an action handler when a Button is pressed

6.26 Creating a Tabbed Dialog
Rachee Singh

Problem
Categorizing information display in an custom Dialog.

Solution
Using a tabbed layout within a custom Dialog.

Discussion
The custom dialog class implements the class Dialog.

Example 6-73.

 public class CustomDialog extends Dialog

The constructor of the class has to be initialized.

Example 6-74.

 public CustomDialog(final Context context)
 {
 super(context);

 setTitle("My First Custom Tabbed Dialog");
 setContentView(R.layout.custom_dialog_layout);

To create the 2 tabs, insert this code within the constructor. tab_image1 and tab_im-
age2 are placed in /res/drawable. These images are placed on the tabs of the tabbed
custom dialog.

322 | Chapter 6: Graphical User Interface

Figure 6-17.

6.26 Creating a Tabbed Dialog | 323

Figure 6-18.

324 | Chapter 6: Graphical User Interface

Example 6-75.

 // get our tabHost from the xml
 TabHost tabHost = (TabHost)findViewById(R.id.TabHost01);
 tabHost.setup();

 // create tab 1
 TabHost.TabSpec spec1 = tabHost.newTabSpec("tab1");
 spec1.setIndicator("Profile", context.getResources().getDrawable(R.drawable.tab_image1));
 spec1.setContent(R.id.TextView01);
 tabHost.addTab(spec1);
 //create tab2
 TabHost.TabSpec spec2 = tabHost.newTabSpec("tab2");
 spec2.setIndicator("Profile", context.getResources().getDrawable(R.drawable.tab_image2));
 spec2.setContent(R.id.TextView02);
 tabHost.addTab(spec2);

This is a simple tabbed dialog. It required the addition of these few lines into the con-
structor's code. To implement something like a list view, a list view adapter would be
required. There are immense possibilities to the kind of tabs that can be inserted based
on the requirement of the application.

The XML code for a tabbed dialog would require <tabhost> tags enclosing the entire
layout. Within these tags, the location of various parts of the tabbed dialog are placed.
A frame layout has to be used to place the content of the different tabs. In this case, we
are creating 2 tabs both with a scroll view containing text (stored in Strings.xml, named
'lorem_ipsum').

Here is the code for custom_dialog_layout.xml

Example 6-76.

<TabHost
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/TabHost01"
 android:layout_width="fill_parent"
 android:layout_height="500dip">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <TabWidget
 android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <FrameLayout
 android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

6.26 Creating a Tabbed Dialog | 325

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>

 <ScrollView android:id="@+id/ScrollView02"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView02"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </FrameLayout>
 </LinearLayout>
</TabHost>

6.27 Creating a Custom Dialog with buttons, images and text
Rachee Singh

Problem
The application requires a Dialog-like structure in place of a full-fledged activity to
show some information.Text, images and also a button are required on this Custom
Dialog.

Solution
Creating a Custom Dialog with Tabs.Since everything can be squeezed into a Dialog
in place of an entire activity, the application has seems more compact.

326 | Chapter 6: Graphical User Interface

Discussion
Custom Dialog Class should extend 'Custom Dialog': public class CustomDialog ex-
tends Dialog

Following lines of code need to be added to the 'customDialog' class:

Example 6-77.

 setTitle("Dialog Title");
 setContentView(R.layout.custom_dialog_layout);
 //On Click listeners for the buttons present in the Dialog
 Button button1 = (Button) findViewById(R.id.button1);
 Button button2 = (Button) findViewById(R.id.button2);
 button1.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 dismiss(); //to dismiss the Dialog
 }
 });

 button2.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 //Fire an intent on click of this button
 Intent showQuickInfo = new Intent("com.android.oreilly.QuickInfo");
 showQuickInfo.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(showQuickInfo);
 }
 });

The XML code in the layout file (present in /res/layout) custom_dialog_layout :

The entire code is enclosed with a linear layout. Within the LinearLayout, a Relative
Layout is used to position 2 buttons (which could be denote different options like
'Login' and 'Vote up' etc). Then below the Relative layout, another Relative Layout
containing a scroll view is present.

'android_button' and 'thumbsup' are the names of images in /res/drawable.

Example 6-78.

<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingBottom="10dip">
 <Button

6.27 Creating a Custom Dialog with buttons, images and text | 327

 android:id="@+id/button1"
 android:background="@drawable/android_button"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentLeft="true"
 android:layout_marginLeft="10dip"
 android:gravity="center"/>

 <Button
 android:id="@+id/button2"
 android:background="@drawable/thumbsup"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentRight="true"
 android:layout_marginRight="10dip"
 android:gravity="center"/>
 </RelativeLayout>

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingBottom="10dip">

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </RelativeLayout>
</LinearLayout>

6.28 Create a Custom Menu
Rachee Singh

Problem
Within the Activity, showing a menu on pressing the Menu button of the Android
device.

328 | Chapter 6: Graphical User Interface

Solution
Implement a menu by setting it up in the XML and attaching it to your Activity by
overriding onCreateOptionsMenu().

Discussion
Its a two step process:

Step 1: Create a directory named 'menu' in the res directory of the project. In the menu
directory create a menu.xml. Here is the code for menu.xml:

Example 6-79.

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/icon1"
 android:title="One"
 android:icon="@drawable/first" />
 <item android:id="@+id/icon2"
 android:title="Two"
 android:icon="@drawable/second" />
 <item android:id="@+id/icon3"
 android:title="Three"
 android:icon="@drawable/three" />
 <item android:id="@+id/icon4"
 android:title="Four"
 android:icon="@drawable/four" />
</menu>

In this XML code we add a menu and to it we add as many items as our application
requires. We can images (in this case default images have been added).

Step 2: In the java code for the activity, override the onCreateOptionsMenu :

Example 6-80.

@Override
 public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu, menu);
 return true;
 }

This is how it looks:

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZ
WUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI

6.28 Create a Custom Menu | 329

https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI
https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI
https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI

Figure 6-19.

330 | Chapter 6: Graphical User Interface

6.29 Loading Screen in between two Activities
Shraddha Shravagi

Problem
If you are getting an black screen before loading an activity here's how to avoid it.

Solution
Sometimes when your Activity is fetching some data from database or from internet
then it takes time to load-up. To avoid this scenario we can have a simple Activity that
shows a loading image instead of a black screen.

Your normal scenario may be like this: ProfileList(user selects one profile) -> Black
Screen -> ProfileData Suppose you have an list activity (ProfileList) from which when
user selects one then connection is established and later Profile(ProfileData) data is
shown and if it takes time to load ProfileData then you introduce an LoadingScreen

ProfileList(user selects one profile) -> LoadingScreenActivity -> ProfileData

Discussion

1. Create a LoadingScreen layout file

Here you create an screen which just shows loading text and an progress bar load-
ing_screen.xml

Example 6-81.

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:gravity="center" android:orientation="vertical"
 android:layout_height="fill_parent" android:background="#E5E5E5">

 <TextView android:text="Please wait while your data gets loaded..."
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:textColor="#000000">
 </TextView>
 <ProgressBar android:id="@+id/mainSpinner1" android:layout_gravity="center"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:indeterminate="true"
 style="?android:attr/progressBarStyleInverse">
 </ProgressBar>

</LinearLayout>

6.29 Loading Screen in between two Activities | 331

2. Create a LoadingScreen class file

Example 6-82.

public class LoadingScreenActivity extends Activity {

//Introduce an delay
 private final int WAIT_TIME = 2500;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 System.out.println("LoadingScreenActivity screen started");
 setContentView(R.layout.loading_screen);
 findViewById(R.id.mainSpinner1).setVisibility(View.VISIBLE);

 new Handler().postDelayed(new Runnable(){
 @Override
 public void run() {
 //Simulating a long running task
 this.Sleep(1000);
 System.out.println("Going to Profile Data");
 /* Create an Intent that will start the ProfileData-Activity. */
 Intent mainIntent = new Intent(LoadingScreenActivity.this,ProfileData.class);
 LoadingScreenActivity.this.startActivity(mainIntent);
 LoadingScreenActivity.this.finish();
 }
 }, WAIT_TIME);
 }
}

This will load the next activity once WAIT_TIME is elapsed

3. Open LoadingScreenActivity from say your List from onListItemClick event

Create an intent to launch loading screen activity

Example 6-83.

protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

Intent intent = new Intent(ProfileList.this, LoadingScreenActivity.class);
 startActivity(intent);
}

This is how you show an simple loading screen for 2500ms. After the completion of
these many seconds automatically the next activity that you mentioned in the handler
of LoadingScreenActivity will start. Thus the black screen which is displayed when you
do some web activity can be avoided.

332 | Chapter 6: Graphical User Interface

6.30 Implementing reactions on click of items in a Custom
Menu.
Rachee Singh

Problem
After Creating a custom menu, implementing a reaction on clicking the menu item.

Solution
Overriding onOptionsItemSelected method.

Discussion
In the Java Activity we need to override the onOptionsItemSelected. This method takes
in a MenuItem and checks for its ID. Based on the ID of the item which is clicked, a
switch-case can be used. Depending on the case selected, appropriate action can be
taken. The custom menu would look something like this:

For a sample, the cases can just display Toasts.

Here's the source code for the sample:

Example 6-84.

@Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.icon1:
 Toast.makeText(this, "Icon 1 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon2:
 Toast.makeText(this, "Icon 2 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon3:
 Toast.makeText(this, "Icon 3 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon4 :
 Toast.makeText(this, "Icon 4 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
 }

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LZWM0ODRiNjAtNzJ
hOS00MGRjLTkwMjMtMjNlOTQwZDU0OGE2&hl=en_US&authkey=CJKD4IoH

6.30 Implementing reactions on click of items in a Custom Menu. | 333

https://docs.google.com/leaf?id=0B_rESQKgad5LZWM0ODRiNjAtNzJhOS00MGRjLTkwMjMtMjNlOTQwZDU0OGE2&hl=en_US&authkey=CJKD4IoH
https://docs.google.com/leaf?id=0B_rESQKgad5LZWM0ODRiNjAtNzJhOS00MGRjLTkwMjMtMjNlOTQwZDU0OGE2&hl=en_US&authkey=CJKD4IoH
https://docs.google.com/leaf?id=0B_rESQKgad5LZWM0ODRiNjAtNzJhOS00MGRjLTkwMjMtMjNlOTQwZDU0OGE2&hl=en_US&authkey=CJKD4IoH

Figure 6-20.

334 | Chapter 6: Graphical User Interface

Figure 6-21.

6.30 Implementing reactions on click of items in a Custom Menu. | 335

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZ
WUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI

6.31 Navigate different activities within a TabView
Pratik Rupwal

Problem
You want to move from an activity within a tab view to another activity within the same
tab.

Solution
It can be achieved by replacing the content view of the tab by the new activity you want
to move to.

Discussion
When an activity (lets call it as 'calling activity' here onwards) within a 'TabView' calls
another activity(lets call it as 'called activity' here onwards) through an intent,the 'Tab-
View' gets replaced by the view of called activity. To show the called activity within the
'TabView' we can replace the view of calling activity by the view of called activity so
the TabView remains stable.To achieve this the calling activity needs to be extended
from 'ActivityGroup' rather than 'Activity'.

Below activity 'Calling' extended from 'ActivityGroup' has been set within a 'TabView'.

Example 6-85.

//'Calling' activity.

public class Calling extends ActivityGroup implements OnClickListener
{
 Button b1;
 Intent i1;

 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.calling);

 b1=(Button)findViewById(R.id.changeactivity);

336 | Chapter 6: Graphical User Interface

https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI
https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI
https://docs.google.com/leaf?id=0B_rESQKgad5LNjJjMzBhZjktMDcxZS00MWU4LWIzNWYtZWUxOTAzMzc2NjZk&hl=en_US&authkey=CPyM4boI

 b1.setOnClickListener();
 }

 public void onClick(View view)
 {
 // This creates an intent to call the 'Called' activity

 i1=new Intent(this.getBaseContext(),Called.class);

 // calls the method to replace View.

 replaceContentView("Called", i1);
 }

 // This method is used for replacing the view of 'Calling' activity by 'Called' activity.

 public void replaceContentView(String id, Intent newIntent)
 {
 //Obtain the view of 'Called' activity using its Intent 'newIntent'
 View view = getLocalActivityManager().startActivity(id,newIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP)) .getDecorView();

 //set the above view to the content of 'Calling' activity.
 this.setContentView(view);
 }
}

The 'Called activity' can also call another activity (say 'CalledSecond') as below.

//'Called activity'

public class Called extends Activity implements OnClickListener
{
 Button b1;
 Intent i1;
 Calling caller;

 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.called);

 b1=(Button)findViewById(R.id.changeactivity);

 b1.setOnClickListener();
 }

 public void onClick(View view)
 {
 // This creates an intent to call the 'CalledSecond' activity

 i1=new Intent(this.getBaseContext(),CalledSecond.class); /** 'CalledSecond' can be any activity,
 even the 'Calling'(In case backward navigation is required)*/

6.31 Navigate different activities within a TabView | 337

 // Initialize the object of the 'Calling' class.
 caller=(Calling)getParent();

 // calls the method to replace View.

 caller.replaceContentView("CalledSecond", i1);
 }
}

6.32 Drop-down Chooser via the Spinner Class
Ian Darwin

Problem
You want to offer a drop-down choice item.

Solution
Use a Spinner object; you can pass the list of selections as an Adapter.

Discussion
Generally known as a 'combo box', the Spinner is the analog of the HTML SELECT or
the Swing JComboBox. It provides a drop-down chooser whose values appear to float
over the screen when the Spinner is clicked. One item can be selected and the floating
version will pop down, displaying the selection in the Spinner.

Like all standard components, the Spinner can be created and customized in XML. In
this example - from healthcare practice - the term "Context" is used to indicate the
phase of the person's day when a reading was taken - after breakfast, after lunch, etc.,
so the health care practitioner can understand the value in context of the patient's day.
Here is an excerpt from res/layout/main.xml:

Example 6-86.

<Spinner android:id="@+id/contextChooser"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:prompt="@string/context_choice"/>

Ideally the list of values won't be hard-coded but will come from a Resource file, so as
to be internationalizable. Here is a file res/values/contexts.xml containing the XML
values for the list of times to choose.

Example 6-87.

<?xml version="1.0" encoding="utf-8"?>
<resources>

338 | Chapter 6: Graphical User Interface

 <string name="context_choice">When Reading Taken</string>
 <string-array name="context_names">
 <item>Breakfast</item>
 <item>Lunch</item>
 <item>Dinner</item>
 <item>Snack</item>
 </string-array>
</resources>

To tie the list of Strings to the Spinner at run time, just locate the Spinner and set the
values, as shown:

Example 6-88.

Spinner contextChooser = (Spinner) findViewById(R.id.contextChooser);
ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(
 this, R.array.context_names, android.R.layout.simple_spinner_item);
 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 contextChooser.setAdapter(adapter);

That is all you need in order for the Spinner to appear, and to allow the user to select
items. If you want to know the chosen value right away, you can send an instance of
OnItemSelectedListener to the Spinner's setOnItemSelectedListener. This interface has
two callback methods, setItemSelected and setNothingSelected. Both are called with
the Spinner (but the argument is declared as a ViewAdapter); the former method is also
called with two integer arguments, the list position and the identity of the selected item.

Example 6-89.

 contextChooser.setOnItemSelectedListener(new OnItemSelectedListener() {

 @Override
 public void onItemSelected(AdapterView<?> spinner, View arg1,
 int pos, long id) {
 Toast.makeText(SpinnerDemoActivity.this, "You selected " + contextChooser.getSelectedItem(), Toast.LENGTH_LONG).show();
 }

 @Override
 public void onNothingSelected(AdapterView<?> spinner) {
 Toast.makeText(SpinnerDemoActivity.this, "Nothing selected.", Toast.LENGTH_LONG).show();
 }
 });

On the other hand, you may not need the value from the Spinner until the user fills in
multiple items and clicks a Button. In this case, you can simply call the Spinner's get-
SelectedItem() method, which returns the item place in that position by the Adapter.
Assuming you placed Strings in the list, you can just call toString() to get back the given
String value.

6.32 Drop-down Chooser via the Spinner Class | 339

6.33 Effective UI design using Image Buttons
Rachee Singh

Problem
While building an application, many a times the UI design requires the effective use of
image buttons. It saves effort on text views etc since an image explains the scenario
much better.

Solution
This application provides the user with 2 options: 1. To start the application (which
could be, start bluetooth scan or play music, GPS scan etc) 2. Configure the application
(Complete settings for the application). So here is an intuitive UI with 2 image buttons
providing these choices.

Discussion
Making one's own Image Buttons requires defining the characteristics of the button as
an XML file that should be placed in /res/drawable. This XML specifies the 3 states of
an Image Button:

1. Pressed State

2. Focused State

3. Otherwise.

For Instance:

Example 6-90.

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/play_pressed"
 android:state_checked="true" />
 <item android:drawable="@drawable/play" />
</selector>

When Play Button is not pressed:

When Play Button is pressed:

So, for each of these states, the ID of an image is specified (the image present in /res/
drawable as a .png). When the button is pressed, the play_pressed image is displayed.
There are 2 such buttons in the application, Play Button and the Settings Button. In
the .java file of the application, onClick aspect of the buttons can be taken care of. In
this recipe, merely a toast is displayed with some appropriate text. Programmers can
kick off an new activity from here or broadcast an intent and many other things based
on their requirement.

340 | Chapter 6: Graphical User Interface

Figure 6-22.

6.33 Effective UI design using Image Buttons | 341

Figure 6-23.

342 | Chapter 6: Graphical User Interface

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LYTVjZGMzZmItNDYzNC00YmRmLTlkMTktO
TIzNTM0NzVmMDQ2&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LOWYyODVlMTAtNzNiNy00YzlmLWIxM
jUtNmViNjAxMjFkYmFh&hl=en_US

6.34 Pinch to zoom
Pratik Rupwal

Problem
Use the finger touch to change the position of an image viewed on the screen and use
pinch-in and pinch-out movements for zooming in and zooming out operations.

Solution
Scale the image as a matrix to apply transformations to it for showing different visual
effects.

Discussion
A simple ImageView is to be added inside a FrameLayout in main.xml as below:

Example 6-91.

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<ImageView android:id="@+id/imageView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:src="@drawable/nature"
 android:scaleType="matrix" >
</ImageView>
</FrameLayout>

The code below scales the ImageView as a matrix to apply transformations on it.

6.34 Pinch to zoom | 343

https://docs.google.com/leaf?id=0B_rESQKgad5LYTVjZGMzZmItNDYzNC00YmRmLTlkMTktOTIzNTM0NzVmMDQ2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYTVjZGMzZmItNDYzNC00YmRmLTlkMTktOTIzNTM0NzVmMDQ2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYTVjZGMzZmItNDYzNC00YmRmLTlkMTktOTIzNTM0NzVmMDQ2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LOWYyODVlMTAtNzNiNy00YzlmLWIxMjUtNmViNjAxMjFkYmFh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LOWYyODVlMTAtNzNiNy00YzlmLWIxMjUtNmViNjAxMjFkYmFh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LOWYyODVlMTAtNzNiNy00YzlmLWIxMjUtNmViNjAxMjFkYmFh&hl=en_US

Example 6-92.

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.graphics.PointF;
import android.os.Bundle;
import android.util.FloatMath;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.GridView;
import android.widget.ImageView;

public class Touch extends Activity implements OnTouchListener {
private static final String TAG = "Touch";

// These matrices will be used to move and zoom image
Matrix matrix = new Matrix();
Matrix savedMatrix = new Matrix();

// We can be in one of these 3 states
static final int NONE = 0;
static final int DRAG = 1;
static final int ZOOM = 2;
int mode = NONE;

// Remember some things for zooming
PointF start = new PointF();
PointF mid = new PointF();
float oldDist = 1f;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView view = (ImageView) findViewById(R.id.imageView);
 view.setScaleType(ImageView.ScaleType.FIT_CENTER); // make the image fit to the center.
 view.setOnTouchListener(this);
}

public boolean onTouch(View v, MotionEvent event) {
 ImageView view = (ImageView) v;
 // make the image scalable as a matrix
 view.setScaleType(ImageView.ScaleType.MATRIX);
 float scale;

 // Handle touch events here...
 switch (event.getAction() & MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN: //first finger down only
 savedMatrix.set(matrix);
 start.set(event.getX(), event.getY());
 Log.d(TAG, "mode=DRAG");
 mode = DRAG;

344 | Chapter 6: Graphical User Interface

 break;
 case MotionEvent.ACTION_UP: //first finger lifted
 case MotionEvent.ACTION_POINTER_UP: //second finger lifted
 mode = NONE;
 Log.d(TAG, "mode=NONE");
 break;
 case MotionEvent.ACTION_POINTER_DOWN: //second finger down
 oldDist = spacing(event); // calculates the distance between two points where user touched.
 Log.d(TAG, "oldDist=" + oldDist);
 // minimal distance between both the fingers
 if (oldDist > 5f) {
 savedMatrix.set(matrix);
 midPoint(mid, event); // sets the mid-point of the straight line between two points where user touched.
 mode = ZOOM;
 Log.d(TAG, "mode=ZOOM");
 }
 break;

 case MotionEvent.ACTION_MOVE:
 if (mode == DRAG)
 { //movement of first finger
 matrix.set(savedMatrix);
 if (view.getLeft() >= -392)
 {
 matrix.postTranslate(event.getX() - start.x, event.getY() - start.y);
 }
 }
 else if (mode == ZOOM) { //pinch zooming
 float newDist = spacing(event);
 Log.d(TAG, "newDist=" + newDist);
 if (newDist > 5f) {
 matrix.set(savedMatrix);
 scale = newDist/oldDist; //thinking I need to play around with this value to limit it**
 matrix.postScale(scale, scale, mid.x, mid.y);
 }
 }
 break;
 }

 // Perform the transformation
 view.setImageMatrix(matrix);

 return true; // indicate event was handled
}

private float spacing(MotionEvent event) {
 float x = event.getX(0) - event.getX(1);
 float y = event.getY(0) - event.getY(1);
 return FloatMath.sqrt(x * x + y * y);
}

private void midPoint(PointF point, MotionEvent event) {
 float x = event.getX(0) + event.getX(1);
 float y = event.getY(0) + event.getY(1);
 point.set(x / 2, y / 2);

6.34 Pinch to zoom | 345

}
}

6.35 Add a Border with Rounded Corners to a Layout
Daniel Fowler

Problem
There is a need to put a border around an area of the screen or add interest to a user
interface.

Solution
Define an Android shape in an XML file and assign it to a layout's background attribute.

Discussion
The drawable folder, under res, in an Android project is not restricted to bitmaps (PNG
or JPG files) but can also hold shapes defined in XML files. These shapes can then be
reused in the project. A shape can be used to put a border around a layout. This example
shows a rectangular border with curved corners.

A new file called customborder.xml is created in the drawable folder (in Eclipse use the
File menu and select New then File, with the drawable folder selected type in the file
name and click Finish).

The XML defining the border shape is entered:

Example 6-93.

<?xml version="1.0" encoding="UTF-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android" android:shape="rectangle">
 <corners android:radius="20dp"/>
 <padding android:left="10dp" android:right="10dp" android:top="10dp" android:bottom="10dp"/>
 <solid android:color="#CCCCCC"/>
</shape>

The attribute android:shape is set to rectangle (shape files also support oval, line and
ring). Rectangle is the default value so this attribute could be left out if it is a rectangle
being defined. See the Android documentation on shapes for detailed information on
a shape file (link below).

The element corners sets the rectangle corners to be rounded, it is possible to set a
different radius on each corner (see the Android reference).

The padding attributes are used to move the contents of the View to which the shape
is applied, to prevent the contents overlapping the border.

The border color here is set to a light gray (CCCCCC hexadecimal RGB value).

346 | Chapter 6: Graphical User Interface

Shapes also support gradients but that is not being used here, again see the Android
resources to see how a gradient is defined.

The shape is applied to the laypout using android:background="@drawable/custombor
der".

Within the layout other views can be added as normal, in this example a single Text
View has been added, the text is white (FFFFFF hexadecimal RGB). The background is
set to blue, plus some transparency to reduce the brightness (A00000FF hexadecimal
alpha RGB value).

Finally the layout is offset from the screen edge by placing it into another layout with
a small amount of padding. The full layout file is thus:

Example 6-94.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="5dp">
 <LinearLayout android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/customborder">
 <TextView android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Text View"
 android:textSize="20dp"
 android:textColor="#FFFFFF"
 android:gravity="center_horizontal"
 android:background="#A00000FF" />
 </LinearLayout>
</LinearLayout>

Which produces:

See Also
http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

6.36 Creating a ProgressDialog in Android.
Rachee Singh

Problem
Making the user aware of background processing happening in the application.

6.36 Creating a ProgressDialog in Android. | 347

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

Solution
Show a ProgressDialog while the processing is being carried out.

Discussion
We provide a button that on being clicked shows a ProgressDialog. In the Progress-
Dialog we set the title as 'Please Wait' and content as 'Processing Information..'. After
this we create a new thread and start the thread's execution. In the run() method (which
gets executed once the thread gets started) we call the sleep method for 4 seconds. After
these 4 seconds expire the ProgressDialog is dismissed and the text in TextView gets
changed.

Example 6-95.

complete = (TextView) this.findViewById(R.id.complete);
complete.setText("Press the Button to start Processing");
processing = (Button)findViewById(R.id.processing);
processing.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View arg0) {
 progressDialog = ProgressDialog.show(ProgressDialogExp.this, "Please Wait", "Processing Information..", true,false);

Figure 6-24.

348 | Chapter 6: Graphical User Interface

 Thread thread = new Thread(ProgressDialogExp.this);
 thread.start();
 }
});

A Handler is used so as to update the UI once thread execution finishes. So we send an
empty message to the handler after thread execution completes and then in the Handler
we dismiss the ProgressDialog and update the text of the TextView.

Example 6-96.

public void run() {
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 handler.sendEmptyMessage(0);
}

private Handler handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 complete.setText("Processing Finished");
 }
};

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMTE2NDcyMDEtNGMzMS00MzI4LTgyNGUtN
zliZmY4ZjhhOWE2&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNjg2Y2UzZTEtO
GY2YS00NGMyLTkzMzMtN2EzMTY0M2NmYTE0&hl=en_US

6.37 Creating a Submenu.
Rachee Singh

Problem
Display options to the user in an floating window.

Solution
Use a Submenu implementation and provide options to the user.

6.37 Creating a Submenu. | 349

https://docs.google.com/leaf?id=0B_rESQKgad5LMTE2NDcyMDEtNGMzMS00MzI4LTgyNGUtNzliZmY4ZjhhOWE2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMTE2NDcyMDEtNGMzMS00MzI4LTgyNGUtNzliZmY4ZjhhOWE2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMTE2NDcyMDEtNGMzMS00MzI4LTgyNGUtNzliZmY4ZjhhOWE2&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNjg2Y2UzZTEtOGY2YS00NGMyLTkzMzMtN2EzMTY0M2NmYTE0&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNjg2Y2UzZTEtOGY2YS00NGMyLTkzMzMtN2EzMTY0M2NmYTE0&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNjg2Y2UzZTEtOGY2YS00NGMyLTkzMzMtN2EzMTY0M2NmYTE0&hl=en_US

Discussion
A submenu is a part of a menu that displays options in a hierarichal manner as opposed
the style shown in a custom menu otherwise. The menus can be created in 2 ways: #
By inflating an XML layout # Creating the menu items in the Java code. Following the
second approach in this recipe, the creating menu/submenu items is done in the on-
CreateOptionsMenu() method.

We add the submenu to the menu using the addSubMenu() method. In order to prevent
conflicts with other items in the menu, we explicitly provide group Id and item ID to
the submenu we are creating (Constants for the item IDs and Group ID are specified).
Then we set an icon for the submenu with setIcon method and an icon for the header
of the Submenu.

To add items to the submenu we use the add() method. As arguments to the method,
the group ID, item ID, the posiiton of the item in the submenu and the text associated
with each item is specfied.

Example 6-97.

private static final int OPTION_1 = 0;
private static final int OPTION_2 = 1;
private int GROUP_ID = 4;
private int ITEM_ID =3;

Example 6-98.

@Override
public boolean onCreateOptionsMenu(Menu menu) {

 SubMenu sub1 = menu.addSubMenu(GROUP_ID, ITEM_ID , Menu.NONE, R.string.submenu_1);
 sub1.setHeaderIcon(R.drawable.icon);
 sub1.setIcon(R.drawable.icon);

 sub1.add(GROUP_ID , OPTION_1, 0, "Submenu Option 1");
 sub1.add(GROUP_ID, OPTION_2, 1, "Submenu Option 2");

 return super.onCreateOptionsMenu(menu);
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case OPTION_1:
 Toast.makeText(this, "Submenu 1, Option 1", Toast.LENGTH_LONG).show();
 break;
 case OPTION_2:
 Toast.makeText(this, "Submenu 1, Option 2", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
}

350 | Chapter 6: Graphical User Interface

onOptionItemSelected() method is called when an item of the menu/submenu is se-
lected. In this method, using switch-case we check for the item that is clicked and an
apprpriate message is displayed.

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LN2I5ZmIxNjEtYzc3Zi00MjczLTk5NzE
tYmZjNzRlNjM1ZTc2&hl=en_US&authkey=CN-BsekI

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNTQyYzU0ZjEtMmY4Ny00YmQwLTg4ZTY
tY2I0OWFlM2E1ZjRm&hl=en_US&authkey=CLTs67UG

6.38 Processing key press events in an Activity.
Rachee Singh

Problem
Intercepting the keys pressed by the user and performing actions corresponding to
them.

Solution
This can be achieved by overriding the onKeyDown method in an Activity.

Discussion
If the application requires to react differently at different key presses, then in the Acti-
vity's Java code, the onKeyDown method needs to be overridden. This method takes
the KeyCode as an argument, so within a switch-case block different actions can be
carried out.

Example 6-99.

public boolean onKeyDown(int keyCode, KeyEvent service) {
 switch(keyCode) {
 case KeyEvent.KEYCODE_HOME:
 keyType.setText("Home Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_CENTER :
 keyType.setText("Center Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_DOWN :
 keyType.setText("Down Key Pressed!");
 break;

6.38 Processing key press events in an Activity. | 351

https://docs.google.com/leaf?id=0B_rESQKgad5LN2I5ZmIxNjEtYzc3Zi00MjczLTk5NzEtYmZjNzRlNjM1ZTc2&hl=en_US&authkey=CN-BsekI
https://docs.google.com/leaf?id=0B_rESQKgad5LN2I5ZmIxNjEtYzc3Zi00MjczLTk5NzEtYmZjNzRlNjM1ZTc2&hl=en_US&authkey=CN-BsekI
https://docs.google.com/leaf?id=0B_rESQKgad5LN2I5ZmIxNjEtYzc3Zi00MjczLTk5NzEtYmZjNzRlNjM1ZTc2&hl=en_US&authkey=CN-BsekI
https://docs.google.com/leaf?id=0B_rESQKgad5LNTQyYzU0ZjEtMmY4Ny00YmQwLTg4ZTYtY2I0OWFlM2E1ZjRm&hl=en_US&authkey=CLTs67UG
https://docs.google.com/leaf?id=0B_rESQKgad5LNTQyYzU0ZjEtMmY4Ny00YmQwLTg4ZTYtY2I0OWFlM2E1ZjRm&hl=en_US&authkey=CLTs67UG
https://docs.google.com/leaf?id=0B_rESQKgad5LNTQyYzU0ZjEtMmY4Ny00YmQwLTg4ZTYtY2I0OWFlM2E1ZjRm&hl=en_US&authkey=CLTs67UG

 //and so on..
 }
}

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWE
tODkwNGYwMWVkOTNl&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LODAyODllMmYtYTliYS00ZTc5LWE1OGI
tODE1MmMwMDliZjcx&hl=en_US

6.39 Constrain EditText Values with Attributes and the
TextWatcher Interface
Daniel Fowler

Problem
There is a need to limit the range and type of values being input.

Solution
Use appropriate attributes on the EditText Views in the layout XML and enhance it by
implementing the TextWatcher interface.

Discussion
When an Application needs input from a user sometimes only a specific type of value
is required; maybe a whole number, a decimal number, a number between two values
or words that are capitalized. When defining an EditText in a layout attributes such as
android:inputType can be used to constrain what the user is able to type. This auto-
matically reduces the amount of code required later on because there are fewer checks
to perform on the data that was entered. The TextWatcher interface is also useful for
restricting values. In the following example an EditText only allows a value between 0
and 100, for example to represent a percentage. There is no code need to check the
value because it is all done as the user types.

Here a simple layout has one EditText.

Example 6-100.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

352 | Chapter 6: Graphical User Interface

https://docs.google.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWEtODkwNGYwMWVkOTNl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWEtODkwNGYwMWVkOTNl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWEtODkwNGYwMWVkOTNl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LODAyODllMmYtYTliYS00ZTc5LWE1OGItODE1MmMwMDliZjcx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LODAyODllMmYtYTliYS00ZTc5LWE1OGItODE1MmMwMDliZjcx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LODAyODllMmYtYTliYS00ZTc5LWE1OGItODE1MmMwMDliZjcx&hl=en_US

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/percent"
 android:text="0"
 android:maxLength="3"
 android:inputType="number"/>
</LinearLayout>

It is given a starting value of zero with android:text="0", the number of characters that
can be typed has been limited to three with android:maxLength="3" because the largest
number we need, 100, only has three digits. Finally the user is restricted to only positive
numbers with android:inputType="number".

Within the Activity class an inner class is used to implement the TextWatcher interface
(the Activity itself could be use to implement the interface). The afterTextChanged()
method is overridden and will be called when the text changes as the user types. In this
method the value being typed is checked to see if it is greater than 100. If so it is set to
100. There is no need to check for values below zero because they cannot be entered,
because of the XML attributes. The try catch is need for when all the numbers are
deleted in which case the test for values above 100 would exception (trying to parse an
empty string).

TextWatcher also has a beforeTextChanged() and onTextChanged() method to be over-
ridden but they are not used in this example.

Example 6-101.

class CheckPercentage implements TextWatcher{
 @Override
 public void afterTextChanged(Editable s) {
 try {
 Log.d("Percentage", "input: " + s);
 if(Integer.parseInt(s.toString())>100)
 s.replace(0, s.length(), "100");
 }
 catch(NumberFormatException nfe){}
 }
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 // Not used, details on text just before it changed
 // used to track in detail changes made to text, e.g. implement an undo
 }
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 // Not used, details on text at the point change made
 }
}

6.39 Constrain EditText Values with Attributes and the TextWatcher Interface | 353

Finally in the onCreate() for the Activity the class implementing TextWatcher is con-
nected to the EditText using its addTextChangedListener() method.

Example 6-102.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 EditText percentage=(EditText) findViewById(R.id.percent);
 percentage.addTextChangedListener(new CheckPercentage());
}

Note that it is fine to change the EditText value in afterTextChanged() as it's internal
Editable class is passed in. However, it cannot be changed by altering the CharSe
quence passed into beforeTextChanged() and onTextChanged().

For further details on the attributes supported by EditText see the Android documen-
tation on the TextView, from which EditText is subclassed.

Also remember that changing the value in the EditText causes the afterTextCh
anged() method to be called again. Care must be taken to ensure that the code using a
TextWatcher does not result in endless looping.

Figure 6-25.

354 | Chapter 6: Graphical User Interface

It is a good idea to review the attributes that Android views support, as defining them
in the XML layout can reduce the amount of code to write.

See Also
http://developer.android.com/reference/android/widget/TextView.html

http://developer.android.com/reference/android/widget/EditText.html

http://developer.android.com/reference/android/text/TextWatcher.html

6.40 Gesture Detection in Android
Pratik Rupwal

Problem
You want to traverse through different screens using simple gestures like flip/scroll the
page.

Solution
In Android we can detect simple gestures using the 'GestureDetector' class. This class
can be used to detect simple gestures like tap, scroll, swipe or flip, etc.

Discussion
The application has 4 views and each view has different color. It has and 2 modes,
SCROLL mode and FLIP mode. The application starts in FLIP mode. In

this mode when you perform the swipe/fling gesture in left right, up and down direc-
tion, the view changes back and forth. When a long-press is detected, the application
changes to SCROLL mode, in this mode you scroll the displayed view. While in this
mode, you can double-tap on the screen to bring back the screen to its original position.
Again when a long-press is detected the application changes to FLIP mode.

This recipe focuses on gesture detection hence the animation applied is not discussed
briefly. Refer to 'android.view.animation.*' for animation.

This will give you an introduction to simple gesture detection in Android.

Example 6-103.

import java.util.ArrayList;
import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.os.Vibrator;
import android.view.GestureDetector;
import android.view.Gravity;
import android.view.MotionEvent;

6.40 Gesture Detection in Android | 355

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/text/TextWatcher.html

import android.view.ViewGroup.LayoutParams;
import android.view.animation.Animation;
import android.view.animation.OvershootInterpolator;
import android.view.animation.TranslateAnimation;
import android.widget.TextView;
import android.widget.ViewFlipper;

/**
 * GestureDetector class detects gestures using the supplied MotionEvent class.
 * We use this class along with the onTouchEvent, inside this method we call the
 * GestureDetector.onTouchEvent. GestureDetector identify the gestures or events
 * that occurred and report back to us using GestureDetector.OnGestureListener
 * callback interface. We create an instance of the GestureDetector class by
 * passing Context and GestureDetector.OnGestureListener listener. Double-tap
 * event is not present in theGestureDetector.onGestureListener callback
 * interface, this event is reported using another callback interface
 * GestureDetector.onDoubleTapListener. To use this callback interface we have
 * to register for these events using GestureDetector.setOnDoubleTapListener.
 * The MotionEvent class contains all the values correspond to a movement and
 * touch event. This class holds values such as X and Y position at which the
 * event occurred, timestamp at which the event occurred, mouse pointer index,
 * etc.
 */
public class FlipperActivity extends Activity implements GestureDetector.OnGestureListener,GestureDetector.OnDoubleTapListener{

 final private int SWIPE_MIN_DISTANCE = 100;
 final private int SWIPE_MIN_VELOCITY = 100;

 private ViewFlipper flipper = null;
 private ArrayList<TextView> views = null;
 private GestureDetector gesturedetector = null;
 private Vibrator vibrator = null;
 int colors[] = { Color.rgb(255,128,128),
 Color.rgb(128,255,128),
 Color.rgb(128,128,255),
 Color.rgb(128,128,128) };

 private Animation animleftin = null;
 private Animation animleftout = null;

 private Animation animrightin = null;
 private Animation animrightout = null;

 private Animation animupin = null;
 private Animation animupout = null;

 private Animation animdownin = null;
 private Animation animdownout = null;

 private boolean isDragMode = false;
 private int currentview = 0;

/** Initializes the first screen and animation to be applied to the screen after detecting the gesture */

 @Override

356 | Chapter 6: Graphical User Interface

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 flipper = new ViewFlipper(this);
 gesturedetector = new GestureDetector(this, this);
 vibrator = (Vibrator)getSystemService(VIBRATOR_SERVICE);
 gesturedetector.setOnDoubleTapListener(this);

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 flipper.setFlipInterval(3000);
 flipper.setAnimateFirstView(true);

 prepareAnimations();
 prepareViews();
 addViews();
 setViewText();

 setContentView(flipper);
 }

 private void prepareAnimations() {
 animleftin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animleftout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f);

 animdownin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animdownout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f);

 animleftin.setDuration(1000);

6.40 Gesture Detection in Android | 357

 animleftin.setInterpolator(new OvershootInterpolator());
 animleftout.setDuration(1000);
 animleftout.setInterpolator(new OvershootInterpolator());

 animrightin.setDuration(1000);
 animrightin.setInterpolator(new OvershootInterpolator());
 animrightout.setDuration(1000);
 animrightout.setInterpolator(new OvershootInterpolator());

 animupin.setDuration(1000);
 animupin.setInterpolator(new OvershootInterpolator());
 animupout.setDuration(1000);
 animupout.setInterpolator(new OvershootInterpolator());

 animdownin.setDuration(1000);
 animdownin.setInterpolator(new OvershootInterpolator());
 animdownout.setDuration(1000);
 animdownout.setInterpolator(new OvershootInterpolator());
 }

 private void prepareViews(){
 TextView view = null;

 views = new ArrayList<TextView>();

 for(int color: colors)
 {
 view = new TextView(this);

 view.setBackgroundColor(color);
 view.setTextColor(Color.BLACK);
 view.setGravity(Gravity.CENTER_HORIZONTAL | Gravity.CENTER_VERTICAL);

 views.add(view);
 }
 }

 private void addViews(){
 for(int index=0; index<views.size(); ++index)
 {
 flipper.addView(views.get(index),index,
 new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));
 }
 }

 private void setViewText(){
 String text = getString(isDragMode ? R.string.app_info_drag : R.string.app_info_flip);
 for(int index=0; index<views.size(); ++index)
 {
 views.get(index).setText(text);
 }
 }

 /**Gets invoked when a screen touch is detected*/

358 | Chapter 6: Graphical User Interface

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 return gesturedetector.onTouchEvent(event);
 }

 /**The onDown method is called when the user first touch the screen, the MotionEvent parameter represents the event that corresponds
 to the touch event. */

 @Override
 public boolean onDown(MotionEvent e) {
 return false;
 }

 /**The onFling method is called whenever the user swipes the screen in any direction, i.e. the user touches the screen and immediately
 moves the finger in any direction.*/

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2, float velocityX,float velocityY) {
 if(isDragMode)
 return false;

 final float ev1x = event1.getX();
 final float ev1y = event1.getY();
 final float ev2x = event2.getX();
 final float ev2y = event2.getY();
 final float xdiff = Math.abs(ev1x - ev2x);
 final float ydiff = Math.abs(ev1y - ev2y);
 final float xvelocity = Math.abs(velocityX);
 final float yvelocity = Math.abs(velocityY);

 if(xvelocity > this.SWIPE_MIN_VELOCITY && xdiff > this.SWIPE_MIN_DISTANCE)
 {
 if(ev1x > ev2x) //Swipe Left
 {
 --currentview;

 if(currentview < 0)
 {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 }
 else //Swipe Right
 {
 ++currentview;

 if(currentview >= views.size())
 {
 currentview = 0;
 }

 flipper.setInAnimation(animrightin);
 flipper.setOutAnimation(animrightout);

6.40 Gesture Detection in Android | 359

 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }
 else if(yvelocity > this.SWIPE_MIN_VELOCITY && ydiff > this.SWIPE_MIN_DISTANCE)
 {
 if(ev1y > ev2y) //Swipe Up
 {
 --currentview;

 if(currentview < 0)
 {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animupin);
 flipper.setOutAnimation(animupout);
 }
 else //Swipe Down
 {
 ++currentview;

 if(currentview >= views.size())
 {
 currentview = 0;
 }
 flipper.setInAnimation(animdownin);
 flipper.setOutAnimation(animdownout);
 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }

 return false;
 }

 /** The onLongPress method is called when user touches the screen and holds it for a period of time. The MotionEvent parameter represents
 the event that corresponds to the touch event. */

 @Override
 public void onLongPress(MotionEvent e) {
 vibrator.vibrate(200);
 flipper.scrollTo(0,0);

 isDragMode = !isDragMode;

 setViewText();
 }

 /**The onScroll method is called when the user touches the screen and moves to another location on the screen.*/

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX,float distanceY) {

360 | Chapter 6: Graphical User Interface

 if(isDragMode)
 flipper.scrollBy((int)distanceX, (int)distanceY);

 return false;
 }

 /**The onShowPress method is called when the user touches the phone and not moved yet. This event is mostly used for giving visual feedback
 to the user to show their action.*/

 @Override
 public void onShowPress(MotionEvent e) {
 }

 /**The onSingleTapUp method is called when a tap occurred, i.e. user taps the screen.*/

 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 return false;
 }

 /** The onDoubleTap method is called when there is a double-tap event occurred. The only parameter MotionEvent corresponds to the double-tap
 event that occurred. */

 @Override
 public boolean onDoubleTap(MotionEvent e) {
 flipper.scrollTo(0,0);

 return false;
 }

 /** The onDoubleTapEvent is called for all events that occurred within the double-tap, i.e. down, move and up events.*/

 @Override
 public boolean onDoubleTapEvent(MotionEvent e) {
 return false;
 }

 /** The onSingleTapConfirmed method is called when there is a single tap occurred and confirmed, but this is not same as the single-tap
 event in the GestureDetector.onGestureListener. This is called when the GestureDetector detects and confirms that this tap does not

lead to a double-tap. */

 @Override
 public boolean onSingleTapConfirmed(MotionEvent e) {
 return false;
 }
}

When the mode of the application changes it is notified to the user with a vibration.
To use the vibrator set the following permission in 'androidmanifest.xml' file of your
application.

Example 6-104.

<uses-permission android:name="android.permission.VIBRATE"></uses-permission>

6.40 Gesture Detection in Android | 361

The Application uses some strings which are declared under 'res->values->string.xml'

Example 6-105.

<?xml version="1.0" encoding="utf-8"?>

<resources>
 <string name="app_info_drag">GestureDetector sample.\n\nCurrent Mode: SCROLL\n\nDrag the view using finger.\nLong press to change the mode to
FLIP.\nDouble tap to reposition the view to normal.</string>
 <string name="app_name">Gesture Detector Sample</string>
 <string name="app_info_flip">GestureDetector sample.\n\nCurrent Mode: FLIP\n\nSwipe left, right, up, down to change the views\nLong press to
change to mode to SCROLL</string>
</resources>

See Also
Check 'GestureOverlayView' class for handling complex gestures in android.

6.41 Customizing the Look of a Toast
Rachee Singh

Problem
You want to customize the look of Toast notifications.

Solution
By defining an XML layout for the toast and then inflating the view in Java, a Toast can
be customized.

Discussion
We will first define the layout of the custom Toast in an XML file, toast_layout.xml. It
contains an ImageView and a TextView:

Example 6-106.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toast_layout_root"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:background="#f0ffef"
 >
 <ImageView android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="10dp"
 />
 <TextView android:id="@+id/text"

362 | Chapter 6: Graphical User Interface

 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#000000"
 />
</LinearLayout>

Then, in the Java code, we inflate this view using LayoutInflater. We set the gravity and
duration of the toast. The setGravity method modifies teh position at which the toast
will be displayed. On the click of the customToast button, we show the Toast.

Example 6-107.

 customToast = (Button)findViewById(R.id.customToast);

 LayoutInflater inflater = getLayoutInflater();
 View layout = inflater.inflate(R.layout.toast_layout, ViewGroup) findViewById(R.id.toast_layout_root));

 ImageView image = (ImageView) layout.findViewById(R.id.image);
 image.setImageResource(R.drawable.icon);
 TextView text = (TextView) layout.findViewById(R.id.text);
 text.setText("Hello! This is a custom toast!");

 final Toast toast = new Toast(getApplicationContext());
 toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);
 toast.setDuration(Toast.LENGTH_LONG);
 toast.setView(layout);
 customToast.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 toast.show();
 }
 });

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LYTFjY
jY4NWEtM2YzZC00NzEzLTg5ZGEtMzFhM2UxOWM2MmFk&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LM2VjMjFkNDUtNDA4ZS00MDRiLWFmNmE
tOTYzODk3OGEzMjA0&hl=en_US

6.42 Using SlidingDrawer to Overlap Other Components
Mike Rowehl

6.42 Using SlidingDrawer to Overlap Other Components | 363

https://docs.google.com/leaf?id=0B_rESQKgad5LYTFjYjY4NWEtM2YzZC00NzEzLTg5ZGEtMzFhM2UxOWM2MmFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYTFjYjY4NWEtM2YzZC00NzEzLTg5ZGEtMzFhM2UxOWM2MmFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYTFjYjY4NWEtM2YzZC00NzEzLTg5ZGEtMzFhM2UxOWM2MmFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LM2VjMjFkNDUtNDA4ZS00MDRiLWFmNmEtOTYzODk3OGEzMjA0&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LM2VjMjFkNDUtNDA4ZS00MDRiLWFmNmEtOTYzODk3OGEzMjA0&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LM2VjMjFkNDUtNDA4ZS00MDRiLWFmNmEtOTYzODk3OGEzMjA0&hl=en_US

Problem
The proper layout of SlidingDrawer isn't covered to well in the SDK documentation.
Here's how to use the control to overlay other components in a layout. As well as how
to position elements in the underlying layout to avoid the drawer handle.

Solution
The SlidingDrawer really should be in a FrameLayout or a RelativeLayout. Using it in
a LinearLayout makes it difficult to get the drawer to overlay the rest of the controls
on the screen. When using a RelativeLayout a new problem arises however. The Sli-
dingDrawer wants to overlay everything. Thus positioning it over a ListView could
result in the bottom entries of the list being covered. A clean solution is to use a spacer
in the underlying layout to get everything to line up.

Discussion
First off is the layout including the SlidingDrawer itself. Note that there's a spacer
TextView aligned with the bottom of the RelativeLayout using the DrawerButton style.
The drawer handle itself is also a TextView using the same style. Positioning the main
ListView for the layout above the spacer ensures that none of the list items are hidden
by the handle when the drawer is closed.

Example 6-108.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView style="@style/DrawerButton" android:layout_alignParentBottom="true"
 android:id="@+id/spacer" android:text="Spacer" />
 <ListView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/contact_list"
 android:layout_alignParentTop="true"
 android:layout_above="@id/spacer"
 >
 </ListView>

 <SlidingDrawer android:layout_width="fill_parent"
 android:id="@+id/drawer" android:handle="@+id/drawer_button"
 android:content="@+id/drawer_content"
 android:layout_height="wrap_content" android:layout_alignParentBottom="true">
 <TextView android:id="@id/drawer_button" style="@style/DrawerButton"
 android:gravity="right|center_vertical" android:text="Handle"
 ></TextView>
 <ListView
 android:layout_width="fill_parent"

364 | Chapter 6: Graphical User Interface

 android:layout_height="fill_parent"
 android:id="@+id/drawer_content"
 android:background="#000000"
 >
 </ListView>
 </SlidingDrawer>
</RelativeLayout>

I pull the DrawerButton settings out into a style so that I don't have to change them on
both the spacer and the handle item to keep them in sync:

Example 6-109.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="DrawerButton" parent="@android:style/TextAppearance.Medium">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:background">#EEEEEE</item>
 <item name="android:textColor">#111111</item>
 <item name="android:gravity">right|center_vertical</item>
 <item name="android:paddingRight">3pt</item>
 <item name="android:paddingTop">2pt</item>
 <item name="android:paddingBottom">2pt</item>
 </style>
</resources>

Now the drawer should slide up over the ListView on the main screen without hiding
any of the content when closed.

6.42 Using SlidingDrawer to Overlap Other Components | 365

CHAPTER 7

GUI: ListView

7.1 Introduction: ListView
Ian Darwin

Discussion
It may seem odd to have a separate chapter for the ListView component. But it is in
fact one of the most important components, being used in probably 90% of all Android
applications. And, it is very flexible; there is a lot you can do with it, but figuring out
how is sometimes not as intuitive as it could be.

In this chapter we have everything from very basic ListView uses through to very ad-
vanced.

... XXX list of them ...

See the official doc at http://developer.android.com/reference/android/widget/ListView
.html.

Another good overview of ListView can be found in a Google IO 2010 presentation on
Google's YouTube channel, at http://www.youtube.com/watch?v=wDBM6wVEO70;
this was presented by Romain Guy and Adam Powell who work on ListView itself.

7.2 Building list-based applications with ListView
Jim Blackler

Problem
Many mobile applications follow a similar pattern, allowing users to browse and in-
teract with multiple items in a list. How can developers use standard Android UI classes
to quickly build an app that works the way users will expect, providing them a list-
based view onto their data.

367

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/ListView.html

Solution
ListView is an extremely versatile control. It is well suited to the screen size and control
constraints of a mobile application, displaying information in a vertical stack of rows.
This recipe shows how to set up a ListView, including rows that contain any combi-
nation of standard UI Views and perform actions on single and long-clicks.

Discussion
ListView

Many Android applications are based around the list ListView control. It is extremely
versatile; well suited to the screen size and controls available on a mobile application.
It solves the problem of how to present a lot of information in a way that's quick for
the user to browse. It displays information in a vertical stack of rows that the user can
scroll through. As the user reaches the results towards the end of the list, more results
can be generated and added. This allows results paging in a natural and intuitive man-
ner.

From using desktop applications, people are accustomed to UI controls which allow
data to be manipulated in different ways. However, on the small screen of a phone these
controls may be difficult to pick out in preference to others in the same area; particularly
when the display is controlled with fingers rather than a stylus.

Android's ListView helps deal with this problem by separating browsing and editing
operations into separate activities. A ListView simply requires the user to press some-
where in the row, which works well on a small, finger operated screen. When the row
is clicked, a new Activity can be launched that can contain further options to manipulate
the data shown in the row.

Menus

ListView rows can have context or 'long click' menus associated with them. This allows
a list of actions that can be performed on the data represented by the row without
navigating into the new activity. For instance, a list of search results could have actions
such as 'Share' or 'Report spam' associated with them. One peril of this approach is that
users often are not aware of the presence of long click controls.

Paging

Another advantage of the ListView format is that it allows paging in an uncomplicated
way. Paging is where all the information requested by a user cannot feasibly be shown
at once. For instance, the user may be browsing their email inbox, which contains 2,000
emails; it would not be feasible to download all 2,000 from the email server. Nor would
it be required as the user will probably only scan the first ten or so entries.

Most web applications handle this problem by segmenting the results into pages, and
having controls at the footer to allow the user to navigate through these pages. With a
ListView, the application can retrieve an initial batch of the first results, which are

368 | Chapter 7: GUI: ListView

shown to the user in a list. When the user reaches the end of the list, a final row is seen,
containing an indeterminate progress bar. As this comes into view, the application can
fetch the next batch of results in the background. When they are ready to be shown,
the last progress bar row is replaced with rows containing the new data. The user's view
of the list is not interrupted, and new data is fetched purely on demand.

Implementation

To implement a ListView in your Android application, the first thing that is required
is an activity layout to host it. This should containing a ListView control configured to
take up most of the screen layout. You may wonder why a layout is required if it is to
be dominated by a single full-screen ListView. The reason is that other elements such
as progress bars or extra overlaid indicators may be supplied in the layout.

Base class

I would not recommend the use of ListActivity to host the view. It supplies little extra
logic over a plain Activity, but using it restricts the form of the inheritance tree your
application's activities can take. For instance, it is very common that all activities will
inherit from a single common activity, e.g. ApplicationActivity, supplying common
functionality such as 'About' or 'Help' menus. This pattern won't be possible if some
activities are inherited from ListActivity and some are directly inherited from Activity.

An application controls the data added to a ListView by supplying a ListAdapter using
the setListAdapter() method. There are 13 functions that a ListAdapter is expected to
supply. However if a BaseAdapter is used this reduces to four, representing the mini-
mum functionality that must be supplied. The adapter specifies the number of item
rows in the list, and is expected to supply a View object to represent any item given its
row number. It is also expected to return both an object and an object ID to represent
any given row number. This is to aid advanced list features such as row selection (not
covered by this tutorial).

The documentation steers developers to a simple version of the adapter ($name?) which
simply binds array entries to text fields. I wouldn't recommend this approach as it is a
dead end as far as development goes. If you need to add something more complex than
just text, and you probably will, you'll have to remove the $ and convert it into a more
flexible adapter type such as a $. I suggest starting with the most versatile type of Lis-
tApapter, the BaseAdapter (android.widget.BaseAdapter). This allows any layout to be
specified for a row (multiple layouts can be matched to multiple row types). These
layouts can contain any View elements that a layout would normally contain.

