

Professional
flash Mobile DeveloPMent

introDuction .xv

Part ⊲ i GettinG starteD

chaPter 1 Introducing Flash Development for Mobile Devices 3

chaPter 2 Setting Up Your Development Environment .13

chaPter 3 Building and Installing VanillaApp . 39

Part i ⊲ i touch anD user interaction

chaPter 4 Rethinking ActionScript Programming . 77

chaPter 5 Multitouch API . 87

chaPter 6 Detecting Motion with Accelerometer . 109

chaPter 7 Implementing Auto Orientation . 129

chaPter 8 Geolocation API . 145

chaPter 9 Service Integration Using URL Protocols . 179

chaPter 10 Android Camera, Camera Roll, and Microphone 209

Part ii ⊲ i Data

chaPter 11 File Management . 237

chaPter 12 Local Databases . 255

Part i ⊲ v testinG anD DebuGGinG

chaPter 13 Remote Debugging . 273

chaPter 14 Submitting Your App to the App Store . 279

aPPenDix a Application Descriptor Settings . 291

aPPenDix b Compiling Applications from the Command Line 305

inDex . 309

PROFESSIOnAL

flash® Mobile Development
Creating android™ and iPhone® aPPliCations

Richard Wagner

Professional flash® Mobile Development: creating android™ and iPhone® applications

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-62007-6
ISBN: 978-1-118-03731-7 (ebk)
ISBN: 978-1-118-03732-4 (ebk)
ISBN: 978-1-118-03733-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010926881

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Flash is a registered trademark of Adobe Systems, Inc. Android is
a trademark of Google, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To Kimberly and the boys.

executive eDitor
Carol Long

Project eDitor
Sydney Jones Argenta

technical eDitors
Drew Falkman

ProDuction eDitor
Rebecca Anderson

coPy eDitor
Karen Gill

eDitorial Director
Robyn B . Siesky

eDitorial ManaGer
Mary Beth Wakefield

freelancer eDitorial ManaGer
Rosemarie Graham

MarketinG ManaGer
Ashley Zurcher

ProDuction ManaGer
Tim Tate

vice PresiDent anD executive GrouP
Publisher
Richard Swadley

vice PresiDent anD executive Publisher
Barry Pruett

associate Publisher
Jim Minatel

Project coorDinator, cover
Katie Crocker

coMPositor
Jeff Lytle,
Happenstance Type-O-Rama

ProofreaDer
nancy Carrasco

inDexer
Robert Swanson

cover DesiGner
Michael E . Trent

cover iMaGe
© Hedda Gjerpen/istockphoto .com

creDits

about the author

richarD WaGner is Lead Product Architect, Web/Mobile at MAARK and author of several Web-
and mobile-related books, including Safari and WebKit Development for iPhone OS 3.0, XSLT For
Dummies, Creating Web Pages All-In-One Desk Reference For Dummies, Web Design Before &
After Makeovers, and more. Richard has also authored several books outside of the field of technol-
ogy, including The Myth of Happiness and The Expeditionary Man.

about the technical eDitor

DreW falkMan has been developing web applications since it was standard practice to test for
Mosaic and Netscape. He rode the dot-com wave through growing a startup and achieving venture
funding, and he is now happy to consult and train through his own company, Falkon Productions.
Over the years, he has architected and worked on sites for customers from startup cattle auctions to
Fortune 500 companies using a host of technologies including Java, ColdFusion, JavaScript, Adobe
Flex/Flash, PHP, and WordPress. Also a writer, Drew has authored two books on Java for Adobe
Press and done technical editing for Que Publishing and Wiley. He has been published in developers’
journals and online, including on Adobe.com. He is an Adobe Certified Instructor and Developer
and has spoken at conferences around the U.S. He currently resides in Santa Monica, CA.

acknoWleDGMents

this WritinG of this book has reflected the stormy seas that Adobe has battled in order to release
Flash and Adobe AIR for mobile platforms. It started off as an iPhone-based book for Flash develop-
ers until Apple infamously changed its terms of use to exclude Packager for iPhone as being a valid way
to create iPhone apps. So, we shifted course, transforming the book into an Android-focused book.
However, when I was about 80 percent done with the writing, Apple changed its restrictive policy on
Packager for iPhone, opening up Flash development once again to the iOS platform. In response, we
changed the focus of the book yet again to account for both Android and iOS devices.

On this stormy, but amazing adventure, I was blessed with as good of an editorial team as I have
ever had. Major kudos to Sydney Jones Argenta who was project editor. Sydney was diligent, kept
me on track, and always kept things positive and forward-thinking. Also thanks to Drew Falkman
for his close attention to the technical details as well as many suggestions that improved the quality
of the book. Finally, thanks also to Karen Gill for her editing prowess. It was a joy working with
this amazing group of editors.

contents

IntroductIon xv

GettinG startePart i: D

introDucinG flash DeveloPMent chaPter 1:
for Mobile Devices 3

expanding to the Mobile World 3
discovering adobe air 5

Building for Android 5
Building for iOS 6

What You Can and Cannot do 7
Device Support 7
Unsupported AS3 API Objects 8

Understanding the air for android security Model 9
getting to Know the android sdK 10
getting to Know the ios sdK 11
summary 11

settinG uP your DeveloPMent environMent 1chaPter 2: 3

Preparing for android development 13
Installing the AIR SDK 13
Creating a Code-Signing Certificate 15
Installing the Flash CS5 Extension for AIR 2 .5 17
Installing the Android SDK 17
Adding the Android SDK to Your System Path 19
Creating an Android Virtual Device 21
Installing the AIR Runtime onto Your Device 22
Comparing the Development Environment Options 22
Using MXML in Android Apps 23

Preparing for ios development 23
Joining the iPhone Developer Program 23
Getting an iPhone Developer Certificate 24
Retrieving the Developer Certificate 28
Adding a Device 30
Creating an App ID 31

x

Contents

Creating a Provisioning Profile 32
Installing the Provisioning Profile 35

summary 37

builDinG anD installinG vanillaaPP 3chaPter 3: 9

Vanillaapp for android 39
Creating a Project 40
Creating a Flash Document for AIR for Android 40
Creating an ActionScript Document Class 41
Coding the Document Class 43
Adding Icons 49
Defining Android Settings 49
Previewing the App inside Flash 52
Publishing and Installing the Application 53
Running the App on an Android Device 53

Vanillaapp for ios 54
Creating a Project 56
Creating an iPhone-Based Flash Document 57
Creating an ActionScript Document Class 57
Coding the Document Class 58
Creating a Splash Screen 65
Adding Icons 66
Defining iPhone Settings 66
Previewing the App inside Flash 70
Publishing the Application 70
Installing the App on an iPhone 71

summary 73

touch anD user interactioPart ii: n

rethinkinG actionscriPt ProGraMMinG 7chaPter 4: 7

Conserving Memory and CPU resources 77
actionscript Practices 78

Reuse Objects 78
General Tips for Working with AS3 79
Event Handling 81

Ui Practices 81
graphics Practices 82

Caching 82
Miscellaneous Tips 83

xi

Contents

general application Practices 83
Frame Rate 83
GPU Rendering 84
Garbage Collection 84
Kitchen Sink Tips 85

summary 85

Multitouch aPi 8chaPter 5: 7

Understanding the Multitouch Jargon 87
Mouse Emulation Events 87
Touch Events 88
Gesture Events 88
Listening for Touch Events 89
Event Bubbling 89

Working with touch events 89
Coding the Document Class 90
Running the App 92

Working with the swipe gesture 96
Setting Up the Timeline 96
Adding a Sound Asset 96
Coding the Document Class 97
Running the App 101