Rows are created on demand by the adapter as they come on to the screen. The adapter
is expected to either inflate a View of the appropriate type, or recycle the existing View,
then customize it to display a row of data.

This 'recycling' is a technique employed by the Android OS to improve performance.
W hen new rows come onto the screen, the OS will pass the View of a row that has
moved off the screen into the adapter method $. It is up to the method to decide whether

7.2 Building list-based applications with ListView | 369

it is appropriate to reuse that View to create the new row. For this to be the case the
View has to represent the layout of the new row. One way to check this is to write the
layout ID into the Tag of each View inflated with setTag(). When checking to see if it
is appropriate to reuse a given View, use getTag() to see if the View was inflated with
the correct type. If an application is able to recycle a view the scrolling appears to be
smoother for the user because CPU time is saved inflating the view.

Another way to make scrolling smoother is to do as little as possible on the UI thread.
This is the default thread that your $ method will be invoked on. If time-intensive
operations need to be invoked, these can be done by creating a new background thread
especially for the operation. ($example). Then when the UI thread is required again so
that controls can be updated, operations can be invoked on it with $. Care must be
taken to ensure the View to be modified has not been recycled for another row. This
can happen if the row has moved off the screen in the time it took the operation to
complete. This is quite feasible if the operation was a lengthy download operation.

Setting up a basic ListView.

Use Eclipse's New Project wizard to create a new Android project with a starting activity
called MainActivity. In the main.xml layout replace the existing TextView section with
following:

Example 7-1.

<ListView android:id="@+id/ListView01"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"/>

In MainActivity.onCreate() insert the following snippet at the bottom of the method.
This will declare a dummy anonymous class extending BaseAdapter, and apply an
instance of it to the ListView. The code illustrates the methods that need to be supplied
in order to populate the ListView with data.

Example 7-2.

 ListView listView = (ListView) findViewById(R.id.ListView01);
 listView.setAdapter(new BaseAdapter(){

 public int getCount() {
 return 0;
 }

 public Object getItem(int position) {
 return null;
 }

 public long getItemId(int position) {
 return 0;
 }

 public View getView(int position, View convertView, ViewGroup parent) {

370 | Chapter 7: GUI: ListView

 return null;
 }});

By customizing the anonymous class members the developer can modify the data
shown by the control. However before any data can be shown, a layout must be supplied
to present the data in rows. Add a file list_row.xml to your project's res/layout directory
with the following content:

Example 7-3.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="wrap_content" android:layout_height="wrap_content">
 <TextView android:text="@+id/TextView01" android:id="@+id/TextView01" android:layout_width="fill_parent" android:layout_height="wrap_content"/>
</LinearLayout>

Now in your MainActivity add the following static array field containing just three
strings.

Example 7-4.

static String[] words = {"one", "two", "three"};

Now customize your existing anonymous BaseAdapter as follows, in order to display
the contents of the words array in the ListView.

Example 7-5.

listView.setAdapter(new BaseAdapter(){

 public int getCount() {
 return words.length;
 }

 public Object getItem(int position) {
 return words[position];
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 LayoutInflater inflater = (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);
 View view = inflater.inflate(R.layout.list_row, null);
 TextView textView = (TextView) view.findViewById(R.id.TextView01);
 textView.setText(words[position]);
 return view;
 }});

getCount() is customized to return the number of items in the list. getItem() and getI-
temId() supply the ListView with unique objects and IDs to identify the data the rows.
Finally getView() creates and customizes an Android View to represent the row. This
is the most complex step, so let's break down what's done.

7.2 Building list-based applications with ListView | 371

Example 7-6.

 LayoutInflater inflater = (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);

The system LayoutInflater is obtained. This is the service that creates views.

Example 7-7.

 View view = inflater.inflate(R.layout.list_row, null)

The new layout we created earlier is inflated.

Example 7-8.

 TextView textView = (TextView) view.findViewById(R.id.TextView01)

The TextView is located.

Example 7-9.

 textView.setText(words[position])

The TextView is customized with the appropriate item in the words array.

Example 7-10.

 return view;

The view is returned to the system for display.

View Recycling

XXX

7.3 'No data' View for Lists
Rachee Singh

Problem
When the ListView has no items to show, the screen would just appear blank. In order
to show an appropriate message on the screen, indicating the absence of data in the list.

Solution
Use of 'No Data' View from the XML layout.

Discussion
Often we require to use a ListView in an Android App. Prior to the input of data by the
user, the List is empty. This in general would show a blank screen. In order to make
the user feel better, we might want to display an appropriate message (or even an image)

372 | Chapter 7: GUI: ListView

stating that the list is empty. For this purpose, the concept of No Data View can be
used. This is a simple process involving addition of a few lines of code in the XML
layout of the activity that contains the list view.

Example 7-11.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

<ListView
 android:id="@id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/textView1"/>
 <TextView
 android:id="@id/android:empty"
 android:text = "@string/list_is_empty"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_below = "@id/textView1"
 android:textSize="25sp"
 android:gravity="center_vertical|center_horizontal"/>
 </RelativeLayout>

The important point is line 'android:id="@id/android:empty'. This line ensures that
when the list is empty, the TextView with this ID will be displayed on the screen. In
this text view the string 'List is Empty' is displayed.

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rE
SQKgad5LMDE4OGM5MGEtMWM3Ny00NDdhLWE4YTItNzljMGJhNWIxNzE0&
hl=en_US&authkey=CJvf1KYO

7.4 Advanced ListView: populating a list with images and text
Marco Dinacci

Problem
You want to write a ListView that shows an image next to a string.

Solution
We're going to create an Activity that extends from ListActivity, prepare the XML re-
source files and at last create a custom view adapter to load the resources onto the view.

7.4 Advanced ListView: populating a list with images and text | 373

https://docs.google.com/leaf?id=0B_rESQKgad5LMDE4OGM5MGEtMWM3Ny00NDdhLWE4YTItNzljMGJhNWIxNzE0&hl=en_US&authkey=CJvf1KYO
https://docs.google.com/leaf?id=0B_rESQKgad5LMDE4OGM5MGEtMWM3Ny00NDdhLWE4YTItNzljMGJhNWIxNzE0&hl=en_US&authkey=CJvf1KYO
https://docs.google.com/leaf?id=0B_rESQKgad5LMDE4OGM5MGEtMWM3Ny00NDdhLWE4YTItNzljMGJhNWIxNzE0&hl=en_US&authkey=CJvf1KYO
https://docs.google.com/leaf?id=0B_rESQKgad5LMDE4OGM5MGEtMWM3Ny00NDdhLWE4YTItNzljMGJhNWIxNzE0&hl=en_US&authkey=CJvf1KYO

Figure 7-1.

374 | Chapter 7: GUI: ListView

Discussion
The Android documentation says that the ListView widget is easy to use. It is true if
you just want to display a simple list of strings but as soon as you want to customize
your list things become more complicated.

This recipe shows you how to write a ListView that displays a static list of images and
strings, similar to the settings list on your phone.

Here's a picture of the final result:

Let's start with the Activity code. First of all, we extends from ListActivity instead of
Activity so we can easily supply our custom adapter:

Example 7-12.

public class AdvancedListViewActivity extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Context ctx = getApplicationContext();
 Resources res = ctx.getResources();

 String[] options = res.getStringArray(R.array.country_names);
 TypedArray icons = res.obtainTypedArray(R.array.country_icons);

 setListAdapter(new ImageAndTextAdapter(ctx, R.layout.main_list_item, options, icons));
 }
}

In the onCreate we also create an array of strings, which contains the country names,
and a TypedArray, which will contain our Drawable flags.

The arrays are created from an XML file, here's the content of the countries.xml file.

Example 7-13.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="country_names">
 <item>Bhutan</item>
 <item>Colombia</item>
 <item>Italy</item>
 <item>Jamaica</item>
 <item>Kazakhstan</item>
 <item>Kenya</item>
 </string-array>
 <array name="country_icons">
 <item>@drawable/bhutan</item>
 <item>@drawable/colombia</item>
 <item>@drawable/italy</item>

7.4 Advanced ListView: populating a list with images and text | 375

Figure 7-2.

376 | Chapter 7: GUI: ListView

 <item>@drawable/jamaica</item>
 <item>@drawable/kazakhstan</item>
 <item>@drawable/kenya</item>
 </array>
</resources>

Now we're ready to create the adapter. The official documentation for Adapter says:

An Adapter object acts as a bridge between an AdapterView and the underlying data for
that view. The Adapter provides access to the data items. The Adapter is also responsible
for making a View for each item in the data set.

There are several subclasses of Adapter; we're going to extend on ArrayAdapter which
is a concrete BaseAdapter that is backed by an array of arbitrary objects.

Example 7-14.

public class ImageAndTextAdapter extends ArrayAdapter<String> {

 private LayoutInflater mInflater;

 private String[] mStrings;
 private TypedArray mIcons;

 private int mViewResourceId;

 public ImageAndTextAdapter(Context ctx, int viewResourceId,
 String[] strings, TypedArray icons) {
 super(ctx, viewResourceId, strings);

 mInflater = (LayoutInflater)ctx.getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);

 mStrings = strings;
 mIcons = icons;

 mViewResourceId = viewResourceId;
 }

 @Override
 public int getCount() {
 return mStrings.length;
 }

 @Override
 public String getItem(int position) {
 return mStrings[position];
 }

 @Override
 public long getItemId(int position) {
 return 0;
 }

 @Override

7.4 Advanced ListView: populating a list with images and text | 377

 public View getView(int position, View convertView, ViewGroup parent) {
 convertView = mInflater.inflate(mViewResourceId, null);

 ImageView iv = (ImageView)convertView.findViewById(R.id.option_icon);
 iv.setImageDrawable(mIcons.getDrawable(position));

 TextView tv = (TextView)convertView.findViewById(R.id.option_text);
 tv.setText(mStrings[position]);

 return convertView;
 }
}

The constructor accepts a Context, the id of the layout that will be used for every row
(more on this soon), an array of strings (the country names) and a TypedArray (our flags).

The getView method is where we build a row for the list. We first use a LayoutIn
flater to create a View from XML, then we retrieve the country flag as a Drawable and
the country name as a String and we use them to populate the ImageView and Text
View that we've declared in the layout.

The layout for the list rows is the following:

Example 7-15.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android">
 <ImageView
 android:id="@+id/option_icon"
 android:layout_width="48dp"
 android:layout_height="fill_parent"/>
 <TextView
 android:id="@+id/option_text"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16dp" >
 </TextView>
</LinearLayout>

And this is the content of the main layout:

Example 7-16.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<ListView android:id="@android:id/list"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
</LinearLayout>

378 | Chapter 7: GUI: ListView

Note that the ListView ID must be exactly @android:id/listor you'll get a RuntimeEx
ception.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.in
transitione.com/intransitione.com/code/android/adv_listview_demo.zip

7.5 ListView with Icons/images
Wagied Davids

Problem
Loading data from XML based file, Viewing results in a ListView with an icon image
for each ListView row item.

Solution
Create a custom ArrayAdapter for modifying visual display of list items.

File: listview.xml - The XML-layout file

Example 7-17.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
<ListView
 android:id="@+id/countryLV"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 </ListView>
</LinearLayout>

File: country_listitem.xml

Example 7-18.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <ImageView
 android:id="@+id/country_icon"
 android:layout_gravity="left"
 android:layout_width="wrap_content"

7.5 ListView with Icons/images | 379

http://www.intransitione.com/intransitione.com/code/android/adv_listview_demo.zip
http://www.intransitione.com/intransitione.com/code/android/adv_listview_demo.zip

 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/country_name"
 android:text="Country Name"
 android:paddingLeft="10dip"
 android:layout_weight="0.5"
 android:layout_gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <TextView
 android:id="@+id/country_abbrev"
 android:text="Country Abbrev"
 android:layout_gravity="right"
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

File: countries.xml

Example 7-19.

<?xml version="1.0" encoding="utf-8"?>
<countries>
 <country name="Australia" abbreviation="au" region="Asia" />
 <country name="Austria" abbreviation="at" region="Europe" />
 <country name="Belgium" abbreviation="be" region="Europe" />
 <country name="Brazil" abbreviation="br" region="S. America" />
 <country name="Canada" abbreviation="ca" region="N. America" />
 <country name="China" abbreviation="cn" region="Asia" />
 <country name="Denmark" abbreviation="dk" region="Europe" />
 <country name="France" abbreviation="fr" region="Europe" />
 <country name="Germany" abbreviation="de" region="Europe" />
 <country name="Hong Kong" abbreviation="hk" region="Asia" />
 <country name="India" abbreviation="in" region="Asia" />
 <country name="Indonesia" abbreviation="id" region="Asia" />
 <country name="Italy" abbreviation="it" region="Europe" />
 <country name="Korea" abbreviation="kr" region="Asia" />
 <country name="Netherlands" abbreviation="nl" region="Europe" />
 <country name="Norway" abbreviation="no" region="Europe" />
 <country name="Portugal" abbreviation="pt" region="Europe" />
 <country name="Singapore" abbreviation="sg" region="Asia" />
 <country name="Spain" abbreviation="es" region="Europe" />
 <country name="Sweden" abbreviation="se" region="Europe" />
 <country name="Switzerland" abbreviation="ch" region="Europe" />
 <country name="Taiwan" abbreviation="tw" region="Asia" />
 <country name="United Kingdom" abbreviation="uk" region="Europe" />
 <country name="United States" abbreviation="us" region="N. America" />
</countries>

File: Main.java

380 | Chapter 7: GUI: ListView

Example 7-20.

import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import android.app.Activity;
import android.os.Bundle;
import android.widget.ListView;

public class Main extends Activity {

 private List<Country> countryList= new ArrayList<Country>();

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the View layer
 setContentView(R.layout.listview);
 setTitle("TestIconizedListView");

 // Create Parser for raw/countries.xml
 CountryParser countryParser = new CountryParser();
 InputStream inputStream = getResources().openRawResource(
 R.raw.countries);

 // Parse the inputstream
 countryParser.parse(inputStream);

 // Get Countries
 List<Country> countryList = countryParser.getList();

 // Create a customized ArrayAdapter
 CountryArrayAdapter adapter = new CountryArrayAdapter(
 getApplicationContext(), R.layout.country_listitem, countryList);

 // Get reference to ListView holder
 ListView lv = (ListView) this.findViewById(R.id.countryLV);

 // Set the ListView adapter
 lv.setAdapter(adapter);
 }
}

File: Country.java

Example 7-21.

public class Country
 {
 public String name;
 public String abbreviation;
 public String region;
 public String resourceId;

7.5 ListView with Icons/images | 381

 public Country()
 {
 // TODO Auto-generated constructor stub
 }

 public Country(String name, String abbreviation, String region, String resourceFilePath)
 {
 this.name = name;
 this.abbreviation = abbreviation;
 this.region= region;
 this.resourceId = resourceFilePath;
 }

 @Override
 public String toString()
 {
 return this.name;
 }
 }

File: CountryParser.java

Example 7-22.

import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;
import android.util.Log;

public class CountryParser {

 private static final String tag = "CountryParser";
 private static final String FILE_EXTENSION= ".png";

 private DocumentBuilderFactory factory;
 private DocumentBuilder builder;
 private final List<Country> list;

 public CountryParser() {
 this.list = new ArrayList<Country>();
 }

 private String getNodeValue(NamedNodeMap map, String key) {
 String nodeValue = null;

382 | Chapter 7: GUI: ListView

 Node node = map.getNamedItem(key);
 if (node != null) {
 nodeValue = node.getNodeValue();
 }
 return nodeValue;
 }

 public List<Country> getList() {
 return this.list;
 }

 /**
 * Parse XML file containing body part X/Y/Description
 *
 * @param inStream
 */
 public void parse(InputStream inStream) {
 try {
 // TODO: after we must do a cache of this XML!!!!
 this.factory = DocumentBuilderFactory.newInstance();
 this.builder = this.factory.newDocumentBuilder();
 this.builder.isValidating();
 Document doc = this.builder.parse(inStream, null);

 doc.getDocumentElement().normalize();

 NodeList countryList = doc.getElementsByTagName("country");
 final int length = countryList.getLength();

 for (int i = 0; i < length; i++) {
 final NamedNodeMap attr = countryList.item(i).getAttributes();
 final String countryName = getNodeValue(attr, "name");
 final String countryAbbr = getNodeValue(attr, "abbreviation");
 final String countryRegion = getNodeValue(attr, "region");

 // Construct Country object
 Country country = new Country(countryName, countryAbbr,
 countryRegion, countryAbbr + FILE_EXTENSION);

 // Add to list
 this.list.add(country);

 Log.d(tag, country.toString());
 }
 } catch (SAXException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 }
}

File: CountryArrayAdapter.java

7.5 ListView with Icons/images | 383

Example 7-23.

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class CountryArrayAdapter extends ArrayAdapter<Country> {

 private static final String tag = "CountryArrayAdapter";
 private static final String ASSETS_DIR = "images/";
 private Context context;

 private ImageView countryIcon;
 private TextView countryName;
 private TextView countryAbbrev;
 private List<Country> countries = new ArrayList<Country>();

 public CountryArrayAdapter(Context context, int textViewResourceId,
 List<Country> objects) {
 super(context, textViewResourceId, objects);
 this.context = context;
 this.countries = objects;
 }

 public int getCount() {
 return this.countries.size();
 }

 public Country getItem(int index) {
 return this.countries.get(index);
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 View row = convertView;
 if (row == null) {
 // ROW INFLATION
 Log.d(tag, "Starting XML Row Inflation ... ");
 LayoutInflater inflater = (LayoutInflater) this.getContext()
 .getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 row = inflater.inflate(R.layout.country_listitem, parent, false);
 Log.d(tag, "Successfully completed XML Row Inflation!");
 }

 // Get item
 Country country = getItem(position);

384 | Chapter 7: GUI: ListView

 // Get reference to ImageView
 countryIcon = (ImageView) row.findViewById(R.id.country_icon);

 // Get reference to TextView - country_name
 countryName = (TextView) row.findViewById(R.id.country_name);

 // Get reference to TextView - country_abbrev
 countryAbbrev = (TextView) row.findViewById(R.id.country_abbrev);

 //Set country name
 countryName.setText(country.name);

 // Set country icon usign File path
 String imgFilePath = ASSETS_DIR + country.resourceId;
 try {
 Bitmap bitmap = BitmapFactory.decodeStream(this.context.getResources().getAssets()
 .open(imgFilePath));
 countryIcon.setImageBitmap(bitmap);
 } catch (IOException e) {
 e.printStackTrace();
 }

 // Set country abbreviation
 countryAbbrev.setText(country.abbreviation);
 return row;
 }
}

Discussion
This recipe demonstrate how to load data from a XML file, and view the results in a
ListView with each row item having an image/icon.

Firstly, the XML resource file must be place in a raw/ directory beneath the res/ folder.
In the countries.xml file, all the data is enclosed in the countries and countries tag
with each element being enclosed in a country country tag with attributes indicating
the name, abbreviation and region of the respective country.

A Java class Country.java is used to model each ListView row item. XML parsing in
Android is accomplished by using the built-in SAX parser. In parsing the countries.xml
file, the parser CountryParser.java is used to obtain the country names, abbreviations,
and regions using the node values extracted from countries.xml. A new Country java
object for each XML node which includes the filename of the country image to use.

The above explanation covers the data input from an XML-based file. Now moving to
the meat and bones so to speak.

CountryArrayAdapter extends the ArrayAdapter class in which a Context and a list of
Country objects are supplied as parameters. The most important function is the get-
View() function. The getView() function allows the ListView row elements to be altered,
in this case the icon image is inserted to the left, and the country name and abbreviation
to the right of it.

7.5 ListView with Icons/images | 385

A simple XML-based View layer listview.xml is created, in which a reference to a coun-
tryLV is declared in a ListView element.

For data-binding, a Main.java Android activity is created in which the various elements
describe above is brought together. The function setContentView(R.layout.listview)
loads the XML view file listview.xml, and extracts a reference to the countryLV ListView
holder. The XML parser, called CountryParser loads the data into a Java List containing
Country objects.

The custom CountryArrayAdapter is used to override the ListView display so that each
row contains the country icon, country name and abbreviation.

Re-wrote this example: 1. xml for listview of countries 2. xml for each row item in
listview with place holders for image, country_name, country_abbrev 3. Customized
ArrayAdapter for using Country object. 4. Acessing image files in the assets/ directory
using: // Set country icon usign File path String imgFilePath = ASSETS_DIR + coun-
try.resourceId; try { Bitmap bitmap = BitmapFactory.decodeStream(this.context.ge-
tResources().getAssets() .open(imgFilePath)); countryIcon.setImageBitmap(bit-
map); } catch (IOException e) { e.printStackTrace(); }

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b4a5548/n/IconizedListView.zip

7.6 Sectioned Headers in ListViews
Wagied Davids

Problem
Sectioned headers in a list - when you want to display categorized items eg. by time/
day, by product category or sales price.

Solution
Use Jeff Sharkey's "Sectioned Headers" to display journal entries by day.

Discussion
File: main.xml

Example 7-24.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

386 | Chapter 7: GUI: ListView

http://www.filefactory.com/file/b4a5548/n/IconizedListView.zip
http://www.filefactory.com/file/b4a5548/n/IconizedListView.zip

 android:layout_height="fill_parent">

 <ListView
 android:id="@+id/add_journalentry_menuitem"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <ListView
 android:id="@+id/list_journal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

File: list_header.xml

Example 7-25.

<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_header_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="2dip"
 android:paddingBottom="2dip"
 android:paddingLeft="5dip"
 style="?android:attr/listSeparatorTextViewStyle" />

File: list_item.xml

Example 7-26.

<?xml version="1.0" encoding="utf-8"?>
<!-- list_item.xml -->
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />

File: list_complex.xml
<example><title></title><programlisting><![CDATA[
<?xml version="1.0" encoding="utf-8"?>
<!-- list_complex.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 >

7.6 Sectioned Headers in ListViews | 387

 <TextView
 android:id="@+id/list_complex_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 <TextView
 android:id="@+id/list_complex_caption"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 />
</LinearLayout>

File: add_journalentry_menuitem.xml

Example 7-27.

<?xml version="1.0" encoding="utf-8"?>
<!-- list_item.xml -->
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"
 android:gravity="right"
 android:drawableRight="@drawable/ic_menu_add"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="0dip"
 android:paddingBottom="0dip"
 android:paddingLeft="10dip"
 android:textAppearance="?android:attr/textAppearanceLarge" />

File: ListSample.java

Example 7-28.

import java.util.HashMap;
import java.util.Map;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

public class ListSample extends Activity
 {

 public final static String ITEM_TITLE = "title";
 public final static String ITEM_CAPTION = "caption";

 // SectionHeaders
 private final static String[] days = new String[]{"Mon", "Tue", "Wed", "Thur", "Fri"};

388 | Chapter 7: GUI: ListView

 // Section Contents
 private final static String[] notes = new String[]{"Ate Breakfast", "Ran a Marathan ...yah really", "Slept all day"};

 // MENU - ListView
 private ListView addJournalEntryItem;

 // Adapter for ListView Contents
 private SeparatedListAdapter adapter;

 // ListView Contents
 private ListView journalListView;

 public Map<String, ?> createItem(String title, String caption)
 {
 Map<String, String> item = new HashMap<String, String>();
 item.put(ITEM_TITLE, title);
 item.put(ITEM_CAPTION, caption);
 return item;
 }

 @Override
 public void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);

 // Sets the View Layer
 setContentView(R.layout.main);

 // Interactive Tools
 final ArrayAdapter<String> journalEntryAdapter = new ArrayAdapter<String>(this, R.layout.add_journalentry_menuitem, new String[]{"Add Journal Entry"});

 // AddJournalEntryItem
 addJournalEntryItem = (ListView) this.findViewById(R.id.add_journalentry_menuitem);
 addJournalEntryItem.setAdapter(journalEntryAdapter);
 addJournalEntryItem.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long duration)
 {
 String item = journalEntryAdapter.getItem(position);
 Toast.makeText(getApplicationContext(), item, Toast.LENGTH_SHORT).show();
 }
 });

 // Create the ListView Adapter
 adapter = new SeparatedListAdapter(this);
 ArrayAdapter<String> listadapter = new ArrayAdapter<String>(this, R.layout.list_item, notes);

 // Add Sections
 for (int i = 0; i < days.length; i++)
 {
 adapter.addSection(days[i], listadapter);
 }

 // Get a reference to the ListView holder

7.6 Sectioned Headers in ListViews | 389

 journalListView = (ListView) this.findViewById(R.id.list_journal);

 // Set the adapter on the ListView holder
 journalListView.setAdapter(adapter);

 // Listen for Click events
 journalListView.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long duration)
 {
 String item = (String) adapter.getItem(position);
 Toast.makeText(getApplicationContext(), item, Toast.LENGTH_SHORT).show();
 }
 });
 }

 }

File: SeparatedListAdapter.java

Example 7-29.

import java.util.LinkedHashMap;
import java.util.Map;
import android.content.Context;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Adapter;
import android.widget.ArrayAdapter;
import android.widget.BaseAdapter;

public class SeparatedListAdapter extends BaseAdapter
 {
 public final Map<String, Adapter> sections = new LinkedHashMap<String, Adapter>();
 public final ArrayAdapter<String> headers;
 public final static int TYPE_SECTION_HEADER = 0;

 public SeparatedListAdapter(Context context)
 {
 headers = new ArrayAdapter<String>(context, R.layout.list_header);
 }

 public void addSection(String section, Adapter adapter)
 {
 this.headers.add(section);
 this.sections.put(section, adapter);
 }

 public Object getItem(int position)
 {
 for (Object section : this.sections.keySet())
 {
 Adapter adapter = sections.get(section);
 int size = adapter.getCount() + 1;

390 | Chapter 7: GUI: ListView

 // check if position inside this section
 if (position == 0) return section;
 if (position < size) return adapter.getItem(position - 1);

 // otherwise jump into next section
 position -= size;
 }
 return null;
 }

 public int getCount()
 {
 // total together all sections, plus one for each section header
 int total = 0;
 for (Adapter adapter : this.sections.values())
 total += adapter.getCount() + 1;
 return total;
 }

 @Override
 public int getViewTypeCount()
 {
 // assume that headers count as one, then total all sections
 int total = 1;
 for (Adapter adapter : this.sections.values())
 total += adapter.getViewTypeCount();
 return total;
 }

 @Override
 public int getItemViewType(int position)
 {
 int type = 1;
 for (Object section : this.sections.keySet())
 {
 Adapter adapter = sections.get(section);
 int size = adapter.getCount() + 1;

 // check if position inside this section
 if (position == 0) return TYPE_SECTION_HEADER;
 if (position < size) return type + adapter.getItemViewType(position - 1);

 // otherwise jump into next section
 position -= size;
 type += adapter.getViewTypeCount();
 }
 return -1;
 }

 public boolean areAllItemsSelectable()
 {
 return false;
 }

7.6 Sectioned Headers in ListViews | 391

 @Override
 public boolean isEnabled(int position)
 {
 return (getItemViewType(position) != TYPE_SECTION_HEADER);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent)
 {
 int sectionnum = 0;
 for (Object section : this.sections.keySet())
 {
 Adapter adapter = sections.get(section);
 int size = adapter.getCount() + 1;

 // check if position inside this section
 if (position == 0) return headers.getView(sectionnum, convertView, parent);
 if (position < size) return adapter.getView(position - 1, convertView, parent);

 // otherwise jump into next section
 position -= size;
 sectionnum++;
 }
 return null;
 }

 @Override
 public long getItemId(int position)
 {
 return position;
 }

 }

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b3g5g1b/n/TestSectionedHeaderList.zip

7.7 Making Lists Behave Nicely
Ian Darwin

Problem
Lists are easy to get started with, but there are a lot of variations that will provide optimal
user experience.

Solution
Studying the ListView API and considering the user experience will lead to some im-
provements.

392 | Chapter 7: GUI: ListView

http://www.filefactory.com/file/b3g5g1b/n/TestSectionedHeaderList.zip
http://www.filefactory.com/file/b3g5g1b/n/TestSectionedHeaderList.zip

Discussion
This will list such items as:

• Set the current position when adding;

• Use the overScroll header and footer;

• List Navigator for large lists (like Contacts and OISafe)

• Adjust list content dynamically

• Filter non-text List elements

The net result will make your application easier to use and more predictable for users.

See Also
The official ListView documentation.

7.8 Writing A Custom List Adapter
Alex Leffelman

Problem
Lists are ubiquitous throughout mobile applications. Android provides a simple and
powerful interface to make exactly the list you need. This recipe explains the steps for
customizing the content of a ListView.

Solution
In the Activity that will host your ListView, we will define a private class that extends
Android's BaseAdapter class. We will override the base class's methods to display cus-
tom views that you define in an XML layout file.

Discussion
It's no secret that the best way to explain something is through an example, so let's dive
in. This is code lifted out of a media application I wrote that allowed the user to build
playlists from the songs on their SD card. As promised, we'll be extending the BaseA-
dapter class inside of my MediaListActivty:

Example 7-30.

private class MediaAdapter extends BaseAdapter {
...
}

Querying the phone for the media info is outside the scope of this recipe, but the data
to populate the list was stored in a MediaItem class that kept standard Artist, Title,

7.8 Writing A Custom List Adapter | 393

http://developer.android.com/reference/android/widget/ListView.html

Album, and Track Number information, as well as a boolean field indicating if the item
was selected for the current playlist. In certain cases you may want to continually add
items to your list - for example, if you're downloading information and displaying it as
it comes in - but for this purpose we're going to supply all the required data to the
Adapter at once in the constructor.

Example 7-31.

public MediaAdapter(ArrayList<MediaItem> items) {
 mMediaList = items;
 ...
}

Now, if you're developing in Eclipse you'll notice that it wants us to override BaseA-
dapter's abstract methods. Let's take a look at those.

Example 7-32.

public int getCount() {
 return mMediaList.size();
}

The framework needs to know how many Views it needs to create in your list. It finds
out by asking your Adapter how many items you're managing. In our case we'll have a
View for every item in the media list.

Example 7-33.

public Object getItem(int position) {
 return mMediaList.get(position);
}
public long getItemId(int position) {
 return position;
}

We won't really be using these methods, but for completeness: getItem(int) is what gets
returned when the ListView hosting this adapter calls getItemAtPosition(int), which
won't happen in our case. getItemId(int) is what gets passed to the ListView.onListI-
temClick(ListView, View, int, int) callback when you select an item. It gives you the
position of the view in the list and the ID supplied by your adapter. In our case they're
the same.

The real work of your custom adapter will be done in the getView() method. This
method is called every time the ListView brings a new item into view. When an item
goes out of view, it is recycled by the system to be used later. This is a powerful mech-
anism for providing potentially thousands of View objects to our ListView while using
only as many Views as can be displayed on the screen. The getView() method provides
the position of the item it is creating, a View that may be not-null which the system is
recycling for you to use, and the ViewGroup parent. You'll return either a new View

394 | Chapter 7: GUI: ListView

for the list to display, or a modified copy of the supplied convertView parameter to
conserve system resources. Let's look at the code:

Example 7-34.

public View getView(int position, View convertView, ViewGroup parent) {
 View V = convertView;

 if(V == null) {
 LayoutInflater vi = (LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 V = vi.inflate(R.layout.media_row, null);
 }

 MediaItem mi = mMediaList.get(position);
 ImageView icon = (ImageView)V.findViewById(R.id.media_image);
 TextView title = (TextView)V.findViewById(R.id.media_title);
 TextView artist = (TextView)V.findViewById(R.id.media_artist);

 if(mi.isSelected()) {
 icon.setImageResource(R.drawable.item_selected);
 }
 else {
 icon.setImageResource(R.drawable.item_unselected);
 }

 title.setText(mi.getTitle());
 artist.setText("by " + mi.getArtist());

 return V;
}

We start by checking if we'll be recycling a View (which is good practice), or if we need
to generate a new View from scratch. If we weren't given a convertView, we'll call the
LayoutInflater service to build a View that we've defined in an XML layout file.

Using the View which we've ensured was built with our desired layout resource (or is
a recycled copy of one we previously built), it's simply a matter of updating its UI
elements. In our case we want to display the song title, the artist, and an indication of
whether or not the song is in our current playlist. (I've removed the error-checking, but
it's good practice to make sure any UI elements you're updating are not null - you don't
want to crash the whole ListView if there was a small mistake in one item) This method
gets called for every (visible) item in the ListView, so in this example we have a list of
identical View objects with different data being displayed in each one. If you wanted
to get really creative, you could populate the list with different view layouts based on
its position or content.

That takes care of the required BaseAdapter overrides. However, you can add any
functionality to your Adapter to work on the data set it represents. In my example, I
want the user to be able to click a list item and toggle it on/off for the current playlist.
This is easily accomplished with a simple callback on the ListView and a short function
in the Adapter:

7.8 Writing A Custom List Adapter | 395

(This function belongs to ListActivity)

Example 7-35.

protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 mAdapter.toggleItem(position);
}

(This is a member function in our MediaAdapter)

Example 7-36.

public void toggleItem(int position) {
 MediaItem mi = mMediaList.get(position);

 mi.setSelected(!mi.getSelected());
 mMediaList.set(position, mi);

 this.notifyDataSetChanged();
}

First we simply register a callback for when the user clicks an item in our list. We're
given the ListView, the View, the position, and the ID of the item that was clicked, but
we'll only need the position, which we simply pass to the MediaAdapter.toggleItem(int)
method. In that method we update the state of the corresponding MediaItem and make
an important call to notifyDataSetChanged(). This method lets the framework know
that it needs to redraw the ListView. If we don't call it, we can do whatever we want to
the data, but we won't see anything change until the next redraw (for example, when
we scroll the list).

When it's all said and done, we need to tell the parent ListView to use our Adapter to
populate the list. That's done with a simple call in the ListActivity's onCreate(Bundle)
method:

Example 7-37.

MediaAdapter mAdapter = new MediaAdapter(getSongsFromSD());
this.setListAdapter(mAdapter);

First we instantiate a new Adapter with data generated from a private function that
queries the phone for the song data, then we tell the ListActivity to use that adapter to
draw the list. And there it is - your own list adapter with a custom view and extensible
functionality.

7.9 Orientation Changes : From ListView data values to
Landscape Charting
Wagied Davids

396 | Chapter 7: GUI: ListView

Problem
Accomplish view changes on device orientation changes. For example, data values to
be plotted are contained in a Portrait ListView, and upon device orientation a graphical
display of the data values in a chart/plot is displayed.

Solution
In this example, data values to be plotted are contained in a Portrait ListView. When
the device/emualator is changed to counter-clockwise, a new Intent is launched to
change to a plot/charting View to graphically display the data values. Charting is ac-
complished using the excellent DroidCharts package (http://code.google.com/p/
droidcharts/).

File: AndroidManifest.xml

Example 7-38.

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:debuggable="true">
 <activity
 android:name=".DemoList"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden"
 android:screenOrientation="portrait">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".DemoCharts"
 android:configChanges="orientation|keyboardHidden"></activity>
 </application>
</manifest>

File: DemoCharts.java

Example 7-39.

import java.util.ArrayList;

import net.droidsolutions.droidcharts.core.data.XYDataset;

7.9 Orientation Changes : From ListView data values to Landscape Charting | 397

import net.droidsolutions.droidcharts.core.data.xy.XYSeries;
import net.droidsolutions.droidcharts.core.data.xy.XYSeriesCollection;
import android.app.Activity;
import android.content.Intent;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.widget.Toast;

public class DemoCharts extends Activity
 {
 private static final String tag = "DemoCharts";
 private final String chartTitle = "My Daily Starbucks Allowance";
 private final String xLabel = "Week Day";
 private final String yLabel = "Allowance";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Access the Extras from the Bundle
 Bundle params = getIntent().getExtras();

 // If we get no parameters, we do nothing
 if (params == null) { return; }

 // Get the passed parameter values
 String paramVals = params.getString("param");

 Log.d(tag, "Data Param:= " + paramVals);
 Toast.makeText(getApplicationContext(), "Data Param:= " + paramVals, Toast.LENGTH_LONG).show();

 ArrayList<ArrayList<Double>> dataVals = stringArrayToDouble(paramVals);

 XYDataset dataset = createDataset("My Daily Starbucks Allowance", dataVals);
 XYLineChartView graphView = new XYLineChartView(this, chartTitle, xLabel, yLabel, dataset);
 setContentView(graphView);
 }

 private String arrayToString(String[] data)
 {
 StringBuilder strBuilder = new StringBuilder();
 for (int i = 0; i < data.length; i++)
 {
 strBuilder.append(data[i]);
 }
 return strBuilder.toString();
 }

 private String cleanNumericString(String val)
 {
 return val.replaceAll("\\[", "").replaceAll("\\]", "").trim();
 }

398 | Chapter 7: GUI: ListView

 private ArrayList<ArrayList<Double>> stringArrayToDouble(String paramVals)
 {
 ArrayList<ArrayList<Double>> plotVals = new ArrayList<ArrayList<Double>>();
 if (paramVals.startsWith("[") && paramVals.endsWith("]"))
 {
 String[] vals = paramVals.substring(1, paramVals.length() - 1).split(" , ");
 for (String v : vals)
 {
 if (v.startsWith("[") && v.endsWith("]"))
 {
 String[] dataVals = v.split(",");

 String xvalStr = cleanNumericString(dataVals[0]);
 String yvalStr = cleanNumericString(dataVals[1]);
 Log.d(paramVals, xvalStr + " - " + yvalStr);

 // Convert to Numeric Values
 Double x = Double.parseDouble(xvalStr);
 Double y = Double.parseDouble(yvalStr);

 // Create (x,y) tuple for data point
 ArrayList<Double> list1 = new ArrayList<Double>();
 list1.add(x);
 list1.add(y);

 // Add to our final list
 plotVals.add(list1);
 }
 Log.d(tag, "Values to plot: " + plotVals.toString());
 }
 }
 return plotVals;
 }

 /**
 * Creates a sample dataset.
 *
 * @return a sample dataset.
 */
 private XYDataset createDataset(String title, ArrayList<ArrayList<Double>> dataVals)
 {
 final XYSeries series1 = new XYSeries(title);
 for (ArrayList<Double> tuple : dataVals)
 {
 double x = tuple.get(0).doubleValue();
 double y = tuple.get(1).doubleValue();

 series1.add(x, y);
 }

 // Create a collection to hold various data sets
 final XYSeriesCollection dataset = new XYSeriesCollection();
 dataset.addSeries(series1);
 return dataset;

7.9 Orientation Changes : From ListView data values to Landscape Charting | 399

 }

 @Override
 public void onConfigurationChanged(Configuration newConfig)
 {
 super.onConfigurationChanged(newConfig);
 Toast.makeText(this, "Orientation Change", Toast.LENGTH_SHORT);

 // Lets get back to our DemoList view
 Intent intent = new Intent(this, DemoList.class);
 startActivity(intent);

 // Finish current Activity
 this.finish();
 }
 }

File: DemoList.java

Example 7-40.

import java.util.ArrayList;

import android.app.ListActivity;
import android.content.Intent;
import android.content.res.Configuration;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

public class DemoList extends ListActivity implements OnItemClickListener
 {
 private static final String tag = "DemoList";
 private ListView listview;
 private ArrayAdapter<String> listAdapter;

 // Want to pass data values as parameters to next Activity/View/Page
 private String params;

 // Our data for plotting
 private final double[][] data = { { 1, 1.0 }, { 2.0, 4.0 }, { 3.0, 10.0 }, { 4, 2.0 }, { 5.0, 20 }, { 6.0, 4.0 }, { 7.0, 1.0 }, };

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Set the View Layer
 setContentView(R.layout.data_listview);

400 | Chapter 7: GUI: ListView

 // Get the Default declared ListView @android:list
 listview = getListView();

 // List for click events to the ListView items
 listview.setOnItemClickListener(this);

 // Get the data to
 ArrayList<String> dataList = getDataStringList(data);

 // Create an Adapter to for viewing the ListView
 listAdapter = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1, dataList);

 // Bind the adapter to the ListView
 listview.setAdapter(listAdapter);

 // Set the parameters to pass to the next view/ page
 setParameters(data);
 }

 private String doubleArrayToString(double[][] dataVals)
 {
 StringBuilder strBuilder = new StringBuilder();
 for (int i = 0; i < dataVals.length; i++)
 {
 String datum = "[" + String.valueOf(dataVals[i][0]) + "," + String.valueOf(dataVals[i][1]) + "]";

 if (i < dataVals.length - 1)
 {
 strBuilder.append(datum + " , ");
 }
 else
 {
 strBuilder.append(datum);
 }
 }
 return strBuilder.toString();
 }

 /**
 * Sets parameters for the Bundle
 *
 * @param dataList
 */
 private void setParameters(double[][] dataVals)
 {
 params = toJSON(dataVals);
 }

 public String getParameters()
 {
 return this.params;
 }

 /**
 * Need todo JSONArray

7.9 Orientation Changes : From ListView data values to Landscape Charting | 401

 *
 * @param dataVals
 * @return
 */
 private String toJSON(double[][] dataVals)
 {
 StringBuilder strBuilder = new StringBuilder();

 strBuilder.append("[");
 strBuilder.append(doubleArrayToString(dataVals));
 strBuilder.append("]");
 return strBuilder.toString();
 }

 /**
 *
 * @param dataVals
 * @return
 */
 private ArrayList<String> getDataStringList(double[][] dataVals)
 {
 ArrayList<String> list = new ArrayList<String>();

 // TODO: CONVERT INTO JSON FORMAT
 for (int i = 0; i < dataVals.length; i++)
 {
 String datum = "[" + String.valueOf(dataVals[i][0]) + "," + String.valueOf(dataVals[i][1]) + "]";
 list.add(datum);
 }
 return list;
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig)
 {
 super.onConfigurationChanged(newConfig);

 // Create an Intent to switch view to the next page view
 Intent intent = new Intent(this, DemoCharts.class);

 // Pass parameters along to the next page
 intent.putExtra("param", getParameters());

 // Start the activity
 startActivity(intent);

 Log.d(tag, "Orientation Change...");
 Log.d(tag, "Params: " + getParameters());
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position, long duration)
 {
 // Upon clicking item in list pop a toast
 String msg = "#Item: " + String.valueOf(position) + " - " + listAdapter.getItem(position);

402 | Chapter 7: GUI: ListView

 Toast.makeText(getApplicationContext(), msg, Toast.LENGTH_LONG).show();
 }
 }

File: XYLineChartView.java

Example 7-41.

import net.droidsolutions.droidcharts.awt.Rectangle2D;
import net.droidsolutions.droidcharts.core.ChartFactory;
import net.droidsolutions.droidcharts.core.JFreeChart;
import net.droidsolutions.droidcharts.core.axis.NumberAxis;
import net.droidsolutions.droidcharts.core.data.XYDataset;
import net.droidsolutions.droidcharts.core.plot.PlotOrientation;
import net.droidsolutions.droidcharts.core.plot.XYPlot;
import net.droidsolutions.droidcharts.core.renderer.xy.XYLineAndShapeRenderer;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.os.Handler;
import android.view.View;

public class XYLineChartView extends View
 {

 private final String _chartTitle;
 private final String _xLabel;
 private final String _yLabel;
 private final XYDataset _dataSet;

 /** The view bounds. */
 private final Rect mRect = new Rect();

 /** The user interface thread handler. */
 private final Handler mHandler;

 /**
 * Creates a new graphical view.
 *
 * @param context
 * the context
 * @param chart
 * the chart to be drawn
 */
 public XYLineChartView(Context context, String chartTitle, String xLabel, String yLabel, XYDataset dataSet)
 {
 super(context);
 mHandler = new Handler();
 _chartTitle = chartTitle;
 _xLabel = xLabel;
 _yLabel = yLabel;
 _dataSet = dataSet;
 }

7.9 Orientation Changes : From ListView data values to Landscape Charting | 403

 @Override
 protected void onDraw(Canvas canvas)
 {

 super.onDraw(canvas);
 canvas.getClipBounds(mRect);

 // Get the passed in data set
 final XYDataset dataset = _dataSet;

 // Create the Chart
 final JFreeChart chart = createChart(dataset);

 // Draw it
 chart.draw(canvas, new Rectangle2D.Double(0, 0, mRect.width(), mRect.height()));
 Paint p = new Paint();
 p.setColor(Color.RED);
 }

 /**
 * Schedule a user interface repaint.
 */
 public void repaint()
 {
 mHandler.post(new Runnable()
 {
 public void run()
 {
 invalidate();
 }
 });
 }

 /**
 * Creates a chart.
 *
 * @param dataset
 * the data for the chart.
 *
 * @return a chart.
 */
 private JFreeChart createChart(final XYDataset dataset)
 {
 // create the chart...
 // (chart title, x-axis label, y-axis label,
 // dataset,orientation,orientation ,url)

 final JFreeChart chart = ChartFactory.createXYLineChart(_chartTitle, _xLabel, _yLabel, dataset, PlotOrientation.VERTICAL, true, true, false);

 Paint white = new Paint(Paint.ANTI_ALIAS_FLAG);
 white.setColor(Color.WHITE);

 Paint dkGray = new Paint(Paint.ANTI_ALIAS_FLAG);
 dkGray.setColor(Color.DKGRAY);

404 | Chapter 7: GUI: ListView

 Paint lightGray = new Paint(Paint.ANTI_ALIAS_FLAG);
 lightGray.setColor(Color.LTGRAY);
 lightGray.setStrokeWidth(10);

 // Set Chart Background color
 chart.setBackgroundPaint(white);

 final XYPlot plot = chart.getXYPlot();

 plot.setBackgroundPaint(dkGray);
 plot.setDomainGridlinePaint(lightGray);
 plot.setRangeGridlinePaint(lightGray);

 final XYLineAndShapeRenderer renderer = new XYLineAndShapeRenderer();
 renderer.setSeriesLinesVisible(0, true);
 plot.setRenderer(renderer);

 // change the auto tick unit selection to integer units only...
 final NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis();
 rangeAxis.setStandardTickUnits(NumberAxis.createIntegerTickUnits());
 // final NumberAxis domainAxis = (NumberAxis) plot.getDomainAxis();
 // domainAxis.set(CategoryLabelPositions.STANDARD);

 return chart;

 }
 }

Discussion
Handle physical device orientation changes. Android emulator Control-F11 key com-
bination will result in a Portrait to Landscape orientation change. A new View object
is created on orientation changes. The Android method onConfiguration-
Changed(Configuration newConfig) can be overriden to accomodate for orientation
changes.

Most important trick is to modify the AndroidManifest.xml to allow for the following:
android:configChanges="orientation|keyboardHidden" android:screenOrienta-
tion="portrait"

A neat trick to prevent sudden changes in Android Views is to declare/specify the ori-
entations in the AndroidManifest.xml file.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b43d470/n/AndroidOrientationChanges.zip

7.9 Orientation Changes : From ListView data values to Landscape Charting | 405

http://www.filefactory.com/file/b43d470/n/AndroidOrientationChanges.zip
http://www.filefactory.com/file/b43d470/n/AndroidOrientationChanges.zip

CHAPTER 8

Multimedia

8.1 Introduction: Multimedia
Ian Darwin

Discussion
Android is a rich multimedia environment. The standard Android load includes Music
and Video players, and most commercial devices ship with these or fancier versions as
well as YouTube players and more. The recipes in this section show you how to control
some aspects of the multimedia world that Android provides.

8.2 Play a Youtube Video
Marco Dinacci

Problem
You want to play a video from Youtube on your device

Solution
Given a URI to play the video, create an ACTION_VIEW Intent with it and start a new
Activity.

Discussion
For this recipe to work the user needs the standard Youtube application installed on
the device.

Example 8-1.

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

407

 String video_path = "http://www.youtube.com/watch?v=opZ69P-0Jbc";
 Uri uri = Uri.parse(video_path);

 // With this line the Youtube application, if installed, will launch immediately.
 // Without it you will be prompted with a list of the application to choose.
 uri = Uri.parse("vnd.youtube:" + uri.getQueryParameter("v"));

 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(intent);
}

The example uses a standard YouTube.com URL. The uri.getQueryParameter("v") is
used to extract the video ID from the URI itself, in our example the ID is opZ69P-0Jbc.

8.3 Using Gallery with ImageSwitcher
Nidhin Jose Davis

Problem
Creating UI for browse through multiple images.

Solution
You could use Gallery with Image Switcher view to achieve this

Discussion
The Gallery(android.widget.Gallery) and ImageSwitcher(android.widget.Image-
Switcher) can be used together to create a nice image browser for your application.

Example 8-2.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <ImageSwitcher
 android:id="@+id/switcher"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentBottom="true"
 />

 <Gallery
 android:id="@+id/gallery"

408 | Chapter 8: Multimedia

 android:background="#55000000"
 android:layout_width="fill_parent"
 android:layout_height="60dip"
 android:spacing="16px"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:gravity="center_vertical"
 />

</RelativeLayout>

Now let's see how to use this layout.

Example 8-3.

public class ImageBrowser extends Activity implements AdapterView.OnItemSelectedListener, ViewSwitcher.ViewFactory {
 private ImageSwitcher mISwitcher;
 private ArrayList<Drawable> allimages = new ArrayList<Drawable>();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // lets remove the title bar
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 setContentView(R.layout.main);

 getImages();

 mISwitcher = (ImageSwitcher)findViewById(R.id.switcher);
 mISwitcher.setFactory(this);
 // some animation when image changes
 mISwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
 android.R.anim.fade_in));
 mISwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
 android.R.anim.fade_out));

 Gallery gallery = (Gallery) findViewById(R.id.gallery);
 gallery.setAdapter(new ImageAdapter(this));
 gallery.setOnItemSelectedListener(this);
 }

 private void getImages() {
 allimages.add(this.getResources().getDrawable(R.drawable.image1));
 allimages.add(this.getResources().getDrawable(R.drawable.image2));
 allimages.add(this.getResources().getDrawable(R.drawable.image3));
 allimages.add(this.getResources().getDrawable(R.drawable.image4));
 allimages.add(this.getResources().getDrawable(R.drawable.image5));
 allimages.add(this.getResources().getDrawable(R.drawable.image6));
 allimages.add(this.getResources().getDrawable(R.drawable.image7));
 allimages.add(this.getResources().getDrawable(R.drawable.image8));
 allimages.add(this.getResources().getDrawable(R.drawable.image9));

 }

8.3 Using Gallery with ImageSwitcher | 409

 @Override
 public void onItemSelected(AdapterView<?> arg0, View v, int position, long id) {
 try{
 mISwitcher.setImageDrawable(allimages.get(position));
 }catch(Exception e){}
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0) {
 // TODO Auto-generated method stub

 }

 @Override
 public View makeView() {
 ImageView i = new ImageView(this);
 i.setBackgroundColor(0xFF000000);
 i.setScaleType(ImageView.ScaleType.FIT_CENTER);
 i.setLayoutParams(new ImageSwitcher.LayoutParams(ImageSwitcher.LayoutParams.FILL_PARENT,ImageSwitcher.LayoutParams.FILL_PARENT));
 return i;
 }

 public class ImageAdapter extends BaseAdapter {
 private Context mContext;

 public ImageAdapter(Context c) {
 mContext = c;
 }

 public int getCount() {
 return allimages.size();
 }

 public Object getItem(int position) {
 return position;
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView galleryview = new ImageView(mContext);
 galleryview.setImageDrawable(allimages.get(position));
 galleryview.setAdjustViewBounds(true);
 galleryview.setLayoutParams(new LayoutParams(LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT));
 galleryview.setPadding(5, 0, 5, 0);
 galleryview.setBackgroundResource(android.R.drawable.picture_frame);
 return galleryview;
 }

410 | Chapter 8: Multimedia

 }
}

8.4 Grabbing a video using MediaRecorder
Marco Dinacci

Problem
You want to grab a video using the built-in device camera and save it to disk.

Solution
This recipe teaches the reader how to grab a video and record it on the phone by using
the MediaRecorder class provided by the Android framework.

Discussion
The MediaRecorder is normally used to perform audio and/or video recording. The
class has a straightforward API but as it's based on a simple state machine the methods
must be called in the proper order in order to avoid IllegalStateException from popping
up.

Create a new Activity and override the onCreate method with the following:

Example 8-4.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.media_recorder_recipe);

 // we shall take the video in landscape orientation
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 mSurfaceView = (SurfaceView) findViewById(R.id.surfaceView);
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mToggleButton = (ToggleButton) findViewById(R.id.toggleRecordingButton);
 mToggleButton.setOnClickListener(new OnClickListener() {
 @Override
 // toggle video recording
 public void onClick(View v) {
 if (((ToggleButton)v).isChecked())
 mMediaRecorder.start();
 else {
 mMediaRecorder.stop();
 mMediaRecorder.reset();
 try {
 initRecorder(mHolder.getSurface());

8.4 Grabbing a video using MediaRecorder | 411

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 });
 }

The preview frames from the camera will be displayed on a SurfaceView. Recording
is controlled by a toggle button. After the recording is over, we stop the MediaRecorder.
Since the stop method resets all the state machine variables in order to be able to grab
another video we reset the state machine and call our initRecorder once more.

initRecorder is where we configure the MediaRecorder and the camera:

Example 8-5.

 /* Init the MediaRecorder, the order the methods are called is vital to
 * its correct functioning.
 */
 private void initRecorder(Surface surface) throws IOException {
 // It is very important to unlock the camera before doing setCamera
 // or it will results in a black preview
 if(mCamera == null) {
 mCamera = Camera.open();
 mCamera.unlock();
 }

 if(mMediaRecorder == null)
 mMediaRecorder = new MediaRecorder();

 mMediaRecorder.setPreviewDisplay(surface);
 mMediaRecorder.setCamera(mCamera);

 mMediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 mMediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
 File file = createFile();

 mMediaRecorder.setOutputFile(file.getAbsolutePath());

 // No limit. Don't forget to check the space on disk.
 mMediaRecorder.setMaxDuration(-1);
 mMediaRecorder.setVideoFrameRate(15);

 mMediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);

 try {
 mMediaRecorder.prepare();
 } catch (IllegalStateException e) {
 // This is thrown if the previous calls are not called with the
 // proper order
 e.printStackTrace();
 }

412 | Chapter 8: Multimedia

 mInitSuccesful = true;
 }

It is important to create and unlock a Camera object before of the creation of a Me-
diaRecorder. setPreviewDisplay and setCamera must be called immediately after the
creation of the MediaRecorder. The choice of the format and the output file is obliga-
tory. Other options are optional but they must be called in the order outlined in the
code above.

The MediaRecorder is best initialized when the surface has been created. We register
our Activity as a SurfaceHolder.Callback listener in order to be notified of this and
override the surfaceCreated method to call our initialization code:

Example 8-6.

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 if(!mInitSuccesful)
 initRecorder(mHolder.getSurface());
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

When you're done with the surface, don't forget to release the resources, the camera is
a shared object and may be used by other applications as well:

Example 8-7.

 private void shutdown() {
 // Release MediaRecorder and especially the Camera as it's a shared
 // object that can be used by other applications
 mMediaRecorder.reset();
 mMediaRecorder.release();
 mCamera.release();

 // once the objects have been released they can't be reused
 mMediaRecorder = null;
 mCamera = null;
 }

Override the surfaceDestroyed method so the previous code can be called automatically
when the user is done with the Activity:

Example 8-8.

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 shutdown();
 }

8.4 Grabbing a video using MediaRecorder | 413

Source Download URL
The source code for this example may be downloaded from this URL: http://www.in
transitione.com/intransitione.com/code/android/media_recorder_recipe_code.zip

8.5 Android Face Detection
Wagied Davids

Problem
Face detection is a cool and fun hidden api feature of Android, and has been around
since Android 1.5. In essence face detection is part of a machine learning technique of
recognizing objects using a set of features.

Solution
Use Android's built-in face detection capability.