Working with rotate and Zoom gestures 101
Coding the document Class 102

Running the App 106
summary 107

DetectinG Motion With acceleroMeter 10chaPter 6: 9

introducing accelerometer and accelerometerevent 110
listening for accelerometer events 111

Coding the Document Class 111
Running the App 114

responding to accelerometer events 114
Creating the Sphere Class 115
Coding the Document Class 116
Running the App 121

detecting shaking 122
Coding the Document Class 122
Running the App 127

summary 127

xii

Contents

iMPleMentinG auto orientation 12chaPter 7: 9

enabling Your app to rotate 129
stageorientationevent 130
two essentials for Ui reorientation 131
detecting an orientation Change 132
Changing Positioning Based on orientation Changes 138
summary 144

Geolocation aPi 14chaPter 8: 5

getting geolocation data 145
enabling gPs support for android 147
Creating a Basic geolocation application 148

Coding the Document Class 148
Testing and Running the App 152

Creating a Compass app 153
Coding the Document Class 153
Running the App 159

Creating a speedometer and altimeter 160
Embedding a Font in Your App 160
Coding the Document Class 161
Configuring Landscape Orientation 167
Running the App 169

sending geolocation to a Web service 169
Coding the Document Class 170
Running the App 178

summary 178

service inteGration usinG url Protocols 17chaPter 9: 9

abstracting Url Protocols 180
Making Phone Calls from Your application 181

Creating PhoneDialer .as 181
Using PhoneDialer in an App 182

sending sMs Messages 187
Creating SMS .as 188
Adding SMS Support to PhoneServices App 189
Running the App 189

sending e-mails 191
Creating Mail .as 191
Sending Mail from an App 194
Android: Adding Permissions 196
Running the App 197

xiii

Contents

Pointing on google Maps 198
Creating GoogleMaps .as 199
Using GoogleMaps in an App 200
Android: Setting Permissions 206
Running the App 206

summary 207

anDroiD caMera, caMera roll, chaPter 10:
anD MicroPhone 209

CameraUi: launch and return 210
Camera: Creating a live Video Feed 216
tapping into the Camera roll 221
Capturing sounds with the Microphone 228
summary 234

DatPart iii: a

file ManaGeMent 23chaPter 11: 7

Understanding the android File and directory structure 237
Working with directories, Files, and File streams 238

Working with Directories 238
File System Operations 241

reading and Writing Files 244
Reading a File 245
Writing to a File 246
Android Case Study: Jots 246
Coding the Document Class 248
Running Jots 253

summary 253

local Databases 25chaPter 12: 5

Working with a sQlite database 255
open a database Connection 256

Creating a Synchronous Connection 256
Creating an Asynchronous Connection 256

Creating tables 257
Making a sQl Query 262
inserting and Updating records 263
summary 269

xiv

Contents

testinG anD DebuGGinPart iv: G

reMote DebuGGinG 27chaPter 13: 3

establishing a WiFi Connection 273
Using the air debug launcher 274
android debugging 274

Remote Debugging inside the Flash IDE 274
Remote Debugging from the Command Line 276
Debugging with Android SDK’s Logcat 277

ios debugging 277
Remote Debugging inside the Flash IDE 277
Viewing GPU Rendering Diagnostics 278

summary 278

subMittinG your aPP to the aPP store 27chaPter 14: 9

Preparing Your android app 279
Getting a Screenshot 280

submitting Your app to the android Market 281
Registering Your Developer Profile 281
Submitting Your App 282

Preparing Your ios app 285
Getting a Distribution Certificate 285
Creating a Distribution Provisioning Profile 287
Publishing a Distribution Release of Your App 288

submitting Your app to the apple app store 288
summary 289

aPPlication DescriPtor settinGsaPPenDix a: 291

coMPilinG aPPlications aPPenDix b:
froM the coMManD line 305

Index 309

introDuction

the WorlD is no lonGer flat for Flash developers. While Flash may have originated for running
inside the browser, there are now many more dimensions on which to deploy Flash-based applica-
tions. The desktop came first with the Adobe AIR runtime environment. The mobile world follows,
with Adobe providing solutions for most (though not all) mobile devices you can think of, starting
with Android and iOS.