Discussion
File: Main.java

Example 8-9.

import android.app.Activity;
import android.os.Bundle;

public class Main extends Activity
{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(new FaceDetectionView(this, "face5.JPG"));
}
}

File: FaceDetectionView.java

Example 8-10.

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.PointF;
import android.graphics.Rect;
import android.media.FaceDetector;

414 | Chapter 8: Multimedia

http://www.intransitione.com/intransitione.com/code/android/media_recorder_recipe_code.zip
http://www.intransitione.com/intransitione.com/code/android/media_recorder_recipe_code.zip

import android.util.Log;
import android.view.View;

/**
* @author wdavid01
*
*/
public class FaceDetectionView extends View
{
private static final String tag = FaceDetectionView.class.getName();
private static final int NUM_FACES = 10;
private FaceDetector arrayFaces;
private final FaceDetector.Face getAllFaces[] = new FaceDetector.Face[NUM_FACES];
private FaceDetector.Face getFace = null;

private final PointF eyesMidPts[] = new PointF[NUM_FACES];
private final float eyesDistance[] = new float[NUM_FACES];

private Bitmap sourceImage;

private final Paint tmpPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
private final Paint pOuterBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);
private final Paint pInnerBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);

private int picWidth, picHeight;
private float xRatio, yRatio;
private ImageLoader mImageLoader = null;

public FaceDetectionView(Context context, String imagePath)
{
super(context);
init();
mImageLoader = ImageLoader.getInstance(context);
sourceImage = mImageLoader.loadFromFile(imagePath);
detectFaces();

}

private void init()
{
Log.d(tag, "Init()...");
pInnerBullsEye.setStyle(Paint.Style.FILL);
pInnerBullsEye.setColor(Color.RED);
pOuterBullsEye.setStyle(Paint.Style.STROKE);
pOuterBullsEye.setColor(Color.RED);
tmpPaint.setStyle(Paint.Style.STROKE);
tmpPaint.setTextAlign(Paint.Align.CENTER);
BitmapFactory.Options bfo = new BitmapFactory.Options();
bfo.inPreferredConfig = Bitmap.Config.RGB_565;

}

private void loadImage(String imagePath)
{
sourceImage = mImageLoader.loadFromFile(imagePath);

8.5 Android Face Detection | 415

}

@Override
protected void onDraw(Canvas canvas)
{
Log.d(tag, "onDraw()...");

xRatio = getWidth() * 1.0f / picWidth;
yRatio = getHeight() * 1.0f / picHeight;
canvas.drawBitmap(sourceImage, null, new Rect(0, 0, getWidth(), getHeight()), tmpPaint);
for (int i = 0; i < eyesMidPts.length; i++)
{
if (eyesMidPts[i] != null)
{
pOuterBullsEye.setStrokeWidth(eyesDistance[i] / 6);
canvas.drawCircle(eyesMidPts[i].x * xRatio, eyesMidPts[i].y * yRatio, eyesDistance[i] / 2, pOuterBullsEye);
canvas.drawCircle(eyesMidPts[i].x * xRatio, eyesMidPts[i].y * yRatio, eyesDistance[i] / 6, pInnerBullsEye);
}
}
}

private void detectFaces()
{
Log.d(tag, "detectFaces()...");

picWidth = sourceImage.getWidth();
picHeight = sourceImage.getHeight();

arrayFaces = new FaceDetector(picWidth, picHeight, NUM_FACES);
arrayFaces.findFaces(sourceImage, getAllFaces);

for (int i = 0; i < getAllFaces.length; i++)
{
getFace = getAllFaces[i];
try
{
PointF eyesMP = new PointF();
getFace.getMidPoint(eyesMP);
eyesDistance[i] = getFace.eyesDistance();
eyesMidPts[i] = eyesMP;

Log.i("Face", i + " " + getFace.confidence() + " " + getFace.eyesDistance() + " " + "Pose: (" + getFace.pose(FaceDetector.Face.EULER_X) + "," + getFace.pose(FaceDetector.Face.EULER_Y) + "," + getFace.pose(FaceDetector.Face.EULER_Z) + ")" + "Eyes Midpoint: (" + eyesMidPts[i].x + "," + eyesMidPts[i].y + ")");

}
catch (Exception e)
{
Log.e("Face", i + " is null");
}
}
}
}

416 | Chapter 8: Multimedia

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/cbf2e8b/n/AndroFaces-Example.zip

8.6 Playing audio from a file
Marco Dinacci

Problem
You want to play an audio file stored on the device.

Solution
Create and configure properly a MediaPlayer and a MediaController, provide the path
of the audio file to play and enjoy the music.

Discussion
Playing an audio file is as easy as setting up a MediaPlayer and a MediaController.

First create a new activity that implements the MediaPlayerControl interface.

Example 8-11.

public class PlayAudioActivity extends Activity implements MediaPlayerControl {
 private MediaController mMediaController;
 private MediaPlayer mMediaPlayer;
 private Handler mHandler = new Handler();

In the onCreate method we create and configure a MediaPlayer and a MediaControl
ler. The first is the object that perform the typical operations on an audio file like
playing, pausing and seeking. The second is a view containing the buttons that launch
the just mentioned operations through our MediaPlayerControl class.

Let's see the onCreate code:

Example 8-12.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mMediaPlayer = new MediaPlayer();
 mMediaController = new MediaController(this);
 mMediaController.setMediaPlayer(PlayAudioActivity.this);
 mMediaController.setAnchorView(findViewById(R.id.audioView));

 String audioFile = "" ;
 try {

8.6 Playing audio from a file | 417

http://www.filefactory.com/file/cbf2e8b/n/AndroFaces-Example.zip
http://www.filefactory.com/file/cbf2e8b/n/AndroFaces-Example.zip

 mMediaPlayer.setDataSource(audioFile);
 mMediaPlayer.prepare();
 } catch (IOException e) {
 Log.e("PlayAudioDemo", "Could not open file " + audioFile + " for playback.", e);
 }

 mMediaPlayer.setOnPreparedListener(new OnPreparedListener() {
 @Override
 public void onPrepared(MediaPlayer mp) {
 mHandler.post(new Runnable() {
 public void run() {
 mMediaController.show(10000);
 mMediaPlayer.start();
 }
 });
 }
 });
 }

In addition to configuring our MediaController and MediaPlayer we create an anony-
mous OnPreparedListener in order to start the player only when the media source is
ready for playback.

Remember to cleanup the media player when the Activity is destroyed.

Example 8-13.

 @Override
 protected void onDestroy() {
 super.onDestroy();
 mMediaPlayer.stop();
 mMediaPlayer.release();
 }

At last we implement the MediaPlayerControl interface. The code is very straightfor-
ward:

Example 8-14.

 @Override
 public boolean canPause() {
 return true;
 }

 @Override
 public boolean canSeekBackward() {
 return false;
 }

 @Override
 public boolean canSeekForward() {
 return false;
 }

 @Override

418 | Chapter 8: Multimedia

 public int getBufferPercentage() {
 int percentage = (mMediaPlayer.getCurrentPosition() * 100) / mMediaPlayer.getDuration();

 return percentage;
 }

 @Override
 public int getCurrentPosition() {
 return mMediaPlayer.getCurrentPosition();
 }

 @Override
 public int getDuration() {
 return mMediaPlayer.getDuration();
 }

 @Override
 public boolean isPlaying() {
 return mMediaPlayer.isPlaying();
 }

 @Override
 public void pause() {
 if(mMediaPlayer.isPlaying())
 mMediaPlayer.pause();
 }

 @Override
 public void seekTo(int pos) {
 mMediaPlayer.seekTo(pos);
 }

 @Override
 public void start() {
 mMediaPlayer.start();
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 mMediaController.show();

 return false;
 }
}

As a final touch we override the onTouchEvent in order to show the MediaController
buttons when the user click on the screen.

Since we create our MediaController programmatically, the layout is very simple:

Example 8-15.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

8.6 Playing audio from a file | 419

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/audioView"
 >
</LinearLayout>

Source Download URL
The source code for this example may be downloaded from this URL: http://www.in
transitione.com/intransitione.com/code/android/play_audio_demo.zip

8.7 Playing Audio without Interaction
Ian Darwin

Problem
You want to play an audio file with no interaction.

Solution
All you need to play a file with no interaction (e.g., not user-settable volume, pause,
etc. controls) is to create a MediaPlayer for the file, and call its start() method.

Discussion
This is the simplest way to play a sound file. In contrast with the recipe Recipe 8.6, this
version offers the user no controls to interact with the sound. You should therefore
usually offer at least a "stop" or "cancel" button, especially if the audio file is or might
be long. If you're just playing a short sound effect within your application, no such
control is needed.

You must have a MediaPlayer created for your file. The audio file may be on the SD
Card or it may be in your application's res/raw directory. If the sound file is part of your
application, store it under res/raw. Suppose it is in res/raw/alarm_sound.3gp. Then
the reference to it s R.raw.alarm_sound, and you can play it as follows:

Example 8-16.

MediaPlayer player = MediaPlayer.create(this, R.raw.alarm_sound);
player.start();

In the SD Card case, use the following invocation:

Example 8-17.

MediaPlayer player = new MediaPlayer();
player.setDataSource(fileName);
player.prepare();
player.start();

420 | Chapter 8: Multimedia

http://www.intransitione.com/intransitione.com/code/android/play_audio_demo.zip
http://www.intransitione.com/intransitione.com/code/android/play_audio_demo.zip

There is also a convenience routine, MediaPlayer.create(Context, URI) that can be
used; in all cases, create() calls prepare() for you.

To control the play from within your application, you can call the relevant methods
such as player.stop(), player.pause(), etc. If you want to reuse a player after stopping
it, you must call prepare() again.

To be notified when the audio is finished, use an OnCompletionListener:

Example 8-18.

player.setOnCompletionListener(new OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 Toast.makeText(Main.this,
 "Media Play Complete", Toast.LENGTH_SHORT).show();
 }
});

When you are truly done with any MediaPlayer instance, you should call its
release() method to free up memory, or you will run out of resources if you are creating
a lot of MediaPlayer objects.

See Also
To really use the MediaPlayer effectively you should understand its various states and
transitions, as this will help you to understand what methods are valid. There is a
complete state diagram for the MediaPlayer at http://developer.android.com/reference/
android/media/MediaPlayer.html.

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/MediaPlayerDemo..tgz

8.8 Using Speech to Text
Corey Sunwold

Problem
How to get speech input and display it as text

Solution
One of Android's unique features is native speech to text processing. This provides an
alternative form of text input for the user, who in some situations might not have their
hands readily available to type in information.

8.8 Using Speech to Text | 421

http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://projects.darwinsys.com/MediaPlayerDemo..tgz
http://projects.darwinsys.com/MediaPlayerDemo..tgz

Discussion
Android provides an easy API for using its built in voice recognition through the Rec-
ognizerIntent.

The example layout will be very simple. I've only included a TextView and a Button.
The button will be used to launch the voice recognizer, and when results are returned
they will be displayed in the TextView.

Example 8-19.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/getSpeechButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Press to begin voice recognition"
 ></Button>
<TextView
 android:id="@+id/speechText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=""
 />
</LinearLayout>

Example 8-20.

public class Main extends Activity {

 private static final int RECOGNIZER_RESULT = 1234;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startSpeech = (Button)findViewById(R.id.getSpeechButton);
 startSpeech.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "Speech to text");
 startActivityForResult(intent, RECOGNIZER_RESULT);
 }

422 | Chapter 8: Multimedia

 });
 }

 /**
 * Handle the results from the recognition activity.
 */
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == RECOGNIZER_RESULT && resultCode == RESULT_OK) {
 ArrayList<String> matches = data.getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);

 TextView speechText = (TextView)findViewById(R.id.speechText);
 speechText.setText(matches.get(0).toString());
 }

 super.onActivityResult(requestCode, resultCode, data);
 }
}

See Also
http://developer.android.com/reference/android/speech/RecognizerIntent.html

8.9 Making the Device Speak with TTS
Ian Darwin

Problem
You want your application to pronounce words of text so the user can perceive them
without watching the screens (e.g., when driving).

Solution
Use the TextToSpeech api.

Discussion
The TextToSpeech API is built in to Android (though you may have to install the voice
files, depending on version).

To get started you just need a TextToSpeech object. In theory you could just do this:

Example 8-21.

private TextToSpeech myTTS = new TextToSpeech(this, this);
myTTS.setLanguage(Locale.US);
myTTS.speak(textToBeSpoken, TextToSpeech.QUEUE_FLUSH, null);
myTTS.shutdown();

8.9 Making the Device Speak with TTS | 423

However, to ensure success, you actually have to use a couple of intents, one to check
that the TTS data are available and/or install them if not, and another to start the TTS
mechanism. So in practice the code needs to look something like the following. This
quaint little application chooses one of half a dozen banal phrases to utter each time
the Speak button is pressed.

Example 8-22.

public class Main extends Activity implements OnInitListener {

 private TextToSpeech myTTS;
 private List<String> phrases = new ArrayList<String>();

 public void onCreate(Bundle savedInstanceState) {

 phrases.add("Hello Android, Goodbye iPhone");
 phrases.add("The quick brown fox jumped over the lazy dog");
 phrases.add("What is your mother's maiden name?");
 phrases.add("Etaoin Shrdlu for Prime Minister");
 phrases.add("The letter 'Q' does not appear in 'antidisestablishmentarianism')");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startButton = (Button) findViewById(R.id.start_button);
 startButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, 1);
 }
 });
 }

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == 1) {

 if (resultCode == TextToSpeech.Engine.CHECK_VOICE_DATA_PASS) {
 myTTS = new TextToSpeech(this, this); // 1
 myTTS.setLanguage(Locale.US);
 } else {
 // TTS data not yet loaded, try to install it
 Intent ttsLoadIntent = new Intent();
 ttsLoadIntent.setAction(TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(ttsLoadIntent);
 }
 }
 }

 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {

 int n = (int)(Math.random() * phrases.size());
 myTTS.speak(phrases.get(n), TextToSpeech.QUEUE_FLUSH, null);

424 | Chapter 8: Multimedia

 } else if (status == TextToSpeech.ERROR) {
 myTTS.shutdown();
 }
 }

At the line marked "1", midway through the above code, the first argument is a Context
(the Activity) and the second is an OnInitListener, also implemented by the Main Ac-
tivity in this case. When the initialization of the TextToSpeech object is done, it calls
the listener, whose onInit() method is meant to notify that the TTS is ready. In our
trivial Speaker program here, we simply do the speaking. In a longer example you would
probably want to start a thread or service to do the speaking operation.

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/Speaker..zip

8.9 Making the Device Speak with TTS | 425

http://projects.darwinsys.com/Speaker..zip
http://projects.darwinsys.com/Speaker..zip

CHAPTER 9

Data Persistence

9.1 Listing a Directory
Ian Darwin

Problem
You need to list the filesystem entries named in a directory.

Solution
Use a java.io.File object’s list() or listFiles() method.

Discussion
The java.io.File class contains several methods for working with directories. For ex-
ample, to list the filesystem entities named in the current directory, just write:

Example 9-1.

String<ulink url=<emphasis>><citetitle></citetitle></ulink> list = new File(".").list()

To get an array of already constructed File objects rather than Strings, use:

Example 9-2.

File<ulink url=<emphasis>><citetitle></citetitle></ulink> list = new File(".").listFiles();

You can display the result in a (BROKEN XREF TO RECIPE -1 'Building list-based
applications with ListView|ListView').

Of course, there’s lots of room for elaboration. You could print the names in multiple
columns across or down the screen in a TextView in a monospace font, since you know
the number of items in the list before you print. You could omit filenames with leading
periods, as does the Unix ls program. Or print the directory names first; as some "file
manager" type programs do. By using listFiles(), which constructs a new File object for

427

each name, you could print the size of each, as per the DOS dir command or the Unix
ls -l command (see (BROKEN XREF TO RECIPE -1 'Getting File Information')). Or
you could figure out whether each is a file, a directory, or neither. Having done that,
you could pass each directory to your top-level function, and you’d have directory
recursion (the Unix find command, or ls -R, or the DOS DIR /S command). Quite the
makings of a file manager application of your own.

A more flexible way to list filesystem entries is with list(FilenameFilter ff). Filename-
Filter is a tiny interface with only one method: boolean accept(File inDir, String file-
Name). Suppose you want a listing of only Java-related files (*.java, *.class, *.jar, etc.).
Just write the accept() method so that it returns true for these files and false for any
others. Here is the Ls class warmed over to use a FilenameFilter instance

Example 9-3.

import java.io.*;

/**
 * FNFilter - directory lister modified to use FilenameFilter
 */
public class FNFilter {
 public static String[] getListing(String startingDir) {
 // Generate the selective list, with a one-use File object.
 String[] dir = new java.io.File(startingDir).list(new OnlyJava());
 java.util.Arrays.sort(dir); // Sort it (Data Structuring chapter))
 return dir;
}

/** FilenameFilter implementation:
 * The Accept method only returns true for .java , .jar and class files.
 */
class OnlyJava implements FilenameFilter {
 public boolean accept(File dir, String s) {
 if (s.endsWith(".java") || s.endsWith(".dex") || s.endsWith(".jar"))
 return true;
 // others: projects, ... ?
 return false;
 }
}

The FilenameFilter could be more flexible; in a full-scale application, the list of files
returned by the FilenameFilter would be chosen dynamically, possibly automatically,
based on what you were working on. File Chooser dialogs implement this as well,
allowing the user to select interactively from one of several sets of files to be listed. This
is a great convenience in finding files, just as it is here in reducing the number of files
that must be examined.

For the listFiles() method, there is an additional overload that accepts a FileFilter. The
only difference is that FileFilter's accept method is called with a File object, whereas
FileNameFilter's is called with a filename String.

428 | Chapter 9: Data Persistence

See Also
See Recipe 7.2 to display the results in your GUI. Chapter 11 of the Java Cookbook has
more information on file and directory operations.

9.2 Default shared preferences consistency check
Federico Paolinelli

Problem
Android provides a very easy way to setup default preferences by defining a Preferen-
ceActivity and providing it a resource file. What is not clear is how to perform checks
on preferences given by the user

Solution
You can implement the

Example 9-4.

public void onSharedPreferenceChanged(SharedPreferences prefs, String key)

and perform the checks in its body. If the check fails you can restore a default value in
the preference. You must be aware that even if the SharedPreferences will contain the
right value, you won't see it displayed correctly. For this reason, you need to reload the
preferences activity.

Discussion
If you have a default preference activity that implements OnSharedPreferenceChange-
Listener

Example 9-5.

 public class MyPreferenceActivity extends PreferenceActivity implements OnSharedPreferenceChangeListener {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Context context = getApplicationContext();
 prefs = PreferenceManager.getDefaultSharedPreferences(context);
 addPreferencesFromResource(R.xml.userprefs);
}

Your PreferenceActivity can implement the onSharedPreferenceChanged method.

This will be called after the change is committed, so every other change you perform
will be permanent.

The idea is to check if you like the value, and otherwise put a default value / disable it.

9.2 Default shared preferences consistency check | 429

http://javacook.darwinsys.com/

To get the method notified, you have to register your activity as a valid listener. The
better way is to register in onResume and unregister in onPause:

Example 9-6.

 @Override
 protected void onResume() {
 super.onResume();
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

 @Override
 protected void onPause() {
 super.onPause();
 prefs.unregisterOnSharedPreferenceChangeListener(this);
 }

Now it's time to perform the consistency check. For example, if you have an option
whose key is MY_OPTION_KEY,

Example 9-7.

public void onSharedPreferenceChanged(SharedPreferences prefs, String key) {
 SharedPreferences.Editor prefEditor = prefs.edit();

 if(key.equals(MY_OPTION_KEY)){
 String optionValue = prefs.getString(MY_OPTION_KEY, "");
 if(dontLikeTheValue(optionValue)){
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 reload();
 }
 }
 return;
}

Of course in this way the user will be surprised and will not know why you refused his
option. You can then show and error dialog and perform the reload action after the
user confirms the dialog.

Example 9-8.

private void showErrorDialog(String errorString){
 String okButtonString = context.getString(R.string.ok_name);
 AlertDialog.Builder ad = new AlertDialog.Builder(context);
 ad.setTitle(context.getString(R.string.error_name));
 ad.setMessage(errorString);
 ad.setPositiveButton(okButtonString,new OnClickListener() {
 public void onClick(DialogInterface dialog, int arg1) {
 reload();
 } });
 ad.show();

430 | Chapter 9: Data Persistence

 return;
}

In this way the iDontLikeTheValue if becomes:

Example 9-9.

 if(dontLikeTheValue(optionValue)){
 if(!GeneralUtils.isPhoneNumber(smsNumber)){
 showErrorDialog("I dont like the option");
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 }
 }

What's still missing is the reload() function, but it's pretty obvious. It relaunches the
activity using the same intent that fired it

Example 9-10.

private void reload(){
 startActivity(getIntent());
 finish();
 }

9.3 Advanced text search
Claudio Esperanca

Problem
How to build a data layer to store and search text data using wildcards or expressions
like and, or, not, etc.

Solution
Using a SQLite Full Text Search 3 (FTS3) virtual table and match function from SQLite
it's possible to build such mechanism.

Discussion
Following these steps you will be able to create an example android project with a data
layer where you will be able to store and retrieve some data using the SQLite.

1. Create a new Android Project (AdvancedSearchProject)

2. # Select an API level equal or greater than 8

3. # Specify AdvancedSearch as the application name

4. # Use com.androidcookbook.example.advancedsearch as the package name

5. # Create an activity with the name AdvancedSearchActivity

9.3 Advanced text search | 431

6. # The Min SDK version should be 8 (for the android 2.2 - codename froyo)

7. Create a new Java class DbAdapter within the package com.androidcookbook.exam
ple.advancedsearch on the src folder.

To create the data layer for the example application, enter the following source code
in the created file:

Example 9-11.

package com.androidcookbook.example.advancedsearch;

import java.util.LinkedList;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class DbAdapter {
 public static final String APP_NAME = "AdvancedSearch";
 private static final String DATABASE_NAME = "AdvancedSearch_db";
 private static final int DATABASE_VERSION = 1; // Our internal database version (e.g. to control upgrades)
 private static final String TABLE_NAME = "example_tbl";
 public static final String KEY_USERNAME = "username";
 public static final String KEY_FULLNAME = "fullname";
 public static final String KEY_EMAIL = "email";
 public static long GENERIC_ERROR = -1;
 public static long GENERIC_NO_RESULTS = -2;
 public static long ROW_INSERT_FAILED = -3;
 private final Context context;
 private DbHelper dbHelper;
 private SQLiteDatabase sqlDatabase;

 public DbAdapter(Context context) {
 this.context = context;
 }

 private static class DbHelper extends SQLiteOpenHelper {
 private boolean databaseCreated=false;
 DbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 Log.d(APP_NAME, "Creating the application database");

 try{
 // Create the full text search 3 virtual table
 db.execSQL(
 "CREATE VIRTUAL TABLE ["+TABLE_NAME+"] USING FTS3 (" +
 "["+KEY_USERNAME+"] TEXT," +

432 | Chapter 9: Data Persistence

 "["+KEY_FULLNAME+"] TEXT," +
 "["+KEY_EMAIL+"] TEXT" +
 ");"
);
 this.databaseCreated = true;
 } catch (Exception e) {
 Log.e(APP_NAME, "An error occurred while creating the database: "+e.toString(), e);
 this.deleteDatabaseStructure(db);
 }
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.d(APP_NAME, "Updating the database from the version " + oldVersion + " to " + newVersion + "...");
 this.deleteDatabaseStructure(db); // in this example we purge the previous data on upgrade
 this.onCreate(db);
 }
 public boolean databaseCreated(){
 return this.databaseCreated;
 }
 private boolean deleteDatabaseStructure(SQLiteDatabase db){
 try{
 db.execSQL("DROP TABLE IF EXISTS ["+TABLE_NAME+"];");

 return true;
 }catch (Exception e) {
 Log.e(APP_NAME, "An error occurred while deleting the database: "+e.toString(), e);
 }
 return false;
 }
 }

 /**
 * Open the database; if the database can't be opened, try to create it
 *
 * @return {@link Boolean} true if the database was successfuly opened/created, false otherwise
 * @throws {@link SQLException] if an error ocorred
 */
 public boolean open() throws SQLException {
 try{
 this.dbHelper = new DbHelper(this.context);
 this.sqlDatabase = this.dbHelper.getWritableDatabase();
 return this.sqlDatabase.isOpen();
 }catch (SQLException e) {
 throw e;
 }
 }

 /**
 * Close the database connection
 * @return {@link Boolean} true if the connection was terminated, false otherwise
 */
 public boolean close() {
 this.dbHelper.close();
 return !this.sqlDatabase.isOpen();
 }

9.3 Advanced text search | 433

 /**
 * Check if the database is opened
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean isOpen(){
 return this.sqlDatabase.isOpen();
 }

 /**
 * Check if the database was created
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean databaseCreated(){
 return this.dbHelper.databaseCreated();
 }

 /**
 * Insert a new row on the table
 *
 * @param username {@link String} with the username
 * @param fullname {@link String} with the fullname
 * @param email {@link String} with the email
 * @return {@link Long} with the row id or ROW_INSERT_FAILED (bellow 0 value) on error
 */
 public long insertRow(String username, String fullname, String email) {
 try{
 // Prepare the values
 ContentValues values = new ContentValues();
 values.put(KEY_USERNAME, username);
 values.put(KEY_FULLNAME, fullname);
 values.put(KEY_EMAIL, email);

 // Try to insert the row
 return this.sqlDatabase.insert(TABLE_NAME, null, values);
 }catch (Exception e) {
 Log.e(APP_NAME, "An error occurred while inserting the row: "+e.toString(), e);
 }
 return ROW_INSERT_FAILED;
 }

 /**
 * The search method
 * Uses the full text search 3 virtual table and the MATCH function from SQLite to search for data
 * @see http://www.sqlite.org/fts3.html to know more about the syntax
 * @param search {@link String} with the search expression
 * @return {@link LinkedList} with the {@link String} search results
 */
 public LinkedList<String> search(String search) {

 LinkedList<String> results = new LinkedList<String>();
 Cursor cursor = null;

434 | Chapter 9: Data Persistence

 try{
 cursor = this.sqlDatabase.query(true, TABLE_NAME, new String[] { KEY_USERNAME, KEY_FULLNAME, KEY_EMAIL }, TABLE_NAME + " MATCH ?", new String[] { search }, null, null, null, null);

 if(cursor!=null && cursor.getCount()>0 && cursor.moveToFirst()){
 int iUsername = cursor.getColumnIndex(KEY_USERNAME);
 int iFullname = cursor.getColumnIndex(KEY_FULLNAME);
 int iEmail = cursor.getColumnIndex(KEY_EMAIL);

 do{
 results.add(
 new String(
 "Username: "+cursor.getString(iUsername) +
 ", Fullname: "+cursor.getString(iFullname) +
 ", Email: "+cursor.getString(iEmail)
)
);
 }while(cursor.moveToNext());
 }
 }catch(Exception e){
 Log.e(APP_NAME, "An error occurred while searching for "+search+": "+e.toString(), e);
 }finally{
 if(cursor!=null && !cursor.isClosed()){
 cursor.close();
 }
 }

 return results;
 }
}

Now that the data layer is usable, the activity AdvancedSearchActivity can be used to
test it.

1. To define the application strings, replace the contents of the res/values/
strings.xml file:

Example 9-12.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="label_search">Search</string>
 <string name="app_name">AdvancedSearch</string>
</resources>

2. The application layout can be set within the file res/layout/main.xml:

Example 9-13.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <EditText

9.3 Advanced text search | 435

 android:text=""
 android:id="@+id/etSearch"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 />
 <Button
 android:text="@string/label_search"
 android:id="@+id/btnSearch"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/tvResults"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text=""
 android:singleLine="false"
 />
</LinearLayout>

3. To finish, replace the contents of the AdvancedSearchActivity.java file by the fol-
lowing code:

Example 9-14.

package com.androidcookbook.example.advancedsearch;

import java.util.Iterator;
import java.util.LinkedList;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class AdvancedSearchActivity extends Activity {
 private DbAdapter dbAdapter;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 dbAdapter = new DbAdapter(this);
 dbAdapter.open();

 if(dbAdapter.databaseCreated()){
 dbAdapter.insertRow("test", "test example", "example_test@example.com");
 dbAdapter.insertRow("lorem", "lorem ipsum", "lorem.ipsum@example2.com");
 dbAdapter.insertRow("jdoe", "Jonh Doe", "j.doe@example.com");
 }

 Button button = (Button) findViewById(R.id.btnSearch);

436 | Chapter 9: Data Persistence

 final EditText etSearch = (EditText) findViewById(R.id.etSearch);
 final TextView tvResults = (TextView) findViewById(R.id.tvResults);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 LinkedList<String> results = dbAdapter.search(etSearch.getText().toString());

 if(results.isEmpty()){
 tvResults.setText("No results found");
 }else{
 Iterator<String> i = results.iterator();
 tvResults.setText("");
 while(i.hasNext()){
 tvResults.setText(tvResults.getText()+i.next()+"\n");
 }
 }
 }
 });
 }
 @Override
 protected void onDestroy() {
 dbAdapter.close();
 super.onDestroy();
 }
}

See Also
http://www.sqlite.org/fts3.html - to know more about the Full Text Search 3, including
the search syntax

http://code.google.com/p/localizeandroid/ - project with an implementation of this
search mechanism

9.4 How to push string-values using Intent.putExtra()
Ulysses Levy

Problem
You need to pass some parameters into an activity while launching it.

Solution
A quick solution is to use Intent.putExtra() to push our data. And then use getIn-
tent().getExtras().getString() to retrieve it.

9.4 How to push string-values using Intent.putExtra() | 437

http://www.sqlite.org/fts3.html
http://code.google.com/p/localizeandroid/

Discussion

Push Data

Example 9-15.

import android.content.Intent;

 ...

 Intent intent =
 new Intent(
 this,
 MyActivity.class);
 intent.putExtra("paramName", "paramValue");
 startActivity(intent);

The above code might be inside the main activity. "MyActivity.class" is the second
Activity we want to launch; it must be explicitly included in your AndroidManifest.xml
file.

Example 9-16.

 <activity android:name=".MyActivity" />

Pull Data

Example 9-17.

import android.os.Bundle;

 ...

 Bundle extras = getIntent().getExtras();
 if (extras != null)
 {
 String myParam = extras.getString("paramName");
 }
 else
 {
 //..oops!
 }

In this example, the above code would be inside your MyActivity.java file.

Gotchas

This method can only pass strings. So let's say you need to pass an ArrayList to your
ListActivity; a possible workaround is to pass a comma-separated-string and then split
it on the other side.

438 | Chapter 9: Data Persistence

Alternative Solutions

Use SharedPreferences

See Also
(BROKEN XREF TO RECIPE -1 'http://mylifewithandroid.blogspot.com/2007/12/
playing-with-intents.html '), (BROKEN XREF TO RECIPE -1 'http://developer.an-
droid.com/guide/appendix/faq/commontasks.html')

9.5 Retrieving data from a Sub-Activity back to your Main
Activity
Ulysses Levy

Problem
Your main activity needs to retrieve data from a sub activity.

Solution
Use startActivityForResult(), and onActivityResult() in the main activity, and setRe-
sult() in the sub-activity.

Discussion
In this example we return a string from a Sub-Activity (MySubActivity) back to the
Main Activity (MyMainActivity).

The first step is to "push" data from MyMainActivity via the Intent mechanism.

Example 9-18.

public class MyMainActivity extends Activity
{
 //..for logging..
 private static final String TAG = "MainActivity";

 //..The request code is supposed to be unique?..
 public static final int MY_REQUEST_CODE = 123;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...
 }

 private void pushFxn()
 {
 Intent intent =

9.5 Retrieving data from a Sub-Activity back to your Main Activity | 439

 new Intent(
 this,
 MySubActivity.class);

 startActivityForResult(intent, MY_REQUEST_CODE);
 }

 protected void onActivityResult(
 int requestCode,
 int resultCode,
 Intent pData)
 {
 if (requestCode == MY_REQUEST_CODE)
 {
 if (resultCode == Activity.RESULT_OK)
 {
 final String zData = pData.getExtras().getString(MySubActivity.EXTRA_STRING_NAME);

 //..do something with our retrieved value..

 Log.v(TAG, "Retrieved Value zData is "+zData);
 //..logcats "Retrieved Value zData is returnValueAsString"

 }
 }

 }
}

Notes:

• The Main Activity's onActivityResult() gets called after MySubActivity.finish().

• The retrieved value is technically an Intent, and so we could use it for more com-
plex data (such as a uri to a google contact or something). However, in the above
example code, we are only interested in a string value via Intent.getExtras().

• The requestCode (MY_REQUEST_CODE) is supposed to be unique, and might
be useful later. ie. Activity.finishActivity(MY_REQUEST_CODE)

The second major step is to "pull" data back from MySubActivity to MyMainActivity.

Example 9-19.

public class MySubActivity extends Activity
{
 public static final String EXTRA_STRING_NAME = "extraStringName";

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...
 }

 private void pullFxn()

440 | Chapter 9: Data Persistence

 {
 Intent iData = new Intent();
 iData.putExtra(
 EXTRA_STRING_NAME,
 "returnValueAsString");

 setResult(
 android.app.Activity.RESULT_OK,
 iData);

 //..returns us to the parent "MyMainActivity"..
 finish();
 }
}

Code Notes:

• Once again, Intents are used as data (ie. "iData").

• setResult() requires a result code such as RESULT_OK.

• finish() essentially pushes the result from setResult().

Other

• Technically, the data from MySubActivity doesn't get "pull"-ed until we're back on
the other side with MyMainActivity. So arguably it is more similar to a 2nd "push".

• We don't have to use a public static final String variable for our "extra" field name,
but I thought it was good style.

Use Case (informal)

In my app, I have a ListActivity with a ContextMenu (user long presses a selection to
do something), and I wanted to let the Main-Activity know which row the user had
selected for the ContextMenu action (atm, my app only has one action). I ended up
using intent extras to pass the selected row's index as a string back to the parent activity;
From there I could just convert the index back to an int and use it to identify the user
row selection via ArrayList.get(index). This worked for me, however I am sure there
is another/better way.

See Also
Also see Recipe 9.4

ResultCode "gotcha"

startActivityForResultExample (under "Returning a Result from a Screen")

int) Activity.startActivityForResult()

9.5 Retrieving data from a Sub-Activity back to your Main Activity | 441

http://androidforums.com/application-development/102689-startactivityforresult.html
http://developer.android.com/guide/appendix/faq/commontasks.html#opennewscreen
http://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent,

9.6 Getting total and free space on the SD card
Amir Alagic

Problem
You want to find out the amount of total and available space on the SD card

Solution
Use StatFs and Enviroment classes from the android.os package to find total and avail-
able space on the SD card.

Discussion
Here is code that obtains the information:

Example 9-20.

StatFs statFs = new StatFs(Environment.getExternalStorageDirectory().getPath());
double bytesTotal = (long) statFs.getBlockSize() * (long) statFs.getBlockCount();
double megTotal = bytesTotal / 1048576;

To get total space on the SD card use StatFs in the android.os package and as con-
structor parameter use Environment.getExternalStorageDirectory().getPath().

Then multiply block size with number of blocks on the SD card.

Example 9-21.

(long) statFs.getBlockSize() * (long) statFs.getBlockCount();

And to get size in megabytes then divide that with 1048576. To get free space on the
SD card replace statFs.getBlockCount() with statFs.getAvailableBlocks().

Example 9-22.

(long) statFs.getBlockSize() * (long) statFs.getAvailableBlocks();

If you want to display the value with two decimal places you can use a DecimalFormat
object from java.text.

Example 9-23.

DecimalFormat twoDecimalForm = new DecimalFormat("#.##");

9.7 Creating a SQLite database in an Android application.
Rachee Singh

442 | Chapter 9: Data Persistence

Problem
Data persistence in the application.

Solution
Using SQLite to store the application data. This would involve inherit SQLiteOpen-
Helper class.

Discussion
In order to use SQLite databases in an Android application, it is necessary to inherit
SQLiteOpenHelper class. This is an inbuilt class that helps load a database file. It checks
for the existence of the database file and if it exists, it loads it otherwise it creates one.

Example 9-24.

public class SqlOpenHelper extends SQLiteOpenHelper {

The constructor for the SQLiteOpenHelper class takes in a few arguments: context,
database name, CursorFactory object, version number.

Example 9-25.

 public static final String DBNAME = "tasksdb.sqlite";
 public static final int VERSION =1;
 public static final String TABLE_NAME = "tasks";
 public static final String ID= "id";
 public static final String NAME="name";

 public SqlOpenHelper(Context context) {
 super(context, DBNAME, null, VERSION);

}

Creating a database in SQL uses the "create" statement:

Example 9-26.

CREATE TABLE <table-name> (column1 INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, column2 TEXT);

Example 9-27.

 public void onCreate(SQLiteDatabase db) {
 createDatabase(db);
 }

 private void createDatabase(SQLiteDatabase db) {
 db.execSQL("create table " + TABLE_NAME + "(" +
 ID + " integer primary key autoincrement not null, " +
 NAME + " text "
 + ");"
);
 }

9.7 Creating a SQLite database in an Android application. | 443

To get a handle on the SQL database you created, instantiate the class inheriting SQLi-
teOpenHelper:

Example 9-28.

 SqlOpenHelper helper = new SqlOpenHelper(this);
 SQLiteDatabase database= helper.getWritableDatabase();

Now, the SQLiteDatabase database can be used to load elements stored in the database,
update and insert elements to it.

9.8 Retrieving data from a SQLite database.
Rachee Singh

Problem
Loading items from an existing SQLite database.

Solution
Using a Cursor object to iterate over the database and storing them.

Discussion
In order to iterate over items in a database, we require an object of the Cursor class. To
query the database, we use the query method along with appropriate arguments, most
importantly: the table name, the column names for which we are extracting values.

Example 9-29.

ArrayList<Food> foods = new ArrayList(this);
Cursor listCursor = database.query(TABLE_NAME, new String [] {ID, NAME}, null, null, null, null, String.format("%s", NAME));
listCursor.moveToFirst();
Food t;
if(! listCursor.isAfterLast()) {
 do {
 Long id = listCursor.getLong(0);
 String name= listCursor.getString(1);
 t = new Food(name);
 foods.add(t);
 } while (listCursor.moveToNext());
}
 listCursor.close();

moveToFirst() method starts from the first item in the database and moveToNext
moves the cursor to the next item. We keep checking until we have reached the end of
the database. Each item of the database is added to an ArrayList.

444 | Chapter 9: Data Persistence

9.9 Inserting values into a SQLite database.
Rachee Singh

Problem
Adding values into a SQLite database.

Solution
Using insert() method and passing an object of ContentValues class.

Discussion
ContentValues provides something like a key-value pair, so NAME would be the key
and 'Mangoes' would be the value. This would insert a row in the database with value
'Mangoes' in it.

Example 9-30.

ContentValues values = new ContentValues();
values.put(NAME, "Mangoes");

After creating the values we insert it into the table using the insert method. SQLite
returns the ID for that row in the database.

Example 9-31.

Long id = (database.insert(TABLE_NAME, null, values));
tasks.add(t);

'id' is the ID for the row that we inserted into the database.

9.10 Work With Dates in SQLite
Jonathan Fuerth

Problem
Android's embedded SQLite3 database supports date and time data directly, including
some useful date and time arithmetic. However, getting these dates out of the database
is troublesome: there is no Cursor.getDate() in the Android API.

Solution
Use SQLite's strftime() function to convert between SQLite timestamp format and the
Java API's "milliseconds since the epoch" representation.

9.10 Work With Dates in SQLite | 445

Discussion
This recipe demonstrates the advantages of using SQLite timestamps over storing raw
milliseconds values in your database, and shows how to retrieve those timestamps from
your database as java.util.Date objects.

Background

The usual representation for an absolute timestamp in Unix is time_t, which historically
was just an alias for a 32-bit integer. This integer represented the date as the number
of seconds elapsed since UTC 00:00 on January 1, 1970 (the Unix time epoch.) On
systems where time_t is still a 32-bit integer, the clock will roll over partway through
the year 2038.

Java adopted a similar convention, but with a few twists. The epoch remains the same,
but the count is always stored in a 64-bit signed integer (the native Java long type) and
the units are milliseconds rather than seconds. This method of timekeeping will not
roll over for another 292 million years.

Android example code that deals with persisting dates and times tends to simply store
and retrieve the raw milliseconds since the epoch values in the database. However, by
doing this, it misses out on some useful features built in to SQLite.

The Advantages

There are several advantages to storing proper SQLite timestamps in your data: you
can default timestamp columns to the current time using no Java code at all; you can
perform calendar-sensitive arithmetic such as selecting the first day of a week or month,
or adding a week to the value stored in the database; and you can extract just the date
or time components and return those from your data provider.

All of these code-saving advantages come with two added bonuses: first, your data
provider's API can stick to the Android convention of passing timestamps around as
long values; second, all of this date manipulation is done in the natively-compiled
SQLite code, so the manipulations don't incur the garbage collection overhead of cre-
ating multiple java.util.Date or java.util.Calendar objects.

The Code

Without further ado, here's how to do it.

First, create a table that defines a column of type timestamp.

CREATE TABLE current_list (item_id INTEGER NOT NULL, added_on TIME-
STAMP NOT NULL DEFAULT current_timestamp, added_by VARCHAR(50) NOT
NULL, quantity INTEGER NOT NULL, units VARCHAR(50) NOT NULL, CON-
STRAINT current_list_pk PRIMARY KEY (item_id));

446 | Chapter 9: Data Persistence

Note the default value for the added_on column. Whenever you insert a row into this
table, SQLite will automatically fill in the current time (accurate to the second) for the
new record.

sqlite> insert into current_list (item_id, added_by, quantity, units) ...> values (1,
'fuerth', 1, 'EA'); sqlite> select * from current_list where item_id = 1; 1|2010-05-14
23:10:26|fuerth|1|EA sqlite>

See how the current date was inserted automatically? This is one of the advantages you
get from working with SQLite timestamps.

How about the other advantages?

Select just the date part, forcing the time back to midnight:

sqlite> select item_id, date(added_on,'start of day') ...> from current_list where
item_id = 1; 1|2010-05-14 sqlite>

Or adjust the date to the Monday of the following week:

sqlite> select item_id, date(added_on,'weekday 1') ...> from current_list where
item_id = 1; 1|2010-05-17 sqlite>

Or the Monday before:

sqlite> select item_id, date(added_on,'weekday 1','-7 days') ...> from current_list
where item_id = 1; 1|2010-05-10 sqlite>

These examples are just the tip of the iceberg. You can do a lot of useful things with
your timestamps once SQLite recognizes them as such.

Last, but not least, you must be wondering how to get these dates back into your Java
code. The trick is to press another of SQLite's date functions into service - this time
strftime(). Here is a Java method that fetches a row from the current_list table we've
been working with:

Example 9-32.

 Cursor cursor = database.rawQuery(
 "SELECT item_id AS _id," +
 " (strftime('%s', added_on) * 1000) AS added_on," +
 " added_by, quantity, units" +
 " FROM current_list", new String[0]);
 long millis = cursor.getLong(cursor.getColumnIndexOrThrow("added_on"));
 Date addedOn = new Date(millis);

That's it: using strftime's %s format, you can select timestamps directly into your Cursor
as Java milliseconds since the epoch values. Client code will be none the wiser, except
that your content provider will be able to do date manipulations for free that would
take significant amounts of Java code and extra object allocations.

9.10 Work With Dates in SQLite | 447

See Also
SQLite's documentation for its date and time functions

9.11 Parsing JSON using the Jackson Parser
Wagied Davids

Problem
Parse JSON using Jackson parser

Solution
Jackson (http://jackson.codehaus.org/) is a really fast streaming JSON parser and gen-
erator. It also offers full node-based Tree Model, as well as full OJM (Object/Json
Mapper) data binding functionality.

Required Downloads available from http://jackson.codehaus.org/Download jackson-
core-asl-1.8.0.jar jackson-jaxrs-1.8.0.jar jackson-mapper-asl-1.8.0.jar jackson-
mrbean-1.8.0.jar jackson-xc-1.8.0.jar

Discussion
File: recipes-all.json

Example 9-33.

{ "recipes":
 [
 {
 "name":"Recipe 1",
 "id":"8aecfd9b2fa26e83012fa298c2a50017",
 "recipe":"1 Lorem ipsum...",
 "image":"/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2a50017"
 },
 {
 "name":"Recipe 2",
 "id":"8aecfd9b2fa26e83012fa298c2a90018",
 "recipe":"2 Lorem ipsum...",
 "image": "/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2a90018"
 },
 {
 "name": "Recipe 3",
 "id":"8aecfd9b2fa26e83012fa298c2ae0019",
 "recipe":"3 Lorem ipsum...",
 "image": "/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2ae0019"
 }
]
}

448 | Chapter 9: Data Persistence

http://www.sqlite.org/lang_datefunc.html

File: main.xml

Example 9-34.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview" android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Data Model files: File: A: Recipe.java

Example 9-35.

public class Recipe
 {
 public String name;
 public String id;
 public String recipe;
 public String image;
 }

File B: Recipes.java

Example 9-36.

import java.util.ArrayList;
import java.util.HashMap;

public class Recipes extends HashMap<String, ArrayList<Recipe>>
 {
 //empty
 }

File: Main.java

Example 9-37.

public class Main extends Activity
 {
 private static final String tag = Main.class.getName();

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(com.android.jackson.json.R.layout.main);
 TextView textview = (TextView) this.findViewById(com.android.jackson.json.R.id.textview);

 StringBuffer strBuffer = new StringBuffer();

 MockRecipesController mockRecipesController = new MockRecipesController();
 mockRecipesController.init();
 for (Recipe recipe : mockRecipesController.findAll())

9.11 Parsing JSON using the Jackson Parser | 449

 {
 Log.d(tag, "Name: " + recipe.name);
 Log.d(tag, "ID: " + recipe.id);
 Log.d(tag, "Recipe: " + recipe.recipe);
 Log.d(tag, "Image: " + recipe.image);

 strBuffer.append("Name: " + recipe.name + "\n");
 strBuffer.append("ID: " + recipe.id + "\n");
 strBuffer.append("Recipe: " + recipe.recipe + "\n");
 strBuffer.append("Image: " + recipe.image + "\n");
 }

 // Finally
 textview.setText(strBuffer.toString());
 }
 }
 }

File: MockRecipesController.java

Example 9-38.

package com.malibu.mock;

import java.io.IOException;
import java.util.ArrayList;

import org.codehaus.jackson.JsonFactory;
import org.codehaus.jackson.JsonParseException;
import org.codehaus.jackson.JsonParser;
import org.codehaus.jackson.map.ObjectMapper;

import com.malibu.models.Recipe;
import com.malibu.models.Recipes;

public class MockRecipesController
 {
 private final String json = "{ \"recipes\": \n" + " [\n" + " {\n" + " \"name\":\"Recipe 1\",\n" + " \"id\":\"8aecfd9b2fa26e83012fa298c2a50017\",\n" + " \"recipe\":\"1 Lorem ipsum...\",\n" + " \"image\":\"/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2a50017\"\n" + " }, \n" + " { \n" + " \"name\":\"Recipe 2\",\n" + " \"id\":\"8aecfd9b2fa26e83012fa298c2a90018\",\n" + " \"recipe\":\"2 Lorem ipsum...\",\n" + " \"image\": \"/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2a90018\"\n" + " },\n" + " {\n" + " \"name\": \"Recipe 3\",\n" + " \"id\":\"8aecfd9b2fa26e83012fa298c2ae0019\",\n" + " \"recipe\":\"3 Lorem ipsum...\",\n" + " \"image\": \"/malibu-server/recipe/getImage/8aecfd9b2fa26e83012fa298c2ae0019\"\n" + " } \n" + "]\n" + "}\n" + "";

 private ObjectMapper objectMapper = null;
 private JsonFactory jsonFactory = null;
 private JsonParser jp = null;
 private ArrayList<Recipe> recipes = null;
 private Recipes mRecipes = null;

 public MockRecipesController()
 {
 objectMapper = new ObjectMapper();
 jsonFactory = new JsonFactory();
 }

 public void init()
 {
 try
 {

450 | Chapter 9: Data Persistence

 jp = jsonFactory.createJsonParser(json);
 mRecipes = objectMapper.readValue(jp, Recipes.class);
 recipes = mRecipes.get("recipes");
 }
 catch (JsonParseException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

 public ArrayList<Recipe> findAll()
 {
 return recipes;
 }

 public Recipe findById(int id)
 {
 return recipes.get(id);
 }
 }

9.12 Parsing an XML document using the DOM API
Ian Darwin

Problem
You have data in XML, and you want to transform it into something useful in your
application.

Solution
Android provides a fairly good clone of the standard DOM API used in the Java Stand-
ard Edition. Using the DOM API instead of writing your own parsing code just makes
sense.

Discussion
This is the code that parses the XML document containing the list of Recipes in the
Android Cookbook, as discussed in Recipe 11.2. The input file has a single recipes root
element, followed by a sequence of recipe elements, each with an id and a title with
textual content.

The code creates a DOM DocumentBuilderFactory, which can be tailored, for example,
to make Schema-aware parsers. In real code this could be created in a static initializer
instead of recreating it each time. The DocumentBuilderFactor is used to create a

9.12 Parsing an XML document using the DOM API | 451

Document Builder, a.k.a. Parser. The Parser expects to be reading from an InputStream,
so we convert the data which we have in String form into an array of bytes and construct
a ByteArrayInputStream. Again in real life, you would probably want to combine this
code with the Web Service consumer so you could simply get the input stream from
the network connection and read the XML directly into the Parser, instead of saving it
as a String and then wrapping that in a converter as we do here.

Once the elements are parsed, we convert the Document into an array of Data (the
singular of Data is Datum, so the class is called Datum) by calling the DOM API meth-
ods such as getDocumentElement(), getChildNodes(), and getNodeValue(). Since the
DOM API was not invented by Java people, it doesn't use the standard Collections API
but has its own collections like NodeList. In DOM's defense, the same or similar APIs
are used in a really wide variety of programming language, so it can be sait to be as
much a standard as Java's Collections.

Here's the code:

Example 9-39.

 /** Convert the list of Recipes in the String result from the
 * web service into an ArrayList of Datum.
 * @throws ParserConfigurationException
 * @throws IOException
 * @throws SAXException
 */
 public static ArrayList<Datum> parse(String input) throws Exception {

 final ArrayList<Datum> results = new ArrayList<Datum>(1000);
 final DocumentBuilderFactory dbFactory =
 DocumentBuilderFactory.newInstance();
 final DocumentBuilder parser = dbFactory.newDocumentBuilder();

 final Document document =
 parser.parse(new ByteArrayInputStream(input.getBytes()));

 Element root = document.getDocumentElement();
 NodeList recipesList = root.getChildNodes();
 for (int i = 0; i < recipesList.getLength(); i++) {
 Node recipe = recipesList.item(i);
 NodeList fields = recipe.getChildNodes();
 String id = ((Element) fields.item(0)).getNodeValue();
 String title =
 ((Element) fields.item(1)).getNodeValue();
 Datum d = new Datum(Integer.parseInt(id), title);
 results.add(d);
 }
 return results;
 }

In changing this code from Java SE to Android, the only change we had to make was
to use getNodeValue() in the retrieval of id and title instead of Java SE's getTextCon-
tent(); So the API really is very close.

452 | Chapter 9: Data Persistence

See Also
The Web Service is in Recipe 11.2. There is much more on XML in the Java Cook-
book chapter on XML.

9.13 Parsing an XML document using an XmlPullParser
Johan Pelgrim

Problem
You have data in XML, and you want to transform it into something useful in your
application.

Solution
Apart from processing XML using DOM or SAX the Android framework also provides
an implementation of the XmlPullParser interface provided in the XML Pull v1 API.

Discussion

Introduction

XmlPull v1 API is a simple to use XML pull parsing API that was designed for simplicity
and very good performance both in constrained environment such as defined by J2ME
and on server side when used in J2EE application servers. XML pull parsing allows
incremental (sometimes called streaming) parsing of XML where application is in con-
trol - the parsing can be interrupted at any given moment and resumed when application
is ready to consume more input.

Parsing XML with the XmlPullParser

The code below parses the XML document containing the list of Recipes in the Android
Cookbook, as discussed in Recipe 11.2 and Recipe 9.12. The input file has a single
recipes root element, followed by a sequence of recipe elements, each with an id and a
title with textual content.

First we get an instance of an XmlPullParserFactory by calling it's static newIn
stance() method. Basically this scans the classpath for instances of XmlPullParserFac-
tory and XmlPullParser. If it cannot find any instances this method throws an XmlPull
ParserException. We get an instance of an XmlPullParser by calling the newPull
Parser() factory method. We then pass the recipe list URL via the setInput(Input
Stream inputStream, String inputEncoding) method. The call to setInput resets the
parser state and sets the event type to the initial value START_DOCUMENT. Also note
that we don't need to first retrieve the URL's content with the converse method, like
was done in the Recipe 11.2 and Recipe 9.12 recipes.

9.13 Parsing an XML document using an XmlPullParser | 453

http://javacook,darwinsys.com/
http://javacook,darwinsys.com/

Parsing XML input with an XmlPullParser means we are processing parser events. Sim-
ple events can be of the following type: START_DOCUMENT, END_DOCUMENT,
START_TAG, END_TAG and TEXT. (You might notice that these closely mimic the
SAX callback event handler methods). Once we have passed our URL to the setIn
put() method we are ready for processing these events.

The first event is of type START_DOCUMENT. We process the input until we en-
counter the END_DOCUMENT tag. We advance to the next event by calling the
next() method. (Note: You can even process more events by calling the nextToken()
method, but that is out of scope here).

The code simply keeps on advancing to the next event until it encounters a
START_TAG. In this case we retrieve the element's local name by calling the get
Name() method. When namespace processing is disabled, the raw name is returned. We
store the tag name in a local variable currentTag, as a bread crumb. (Note: When a start
element contains attributes you can extract them via the getAttributeValue(String
namespace, String name) method, again out of scope here). Now we simply fall through
the loop and advance to the next event.

Once we encounter a TEXT event we check whether the currentTag is "id" or "title". If
this is the case we retrieve the text contents by calling the getText() method and assign
it to the appropriate local variable. We keep on doing this until we encounter a rec
ipe END_TAG event. In this case we simply create a new Datum object with the previ-
ously created id and title variables.

Example 9-40.

 public static ArrayList<Datum> parse(String url) throws IOException, XmlPullParserException {
 final ArrayList<Datum> results = new ArrayList<Datum>(1000);

 XmlPullParserFactory factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 URL input = new URL(url);
 xpp.setInput(input.openStream(), null);

 int eventType = xpp.getEventType();
 String currentTag = null;
 Integer id = null;
 String title = null;
 while (eventType != XmlPullParser.END_DOCUMENT) {
 if (eventType == XmlPullParser.START_TAG) {
 currentTag = xpp.getName();
 } else if (eventType == XmlPullParser.TEXT) {
 if ("id".equals(currentTag)) {
 id = Integer.valueOf(xpp.getText());
 }
 if ("title".equals(currentTag)) {
 title = xpp.getText();
 }

454 | Chapter 9: Data Persistence

 } else if (eventType == XmlPullParser.END_TAG) {
 if ("recipe".equals(xpp.getName())) {
 results.add(new Datum(id, title));
 }
 }
 eventType = xpp.next();
 }
 return results;
 }

Making it more strict

We can rewrite the parse method to make it a bit more strict. In this case we use the
require() method to verify the expected XML structure. Once we are on the id or
title START_TAG event we call nextText() to retrieve the elements text content and
advance to the END_TAG event immediately after.