In this book, I explore all aspects of developing mobile applications using Flash CS5 and Flash
Builder for Android and iOS apps. You’ll discover how to build an app, and install, and debug it
on your mobile device. I then walk you through each key topic related to mobile Flash app develop-
ment, including multitouch events, motion sensor, accelerometer, GPS, mobile services integration,
and persistent data storage. Finally, because a mobile device has far less processing power than the
desktop does, you learn how to optimize your app to provide the level of performance your users
will expand and demand.

Who this book is for

This book is aimed primarily for Flash and ActionScript 3 (AS3) developers experienced in Flash/
AS3 development who want to move that base of knowledge to the Android OS or iOS platforms.
You may be creating completely new applications or migrating existing web or desktop AIR apps to
run on Android or iOS. In general, readers should have a working knowledge of the Flash authoring
environment or Flash Builder as well as AS3.

What this book covers

This book introduces you to AIR for Android and Packager for iPhone. It walks you through the
process of developing new mobile applications from scratch and porting existing Flash and AS3 apps
and media to the Android platform.

Here’s a summary of what each chapter of the book covers:

Chapter 1,➤➤ Introducing Flash Development for Mobile Devices — Explores AIR for Android
and Packager for iPhone and how mobile programming is different than developing for the
Web or desktop.

Chapter 2, Setting Up Your Development Environment — ➤➤ Guides you through the process
of getting all of the necessary tools in place to install your app onto your Android or submit
to the Android Market. What’s more, it guides you through the sometimes confusing process
of getting all the necessary approvals, certificates, and profiles you need from Apple to be
able to install your app onto your iPhone or submit to the App Store.

Chapter 3, Building and Installing VanillaApp — ➤➤ Takes you on a whirlwind tour for creating
your first Android or iOS app and installing it on your mobile device.

xvi

introDuction

Chapter 4, Rethinking ActionScript Programming — ➤➤ Shows you how programming for
Android requires a new mindset and completely new “best practices” in order to create a suc-
cessful app for mobile operating systems.

Chapter 5, Multitouch API — ➤➤ It’s no exaggeration to say that the heart and soul of an
Android is its touch screen interface. This chapter explores how to work with single- and
multitouch events as well as more advanced multitouch gestures.

Chapter 6, Detecting Motion with Accelerometer — ➤➤ Introduces you to motion sensor detec-
tion and how to create apps that respond to accelerometer events.

Chapter 7, Implementing Auto Orientation — ➤➤ Mobile devices have a rotating viewport that
has no desktop equivalent. In this chapter, you’ll discover how to detect orientation changes
and how to reorient your app’s UI to respond effectively.

Chapter 8, Geolocation API — ➤➤ Guides you through the process of capturing GPS data and
utilizing it inside of your application.

Chapter 9, Service Integration Using URL Protocols — ➤➤ Discusses how you can take advan-
tage of URL protocols to integrate with core mobile services, including Phone, SMS, Mail,
and Google Maps.

Chapter 10, Android Camera, Camera Roll, and Microphone➤➤ — Dives into how you can
integrate with Android’s camera, CameraRoll, and microphone.

Chapter 11, File Management — ➤➤ This chapter helps you understand how to work with files
on Android and iOS.

Chapter 12, Local Databases — ➤➤ Discusses how you can integrate your app with a local
SQLite database.

Chapter 13, Remote Debugging — ➤➤ Discusses various methods and SDK tools that you can
use to debug your apps, both on the desktop and on Android and iOS devices.

Chapter 14, Submitting Your App to the App Store — ➤➤ Walks you through the process of
submitting your app to the Android Market and Apple App Store, so you can begin selling
your wares.

ios or iPhone?