Example 9-41.

 public static ArrayList<Datum> parse(String url) throws IOException, XmlPullParserException {
 final ArrayList<Datum> results = new ArrayList<Datum>(1000);

 XmlPullParserFactory factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 URL input = new URL(url);
 xpp.setInput(input.openStream(), null);

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "recipes");
 while (xpp.nextTag() == XmlPullParser.START_TAG) {
 xpp.require(XmlPullParser.START_TAG, null, "recipe");

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "id");
 Integer id = Integer.valueOf(xpp.nextText());
 xpp.require(XmlPullParser.END_TAG, null, "id");

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "title");
 String title = xpp.nextText();
 xpp.require(XmlPullParser.END_TAG, null, "title");

 xpp.nextTag();
 xpp.require(XmlPullParser.END_TAG, null, "recipe");

 results.add(new Datum(id, title));
 }
 xpp.require(XmlPullParser.END_TAG, null, "recipes");

 return results;
 }

9.13 Parsing an XML document using an XmlPullParser | 455

Both methods return the same results. The recipe's downloadable source code uses the
retrieved list of Datum objects to fill a ListActivity. When you click on a list item your
are redirected to the corresponding recipe's web page.

Processing static XML resources

You can easily process static XML resources with an XmlPullParser. Simply call the
getXml() method via your context's getResources() method and you will receive an
instance of XmlResourceParser. This basically is an implementation of XmlPullParser
with an extra convenience method to close the input resource, so you can use the above
described techniques to process your static XML resources as well!

Conclusion

The XmlPullParser is the parser of choice for many developers basically because of its
simplicity. If you want speed you should pick SAX. DOM is about twice as slow as
SAX. Parsing XML with the XmlPullParser is somewhere in the middle between SAX
and DOM.

Note

Don't forget to add the android.permission.INTERNET Permission to your Android-
Manifest.xml or you will not be able to access any web connections.

See Also
Recipe 11.2 Recipe 9.12 Recipe 2.17 http://developer.android.com/reference/org/
xmlpull/v1/XmlPullParser.html http://developer.android.com/reference/org/
xmlpull/v1/XmlPullParserFactory.html http://developer.android.com/reference/an-
droid/content/res/XmlResourceParser.html

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/RecipeList.zip

9.14 Accessing data from a file shipped with the App rather
than in the filesystem
Rachee Singh

Problem
You need to access data stored in a file in /res/raw directory.

456 | Chapter 9: Data Persistence

https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip
https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip

Solution
Using the getResources() and openRawResource() method to read from the sample file.

Discussion
We wish to read information from a file in the android application. So we will require
to put the relevant file in the res/raw directory (we need to create the directory since it
is not present by default). Then using the InputStreamReader and BufferedReader, we
will read the file. Then we extract the String from the BufferedReader using the readLine
method. Eclipse asks to enclose the readLine function within a try-catch block since
there is a possibility of it throwing anIOException.

The file included in /res/raw is named 'samplefile'.

Example 9-42.

InputStreamReader is = new InputStreamReader(this.getResources().openRawResource(R.raw.samplefile));
BufferedReader reader = new BufferedReader(is);
StringBuilder finalText = new StringBuilder();
String line;
try {
 while ((line = reader.readLine()) != null) {
 finalText.append(line);
 }
} catch (IOException e) {
 e.printStackTrace();
}
fileTextView = (TextView)findViewById(R.id.fileText);
fileTextView.setText(finalText.toString());

After reading the entire string, we set it to the TextView in the activity.

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMWJjYjQwMjYtNDVl
Mi00Y2M5LTk1MmItMTc3OGNhNWZiNjNh&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNTNmNjJiZjctN2I4MC00NDRiL
WIzN2YtN2Q3MmM0ZjEwODY3&hl=en_US

9.15 Adding a Contact
Ian Darwin

9.15 Adding a Contact | 457

https://docs.google.com/leaf?id=0B_rESQKgad5LMWJjYjQwMjYtNDVlMi00Y2M5LTk1MmItMTc3OGNhNWZiNjNh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMWJjYjQwMjYtNDVlMi00Y2M5LTk1MmItMTc3OGNhNWZiNjNh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMWJjYjQwMjYtNDVlMi00Y2M5LTk1MmItMTc3OGNhNWZiNjNh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTNmNjJiZjctN2I4MC00NDRiLWIzN2YtN2Q3MmM0ZjEwODY3&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTNmNjJiZjctN2I4MC00NDRiLWIzN2YtN2Q3MmM0ZjEwODY3&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTNmNjJiZjctN2I4MC00NDRiLWIzN2YtN2Q3MmM0ZjEwODY3&hl=en_US

Figure 9-1.

458 | Chapter 9: Data Persistence

Problem
You have some contact information that you want to save for use in the Contacts ap-
plication.

Solution
Set up a list of operations for batch insert, and tell the persistence manager to run it.

Discussion
The Contacts database is, to be sure, "flexible". It has to adapt to many different kinds
of accounts and contact management uses, with different types of data. And it is, as a
result, somewhat complicated.

Note: In current versions, the classes named Contacs (and by extension all its inner
classes and interfaces) are deprecated, meaning "don't use in new development". The
classes and interfaces that take their place have names being with (the somewhat cum-
bersome, and somewhat tongue-twisty) ContactsContract.

We'll start with the simplest case of adding a person's contact information. We want
to insert this information - which we either got from the user or by finding it on the
network someplace:

Name: Jon Smith

Home Phone 416-555-5555

Work Phone 416-555-6666

Email jon@jonsmith.domain

First we have to determine which Account to associate the data with (see (BROKEN
XREF TO RECIPE -1 'Accounts')). For now we will use a fake Account name ("dar-
winian" is both an adjective, and my name, so we'll use that).

For each of the four fields, we'll need to create an Account Operation.

We add all five operations to a List, and pass that into getContentResolver().apply
Batch().

Here is the code for the addContact() method.

Example 9-43.

 private void addContact() {
 final String ACCOUNT_NAME = "darwinian"
 String name = "Jon Smith";
 String homePhone = "416-555-5555";
 String workPhone = "416-555-6666";
 String email = "jon@jonsmith.domain";

 // Use new-style batch operations: Build List of ops then call applyBatch

9.15 Adding a Contact | 459

 try {
 ArrayList<ContentProviderOperation> ops = new ArrayList<ContentProviderOperation>();
 AuthenticatorDescription[] types = accountManager.getAuthenticatorTypes();
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.RawContacts.CONTENT_URI).withValue(
 ContactsContract.RawContacts.ACCOUNT_TYPE, types[0].type)
 .withValue(ContactsContract.RawContacts.ACCOUNT_NAME, ACCOUNT_NAME)
 .build());
 ops.add(ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME,name)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 homePhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_HOME)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 workPhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_WORK)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Email.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Email.DATA, email)
 .withValue(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_HOME)
 .build());

 getContentResolver().applyBatch(ContactsContract.AUTHORITY, ops);

 Toast.makeText(this, getString(R.string.addContactSuccess),
 Toast.LENGTH_LONG).show();
 } catch (Exception e) {

 Toast.makeText(this, getString(R.string.addContactFailure),
 Toast.LENGTH_LONG).show();
 Log.e(LOG_TAG, getString(R.string.addContactFailure), e);

460 | Chapter 9: Data Persistence

 }
 }

The resulting contact shows up in the Contact manager (although, temporarily, in this
version, you have to Search for it).

9.16 Reading Contact Data
Ian Darwin

Problem
You need to extract details, such as a phone number or email address, from the Contacts
database.

Solution
Use an Intent to let the user pick one contact. Use a ContentResolver to create an SQLite
Query for the chosen contact. Use SQLite and pre-defined constants in the dunningly-
named ContactContract class to retrieve the parts you want. Be aware that the Contacts
database was designed for generality, not for simplicity.

Discussion
This code is from TabbyText, my SMS Text Message sender for Tablets. The user has
already picked the given contact (using the Contact app; see Recipe 4.2). In this code
we want to extract the Mobile number and save it in a text field in the current Activity,
so the user can post-edit it if need be, or even reject it, so we just set it on an EditText
once we find it.

Finding it turns out to be the hard part. We start with a Query that we get from the
Content Provider, to extract the ID field for the given contact. Information like phone
numbers and emails are in their own tables, so we need a second query, to feed in the
Id as part of the "select" part of the query. This query gives a list of the contact's phone
numbers. We iterate through this, taking each valid phone number and setting it on
the EditText.

A further elaboration would restrict this to only selecting the Mobile number (Contacts
allows both Home Fax and Work Fax, but only one Mobile number, at least as of
Honeycomb 3.2).

Example 9-44.

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:

9.16 Reading Contact Data | 461

Figure 9-2.

462 | Chapter 9: Data Persistence

 // The Contacts API is about the most complex to use.
 // First we have to retrieve the Contact, since we only get its URI from the Intent
 Uri resultUri = data.getData(); // e.g., content://contacts/people/123
 Cursor cont = getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // expect 001 row(s)
 Toast.makeText(this, "Cursor contains no data", Toast.LENGTH_LONG).show();
 return;
 }
 int columnIndexForId = cont.getColumnIndex(ContactsContract.Contacts._ID);
 String contactId = cont.getString(columnIndexForId);
 int columnIndexForHasPhone = cont.getColumnIndex(ContactsContract.Contacts.HAS_PHONE_NUMBER);
 boolean hasAnyPhone = Boolean.parseBoolean(cont.getString(columnIndexForHasPhone));
 if (!hasAnyPhone) {
 Toast.makeText(this, "Selected contact seems to have no phone numbers ", Toast.LENGTH_LONG).show();
 }

 // Now we have to do another query to actually get the numbers!
 Cursor numbers = getContentResolver().query(
 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,
 null,
 ContactsContract.CommonDataKinds.Phone.CONTACT_ID + "=" + contactId, // "selection",
 null, null);
 // XXX still need to restrict to Mobile number!
 while (numbers.moveToNext()) {
 String aNumber = numbers.getString(numbers.getColumnIndex(ContactsContract.CommonDataKinds.Phone.NUMBER));
 System.out.println(aNumber);
 number.setText(aNumber);
 }
 if (cont.moveToNext()) {
 System.out.println("WARNING: More than one contact returned from picker!");
 }
 numbers.close();
 cont.close();
 break;
 case Activity.RESULT_CANCELED:
 // nothing to do here
 break;
 default:
 Toast.makeText(this, "Unexpected resultCode: " + resultCode, Toast.LENGTH_LONG).show();
 break;
 }
 }
 super.onActivityResult(requestCode, resultCode, data);
 }

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/TabbyText-src.zip

9.17 Parsing JSON using JSONObject
Rachee Singh

9.17 Parsing JSON using JSONObject | 463

http://projects.darwinsys.com/TabbyText-src.zip
http://projects.darwinsys.com/TabbyText-src.zip

Problem
Many websites provide data in JSON. Many applications require to parse JSON and
provide that data in the application.

Solution
Using inbuilt classes like JSONObject the process of parsing JSON is simplified in
Android.

Discussion
We use a method to generate JSON code for sample purposes. In a real application you
would obtain the JSON from some web source. In this method we make use of a JSO-
NObject class object to put in values and then to return the corresponding String (using
toString() method). Creating an object of type JSONObject throws a JSONException,
so we enclose the code in a try-catch block.

Example 9-45.

private String getJsonString() {
 JSONObject string = new JSONObject();
 try {
 string.put("name", "John Doe");
 string.put("age", new Integer(25));
 string.put("address", "75 Ninth Avenue 2nd and 4th Floors New York, NY 10011");
 string.put("phone", "8367667829");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return string.toString();
}

We need to instantiate an object of class JSONObject that takes the JSON string as an
argument. In this case, the JSON string is being obtained fromt he getJsonString meth-
od. From the jsonObject we extract the information and print it in a TextView.

Example 9-46.

try {
 String jsonString = getJsonString();
 JSONObject jsonObject = new JSONObject(jsonString);
 String name = jsonObject.getString("name");
 String age = jsonObject.getString("age");
 String address = jsonObject.getString("address");
 String phone = jsonObject.getString("phone");
 String jsonText=name + "\n" + age + "\n" + address + "\n" + phone;
 json= (TextView)findViewById(R.id.json);
 json.setText(jsonText);
} catch (JSONException e) {
 e.printStackTrace();
}

464 | Chapter 9: Data Persistence

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rE
SQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en
_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNTlhMWM3YTMtM
jU4YS00MjhlLTg4YTYtNzljMzBiNjFlNjFh&hl=en_US

9.17 Parsing JSON using JSONObject | 465

https://docs.google.com/leaf?id=0B_rESQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTlhMWM3YTMtMjU4YS00MjhlLTg4YTYtNzljMzBiNjFlNjFh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTlhMWM3YTMtMjU4YS00MjhlLTg4YTYtNzljMzBiNjFlNjFh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTlhMWM3YTMtMjU4YS00MjhlLTg4YTYtNzljMzBiNjFlNjFh&hl=en_US

CHAPTER 10

Telephone Applications

10.1 Introduction: Telephone Applications
Ian Darwin

Discussion
Android began as a platform for cellular telephone handsets, so it is no surprise that
Android Apps are very capable of dealing with the phone. You can write apps that dial
the phone, or that guide the user to do so. You can write apps that verify or modify the
number the user is calling (for example, to add a long-distance dialing prefix). You can
also send and receive SMS (short message service, a.k.a. Text Messages). Of course,
both of these capabilities are discussed assuming your device is telephony equipped.
Nowadays, a great many Android tablets are WiFi-only, and do not have "3G" or even
2G telephone/SMS capabilities. For these devices, other capabilities such as SMS via
Internet and VOIP (Voice Over IP, usually SIP) have to be used.

This chapter covers most of these topics; a few will be found elsewhere in this book.

10.2 Do something when the phone rings
Johan Pelgrim

Problem
You want to act on an incoming phone call and do something with the incoming num-
ber.

Solution
This can be achieved by implementing a Broadcast receiver and listening for a Tele-
phonyManager.ACTION_PHONE_STATE_CHANGED action.

467

Discussion
If you want to do something when the phone rings you have to implement a broadcast
receiver which listens for the TelephonyManager.ACTION_PHONE_STATE_CHANGED intent ac-
tion. This is a broadcast intent action indicating that the call state (cellular) on the
device has changed.

1. Create a class IncomingCallInterceptor which extends BroadcastReceiver.

2. Override the onReceive method to handle incoming broadcast messages.

3. The EXTRA_STATE intent extra in this case indicates the new call state.

4. If (and only if) the new state is RINGING, a second intent extra EXTRA_INCOMING_NUM
BER provides the incoming phone number as a String.

5. We extract the number information from the EXTRA_INCOMING_NUMBER intent extra.

Note: Additionally you can act on a state change to OFFHOOK or IDLE when the user picks
up the phone or ends/rejects the phone call respectively.

Example 10-1.

package nl.codestone.cookbook.incomingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.telephony.TelephonyManager;
import android.widget.Toast;

public class IncomingCallInterceptor extends BroadcastReceiver { // 1

 @Override
 public void onReceive(Context context, Intent intent) { // 2
 String state = intent.getStringExtra(TelephonyManager.EXTRA_STATE); // 3
 String msg = "Phone state changed to " + state;

 if (TelephonyManager.EXTRA_STATE_RINGING.equals(state)) { // 4
 String incomingNumber = intent.getStringExtra(TelephonyManager.EXTRA_INCOMING_NUMBER); // 5
 msg += ". Incoming number is " + incomingNumber;

 // TODO This would be a good place to "Do something when the phone rings" ;-)

 }

 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();

 }

}

6. We have to register our IncomingCallInterceptor as a <receiver> within the <appli
cation> element in the AndroidManifest.xml file.

468 | Chapter 10: Telephone Applications

7. We register an <intent-filter> ...

8. and an <action value which registers our receiver to listen for TelephonyMan
ager.ACTION_PHONE_STATE_CHANGED broadcast messages.

9. Finally we have to register a <uses-permission> so we are allowed to listen to phone
state changes.

Example 10-2.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.incomingcallinterceptor"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="Incoming Call Interceptor">

 <receiver android:name="IncomingCallInterceptor"> // 6
 <intent-filter> // 7
 <action android:name="android.intent.action.PHONE_STATE"/> // 8
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/> // 9

</manifest>

If all is well you should see something like this when the phone rings:

What happens if two receivers listen for phone state changes?

In general, a broadcast message is just that, a message which is sent out to many receivers
at the same time. This is the case for normal broadcast messages which is used to send
out the ACTION_PHONE_STATE_CHANGED intent as well. All receivers of the
broadcast are run in an undefined order, often at the same time and for that reason
order is not applicable.

In other cases the system sends out ordered broadcast which is described in more detail
in the Recipe Recipe 10.3.

Final notes

When your BroadcastReceiver does not finish within 10 seconds the Android frame-
work will show the infamous Application Not Responding (ANR) dialog, giving your
users the possibility to kill your program. If you need to do some processing which
takes longer than 10 seconds implement a Service and call the service method.

10.2 Do something when the phone rings | 469

Figure 10-1.

470 | Chapter 10: Telephone Applications

It is also not advised to start an activity from a BroadcastReceiver, as it will spawn a
new screen that will steal focus from whatever application the user is currently has
running. If your application has something to show the user in response to an Intent
broadcast, it should do so using the Notification Manager.

See Also
Recipe Recipe 10.3 http://developer.android.com/reference/android/content/Broad-
castReceiver.html http://developer.android.com/reference/android/telephony/Tele-
phonyManager.html#ACTION_PHONE_STATE_CHANGED

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/IncomingCallInterceptor.zip

10.3 Process outgoing calls
Johan Pelgrim

Problem
You want to block certain calls, or alter the phone number about to be called.

Solution
Listen for the Intent.ACTION_NEW_OUTGOING_CALL broadcast action and set
the result data of the broadcast receiver to the new number.

Discussion
If you want to intercept a call before it is about to be placed you can implement a
broadcast receiver and listen for the Intent.ACTION_NEW_OUTGOING_CALL action. This
recipe is in essence similar to the recipe Recipe 10.2, but it is more interesting since we
can actually manipulate the phone number in this case!

Here are the steps:

1. Create an OutgoingCallInterceptor class which extends the BroadcastReceiver

2. Override the onReceive method.

3. Extract the phone number which the user originally intended to call via the
Intent.EXTRA_PHONE_NUMBER intent extra.

4. Replace this number by calling setResultData with the new number as the String
argument.

Once the broadcast is finished, the result data is used as the actual number to call. If
the result data is null, no call will be placed at all!

10.3 Process outgoing calls | 471

https://github.com/downloads/jpelgrim/androidcookbook/IncomingCallInterceptor.zip
https://github.com/downloads/jpelgrim/androidcookbook/IncomingCallInterceptor.zip

Example 10-3.

package nl.codestone.cookbook.outgoingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class OutgoingCallInterceptor extends BroadcastReceiver { // 1

 @Override
 public void onReceive(Context context, Intent intent) { // 2
 final String oldNumber = intent.getStringExtra(Intent.EXTRA_PHONE_NUMBER); // 3
 this.setResultData("0123456789"); // 4
 final String newNumber = this.getResultData();
 String msg = "Intercepted outgoing call. Old number " + oldNumber + ", new number " + newNumber;
 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();
 }

}

5. We have to register our OutgoingCallInterceptor as a <receiver> within the <appli
cation> element in the AndroidManifest.xml file.

6. We add an <intent-filter> element within this <receiver> declaration and add a
android:priority of 1.

7. We add an <action> element within the <intent-filter> to only receive
Intent.ACTION_NEW_OUTGOING_CALL intent actions.

8. And we have to hold the PROCESS_OUTGOING_CALLS permission to receive this intent
so we register a <uses-permission> to PROCESS_OUTGOING_CALLS right below the
<application> element.

Example 10-4.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.outgoingcallinterceptor"
 android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="Outgoing Call Interceptor">

 <receiver android:name="OutgoingCallInterceptor"> // 5
 <intent-filter android:priority="1"> // 6
 <action android:name="android.intent.action.NEW_OUTGOING_CALL" /> // 7
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.PROCESS_OUTGOING_CALLS" /> // 8

</manifest>

472 | Chapter 10: Telephone Applications

Now, when you try to dial the number 11111 you will actually be forwarded to
0123456789 instead!

What happens if two receivers process outgoing calls?

As was stated before the Intent.ACTION_NEW_OUTGOING_CALL is an ordered broadcast and
is a protected intent that can only be sent by the system. Ordered broadcast messages
come with three additional features compared to normal broadcast messages.

1. You can use the <intent-filter> element's android:priority attribute to influence
your position in the sending mechanism. The android:priority is an integer indicating
which parent (receiver) has higher priority in processing the incoming broadcast mes-
sage. The higher the number, the higher the priority and the sooner that receiver can
process the broadcast message.

2. You can propagate a result to the next receiver by calling the setResultData method,
and

3. You can completely abort the broadcast by calling the abortBroadcast() method so
that it won't be passed to other receivers.

Note: According to the API any BroadcastReceiver receiving the
Intent.ACTION_NEW_OUTGOING_CALL must not abort the broadcast by calling the abort
Broadcast() method. Doing so does not present any errors, but apparrently some sys-
tem receivers still want to have a go at the broadcast message. Emergency calls can-
not be intercepted using this mechanism, and other calls cannot be modified to call
emergency numbers using this mechanism.

It is perfectly acceptable for multiple receivers to process the outgoing call in turn: for
example, a parental control application might verify that the user is authorized to place
the call at that time, then a number-rewriting application might add an area code if one
was not specified.

In case two receivers are defined with an equal android:priority attribute they will be
run in an arbitrary order (according to the API). However, in practice, when they both
reside in the same AndroidManifest.xml file, it looks like the order in which the receivers
are defined determines the order in which they will receive the broadcast message.

Furthermore, if two receivers are defined with an equal android:priority attribute but
they are defined in a different AndroidManifest.xml file (i.e. they belong to a different
application) it looks like the broadcast receiver, which was installed first is registered
first and thus will be the one which is allowed to process the message first. But again,
don't count on it!

If you want to have a shot at being the very first to process a message you can use the
maximum integer value (2147483647). Even though the API this still does not guar-
antee you will be first, you will have a pretty good change though!

10.3 Process outgoing calls | 473

Figure 10-2.

474 | Chapter 10: Telephone Applications

Other applications could have intercepted the phone number before us. If you are pretty
sure you want to take action on the original number you can use the EXTRA_PHONE_NUM
BER intent extra as described above and completely ignore the result from the receiver
before you. If you simply want to fall in line and pick up where another broadcast
receiver has left off you can retrieve the intermediary phone number via the getResult
Data() method.

For consistency, any receiver whose purpose is to prohibit phone calls should have a
priority of 0, to ensure it will see the final phone number to be dialed. Any receiver
whose purpose is to rewrite phone numbers to be called should have a positive priority.
Negative priorities are reserved for the system for this broadcast; using them may cause
problems.

See Also
Recipe 10.2, http://developer.android.com/reference/android/content/Intent.html#AC
TION_NEW_OUTGOING_CALL

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/OutgoingCallInterceptor.zip

10.4 Dialing the phone
Ian Darwin

Problem
You want to dial the phone from within an application, without worrying about details
of telephony.

Solution
Start an Intent to dial the phone.

Discussion
One of the beauties of Android is the ease with which applications can re-use other
applications, without being tightly coupled to the details (or even name) of the other
program, using the Intent mechanism. For example, to call the phone, you only need
to create and start an Intent with the action of DIAL and the "URI" of "tel" + the number
you want to dial. Thus, a basic dialer can be as simple as this:

Example 10-5.

public class Main extends Activity {
 String phoneNumber = "555-1212";

10.4 Dialing the phone | 475

http://developer.android.com/reference/android/content/Intent.html#ACTION_NEW_OUTGOING_CALL
http://developer.android.com/reference/android/content/Intent.html#ACTION_NEW_OUTGOING_CALL
https://github.com/downloads/jpelgrim/androidcookbook/OutgoingCallInterceptor.zip
https://github.com/downloads/jpelgrim/androidcookbook/OutgoingCallInterceptor.zip

 String intentStr = "tel:" + phoneNumber;

 /** Standard creational callback.
 * Just dial the phone
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = new Intent("android.intent.action.DIAL",
 Uri.parse(intentStr));

 startActivity(intent);
 }
}

You need to have the permission android.permission.CALL_PHONE to use this code. The
user will see this screen, and users know to press the green Phone button to let the call
procede.

Typically in real life you would not hard-code the number. In other circumstances you
might want the user to call a number from the phone's Contacts list.

10.5 Sending single or multipart SMS messages
Colin Wilcox

Problem
A simple way to send either a single part or a multipart (handing the message concat-
enation UDH) from a single entry point

Solution
Use the SMSManager.

Discussion
Example 10-6.

public class SendSMS
{
 SMSManager iSMSManager = null;
 ArrayList<String> iFragmentList = null;

 SendSMS ()
 {
 iSMSManager = SMSManager.getDefault ();
 }

476 | Chapter 10: Telephone Applications

Figure 10-3.

10.5 Sending single or multipart SMS messages | 477

 public boolean sendSMSMessage (String aDestination, String aMessageText)
 {
 if (iSMSManager == null)
 {
 return (false);
 }

 int fragmentCount = 0;

 iFragmentList = iSMSManager.divideMessage (aMessageText);
 fragmentCount = iFragmentList.Count ();
 if (fragmentCount > 1)
 {
 iSMSManager.SendMultipartMessage (aDestinationAddress, null, iFragmentList, null, null, null);
 }
 else
 {
 iSMSManager.SendTextMessage (aDestinationAddress, null, aMessageText, null, null, null);
 }

 return true;
 }
}

// end of file

10.6 Receiving an SMS in an Android Application.
Rachee Singh

Problem
Enabling your application to receive an SMS.

Solution
Using a broadcast receiver to listen for incoming SMSs and then extracting the message
from them.

Discussion
When an Android device receives a message, a broadcast intent is fired (the intent also
includes the SMS that is sent). The application can register to receive these intents. The
intent has an action android.provider.Telephony.SMS_RECEIVED. The application
designed to receive SMSs should include the RECEIVE_SMS permission in the mani-
fest:

Example 10-7.

<uses-permission android:name="android.permission.RECEIVE_SMS"/>

478 | Chapter 10: Telephone Applications

When a message is received, the onReceive method (overriden) is called. Within this
method, the message can be processed. From the intent that is received, the sms mes-
sage has to be extracted using the get() method. The BroadcastReceiver with the ex-
tracting the message part looks something like this:

Example 10-8.

public class invitationSMSreciever extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {

 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String message = "";
 if(bundle != null) {
 Object[] pdus = (Object[]) bundle.get("pdus");
 msgs = new SmsMessage[pdus.length];

 for(int i=0; i<msgs.length;i++) {
 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
 message = msgs[i].getMessageBody();
 Toast.makeText(context,message,Toast.LENGTH_SHORT).show();
 }

 }

 }

}

The code makes a toast with the contents of the SMS sent.

To register the invitationSMSreciever class for receiving the SMSs, add the following
code in the manifest:

Example 10-9.

<receiver android:name=".invitationSMSreciever"
 android:enabled="true">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
</receiver>

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMjk0YjJiZTgtZGI5ZC00Mjk3LTk2MGUtMjhkO
GYzNmFmYWMz&hl=en_US&authkey=CMWZvskL

10.6 Receiving an SMS in an Android Application. | 479

https://docs.google.com/leaf?id=0B_rESQKgad5LMjk0YjJiZTgtZGI5ZC00Mjk3LTk2MGUtMjhkOGYzNmFmYWMz&hl=en_US&authkey=CMWZvskL
https://docs.google.com/leaf?id=0B_rESQKgad5LMjk0YjJiZTgtZGI5ZC00Mjk3LTk2MGUtMjhkOGYzNmFmYWMz&hl=en_US&authkey=CMWZvskL
https://docs.google.com/leaf?id=0B_rESQKgad5LMjk0YjJiZTgtZGI5ZC00Mjk3LTk2MGUtMjhkOGYzNmFmYWMz&hl=en_US&authkey=CMWZvskL

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rE
SQKgad5LM2U0NjQ2OTMtMTdjMC00ZGFlLWI1MzgtNzFhNjFiOWM0MGI4&hl
=en_US&authkey=CLLju5EB

10.7 Using Emulator Controls to send SMS to the Emulator.
Rachee Singh

Problem
For testing SMS based applications sending SMS to the emulator.

Solution
Emulator Control in the DDMS perspective of Eclipse allows the functionality of send-
ing SMSs to the emulator.

Discussion
To test if your application responds to incoming SMSs, we require to send SMS to teh
emulator. The DDMS perspective of Eclipse provides this function. In the Emulator
Control tab, go to 'Telephony Actions' and provide a phone number. This number is
any random number you would want to send an SMS. Select the SMS radio button.
The messgae content that you wish to send can be typed in the message box.

10.8 Android TelephonyManager.
Pratik Rupwal

Problem
I want to obtain network related and telephonic information on my phone. How to do
this?

Solution
Android TelephonyManager can be used to obtain the different statistics about network
status and telephonic information.

480 | Chapter 10: Telephone Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LM2U0NjQ2OTMtMTdjMC00ZGFlLWI1MzgtNzFhNjFiOWM0MGI4&hl=en_US&authkey=CLLju5EB
https://docs.google.com/leaf?id=0B_rESQKgad5LM2U0NjQ2OTMtMTdjMC00ZGFlLWI1MzgtNzFhNjFiOWM0MGI4&hl=en_US&authkey=CLLju5EB
https://docs.google.com/leaf?id=0B_rESQKgad5LM2U0NjQ2OTMtMTdjMC00ZGFlLWI1MzgtNzFhNjFiOWM0MGI4&hl=en_US&authkey=CLLju5EB
https://docs.google.com/leaf?id=0B_rESQKgad5LM2U0NjQ2OTMtMTdjMC00ZGFlLWI1MzgtNzFhNjFiOWM0MGI4&hl=en_US&authkey=CLLju5EB

Discussion
Android TelephonyManager provides information about the android telephony sys-
tem. It assists in collecting different information like Cell Location, IMEI Number,
Network Provider Information and more.

Below code covers many of the facilities provided by the android TelephonyManager:

Example 10-10.

import java.util.List;
import android.app.Activity;
import android.os.Bundle;
import android.telephony.CellLocation;
import android.telephony.NeighboringCellInfo;
import android.telephony.PhoneStateListener;
import android.telephony.ServiceState;
import android.telephony.TelephonyManager;
import android.telephony.gsm.GsmCellLocation;
import android.util.Log;
import android.widget.ImageView;
import android.widget.ProgressBar;
import android.widget.TextView;

public class PhoneStateSample extends Activity {

 private static final String APP_NAME = "SignalLevelSample";
 private static final int EXCELLENT_LEVEL = 75;
 private static final int GOOD_LEVEL = 50;
 private static final int MODERATE_LEVEL = 25;
 private static final int WEAK_LEVEL = 0;

 private static final int INFO_SERVICE_STATE_INDEX = 0;
 private static final int INFO_CELL_LOCATION_INDEX = 1;
 private static final int INFO_CALL_STATE_INDEX = 2;
 private static final int INFO_CONNECTION_STATE_INDEX = 3;
 private static final int INFO_SIGNAL_LEVEL_INDEX = 4;
 private static final int INFO_SIGNAL_LEVEL_INFO_INDEX = 5;
 private static final int INFO_DATA_DIRECTION_INDEX = 6;
 private static final int INFO_DEVICE_INFO_INDEX = 7;

 private static final int[] info_ids= {
 R.id.serviceState_info,
 R.id.cellLocation_info,
 R.id.callState_info,
 R.id.connectionState_info,
 R.id.signalLevel,
 R.id.signalLevelInfo,
 R.id.dataDirection,
 R.id.device_info
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

10.8 Android TelephonyManager. | 481

 setContentView(R.layout.main);
 startSignalLevelListener();
 displayTelephonyInfo();
 }

 @Override
 protected void onPause()
 {
 super.onPause();
 stopListening();
 }

 @Override
 protected void onResume()
 {
 super.onResume();
 startSignalLevelListener();
 }

 @Override
 protected void onDestroy()
 {
 stopListening();
 super.onDestroy();
 }

 private void setTextViewText(int id,String text) {
 ((TextView)findViewById(id)).setText(text);
 }
 private void setSignalLevel(int id,int infoid,int level){
 int progress = (int) ((((float)level)/31.0) * 100);
 String signalLevelString =getSignalLevelString(progress);
 ((ProgressBar)findViewById(id)).setProgress(progress);
 ((TextView)findViewById(infoid)).setText(signalLevelString);
 Log.i("signalLevel ","" + progress);
 }

 private String getSignalLevelString(int level) {
 String signalLevelString = "Weak";
 if(level > EXCELLENT_LEVEL) signalLevelString = "Excellent";
 else if(level > GOOD_LEVEL) signalLevelString = "Good";
 else if(level > MODERATE_LEVEL) signalLevelString = "Moderate";
 else if(level > WEAK_LEVEL) signalLevelString= "Weak";
 return signalLevelString;
 }

 private void stopListening(){
 TelephonyManager tm = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);
 tm.listen(phoneStateListener,
PhoneStateListener.LISTEN_NONE);
 }

 private void setDataDirection(int id, int direction){
 int resid = getDataDirectionRes(direction);

482 | Chapter 10: Telephone Applications

 ((ImageView)findViewById(id)).setImageResource(resid);
 }
 private int getDataDirectionRes(int direction){
 int resid = R.drawable.data_none;

 switch(direction)
 {
 case TelephonyManager.DATA_ACTIVITY_IN:
resid = R.drawable.data_in; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
resid = R.drawable.data_out; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT:
resid = R.drawable.data_both; break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
resid = R.drawable.data_none; break;
 default: resid = R.drawable.data_none; break;
 }
 return resid;
 }
 private void startSignalLevelListener() {
 TelephonyManager tm = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);
 int events = PhoneStateListener.LISTEN_SIGNAL_STRENGTH | PhoneStateListener.LISTEN_DATA_ACTIVITY |
PhoneStateListener.LISTEN_CELL_LOCATION|PhoneStateListener.LISTEN_CALL_STATE |
PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR |
PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE;
 tm.listen(phoneStateListener, events);
 }
 private void displayTelephonyInfo(){
 TelephonyManager tm = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);
 GsmCellLocation loc = (GsmCellLocation)tm.getCellLocation();
 int cellid = loc.getCid();
 int lac = loc.getLac();
 String deviceid = tm.getDeviceId();
 String phonenumber = tm.getLine1Number();
 String softwareversion = tm.getDeviceSoftwareVersion();
 String operatorname = tm.getNetworkOperatorName();
 String simcountrycode = tm.getSimCountryIso();
 String simoperator = tm.getSimOperatorName();
 String simserialno = tm.getSimSerialNumber();
 String subscriberid = tm.getSubscriberId();
 String networktype = getNetworkTypeString(tm.getNetworkType());
 String phonetype = getPhoneTypeString(tm.getPhoneType());
 logString("CellID: " + cellid);
 logString("LAC: " + lac);
 logString("Device ID: " + deviceid);
 logString("Phone Number: " + phonenumber);
 logString("Software Version: " + softwareversion);
 logString("Operator Name: " + operatorname);
 logString("SIM Country Code: " + simcountrycode);
 logString("SIM Operator: " + simoperator);
 logString("SIM Serial No.: " + simserialno);

10.8 Android TelephonyManager. | 483

 logString("Sibscriber ID: " + subscriberid);
 String deviceinfo = "";
 deviceinfo += ("CellID: " + cellid + "\n");
 deviceinfo += ("LAC: " + lac + "\n");
 deviceinfo += ("Device ID: " + deviceid + "\n");
 deviceinfo += ("Phone Number: " + phonenumber + "\n");
 deviceinfo += ("Software Version: " + softwareversion + "\n");
 deviceinfo += ("Operator Name: " + operatorname + "\n");
 deviceinfo += ("SIM Country Code: " + simcountrycode + "\n");
 deviceinfo += ("SIM Operator: " + simoperator + "\n");
 deviceinfo += ("SIM Serial No.: " + simserialno + "\n");
 deviceinfo += ("Subscriber ID: " + subscriberid + "\n");
 deviceinfo += ("Network Type: " + networktype + "\n");
 deviceinfo += ("Phone Type: " + phonetype + "\n");
 List<NeighboringCellInfo> cellinfo =tm.getNeighboringCellInfo();
 if(null != cellinfo){
 for(NeighboringCellInfo info: cellinfo){
 deviceinfo += ("\tCellID: " + info.getCid() +", RSSI: " + info.getRssi() + "\n");
 }
 }
setTextViewText(info_ids[INFO_DEVICE_INFO_INDEX],deviceinfo);
 }
 private String getNetworkTypeString(int type){
 String typeString = "Unknown";
 switch(type)
 {
 case TelephonyManager.NETWORK_TYPE_EDGE:typeString = "EDGE"; break;
 case TelephonyManager.NETWORK_TYPE_GPRS:typeString = "GPRS"; break;
 case TelephonyManager.NETWORK_TYPE_UMTS:typeString = "UMTS"; break;
 default:
 typeString = "UNKNOWN"; break;
 }
 return typeString;
 }
 private String getPhoneTypeString(int type){
 String typeString = "Unknown";
 switch(type)
 {
 case TelephonyManager.PHONE_TYPE_GSM: typeString = GSM"; break;
 case TelephonyManager.PHONE_TYPE_NONE: typeString = UNKNOWN"; break;
 default:typeString = "UNKNOWN"; break;
 }
 return typeString;
 }
 private int logString(String message) {
 return Log.i(APP_NAME,message);
 }

 private final PhoneStateListener phoneStateListener = new PhoneStateListener(){

 @Override
 public void onCallForwardingIndicatorChanged(boolean cfi)
 {
 Log.i(APP_NAME, "onCallForwardingIndicatorChanged " +cfi);
 super.onCallForwardingIndicatorChanged(cfi);

484 | Chapter 10: Telephone Applications

 }

 @Override
 public void onCallStateChanged(int state, String incomingNumber)
 {
 String callState = "UNKNOWN";
 switch(state)
 {
 case TelephonyManager.CALL_STATE_IDLE:callState = "IDLE"; break;
 case TelephonyManager.CALL_STATE_RINGING:callState = "Ringing (" + incomingNumber + ")"; break;
 case TelephonyManager.CALL_STATE_OFFHOOK: callState = "Offhook"; break;
 }
setTextViewText(info_ids[INFO_CALL_STATE_INDEX],callState);
 Log.i(APP_NAME, "onCallStateChanged " + callState);
 super.onCallStateChanged(state, incomingNumber);
 }
 @Override
 public void onCellLocationChanged(CellLocation location)
 {
 String locationString = location.toString();
setTextViewText(info_ids[INFO_CELL_LOCATION_INDEX],locationString);

 Log.i(APP_NAME, "onCellLocationChanged " +
locationString);
 super.onCellLocationChanged(location);
 }

 @Override
 public void onDataActivity(int direction)
 {
 String directionString = "none";
 switch(direction)
 {
 case TelephonyManager.DATA_ACTIVITY_IN:
 directionString = "IN"; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
 directionString = "OUT"; break;
 case
TelephonyManager.DATA_ACTIVITY_INOUT: directionString = "INOUT";
break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
 directionString = "NONE"; break;
 default: directionString = "UNKNOWN: " +
direction; break;
 }

setDataDirection(info_ids[INFO_DATA_DIRECTION_INDEX],direction);
 Log.i(APP_NAME, "onDataActivity " +
directionString);
 super.onDataActivity(direction);
 }

 @Override
 public void onDataConnectionStateChanged(int state)
 {

10.8 Android TelephonyManager. | 485

 String connectionState = "Unknown";
 switch(state)
 {
 case TelephonyManager.DATA_CONNECTED:
 connectionState = "Connected"; break;
 case TelephonyManager.DATA_CONNECTING:
 connectionState = "Connecting"; break;
 case TelephonyManager.DATA_DISCONNECTED:
 connectionState = "Disconnected"; break;
 case TelephonyManager.DATA_SUSPENDED:
 connectionState = "Suspended"; break;
 default:

 connectionState = "Unknown: " +
state; break;
 }

setTextViewText(info_ids[INFO_CONNECTION_STATE_INDEX],connectionState);

 Log.i(APP_NAME, "onDataConnectionStateChanged " +
connectionState);

 super.onDataConnectionStateChanged(state);
 }

 @Override
 public void onMessageWaitingIndicatorChanged(boolean mwi)
 {
 Log.i(APP_NAME, "onMessageWaitingIndicatorChanged
" + mwi);
 super.onMessageWaitingIndicatorChanged(mwi);
 }

 @Override
 public void onServiceStateChanged(ServiceState
serviceState)
 {
 String serviceStateString = "UNKNOWN";
 switch(serviceState.getState())
 {
 case ServiceState.STATE_IN_SERVICE:
 serviceStateString = "IN SERVICE"; break;
 case ServiceState.STATE_EMERGENCY_ONLY:
 serviceStateString = "EMERGENCY ONLY"; break;
 case ServiceState.STATE_OUT_OF_SERVICE:
 serviceStateString = "OUT OF SERVICE"; break;
 case ServiceState.STATE_POWER_OFF:
 serviceStateString = "POWER OFF"; break;
 default:

 serviceStateString = "UNKNOWN";
break;
 }

486 | Chapter 10: Telephone Applications

setTextViewText(info_ids[INFO_SERVICE_STATE_INDEX],serviceStateString);

 Log.i(APP_NAME, "onServiceStateChanged " +
serviceStateString);

 super.onServiceStateChanged(serviceState);
 }

 @Override
 public void onSignalStrengthChanged(int asu)
 {
 Log.i(APP_NAME, "onSignalStrengthChanged " +
asu);
setSignalLevel(info_ids[INFO_SIGNAL_LEVEL_INDEX],info_ids[INFO_SIGNAL_LEV
EL_INFO_INDEX],asu);
 super.onSignalStrengthChanged(asu);
 }
 };
}

Below code goes in 'main.xml' file:

Example 10-11.

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:scrollbarStyle="insideOverlay"
 android:scrollbarAlwaysDrawVerticalTrack="false">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Serivice State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/serviceState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Cell Location"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/cellLocation_info"
style="@style/textStyle"/>

10.8 Android TelephonyManager. | 487

 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Call State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/callState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Connection State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/connectionState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Signal Level"
style="@style/labelStyleRight"/>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="0.5"
 android:orientation="horizontal">
 <ProgressBar
android:id="@+id/signalLevel" style="@style/progressStyle"/>
 <TextView
android:id="@+id/signalLevelInfo" style="@style/textSmallStyle"/>
 </LinearLayout>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Data"
style="@style/labelStyleRight"/>
 <ImageView android:id="@+id/dataDirection"
style="@style/imageStyle"/>
 </LinearLayout>
 <TextView android:id="@+id/device_info"
style="@style/labelStyleLeft"/>
 </LinearLayout>
</ScrollView>

Our code uses some UI styles which are declared in this file named

'styles.xml':

488 | Chapter 10: Telephone Applications

Example 10-12.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="labelStyleRight">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|right</item>
 </style>

 <style name="labelStyleLeft">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textSmallStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">fill_parent</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">10dip</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="progressStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:indeterminateOnly">false</item>
 <item name="android:minHeight">20dip</item>
 <item name="android:maxHeight">20dip</item>
 <item name="android:progress">15</item>
 <item name="android:max">100</item>
 <item name="android:gravity">center_vertical|left</item>
 <item name="android:progressDrawable">@android:drawable/progress_horizontal</it

10.8 Android TelephonyManager. | 489

em>
 <item

name="android:indeterminateDrawable">@android:drawable/progress_indetermi

nate_horizontal</item>
 </style>

 <style name="imageStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:src">@drawable/icon</item>
 <item name="android:scaleType">fitStart</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>
</resources>

The application uses following android permission which needs to be added in 'An-
droidManifest.xml' file of your project.

Example 10-13.

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

The application also uses some images for indicating the data communication state as
no data communication, incoming data communication, outgoing data communica-
tion and both ways data communication. These images are respectively named as 'da-
ta_none.png','data_in.png', 'data_out.png' and 'data_both.png'. Please add some icons
with above names in 'res/drawable' folder of your project structure.

490 | Chapter 10: Telephone Applications

CHAPTER 11

Networked Applications

11.1 Introduction: Networking
Ian Darwin

Discussion
lorem ipsem dolor. This is intended to be representative of the "chapter introductions"
that appear at the start of each chapter of an O'Reilly Cookbook and give general guid-
ance and an introduction to the chapter.

Choose Your Protocol Wisely

While Java makes it easy to create network connections on any protocol, experience
shows that HTTP (and HTTPS) are the most universal. If you use a custom protocol
talking to your own server, there are some users who will not be able to access your
server. Bear in mind that in some countries, high-speed data (aka 3G) is either not yet
available or is very expensive, whereas GPRS/EDGE is less expensive and more widely
available. Most GPRS service providers only allow HTTP/HTTPS connections, often
through a WAP proxy. That said, there may be things you need to do that can't be done
via HTTP, for example because their protocol demands a different port number (SIP
over port 5000, for example). But do try to make HTTP your first choice when you can
- you'll include more customers.

11.2 Using a RESTful Web Service
Ian Darwin

Problem
You need to access a RESTful Web Service.

491

Solution
You can either use the "standard" Java URL and URLConnection objects, or you can
use the Android-provided Apache HTTPClient library to code at a slightly higher level
or to use HTTP methods other than GET and POST.

Discussion
REST was originally intended as an architectural description of the early Web, in which
GET requests were used and in which the URL fully specified (Represented) the State
of the request. Today RESTful web services are those which eschew the overhad of
XML SOAP, WSDL and (usually) XML Schema, and simply send URLs that contain
all the information needed to perform the request (or almost all, there is often a POST
body sent for some types of requests). For example, to support an Android client that
allows off-line editing of Recipes for this Android Cookbook, there is a (draft) Web
Service which allows you to view the list of Recipes (you send an HTTP GET request
ending in /recipe/list), to view the details of one Recipe (HTTP GET ending in /recipe/
NNN where NNN is the primary key of the entry, gotten from the list request above),
and later upload your revised version of the Recipe using HTTP POST to /recipe/NNN
with the POST body containing the revised Recipe in the same XML document format
as the "get Recipe" operation downloads it.

By the way, the RESTful Service used by these examples is implemented in server-side
Java using the JAX-RS API, provided by JBoss Seam using RestEasy. The code for the
service is available in the Cookbook CVS (subject to O'Reilly approval).

Using URL and URLConnection

Android's developers wisely preserved a lot of the Java standard API, including some
widely-used classes for networking, so as to make it easy to port existing code. The
converse() method shown below uses a URL and URLConnection from java.net to do
a GET, and is extracted from an example in the networking chapter of my Java Cook-
book. Comments in this version show what you'd need to change to do a POST.

Example 11-1.

 public static String converse(String host, int port, String path) throws IOException {
 URL url = new URL("http", host, port, path);
 URLConnection conn = url.openConnection();
 // This does a GET; to do a POST, add conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setAllowUserInteraction(true);

 conn.connect();

 // To do a POST, you'd write to conn.getOutputStream());

 StringBuilder sb = new StringBuilder();
 BufferedReader in = new BufferedReader(

492 | Chapter 11: Networked Applications

http://javacook.darwinsys.com
http://javacook.darwinsys.com

 new InputStreamReader(conn.getInputStream()));
 String line;
 while ((line = in.readLine()) != null) {
 sb.append(line);
 }
 in.close();
 return sb.toString();
 }

The invocation of this method in, say, your onResume() or onCreate() method, can be
as simple as the following, which gets the list of Recipes from this Android Cookbook:

Example 11-2.

String host = "androidcookbook.net";
String path = "/seam/resource/rest/recipe/list";
String ret = converse(host, 80, path);

Using HTTPClient

Android supports the Apache HTTPClient library which is widely used for communi-
cating at a slightly higer level than the URLConnection. I've used it in my PageUnit web
test framework. HttpClient also lets you use other HTTP methods that are common in
RESTful services, such as PUT, DELETE, etc. (he URLConnection object used above,
by contrast, only supports GET and POST(?)). Here's the same converse method coded
for a GET using HTTPClient:

Example 11-3.

 public static String converse(String host, int port, String path, String postBody) throws IOException {
 HttpHost target = new HttpHost(host, port);
 HttpClient client = new DefaultHttpClient();
 HttpGet get = new HttpGet(path);
 HttpEntity results = null;
 try {
 HttpResponse response=client.execute(target, get);
 results = response.getEntity();
 return EntityUtils.toString(results);
 } catch (Exception e) {
 throw new RuntimeException("Web Service Failure");
 } finally {
 if (results!=null)
 try {
 results.consumeContent();
 } catch (IOException e) {
 // empty, Checked exception but don't care
 }
 }
 }

Usage will be exactly the same as for the URLConnection-based version.

11.2 Using a RESTful Web Service | 493

http://www.pageunit.org/
http://www.pageunit.org/

The Results

In the present version of the web service, the return value comes back as an XML
document, which you'd need to parse to display in a List. If there is enough interest,
we might add a JSON version as well.

Note

Don't forget to add the android.permission.INTERNET Permission to your Android-
Manifest.xml or you will not be able to access any web connections.

See Also
(BROKEN XREF TO RECIPE -1 'Using a SOAP Web Service'), Recipe 9.12, (BROKEN
XREF TO RECIPE -1 'Displaying a List')

11.3 Extracting Information from Unstructured Text using
Regular Expressions
Ian Darwin

Problem
You want to get information from another source, but they don't make it available as
information, only as a viewable web page.

Solution
Use java.net to download the HTML page, and use Regular Expressions to extract the
information from the page.

Discussion
If you aren't already a big fan of regular expressions, well, you should be. And maybe
this recipe will help interest you in learning regex technology.

Suppose that I, as a published author, want to track how my book is selling in com-
parison to others. This information can be obtained for free just by clicking on the page
for my book on any of the major bookseller sites, reading the sales rank number off the
screen, and typing the number into a file-but that's too tedious. As I wrote in one of my
earlier books, "computers get paid to extract relevant information from files; people
should not have to do such mundane tasks." This program uses the Regular Expressions
API and, in particular, newline matching to extract a value from an HTML page on the
Amazon.com web site. It also reads from a URL object (see Recipe 11.2). The pattern
to look for is something like this (bear in mind that the HTML may change at any time,
so I want to keep the pattern fairly general):

494 | Chapter 11: Networked Applications

Example 11-4.

(bookstore name here) Sales Rank:
26,252

As the pattern may extend over more than one line, I read the entire web page from the
URL into a single long string using a private convenience routine readerToString() in-
stead of the more traditional line-at-a-time paradigm. The value is extracted from the
regular expression, converted to an integer value, and returned. The longer version of
this code in the Java Cookbook would also plot a graph using an external program.
The complete program is shown in this example.

Example 11-5.

// Part of class BookRank
public static int getBookRank(String isbn) throws IOException {
 // The RE pattern - digits and commas allowed
 final String pattern = "Rank: #([\\d,]+)";
 final Pattern r = Pattern.compile(pattern);

 // The url -- must have the "isbn=" at the very end, or otherwise
 // be amenable to being appended to.
 final String url = "http://www.amazon.com/exec/obidos/ASIN/" + isbn;

 // Open the URL and get a Reader from it.
 final BufferedReader is = new BufferedReader(new InputStreamReader(
 new URL(url).openStream()));
 // Read the URL looking for the rank information, as
 // a single long string, so can match RE across multi-lines.
 final String input = readerToString(is);

 // If found, append to sales data file.
 Matcher m = r.matcher(input);
 if (m.find()) {
 // Group 1 is digits (and maybe ','s) that matched; remove comma
 return Integer.parseInt(m.group(1).replace(",",""));
 } else {
 throw new RuntimeException(
 "Pattern not matched in `" + url + "'!");
 }
}

See Also
As mentioned, using the regex API is vital to being able to deal with semi-structured
data that you will meet in real life. Chapter Four of the Java Cookbook is all about regex,
as is Jeffrey Friedl's comprehensive Mastering Regular Expressions.

Source Download URL
The source code for this example may be downloaded from this URL: http://javacook
.darwinsys.com/javasrc/regex/BookRank.java

11.3 Extracting Information from Unstructured Text using Regular Expressions | 495

http://oreilly.com/catalog/9780596007010/
http://oreilly.com/catalog/9780596528126/
http://javacook.darwinsys.com/javasrc/regex/BookRank.java
http://javacook.darwinsys.com/javasrc/regex/BookRank.java

11.4 Parsing RSS/ATOM feeds parsing with ROME
Wagied Davids

Problem
You want to parse RSS/Atom feeds.

Solution
Based on ROME (https://rome.dev.java.net/) a Java-based RSS syndication feed parser.
It has some nifty features such as HTTP conditional GETs, ETags and GZip compres-
sion. It also covers a wide range of formats from RSS 0.90, RSS 2.0, and Atom 0.3 & 1.0.

1. Modify your AndroidManifest.xml to allow for internet browsing. 2. Download the
appropriate JAR files. rome-0.9.jar jdom-1.0.jar

File: AndroidManifest.xml

Example 11-6.

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.pfizer.android"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity
 android:name=".AndroidRss"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-permission
 android:name="android.permission.INTERNET"></uses-permission>
</manifest>

File: main.xml

Example 11-7.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

496 | Chapter 11: Networked Applications

 <TableLayout
 android:id="@+id/table"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="0">
 <TableRow
 android:id="@+id/top_add_entry_row"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent">

 <EditText
 android:id="@+id/rssURL"
 android:hint="Enter RSS URL"
 android:singleLine="true"
 android:maxLines="1"
 android:maxWidth="220dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </EditText>
 <Button
 android:id="@+id/goButton"
 android:text="Go"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>
 </TableRow>
 </TableLayout>

 <!-- Mid Panel -->
 <ListView
 android:id="@+id/ListView"
 android:layout_weight="1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </ListView>

 <Button
 android:id="@+id/clearButton"
 android:text="Clear"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>
</LinearLayout>

File: AndroidRss.java

Example 11-8.

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

11.4 Parsing RSS/ATOM feeds parsing with ROME | 497

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.io.FeedException;
import com.sun.syndication.io.SyndFeedInput;
import com.sun.syndication.io.XmlReader;

public class AndroidRss extends Activity
 {
 private static final String tag="AndroidRss ";
 private int selectedItemIndex = 0;
 private final ArrayList list = new ArrayList();
 private EditText text;
 private ListView listView;
 private Button goButton;
 private Button clearButton;
 private ArrayAdapter adapter = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 text = (EditText) this.findViewById(R.id.rssURL);
 goButton = (Button) this.findViewById(R.id.goButton);
 goButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 String rss = text.getText().toString().trim();
 getRSS(rss);
 }
 });

 clearButton = (Button) this.findViewById(R.id.clearButton);
 clearButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {

498 | Chapter 11: Networked Applications

 adapter.clear();
 adapter.notifyDataSetChanged();
 }
 });

 listView = (ListView) this.findViewById(R.id.ListView);
 listView.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(AdapterView parent, View view, int position, long duration)
 {
 selectedItemIndex = position;
 Toast.makeText(getApplicationContext(), "Selected " + adapter.getItem(position) + " @ " + position, Toast.LENGTH_SHORT).show();
 }
 });

 adapter = new ArrayAdapter(this, R.layout.dataview, R.id.ListItemView);
 listView.setAdapter(adapter);

 }

 private void getRSS(String rss)
 {

 URL feedUrl;
 try
 {
 Log.d("DEBUG", "Entered:" + rss);
 feedUrl = new URL(rss);

 SyndFeedInput input = new SyndFeedInput();
 SyndFeed feed = input.build(new XmlReader(feedUrl));
 List entries = feed.getEntries();
 Toast.makeText(this, "#Feeds retrieved: " + entries.size(), Toast.LENGTH_SHORT);

 Iterator iterator = entries.listIterator();
 while (iterator.hasNext())
 {
 SyndEntry ent = (SyndEntry) iterator.next();
 String title = ent.getTitle();
 adapter.add(title);
 }
 adapter.notifyDataSetChanged();

 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 catch (IllegalArgumentException e)
 {
 e.printStackTrace();
 }
 catch (FeedException e)
 {

11.4 Parsing RSS/ATOM feeds parsing with ROME | 499

 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

 private void clearTextFields()
 {
 Log.d(tag, "clearTextFields()");
 this.text.setText("");
 }
 }

Discussion
TODO

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/b3f3435/n/AndroidRss.zip

11.5 Using MD5 to Digest Free Text
Colin Wilcox

Problem
Sometime it is necessary to save or send free text in an encrypted from. Android provides
a standard Java MD5 class to allow plaintext to be replaced with an MD5 digest of the
original text. This is a one-way digest that is not believed to be easily reversible (if you
need that, use Java Cryptography).

Solution
Below is a simple function that takes a free text string and digests it using MD5, re-
turning the encrypted string as a return value

Discussion
Example 11-9.

public static String md5(String s)
 {
 try
 {
 // Create MD5 Hash
 MessageDigest digest = java.security.MessageDigest.getInstance("MD5");

500 | Chapter 11: Networked Applications

http://www.filefactory.com/file/b3f3435/n/AndroidRss.zip
http://www.filefactory.com/file/b3f3435/n/AndroidRss.zip

Figure 11-1.

11.5 Using MD5 to Digest Free Text | 501

 digest.update(s.getBytes());
 byte messageDigest[] = digest.digest();
 // Create Hex String
 StringBuffer hexString = new StringBuffer();
 for (int i = 0; i < messageDigest.length; i++)
 {
 hexString.append(Integer.toHexString(0xFF & messageDigest[i]));
 }
 return hexString.toString();
 }
 catch (NoSuchAlgorithmException e)
 {
 e.printStackTrace();
 }

 return "";
 }

11.6 Converting text into hyperlinks
Rachee Singh

Problem
You need to make webpage URLs into hyper-links in a TextView of your Android app

Solution
Use the autolink property for a TextView

Discussion
You are setting the URL: 'www.google.com' as part of the text in a TextView but you
want this text to be a hyper-link so that the user can open the web page in a browser
by clicking on it. To achieve this, add a property to the TextView:

Example 11-10.

android:autoLink = "all"

Now, in the Activity's code you can set any text to the TextView and all the URLs will
be converted to hyper-links!

Example 11-11.

linkText = (TextView)findViewById(R.id.link);
linkText.setText("The link is: www.google.com");

502 | Chapter 11: Networked Applications

Figure 11-2.

11.6 Converting text into hyperlinks | 503

11.7 Accessing a web page through your Android application
Rachee Singh

Problem
Opening a website within your application.

Solution
Embed a WebView component in the layout and use it to display the web page.

Discussion
In the application, since we wish to access a web page, we need to add the Internet
permission into the manifest file:

Example 11-12.

<uses-permission android:name="android.permission.INTERNET" />

The component which is used to display a web page within an application is called a
WebView. We add a WebView to the XML layout:

Example 11-13.

<WebView
android:id="@+id/webview"
android:layout_height="fill_parent"
android:layout_width="fill_parent"/>

In the Java code for the activity that displays the web page, we obtain a handle onto
the WebView using findViewById() method. On the WebView we use the loadUrl
method to provide it the URL of the web site we wish to open in the application.

Example 11-14.

WebView webview = (WebView)findViewById(R.id.webview);
webview.loadUrl("http://google.com");

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMz
hiZWRlYTQxMWNm&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LYWVjZTA1ZjA
tY2EwNC00Y2Q1LWFhNmEtZmQxNWEwNjg4OWM3&hl=en_US

504 | Chapter 11: Networked Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMzhiZWRlYTQxMWNm&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMzhiZWRlYTQxMWNm&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMzhiZWRlYTQxMWNm&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYWVjZTA1ZjAtY2EwNC00Y2Q1LWFhNmEtZmQxNWEwNjg4OWM3&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYWVjZTA1ZjAtY2EwNC00Y2Q1LWFhNmEtZmQxNWEwNjg4OWM3&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYWVjZTA1ZjAtY2EwNC00Y2Q1LWFhNmEtZmQxNWEwNjg4OWM3&hl=en_US

11.8 Customizing a WebView
Rachee Singh

Problem
You need to customize the WebView opened by your application.

Solution
Using the WebSettings class for accessing inbuilt functions for customizing the brows-
er.

Discussion
As discussed in the recipe titled Recipe 11.7, to open a web page in an Android appli-
cation we use a WebView component. Then to load a URL in the WebView we use:

Example 11-15.

webview.loadUrl("http://www.google.com/");

Now, to customize the browser to suit the user's needs there are multiple actions that
can be taken. We need to instantiate the WebSettings class:

Example 11-16.

WebSettings webSettings = webView.getSettings();

Here are a few things that can be done using WebSettings:

1. Tell the WebView to block network images:

Example 11-17.

webSettings.setBlockNetworkImage (true);

2. Set the default font size in the browser:

Example 11-18.

webSettings.setDefaultFontSize(25);

3. Set whether the WebView supports zoom:

Example 11-19.

webSettings.setSupportZoom(true);

4. Tell the WebView to enable javascript execution:

11.8 Customizing a WebView | 505

Example 11-20.

webSettings.setJavaScriptEnabled(true);

5. Store whether the WebView is saving password.

Example 11-21.

webSettings.setSavePassword(false);

6. Store whether the WebView is saving form data.

Example 11-22.

webSettings.setSaveFormData(false);

Many more methods of this kind are available. For more information, see the Android
developers page on the topic.

506 | Chapter 11: Networked Applications

CHAPTER 12

Gaming and Animation

12.1 Introduction: Gaming and Animation
Ian Darwin

Discussion
Gaming is obviously an important part of what people used to use "computers" for and
now use mobile devices for, and Android is a perfectly capable contender in the graphics
arena, providing support for OpenGL ES.

If you want to use some advanced gaming features without having to write a lot of code,
you're in luck, as there are many "games development" frameworks in existence today.
Many of them are primarily or exclusively for desktops. The ones shown below are
known to be usable on Android; if you find others, please add a Comment to this
Recipe.

Table 12-1. Android Game Frameworks

Name Open Source? Cost URL

AndEngine Y $0 http://www.andengine.org/

Corona SDK ? $199+/year http://www.anscamobile.com/corona/

Flixel Y $0 http://flixel.org/index.html

ForPlay Y

libgdx Y $0 http://code.google.com/p/libgdx/

rokon Y 0 http://www.rokonandroid.com/

Shiva 3d N E169.00+ ea for editor and server http://www.stonetrip.com/

Unity N $400+ http://unity3d.com/unity/publishing/android.html

You will need to compare the functions that each offers before committing to use one
or another in your project.

507

12.2 Android Game Programming - Introduction to Flixel-
Android
Wagied Davids

Problem
Game design

Solution
File: Main.java

Example 12-1.

import android.app.Activity;
import android.content.pm.ActivityInfo;
import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

public class Main extends Activity
 {
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // ORIENTATION
 // setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 setContentView(new GameView(this, R.class));
 }
 }

File: GameView.java

Example 12-2.

import org.flixel.FlxGame;
import org.flixel.FlxGameView;
import android.content.Context;

public class GameView extends FlxGameView
 {
 public GameView(Context context, Class<? extends Object> resource)
 {
 super(new FlxGame(400, 240, SimpleJumper.class, context, resource), context);

508 | Chapter 12: Gaming and Animation

 }
 }

File: Droid.java

Example 12-3.

import org.flixel.FlxG;
import org.flixel.FlxSound;
import org.flixel.FlxSprite;

public class Droid extends FlxSprite
 {
 private final FlxSound sound = new FlxSound();

 public Droid(int X, int Y)
 {
 super(X, Y);
 loadGraphic(R.drawable.player, true, true);
 maxVelocity.x = 100; // walking speed
 acceleration.y = 400; // gravity
 drag.x = maxVelocity.x * 4; // deceleration (sliding to a stop)

 // tweak the bounding box for better feel
 width = 8;
 height = 10;

 offset.x = 3;
 offset.y = 3;

 addAnimation("idle", new int[] { 0 }, 0, false);
 addAnimation("walk", new int[] { 1, 2, 3, 0 }, 12);
 addAnimation("walk_back", new int[] { 3, 2, 1, 0 }, 10, true);
 addAnimation("flail", new int[] { 1, 2, 3, 0 }, 18, true);
 addAnimation("jump", new int[] { 4 }, 0, false);
 }

 @Override
 public void update()
 {
 // Smooth slidey walking controls
 acceleration.x = 0;
 if (FlxG.dpad.pressed("LEFT")) acceleration.x -= drag.x;
 if (FlxG.dpad.pressed("RIGHT")) acceleration.x += drag.x;

 if (onFloor)
 {
 // Jump controls
 if (FlxG.dpad.justTouched("UP"))
 {
 sound.loadEmbedded(R.raw.jump);
 sound.play();

 velocity.y = -acceleration.y * 0.51f;
 play("jump");

12.2 Android Game Programming - Introduction to Flixel-Android | 509

 }// Animations
 else if (velocity.x > 0)
 {
 play("walk");
 }
 else if (velocity.x < 0)
 {
 play("walk_back");
 }
 else play("idle");
 }
 else if (velocity.y < 0) play("jump");
 else play("flail");

 // Default object physics update
 super.update();
 }

 }

Discussion
Flixel is an Actionscript-based game framework developed by Adam ("Atomic") Salts-
man http://flixel.org/index.html.

Due to the tremendous work of Wing Eraser a Java-based port has been created http:
//code.google.com/p/flixel-android/, which closely resembles the AS3-based Flixel in
programming paradigm.

In this tutorial, we will be creating a simple jumper game, containing a few entities, a
droid, and pusher and a few elevators. Each entity is declared as a separate class con-
taining its own asset resources, and listeners for digital touchpad events.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/cc0a426/n/SimpleJumper.zip

12.3 Introduction to Game Programming using AndEngine
(Android-Engine)
Wagied Davids

Problem
Game design and programming using the AndEngine game framework

510 | Chapter 12: Gaming and Animation

http://flixel.org/index.html
http://code.google.com/p/flixel-android/
http://code.google.com/p/flixel-android/
http://www.filefactory.com/file/cc0a426/n/SimpleJumper.zip
http://www.filefactory.com/file/cc0a426/n/SimpleJumper.zip

Solution
Example 12-4.

import org.anddev.andengine.engine.Engine;
import org.anddev.andengine.engine.camera.Camera;
import org.anddev.andengine.engine.options.EngineOptions;
import org.anddev.andengine.engine.options.EngineOptions.ScreenOrientation;
import org.anddev.andengine.engine.options.resolutionpolicy.RatioResolutionPolicy;
import org.anddev.andengine.entity.Entity;
import org.anddev.andengine.entity.primitive.Rectangle;
import org.anddev.andengine.entity.scene.Scene;
import org.anddev.andengine.entity.scene.Scene.IOnAreaTouchListener;
import org.anddev.andengine.entity.scene.Scene.IOnSceneTouchListener;
import org.anddev.andengine.entity.scene.Scene.ITouchArea;
import org.anddev.andengine.entity.shape.Shape;
import org.anddev.andengine.entity.sprite.AnimatedSprite;
import org.anddev.andengine.entity.sprite.Sprite;
import org.anddev.andengine.entity.util.FPSLogger;
import org.anddev.andengine.extension.physics.box2d.PhysicsConnector;
import org.anddev.andengine.extension.physics.box2d.PhysicsFactory;
import org.anddev.andengine.extension.physics.box2d.PhysicsWorld;
import org.anddev.andengine.extension.physics.box2d.util.Vector2Pool;
import org.anddev.andengine.input.touch.TouchEvent;
import org.anddev.andengine.opengl.texture.Texture;
import org.anddev.andengine.opengl.texture.TextureOptions;
import org.anddev.andengine.opengl.texture.region.TextureRegion;
import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;
import org.anddev.andengine.opengl.texture.region.TiledTextureRegion;
import org.anddev.andengine.sensor.accelerometer.AccelerometerData;
import org.anddev.andengine.sensor.accelerometer.IAccelerometerListener;
import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.hardware.SensorManager;
import android.util.DisplayMetrics;

import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.physics.box2d.Body;
import com.badlogic.gdx.physics.box2d.BodyDef.BodyType;
import com.badlogic.gdx.physics.box2d.FixtureDef;

public class SimplePool extends BaseGameActivity implements IAccelerometerListener, IOnSceneTouchListener, IOnAreaTouchListener
 {

 private Camera mCamera;
 private Texture mTexture;
 private Texture mBallYellowTexture;
 private Texture mBallRedTexture;
 private Texture mBallBlackTexture;
 private Texture mBallBlueTexture;
 private Texture mBallGreenTexture;
 private Texture mBallOrangeTexture;
 private Texture mBallPinkTexture;
 private Texture mBallPurpleTexture;
 private Texture mBallWhiteTexture;

12.3 Introduction to Game Programming using AndEngine (Android-Engine) | 511

 private TiledTextureRegion mBallYellowTextureRegion;
 private TiledTextureRegion mBallRedTextureRegion;
 private TiledTextureRegion mBallBlackTextureRegion;
 private TiledTextureRegion mBallBlueTextureRegion;
 private TiledTextureRegion mBallGreenTextureRegion;
 private TiledTextureRegion mBallOrangeTextureRegion;
 private TiledTextureRegion mBallPinkTextureRegion;
 private TiledTextureRegion mBallPurpleTextureRegion;
 private TiledTextureRegion mBallWhiteTextureRegion;

 private Texture mBackgroundTexture;
 private TextureRegion mBackgroundTextureRegion;

 private PhysicsWorld mPhysicsWorld;

 private float mGravityX;
 private float mGravityY;
 private Scene mScene;

 private final int mFaceCount = 0;

 private final int CAMERA_WIDTH = 720;
 private final int CAMERA_HEIGHT = 480;

 @Override
 public Engine onLoadEngine()
 {
 DisplayMetrics dm = new DisplayMetrics();
 getWindowManager().getDefaultDisplay().getMetrics(dm);

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
 return new Engine(new EngineOptions(true, ScreenOrientation.LANDSCAPE, new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), this.mCamera));
 }

 @Override
 public void onLoadResources()
 {
 this.mTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlackTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlueTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallGreenTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallOrangeTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPinkTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPurpleTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallYellowTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallRedTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallWhiteTexture = new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 TextureRegionFactory.setAssetBasePath("gfx/");
 mBallYellowTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallYellowTexture, this, "ball_yellow.png", 0, 0, 1, 1); // 64x32
 mBallRedTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallRedTexture, this, "ball_red.png", 0, 0, 1, 1); // 64x32
 mBallBlackTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallBlackTexture, this, "ball_black.png", 0, 0, 1, 1); // 64x32
 mBallBlueTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallBlueTexture, this, "ball_blue.png", 0, 0, 1, 1); // 64x32
 mBallGreenTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallGreenTexture, this, "ball_green.png", 0, 0, 1, 1); // 64x32

512 | Chapter 12: Gaming and Animation

 mBallOrangeTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallOrangeTexture, this, "ball_orange.png", 0, 0, 1, 1); // 64x32
 mBallPinkTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallPinkTexture, this, "ball_pink.png", 0, 0, 1, 1); // 64x32
 mBallPurpleTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallPurpleTexture, this, "ball_purple.png", 0, 0, 1, 1); // 64x32
 mBallWhiteTextureRegion = TextureRegionFactory.createTiledFromAsset(this.mBallWhiteTexture, this, "ball_white.png", 0, 0, 1, 1); // 64x32

 this.mBackgroundTexture = new Texture(512, 1024, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBackgroundTextureRegion = TextureRegionFactory.createFromAsset(this.mBackgroundTexture, this, "table_bkg.png", 0, 0);

 this.enableAccelerometerSensor(this);

 this.mEngine.getTextureManager().loadTextures(this.mBackgroundTexture, mBallYellowTexture, mBallRedTexture, mBallBlackTexture, mBallBlueTexture, mBallGreenTexture, mBallOrangeTexture, mBallPinkTexture, mBallPurpleTexture);
 }

 @Override
 public Scene onLoadScene()
 {
 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.mPhysicsWorld = new PhysicsWorld(new Vector2(0, SensorManager.GRAVITY_EARTH), false);

 this.mScene = new Scene();
 this.mScene.attachChild(new Entity());

 this.mScene.setBackgroundEnabled(false);
 this.mScene.setOnSceneTouchListener(this);
 Sprite backgrund = new Sprite(0, 0, this.mBackgroundTextureRegion);
 backgrund.setWidth(CAMERA_WIDTH);
 backgrund.setHeight(CAMERA_HEIGHT);
 backgrund.setPosition(0, 0);
 this.mScene.getChild(0).attachChild(backgrund);

 final Shape ground = new Rectangle(0, CAMERA_HEIGHT, CAMERA_WIDTH, 0);
 final Shape roof = new Rectangle(0, 0, CAMERA_WIDTH, 0);
 final Shape left = new Rectangle(0, 0, 0, CAMERA_HEIGHT);
 final Shape right = new Rectangle(CAMERA_WIDTH, 0, 0, CAMERA_HEIGHT);

 final FixtureDef wallFixtureDef = PhysicsFactory.createFixtureDef(0, 0.5f, 0.5f);
 PhysicsFactory.createBoxBody(this.mPhysicsWorld, ground, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(this.mPhysicsWorld, roof, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(this.mPhysicsWorld, left, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(this.mPhysicsWorld, right, BodyType.StaticBody, wallFixtureDef);

 this.mScene.attachChild(ground);
 this.mScene.attachChild(roof);
 this.mScene.attachChild(left);
 this.mScene.attachChild(right);

 this.mScene.registerUpdateHandler(this.mPhysicsWorld);
 this.mScene.setOnAreaTouchListener(this);

 return this.mScene;
 }

 @Override
 public void onLoadComplete()

12.3 Introduction to Game Programming using AndEngine (Android-Engine) | 513

 {
 setupBalls();

 }

 @Override
 public boolean onAreaTouched(final TouchEvent pSceneTouchEvent, final ITouchArea pTouchArea, final float pTouchAreaLocalX, final float pTouchAreaLocalY)
 {
 if (pSceneTouchEvent.isActionDown())
 {
 final AnimatedSprite face = (AnimatedSprite) pTouchArea;
 this.jumpFace(face);
 return true;
 }

 return false;
 }

 @Override
 public boolean onSceneTouchEvent(final Scene pScene, final TouchEvent pSceneTouchEvent)
 {
 if (this.mPhysicsWorld != null)
 {
 if (pSceneTouchEvent.isActionDown())
 {
 // this.addFace(pSceneTouchEvent.getX(),
 // pSceneTouchEvent.getY());
 return true;
 }
 }
 return false;
 }

 @Override
 public void onAccelerometerChanged(final AccelerometerData pAccelerometerData)
 {
 this.mGravityX = pAccelerometerData.getX();
 this.mGravityY = pAccelerometerData.getY();

 final Vector2 gravity = Vector2Pool.obtain(this.mGravityX, this.mGravityY);
 this.mPhysicsWorld.setGravity(gravity);
 Vector2Pool.recycle(gravity);
 }

 private void setupBalls()
 {
 final AnimatedSprite[] balls = new AnimatedSprite[9];

 final FixtureDef objectFixtureDef = PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f);

 AnimatedSprite redBall = new AnimatedSprite(10, 10, this.mBallRedTextureRegion);
 AnimatedSprite yellowBall = new AnimatedSprite(20, 20, this.mBallYellowTextureRegion);
 AnimatedSprite blueBall = new AnimatedSprite(30, 30, this.mBallBlueTextureRegion);
 AnimatedSprite greenBall = new AnimatedSprite(40, 40, this.mBallGreenTextureRegion);
 AnimatedSprite orangeBall = new AnimatedSprite(50, 50, this.mBallOrangeTextureRegion);

514 | Chapter 12: Gaming and Animation

 AnimatedSprite pinkBall = new AnimatedSprite(60, 60, this.mBallPinkTextureRegion);
 AnimatedSprite purpleBall = new AnimatedSprite(70, 70, this.mBallPurpleTextureRegion);
 AnimatedSprite blackBall = new AnimatedSprite(70, 70, this.mBallBlackTextureRegion);
 AnimatedSprite whiteBall = new AnimatedSprite(70, 70, this.mBallWhiteTextureRegion);

 balls[0] = redBall;
 balls[1] = yellowBall;
 balls[2] = blueBall;
 balls[3] = greenBall;
 balls[4] = orangeBall;
 balls[5] = pinkBall;
 balls[6] = purpleBall;
 balls[7] = blackBall;
 balls[8] = whiteBall;

 for (int i = 0; i < 9; i++)
 {
 Body body = PhysicsFactory.createBoxBody(this.mPhysicsWorld, balls[i], BodyType.DynamicBody, objectFixtureDef);
 this.mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(balls[i], body, true, true));

 balls[i].animate(new long[] { 200, 200 }, 0, 1, true);
 balls[i].setUserData(body);
 this.mScene.registerTouchArea(balls[i]);
 this.mScene.attachChild(balls[i]);
 }
 }

 private void jumpFace(final AnimatedSprite face)
 {
 final Body faceBody = (Body) face.getUserData();

 final Vector2 velocity = Vector2Pool.obtain(this.mGravityX * -50, this.mGravityY * -50);
 faceBody.setLinearVelocity(velocity);
 Vector2Pool.recycle(velocity);
 }
 }

Discussion
AndEngine is a game engine framework (http://www.andengine.org/) designed for
producing games on Android. Originally developed by Nicholas Gramlich, it has some
advanced features for producing awesome games.

In this example, I have designed a simple pool game with physics capabilities, such that
effects of the accelerometer are taken into account but also touch events. When touch-
ing a specific billiard ball, and pulling down on it will cause it to shoot into other balls,
with the collision detection taken care of.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.file
factory.com/file/cc0a5b1/n/SimplePool.zip

12.3 Introduction to Game Programming using AndEngine (Android-Engine) | 515

http://www.filefactory.com/file/cc0a5b1/n/SimplePool.zip
http://www.filefactory.com/file/cc0a5b1/n/SimplePool.zip

CHAPTER 13

Social Networking

13.1 Facebook Integration
Wagied Davids

Problem
Integrate an Android application with Facebook

Solution
Steps involved:

1. Apply for a Facebook Application ID (APP_ID)

2. Include the Facebook APP_ID in your Android Application

Example 13-1.

Facebook mFacebook = new Facebook(getResources().getString(R.string.FACEBOOK_ID_TEST));

3. Make a call to Facebook for single-sign on authorization

4. In your onActivityResult() function

Example 13-2.

@Override
 public void onActivityResult(int requestCode, int resultCode, Intent data)
 {
 super.onActivityResult(requestCode, resultCode, data);
 mFacebook.authorizeCallback(requestCode, resultCode, data);
 }

That's the basics (full code available in zipped Android-project).

Essential URLs: Facebook mobile: http://developers.facebook.com/docs/guides/mo-
bile/ Facebook Android Developers site: https://github.com/facebook/facebook-an-
droid-sdk

517

Discussion
File: facebook_login.xml

Example 13-3.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent" android:background="@color/white"
 android:gravity="center_horizontal">

 <com.facebook.android.LoginButton
 android:id="@+id/login" android:src="@drawable/login_button"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_margin="30dp" />

 <TextView android:id="@+id/txt" android:text="@string/hello"
 android:textColor="@color/black" android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <Button android:id="@+id/uploadButton" android:text="@string/FACEBOOK_UPLOAD"
 android:visibility="invisible" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:paddingRight="20dp"
 android:paddingLeft="20dp" android:layout_margin="20dp" />

 <Button android:id="@+id/requestButton" android:text="@string/REQUEST"
 android:visibility="invisible" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:paddingRight="20dp"
 android:paddingLeft="20dp" android:layout_margin="20dp" />

 <Button android:id="@+id/postButton" android:text="@string/FACEBOOK_WALL_POST"
 android:visibility="invisible" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:paddingRight="20dp"
 android:paddingLeft="20dp" android:layout_margin="20dp" />

 <Button android:id="@+id/deletePostButton" android:text="@string/FACEBOOK_DELETE_POST"
 android:visibility="invisible" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:paddingRight="20dp"
 android:paddingLeft="20dp" android:layout_margin="20dp" />

</LinearLayout>

File: Main.java

Example 13-4.

package com.facebook.android;

import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;

518 | Chapter 13: Social Networking

import java.net.URL;

import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

import com.facebook.android.Facebook.DialogListener;
import com.facebook.android.SessionEvents.AuthListener;
import com.facebook.android.SessionEvents.LogoutListener;

public class Main extends Activity implements OnClickListener
 {
 private static final String tag = "Main";
 private LoginButton mLoginButton;
 private TextView mText;
 private Button mRequestButton;
 private Button mPostButton;
 private Button mDeleteButton;
 private Button mUploadButton;

 private Facebook mFacebook;
 private AsyncFacebookRunner mAsyncRunner;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 Log.d(tag, getResources().getString(R.string.CREATING_VIEW));
 mFacebook = new Facebook(getResources().getString(R.string.FACEBOOK_ID_TEST));
 setContentView(R.layout.facebook_login_view);

 mLoginButton = (LoginButton) this.findViewById(R.id.login);
 mText = (TextView) Main.this.findViewById(R.id.txt);
 mRequestButton = (Button) findViewById(R.id.requestButton);
 mPostButton = (Button) findViewById(R.id.postButton);
 mDeleteButton = (Button) findViewById(R.id.deletePostButton);
 mUploadButton = (Button) findViewById(R.id.uploadButton);

 mFacebook.authorize(this, new DialogListener()
 {
 @Override
 public void onComplete(Bundle values)
 {
 }

 @Override
 public void onFacebookError(FacebookError error)

13.1 Facebook Integration | 519

 {
 }

 @Override
 public void onError(DialogError e)
 {
 }

 @Override
 public void onCancel()
 {
 }
 });

 //
 mAsyncRunner = new AsyncFacebookRunner(mFacebook);

 SessionStore.restore(mFacebook, this);
 SessionEvents.addAuthListener(new SampleAuthListener());
 SessionEvents.addLogoutListener(new SampleLogoutListener());
 mLoginButton.init(this, mFacebook);

 mRequestButton.setOnClickListener(this);

 mRequestButton.setVisibility(mFacebook.isSessionValid() ? View.VISIBLE : View.INVISIBLE);

 mUploadButton.setOnClickListener(this);

 mUploadButton.setVisibility(mFacebook.isSessionValid() ? View.VISIBLE : View.INVISIBLE);

 mPostButton.setOnClickListener(this);

 mPostButton.setVisibility(mFacebook.isSessionValid() ? View.VISIBLE : View.INVISIBLE);

 }
 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data)
 {
 super.onActivityResult(requestCode, resultCode, data);
 mFacebook.authorizeCallback(requestCode, resultCode, data);
 }

 //
 public class SampleAuthListener implements AuthListener
 {

 @Override
 public void onAuthSucceed()
 {
 mText.setText("You have logged in! ");
 mRequestButton.setVisibility(View.VISIBLE);
 mUploadButton.setVisibility(View.VISIBLE);
 mPostButton.setVisibility(View.VISIBLE);
 }

520 | Chapter 13: Social Networking

 @Override
 public void onAuthFail(String error)
 {
 mText.setText("Login Failed: " + error);
 }
 }

 public class SampleLogoutListener implements LogoutListener
 {
 @Override
 public void onLogoutBegin()
 {
 mText.setText("Logging out...");
 }

 @Override
 public void onLogoutFinish()
 {
 mText.setText("You have logged out! ");
 mRequestButton.setVisibility(View.INVISIBLE);
 mUploadButton.setVisibility(View.INVISIBLE);
 mPostButton.setVisibility(View.INVISIBLE);
 }
 }

 public class SampleRequestListener extends BaseRequestListener
 {

 @Override
 public void onComplete(final String response, final Object state)
 {
 try
 {
 // process the response here: executed in background thread
 Log.d("Facebook-Example", "Response: " + response.toString());
 JSONObject json = Util.parseJson(response);
 final String name = json.getString("name");

 // then post the processed result back to the UI thread
 // if we do not do this, an runtime exception will be generated
 // e.g. "CalledFromWrongThreadException: Only the original
 // thread that created a view hierarchy can touch its views."
 Main.this.runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 mText.setText("Hello there, " + name + "!");
 }
 });
 }
 catch (JSONException e)
 {
 Log.w("Facebook-Example", "JSON Error in response");
 }

13.1 Facebook Integration | 521

 catch (FacebookError e)
 {
 Log.w("Facebook-Example", "Facebook Error: " + e.getMessage());
 }
 }
 }

 public class SampleUploadListener extends BaseRequestListener
 {

 @Override
 public void onComplete(final String response, final Object state)
 {
 try
 {
 // process the response here: (executed in background thread)
 Log.d("Facebook-Example", "Response: " + response.toString());
 JSONObject json = Util.parseJson(response);
 final String src = json.getString("src");

 // then post the processed result back to the UI thread
 // if we do not do this, an runtime exception will be generated
 // e.g. "CalledFromWrongThreadException: Only the original
 // thread that created a view hierarchy can touch its views."
 Main.this.runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 mText.setText("Hello there, photo has been uploaded at \n" + src);
 }
 });
 }
 catch (JSONException e)
 {
 Log.w("Facebook-Example", "JSON Error in response");
 }
 catch (FacebookError e)
 {
 Log.w("Facebook-Example", "Facebook Error: " + e.getMessage());
 }
 }
 }

 public class WallPostRequestListener extends BaseRequestListener
 {

 @Override
 public void onComplete(final String response, final Object state)
 {
 Log.d("Facebook-Example", "Got response: " + response);
 String message = "<empty>";
 try
 {
 JSONObject json = Util.parseJson(response);

522 | Chapter 13: Social Networking

 message = json.getString("message");
 }
 catch (JSONException e)
 {
 Log.w("Facebook-Example", "JSON Error in response");
 }
 catch (FacebookError e)
 {
 Log.w("Facebook-Example", "Facebook Error: " + e.getMessage());
 }
 final String text = "Your Wall Post: " + message;
 Main.this.runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 mText.setText(text);
 }
 });
 }
 }

 public class WallPostDeleteListener extends BaseRequestListener
 {

 @Override
 public void onComplete(final String response, final Object state)
 {
 if (response.equals("true"))
 {
 Log.d("Facebook-Example", "Successfully deleted wall post");
 Main.this.runOnUiThread(new Runnable()
 {
 @Override
 public void run()
 {
 mDeleteButton.setVisibility(View.INVISIBLE);
 mText.setText("Deleted Wall Post");
 }
 });
 }
 else
 {
 Log.d("Facebook-Example", "Could not delete wall post");
 }
 }
 }

 public class SampleDialogListener extends BaseDialogListener
 {

 @Override
 public void onComplete(Bundle values)
 {
 final String postId = values.getString("post_id");

13.1 Facebook Integration | 523

 if (postId != null)
 {
 Log.d("Facebook-Example", "Dialog Success! post_id=" + postId);
 mAsyncRunner.request(postId, new WallPostRequestListener());
 mDeleteButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 mAsyncRunner.request(postId, new Bundle(), "DELETE", new WallPostDeleteListener(), null);
 }
 });
 mDeleteButton.setVisibility(View.VISIBLE);
 }
 else
 {
 Log.d("Facebook-Example", "No wall post made");
 }
 }
 }

 /*
 * (non-Javadoc)
 *
 * @see android.view.View.OnClickListener#onClick(android.view.View)
 */
 @Override
 public void onClick(View v)
 {

 if (v == mLoginButton)
 {

 }

 if (v == mRequestButton)
 {
 mAsyncRunner.request("me", new SampleRequestListener());
 }

 if (v == mUploadButton)
 {
 Bundle params = new Bundle();
 params.putString("method", "photos.upload");

 URL uploadFileUrl = null;
 try
 {
 uploadFileUrl = new URL("http://www.facebook.com/images/devsite/iphone_connect_btn.jpg");
 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 try

524 | Chapter 13: Social Networking

 {
 HttpURLConnection conn = (HttpURLConnection) uploadFileUrl.openConnection();
 conn.setDoInput(true);
 conn.connect();
 int length = conn.getContentLength();

 byte[] imgData = new byte[length];
 InputStream is = conn.getInputStream();
 is.read(imgData);
 params.putByteArray("picture", imgData);

 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 mAsyncRunner.request(null, params, "POST", new SampleUploadListener(), null);
 }

 if (v == mPostButton)
 {
 mFacebook.dialog(Main.this, "feed", new SampleDialogListener());
 }
 if (v == mDeleteButton)
 {

 }
 }
 }

Binary Download URL
The executable code for this example may be downloaded from this URL: http://www
.filefactory.com/file/cbd661e/n/Facebook-Example.zip

13.2 Social Networking Integration using Http
Shraddha Shravagi

Problem
Instead of diving into the API you can simply add Social networking support.

Solution
For Facebook, Twitter and LinkedIn integration, just follow 3 simple steps to get star-
ted:

1. Get the logo's for Facebook, Twitter and Linked-in

2. Create image buttons for each of them

13.2 Social Networking Integration using Http | 525

http://www.filefactory.com/file/cbd661e/n/Facebook-Example.zip
http://www.filefactory.com/file/cbd661e/n/Facebook-Example.zip

3. Implement the event handler

Discussion
Here goes the detailed explanation:

1. Get the logo:

Just download the logo from the site, or use a web search engine.

2. Create image buttons for each of them

Example 13-5.

 <!-- Facebook button -->
 <ImageView android:src="@drawable/icon_facebook"
 android:layout_width="28dip"
 android:layout_height="28dip" android:id="@+id/facebookBtn"
 android:clickable="true"
 android:onClick="facebookBtnClicked" />

 <!-- Twitter button -->
 <ImageView android:src="@drawable/icon_twitter"
 android:clickable="true"
 android:layout_width="30dip" android:layout_height="28dip" android:id="@+id/twitterBtn"
 android:layout_marginLeft="3dp" android:layout_marginRight="3dp"
 android:onClick="twitterBtnClicked"
 />

 <!-- Linkedin button -->
 <ImageView android:src="@drawable/icon_linkedin"
 android:layout_width="28dip"
 android:layout_height="30dip" android:clickable="true"
 android:id="@+id/linkedinBtn"
 android:onClick="linkedinBtnClicked"
 />

3. Implement the click event

Example 13-6.

/*URL used here is for application to which I want user to redirect and comment about here I am
 * using http://goo.gl/eRAD9 as the URL. But you can use URL of your app. Take the URL from Market
 * and shorten the URL with bit.ly or Google URL shortener
 * */

 public void facebookBtnClicked(View v)
 {
 Toast.makeText(this, "Facebook Loading...\n Please make sure you are connected to internet.", Toast.LENGTH_SHORT).show();
 String url="http://m.facebook.com/sharer.php?u=http%3A%2F%2Fgoo.gl%2FeRAD9";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
 }

526 | Chapter 13: Social Networking

Figure 13-1.

13.2 Social Networking Integration using Http | 527

 public void twitterBtnClicked(View v)
 {
 Toast.makeText(this, "Twitter Loading... \n Please make sure you are connected to internet.", Toast.LENGTH_SHORT).show();
 /**/
 String url = "http://www.twitter.com/share?text=Checkout+This+Demo+http://goo.gl/eRAD9+";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
 }
 public void linkedinBtnClicked(View v)
 {
 Toast.makeText(this, "Linked-In Loading... \n Please make sure you are connected to internet", Toast.LENGTH_SHORT).show();
 String url="http://www.linkedin.com/shareArticle?url=http%3A%2F%2Fgoo.gl%2FeRAD9&mini=true&source=SampleApp&title=App+on+your+mobile";
 Intent intent=new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(url));
 startActivity(intent);
 }

This is how in 3 simple steps you can get a Social Networking feature for your appli-
cation.

13.3 Loading a user's Twitter timeline (using JSON)
Rachee Singh

Problem
You want to load the Twitter timeline of a user in an Android application.

Solution
Since timeline information is public, you don't need to deal with Twitter's authentica-
tion. You can just use HttpGet to obtain the data from the user's Twitter page in JSON
format. Then, the JSON can be processed to obtain the tweets by the user.

Discussion
HttpGet is used to obtain data from the twitter page of the Times of India (a newspaper).
From the response obtained after executing the request contains data from the twitter
page in JSON format. We check for the status code and unless the code is 200, the
request could not fetch the data. From the response we obtain the JSON and put it into
the StringBuilder object. The getTwitterTimeline() method returns the String that con-
tains the data in JSON format.

Example 13-7.

public String getTwitterTimeline() {
 StringBuilder builder = new StringBuilder();
 HttpClient client = new DefaultHttpClient();
 HttpGet httpGet = new HttpGet("http://twitter.com/statuses/user_timeline/timesofindia.json");

528 | Chapter 13: Social Networking

 try {
 HttpResponse response = client.execute(httpGet);
 StatusLine statusLine = response.getStatusLine();
 int statusCode = statusLine.getStatusCode();
 if (statusCode == 200) {
 HttpEntity entity = response.getEntity();
 InputStream content = entity.getContent();
 BufferedReader reader = new BufferedReader(new InputStreamReader(content));
 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 } else {
 //Couldn't obtain the data
 }
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return builder.toString();
 }
}

Now we process the JSON returned from the getTwitterTimeline() method in the
standard way, using the getString() method. These we insert into a TextView.

Example 13-8.

String twitterTimeline = getTwitterTimeline();
 try {
 String tweets = "";
 JSONArray jsonArray = new JSONArray(twitterTimeline);
 for (int i = 0; i < jsonArray.length(); i++) {
 JSONObject jsonObject = jsonArray.getJSONObject(i);
 int j = i+1;
 tweets +="*** " + j + " ***\n";
 tweets += "Date:" + jsonObject.getString("created_at") + "\n";
 tweets += "Post:" + jsonObject.getString("text") + "\n\n";
 }
 json= (TextView)findViewById(R.id.json);
 json.setText(tweets);
 } catch (JSONException e) {
 e.printStackTrace();
 }

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LZDE3MzIxNmYtM
DU3Yy00OTZjLTk2NTgtMDBiNTZiYjdlYzlm&hl=en_US

13.3 Loading a user's Twitter timeline (using JSON) | 529

https://docs.google.com/leaf?id=0B_rESQKgad5LZDE3MzIxNmYtMDU3Yy00OTZjLTk2NTgtMDBiNTZiYjdlYzlm&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZDE3MzIxNmYtMDU3Yy00OTZjLTk2NTgtMDBiNTZiYjdlYzlm&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZDE3MzIxNmYtMDU3Yy00OTZjLTk2NTgtMDBiNTZiYjdlYzlm&hl=en_US

Figure 13-2.

530 | Chapter 13: Social Networking

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZGYyNmYwYjktYjQwNS00NjYwLTg1MTktO
GY2ZGQ3ODZlYjZj&hl=en_US

13.3 Loading a user's Twitter timeline (using JSON) | 531

https://docs.google.com/leaf?id=0B_rESQKgad5LZGYyNmYwYjktYjQwNS00NjYwLTg1MTktOGY2ZGQ3ODZlYjZj&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZGYyNmYwYjktYjQwNS00NjYwLTg1MTktOGY2ZGQ3ODZlYjZj&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZGYyNmYwYjktYjQwNS00NjYwLTg1MTktOGY2ZGQ3ODZlYjZj&hl=en_US

CHAPTER 14

Location and Map Applications

14.1 Introduction: Location-Aware Applications
Ian Darwin

Discussion
Not that long ago, GPS devices were either unavailable, expensive, or cumbersome.
Today, almost every smartphone has a GPS receiver, and many digital cameras do too.
GPS is well on its way to becoming truly ubiquitous in devices. The organizations that
provide map data have not been unaware of this trend. Indeed, OpenStreetMap exists
and provides its "free, editable map of the world" in part because of the rise of consumer
GPS devices - most of its map was made by enthusiasts. Google gets much of its data
from commercial mapping services, but in Android, Google has been very driven by
the availability of GPS receivers in Android devices. This chapter thus concentrates on
the ins and outs of using Google Maps and OpenStreetmap in Android devices.

14.2 Getting Location Information
Ian Darwin

Problem
You want to know where you are.

Solution
Android provides two levels of locational position. If you need to know fairly precisely
where you are, you can use the "FINE" resolution, which is GPS-based. If you only need
to know roughly where you are, you can use the "COARSE" resolution, which is based
on the location of the cell phone tower your phone is talking to.

533

http://openstreetmap.org/

Discussion
Here is the setup portion of the code. This is part of jpstrack, a mapping application
for OpenStreetMap. For mapping purpose the GPS is a must, so I only ask for the FINE
resolution.

Example 14-1.

 // Part of jpstrack Main.java
 LocationManager mgr =
 (LocationManager) getSystemService(LOCATION_SERVICE);
 for (String prov : mgr.getAllProviders()) {
 Log.i(LOG_TAG, getString(R.string.provider_found) + prov);
 }

 // GPS setup
 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 List<String> providers = mgr.getProviders(criteria, true);
 if (providers == null || providers.size() == 0) {
 Log.e(JPSTRACK, getString(R.string.cannot_get_gps_service));
 Toast.makeText(this, "Could not open GPS service",
 Toast.LENGTH_LONG).show();
 return;
 }
 String preferred = providers.get(0); // first == preferred

After this setup, when you actually want to start the GPS sending you location data,
you have to call the LocationManager.requestLocationUpdates with the name of the
provider you looked up previously, the minimum time between updates (in millisec-
onds), the minimum distance between updates (in meters), and an instance of the
LocationListener interface. You stop updates by removeUpdates with the previously-
passed-in LocationListener. In jpstrack the code looks like this:

Example 14-2.

 @Override
 protected void onResume() {
 super.onResume();
 if (preferred != null) {
 mgr.requestLocationUpdates(preferred,
 MIN_SECONDS * 1000,
 MIN_METRES, this);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if (preferred != null) {
 mgr.removeUpdates(this);
 }
 }

534 | Chapter 14: Location and Map Applications

http://www.darwinsys.com/jpstrack/
http://www.openstreetmap.org/

Finally, the LocationListener's onLocationChanged() method is called when the location
changes, and this is where you do something with the location information.

Example 14-3.

 @Override
 public void onLocationChanged(Location location) {
 long time = location.getTime();
 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 // do something with latitude and longitude (and time?)...
 }

There are a few other methods in LocationListener but they aren't required to do any-
thing.

What you do with the location data depends on your application, of course. In jpstrack
I save it into a track file with hand-written XML-writing code. Commonly you would
use it to update your position on a map, or upload it to a location service. There's no
limit to what you can do with it.

Source Download URL
The source code for this example may be downloaded from this URL: http://www.dar
winsys.com/jpstrack/

Binary Download URL
The executable code for this example may be downloaded from this URL: http://www
.darwinsys.com/jpstrack/jpstrack.android.apk

14.3 Access GPS information anywhere in your application
Pratik Rupwal

Problem
You need access the GPS location in any class of your application.

Solution
Add a class (say 'MyLocationListener') which implements 'LocationListener' interface.
create an instance of this class where you want to access the GPS information and use
it for the relevant requirement.

Discussion
Below class 'MyLocationListener' implements 'LocationListener'

14.3 Access GPS information anywhere in your application | 535

http://www.darwinsys.com/jpstrack/
http://www.darwinsys.com/jpstrack/
http://www.darwinsys.com/jpstrack/jpstrack.android.apk
http://www.darwinsys.com/jpstrack/jpstrack.android.apk

Example 14-4.

public class MyLocationListener implements LocationListener
 {

 @Override
 public void onLocationChanged(Location loc)
 {
 loc.getLatitude();
 loc.getLongitude();
 /** The above 'Location' object 'loc' can be used for accessing GPS information, however it is not always possible
 in an application to perform all the GPS information related tasks in this overridden method due to reasons like
 data accessiblity.
 for example in an application providing the information of shopping malls near the user's current location,
 so app accesses the names of malls according to the user's location and displays them to user,on choosing one of them
 app displays the different offers given by that mall.
 In this example the location of the user decides the mall's name to be fetched from database through a
 database handler which is private member of the class hosting the view to display list of mall,hence that database
 handler can't be accessible in this overridden method hence this operation cannot be carried out.*/
 }

 @Override
 public void onProviderDisabled(String provider)
 {

 }
 @Override
 public void onProviderEnabled(String provider)
 {

 }
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
 {

 }
 }// End of Class MyLocationListener.

Add the above class file in package of your application, its instance can be used as below
for accessing GPS information in any class.

Example 14-5.

public class AccessGPS extends Activity
{
//declaration of required objects

LocationManager mlocManager;
LocationListener mlocListener;
Location lastKnownLocation;
Double latitude,longitude;
......
......

protected void onCreate(Bundle savedInstanceState)

536 | Chapter 14: Location and Map Applications

{

//instantiating objects for accessing GPS information.

mlocListener = new MyLocationListener();

//reuest for location updates

mlocManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, mlocListener);
locationProvider=LocationManager.GPS_PROVIDER;
.......
.......

// Access the last identified location

lastKnownLocation = mlocManager.getLastKnownLocation(locationProvider);

// The above object can be used for accessing GPS data as below

latitude=lastKnownLocation.getLatitude();
longitude=lastKnownLocation.getLongitude();

// The above GPS data can be used for carrying out the operations specific to the location.
.......
.......

}
}

14.4 Mocking GPS Coordinates On A Device
Emaad Manzoor

Problem
You need to demonstrate your application, but are scared it might choke trying to
triangulate your GPS coordinates. Or you'd like to simulate being in a place you're not.

Solution
Attach a mock location provider to your LocationManager object, then attach mock
coordinates to the mock location provider.

Discussion

Write The setMockLocation Method

This function is what you will eventually use in your application to set mock GPS
coordinates on the device.

14.4 Mocking GPS Coordinates On A Device | 537

Example 14-6.

private void setMockLocation(double latitude, double longitude, float accuracy) {
 lm.addTestProvider (LocationManager.GPS_PROVIDER,
 "requiresNetwork" == "",
 "requiresSatellite" == "",
 "requiresCell" == "",
 "hasMonetaryCost" == "",
 "supportsAltitude" == "",
 "supportsSpeed" == "",
 "supportsBearing" == "",
 android.location.Criteria.POWER_LOW,
 android.location.Criteria.ACCURACY_FINE);

 Location newLocation = new Location(LocationManager.GPS_PROVIDER);

 newLocation.setLatitude(latitude);
 newLocation.setLongitude(longitude);
 newLocation.setAccuracy(accuracy);

 lm.setTestProviderEnabled(LocationManager.GPS_PROVIDER, true);

 lm.setTestProviderStatus(LocationManager.GPS_PROVIDER,
 LocationProvider.AVAILABLE,
 null,System.currentTimeMillis());

 lm.setTestProviderLocation(LocationManager.GPS_PROVIDER, newLocation);

}

Add a mock provider to the LocationManager lm: The addTest-
Provider method of the LocationManager class enables the creation and configuration
of a mock location provider.

Create a new location: The Location object allows you to set its Latitude, Longitude
and Accuracy.

Activate the mock provider: Set a mock enabled value for the LocationManager, set
a mock status and then set a mock location.

Use The setMockLocation Method

To use the method, you must create a LocationManager object as you usually would,
and then invoke the method with your coordinates.

Example 14-7.

LocationManager lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE);

lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, new LocationListener() {
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {}
 @Override
 public void onProviderEnabled(String provider) {}

What's Happening?

538 | Chapter 14: Location and Map Applications

http://developer.android.com/reference/android/location/LocationManager.html#addTestProvider(java.lang.String,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20int,%20int)
http://developer.android.com/reference/android/location/LocationManager.html#addTestProvider(java.lang.String,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20boolean,%20int,%20int)
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/location/Location.html
http://developer.android.com/reference/android/location/Location.html#setLatitude(double)
http://developer.android.com/reference/android/location/Location.html#setLongitude(double)
http://developer.android.com/reference/android/location/Location.html#setAccuracy(float)
http://developer.android.com/reference/android/location/LocationManager.html#setTestProviderEnabled(java.lang.String,%20boolean)
http://developer.android.com/reference/android/location/LocationManager.html#setTestProviderStatus(java.lang.String,%20int,%20android.os.Bundle,%20long)
http://developer.android.com/reference/android/location/LocationManager.html#setTestProviderLocation(java.lang.String,%20android.location.Location)

 @Override
 public void onProviderDisabled(String provider) {}
 @Override
 public void onLocationChanged(Location location) {}
});

/* Set a mock location for debugging purposes */
setMockLocation(15.387653, 73.872585, 500);

Note: You may need to restart the device after using the mock GPS to re-enable
the real device GPS

Example Application Usage

Find Me X: This Android application takes in a search query of the form "churches in
Vasco Goa" (place_type in locality city) and returns results augmented with their dis-
tance from the user. The location in this application is mocked to be BITS - Pilani Goa
Campus, Goa, India.

See Also
Recipe 14.2

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/emaadmanzoor/findmex

14.5 Geocoding and Reverse Geocoding
Nidhin Jose Davis

Problem
How to Geocode and Reverse Geocode on Android

Solution
The solution is to use Geocoder class.

Discussion
Geocoding is the process of finding the geographical coordinates (latitude and longi-
tude) of given address or location.

Reverse Geocoding as you might have guessed is the opposite if Geocoding. In this case
a pair of latitude and longitude is converted into an address or location.

14.5 Geocoding and Reverse Geocoding | 539

https://github.com/emaadmanzoor/findmex
https://github.com/emaadmanzoor/findmex
https://github.com/emaadmanzoor/findmex

In order to Geocode or Reverse Geocode the first thing to do is to import the proper
package.

Example 14-8.

import android.location.Geocoder;

The Geocoding or Reverse Geocoding should not be done on the UI thread as it might
cause the system to display an Application Not Responding (ANR) dialog to the user.
So it has to done in separate thread.

To Geocode

Example 14-9.

Geocoder gc = new Geocoder(context);

if(gc.isPresent()){
 List<Address> list = gc.getFromLocationName("1600 Amphitheatre Parkway, Mountain View, CA", 1);

 Address address = list.get(0);

 double lat = address.getLatitude();
 double lng = address.getLongitude();
}

To Reverse Geocode

Example 14-10.

Geocoder gc = new Geocoder(context);

if(gc.isPresent()){
 List<Address> list = gc.getFromLocation(37.42279, -122.08506,1);

 Address address = list.get(0);

 StringBuffer str = new StringBuffer();
 str.append("Name: " + address.getLocality() + "\n");
 str.append("Sub-Admin Ares: " + address.getSubAdminArea() + "\n");
 str.append("Admin Area: " + address.getAdminArea() + "\n");
 str.append("Country: " + address.getCountryName() + "\n");
 str.append("Country Code: " + address.getCountryCode() + "\n");

 String strAddress = str.toString();
}

14.6 Getting ready for Google Maps development
Johan Pelgrim

540 | Chapter 14: Location and Map Applications

Problem
You want to get ready to include Google MapView layout elements in your Android app

Solution
Use the Google Maps API library, a MapView layout element and the MapActivity.

Discussion
Let's dig right in by creating an Android project which displays a default map

Setting up an AVD which makes use of the Google API SDK libraries.

When you create a new Android project you have to indicate which minimum SDK-
version your app needs and which SDK-version you target. Since we will be using the
Google Maps API we have to make sure we have an AVD with those libraries pre-
installed. If you don't work with Google Maps inside your project it is fine to work with
an AVD without the Google Maps APIs. In our case we are depenedent on them.

Make sure you have an AVD with a build target of "Google APIs - 1.5 - API level 3".

Create a new Android project which targets "Google APIs - 1.5 - API level 3"

Creating a MapTest project which targets the "Google APIs - 1.5 - API level 3" and uses
minSDKversion 3. Let the Android Project wizard create a MapTest activity for you.
Click finish.

The MapView element can only live inside a MapActivity, so make sure the MapTest ac-
tivity extends that class. A MapActivity must implement the isRouteDisplayed() meth-
od. This method is required for some accounting from the Maps service to see if you're
currently displaying any route information. In this example, we are not. We still have
to implement the method, but it's ok to simply return false for now. To be able to
zoom in the map we can set the build-in zoom controls to true by calling the setBuil
tInZoomControls method on the MapView object.

Example 14-11.

package nl.codestone.cookbook.maptest;

import android.os.Bundle;

import com.google.android.maps.MapActivity;

public class MapTest extends <tt>MapActivity</tt> {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

14.6 Getting ready for Google Maps development | 541

Figure 14-1.
542 | Chapter 14: Location and Map Applications

 MapView mapview = (MapView) findViewById(R.id.mapview);
 mapview.setBuiltInZoomControls(true);

 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

Adding the MapView element to your layout file

Open the res/layout/main.xml file. Delete the TextView element and replace it with a
MapView element

Example 14-12.

<com.google.android.maps.MapView
 android:id="@+id/mapview"

Figure 14-2.

14.6 Getting ready for Google Maps development | 543

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="your_api_key_here"
 android:clickable="true"
 />

Some highlights here

• The MapView is not part of the standard com.android.view package so we have to
include the full package name in this element.

• We have to set the android:clickable attribute to true to be able to drag the map
and zoom in and out.

• Your MapView object has to be configured with a personalized Google Maps API
key in a special attribute android:apiKey on the MapView definition. This key can be
obtained by registering your MD5 hash from the keystore you sign your apps with
(or the debug.keystore during your development cycle).

Registering the Google Maps API key

A full description on how to register a Google Maps API key is given here: http://
code.google.com/android/add-ons/google-apis/mapkey.html

This section extracts the minimal steps to get such a key. If you get stuck please refer
to the full description by Google.

Android applications have to be signed with a certificate. These certificates are kept in
a keystore. For your commercial apps you have to work with a private (self-signed)
certificate which is imported in a keystore. When you create and deploy Android ap-
plications in your development environment a debug.keystore is used to sign your ap-
plications. This debug keystore is located in a .android directory in your user-directory.
You need your private androiddebugkey key entry's fingerprint (MD5 hash) to register
for a Google Maps API key.

Open a command shell and change to the .android directory which is located in your
user directory (e.g. cd ~/.android in unix-like environments)

Issue the following command: keytool -list -alias androiddebugkey -keystore
debug.keystore -storepass android

You will be presented with something like this:

Example 14-13.

androiddebugkey, 29-mrt-2011, PrivateKeyEntry,
Certificate fingerprint (MD5): 2E:54:39:DB:33:E7:D6:3A:9E:18:3D:7F:FB:6D:BC:8D

Copy the bit after Certificate fingerprint (MD5): to your clipboard and go to this
page to signup for a Google Maps API key

http://code.google.com/android/maps-api-signup.html

544 | Chapter 14: Location and Map Applications

You'll receive a key like this:

18Qcs3h-Sq5l8A7L56bjLwY1gwxgeMYF9Rp_0Cg

Copy and paste this key in the android:apiKey attribute in the MapView element in your
res/main.xml layout file. If you are instantiating a MapView directly from code, you
should pass the Maps API Key in the MapView constructor.

Tip: You can always regenerate the key as described in the above steps, so there's no
need to keep this key somewhere safe. On the other hand, you'd better make a copy of
the keystore you use for signing your personal apps!

Necessary changes in the AndroidManifest.xml file

• You have to register a <uses-permission android:name="android.permission.INTER
NET "/> in your AndroidManifest.xml to be able to get Map tiles information from
the internet. These map tiles are automatically cached in your apps-data directory,
so you don't have to do anything extra for that.

• The Google Maps classes are not standard, so you have to indicate you use the
com.google.android.maps library in your AndroidManifest.xml file.

Example AndroidManifest.xml file

Example 14-14.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.maptest"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity android:name=".MapTest"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <uses-library android:name="com.google.android.maps" />

 </application>
</manifest>

There's another file called default.properties which contains the build target (level)
of your app. This file is automatically generated when you created this project, so no
need to change anything. It is good to know that the build target level is defined here

14.6 Getting ready for Google Maps development | 545

if you decide to increase or decrease it at some point. You can either change the level
in this file or do it via the project properties dialog in Eclipse.

Example 14-15.

target=Google Inc.:Google APIs:3

That's it! Start your AVD and run your Android Application. If all's well you should
see a map of North and South America which you can drag around and zoom into!

Check List

We end this Recipe with a check list which you can use for quickly setting up projects
for the other Google Maps recipes:

• Use an AVD which makes use of the Google API SDK libraries.

• Your Activity should extend the MapActivity class.

• You must implement the isRouteDisplayed() method. The default -- let it return
false -- is fine in most cases.

• Set the build-in zoom controls to true by calling the setBuiltInZoomControls
method on the MapView object.

• Added the full package name to the MapView element in your layout file (i.e.
com.google.android.maps.MapView)

• Add your Google Maps API key to the android:apiKey attribute on the MapView
element.

• If you are instantiating a MapView directly from code, you should pass the Google
Maps API Key directly in the MapView constructor.

• Set the android:clickable attribute on the MapView element to true to be able to
drag the map and zoom in and out.

• Register a <uses-permission android:name="android.permission.INTERNET "/> as
a child of the manifest element in your AndroidManifest.xml

• Register a <uses-library android:name="com.google.android.maps" /> as a child
of the application element in your AndroidManifest.xml

See Also
Google APIs project on Google Code - http://code.google.com/android/add-ons/goo-
gle-apis Google API key signup page - http://code.google.com/android/maps-api-sign-
up.html

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/MapTest.zip

546 | Chapter 14: Location and Map Applications

https://github.com/downloads/jpelgrim/androidcookbook/MapTest.zip
https://github.com/downloads/jpelgrim/androidcookbook/MapTest.zip

Figure 14-3.

14.6 Getting ready for Google Maps development | 547

14.7 Using Google Maps in your Android App
Oscar Salguero

Problem
Sometimes the steps needed to add a Google Map and show the User's location to
Android Apps is not clear as water on the Internet and Documentation.

Solution
To be completed later...

Discussion
To be completed later...

14.8 How to show your current location in a map
Enrique Diaz

Problem
You want to see where you are in a map using the built-in GPS in Android devices

Solution
We can take advantage of the Google APIs and Location-Based Services to allow people
to find their friends, find relevant places and many more. In this snippet of code, we
can read the GPS location and see where we are located in a map called from the in-
ternet.

Discussion
This example of code shows how to create a MapActivity to show where are we located.
Also, we're going to add some permissions to allow our project read the latitude and
longitude based in the Google Maps API.

Step 1 Create a new project called MyCurrentLocation with an Activity called MyCur-
rentLocation. Because we need to obtain the Latitude and Longitude from the GPS, we
need to add the following permissions in the Android Manifest:

Example 14-16.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.androidtitlan.mycurrentlocation"
 android:versionCode="1"
 android:versionName="1.0">

548 | Chapter 14: Location and Map Applications

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MyCurrentLocation"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
 <uses-sdk android:minSdkVersion="4" />

 <uses-permission android:name="android.permission.INTERNET"></uses-permission>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission>
</manifest>

14.9 To Add Device's current location to Google Maps
Rachee Singh

Problem
Adding Current location of the device on Google maps.

Solution
Using MyLocationOverlay class, current location of the device can be depicted on the
Map.

Discussion
Add the following permissions to the Android Manifest File:

Example 14-17.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

Adding a mapView to your application, these few lines of code should be present in
the XML layout. The Id of the map view is 'map'.

Example 14-18.

 <com.google.android.maps.MapView
 android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/map_location_button"
 android:layout_above="@+id/use_this_location_button"
 android:clickable="true"
 android:apiKey = "Your API Key Should be placed here"/>

14.9 To Add Device's current location to Google Maps | 549

In the Java class for the activity which displays the map View, add a field:

Example 14-19.

 private MyLocationOverlay myLocationOverlay;

Also, get a handle to the map view defined in the XML and add a MyLocationOverlay.
After that call the invalidate() method.

Example 14-20.

 mapView = (MapView)findViewById(R.id.map);
 myLocationOverlay = new MyLocationOverlay(this, mapView);
 mapView.getOverlays().add(myLocationOverlay);
 mapView.invalidate();

To prevent depletion of battery, in the onPause method of the class, disableMyLoca-
tion() method should be called.

Example 14-21.

@Override
 protected void onPause() {
 super.onPause();
 myLocationOverlay.disableMyLocation();
 }

 @Override
 protected void onResume() {
 super.onResume();
 myLocationOverlay.enableMyLocation();
 }

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LZGU1ZmIzYjUtZTY3OS00MjczLWIxNDAtN
zY4NjI5ZWJmMzZj&hl=en_US&authkey=CNb-xe8C

14.10 Draw a location marker on a Google MapView
Johan Pelgrim

Problem
You have a geo location and you want to display it on a Google MapView view object

Solution
Create an instance of Overlay, draw your marker in it and add it to the MapView overlays.
Animate to the given geo point.

550 | Chapter 14: Location and Map Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LZGU1ZmIzYjUtZTY3OS00MjczLWIxNDAtNzY4NjI5ZWJmMzZj&hl=en_US&authkey=CNb-xe8C
https://docs.google.com/leaf?id=0B_rESQKgad5LZGU1ZmIzYjUtZTY3OS00MjczLWIxNDAtNzY4NjI5ZWJmMzZj&hl=en_US&authkey=CNb-xe8C
https://docs.google.com/leaf?id=0B_rESQKgad5LZGU1ZmIzYjUtZTY3OS00MjczLWIxNDAtNzY4NjI5ZWJmMzZj&hl=en_US&authkey=CNb-xe8C

Discussion
Create a new project called "Location on Map" and use the "Getting Ready for Google
Maps Development" recipe to set it up correctly (or simply use the MapTest code from
that recipe). If all's well you should have an onCreate like this:

Example 14-22.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 MapView mapView = (MapView) findViewById(R.id.mapview);
 mapView.setBuiltInZoomControls(true);

}

We are going to make this app a little bit more interesting. First we are going to set the
view-type to satellite so we are shown some more recognizable terrain information.

Example 14-23.

mapView.setSatellite(true);

Run your application to see the effect.

You can add traffic information by calling setTraffic but that works best with map
information, not terrain information.

Ok, we can drag- and zoom around on this map, but let's automatically animate to a
certain geo location. First of all create a private field called geoPoint and set it to some
geo location. Note that the GeoPoint constructor takes integer arguments for the latitude
and longitude values and not floating points! You can convert a floating point latitude
longitude pair by multiplying it by 1 million or 1E6 in Java terms.

Example 14-24.

GeoPoint geoPoint = new GeoPoint((int) (52.334822 * 1E6), (int) (4.668907 * 1E6));

We need a handle to the MapView's MapController to set the zoom-level and animate to
a given GeoPoint

Example 14-25.

MapController mc = mapView.getController();
mc.setZoom(18);
mc.animateTo(geoPoint);

Pretty easy. Fire up the application to see what we've done here. Play around with the
zoom-level. What is the minimal value you can set? What is the maximum value?

14.10 Draw a location marker on a Google MapView | 551

The technique used to display way markers, your current location and other points of
interest, on a map is done with overlays. You can think of an overlay as you've probably
seen them in the old days, used in combination with an overhead projector. Overlays
can be seen as those transparent plastic sheets, which sometimes had graphics or text
on them. You can layer several overlays on a single MapView.

Create a private inner class which extends Overlay and override the draw method.

Example 14-26.

private class MyOverlay extends com.google.android.maps.Overlay {

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) { // 1
 super.draw(canvas, mapView, shadow);

 if (!shadow) { // 2

 Point point = new Point();
 mapView.getProjection().toPixels(geoPoint, point); // 3

 Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.marker_default); // 4

 int x = point.x - bmp.getWidth() / 2; // 5

 int y = point.y - bmp.getHeight(); // 6

 canvas.drawBitmap(bmp, x, y, null); // 7
 }

Figure 14-4.

552 | Chapter 14: Location and Map Applications

 }

}

A couple of things are done here.

1. The draw method has a couple of arguments. The first argument is a handle to an
instance of Canvas which we will use to draw our marker on. The second is an
instance of MapView on which this overlay is displayed. The third argument is a
boolean which indicates whether we are drawing the actual image, or the shadow.
In fact, this method is called twice. Once to draw the shadow and once to draw
the actual thing you want to draw.

2. We don't want to draw a shadow

3. We translate the geo point to actual pixels and store this information in the
point variable.

4. We use the resource identifier to decode it to an actual instance of Bitmap so we
can draw it on the canvas

5. We calculate the x-coordinate of where to draw the marker. We shift it to the left
so the center of the image is aligned with the x-coordinate of the geo point

6. We calculate the y-coordinate of where to draw the marker. We shift it upward so
the bottom of the image is aligned with the y-coordinate of the geo point

7. We draw the bitmap at the calculated x and y locations.

You can use this image as the marker_default.png. Drop it in your ./res/drawable
directory

You can manipulate the overlays by calling getOverlays() on the MapView instance.

Example 14-27.

List<Overlay> overlays = mapView.getOverlays();
overlays.clear();
overlays.add(new MyOverlay());

mapView.invalidate();

To force a view to draw, call the invalidate() method, which is implemented in the
View class.

That's it. Fire it up and you should see something like this!

See Also
Recipe Recipe 14.6

14.10 Draw a location marker on a Google MapView | 553

Figure 14-5.

554 | Chapter 14: Location and Map Applications

Figure 14-6.
14.10 Draw a location marker on a Google MapView | 555

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/LocationOnMap.zip

14.11 Drawing multiple location markers on a MapView
Johan Pelgrim

Problem
You have several GeoPoints which you want to display on a Google MapView.

Solution
Implement the ItemizedOverlay abstract class and add various OverlayItems to it.

Discussion

Introduction

If you want to draw multiple location markers in your MapView you can of course take
the approach of implementing the Overlay interface and do all the resource gathering
and drawing in an overridden draw() method, as was done in the Recipe 14.10 recipe.
This can become cumbersome and hard to maintain. If you want to do core drawing
of lines and shapes you cannot avoid overriding the draw() method, but when it comes
down to drawing several simple location markers and handling user clicks on those
marker (to name something) the Google Maps API has introduced the ItemizedOver
lay. This abstract class is meant to maintain a list of Overlay items and display it as an
aggregated Overlay on the MapView. ItemizedOverlay itself implements the Overlay in-
terface. Besides that it implements sorting north-to-south for drawing, creating span
bounds, drawing a marker for each point, and maintaining a focused item. It also
matches screen-taps to items, and dispatches focus-change events to an optional lis-
tener. This looks like the right candidate to display a couple of location markers on our
MapView.

Adding the ItemizedOverlay to your MapView

Let's begin with the skeleton Google Maps project which is described in Recipe 14.6,
or create your own and check this recipe's check-list at the end of the recipe to make
sure you are good-to-go.

Add an inner class to your MapActivity which extends ItemizedOverlay and implement
the abstract methods and the default constructor. The ItemizedOverlay uses your im-
plementations of the createItem and size() methods to get hold of all the overlay items
in your implementation and do the aggregation.

556 | Chapter 14: Location and Map Applications

https://github.com/downloads/jpelgrim/androidcookbook/LocationOnMap.zip
https://github.com/downloads/jpelgrim/androidcookbook/LocationOnMap.zip

Example 14-28.

 private class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

 public MyItemizedOverlay(Drawable defaultMarker) {
 super(defaultMarker);
 }

 @Override
 protected OverlayItem createItem(int i) {
 return null;
 }

 @Override
 public int size() {
 return 0;
 }
 }

The defaultMarker is a Drawable which is drawn on every OverlayItem we add to our
ItemizedOverlay. Whenever you add a drawable to an OverlayItem you must set its
bounding rectangle via the setBounds method. Or you can use one of the two conven-
ience methods boundCenterBottom or boundCenter which sets the bounding rect to the
center-bottom respectively the center of the drawable. Note: a call to boundCenterBot
tom basically results in this call to setBounds (given marker is an instance of Drawable:
marker.setBounds(-marker.getIntrinsicWidth()/2, -marker.getIntrinsicHeight(),
marker.getIntrinsicWidth() /2, 0);. Typically the constructor is rewritten like this:

Example 14-29.

 public MyItemizedOverlay(Drawable defaultMarker) {
 super(boundCenterBottom(defaultMarker));
 }

We want to add several OverlayItem instances so we add a List to this inner type and
modify the createItem(int i) and size() methods to use our new list.

Example 14-30.

 private List<OverlayItem> mOverlays = new ArrayList<OverlayItem>();

 @Override
 protected OverlayItem createItem(int i) {
 return mOverlays.get(i);
 }

 @Override
 public int size() {
 return mOverlays.size();
 }

So far so good. Now we add a convenience method to add OverlayItems to our internal
list.

14.11 Drawing multiple location markers on a MapView | 557

Example 14-31.

 public void addOverlayItem(OverlayItem overlayItem) {
 mOverlays.add(overlayItem);
 populate();
 }

The populate() method is a utility method which perform all processing on a new
ItemizedOverlay. We provide Items through the createItem(int) method. Rule of thumb
is to call this as soon as we have data in our ItemizedOverlay, before anything else gets
called.

We're basically done with our inner class. Let's add some statements to our onCreate
method of the surrounding MapActivity to add some OverlayItemss to our implemen-
tation of ItemizedOverlay

Using MyItemizedOverlay in onCreate

Let's expand our onCreate method and create an instance of our MyItemizedOverlay
inner type.

Example 14-32.

Drawable makerDefault = this.getResources().getDrawable(R.drawable.marker_default);
MyItemizedOverlay itemizedOverlay = new MyItemizedOverlay(makerDefault);

Now let's add some overlay items. When creating an OverlayItem we must provide three
things to the constructor. A GeoPoint and two Strings, one for the title and one for an
additional snippet of text. Let's add an OverlayItem for the city of Amsterdam.

Example 14-33.

 GeoPoint point = new GeoPoint(52372991, 4892655);
 OverlayItem overlayItem = new OverlayItem(point, "Amsterdam", null);
 itemizedOverlay.addOverlayItem(overlayItem);

Let's add another convenience method to our MyItemizedOverlay inner type which ba-
sically takes two int values for latitude and longitude and a String for a title.

Example 14-34.

public void addOverlayItem(int lat, int lon, String title) {
 GeoPoint point = new GeoPoint(lat, lon);
 OverlayItem overlayItem = new OverlayItem(point, title, null);
 addOverlayItem(overlayItem);
}

We can now rewrite our addition of the Amsterdam OverlayItem and add two more,
one for London and one for Paris.

558 | Chapter 14: Location and Map Applications

Example 14-35.

 itemizedOverlay.addOverlayItem(52372991, 4892655, "Amsterdam");
 itemizedOverlay.addOverlayItem(51501851, -140623, "London");
 itemizedOverlay.addOverlayItem(48857522, 2294496, "Paris");

The next step is to add our itemized overlay to the MapViews overlays. We get a handle
to the list over overlays with a call to getOverlays().

Example 14-36.

mapView.getOverlays().add(itemizedOverlay);

Finally we manipulate the MapViews MapController to show the right area and zoom-
level on our MapView. We set the center to a GeoPoint of Dunkerque, which appears to
be a nice center. There is no getCenter() convenience method in the ItemizedOverlay
class, but this is something you can easily implement yourself if you want to. We can
set the zoom-level to a fixed level, but the ItemizedOverlay class does have some nice
methods to calculate the span which covers all it's overlay items. We use this to call
zoomToSpan on the MapController instance.

Example 14-37.

MapController mc = mapView.getController();
mc.setCenter(new GeoPoint(51035349, 2370987)); // Dunkerque, Belgium
mc.zoomToSpan(itemizedOverlay.getLatSpanE6(), itemizedOverlay.getLonSpanE6());

We're done! When you fire up your app you should see something like this.

(BROKEN XREF TO RECIPE -1 'image:multiple-locations-on-map-1.png')

Extra exercise: Draw an alternate marker Search Google for some nice 100 by 100
pixel markers and place them in your ./res/drawable directory. Add these drawables
as an extra argument to your addOverlayItem convenience method. When you create
your OverlayItem instance use the setMarker(Drawable drawable) method to assing a
different marker drawable. Remember to set the bounds by calling the boundCenterBot
tom or boundCenter convenience methods or do the math yourself and call setBounds.
Good luck! (The accompanying source code has the solution if these hints are not
sufficient).

Do something when the user clicks your marker Finally the ItemizedOverlay class
has some nice features to handle taps and focus changes on your overlay items. In this
final section we will implement the onTap(int index) method to show a Toast message
which displays our overlay item's title. Of course you can do whatever you want when
a user taps your marker, show a dialog or another activity, draw a view on the map
with addView, etc. As you will see this could not be simpler!

@Override protected boolean onTap(int index) { Toast.makeText(MainActivity.this,
getItem(index).getTitle(), Toast.LENGTH_LONG).show(); return true; }

14.11 Drawing multiple location markers on a MapView | 559

We return true to indicate we have handled the tap-event. If we return false the onTap
is executed for all the overlay items in our ItemizedOverlay

Again, when taking your app for a spin, you should see something like this when you
tap near your Paris location marker.

(BROKEN XREF TO RECIPE -1 'image:multiple-locations-on-map-2.png')

See Also
Recipe 14.6

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/downloads/jpelgrim/androidcookbook/MultipleLocationsOnMap.zip

14.12 Creating Overlays for a Google MapView
Rachee Singh

Problem
Demarcating a point on a Google map using an image.

Solution
Use the concept of Map Overlays.

Discussion
Creating one's own map overlay is a 2 step process:

1. Extend the Overlay class and implement the required functionality (the type and
characteristics of the overlay) in that class.

2. Another class which controls that Google map on the screen then instantiates the
class that extends Overlay.

Example 14-38.

 public class AddressOverlay extends Overlay

Constructor Initialization in the AddressOverlay class:

Example 14-39.

 public AddressOverlay(Context context, Address address, int drawable) {
 super();
 this.context=context;
 this.drawable=drawable;

560 | Chapter 14: Location and Map Applications

https://github.com/downloads/jpelgrim/androidcookbook/MultipleLocationsOnMap.zip
https://github.com/downloads/jpelgrim/androidcookbook/MultipleLocationsOnMap.zip

 assert(null != address);
 this.setAddress(address);
 Double convertedLongitude = address.getLongitude() * 1E6;
 Double convertedLatitude = address.getLatitude() * 1E6;

 setGeopoint(new GeoPoint(
 convertedLatitude.intValue(),
 convertedLongitude.intValue()));
 }

The draw() method of the Overlay class has to be overriden.

Example 14-40.

 @Override
 public boolean draw(Canvas canvas, MapView mapView, boolean shadow, long when) {
 super.draw(canvas, mapView, shadow);
 Point locationPoint = new Point();
 Projection projection = mapView.getProjection();
 projection.toPixels(getGeopoint(), locationPoint);

 // Reading the image
 Bitmap markerImage = BitmapFactory.decodeResource(context.getResources(), drawable);

 // Drawing the image, keeping the center of the image at the address's location
 canvas.drawBitmap(markerImage,locationPoint.x - markerImage.getWidth() / 2, locationPoint.y - markerImage.getHeight() / 2, null);
 return true;
 }

In the java class that is implementing the map View's function, the following lines of
code are added to add an Overlay on the map:

Example 14-41.

 List<Overlay> mapOverlays = mapView.getOverlays();
 //Instantiating the AddressOverlay class we just defined
 //'androidmarker is the name of the image that you wish to place on the map
 AddressOverlay addressOverlay = new AddressOverlay(this, address, R.drawable.androidmarker);
 //adding the overlay to the map
 mapOverlays.add(addressOverlay);
 mapView.invalidate();

14.13 Changing Views of a MapView.
Rachee Singh

Problem
Showing an appropriate view of a MapView based on the context in the application.

Solution
Changing the View of a map from the default map mode to satellite or street mode.

14.13 Changing Views of a MapView. | 561

Discussion
If the application needs to display distance information between 2 locations on the
map, then keeping the map in Street mode is more suitable. Similarly, some applications
might need to use the Satellite view of Google maps. This can be done programmatically
by:

Example 14-42.

//For street view
mapView.setStreetView(true);

//For satellite view
mapView.setSatellite(true);

14.14 Draw overlay icon without using Drawable
Keith Mendoza

Problem
How can you display an map overlay in MapView without using Drawable objects?

Solution
Override the ItemizedOverlay::draw() function.

Discussion
This assumes that you have at least done the "Hello, MapView" tutorial, so I will not
cover what abstract functions that you need to implement from ItemizedOverlay. The
complete source code for Nearby Metars 01.01.0.2 is available for download so some
the complete code for the classes mentioned will not be shown in full.

Overview

Nearby Metars displays the cloud condition icon and the direction part of a wind barb
as an overlay on a MapView. This icon is drawn in a way where the cloud condition
covers the scale equivalent of about 1 mile around the airport. For anyone curious here
is the description of METAR taken from the METARs help page provided by NOAA's
Aviation Weather Services:

Weather stations all over the world report weather conditions every hour using a data
format referred to as METAR (this is a French acronym with a loose English translation
to "routine aviation weather observation"). These data are collected centrally by the U.S.
National Weather Service (and other country's equivalents) and distributed.

562 | Chapter 14: Location and Map Applications

http://aviationweather.gov/adds/metars/description.php

Page 4 of the help page shows the cloud coverage icons. These are the icons that needs
to be drawn as an overlay over the airport to depict the cloud coverage. The wind barb
points the wind direction (it's actually the direction the wind is coming from).

Overriding the ItemizedOverlay::draw() function

ItemizedOverlay::draw() is called whenever the MapView needs to be redrawn for what-
ever reason. Here is the function signature of the draw() function:

Example 14-43.

public void draw(android.graphics.Canvas canvas,
 MapView mapView,
 boolean shadow)

Here are the parameter description taken directly from the API document:

• canvas - The Canvas upon which to draw. Note that this may already have a trans-
formation applied, so be sure to leave it the way you found it.

• mapView - the MapView that requested the draw. Use MapView.getProjection()
to convert between on-screen pixels and latitude/longitude pairs.

• shadow - If true, draw the shadow layer. If false, draw the overlay contents.

For each time that the screen is being redrawn the draw() function will be called twice:
Once when shadow is true, and again when shadow is false. For Nearby Metars there
is no need to draw shadows in overlay items.

For Nearby Metars, MetarList is the MetarItem specific (note to editor: not sure if this
is the correct term) implementation of ItemizedOverlay. This class overrides the ab-
stract functions, and the draw() function. This is the code for MetarList::draw():

Example 14-44.

public void draw(android.graphics.Canvas canvas, MapView mapView, boolean shadow) {
 if(!shadow) {
 Log.v("NearbyMetars", "Drawing items");
 MetarItem item;
 for(int i=0; i<mOverlays.size(); i++) {
 item = mOverlays.get(i);
 item.draw(canvas, mapView);
 }
 }
}

mOverlays is an instance of ArrayList<MetarItem>. Whenever draw() is called, we iterate
through mOverlays and call MetarItem::draw(). This implementation makes Metar
List and MetarItem tightly coupled for the sake of performance.

14.14 Draw overlay icon without using Drawable | 563

http://aviationweather.gov/adds/metars/description_ifr.php

Overview of MetarItem class

This class is a subclass of OverlayItem. The mTitle and mSnippet fields inherited from
OverlayItem are used for the ICAO code and the raw metar string respectively. There
are two fields added in MetarItem:

• skyCond - This is an instance of the SkyConds enumerated type defined inside
MetarItem

• windDir - This is a float value to store the wind direction

MetarItem::draw() function

This is where the real work of drawing the icon onto the canvas really happens. In the
METAR charts from ADDS, the cloud condition icons are drawn using the colors to
depict the flight category in effect for that airport; however, as of version 01.01.0.2
Nearby Metars doesn't depict the flight category so the icons are all black. To make
thing short the code is broken into sections and the explanation follows after each code
snippet.

Example 14-45.

public void draw(Canvas canvas, MapView mapView) {

This function takes two parameters: canvas and mapView. These two parameters have
the same types as the first 2 parameters of ItemizedOverlay::draw().

Example 14-46.

 //Get the bounds of the icon
 Point point = new Point();
 Projection projection = mapView.getProjection();
 projection.toPixels(mPoint, point);

First we convert the lat,long coordinates of the airport to x,y coordinate. Projec
tion::toPixels() takes a GeoPoint object that stores the lat,long of the location that
will be marked by the overlay as the first parameter; and a Point instance to store the
x,y coordinate of that location in the MapView canvas.

Example 14-47.

 final float project = (float)((projection.metersToEquatorPixels((float)1609.344) > 10) ? projection.metersToEquatorPixels((float)1609.344) : 10.0);
 Log.d("NearbyMetars", "Value of project: " + Float.toString(project));
 final RectF drawPos = new RectF(point.x-project, point.y-project, point.x+project, point.y+project);

We then calculate how many pixels 1 mile would be given the map's current zoom level.
Then we calculate the bounding coordinates of the icon to be drawn in as a RectF
instance.

564 | Chapter 14: Location and Map Applications

http://developer.android.com/reference/android/graphics/RectF.html

Example 14-48.

 //Get the paint to use for drawing the icons
 Paint paint = new Paint();
 paint.setStyle(Paint.Style.STROKE);
 paint.setARGB(179, 0, 0, 0);
 paint.setStrokeWidth(2.0f);
 paint.setStrokeCap(Paint.Cap.BUTT);

A Paint object is instantiated and set to draw a 2 pixel thick black line at about 70%
transparency. The reason to not make the cloud condition icons not drawn completely
opaque is to allow the user to be able to read the labels on the map. Remember, the
cloud icons are drawn on top of the map in a layered fashion.

Example 14-49.

 switch(skyCond) {
 case CLR:
 canvas.drawRect(drawPos, paint);
 break;
 case SKC:
 canvas.drawCircle(point.x, point.y, project, paint);
 break;
 case FEW:
 canvas.drawCircle(point.x, point.y, project, paint);
 canvas.drawLine(point.x, drawPos.top, point.x, drawPos.bottom, paint);
 break;
 case SCT:
 canvas.drawArc(drawPos, 0, 270, false, paint);
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawArc(drawPos, 270, 90, true, paint);
 break;
 case BKN:
 canvas.drawArc(drawPos, 180, 90, false, paint);
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawArc(drawPos, 270, 270, true, paint);
 break;
 case OVC:
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawCircle(point.x, point.y, project, paint);
 break;
 case OVX:
 canvas.drawArc(drawPos, 45, 180, true, paint);
 canvas.drawArc(drawPos, 135, 180, true, paint);
 canvas.drawArc(drawPos, 315, 90, true, paint);
 break;
 }

This section of code renders the cloud condition icons based on the value of skyCond.
Please see the Canvas reference for the description of the draw*() functions. Drawing
the icons for CLR and SKC are straight forward, call the appropriate draw*() function.
FEW calls a drawCircle() to draw the circular outline, and then calls the drawLine() to
draw the vertical line. In the case of this icon, it won't matter if drawLine() was called

14.14 Draw overlay icon without using Drawable | 565

http://developer.android.com/reference/android/graphics/Paint.html
http://developer.android.com/reference/android/graphics/Canvas.html

first instead of drawCircle(). However, it would be good to remember that successive
calls to the draw*() function over the same area will draw shapes on top of each other.

Conditions like SKT, BKN, and OVC first calls drawArc() to draw the unfilled portion of
the icon, and then switches the pen style to FILL_AND_STROKE then calls drawArc()
again to complete the circle with the filled portion of the icon. The use of drawArc()
on these icons are actually an optimization. Canvas::drawCircle() actually calls Can-
vas::drawArc() under the hood. Why render a graphic that will simply be covered by
another graphic drawn in the same location.

Example 14-50.

 //Draw the wind bar if wind is NOT variable
 if(windDir > 0)
 {
 final float barLen = project * 3;

 //This has been modified to go the opposite direction of
 //standard polar to Cartesian plotting
 canvas.drawLine(point.x, point.y, (float)(point.x + barLen * Math.sin(windDir)), (float)(point.y - barLen * Math.cos(windDir)), paint);
 }
}

This last portion of code draws the wind barb without the wind speed lines. As the
comment states, this function calculates the cartesian coordinate with the angle going
in a clockwise direction since that's how compass directions go. The standard mathe-
matic polar coordinates have angles going in a counter-clockwise direction. Another
thing to note is that the value of project is actually the radian equivalent of the wind
compass direction.

Final Thoughts

Using the Canvas::draw*() functions is not necessarily the best method for drawing the
overlay icons. Android can render Drawable Resources in a more optimized manner
than calling the Canvas::draw*() functions; and it's easier to create great looking images
using an image editor. If the overlays for Nearby Metars were done using Drawable
Resources, editing the XML files would be cumbersome; using bitmaps will just be a
resource hog. Whether to use Drawable or programmatically draw the overlay icon will
depend largely on the project's requirements.

See Also
Hello, MapView Tutorial Canvas class reference ItemizedOverlay class reference Over-
layItem class reference Google Add-On API Reference

Source Download URL
The source code for this example may be downloaded from this URL: https://github
.com/keithmendozasr/NearbyMetars/zipball/01.01.0.2

566 | Chapter 14: Location and Map Applications

http://developer.android.com/guide/topics/resources/drawable-resource.html
http://developer.android.com/guide/tutorials/views/hello-mapview.html
http://developer.android.com/reference/android/graphics/Canvas.html
http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/ItemizedOverlay.html
http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/OverlayItem.html
http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/OverlayItem.html
http://code.google.com/android/add-ons/google-apis/reference/index.html
https://github.com/keithmendozasr/NearbyMetars/zipball/01.01.0.2
https://github.com/keithmendozasr/NearbyMetars/zipball/01.01.0.2

Binary Download URL
The executable code for this example may be downloaded from this URL: https://github
.com/downloads/keithmendozasr/NearbyMetars/NearbyMetars-01.01.0.2.apk

14.15 Location search on Google maps
Rachee Singh

Problem
Selecting text from an editText and looking for that location on Google Maps. n finding,
making a list of all the results. Displaying the most appropriate location result.

Solution
The text entered into the edit Text by the user is extracted. It is searched and the search
results are extracted. The best out of the location search results is displayed as a toast
(This is a sample, many other activities can be done using the location search result).

Discussion
This method obtains text from a textView named: addressText. Then this text is
searched for using the getFromLocationName() method of the Geocoder class. From
the search results obtained the first result is extracted and displayed as a Toast. If the
string returned is of size=0, an appropriate message is displayed.

Example 14-51.

protected void mapCurrentAddress() {
 String addressString = addressText.getText().toString();
 Geocoder g = new Geocoder(this);
 List<Address> addresses;
 try {
 addresses = g.getFromLocationName(addressString, 1);
 String add = "";
 if (addresses.size() > 0) {

 address = addresses.get(0);
 for (int i=0; i<address.getMaxAddressLineIndex();i++) {
 add += address.getAddressLine(i) + "\n";
 }
 Toast.makeText(getBaseContext(), add, Toast.LENGTH_SHORT).show();

 } else {
 Toast.makeText(getBaseContext(),"We failed to locate this address.", Toast.LENGTH_SHORT).show();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

14.15 Location search on Google maps | 567

https://github.com/downloads/keithmendozasr/NearbyMetars/NearbyMetars-01.01.0.2.apk
https://github.com/downloads/keithmendozasr/NearbyMetars/NearbyMetars-01.01.0.2.apk

14.16 MapView inside TabView
Vladimir Kroz

Problem
You want to place a MapView object within TabView.

Target application outline

• Draw two empty tabs

• Show map on the first tab

Solution
1. Create MapView and corresponding XML layout, make sure it runs standalone

2. Create TabView and corresponding XML layout

3. Attach MapView activity to one of the tabs using TabSpec.setContent() That's it!

Discussion

Setup - obtain maps api key

First step - get from google api key to enable your MapView. Just follow google Maps
Add-On documentation and eventually you should get something like that: Your key
is: 01234567890abvgd9876543eprst333223 (just example) This key is good for all
apps signed with your certificate whose fingerprint is: 00:00:11:AA:BB:CC:AB:
01:02:22:33:44:55:FF:EE:DD Check out the API documentation for more information.

Layouts

The structure of typical TabLayout includes TabHost as a contain-
er, TabWidget to draw tabs and FrameLayout with predefined id "@android:id/tab-
content" to contain interchangeable content.

Example 14-52.

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<LinearLayout android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent" android:layout_height="wrap_content"/>
<FrameLayout android:id="@android:id/tabcontent"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<RelativeLayout android:id="@+id/emptylayout1" android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent"/>

TabLayout (main.xml).

568 | Chapter 14: Location and Map Applications

Figure 14-7.

14.16 MapView inside TabView | 569

<TextView android:id="@+id/textview2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="Details Details Details Details"/>
</FrameLayout>
</LinearLayout>
</TabHost>

Code for the MapView layout follows.

Example 14-53.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/maptablayout" android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<com.google.android.maps.MapView android:id="@+id/mapview"
android:layout_width="fill_parent" android:layout_height="fill_parent"
android:clickable="true"
android:apiKey="0pFtdSwta8EMTfArj32ycOw2kZg0LSEqa4fUGFA"/>
</RelativeLayout>

Layout for MapView (Maptabview.xml).

Figure 14-8.

570 | Chapter 14: Location and Map Applications

Application code

This would be application entry point; later we'll enhance this
code with more details

Example 14-54.

package org.kroztech.cookbook;

import android.app.TabActivity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.widget.FrameLayout;
import android.widget.TabHost;
import android.widget.TabHost.TabSpec;

public class AppMain extends TabActivity {
 TabHost mTabHost;
 FrameLayout mFrameLayout;

 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mTabHost = getTabHost();
 TabSpec tabSpec = mTabHost.newTabSpec("tab_test1");
 tabSpec.setIndicator("Map");
 Context ctx = this.getApplicationContext();
 Intent i = new Intent(ctx, MapTabView.class);
 tabSpec.setContent(i);
 mTabHost.addTab(tabSpec);
 mTabHost.addTab(mTabHost.newTabSpec("tab_test2").setIndicator("Details").setContent(R.id.textview2));
 mTabHost.setCurrentTab(0);
 }
}

The Map Activity follows.

Example 14-55.

package org.kroztech.cookbook;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class MapTabView extends MapActivity {
 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.maptabview);
 }
 @Override
 protected boolean isRouteDisplayed() {

AppMain.java - Entry point.

MapTabView.java - Map Activity.

14.16 MapView inside TabView | 571

 return false;
 }
}

And the manifest file.

Example 14-56.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.kroz.tag" android:versionCode="1" android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".AppMain" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name="MapTabView" android:label="@string/mapview_name">
 <intent-filter>
 <category android:name="android.intent.category.EMBED"></category>
 <action android:name="android.intent.action.MAIN"></action>
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="3"/>
 <uses-permission android:name="android.permission.INTERNET"></uses-permission>
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission>
 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"></uses-permission>
</manifest>

Source Download URL
The source code for this example may be downloaded from this URL: http://www.kroz
tech.com/res/android_cookbook/src/MapTabViewDemo.zip

14.17 Handling longpress in a map
Roger Kind Kristiansen

Problem
Some map applications might want to trigger an action related to an arbitrary point on
the map, for example through a context menu. You might think support for this would
be built in, but this seems not to be the case.

Solution
Override MapActivity.dispatchTouchEvent(MotionEvent event) with code to listen for
the longpress.

Manifest (AndroidManifest.xml).

572 | Chapter 14: Location and Map Applications

http://www.kroztech.com/res/android_cookbook/src/MapTabViewDemo.zip
http://www.kroztech.com/res/android_cookbook/src/MapTabViewDemo.zip

Discussion
The dispatchTouchEvent() method processes all touch events triggered on the Map-
View. When overriding this method, we need to take care of the following elements to
handle longpresses:

1. If the finger has just touched the screen, we start checking how long it is held. We
need to do this in a separate thread, or else the UI will lock up. If the checks in the
following point do not kick in within a given threshold, we have a longpress and
call the desired code, In my case this was to show the context menu.

2. If some motion event that can not be part of a longpress has been performed, cancel
the check in pt.2. These events are:

3. * Finger has been removed from screen

4. * Finger has moved more than a given threshold since the previous event

Here is the complete MapActivity, handling all this:

Example 14-57.

import android.os.Bundle;
import android.os.Looper;
import android.view.MotionEvent;

import com.google.android.maps.MapActivity;

public class Map extends MapActivity {
 private boolean isPotentialLongPress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 public boolean dispatchTouchEvent(MotionEvent event) {
 handleLongPress(event);
 return super.dispatchTouchEvent(event);
 }

 private void handleLongPress(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 // A new touch has been detected

 new Thread(new Runnable() {
 public void run() {
 Looper.prepare();
 if (isLongPressDetected()) {
 // We have a longpress! Perform your action here
 }
 }
 }).start();

14.17 Handling longpress in a map | 573

 } else if (event.getAction() == MotionEvent.ACTION_MOVE) {
 /*
 * Only MotionEvent.ACTION_MOVE could potentially be regarded as
 * part of a longpress, as this event is trigged by the finger
 * moving slightly on the device screen. Any other events causes us
 * to cancel this events status as a potential longpress.
 */
 if (event.getHistorySize() < 1)
 return; // First call, no history

 // Get difference in position since previous move event
 float diffX = event.getX()
 - event.getHistoricalX(event.getHistorySize() - 1);
 float diffY = event.getY()
 - event.getHistoricalY(event.getHistorySize() - 1);

 /* If position has moved substatially, this is not a long press but
 probably a drag action */
 if (Math.abs(diffX) > 0.5f || Math.abs(diffY) > 0.5f) {
 isPotentialLongPress = false;
 }
 } else {
 // This motion is something else, and thus not part of a longpress
 isPotentialLongPress = false;
 }
 }

 /**
 * Loops for an amount of time while checking if the state of the
 * isPotentialLongPress variable has changed. If it has, this is regarded as
 * if the longpress has been canceled. Else it is regarded as a longpress.
 */
 public boolean isLongPressDetected() {
 isPotentialLongPress = true;
 try {
 for (int i = 0; i < (50); i++) {
 Thread.sleep(10);
 if (!isPotentialLongPress) {
 return false;
 }
 }
 return true;
 } catch (InterruptedException e) {
 return false;
 } finally {
 isPotentialLongPress = false;
 }
 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

}

574 | Chapter 14: Location and Map Applications

This will trigger your action if the user keps a finger pressed on the map for more than
half a second. Modify the integer values in isLongPressDetected() to change this.

Now, open your context menu or perform any other action you can think of.

14.18 Using OpenStreetMap
Rachee Singh

Problem
You want to use OpenStreetMap (OSM) map data in your application in place of the
standard Google Maps.

Solution
Use the third-party osmdroid library to interact with OpenStreetMap-Data

Discussion
OpenStreetMap is a free, editable map of the world. The OpenStreetMapView is a
(almost) full/free replacement for Android's MapView class. See the osmdroid google-
code page for more details.

To use OSM in your android app, your project must be Android API level 3 (version
1.5) or higher. You need to include 2 jars in the Android project namely, osmdroid-
android-x.xx.jar and slf4j-android-1.5.8.jar. OSMDroid is a set of tools for Open-
StreetMap data; SLF4J is (yet another) simplified logging facade. These can be down-
loaded from the links below:

• osmdroid jar file.

• slf4j jar file.

See Recipe 1.15 to learn how to use external libraries in your Android project.

After adding the JARs to the project we can start coding.

• You need to add a OSM MapView to your XML layout like this:

Example 14-58.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <org.osmdroid.views.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/mapview">
 </org.osmdroid.views.MapView>
</LinearLayout>

14.18 Using OpenStreetMap | 575

http://code.google.com/p/osmdroid/
http://code.google.com/p/osmdroid/
http://code.google.com/p/osmdroid/downloads/detail?name=osmdroid-android-3.0.5.jar
http://www.slf4j.org/android/slf4j-android-1.5.8.jar

• Also include the INTERNET permission in the AndroidManifest.

Example 14-59.

<uses-permission android:name="android.permission.INTERNET" />

• Now we have to use this MapView in the Activity code. This is done exactly as you
would do in the case of Google maps.

Example 14-60.

private MapView mapView;
private MapController mapController;
mapView = (MapView) this.findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);
mapView.setMultiTouchControls(true);
mapController = this.mapView.getController();
mapController.setZoom(2);

Once you are done with the code, go ahead and run it! This is how the application
would look:

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LYjIwYTM1NTctZTU3OS00NTE5LTg1NmItZ
TU4MGRkYTMzODJl&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LY2U5MzVlMGYtOWY1Ni00NThhLTg0MmItM
zI2MDgyYzRjNzI5&hl=en_US

14.19 Creating overlays in OpenStreetMaps
Rachee Singh

Problem
You need to create overlays for your OpenStreetMap

Solution
Instantiate an Overlay class and add the overlay to the point you wish to demarcate on
the map.

576 | Chapter 14: Location and Map Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LYjIwYTM1NTctZTU3OS00NTE5LTg1NmItZTU4MGRkYTMzODJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYjIwYTM1NTctZTU3OS00NTE5LTg1NmItZTU4MGRkYTMzODJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LYjIwYTM1NTctZTU3OS00NTE5LTg1NmItZTU4MGRkYTMzODJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2U5MzVlMGYtOWY1Ni00NThhLTg0MmItMzI2MDgyYzRjNzI5&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2U5MzVlMGYtOWY1Ni00NThhLTg0MmItMzI2MDgyYzRjNzI5&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LY2U5MzVlMGYtOWY1Ni00NThhLTg0MmItMzI2MDgyYzRjNzI5&hl=en_US

Figure 14-9.

14.19 Creating overlays in OpenStreetMaps | 577

Figure 14-10.
578 | Chapter 14: Location and Map Applications

Discussion
To use OpenStreetMaps. see Recipe 14.18. To begin with, we get a handle on to the
MapView, enable zoom controls on the map using setBuiltInZoomControls(true) and
set the zoom level to a reasonable value. Then we create two GeoPoints, first (map-
Center) is to center the OSM around the point when the application starts and the
second (overlayPoint) is a little away from the mapCenter point. The overlay is placed
at the overlayPoint. To create the overlay item, we need to instantiate the OverlayItem
class (along with appropriate arguments specifying the overlay description and the
point at which the overlay has to be placed). We can add multiple overlays to an Ar-
rayList and then add all of them in one go (using the add method). After adding the
overlay, we also call the invalidate method update the MapView.

This is the code:

Example 14-61.

 mapView = (MapView) this.findViewById(R.id.mapview);
 mapView.setBuiltInZoomControls(true);
 mapController = this.mapView.getController();
 mapController.setZoom(12);
 GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
 GeoPoint overlayPoint = new GeoPoint(53554070 + 1000, -2959520 + 1000);
 mapController.setCenter(mapCenter);
 ArrayList<OverlayItem> overlays = new ArrayList<OverlayItem>();
 overlays.add(new OverlayItem("New Overlay", "Overlay Description", overlayPoint));

 resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());
 this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(overlays, null, resourceProxy);
 this.mapView.getOverlays().add(this.myLocationOverlay);
 mapView.invalidate();

This is how the overlay looks:

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMThlYmI3ZjctMGU4ZS00ZDhjLWJjMGMtY
WYwMTBmNzcxNzJl&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNDIwN2U3OTItYjgwMy00OWIwLTg1ZmU
tYzM5ZjZiMTljNjRk&hl=en_US

14.20 Using a scale on an OpenStreetMap
Rachee Singh

14.20 Using a scale on an OpenStreetMap | 579

https://docs.google.com/leaf?id=0B_rESQKgad5LMThlYmI3ZjctMGU4ZS00ZDhjLWJjMGMtYWYwMTBmNzcxNzJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMThlYmI3ZjctMGU4ZS00ZDhjLWJjMGMtYWYwMTBmNzcxNzJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMThlYmI3ZjctMGU4ZS00ZDhjLWJjMGMtYWYwMTBmNzcxNzJl&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNDIwN2U3OTItYjgwMy00OWIwLTg1ZmUtYzM5ZjZiMTljNjRk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNDIwN2U3OTItYjgwMy00OWIwLTg1ZmUtYzM5ZjZiMTljNjRk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNDIwN2U3OTItYjgwMy00OWIwLTg1ZmUtYzM5ZjZiMTljNjRk&hl=en_US

Figure 14-11.

580 | Chapter 14: Location and Map Applications

Figure 14-12.
14.20 Using a scale on an OpenStreetMap | 581

Problem
You need to show a map scale on your OSM to indicate the level of zoom on the
MapView

Solution
A scale can be added on the OSM as an overlay using the ScaleBarOverlay class

Discussion
Putting a scale on your MapView helps the user keep track of the zoom level at which
he is (also helping him/her of the approximate distances on the map). To overlay a scale
on your OSM MapView, instantiate the ScaleBarOverlay and add it to your MapView
using the add method.

Here is how the code would look:

Example 14-62.

ScaleBarOverlay myScaleBarOverlay = new ScaleBarOverlay(this);
this.mapView.getOverlays().add(this.myScaleBarOverlay);

The scale bar overlay looks like this:

14.21 Handling touch events on an OpenStreetMap Overlay
Rachee Singh

Problem
You need to perform actions when the overlay on an OpenStreetMap is tapped

Solution
Overriding the methods of OnItemGestureListener method for single tap events and
long press events.

Discussion
To address touch events on the map overlay, we modify the way we instantiate an
overlay item (To see more details about using overlays in OSM, check out: Rec-
ipe 14.19). While instantiating the OverlayItem, we make use of an anonymous object
of OnItemGestureListener class as an argument and provide our own implementation
of onItemSingleTapUp and onItemLongPress methods. In these methods, we simply
display a toast depicting which action took place: single tap or long press and also the
title and description of the overlay touched.

582 | Chapter 14: Location and Map Applications

Figure 14-13.

14.21 Handling touch events on an OpenStreetMap Overlay | 583

Here is how the code looks:

Example 14-63.

 ArrayList<OverlayItem> items = new ArrayList<OverlayItem>();
 items.add(new OverlayItem("New Overlay", "Overlay Sample Description", overlayPoint));

 resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());

 this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(items,
 new ItemizedIconOverlay.OnItemGestureListener<OverlayItem>() {
 @Override
 public boolean onItemSingleTapUp(final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
item.mTitle + " Single Tapped" + "\n" + "Description: " + item.mDescription, Toast.LENGTH_LONG).show();
 return true;
 }
 @Override
 public boolean onItemLongPress(final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
item.mTitle + " Long pressed" + "\n" + "Description: " + item.mDescription ,Toast.LENGTH_LONG).show();
 return false;
 }
 }, resourceProxy);
 this.mapView.getOverlays().add(this.myLocationOverlay);
 mapView.invalidate();

On tapping the overlay once, this is how the application looks:

On long pressing the overlay, this is how the application looks:

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LMzZmMjJkZjYtN2M1OC00MGEzL
WI2ZTQtNTUxMzFhZjEzMGIx&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZjk2MTAxYWMtMWRiOC00ZGViLThmZ
TItMWJhNjU1MGRmYmI4&hl=en_US

14.22 Getting location updates with OpenStreetMaps
Rachee Singh

584 | Chapter 14: Location and Map Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LMzZmMjJkZjYtN2M1OC00MGEzLWI2ZTQtNTUxMzFhZjEzMGIx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMzZmMjJkZjYtN2M1OC00MGEzLWI2ZTQtNTUxMzFhZjEzMGIx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LMzZmMjJkZjYtN2M1OC00MGEzLWI2ZTQtNTUxMzFhZjEzMGIx&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZjk2MTAxYWMtMWRiOC00ZGViLThmZTItMWJhNjU1MGRmYmI4&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZjk2MTAxYWMtMWRiOC00ZGViLThmZTItMWJhNjU1MGRmYmI4&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LZjk2MTAxYWMtMWRiOC00ZGViLThmZTItMWJhNjU1MGRmYmI4&hl=en_US

Figure 14-14.

14.22 Getting location updates with OpenStreetMaps | 585

Figure 14-15.
586 | Chapter 14: Location and Map Applications

Problem
You need to react to the changes in the device's location and move the map focus to
changed location

Solution
Using LocationListener, an application can request for location updates and then react
to these changes in location

Discussion
• The activity that includes the OSM MapView needs to implement "LocationLis-

tener" to be able to request for changes in the device's location. An activity imple-
menting LocationListener will also need to add the unimplemented (abstract)
methods from LocationListener interface (Eclipse will do this for you). We set the
center of the map to the GeoPoint named mapCenter so that the application starts
with map focussed around that point.

• Now we need to get an instance of "LocationManager" and use to to request for
location updates using the requestLocationUpdates method.

• One of the overridden methods (which were abstract in the LocationListener in-
terface) named 'onLocationChanged' we can write the code that we want to be
executed when the location of the device changes.

• In the onLocationChanged method we obtain the latitude and longitude of the new
location and set the map's center to the new GeoPoint.

Example 14-64.

public class LocationChange extends Activity implements LocationListener {
 private LocationManager myLocationManager;
 private MapView mapView;
 private MapController mapController;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mapView = (MapView)findViewById(R.id.mapview);
 mapController = this.mapView.getController();
 mapController.setZoom(15);
 GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
 mapController.setCenter(mapCenter);
 myLocationManager = (LocationManager) getSystemService(LOCATION_SERVICE);
 myLocationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 1000, 100, this);
 }

 @Override
 public void onLocationChanged(Location location) {
 int latitude = (int) (location.getLatitude() * 1E6);

14.22 Getting location updates with OpenStreetMaps | 587

 int longitude = (int) (location.getLongitude() * 1E6);
 GeoPoint geopoint = new GeoPoint(latitude, longitude);
 mapController.setCenter(geopoint);
 mapView.invalidate();

 }

 @Override
 public void onProviderDisabled(String arg0) {

 }

 @Override
 public void onProviderEnabled(String arg0) {

 }

 @Override
 public void onStatusChanged(String arg0, int arg1, Bundle arg2) {

 }
}

When the application starts, the map is centered around the mapCenter GeoPoint.
Since the application is listening to location changes, the icon in the top bar of the
phone is visible:

Now using the Emulator controls new GPS coordinates (-122.094095, 37.422006) are
sent to the emulator. The application reacts to it and centers the map around then new
coordinates:

Similarly, different GPS coordinates are given from the Emulator controls and the ap-
plication centers the map around the new location:

Also, to allow the application to listen for location changes, include these permissions
in the AndroidManifest.

Example 14-65.

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LNGViMzhmM2ItZG
FiZC00NGVhLWJmNjctNTRjNTA0M2QzMjdh&hl=en_US

588 | Chapter 14: Location and Map Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LNGViMzhmM2ItZGFiZC00NGVhLWJmNjctNTRjNTA0M2QzMjdh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNGViMzhmM2ItZGFiZC00NGVhLWJmNjctNTRjNTA0M2QzMjdh&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNGViMzhmM2ItZGFiZC00NGVhLWJmNjctNTRjNTA0M2QzMjdh&hl=en_US

Figure 14-16.

14.22 Getting location updates with OpenStreetMaps | 589

Figure 14-17.
590 | Chapter 14: Location and Map Applications

Figure 14-18.
14.22 Getting location updates with OpenStreetMaps | 591

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNDM0NWVlYTUtNjAzNy00ODJjLTkwM
mItNTFhOTFiZjk0ODdk&hl=en_US

592 | Chapter 14: Location and Map Applications

https://docs.google.com/leaf?id=0B_rESQKgad5LNDM0NWVlYTUtNjAzNy00ODJjLTkwMmItNTFhOTFiZjk0ODdk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNDM0NWVlYTUtNjAzNy00ODJjLTkwMmItNTFhOTFiZjk0ODdk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNDM0NWVlYTUtNjAzNy00ODJjLTkwMmItNTFhOTFiZjk0ODdk&hl=en_US

CHAPTER 15

Accellerometer

15.1 Using the accelerometer to detect shaking of the device
Thomas Manthey

Problem
Sometimes it makes sense to evaluate not only on-screen input, but also gestures like
tilting or shaking the telephone. But how can you use the accelerometer to detect
whether the phone has been shaken?

Solution
The solution is to register with the accelerometer and to compare the current acceler-
ation values on all three axes to the previous ones. If the values have repeatedly changed
on at least two axises and those changes exceed a high enough threshold, you can clearly
determine shaking.

Discussion
Let us first define shaking as a fairly rapid movement of the device in one direction
followed by further one in another direction, mostly but not necessarily the opposite.
If we want to detect such a shake motion in an activity, we need a connection to the
hardware sensors, those are exposed by the class SensorManager. Furthermore we need
to define a SensorEventListener and register it with the SensorManager.

So the source of our activity starts like this:

Example 15-1.

public class ShakeActivity extends Activity {
 /* The connection to the hardware */
 private SensorManager mySensorManager;

 /* The SensorEventListener lets us wire up to the real hardware events */
 private final SensorEventListener mySensorEventListener = new SensorEventListener() {

593

 public void onSensorChanged(SensorEvent se) {
 /* we will fill this one later */
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 /* can be ignored in this example */
 }
 };

To implement SensorEventListener, we have to implement to methods - onSensorCh
anged(SensorEvent se) and onAccuracyChanged(Sensor sensor, int accuracy). The
first one gets called whenever new sensor data is available, the second one whenever
the accuracy of measurement changes, e.g. when the location service switches from
GPS to network-based. In our example we just need to cover onSensorChanged.

Before we continue, let us define some more variables, which will store the information
about values of acceleration and some state.

Example 15-2.

 /* Here we store the current values of acceleration, one for each axis */
 private float xAccel;
 private float yAccel;
 private float zAccel;

 /* And here the previous ones */
 private float xPreviousAccel;
 private float yPreviousAccel;
 private float zPreviousAccel;

 /* Used to suppress the first shaking */
 private boolean firstUpdate = true;

 /*What acceleration difference would we assume as a rapid movement? */
 private final float shakeThreshold = 1.5f;

 /* Has a shaking motion been started (one direction) */
 private boolean shakeInitiated = false;

I hope that the names and comments do explain enough about what is stored in these
variables, if not, it will become clearer in the next steps. Now let us connect to the
hardware sensors and wire up for their events, onCreate is the perfect place to do so.

Example 15-3.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mySensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); // (1)
 mySensorManager.registerListener(mySensorEventListener, mySensorManager

594 | Chapter 15: Accellerometer

 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL); // (2)
 }

At (1) we get a reference to Android's sensor service, at (2) we register the previously
defined SensorEventListener with the service. More precisely, we register only for
events of the accelerometer and for a normal update rate - this could be changed, if we
needed to be more precise.

Now let us define what we want to do when new sensor date arrives. We have yet
defined a stub for SensorEventListeners method onSensorChanged, now we will fill it
with some life.

Example 15-4.

 public void onSensorChanged(SensorEvent se) {
 updateAccelParameters(se.values[0], se.values[1], se.values[2]); // (1)
 if ((!shakeInitiated) && isAccelerationChanged()) { // (2)
 shakeInitiated = true;
 } else if ((shakeInitiated) && isAccelerationChanged()) { // (3)
 executeShakeAction();
 } else if ((shakeInitiated) && (!isAccelerationChanged())) { // (4)
 shakeInitiated = false;
 }
 }

Once again into the details:

At (1) we copy the values of acceleration which we received from the SensorEvent into
our state variables. The corresponding method is declared like this:

Example 15-5.

 /* Store the acceleration values given by the sensor */
 private void updateAccelParameters(float xNewAccel, float yNewAccel,
 float zNewAccel) {
 /* we have to suppress the first change of acceleration, it results from first values being initialized with 0 */
 if (firstUpdate) {
 xPreviousAccel = xNewAccel;
 yPreviousAccel = yNewAccel;
 zPreviousAccel = zNewAccel;
 firstUpdate = false;
 } else {
 xPreviousAccel = xAccel;
 yPreviousAccel = yAccel;
 zPreviousAccel = zAccel;
 }
 xAccel = xNewAccel;
 yAccel = yNewAccel;
 zAccel = zNewAccel;
 }

At (2) we test for a rapid change of acceleration and whether any has happened before;
if not, we store the information that now has happened.

15.1 Using the accelerometer to detect shaking of the device | 595

At (3) we test again for a rapid change of acceleration, this time with another on before.
If this is true, we can assume a shaking movement according to our definition and
commence action.

At last at (4) we reset if we detected shaking before but do not get a rapid change of
acceleration any more.

To complete the code, we add the last two methods, at first isAccelerationChanged().

Example 15-6.

 /* If the values of acceleration have changed on at least two axises, we are probably in a shake motion */
 private boolean isAccelerationChanged() {
 float deltaX = Math.abs(xPreviousAccel - xAccel);
 float deltaY = Math.abs(yPreviousAccel - yAccel);
 float deltaZ = Math.abs(zPreviousAccel - zAccel);
 return (deltaX > shakeThreshold && deltaY > shakeThreshold)
 || (deltaX > shakeThreshold && deltaZ > shakeThreshold)
 || (deltaY > shakeThreshold && deltaZ > shakeThreshold);
 }

Here we compare the current values of acceleration with the previous ones, if at least
two of them have changed above our threshold, we return true.

The last method is executeShakeAction() which does whatever we wish to do when
being shaken.

Example 15-7.

 private void executeShakeAction() {
 /* Save the cheerleader, save the world
 or do something more sensible... */
 }

15.2 Introduction: Sensors
Ian Darwin

Discussion
Accelerometers are one of the more interesting bits of hardware in smartphones. Earlier
devices like the OpenMoko "Neo" smart phone and the Apple iPhone included them.
Before Android was released I was advocating for OpenMoko at open source confer-
ences. One of my favorite imaginary applications was private key generation. Adhering
to the theory that "When privacy is outlawed, only outlaws will have privacy,", several
people were talking about this as early as 2008 (when I presented the idea, to great
applause, at the Ontario Linux Fest). The idea is: if you can't or don't want to exchange
private keys over a public channel, you meet on a street corner and shake hands - with
each hand having a cell phone concealed in the palm. The devices are touching each
other, thus their sensors should record exactly the same somewhat random motions.

596 | Chapter 15: Accellerometer

With a bit of mathematics to filter out the leading and trailing motion of the hands
moving together, both devices should have quite a few bits' worth of identical, random
data that nobody else has - just what you need for crypto key exchange. I've yet to see
anybody implement this, and I must admit I still hope one of our contributors will come
through.

Meanwhile we have many other recipes on accelerometers and other sensors in this
chapter...

15.3 Checking for device facing up or facing down based on
screen orientation using Accelerometer.
Rachee Singh

Problem
Check for the orientation (Facing up/Facing Down) of the Android device.

Solution
Checking for appropriate Accelerometer values.

Discussion
We require to listen for changes in the accelerometer values, for this purpose we need
to implement a SensorEventListener. The onSensorChanged method is called when
sensor values change. Within this method we check if the values lie within a particular
range for the device to be facing down or facing up.

To obtain the sensor object for an accelerometer:

Example 15-8.

List<android.hardware.Sensor> sensorList = deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);
sensor = sensorList.get(0);

Creating the listener:

Example 15-9.

 private SensorEventListener accelerometerListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 float z = event.values[2];
 if (z >9 && z < 10)
 face.setText("FACE UP");
 else if (z > -10 && z < -9)
 face.setText("FACE DOWN");
 }

15.3 Checking for device facing up or facing down based on screen orientation using Accelerometer. | 597

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {

 }

 };

After implementing the listener along with the methods required, we need to register
the listener for a particular sensor (which in our case is the accelerometer). 'sensor' is
an object of Sensor class, it represents the sensor being used in the application (Accel-
erometer).

Example 15-10.

deviceSensorManager.registerListener(accelerometerListener, sensor, 0, null);

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZjQwYWI3MGEtYmI4NS00YjZjLWE0OGY
tOTcxODY0OGZjYTI5&hl=en_US&authkey=CNq2oK4H

15.4 Finding the orientation of an Android device using
Orientation sensor.
Rachee Singh

Problem
Being able to detect which side of the android device is higher up compared to the rest
(Top/Bottom/Right/Left side)

Solution
By checking if the pitch and roll values of the Orientation sensor of an android device
lie within certain intervals, it can be determined that which side if higher.

Discussion
Like in case of every other sensor supported by Android, we first require to instantiate
the SensorManager class.

Example 15-11.

SensorManager sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);

Using the object of SensorManager class we can get a handle on the sensors available
on the device. The getSensorListe() method returns a list of all sensors of a particular
type (in this case Orientation). We need to check if Orientation sensor is supported by

598 | Chapter 15: Accellerometer

https://docs.google.com/leaf?id=0B_rESQKgad5LZjQwYWI3MGEtYmI4NS00YjZjLWE0OGYtOTcxODY0OGZjYTI5&hl=en_US&authkey=CNq2oK4H
https://docs.google.com/leaf?id=0B_rESQKgad5LZjQwYWI3MGEtYmI4NS00YjZjLWE0OGYtOTcxODY0OGZjYTI5&hl=en_US&authkey=CNq2oK4H
https://docs.google.com/leaf?id=0B_rESQKgad5LZjQwYWI3MGEtYmI4NS00YjZjLWE0OGYtOTcxODY0OGZjYTI5&hl=en_US&authkey=CNq2oK4H

the device, if it is, we get the first sensor from the list of sensors. In case the sensor is
not supported, an appropriate message is displayed.

Example 15-12.

List<android.hardware.Sensor> sensorList = sensorManager.getSensorList(Sensor.TYPE_ORIENTATION);
if (sensorList.size() > 0) {
 sensor = sensorList.get(0);
}
else {
 orient.setText("Orientation sensor not present");
}

To register a SensorEventListener with this sensor:

Example 15-13.

sensorManager.registerListener(orientationListener,sensor, 0, null);

Now, we define the SensorEventListener. This would require implementing 2 methods:
onAccuracyChanged() and onSensorChanged(). onSensorChanged is called when the
sensor values change. In this case its the orientation sensor values that change on mov-
ing the device. Orientation sensor returns 3 values: azimuth, pitch and roll angles. Now
we check the returned values, if they lie within particular range and depending upon
the range they lie in, appropriate text is displayed.

Example 15-14.

private SensorEventListener orientationListener = new SensorEventListener() {

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {
 }

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ORIENTATION) {
 float azimuth = sensorEvent.values[0];
 float pitch = sensorEvent.values[1];
 float roll = sensorEvent.values[2];
 if (pitch < -45 && pitch > -135) {
 orient.setText("Top side of the phone is Up!");

 } else if (pitch > 45 && pitch < 135) {

 orient.setText("Bottom side of the phone is Up!");

 } else if (roll > 45) {

 orient.setText("Right side of the phone is Up!");

 } else if (roll < -45) {

 orient.setText("Left side of the phone is Up!");

15.4 Finding the orientation of an Android device using Orientation sensor. | 599

 }

 }
 }

 };

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LNzZiODY5YmMtNDAxMi00OGQwL
WI3NmQtMGY1ZTdlN2E5MmI5&hl=en_US&authkey=COHZxYkE

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LMGJmYWFhNjktZ
jY5Ni00NTVkLWFlNmMtMTZjNmE4ZTFhNzU0&hl=en_US&authkey=
CMG8z6QL

15.5 Checking for the Presence or Absence of a Sensor
Rachee Singh

Problem
Before using an Android device for a sensor-based application, the programmer needs
to ensure that the required sensor is supported by the device.

Solution
Check for the availability of the sensor on the Android device.

Discussion
SensorManager class is used to manage the sensors available on an Android device. So
we require an object of this class:

Example 15-15.

 SensorManager deviceSensorManager = (SensorManager) getSystemService(SOME_SENSOR_SERVICE);

Then using the getSensorList() method we check for the presence of sensors of any type
(accelerometer, gyroscope, pressure etc). If the list returned has size>0, implies that the
sensor is present. A TextView is used to show the result: Sensor Present/Sensor Absent.

Example 15-16.

 List<android.hardware.Sensor> sensorList = deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);

600 | Chapter 15: Accellerometer

https://docs.google.com/leaf?id=0B_rESQKgad5LNzZiODY5YmMtNDAxMi00OGQwLWI3NmQtMGY1ZTdlN2E5MmI5&hl=en_US&authkey=COHZxYkE
https://docs.google.com/leaf?id=0B_rESQKgad5LNzZiODY5YmMtNDAxMi00OGQwLWI3NmQtMGY1ZTdlN2E5MmI5&hl=en_US&authkey=COHZxYkE
https://docs.google.com/leaf?id=0B_rESQKgad5LNzZiODY5YmMtNDAxMi00OGQwLWI3NmQtMGY1ZTdlN2E5MmI5&hl=en_US&authkey=COHZxYkE
https://docs.google.com/leaf?id=0B_rESQKgad5LMGJmYWFhNjktZjY5Ni00NTVkLWFlNmMtMTZjNmE4ZTFhNzU0&hl=en_US&authkey=CMG8z6QL
https://docs.google.com/leaf?id=0B_rESQKgad5LMGJmYWFhNjktZjY5Ni00NTVkLWFlNmMtMTZjNmE4ZTFhNzU0&hl=en_US&authkey=CMG8z6QL
https://docs.google.com/leaf?id=0B_rESQKgad5LMGJmYWFhNjktZjY5Ni00NTVkLWFlNmMtMTZjNmE4ZTFhNzU0&hl=en_US&authkey=CMG8z6QL
https://docs.google.com/leaf?id=0B_rESQKgad5LMGJmYWFhNjktZjY5Ni00NTVkLWFlNmMtMTZjNmE4ZTFhNzU0&hl=en_US&authkey=CMG8z6QL

 if (sensorList.size() > 0) {
 sensorPresent = true;
 sensor = sensorList.get(0);

 }
 else
 sensorPresent = false;

 /* Set the face TextView to display sensor presence */
 face = (TextView) findViewById(R.id.face);

 if (sensorPresent)
 face.setText("Sensor present!");
 else
 face.setText("Sensor absent.");

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZWJhODM4YzktYjc0YS00YmRmLTkzZTYtZ
DI0ZGRkZDYyNmM3&hl=en_US&authkey=COa-3YoC

15.6 Reading the Temperature Sensor
Rachee Singh

Problem
You need to get temperature values using the temperature sensor.

Solution
Using SensorManager and SensorEventListener to track changes in temperature values
detected by the temperature sensor.

Discussion
We need to create an object of SensorManager to use sensors in an application. Then
we register a listener with the type of sensor we require. To register the listener we
provide the name of the listener, a Sensor object and the type of delay (in this case it is
SENSOR_DELAY_FASTEST) to the registerListener method. In this listener, within
the overridden onSensorChanged method, we can print the temperature value into a
textView named tempVal.

Example 15-17.

SensorManager sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
sensorManager.registerListener(temperatureListener, sensorManager.getDefaultSensor(Sensor.TYPE_TEMPERATURE), SensorManager.SENSOR_DELAY_FASTEST);

15.6 Reading the Temperature Sensor | 601

https://docs.google.com/leaf?id=0B_rESQKgad5LZWJhODM4YzktYjc0YS00YmRmLTkzZTYtZDI0ZGRkZDYyNmM3&hl=en_US&authkey=COa-3YoC
https://docs.google.com/leaf?id=0B_rESQKgad5LZWJhODM4YzktYjc0YS00YmRmLTkzZTYtZDI0ZGRkZDYyNmM3&hl=en_US&authkey=COa-3YoC
https://docs.google.com/leaf?id=0B_rESQKgad5LZWJhODM4YzktYjc0YS00YmRmLTkzZTYtZDI0ZGRkZDYyNmM3&hl=en_US&authkey=COa-3YoC

Example 15-18.

private final SensorEventListener temperatureListener = new SensorEventListener(){
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
 @Override
 public void onSensorChanged(SensorEvent event) {

 tempVal.setText("Temperature is:"+event.values[0]);

 }
};

See Also
Recipe 15.5

602 | Chapter 15: Accellerometer

CHAPTER 16

Bluetooth

16.1 Introduction: Bluetooth
Ian Darwin

Discussion
Bluetooth technology allows connection of a variety of peripherals to a computer, tablet
or phone. Headsets, speakers, keyboards, printers; medical devices such as glucome-
ters, ECG: these and many more are available. Some such as headsets will be supported
automatically by Android; the more esoteric ones will need some programming. Some
of these other devices use SPP, which is basically an unstructured protocol that requires
you to write code to format data yourself. We dont have any recipes on these yet,but
we do have coverage of how to locate and discover the devices that try to connect.

16.2 Connecting to Bluetooth enabled device
Ashwini Shahapurkar

Problem
You need to connect to other bluetooth enabled device and want to communicate with
it.

Solution
You will use the android bluetooth api to connect to device using sockets. The com-
munication will be over the socket streams.

Discussion
For any bluetooth application you need to add these two permissions to Android-
Manifest.xml

603

Example 16-1.

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />

You will create the socket connection to the other bluetooth device. Then you shall
continuously listen for the data from the socket stream in a thread. You can write to
connected stream outside the thread. The connection is a blocking call and bluetooth
device discovery being a heavy process, may slow down the connection. So it is a good
practice to cancel the device discovery before trying to connect to other device.

Note:The bluetooth socket connection is a blocking call and returns only if a connec-
tion is successful or if an exception occurs while connecting to device.

The BluetoothConnection shall create the socket connection to other device, once in-
stantiated and start listening to the data from connected device.

Example 16-2.

private class BluetoothConnection extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;
 byte[] buffer;

 // Unique UUID for this application, you may use different
 private static final UUID MY_UUID = UUID
 .fromString("fa87c0d0-afac-11de-8a39-0800200c9a66");

 public BluetoothConnection(BluetoothDevice device) {

 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the given BluetoothDevice
 try {
 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
 } catch (IOException e) {
 e.printStackTrace();
 }
 mmSocket = tmp;

 //now make the socket connection in separate thread to avoid FC
 Thread connectionThread = new Thread(new Runnable() {

 @Override
 public void run() {
 // Always cancel discovery because it will slow down a connection
 mAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 mmSocket.connect();

604 | Chapter 16: Bluetooth

 } catch (IOException e) {
 //connection to device failed so close the socket
 try {
 mmSocket.close();
 } catch (IOException e2) {
 e2.printStackTrace();
 }
 }
 }
 });

 connectionThread.start();

 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 buffer = new byte[1024];
 } catch (IOException e) {
 e.printStackTrace();
 }

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {

 // Keep listening to the InputStream while connected
 while (true) {
 try {
 //read the data from socket stream
 mmInStream.read(buffer);
 // Send the obtained bytes to the UI Activity
 } catch (IOException e) {
 //an exception here marks connection loss
 //send message to UI Activity
 break;
 }
 }
 }

 public void write(byte[] buffer) {
 try {
 //write the data to socket stream
 mmOutStream.write(buffer);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void cancel() {

16.2 Connecting to Bluetooth enabled device | 605

 try {
 mmSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

See Also
Recipe 16.5

16.3 Enabling Bluetooth and making the device Discoverable.
Rachee Singh

Problem
If the application requires the Bluetooth adapter to be switched On, the programmer
needs to check if its enabled. If it is not, the use should be prompted to enable Bluetooth.
For allowing remote devices to detect the host device, the host device should be made
discoverable.

Solution
Use of Intents to prompt the user to enable Bluetooth and make the device discoverable.

Discussion
Before permorming any action with an instance of BluetoothAdapter class, it should
be checked if the device had enabled the Bluetooth adapter using the isEnabled() meth-
od. If it returns false then the user should be prompted to enable Bluetooth.

Example 16-3.

BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
if (!BT.isEnabled()) {
//Taking user's permission to switch the bluetooth adapter On.
Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
}

This piece of code would show an AlertDialog to the user prompting her to enable
Bluetooth.

On returning to the activity that started the intent, onActivityResult() is called in which,
the name of the host device and its MAC address can be extracted.

606 | Chapter 16: Bluetooth

Example 16-4.

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode==REQUEST_ENABLE_BT && resultCode==Activity.RESULT_OK) {
 BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
 String address = BT.getAddress();
 String name = BT.getName();
 String toastText = name + " : " + address;
 Toast.makeText(this, toastText, Toast.LENGTH_LONG).show();
}

In order to make the device discoverable to other Bluetooth-enabled devices in the
vicinity, these lines of code can be used to prompt take the user's permission.

Example 16-5.

//Taking user's permission to make the device discoverable for 120 secs.
Intent discoverableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
startActivity(discoverableIntent);

16.4 Listening for Bluetooth Connection Requests.
Rachee Singh

Problem
Creating a listening server for Bluetooth Connections.

Solution
For Bluetooth devices to interact, prior to the establishment of a connection, one of the
communicating devices acts like a server. It obtains an instance BluetoothServerSocket

Figure 16-1.

16.4 Listening for Bluetooth Connection Requests. | 607

and listens for incoming requests. This instance is obtained by calling the listenU-
singRfcommWithServiceRecord method on the Bluetooth adapter

Discussion
With the instance of BluetoothServerSocket, we can start listening for incoming re-
quests from remote devices through the start() method. Listening is a blocking process
so we have make a new thread and call it within the thread otherwise the UI of the
application becomes unresponsive.

Example 16-6.

//Making the host device discoverable
startActivityForResult(new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),DISCOVERY_REQUEST_BLUETOOTH);
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == DISCOVERY_REQUEST_BLUETOOTH) {
 boolean isDiscoverable = resultCode > 0;
 if (isDiscoverable) {
 UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");
 String serverName = "BTserver";
 final BluetoothServerSocket bluetoothServer = bluetoothAdapter.listenUsingRfcommWithServiceRecord(serverName, uuid);

 Thread listenThread = new Thread(new Runnable() {

 public void run() {
 try {

 BluetoothSocket serverSocket = bluetoothServer.accept();

 } catch (IOException e) {

Figure 16-2.

608 | Chapter 16: Bluetooth

 Log.d("BLUETOOTH", e.getMessage());
 }
 }
 });
 listenThread.start();
 }
 }
 }

16.5 Bluetooth Device discovery
Shraddha Shravagi

Problem
You want to display a list of Bluetooth devices in the vicinity.

Solution
Simple steps

1. Create XML file to display the list

2. Create a class file to load list

3. Edit manifest file

It's that simple.

Discussion

1 Create XML file to display the list

Example 16-7.

 <ListView
 android:id="@+id/paired_devices"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />

2 Create a class file to load list

Example 16-8.

 //IntentFilter will match the action specified
 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
 //broadcast reciever for any matching filter
 this.registerReceiver(mReciever, filter);

 //attach the adapter
 ListView newDevicesListView = (ListView)findViewById(R.id.new_devices);

16.5 Bluetooth Device discovery | 609

 newDevicesListView.setAdapter(mNewDevicesArrayAdapter);

 filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 this.registerReceiver(mReciever, filter);

//Create a reciever for the Intent
private final BroadcastReceiver mReciever = new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub

 String action = intent.getAction();

 if(BluetoothDevice.ACTION_FOUND.equals(action)){
 BluetoothDevice btDevice = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if(btDevice.getBondState() != BluetoothDevice.BOND_BONDED){
 mNewDevicesArrayAdapter.add(btDevice.getName()+"\n"+btDevice.getAddress());
 }
 }
 else
 if(BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)){
 setProgressBarIndeterminateVisibility(false);
 setTitle(R.string.select_device);
 if(mNewDevicesArrayAdapter.getCount() == 0){
 String noDevice = getResources().getText(R.string.none_paired).toString();
 mNewDevicesArrayAdapter.add(noDevice);
 }
 }

 }
 };

3 Edit manifest file

Example 16-9.

...

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/AndroidBluetoothDemo.zip

610 | Chapter 16: Bluetooth

http://projects.darwinsys.com/AndroidBluetoothDemo.zip
http://projects.darwinsys.com/AndroidBluetoothDemo.zip

CHAPTER 17

System and Device Control

17.1 Phone network/connectivity information
Amir Alagic

Problem
You want to find information about phones network connectivity

Solution
You can find out whether your phone is connected to the network, its type of connec-
tion, and whether your phone is in roaming territory, using the Connectivity Manager
and a NetworkInfo object.

Discussion
Often you need to know whether your phone can connect to the internet and since
roaming can be expensive it is also very useful if we can tell to the app user if he is in
roaming (the user who is truly worried about this will disable data roaming using the
Settings application). To find this and more we can use the NetworkInfo class in the
android.net package.

Example 17-1.

 ConnectivityManager connManager = (ConnectivityManager)this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo ni = connManager.getActiveNetworkInfo();
 /*Indicates whether network connectivity is possible.
 A network is unavailable when a persistent or semi-persistent
 condition prevents the possibility of connecting to
 that network.*/
 boolean available = ni.isAvailable();
 /*Indicates whether network connectivity is possible.
 A network is unavailable when a persistent
 or semi-persistent condition prevents the possibility
 of connecting to that network. Examples include*/

611

 boolean connected = ni.isConnected();
 boolean roaming = ni.isRoaming();
 /* Reports the type of network (currently mobile or Wi-Fi) to which the info in this object pertains.*/
 int networkType = ni.getType();

17.2 Changing incoming call notification to Silent, Vibrate, or
normal
Rachee Singh

Problem
You need to put the Android device to silent, vibrate or normal mode

Solution
Use Android's AudioManager system service to turn the phone to Normal, Silent and
Vibrate modes

Discussion
Here is a sample application that has 3 buttons to change the phone mode to Silent,
Vibrate and Normal:

We instantiate the AudioManager class to be able to use the setRingerMode method.
For each of these buttons (silentButton, normalButton and vibrateButton) we have
OnclickListeners defined in which we used the AudioManager object to set the ringer
mode. We also display a Toast notifying the mode change.

Example 17-2.

 am= (AudioManager) getBaseContext().getSystemService(Context.AUDIO_SERVICE);
 silentButton = (Button)findViewById(R.id.silent);
 normalButton = (Button)findViewById(R.id.normal);
 vibrateButton = (Button)findViewById(R.id.vibrate);

 //For Silent mode
 silentButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_SILENT);
 Toast.makeText(getApplicationContext(), "Silent Mode Activated.", Toast.LENGTH_LONG).show();
 }
 });

 //For Normal mode
 normalButton.setOnClickListener(new View.OnClickListener() {

612 | Chapter 17: System and Device Control

Figure 17-1.

17.2 Changing incoming call notification to Silent, Vibrate, or normal | 613

 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_NORMAL);
 Toast.makeText(getApplicationContext(), "Normal Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

 //For Vibrate mode
 vibrateButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_VIBRATE);
 Toast.makeText(getApplicationContext(), "Vibrate Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

This is how the application looks when the Silent button is clicked. (Notice the silent
icon in the status bar of the phone.)

17.3 Rebooting the Device
Ian Darwin

Problem
For some strange reason, you want the user's Android device to reboot.

Solution
• Ask for REBOOT permission in your AndroidManifest.

• Get a PowerManager instance from getSystemService(), and call its reboot method.

Discussion
Since rebooting the operating system of the mobile device (phone or tablet) is so drastic,
you must ask for it in your AndroidManifest.xml:

Example 17-3.

<uses-permission android:name="android.permission.REBOOT"/>

Even that will probably not be enough, however. You should be aware that the
REBOOT permission has its protectionLevel parameter set to signatureOrSystem, mean-
ing that it is only intended for use by (e.g, the application must be signed by) the or-
ganization that is creating the Android System Image. So unless you are using a custom-
built system image, you will not be able to use this function!

Then, if you're really sure, go ahead and reboot:

614 | Chapter 17: System and Device Control

Figure 17-2.

17.3 Rebooting the Device | 615

Example 17-4.

PowerManager pwrMgr = (PowerManager)mContext.getSystemService(Context.POWER_SERVICE);

pwrMgr.reboot(null);

Again, if the application attempting the reboot is not signed with the same certificate
as the system image, the permission in the manifest will be silently ignored, and you
will get an Application Stopped Unexpectedly dialog.

The argument to the reboot call is named "reason", but the values are a few that are
specially known to the kernel; this is not intended for logging the shutdown reason.
Use the normal logging API for that.

Remember, just because you can do something does not mean that you should! There
are very few circumstances where this is likely to be "socially acceptable". Hopefully
most users will not capriciously install apps with this permission without a good rea-
son...

See Also
http://developer.android.com/reference/android/os/PowerManager.html

17.4 Running shell commands from your application
Rachee Singh

Problem
You need to run a shell command from your application (for instance pwd, ls etc).

Solution
Using the exec() method of the Runtime class we can provide the shell command we
wish to run as an argument.

Discussion
Applications can not create an instance of Runtime class, but they can get an instance
by invoking getRuntime() method. Using this instance we call the exec method which
executes the specified program in a separate native process. It takes the name of the
program to execute as an argument. The exec method returns the new Process object
that represents the native process.

As an example, we run the ps command that lists all the process running on the system.
The full location of the command is specified (/system/bin/ps) as an argument to exec().

We get the output of the command and return the String. process.waitFor() is used to
wait for the command to finish executing.

616 | Chapter 17: System and Device Control

http://developer.android.com/reference/android/os/PowerManager.html

Example 17-5.

try {
 Process process = Runtime.getRuntime().exec("/system/bin/ps");
 InputStreamReader reader = new InputStreamReader(process.getInputStream());
 BufferedReader bufferedReader = new BufferedReader(reader);
 int numRead;
 char[] buffer = new char[5000];
 StringBuffer commandOutput = new StringBuffer();
 while ((numRead = bufferedReader.read(buffer)) > 0) {
 commandOutput.append(buffer, 0, numRead);
 }
 bufferedReader.close();
 process.waitFor();

 return commandOutput.toString();
} catch (IOException e) {
 throw new RuntimeException(e);
} catch (InterruptedException e) {
 throw new RuntimeException(e);
}

Here is how the output of the ps command looks:

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LNTkxMDIyYTgtMzlmMS00ZDViLThkOTUtY
WY4MjQ5NGY1NzFk&hl=en_US

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LNzE1MjhkODU
tOTZkMS00YjhlLTg2YTgtM2U2MmUzZWM4NDMw&hl=en_US

17.5 Copying text and getting text from the Clipboard
Rachee Singh

Problem
You need to copy text to the clipboard and access the text stored on the clipboard

Solution
With the help of the ClipboardManager class, we can access the items stored on the
clipboard of an Android device

17.5 Copying text and getting text from the Clipboard | 617

https://docs.google.com/leaf?id=0B_rESQKgad5LNTkxMDIyYTgtMzlmMS00ZDViLThkOTUtYWY4MjQ5NGY1NzFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTkxMDIyYTgtMzlmMS00ZDViLThkOTUtYWY4MjQ5NGY1NzFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNTkxMDIyYTgtMzlmMS00ZDViLThkOTUtYWY4MjQ5NGY1NzFk&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNzE1MjhkODUtOTZkMS00YjhlLTg2YTgtM2U2MmUzZWM4NDMw&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNzE1MjhkODUtOTZkMS00YjhlLTg2YTgtM2U2MmUzZWM4NDMw&hl=en_US
https://docs.google.com/leaf?id=0B_rESQKgad5LNzE1MjhkODUtOTZkMS00YjhlLTg2YTgtM2U2MmUzZWM4NDMw&hl=en_US

Figure 17-3.

618 | Chapter 17: System and Device Control

Discussion
ClipboardManager class allows us to copy text to the clipboard using the setText
method and also allows us to get the text stored on the clipboard using the getText
method. getText returns a charSequence which is converted to a String by the toString()
method.

Here is a sample code, demonstrating how to obtain an instance of the Clipboard-
Manager class and using it to copy text to the clipboard. Then the getText method is
used to get the text on the clipboard and the text is set to a TextView.

Example 17-6.

ClipboardManager clipboard = (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
clipboard.setText("Using the clipboard for the first time!");
String clip = clipboard.getText().toString();
clipTextView = (TextView) findViewById(R.id.clipText);
clipTextView.setText(clip);

17.6 Making LED based notifications
Rachee Singh

Problem
Some Android phones are equipped with LEDs. An application can flash different color
lights using the LED.

Solution
Using the NotificationManager and Notification class we can make notifications using
the LED on the device.

Discussion
As is in case of all notifications, we instantiate the NotificationManager class. Then we
create a Notification class's object. Using the method ledARGB() we can specify the
color of the LED light. The constant ledOnMS is used to specify the time in milliseconds
for which the LED will be on and ledOffMS specifies the time in milliseconds for which
the LED is off. The notify method starts the notification process. Here's the code cor-
responding to the actions just described:

Example 17-7.

NotificationManager notificationManager = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();
notification.ledARGB = 0xff0000ff; // Blue color light flash
notification.ledOnMS = 1000; // LED is on for 1 second
notification.ledOffMS = 1000; // LED is off for 1 second

17.6 Making LED based notifications | 619

notification.flags = Notification.FLAG_SHOW_LIGHTS;
notificationManager.notify(0, notification);

17.7 Making the Device Vibrate.
Rachee Singh

Problem
Through your application, you wish to notify the user of an event by means of device's
vibration.

Solution
Using Notifications to set a vibration pattern.

Discussion
To use device vibration, include this permission in the AndroidManifest file:

Example 17-8.

<uses-permission android:name="android.permission.VIBRATE"/>

In the Java code, we need to get an instance of the NotificationManager class and of
Notification class:

Example 17-9.

NotificationManager notificationManager = (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();

To set a pattern for the vibration, assign a sequence of long values (time in millisecond)
to Notification's vibrate property. This sequence represents the time for which the de-
vice will vibrate and the time for which it will pause vibration, alternatively. For in-
stance: The pattern used in this example will cause the device to vibrate for 1 second
then pause for 1 second then vibrate again for 1 second and so on.

Example 17-10.

notification.vibrate = new long[]{1000, 1000, 1000, 1000, 1000};
notificationManager.notify(0, notification);

Source Download URL
The source code for this example may be downloaded from this URL: https://docs.goo
gle.com/leaf?id=0B_rESQKgad5LZjJiMTU5MzEtYzk3NC00NTcxLWE0NDAtMDV
jY2I3ZWFmMGI3&hl=en_US&authkey=CJ2SjpAC

620 | Chapter 17: System and Device Control

https://docs.google.com/leaf?id=0B_rESQKgad5LZjJiMTU5MzEtYzk3NC00NTcxLWE0NDAtMDVjY2I3ZWFmMGI3&hl=en_US&authkey=CJ2SjpAC
https://docs.google.com/leaf?id=0B_rESQKgad5LZjJiMTU5MzEtYzk3NC00NTcxLWE0NDAtMDVjY2I3ZWFmMGI3&hl=en_US&authkey=CJ2SjpAC
https://docs.google.com/leaf?id=0B_rESQKgad5LZjJiMTU5MzEtYzk3NC00NTcxLWE0NDAtMDVjY2I3ZWFmMGI3&hl=en_US&authkey=CJ2SjpAC

Binary Download URL
The executable code for this example may be downloaded from this URL: https://docs
.google.com/leaf?id=0B_rESQKgad5LZTNiY2E3YTYtYjc3Yy00OTFiLThkNTQtZGR
lYzFhNzUzYzBh&hl=en_US&authkey=COzAjd0P

17.8 Determining Whether a Given Application is Running
Colin Wilcox

Problem
How do i know if mine or some other app is running?

Solution
The system activity manager maintains a list of all active tasks. This provides the name
of all running tasks and can be interrogated for various system specific information

Discussion
This method takes the name of an application and returns true if the ActivityManager
thinks it is currently running.

Example 17-11.

import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;

public boolean isAppRunning (String aApplicationPackageName)
{
 ActivityManager activityManager = (ActivityManager) this.getSystemService(ACTIVITY_SERVICE);
 if (activityManager == null)
 {
 return false; // should report: can't get Activity Manager
 }

 List<RunningAppProcessInfo> procInfos =
 activityManager.getRunningAppProcesses();
 for(int idx = 0; idx < procInfos.size(); idx++)
 {
 if(procInfos.get(i).processName.equals(aApplicationPackageName))
 {
 return true;
 }
 }

 return false;
}

17.8 Determining Whether a Given Application is Running | 621

https://docs.google.com/leaf?id=0B_rESQKgad5LZTNiY2E3YTYtYjc3Yy00OTFiLThkNTQtZGRlYzFhNzUzYzBh&hl=en_US&authkey=COzAjd0P
https://docs.google.com/leaf?id=0B_rESQKgad5LZTNiY2E3YTYtYjc3Yy00OTFiLThkNTQtZGRlYzFhNzUzYzBh&hl=en_US&authkey=COzAjd0P
https://docs.google.com/leaf?id=0B_rESQKgad5LZTNiY2E3YTYtYjc3Yy00OTFiLThkNTQtZGRlYzFhNzUzYzBh&hl=en_US&authkey=COzAjd0P

CHAPTER 18

Other Programming Languages

18.1 Run external/native Linux command
Amir Alagic

Problem
Sometimes it can be convenient to start one of the Linux commands that are available
on the phone such as rm, sync, top, uptime...

Solution
To run Linux commands available on the Android OS you should use classes that are
available in standard Java and are used to start external processes. First you have to
know which command you want to run and then get/obtain Runtime object and then
execute the native command in a separate native process. Often you will need to read
results and to do that use streams to do that.

Discussion
Since Java is such a powerful language it is pretty simple to start external processes.

With AndroZip File Manager or other you can find Linux commands in ./system/bin
folder. One of the commands is ls which lists the files (and subfolders) in a folder. To
run this command we will send its path to the Runtime.exec method.

You can not create a Runtime object directly since it is a singleton; to obtain its instance
you call the static getRuntime() method and then pass the path to the Linux command
you want to run.

Example 18-1.

 Process process = Runtime.getRuntime().exec("/system/bin/ls");

623

The Process class is used above to create the process; it will also help us read from the
process and we obtain an InputStream that is connected to the standard output stream
(stdout) of the native process represented by this object.

Example 18-2.

 DataInputStream osRes = new DataInputStream(process.getInputStream());

Then we create BufferedReader object which will help us to read results line by line.

Example 18-3.

 BufferedReader reader = new BufferedReader(new InputStreamReader(osRes));

 String line;

 while ((line = reader.readLine()) != null || reader.read() !=-1) {

 Log.i("Reading command result", line);

 }

And as you see we will read all lines and show them on LogCat console. You can see
the output for example in your Eclipse IDE.

You could, of course, capture the output of any system command back into your pro-
gram and either parse it for display in e.g., a ListView, or display it as text in a TextView.

18.2 Running Adobe Air/Flex on Android
Wagied Davids

Problem
Developing AIR/Flex Apps for Android.

Solution
Necessary SDK downloads:

1. Download the Flex 4.1 SDK: http://opensource.adobe.com/wiki/display/flexsdk/
Download+Flex+4

2. Download the Adobe AIR 2.5 SDK: http://www.adobe.com/products/air/sdk/

3. Download the Android SDK: http://dl.google.com/android/android-sdk_r08-win
dows.zip

Steps involved:

1. Create a directory : C:\Library\AIR4Android

2. First, extract/unzip the Android SDK 2.2 - think of this as the top/base layer

624 | Chapter 18: Other Programming Languages

http://opensource.adobe.com/wiki/display/flexsdk
http://www.adobe.com/products/air/sdk/
http://dl.google.com/android/android-sdk_r08-windows.zip
http://dl.google.com/android/android-sdk_r08-windows.zip

3. Second, extract/unzip the Flex 4.1 SDK

4. Third, copy the the AIR 2.5 sdk ZIP file into the extracted Flex SDK folder

5. Fourth, extract/unzip the AIR2.5 SDK OVER-WRITING the existing FLEX SDK
files/folders

6. Push the AIR2.5 runtime onto the Android Emulator using the command: adb
install .\Runtime.apk

Discussion
The technique involves overlaying the Adobe AIR sdk over the the Flex sdk. Once this
is done the necessary Flex development environment is set-up. For FLASH and AIR
applications to run on Android, an AIR runtime is required. To install the runtime on
the emulator or device the adb tool is used. After the runtime is installed, AIR apps can
be created using Flex Builder

Note: This works only with Android 2.2 upwards which have Flash player support.

18.3 Getting Started with ''Scripting Layer for Android''
(formerly Android Scripting Environment)
Ian Darwin

Problem
You want to write your application in one of several popular scripting languages, or,
you want to program interactively on your phone.

Solution
Here's how to get started:

• Download the Scripting Layer for Android (formerly Android Scripting Environ-
ment) from http://code.google.com/p/android-scripting/

• Add the interpreter(s) you want to use

• Type in your program

• Run it immediately - no compilation or packaging steps needed!

Discussion
The SL4A application is not (yet) in the Android Market, so you have to visit the web
site and download it (there is a QRCode for downloading, so start in your laptop or
desktop browser). And since it's not in the market, before you can download it you'll
have to go into Settings->Applications->Unknown Sources and enable unknown-

18.3 Getting Started with ''Scripting Layer for Android'' (formerly Android Scripting Environment) | 625

sourced applications. Also note that since this is not downloaded via the Market, you
will not be notified when the Google project releases a new binary.

Once you have the SL4A binary installed, you must start it and download the particular
interpreter you want to use. The following are available as of this writing:

• Python

• Perl

• JRuby

• Lua

• BeanShell

• JavaScript

• Tcl

• Unix shell

Some of the interpreters (like JRuby) run in the Dalvik VM, while others (like Python)
run the "native" versions of the language under Linux on your phone. Communication
happens via a little server that is started automatically when needed or can be started
from the Interpreters menu bar.

The technique for downloading new interpreters is a bit sub-obvious. When you start
the SL4A application it shows a list of scripts, if you have any. Press the menu button,
then go to the View menu, and select Interpreters (while here notice that you can also
view the Logcat, the system exception log file). From the Interpreters list, pressing
Menu again will get you a menu bar with an Add button, and this lets you add another
interpreter.

Pick a language (Python)

Suppose you think Python is a great language (which it is).

Once your interpreter is installed, go back to the SL4A main page and click the Menu
button, then Add (in this context, Add creates a new file, not another interpreter). Select
the installed interpreter and you'll be in Edit Mode. We're trying Python, so type in this
canonical "hello world" example:

Example 18-4.

import android
droid = android.Android()
droid.makeToast("Hello, Android")

Press the Menu button, and "Save and Run" if enabled, or "Save and Exit" otherwise.
The former will run your new app; the latter will return you to the list of scripts, in
which case you want to tap your script's name. In the resulting pop-up, the choices are
(left to right):

626 | Chapter 18: Other Programming Languages

• Run ("DOS box" icon)

• disabled

• Edit ("pencil" icon)

• Save ("1980 floppy disk icon")

• Delete (trash can icon).

If you long-press a file name, a pop-up gives you the choice of Rename or Delete.

When you run this trivial application, you will see the Toast near the bottom of your
screen.

Source Editing

If you want to keep your scripts in a source repository, and/or if you prefer to edit them
on a laptop or desktop with a traditional keyboard, just copy the files back and forth
(if you phone is rooted, you can probably run your repository directly on the phone).
Scripts are stored in "sl4a/scripts" on the SD card. If you have your phone mounted on
your laptop's /mnt folder, for example, you might see this (On Windows it might be
E: or F: instead of /mnt):

Example 18-5.

laptop$ ls /mnt/sl4a/
Shell.log hello_world.py.log phonepicker.py.log say_weather.py.log speak.py.log
demo.sh.log ifconfig.py.log say_chat.py.log scripts take_picture.py.log
dialer.py.log notify_weather.py.log say_time.py.log sms.py.log test.py.log
laptop$ ls /mnt/sl4a/scripts
bluetooth_chat.py dialer.py hello_world.py notify_weather.py say_chat.py say_weather.py speak.py test.py weather.pyc
demo.sh foo.sh ifconfig.py phonepicker.py say_time.py sms.py take_picture.py weather.py
laptop$

See Also
The official web site is http://code.google.com/p/android-scripting/; there is a QRCode
there to download the latest binary.

Binary Download URL
The executable code for this example may be downloaded from this URL: http://code
.google.com/p/android-scripting/

18.4 Running Native Code with JNI on the NDK
Ian Darwin

18.4 Running Native Code with JNI on the NDK | 627

http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/
http://code.google.com/p/android-scripting/

Problem
You need to run parts of your application natively in order to use existing C/C++ code
or, possibly, to improve performance of CPU-intensive code

Solution
Use JNI (Java Native Interface) via the Android Native Development Kit.

Discussion
Standard Java has always allowed you to load native or compiled code into your Java
program, and Android's Dalvik runtime supports this in a way that is pretty much
identical with the original. Why would you as a developer want to do such a thing?
One reason might be to access OS-dependent functionality. Another is speed: native
code will likely run faster than Java, at least at present, although there is some conten-
tion as to how much difference this really makes. Search the web for conflicting answers.

The native code language bindings are defined for code that has been written in C or
C++. If you need to access a language other than C/C++, you could write a bit of C/C
++ and have it pass control to other functions or applications, but you should also
consider using the (BROKEN XREF TO RECIPE -1 'Android Scripting Environment').

For this example I use a simple numeric calculation, computing the square root of a
double using the simple Newton-Raphson iterative method. The code provides both a
Java and a C version, to compare the speeds.

Ian's Basic Steps: Java Calling Native Code

To call native code from Java:

1. Install the Android Native Development Kit (NDK) in addition to the ADK.

2. Write Java code that declares and calls a native method.

3. Compile this Java code.

4. Create a .h header file using javah.

5. Write a C function that includes this header file and implements the native method
to do the work.

6. Prepare the Android.mk (and optionally Application.mk) configuration files.

7. Compile the C code into a loadable object using $NDK/ndk-build.

8. Package and deploy your application, and test it.

The preliminary step is to download the NDK as a tar or zip file, extract it someplace
convenient, and set the environment variable such as NDK to where you've installed
it, for referring back to the NDK install. You'll want this to read documentation as well
as to run the tools.

628 | Chapter 18: Other Programming Languages

http://developer.android.com/sdk/ndk/1.6_r1/index.html

The first step is to write Java code that declares and calls a native method. To declare
the method, use the keyword native to indicate that the method is native. To use the
native method, no special syntax is used, but your application - typically in your main
Activity - must provide a static code block that loads your native method using Sys-
tem.loadLibrary() . (The dynamically loadable module will be created in Step 6.) Static
blocks are executed when the class containing them is loaded; loading the native code
here ensures it is in memory when needed!

Object variables that your native code may modify should carry the volatile modifier.
In my example, SqrtDemo.java contains the native method declaration (as well as a
Java implementation of the algorithm).

Example 18-6.

public class SqrtDemo {

 public static final double EPSILON = 0.05d;

 public static native double sqrtC(double d);

 public static double sqrtJava(double d) {
 double x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (Math.abs(diff) > EPSILON);
 return x1;
 }
}

The Activity class Main.java uses the native code:

Example 18-7.

// In the Activity class, outside any methods:
static {
 System.loadLibrary("sqrt-demo");
}

// In a method of the Activity class where you need to use it:
double d = SqrtDemo.sqrtC(123456789.0);

The next step is simple; just build the project normally, using the ADK Eclipse Plugin
or Ant.

Next, you need to create a C-language .h header file that provides the interface between
the JVM and your native code. Use javah to produce this file. javah needs to read the
class that declares one or more native methods, and will generate a .h file specific to
the package and class name.

18.4 Running Native Code with JNI on the NDK | 629

Example 18-8.

mkdir jni // keep everything JNI-related here
javah -d jni -classpath bin foo.ndkdemo.SqrtDemo // produces foo_ndkdemo_SqrtDemo.h

The .h file produced is a "glue" file, not really meant for human consumption and
particularly not for editing. But by inspecting the resulting .h file, you'll see that the C
method's name is composed of the name Java, the package name, the class name, and
the method name:

Example 18-9.

JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC
 (JNIEnv *, jclass, jdouble);

Then create a C function that does the work. You must import the .h file and use the
same function signature as is used in the .h file.

This function can do whatever it wishes. Note that it is passed two arguments before
any declared arguments: a JVM environment variable and a "this" handle for the invo-
cation context object. The table shows the correspondence between Java types and the
C types (JNI types) used in the C code.

Table 18-1. Java and JNI types

'''Java type''' '''JNI''' '''Java array type''' '''JNI'''

byte jbyte byte[] jbyteArray

short jshort short[] jshortArray

int jint int[] jintArray

long jlong long[] jlongArray

float jfloat float[] jfloatArray

double jdouble double[] jdoubleArray

char jchar char[] jcharArray

boolean jboolean boolean[] jbooleanArray

void jvoid

Object jobject Object[] jobjectArray

Class jclass

String jstring

array jarray

Throwable jthrowable

The following is the complete C native implementation. It simply computes the square
root of the input number, and returns that. The method is static, so there is no use
made of the "this" pointer.

630 | Chapter 18: Other Programming Languages

Example 18-10.

// jni/sqrt-demo.c

#include <stdlib.h>

#include "foo_ndkdemo_SqrtDemo.h"

JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC(
 JNIEnv *env, jclass clazz, jdouble d) {

 jdouble x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (labs(diff) > foo_ndkdemo_SqrtDemo_EPSILON);
 return x1;
}

The implementation is basically the same as the Java version. Note that javah even
maps the final double EPSILON from the Java class SqrtDemo into a #define for use
within the C version.

The next step is to prepare the file Android.mk, also in the jni folder. For a simple
shared library, this example will suffice:

Example 18-11.

Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := sqrt-demo
LOCAL_SRC_FILES := sqrt-demo.c

include $(BUILD_SHARED_LIBRARY)

Finally, you compile the C code into a loadable object. Under desktop Java, the details
depend on platform, compiler, etc. However, the NDK provides a build script to au-
tomate this. Assuming you have set the NDK variable to the install root of the NDK
download from Step 1, you only need to type

Example 18-12.

$ $NDK/ndk-build # for Linux, Unix, OS-X?
> %NDK%/ndk-build # for MS-Windows

Compile thumb : sqrt-demo <= sqrt-demo.c
SharedLibrary : libsqrt-demo.so
Install : libsqrt-demo.so => libs/armeabi/libsqrt-demo.so

18.4 Running Native Code with JNI on the NDK | 631

And you're done! Just package and run the application normally. The full download
example for this chapter includes buttons to run the sqrt function a number of times
in either Java or C and compare the times. Note that at present it does this work on the
event thread, so large numbers of repetitions will result in "Application Not Respond-
ing" errors, which will mess up the timing.

Congratulations! You've called a native method. Your code may run slightly faster.
However, you will require extra work for portability; as Android begins to run on more
hardware platforms, you will have to (at least) add them to the Application.mk file. If
you have used any assembler code, the problem is much worse.

Beware that problems with your native code can and will crash the runtime process
right out from underneath the Java Virtual Machine. The JVM can do nothing to protect
itself from poorly written C/C++ code. Memory must be managed by the programmer;
there is no automatic garbage collection of memory obtained by the system runtime
allocator. You're dealing directly with the operating system and sometimes even the
hardware, so, 'Be careful. Be very careful.'

See Also
There is a recipe in Chapter 26 of the Java Cookbook which shows variables from the
Java class being accessed from within the native code. The official documentation for
Android's NDK is at The Android Native SDK information page. Considerable docu-
mentation is included in the docs folder of the NDK download. If you need more in-
formation on Java Native Methods, you might be interested in the comprehensive
treatment found in Essential JNI: Java Native Interface by Rob Gordon (Prentice Hall),
originally written for Desktop Java.

Source Download URL
The source code for this example may be downloaded from this URL: http://projects
.darwinsys.com/ndkdemo-src.zip

18.5 Introduction: Other Programming Languages
Ian Darwin

Discussion
Developing new programming languages is a constant process in this industry. Several
new (or not-so-new) languages have become popular recently: Erlang, Scala, Clojure,
Groovy, C#, F#, and more. While the Apple approach on the iPhone has been to
mandate use of Objective C and to ban (at least officially, it seems to be honored more
in the breach) use of other languages, particularly JVM-style translated languages, An-
droid positively encourages use of many languages. You can write your app in pure

632 | Chapter 18: Other Programming Languages

http://developer.android.com/sdk/ndk/1.6_r1/index.html
http://projects.darwinsys.com/ndkdemo-src.zip
http://projects.darwinsys.com/ndkdemo-src.zip

Java using the SDK, of course - that's the subject of most of the rest of the book. You
can mix in some C/C++ code into Java using (BROKEN XREF TO RECIPE -1 'Running
native code|native code'), using Android's NDK. People have made most of the major

Figure 18-1.

18.5 Introduction: Other Programming Languages | 633

compiled languages work, especially (but not exclusively) the JVM-based ones. You
can write using a variety of scripting languages like Perl, Python, Ruby, see (BROKEN
XREF TO RECIPE -1 'Getting Started with Scripting Layer for Android'). And there's
more...

If you want a very high-level, drag-and-drop development process, look at (BROKEN
XREF TO RECIPE -1 'Android Application Inventor'), Google's own toolkit for building
applications easily. At present these can't easily be packaged as apps, but this will
probably come fairly soon.

If you are a web developer used to working your magic in JavaScript and CSS, there is
a route for you to become an Android Developer using the tools you already know.
There are, in fact, five or six technologies that go this route, such as AppCelerator
Titanium, (list others here...). These mostly use CSS to build a style, JavaScript to
provide actions, and W3 standards to provide device access such as GPS. Most of these
work by packaging up a JavaScript interpreter alone with your HTML and CSS into an
APK file. Many of these have the further advantage that they can be packaged to run
on iPhone, Blackberry, and other mobile platforms. The risk I see with these is that,
since they're not using native toolkit items, they may easily provide strange-looking
user interfaces that don't conform either to the Guidelines or to users' expectations of
how apps should behave on the Android platform. That is certainly something to be
aware of if you are using one of these toolkits.

Whether to use the standard SDK or to go the HTML/CSS route is a continuing debate.
To view the pros and cons on both side, check out this DEVOXX presentation.

One of the key ideas in Android was to keep it as an open platform. The wide range of
languages that you can use to develop Android apps testifies that this openness has
been maintained.

18.6 Intro to Flex 4.5 Android Programming
Wagied Davids

Problem
Creating an Android-application using Flex 4.5. The application uses a company stock
symbol as query, and an HTTP service to Google's Finance API, retrieving stock data.

Solution
Flex Builder Burrito and Flex 4.5 - Detailed Screenshots

Discussion
File: GoogleStockApp.mxml

634 | Chapter 18: Other Programming Languages

http://www.parleys.com/?st=5&id=2157

Example 18-13.

<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <s:ViewNavigator label="Search" width="100%" height="100%" firstView="views.SearchView"/>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:TabbedViewNavigatorApplication>

File: File: views.SearchView.mxml

Example 18-14.

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:googlestockservicelookup="services.googlestockservicelookup.*"
 xmlns:googlestockservice="services.googlestockservice.*"
 title="Search">

 <fx:Script>
 XXXCDATA[
 import valueObjects.StockResult;
 protected function getStockQuote(stock:String):void
 {
 getStockQuoteResult.token = googleStockService.getStockQuote(stock);
 }

 XXX>
 </fx:Script>

 <fx:Declarations>
 <s:CallResponder id="getStockQuoteResult"/>
 <googlestockservice:GoogleStockService id="googleStockService"/>
 </fx:Declarations>

 <s:HGroup x="10" y="32" width="460" height="71">
 <s:TextInput id="input" width="362" height="68" prompt="Stock Symbol"/>
 <s:Button height="69" label="Enter" click="getStockQuote(input.text);"/>
 </s:HGroup>
 <s:Scroller x="10" y="121" width="460" height="488">
 <s:VGroup width="100%" height="100%">
 <s:VGroup width="458" height="487">
 <s:HGroup width="456" height="49">
 <s:Label text="Time: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.trade_timestamp.data.toString()} "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.trade_time_utc.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Company: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.company.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Exchange"/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.exchange.data.toString()}"/>
 </s:HGroup>

18.6 Intro to Flex 4.5 Android Programming | 635

 <s:HGroup width="456" height="49">
 <s:Label text="Currency: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.currency.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Open: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.open.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Close: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.y_close.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Change: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.change.data.toString()} "/>
 <s:Label text=" ({getStockQuoteResult.lastResult.finance.perc_change.data.toString()} %)"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Last: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.last.data.toString()} "/>
 <s:Label text="High: "/>
 <s:Label text=" {getStockQuoteResult.lastResult.finance.high.data.toString()}"/>
 <s:Label text="Low: "/>
 <s:Label text=" {getStockQuoteResult.lastResult.finance.low.data.toString()}"/>
 </s:HGroup>
 <s:HGroup width="456" height="49">
 <s:Label text="Volume: "/>
 <s:Label text="{getStockQuoteResult.lastResult.finance.volume.data.toString()} "/>
 <s:Label text="Ave. Volume: "/>
 <s:Label text=" {getStockQuoteResult.lastResult.finance.avg_volume.data.toString()}"/>
 </s:HGroup>
 </s:VGroup>
 </s:VGroup>
 </s:Scroller>

</s:View>

Note that the parts marked XXXCDATA and XXX in the above must be changed to be
valid XML CDATA wrapper; we can't show that here as the Android Cookbook pro-
duction software uses CDATA around source attachments, and XML doesn't let you
nest CDATA elements...

Binary Download URL
The executable code for this example may be downloaded from this URL: http://
www.filefactory.com/file/cc04e7b/n/GoogleStockApp.zip

18.7 Sharing your scripts (ASE) using QR codes
Rachee Singh

636 | Chapter 18: Other Programming Languages

http://www.filefactory.com/file/cc04e7b/n/GoogleStockApp.zip
http://www.filefactory.com/file/cc04e7b/n/GoogleStockApp.zip

Problem
You need to distribute your ASE scripts using QR (Quick Response) Codes

Solution
Use http://zxing.appspot.com/generator/ or many other QR code generators to gen-
erate a QR code for your script.

Discussion
QR codes are a great way to share your scripts if they are short (since QR codes can
only encode 4,296 characters of content). Follow these simple steps to generate a QR
code for your script:

• Visit (BROKEN XREF TO RECIPE -1 'http://zxing.appspot.com/generator/').

• Select 'text' from the drop down menu.

• In text content, put the script's name in the first line.

• From the next line onwards, enter the script.

• Choose 'L' in barcode size and click generate.

• This is how it looks:

Figure 18-2.

18.7 Sharing your scripts (ASE) using QR codes | 637

18.8 Using native handset functionality from webview using
Javascript
Colin Wilcox

Problem
The advent of HTML5 as standard in many browsers means that applications can ex-
ploit the features of the HTML5 standard to create applications much more quickly
than if they were written in native Java. This sounds great for many applications but
alas not all of the cool functionality on the device is accessible through HTML5 and
Javascript. Webkits attempt to bridge the gap but may not provide all the functionality
needed in all cases.

Solution
You can invoke Java code in response to Javascript events using a bridge between the
JS and Java environments.

Discussion
The idea is to tie up events within the Javascript embedded in an HTML5 webpage and
handle the event on the Java side by calling native code.

The example below creates a button in HTML5 embedded in a webview which when
clicked causes the contacts application to be invoked on the device through the Intent
mechanism

Example 18-15.

import android.content.Context;
import android.content.Intent;
import android.util.Log;

Write some thin bridge code:

Example 18-16.

public class JavaScriptInterface
{
 private static final String TAG = "JavaScriptInterface";
 Context iContext = null;

 /** Instantiate the interface and set the context */
 JavaScriptInterface(Context aContext)
 {
 // save the local content for later use
 iContext = aContext;
 }

638 | Chapter 18: Other Programming Languages

 public void launchContacts();
 {
 iContext.startActivity(contactIntent);
 launchNativeContactsApp ();
 }
}

The native code to actually launch contacts is below:

Example 18-17.

private void launchNativeContactsApp()
{
 String packageName = "com.android.contacts";
 String className = ".DialtactsContactsEntryActivity";
 String action = "android.intent.action.MAIN";
 String category1 = "android.intent.category.LAUNCHER";
 String category2 = "android.intent.category.DEFAULT";

 Intent intent = new Intent();
 intent.setComponent(new ComponentName(packageName, packageName + className));
 intent.setAction(action);
 intent.addCategory(category1);
 intent.addCategory(category2);
 startActivity(intent);
}

The Javascript which ties this all together is shown below. In this case the call is trig-
gered by a click event

Example 18-18.

<input type="button" value="Say hello" onClick="showAndroidContacts())" />
<script type="text/javascript">
 function showAndroidContacts()
 {
 Android.launchContacts();
 }
</script>

The only preconditions is that the web browser has Javascript enabled and the interface
is known. This is done by

Example 18-19.

WebView iWebView = (WebView) findViewById(R.id.webview);
iWebView.addJavascriptInterface(new JavaScriptInterface(this), "Android");

18.8 Using native handset functionality from webview using Javascript | 639

CHAPTER 19

Internationalization

19.1 Introduction: Internationalization
Ian Darwin

Discussion
"All the world's a stage," wrote William Shakespeare. But not all the players upon that
great and turbulent stage speak the great Bard's native tongue. To be usable on a global
scale, your software needs to communicate in many different languages. The menu
labels, button strings, dialog messages, titlebar titles, and even command-line error
messages must be settable to the user's choice of language. This is the topic of inter-
nationalization and localization. Because these words take a long time to say and write,
they are often abbreviated by their first and last letters and the count of omitted letters,
that is, I18N and L10N.

If you've got your Strings in a separate XML file as we advised in Chapter 1, Getting
Started, you have already done part of the work of Internationalizing your app. Aren't
you glad you followed our advice?

Android provides a Locale class to discover/control the internationalization settings.
A default Locale is inherited from the user's Language settings when your App starts up.

Note that if you know Internationalization from Desktop Java, it's pretty much the
same. We'll explain as we go along, with examples, in this chapter.

Ian's Basic Steps: Internationalization

Internationalization and localization consist of:

• Sensitivity training (Internationalization or I18N): making your software sensitive
to these issues;

• Language lessons (Localization or L10N): writing configuration files for each lan-
guage;

641

• Culture lessons (optional): customizing the presentation of numbers, fractions,
dates, and message-formatting. Images that mean different things in different cul-
tures.

There are examples of doing these things in the Recipes of this chapter.

See Also
See also by Java Internationalization by Andy Deitsch and David Czarnecki (O'Reilly).

19.2 Internationalizing Application Text
Ian Darwin

Problem
You want the text of your buttons, labels and so on to appear in the user's chosen
language.

Solution
Create a new strings.xml in the res/values-XX/ subdirectory of your application.
Translate the string values to the given language.

Discussion
Every Android Project created with the SDK has a file called strings.xml in the res/
values directory. This is where you are recommended to place all your application's
strings, from the application title through to the button text and even down to the
contents of dialogs.

When you refer to a string by name, either by a reference like android:text="@string/
hello" in a layout file or by a lookup like getString(R.string.hello), you look up the
string's value from this file.

To make all of these strings available in a different language, you need to know the
correct ISO-3166 language code; a few common ones are shown in the table.

Table 19-1. Common Languages and Codes

Language Code

Chinese (traditional) cn-tw

Chinese (simplified) cn-zh

English en

French fr

German de

Italian it

642 | Chapter 19: Internationalization

http://oreilly.com/catalog/9780596000196/

Language Code

Spanish es

With this information, you can create a new subdirectory res/values-XX/ (where XX
is replaced by the ISO language code). In this directory you create a copy of
strings.xml and in it, translate the individual string values. For example, a simple ap-
plication might have the following strings.xml:

Example 19-1.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello Android</string>
 <string name="app_name">MyAndroid</string>
</resources>

You might create res/values-es/strings.xml containing the following:

Example 19-2.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hola Android</string>
 <string name="app_name">MiAndroid</string>
</resources>

And create the file create res/values-fr/strings.xml containing the following:

Example 19-3.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Bonjour Android</string>
 <string name="app_name">MonAndroid</string>
</resources>

Now when you look up the string "hello" using either of the methods described earlier,
you will get the version based on the user's language choice. If the user selects a language
that you don't have a L10N file for, the app will still work, but will get the value from
the default file - the one in the values directory with no language code. For most of us,
that will contain the English values, but it's up to the developer.

Similarly, if there is a string that's not defined in a language-specific file, the app will
find the version of it from the default strings.xml file.

Is it really that simple?

Yes. Just package your application and deploy it (if you're using Eclipse, just Run As
Android Application). Go into the Settings app of your emulator or device, choose
Language, and select French or Spanish and the program title and window contents
should reflect the change.

19.2 Internationalizing Application Text | 643

You just have to remember to keep the versions of strings.xml in sync.

Regional Variants

OK, so it's not quite that simple. There are also regional variations within a language.
In English there are, for example, UK English (a.k.a. "the real thing" by some), US
English, Canadian, Australian, and so on. These, fortunately, have tended to use the
same vocabulary for technical terms, so using the regional variations is not as important
for English. French and Spanish, to name just two, are languages where there is signif-
icant variation from in vocabulary from one region to another. Parisian French and
French Canadian have used different vocabularies for many words coined since the
1500's when their exodus began. The many Spanish colonies were likewise largely iso-
lated from hearing each others' speech for hundreds of years - from their founding until
the age of radio - and they have diverged even more than French. So you may want to
create 'variant' files for these languages, as for any other that has significant regional
variation.

Android's practice here diverges slightly from Java's, in that Android uses a letter 'r' to
denote regional variations, e.g., values-fr-rCA for French Canadian. Note that as in
Java, language codes are in lower case and variations (which are usually the two-letter
ISO country code) are written in capital letters (except for the leading 'r'). So we might
wind up with the set of files listed in the table below.

Table 19-2. L10N Directory Examples

Directory

values English; default.

values-es Spanish ("Castilian", generic)

values-es-rCU Spanish - Cuban

values-es-rCL Spanish - Chilean

See Also
There is a bit more detail at the official Android Localization documentation.

644 | Chapter 19: Internationalization

http://developer.android.com/guide/topics/resources/localization.html

Figure 19-1.

19.2 Internationalizing Application Text | 645

CHAPTER 20

Packaging, deploying and selling

20.1 Signing Your Application
Zigurd Mednieks

Problem
You want to sign your application prior to uploading it to the Android Market.

Solution
An APK file is a standard Java Archive (JAR) format, so you just use the standard JDK
tool jarsigner.

Discussion
Having created a key, and a Map API key if needed, you are almost ready to sign your
application, but first you need to create an unsigned version that you can sign with your
digital certificate. To do that, in the Package Explorer window of Eclipse, right-click
on your project name. You'll get a long pop-up menu; toward the bottom, click on
Android Tools. You should see another menu that includes the item you want: "Export
Unsigned Application Package...". This item takes you to a File Save dialog box, where
you can pick the place to save the unsigned version of your apk file. It doesn't matter
where you put it, just pick a place you can remember. Now that you have an unsigned
version of your apk file, we can go ahead and sign it using jarsigner.

Open a terminal or command window in the directory where you stored the unsigned
apk file. To sign MyApp, using the key (BROKEN XREF TO RECIPE -1 'Creating a
Signing Certificate|generated earlier'):

Example 20-1.

$ jarsigner -verbose -keystore myapp.keystore MyApp.apk mykey

647

You should now have a signed version of your application that can be loaded and run
on any Android device. But before you send it in to Android Market, there's one more
intervening step.... You have re-built the application, so you must test it again, on real
devices. If you don't have a real device get one. If you only have one, get more, or make
friends with somebody that owns a device from a different manufacturer.

20.2 How to integrate Admob into your app
Enrique Diaz

Problem
You want to monetize your free app by showing ads within it.

Solution
Using Admob Libraries you can start using ads in your free app, getting money for each
click.

Discussion
AdMob is one of the world's largest mobile advertising networks, offering solutions for
discovery, branding and monetization on mobile phones.

The AdMob Android SDK contains the code necessary to install AdMob ads in your
application.

Step 1

In your project's root directory create a subdirectory libs. This will already be done for
you if you used Android's activitycreator tool. Copy the AdMob JAR (admob-sdk-
android.jar) file into that libs directory.

For Eclipse projects:

1. Right-click on your project from the Package Explorer tab and select Properties

2. Select Java Build Path from left panel

3. Select Libraries tab from the main window

4. Click on Add JARs...

5. Select the JAR copied to the libs directory

6. Click OK to add the SDK to your Android project

648 | Chapter 20: Packaging, deploying and selling

Step 2

Add your publisher ID to your AndroidManifest.xml . Just before the closing </appli-
cation> tag add a line to set your publisher ID. If your publisher ID were 149afxxxx, the
line would look like this:

Example 20-2.

<meta-data android:value="a149afxxxx" android:name="ADMOB_PUBLISHER_ID"/> </application>

To find your publisher ID, log into your AdMob account, select the Sites and Apps
tab, and click on the Manage Settings link for your site. On this page, you can find
your publisher ID as shows figure 1.

figure 1. Showing where you can find your Publisher ID

Step 3

Add the INTERNET permission to your AndroidManifest.xml just before the closing
</manifest> tag:

Example 20-3.

<uses-permission android:name="android.permission.INTERNET" /> </manifest>

Optionally, you can add the ACCESS_COARSE_LOCATION and/or ACCESS_FINE_LOCATION
permissions to allow AdMob the ability to show geo- targeted ads.

Your final AndroidManifest.xml may look something like figure 2.

Figure 20-1.

20.2 How to integrate Admob into your app | 649

figure 2. This is how it would look after pasting some code

Step 4

Paste the following into your attrs.xml file:

Example 20-4.

<declare-styleable name="com.admob.android.ads.AdView">
<attr name="backgroundColor" format="color" />
<attr name="primaryTextColor" format="color" />
<attr name="secondaryTextColor" format="color" />
<attr name="keywords" format="string" />
<attr name="refreshInterval" format="integer" />
</declare-styleable>

If your project does not already have an attrs.xml file, then create one in the /res/values/
directory of your project, and paste the following:

Example 20-5.

<?xml version="1.0" encoding="utf-8"?> <resources>
<declare-styleable name="com.admob.android.ads.AdView">
<attr name="backgroundColor" format="color" />
<attr name="primaryTextColor" format="color" />
<attr name="secondaryTextColor" format="color" />
<attr name="keywords" format="string" />

Figure 20-2.

650 | Chapter 20: Packaging, deploying and selling

<attr name="refreshInterval" format="integer" />
</declare-styleable>
</resources>

Step 5

Create a reference to the attrs.xml file in your layout element by adding xmlns line
that includes your package name specified in AndroidManifest.xml . For example, if
your package name were com.example.sampleapp you would include this line:

Example 20-6.

xmlns:myapp="http://schemas.android.com/apk/res/com.example.sampleapp"

So for a simple screen with only one ad, your layout element would look like this:

Example 20-7.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:myapp="http://schemas.android.com/apk/res/com.example.SampleApp"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<com.admob.android.ads.AdView
android:id="@+id/ad"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
myapp:backgroundColor="#000000"
myapp:primaryTextColor="#FFFFFF"
myapp:secondaryTextColor="#CCCCCC"
</LinearLayout>
/>

Step 6

When integrating AdMob ads into your application it is recommended to use test mode.
In test mode test, ads are always returned. Test mode is enabled on a per-device basis.
To enable test mode for a device, first request an ad, then look in LogCat for a line like
the following:

To get test ads on the emulator use AdManager.setTestDevices...

Once you have the device ID you can enable test mode by calling in your main activity
AdManager.setTestDevices:

Example 20-8.

AdManager.setTestDevices(new String[] { AdManager.TEST_EMULATOR, "E83D20734F72FB3108F104ABC0FFC738", //Phone ID
});
}

20.2 How to integrate Admob into your app | 651

Once you have successfully requested test ads, try clicking on each type of test ad to
make sure it works properly from your application. The type of test ad returned is
changed with AdManager.setTestAction. You can see the result in figure 3.

figure 3. The result of this snippet

See Also
http://www.admob.com/ http://androidtitlan.org/2010/09/como-agregar-publici-
dad-con-admob-a-tu-android-app/ http://groups.google.com/group/admob-publish-
er-discuss

20.3 Distributing Your Application via the Android Market
Zigurd Mednieks

Problem
You want to give away or sell your application via the Android Market.

Discussion
After you're satisfied that your application runs as expected on real Android devices,
you're ready to upload to Android Market, Google's service for publishing and down-
loading Android applications. The procedure is pretty straightforward:

1. Sign up as an Android Developer (if you're not already signed up).

2. Upload your signed application.

Signing Up As an Android Developer

Go to Google's website at http://market.android.com/publish, and fill out the forms
provided. You will be asked to:

• Use your Google account to log in (if you don't have a Google account, you can
get one for free by following the Create Account link on the login page).

• Agree to the Android Market Terms of Service.

• Pay a one-time fee of $25 (payable by credit card via Google Checkout; again, if
you do't have an account set up, you can do so quickly).

• If the game is being charged for, specify your payment processor (again, you can
easily sign up for a Google Payments account).

The forms ask for a minimal amount of information--your name, phone number, etc.--
and you are signed up.

652 | Chapter 20: Packaging, deploying and selling

Figure 20-3.

20.3 Distributing Your Application via the Android Market | 653

Uploading Your Application

Now you can go to http://market.android.com/publish/Home to upload your applica-
tion. To identify and categorize your application, you will be asked for the following:

• Application apk file Name and Location: The apk file of your application, signed
with your private signature certificate.

• Title and Description: These are very important, because they are the core of your
marketing message to potential users. Try to make the title descriptive and catchy
at the same time, and describe the application in a way that will make your target
market want to download it.

• Application Type: There are currently two choices: Applications or Games.

• Category: The allowable list of categories varies depending on Application Type.
The currently available categories for Applications are: Communications, Demo,
Entertainment, Finance, Lifestyle, Multimedia, News & Weather, Productivity,
Reference, Shopping, Social, Software Libraries, Tools, and Travel. For Games, the
currently available categories include: Arcade & Action, Brain & Puzzle, Cards &
Casino, and Casual.

• Price: This may be "Free" or a fixed price. Refer to the agreement you agreed to
above to see what percentage you actually get to keep.

• Geography: You can limit where your application is available, or choose to make
it available everywhere.

Finally, you are asked to confirm that your application meets the Android Content
Guidelines and that it does not knowingly violate any export laws. After that, you can
upload your apk file, and within a few days your application will appear on the Android
Market online catalog, accessible from any connected Android device. There is cur-
rently no way to access Android Market directly from your PC or Mac, so you'll have
to use your Android phone to find out when your application is available for download.
Use the search box in the market, or, load in the browser a file with a link of the form
URL of market://details?id=com.yourorg.yourprog, but with your application's actual
package name.

Then What?

Then, sit back and watch the fame or money - and the support emails - roll in. Be patient
with end users, for they do not think as we do.

20.4 Creating a Signing Certificate
Zigurd Mednieks

654 | Chapter 20: Packaging, deploying and selling

http://market.android.com/publish/Home

Problem
You want to publish an application, and you need a "signing key" to complete the
process.

Solution
Use the standard JDK tool keytool to generate a self-signed certificate.

Discussion
Google has stated that one of its intentions with Android was to minimize the hassle
of getting applications signed. You don't have to go to a central signing authority to get
a signing certificate; you can create the certificate yourself. Once you generate the cer-
tificate, you can sign your application using the jarsigner tool that comes with the Java
JDK. Once again, you don't need to apply for or get anyone's approval. As you'll see,
it's about as straightforward as signing can be.

To sign your application, you are going to create an encrypted signing certificate and
use it to sign your application. You can sign every Android application you develop
with the same signing certificate. You can create as many signing certificates as you
want, but you really need only one for all your applications. And using one certificate
for all your applications lets you do some things that you couldn't do otherwise:

• Simplify upgrades: Signing certificates are tied to the application package name,
so if you change the signing certificate you use with subsequent versions of your
application, you'll have to change the package name, too. Changing certificates is
manageable, but messy.

• Multiple applications per process: When all your applications share the same sign-
ing certificate, they can run in the same Linux process. You can use this to separate
your application into smaller modules (each one an Android application) that to-
gether make up the larger ap- plication. If you were to do that, you could update
the modules separately and they could still communicate freely.

• Code/data sharing: Android lets you enable or restrict access to parts of your ap-
plication based on the requester's signing certificate. If all your applications share
the same certificate, it's easy for you to reuse parts of one application in another.

When you generate a key pair and certificate you'll be asked for the validity period you
desire for the certificate. Although usual practice in web site development is to use one
or two years, Google recommends that you set it for at least 25 years, and in fact, if
you're going to use Android Market to distribute your application, it requires a validity
date at least until October 22, 2033 (25 years to the day from when they opened Android
Market) for your certificate.

20.4 Creating a Signing Certificate | 655

Generating a key pair (public and private keys) and a signing certificate

To generate a pair of public/private keys, use a tool called keytool, which came with
the Sun JDK when you installed it onto your development computer. keytool asks you
for some information and uses that to generate the pair of keys:

• A private key that will be kept in a keystore on your computer, secured with pass-
words. You will use the private key to sign your application, and if you need a Map
API Key for your application, you will use the MD5 fingerprint of the signing cer-
tificate to generate the Map API Key.

• A public key that Android can use to decrypt your signing certificate. You will send
the public key along with your published application so that it can be made avail-
able in the runtime environment. Signing certificates are actually checked only at
install time, so once installed, your application is good to run, even if the certificate
or keys expire.

keytool is pretty straightforward. From your operating system's command line, enter
something like:

Example 20-9.

$ keytool -genkey -v -keystore myapp.keystore -alias myapp -keyalg RSA
 -validity 10000

This asks keytool to generate a key pair and self-signed certificate (-genkey) in verbose
mode (-v), so you get all the information, and put it in a keystore called myapp.keystore
(-keystore). It also says that in the future you want to refer to that key by the name
myapp (-alias), and that keytool should use the RSA algorithm for generating public/
private key pairs (-keyalg). Finally, we say that we'd like the key to be valid for 10,000
days (-validity), or about 27 years.

keytool will prompt you for some things it uses to build the key pair and certificate:

• A password to be used in the future when you want to access the keystore

• Your first and last names

• Your organizational unit (the name for your division of your company, or some-
thing like "self" if you aren't developing for a company)

• Your organization name (the name of your company, or anything else you want to
use)

• The name of your city or localitY

• The name of your state or province

• The two-letter country code where you are located

keytool will then echo all this information back to you to make sure it's accurate, and
if you confirm the information, will generate the key pair and certificate. It will then
ask you for another password to use for the key itself (and give you the option of using

656 | Chapter 20: Packaging, deploying and selling

the same password you used for the keystore). Using that password, keytool will store
the key pair and certificate in the keystore.

See Also
If you're not familiar with the algorithms used here such as RSA and MD5, well, you
don't actually need to know much about them. Assuming you've a modicum of intel-
lectual curiostity, you can find out all you need to know about them with any good
web search engine.

You can get more information about security, key pairs, and the keytool utility on Sun's
website at http://java.sun.com/j2se/1.5.0/docs/tooldocs/#security.

20.5 Obfuscating and Optimizing with ProGuard
Ian Darwin

Problem
You want to obfuscate your code, or optimize it (for speed or size), or all of the above.

Solution
The optimization and obfuscation tool ProGuard is supported by the Ant Script pro-
vided with the modern Android Project wizard in Eclipse, needing only to be enabled.

Discussion
Obfuscation of code is the process of trying to hide information (such as compile-time
names visible in the binary) that would be useful in reverse-engineering your code. If
your application contains commercial or trade secrets, you probably do want to ob-
fuscate it. If your program is open source, there is probably no need to obfuscate the
code. You decide.

Optimization of code is analogous to refactoring at the source level; but it usually aims
to make the code either faster, smaller, or both.

The normal development cycle with Android and Eclipse involves compilation to
standard Java ByteCode (done by the Eclipse Compiler) then conversion to the An-
droid-specific DEX (Dalvik Executable) format. ProGuard is Eric Lafortune's open-
source, free software program to optimize and obfuscate Java code. ProGuard is not
Android-specific; it works with console-mode applications, Applets, Swing applica-
tions, JavaME Midlets, Android, or just about any type of Java program. ProGuard
works on compiled Java, so it must be interposed in the development cycle before
conversion to DEX. This is most readily achieved using the standard Java build tool
Ant. The Eclipse Android Project Wizard, as of Gingerbread (2.3), includes support for

20.5 Obfuscating and Optimizing with ProGuard | 657

http://proguard.sourceforge.net

ProGuard in the generated build.xml file. You only need to edit the file build.proper
ties to include the folowing line, which gives the name of the configuration file.

Example 20-10.

proguard.config=proguard.cfg

For older versions, please refer to the ProGuard Reference Manual.

Configuration File

The ProGuard processing is controlled by the configuration file (normally called pro-
guard.cfg), which has its own syntax. Basically keywords begin with a "-" character in
the first character position, followed by a keyword, followed by optional parameters.
Where the parameters reference Java classes or members, the syntax somewhat mimics
Java syntax to make your life easier. Here is a minimal ProGuard configuration file for
an Android application:

Example 20-11.

-injars bin/classes
-outjars bin/classes-processed.jar
-libraryjars /usr/local/java/android-sdk/platforms/android-9/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic

-keep public class com.example.MainActivity

The first section specifies the paths of your project, including a temporary directory for
the optimized classes.

The next section lists various options. Preverification is only for full Java projects, so
it's turned off. The optimizations shown are for a 1.5 Android and could probably be
omitted today.

Finally, the class com.example.MainActivity has to be present in the output of the op-
timization and obfuscation process, since it is the main activity and is referred to by
name in the AndroidManifest.

A full working proguard.cfg will normally be generated for you by the Eclipse New
Android Project Wizard. Here, for example, is the configuration file generated for an
Android 2.3.3 project:

Example 20-12.

-optimizationpasses 5
-dontusemixedcaseclassnames
-dontskipnonpubliclibraryclasses
-dontpreverify

658 | Chapter 20: Packaging, deploying and selling

http://proguard.sourceforge.net/index.html

-verbose
-optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet);
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
}

-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}

-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
}

The prolog is mostly similar to the earlier example. The keep, keepclasseswithmember
names, and keepclassmembers specify particular classes that must be retained. These are
mostly obvious, but the enum entries may not be: the Java 5 enum methods values() and
valueOf() are sometimes used with the Reflection API, so they must remain visible, as
must any classes that you access via the Reflection API.

The ILicensingService entry is only needed if you are using Android's License Validation
Tool (LVT):

Example 20-13.

-keep class com.android.vending.licensing.ILicensingService

See Also
The ProGuard Reference Manual has many more details. There is also information at
Google's Developer Site. Finally, Matt Quigley has an article at AndroidEngineering
entitled Optimizing, Obfuscating, and Shrinking your Android Applications with Pro-
Guard.

20.5 Obfuscating and Optimizing with ProGuard | 659

http://proguard.sourceforge.net/index.html
http://developer.android.com/guide/developing/tools/proguard.html
http://www.androidengineer.com/2010/07/optimizing-obfuscating-and-shrinking.html
http://www.androidengineer.com/2010/07/optimizing-obfuscating-and-shrinking.html

20.6 Provide a Link to other Published Apps in the Market
Daniel Fowler

Problem
Your developed App is running on a device; you want a link to your other Apps on the
Android Market to encourage users to try them.

Solution
Use an Intent and URI that contains your Publisher Name or Package Name.

Discussion
Android's Intent system is a great way for your application to leverage functionality
that has already been written by other developers. The Android Market application,
which is used to browse and install Apps, can be called from an application by using
an Intent. This allows an existing App to have a link to other Apps on the Android
Market, thus allowing an App developer or publisher to encourage users to try their
other Apps.

To search via the Android Market App the standard Intent mechanism is used, as de-
scribed in the recipe Recipe 1.8. The Uniform Resource Indentifier (URI) used is mar-
ket://search?q=search term where search term is replaced by the appropriate text,
such as the program name or keyword. The Intent Action is ACTION_VIEW.

The URI can also point directly to the Android Market details page for a package by
using market://details?id=package name where package name is replaced by the
unique Package Name for the App.

The program shown here will allow a text search of the Android Market or show the
details page for a given App. Here is the layout:

Example 20-14.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:id="@+id/etSearch"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:singleLine="true"/>
 <RadioGroup android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <RadioButton android:id="@+id/rdSearch"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:checked="true"

660 | Chapter 20: Packaging, deploying and selling

 android:text="search"
 android:textSize="20sp"/>
 <RadioButton android:id="@+id/rdDetails"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="details"
 android:textSize="20sp"/>
 </RadioGroup>
 <Button android:id="@+id/butSearch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:text="Search Android Market"/>
</LinearLayout>

An EditText allows entry of the search term, a RadioButton can be used to do a straight
search or show an Apps details page (provided the full Package Name is known). The
Button starts the search.

The important point to notice in the code is that the search term is encoded.

Example 20-15.

public class main extends Activity {
 RadioButton publisherOption; //Option for straight search or details
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Search button press processed by inner class HandleClick
 findViewById(R.id.butSearch).setOnClickListener(new OnClickListener(){
 public void onClick(View arg0) {
 String searchText;
 //Reference search input
 EditText searchFor=(EditText)findViewById(R.id.etSearch);
 try {
 //URL encoding handles spaces and punctuation in search term
 searchText = URLEncoder.encode(searchFor.getText().toString(),"UTF-8");
 } catch (UnsupportedEncodingException e) {
 searchText = searchFor.getText().toString();
 }
 Uri uri; //Stores intent URI
 //Get search option
 RadioButton searchOption=(RadioButton)findViewById(R.id.rdSearch);
 if(searchOption.isChecked()) {
 uri=Uri.parse("market://search?q=" + searchText);
 } else {
 uri=Uri.parse("market://details?id=" + searchText);
 }
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 try {
 main.this.startActivity(intent);
 } catch (ActivityNotFoundException anfe) {
 Toast.makeText(main.this, "Please install the Android Market App", Toast.LENGTH_SHORT);
 }

20.6 Provide a Link to other Published Apps in the Market | 661

 }
 });
 }
}

A straight text search is simply the text appended to the URI market://search?q=. To
search by publisher name use the pub: qualifier, i.e. append the publishers name to
market://search?q=pub:. However, at the time of writing a bug exists in some versions
of Android Market that causes publisher names of more than one word to return no
results. So whilst market://search?q=pub:IMDb works, market://search?q=pub:O'Reilly
+Media does not. The work around is to use the straight text search for publisher names
of two words or more. For example market://search?q=oreilly+media.

The pub: search qualifier is also case sensitive, thus market://search?q=pub:IMDb re-
turns a result but market://search?q=pub:imdb does not.

It is also possible to search for a specific application if the Package Name is known by
using the id qualifier. So if a App has Package Name of com.example.myapp the
search term will be market://search?q=id:com.example.myapp. Even better go straight
to the Apps details page with market://details?q=id:com.example.myapp. For example
O'Reilly has a free App the details of which can be show using market://details?
id=com.aldiko.android.oreilly.isbn9781449388294.

Using the above techniques it is very easy to put a button or menu option on a screen
to allow users to go directly to other Apps that you have published.

See Also
http://developer.android.com/guide/publishing/publishing.html#marketintent

662 | Chapter 20: Packaging, deploying and selling

CHAPTER 21

Other

21.1 Introduction: Everything Else
Ian Darwin

Discussion
This chapter is a catch-all for Recipes that don't fit neatly into the twenty pigeonholes
called "Chapters" that make up the rest of the book.

If you have read this far and still seek more examples of complete programs, here are
some examples.

• AndNav2 - OpenStreetmap-based navigation

• Replica Island game

21.2 Sending messages between threads using activity thread
queue and Handler class
Vladimir Kroz

Problem
Notify activity with information posted by another thread.

Solution
• Implement Handler class, override method handleMessage() which will read mes-

sages from thread queue

• In worker thread - post message using sendMessage() method

663

http://www.andnav.org/
http://code.google.com/p/replicaisland/

Discussion
There are many situations when it is required to have a thread running in the back-
ground and send information to main Activity's UI thread. At the architectural level
there are different approaches can be taken:

1. Use of Android AsyncTask class

2. Start a new thread

Though using AsyncTask is very convenient, there are a situations when you really need
to construct a worker thread by yourself. In such situation you likely will need to send
some information back to Activity thread. Keep in mind that Android doesn't allow
other threads to modify any content of main UI thread. Instead you're required to wrap
data into messages and send them through message queue. Implementation consists
of two parts.

1) Add handler

Add an instance of Handler class to your MapActivity instance.

Example 21-1.

public class MyMap extends MapActivity {
. . . .
 public Handler _handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 Log.d(TAG, String.format("Handler.handleMessage(): msg=%s", msg));
// This is where main activity thread receives messages
// Put here your handling of incoming messages posted by other threads
 super.handleMessage(msg);
 }

 };
. . . .

}

2) Post Message

In the worker thread post a message to activity main queue whenever you need Add
handler class instance to your MapActivity instance.

Example 21-2.

 /**
 * Perfromes background job
 */
 class MyThreadRunner implements Runnable {
 // @Override
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {

664 | Chapter 21: Other

// Just dummy message -- real implementation will put some meaninful data in it
 Message msg = Message.obtain();
 msg.what = 999;
 MyMap.this._handler.sendMessage(msg);
// Dummy code to simulate delay while working with remote server
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }

21.3 Intercommunication amongst Applications
Rachee Singh

Problem
You need to get different applications deployed on a device to communicate. For in-
stance, the running application wishes to notify another application (which is in the
background) of a certain event.

Solution
To initiate communication, an application broadcasts an intent. The applications in
the background that register a receiver for that particular intent will receive it and
perform the necessary action in their BroadcastReceiver subclass.

Discussion
To broadcast an intent from your application, insert the following code:

Example 21-3.

 Intent intent = new Intent("com.bluetooth.BLUE_LINK_BROKEN");
 sendBroadcast(intent);
 Log.d("Bluetooth.java", "Intent Sent");

The application which wishes to be notified of an action from your application, needs
the following code:

A separate class which extends BroadcastReceiver. In this class, the application being
notified can carry out the tasks like encrypting data, password protecting so on and so
forth.

Example 21-4.

public class BluelinkIntents extends BroadcastReceiver {

21.3 Intercommunication amongst Applications | 665

 @Override
 public void onReceive(Context context, Intent intent) {
 Toast.makeText(context, "Application X Received the Intent!", oast.LENGTH_SHORT).show();
 Log.d("OI Safe", "Received the Intent!");
 }

}

These few lines of code have to be added to the AndroidManifest of the application
which is being notified.

Example 21-5.

<!-- Receiver for Intent -->
 <receiver android:name="org.openintents.intents.BluelinkIntents" android:enabled="true" >
 <intent-filter>
 <action android:name="com.bluetooth.BLUE_LINK_BROKEN" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </receiver>

With all this set up, when your application starts, it will broadcast an intent. All the
other applications present in the background on that Android device and which have
the BroadcastReceiver set up will receive the intent and display a toast 'Application X
Received the Intent!'.

666 | Chapter 21: Other

CHAPTER 22

Contributors

22.1 Names
The following will contain a list of the contributors to this book.

667

About the Author

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Android Cookbook is FILL IN DESCRIPTION.

The cover image is FILL IN CREDITS. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Preface
	About Android
	Who This Book Is From
	Who This Book Is For
	What's in this Book?
	Other Books You May Like
	Java Books
	Android Books
	Programming and Design Books

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Getting Started
	1.1 Introduction: Getting Started
	Discussion

	1.2 Learning the Java Language
	Problem
	Solution
	Discussion
	See Also

	1.3 Hello World - Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Hello World - Eclipse Version
	Problem
	Solution
	Discussion
	See Also

	1.5 Set Up an Android Virtual Device for Apps Testing
	Problem
	Solution
	Discussion
	See Also

	1.6 Set Up an IDE on Windows to Develop for Android
	Problem
	Solution
	Discussion
	1. Install JDK (Java Development Kit)
	2. Install Eclipse for Java Development
	3. Install Android SDK (Software Development Kit)
	4. Android Development Tools (ADT) Plug-in

	See Also

	1.7 Android Lifecycle
	Problem
	Solution
	Discussion

	1.8 Opening a Web Page, Phone Number or anything else with an Intent
	Problem
	Solution
	Discussion
	Source Download URL

	1.9 Email Text From a View
	Problem
	Solution
	Discussion
	Source Download URL

	1.10 Sending an email with attachments
	Problem
	Solution
	Discussion

	1.11 Installing .apk files on the emulator
	Problem
	Solution
	Discussion

	1.12 Installing apps onto an Android Emulator
	Problem
	Solution
	Discussion
	See Also

	1.13 Android Epoch HTML/Javascript Calendar
	Problem
	Solution
	Discussion

	1.14 Sharing Java classes from another Eclipse Project
	Problem
	Solution
	Discussion

	1.15 Referencing libraries to implement external functionality
	Problem
	Solution
	Discussion

	1.16 Use SDK Samples to Help Avoid Head Scratching
	Problem
	Solution
	Discussion

	1.17 Keeping the Android SDK Updated
	Problem
	Solution
	Discussion
	See Also

	1.18 Five Ways to Wire Up an Event Listener
	Problem
	Solution
	Discussion
	1. Member Class
	2. Interface Type
	3. Anonymous Inner Class
	4. Implementation in Activity
	5. Attribute in View Layout for OnClick Events

	1.19 Taking a Screenshot from the Emulator/Android Device
	Problem
	Solution
	Discussion

	1.20 Program: A Simple CountDownTimer example
	Problem
	Solution
	Discussion
	Source Download URL

	1.21 Program: Tipster, a tip calculator for the Android OS
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	Chapter 2. Designing a successful Application
	2.1 Introduction: Designing a Successful Android application
	Discussion
	Mobile Phone Market Growth
	Screen size and density
	Input configurations
	Device features
	Data Feeds and Feed Formats

	2.2 Keeping a Service running while other apps are on display
	Problem
	Solution
	Discussion
	See Also

	2.3 Starting a service after phone reboot
	Problem
	Solution
	Discussion

	2.4 Exception Handling
	Problem
	Solution
	Discussion
	Where to Catch Exceptions
	What to do with Exceptions

	2.5 Sending/Receive broadcast message
	Problem
	Solution
	Discussion
	1. Setup broadcast receiver
	2. Publish broadcast event

	2.6 Android's Application Object as a "Singleton"
	Problem
	Solution
	Discussion
	See Also

	2.7 Keeping data when the user rotates the device
	Problem
	Solution
	Discussion
	Using onSaveInstanceState()
	Using onRetainNonConfigurationInstance()

	See Also
	Source Download URL

	2.8 Creating a Responsive Application using Threads
	Problem
	Solution
	Discussion

	2.9 Eating Too Much CPU Time In The UI Causes A Nasty Result
	Problem
	Solution
	Discussion
	See Also

	2.10 AsyncTask: Do background tasks and modify the GUI
	Problem
	Solution
	Discussion
	See Also

	2.11 Monitoring the Battery Level of your Android Device
	Problem
	Solution
	Discussion

	2.12 Splash Screens in Android: Method 1
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	2.13 Splash Screens in Android: Method 2
	Problem
	Solution
	Discussion
	Binary Download URL

	2.14 Designing a Conference/*Camp/Hackathon App
	Problem
	Solution
	Discussion
	See Also

	2.15 Implementing Autocompletion in Android.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	2.16 Using Google Analytics in Android Application
	Problem
	Solution
	Discussion

	2.17 Using AsyncTask to do background processing
	Problem
	Solution
	Discussion
	Introduction
	Use Case 1: Processing in the background
	Use Case 2: Processing in the foreground
	Conclusion

	See Also
	Source Download URL

	2.18 A Simple Torch Light
	Problem
	Solution
	Discussion
	Source Download URL

	2.19 Adapting Android Phone Application to Tablet
	Problem
	Solution
	Discussion

	2.20 First Run preferences
	Problem
	Solution
	Discussion

	2.21 Formatting the time and date display
	Problem
	Solution
	Discussion
	See Also

	2.22 Controlling Input with KeyListeners
	Problem
	Solution
	Discussion
	See Also

	2.23 Android Application Data Backup
	Problem
	Solution
	Discussion
	See Also

	2.24 Making password fields
	Problem
	Solution
	Discussion

	2.25 Working Without Tooltips: Use Hints Instead
	Problem
	Solution
	Discussion

	Chapter 3. Testing
	3.1 Introduction: Testing
	Discussion

	3.2 How to TDD(test driven development) Android App
	Problem
	Solution
	Discussion
	See Also

	3.3 How to troubleshoot "The application has stopped unexpectedly. Please try again"
	Problem
	Solution
	Discussion
	app crash
	logcat
	Example Solution
	Example 2 : Null Pointer Exception
	logcat
	Example Code (with error)

	See Also

	3.4 Debugging using Log.d and LogCat
	Problem
	Solution
	Discussion

	3.5 Keep Your App Snappy With StrictMode
	Problem
	Solution
	Discussion
	See Also

	3.6 Barrel of Monkeys
	Problem
	Solution
	Discussion
	See Also

	3.7 Sending text messages and placing calls between AVDs
	Problem
	Solution
	Discussion
	See Also

	3.8 Activity LifeCycle Scenarios for Testing
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Content Providers
	4.1 Introduction: Content Providers
	Discussion

	4.2 Retrieving Data from a Content Provider
	Problem
	Solution
	Discussion

	4.3 Writing a Content Provider
	Problem
	Solution
	Discussion

	4.4 Android Remote Service
	Problem
	Solution
	Discussion

	Chapter 5. Graphics
	5.1 Introduction: Graphics
	Discussion

	5.2 Getting Screenshots
	Problem
	Solution
	Discussion

	5.3 Using a Custom Font
	Problem
	Solution
	Discussion
	Source Download URL

	5.4 Draw a spinning cube with OpenGL ES
	Problem
	Solution
	Discussion
	See Also

	5.5 Adding control to the OpenGL spinning cube
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.6 Taking a Picture Using an Intent
	Problem
	Solution
	Discussion
	See Also
	Source Download URL
	Binary Download URL

	5.7 Taking a Picture Using android.media.Camera
	Problem
	Solution
	Discussion
	See Also

	5.8 Using AndroidPlot to display charts and graphs in your Android application.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	5.9 Use Inkscape to Create an Android Launcher Icon
	Problem
	Solution
	Discussion
	See Also

	5.10 Easy Launcher Icons from OpenClipArt.org using Paint.NET
	Problem
	Solution
	Discussion
	See Also

	5.11 Android HTML5 RGraph Charting
	Problem
	Solution
	Discussion
	Source Download URL

	5.12 Simple Raster Animation
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Graphical User Interface
	6.1 Introduction: GUI
	Discussion
	See Also

	6.2 User Interface Guidelines (placeholder)
	Problem
	Solution
	Discussion
	See Also

	6.3 SlidingDrawer Overlapping other UI components
	Problem
	Solution
	Discussion
	Source Download URL

	6.4 Android 3.0 Photo Gallery
	Problem
	Solution
	Discussion
	Source Download URL

	6.5 Building a UI using Fragments API of Android 3.0 in Android 2.2
	Problem
	Solution
	Discussion
	FragmentTestActivity.java
	TestFragment.java

	See Also
	Source Download URL
	Binary Download URL

	6.6 Haptic Feedback
	Problem
	Solution
	Discussion
	Custom haptic feedback using the device's vibrator
	Stock Haptic Feedback Events

	See Also
	Source Download URL

	6.7 Handling Configuration Changes by Decoupling View from Model
	Problem
	Solution
	Discussion

	6.8 Let Them See Stars: Using RatingBar
	Problem
	Solution
	Discussion
	See Also

	6.9 Invoke an action handler when a Button is pressed
	Problem
	Solution
	Discussion

	6.10 Creating an Alert Dialog.
	Problem
	Solution
	Discussion

	6.11 Customize the SlidingDrawer component to animate/transition from the top down.
	Problem
	Solution
	Discussion
	Source Download URL

	6.12 Use a Timepicker widget
	Problem
	Solution
	Discussion

	6.13 Formatting with Correct Plurals
	Problem
	Solution
	Discussion
	A Better Way
	Best Way of All (Android-only)

	See Also
	Source Download URL

	6.14 Feed AutoCompleteTextView using a SQLite database query
	Problem
	Solution
	Discussion

	6.15 Change The Enter Key to "Next" on the Soft Keyboard
	Problem
	Solution
	Discussion
	See Also

	6.16 How to Create a Simple Widget
	Problem
	Solution
	Discussion
	Source Download URL

	6.17 Make a View Shake
	Problem
	Solution
	Discussion

	6.18 Using CheckBoxes and RadioButtons
	Problem
	Solution
	Discussion

	6.19 Creating a Notification in the Status Bar
	Problem
	Solution
	Discussion
	See Also

	6.20 Autocompletion with Icons/Images
	Problem
	Solution
	Discussion

	6.21 Creating your own Custom Title Bar
	Problem
	Solution
	Discussion
	1. Create an XML file for title bar
	2. Create a class that uses the title bar and implements the button functionality
	3. Change your layout files
	4. Extend your activities from the custom class that you created in step 2

	6.22 iPhone-like wheel picker for selection
	Problem
	Solution
	Discussion

	6.23 Simple Calendar
	Problem
	Solution
	Discussion
	Source Download URL

	6.24 Formatting Numbers
	Problem
	Solution
	Discussion
	General Formatters

	See Also

	6.25 Start a Second Screen from the First
	Problem
	Solution
	Discussion
	See Also

	6.26 Creating a Tabbed Dialog
	Problem
	Solution
	Discussion

	6.27 Creating a Custom Dialog with buttons, images and text
	Problem
	Solution
	Discussion

	6.28 Create a Custom Menu
	Problem
	Solution
	Discussion
	Binary Download URL

	6.29 Loading Screen in between two Activities
	Problem
	Solution
	Discussion
	1. Create a LoadingScreen layout file
	2. Create a LoadingScreen class file
	3. Open LoadingScreenActivity from say your List from onListItemClick event

	6.30 Implementing reactions on click of items in a Custom Menu.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.31 Navigate different activities within a TabView
	Problem
	Solution
	Discussion

	6.32 Drop-down Chooser via the Spinner Class
	Problem
	Solution
	Discussion

	6.33 Effective UI design using Image Buttons
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.34 Pinch to zoom
	Problem
	Solution
	Discussion

	6.35 Add a Border with Rounded Corners to a Layout
	Problem
	Solution
	Discussion
	See Also

	6.36 Creating a ProgressDialog in Android.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.37 Creating a Submenu.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.38 Processing key press events in an Activity.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.39 Constrain EditText Values with Attributes and the TextWatcher Interface
	Problem
	Solution
	Discussion
	See Also

	6.40 Gesture Detection in Android
	Problem
	Solution
	Discussion
	See Also

	6.41 Customizing the Look of a Toast
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	6.42 Using SlidingDrawer to Overlap Other Components
	Problem
	Solution
	Discussion

	Chapter 7. GUI: ListView
	7.1 Introduction: ListView
	Discussion

	7.2 Building list-based applications with ListView
	Problem
	Solution
	Discussion

	7.3 'No data' View for Lists
	Problem
	Solution
	Discussion
	Binary Download URL

	7.4 Advanced ListView: populating a list with images and text
	Problem
	Solution
	Discussion
	Source Download URL

	7.5 ListView with Icons/images
	Problem
	Solution
	Discussion
	Source Download URL

	7.6 Sectioned Headers in ListViews
	Problem
	Solution
	Discussion
	Source Download URL

	7.7 Making Lists Behave Nicely
	Problem
	Solution
	Discussion
	See Also

	7.8 Writing A Custom List Adapter
	Problem
	Solution
	Discussion

	7.9 Orientation Changes : From ListView data values to Landscape Charting
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 8. Multimedia
	8.1 Introduction: Multimedia
	Discussion

	8.2 Play a Youtube Video
	Problem
	Solution
	Discussion

	8.3 Using Gallery with ImageSwitcher
	Problem
	Solution
	Discussion

	8.4 Grabbing a video using MediaRecorder
	Problem
	Solution
	Discussion
	Source Download URL

	8.5 Android Face Detection
	Problem
	Solution
	Discussion
	Source Download URL

	8.6 Playing audio from a file
	Problem
	Solution
	Discussion
	Source Download URL

	8.7 Playing Audio without Interaction
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	8.8 Using Speech to Text
	Problem
	Solution
	Discussion
	See Also

	8.9 Making the Device Speak with TTS
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 9. Data Persistence
	9.1 Listing a Directory
	Problem
	Solution
	Discussion
	See Also

	9.2 Default shared preferences consistency check
	Problem
	Solution
	Discussion

	9.3 Advanced text search
	Problem
	Solution
	Discussion
	See Also

	9.4 How to push string-values using Intent.putExtra()
	Problem
	Solution
	Discussion
	Push Data
	Pull Data
	Gotchas
	Alternative Solutions

	See Also

	9.5 Retrieving data from a Sub-Activity back to your Main Activity
	Problem
	Solution
	Discussion
	Other
	Use Case (informal)

	See Also

	9.6 Getting total and free space on the SD card
	Problem
	Solution
	Discussion

	9.7 Creating a SQLite database in an Android application.
	Problem
	Solution
	Discussion

	9.8 Retrieving data from a SQLite database.
	Problem
	Solution
	Discussion

	9.9 Inserting values into a SQLite database.
	Problem
	Solution
	Discussion

	9.10 Work With Dates in SQLite
	Problem
	Solution
	Discussion
	Background
	The Advantages
	The Code

	See Also

	9.11 Parsing JSON using the Jackson Parser
	Problem
	Solution
	Discussion

	9.12 Parsing an XML document using the DOM API
	Problem
	Solution
	Discussion
	See Also

	9.13 Parsing an XML document using an XmlPullParser
	Problem
	Solution
	Discussion
	Introduction
	Parsing XML with the XmlPullParser
	Making it more strict
	Processing static XML resources
	Conclusion
	Note

	See Also
	Source Download URL

	9.14 Accessing data from a file shipped with the App rather than in the filesystem
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	9.15 Adding a Contact
	Problem
	Solution
	Discussion

	9.16 Reading Contact Data
	Problem
	Solution
	Discussion
	Source Download URL

	9.17 Parsing JSON using JSONObject
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	Chapter 10. Telephone Applications
	10.1 Introduction: Telephone Applications
	Discussion

	10.2 Do something when the phone rings
	Problem
	Solution
	Discussion
	What happens if two receivers listen for phone state changes?
	Final notes

	See Also
	Source Download URL

	10.3 Process outgoing calls
	Problem
	Solution
	Discussion
	What happens if two receivers process outgoing calls?

	See Also
	Source Download URL

	10.4 Dialing the phone
	Problem
	Solution
	Discussion

	10.5 Sending single or multipart SMS messages
	Problem
	Solution
	Discussion

	10.6 Receiving an SMS in an Android Application.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	10.7 Using Emulator Controls to send SMS to the Emulator.
	Problem
	Solution
	Discussion

	10.8 Android TelephonyManager.
	Problem
	Solution
	Discussion

	Chapter 11. Networked Applications
	11.1 Introduction: Networking
	Discussion
	Choose Your Protocol Wisely

	11.2 Using a RESTful Web Service
	Problem
	Solution
	Discussion
	Using URL and URLConnection
	Using HTTPClient
	The Results
	Note

	See Also

	11.3 Extracting Information from Unstructured Text using Regular Expressions
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.4 Parsing RSS/ATOM feeds parsing with ROME
	Problem
	Solution
	Discussion
	Source Download URL

	11.5 Using MD5 to Digest Free Text
	Problem
	Solution
	Discussion

	11.6 Converting text into hyperlinks
	Problem
	Solution
	Discussion

	11.7 Accessing a web page through your Android application
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	11.8 Customizing a WebView
	Problem
	Solution
	Discussion

	Chapter 12. Gaming and Animation
	12.1 Introduction: Gaming and Animation
	Discussion

	12.2 Android Game Programming - Introduction to Flixel-Android
	Problem
	Solution
	Discussion
	Source Download URL

	12.3 Introduction to Game Programming using AndEngine (Android-Engine)
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 13. Social Networking
	13.1 Facebook Integration
	Problem
	Solution
	Discussion
	Binary Download URL

	13.2 Social Networking Integration using Http
	Problem
	Solution
	Discussion
	1. Get the logo:
	2. Create image buttons for each of them
	3. Implement the click event

	13.3 Loading a user's Twitter timeline (using JSON)
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	Chapter 14. Location and Map Applications
	14.1 Introduction: Location-Aware Applications
	Discussion

	14.2 Getting Location Information
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	14.3 Access GPS information anywhere in your application
	Problem
	Solution
	Discussion

	14.4 Mocking GPS Coordinates On A Device
	Problem
	Solution
	Discussion
	Write The setMockLocation Method
	Use The setMockLocation Method
	What's Happening?

	Example Application Usage

	See Also
	Source Download URL

	14.5 Geocoding and Reverse Geocoding
	Problem
	Solution
	Discussion

	14.6 Getting ready for Google Maps development
	Problem
	Solution
	Discussion
	Setting up an AVD which makes use of the Google API SDK libraries.
	Create a new Android project which targets "Google APIs - 1.5 - API level 3"
	Adding the MapView element to your layout file
	Registering the Google Maps API key
	Necessary changes in the AndroidManifest.xml file
	Check List

	See Also
	Source Download URL

	14.7 Using Google Maps in your Android App
	Problem
	Solution
	Discussion

	14.8 How to show your current location in a map
	Problem
	Solution
	Discussion

	14.9 To Add Device's current location to Google Maps
	Problem
	Solution
	Discussion
	Source Download URL

	14.10 Draw a location marker on a Google MapView
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	14.11 Drawing multiple location markers on a MapView
	Problem
	Solution
	Discussion
	Introduction
	Adding the ItemizedOverlay to your MapView
	Using MyItemizedOverlay in onCreate

	See Also
	Source Download URL

	14.12 Creating Overlays for a Google MapView
	Problem
	Solution
	Discussion

	14.13 Changing Views of a MapView.
	Problem
	Solution
	Discussion

	14.14 Draw overlay icon without using Drawable
	Problem
	Solution
	Discussion
	Overview
	Overriding the ItemizedOverlay::draw() function
	Overview of MetarItem class
	MetarItem::draw() function
	Final Thoughts

	See Also
	Source Download URL
	Binary Download URL

	14.15 Location search on Google maps
	Problem
	Solution
	Discussion

	14.16 MapView inside TabView
	Problem
	Solution
	Discussion
	Setup - obtain maps api key
	Layouts
	TabLayout (main.xml)
	Layout for MapView (Maptabview.xml)

	Application code
	AppMain.java - Entry point
	MapTabView.java - Map Activity

	Source Download URL

	14.17 Handling longpress in a map
	Problem
	Solution
	Discussion

	14.18 Using OpenStreetMap
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	14.19 Creating overlays in OpenStreetMaps
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	14.20 Using a scale on an OpenStreetMap
	Problem
	Solution
	Discussion

	14.21 Handling touch events on an OpenStreetMap Overlay
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	14.22 Getting location updates with OpenStreetMaps
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	Chapter 15. Accellerometer
	15.1 Using the accelerometer to detect shaking of the device
	Problem
	Solution
	Discussion

	15.2 Introduction: Sensors
	Discussion

	15.3 Checking for device facing up or facing down based on screen orientation using Accelerometer.
	Problem
	Solution
	Discussion
	Binary Download URL

	15.4 Finding the orientation of an Android device using Orientation sensor.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	15.5 Checking for the Presence or Absence of a Sensor
	Problem
	Solution
	Discussion
	Binary Download URL

	15.6 Reading the Temperature Sensor
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Bluetooth
	16.1 Introduction: Bluetooth
	Discussion

	16.2 Connecting to Bluetooth enabled device
	Problem
	Solution
	Discussion
	See Also

	16.3 Enabling Bluetooth and making the device Discoverable.
	Problem
	Solution
	Discussion

	16.4 Listening for Bluetooth Connection Requests.
	Problem
	Solution
	Discussion

	16.5 Bluetooth Device discovery
	Problem
	Solution
	Discussion
	1 Create XML file to display the list
	2 Create a class file to load list
	3 Edit manifest file

	Source Download URL

	Chapter 17. System and Device Control
	17.1 Phone network/connectivity information
	Problem
	Solution
	Discussion

	17.2 Changing incoming call notification to Silent, Vibrate, or normal
	Problem
	Solution
	Discussion

	17.3 Rebooting the Device
	Problem
	Solution
	Discussion
	See Also

	17.4 Running shell commands from your application
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	17.5 Copying text and getting text from the Clipboard
	Problem
	Solution
	Discussion

	17.6 Making LED based notifications
	Problem
	Solution
	Discussion

	17.7 Making the Device Vibrate.
	Problem
	Solution
	Discussion
	Source Download URL
	Binary Download URL

	17.8 Determining Whether a Given Application is Running
	Problem
	Solution
	Discussion

	Chapter 18. Other Programming Languages
	18.1 Run external/native Linux command
	Problem
	Solution
	Discussion

	18.2 Running Adobe Air/Flex on Android
	Problem
	Solution
	Discussion

	18.3 Getting Started with ''Scripting Layer for Android'' (formerly Android Scripting Environment)
	Problem
	Solution
	Discussion
	Pick a language (Python)
	Source Editing

	See Also
	Binary Download URL

	18.4 Running Native Code with JNI on the NDK
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	18.5 Introduction: Other Programming Languages
	Discussion

	18.6 Intro to Flex 4.5 Android Programming
	Problem
	Solution
	Discussion
	Binary Download URL

	18.7 Sharing your scripts (ASE) using QR codes
	Problem
	Solution
	Discussion

	18.8 Using native handset functionality from webview using Javascript
	Problem
	Solution
	Discussion

	Chapter 19. Internationalization
	19.1 Introduction: Internationalization
	Discussion
	Ian's Basic Steps: Internationalization

	See Also

	19.2 Internationalizing Application Text
	Problem
	Solution
	Discussion
	Is it really that simple?
	Regional Variants

	See Also

	Chapter 20. Packaging, deploying and selling
	20.1 Signing Your Application
	Problem
	Solution
	Discussion

	20.2 How to integrate Admob into your app
	Problem
	Solution
	Discussion
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	See Also

	20.3 Distributing Your Application via the Android Market
	Problem
	Discussion
	Signing Up As an Android Developer
	Uploading Your Application
	Then What?

	20.4 Creating a Signing Certificate
	Problem
	Solution
	Discussion
	Generating a key pair (public and private keys) and a signing certificate

	See Also

	20.5 Obfuscating and Optimizing with ProGuard
	Problem
	Solution
	Discussion
	Configuration File

	See Also

	20.6 Provide a Link to other Published Apps in the Market
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. Other
	21.1 Introduction: Everything Else
	Discussion

	21.2 Sending messages between threads using activity thread queue and Handler class
	Problem
	Solution
	Discussion
	1) Add handler
	2) Post Message

	21.3 Intercommunication amongst Applications
	Problem
	Solution
	Discussion

	Chapter 22. Contributors
	22.1 Names