Let me add a note on how I am using the terms iOS and iPhone in this book. iOS is a newer term
that refers to the operating system (version 4.0 and higher) that runs on iPhone, iPod touch, and iPad
devices. Previously, that operating system was known as the iPhone OS (versions 3.1.3 and lower).

At the time I am writing this book, Adobe refers to its support for Apple devices as “iPhone” not “iOS”.
I expect Adobe to change its terminology in the future to be in sync with the newer vernacular.

Throughout this book, when I refer to iOS, then I am talking about what will run on an iPhone,
iPod touch, or iPad. When I refer to iPhone specifically, then I am referencing something specific
about the iPhone (such as the phone) that is not available on other iOS devices.

xvii

introDuction

What you neeD to use this book
To work through the examples of the book, you need the following:

Android and/or an iOS device➤➤

Flash CS5 and/or Flash Builder 4 (optional) ➤➤

The complete source code for the examples is available for download from our website at
www.wrox.com.

conventions
As you read through the book, you’ll note that I use several conventions throughout to help you get
the most from the text.

New terms➤➤ are italicized when I introduce them.

URLs and AS3 code within the text are given a monospaced font, such as ➤➤ Accelerometer.

source coDe
As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All of the source code used in this
book is available for download at www.wrox.com. You will fi nd the code snippets from the source
code are accompanied by a download icon and note indicating the name of the program so you
know it’s available for download and you can easily locate it in the download fi le. Once at the site,
simply locate the book’s title (either by using the Search box or by using one of the title lists) and
click the Download Code link on the book’s detail page to obtain all the source code for the book.

Code snippets that are downloadable from wrox.com are easily identifi ed with an icon; the fi le name
of the code snippet follows in a code note that appears after the code, much like the one that follows
this paragraph. If it is an entire code listing, the fi lename should appear in the listing title.

Code Filename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-62007-6.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xviii

introDuction

errata

The editors and I worked diligently to ensure that the contents of this book are 100 precent accu-
rate and up to date. However, since future AIR for Android and Packager for iPhone updates from
Adobe as well as Android OS or iOS updates could potentially impact what’s been written here, I
recommend making a visit to wrox.com and checking out the Book Errata link. You’ll fi nd a page
which lists all errata that has been submitted for the book and posted by Wrox.

However, if you discover an issue that is not found on our Errata page, the editors and I would be grate-
ful for you to let us know about it. To do so, go to www.wrox.com/contact/techsupport.shtml and
provide a description of the issue in the form. We’ll will double check your information and, as appro-
priate, post it on the Errata page as well as correct the issue in future versions of the book.

P2P .Wrox .coM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1 . Go to p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4 . You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://www.wrox.com/contact/techsupport.shtml

PART I
Getting started

chaPter 1: ⊲ Introducing Flash Development for Mobile Devices

chaPter 2: ⊲ Setting Up Your Development Environment

chaPter 3: ⊲ Building and Installing VanillaApp

introducing Flash development
for Mobile devices

What’s in this chaPter?

Discovering Adobe AIR for Android ➤➤

What you can do on Android devices➤➤

What you cannot do on Android ➤➤

A look at the Application Security Model ➤➤

Not long after my wife and I got married, we moved 500 miles away to a new city. We were
still the same couple as before, but we had to get used to our new environment — living in a
new apartment, working in a new metro area, and fi nding new friends.

Developing Flash/ActionScript (AS3) apps for Android and iOS devices is quite similar. You
already know the tool and the language that you’ve worked with for web and desktop-based
Adobe Integrated Runtime (AIR) environments. Yet, you fi nd yourself in a completely differ-
ent runtime environment, with different capabilities and constraints that you never have to
consider when working with desktop computers.

This chapter introduces these new two mobile environments and highlights some of the things
you need to consider as you get started developing Flash-based applications for Android and
iOS devices.

exPanDinG to the Mobile WorlD

Ever since its early days at Macromedia in the 1990s, Flash has been synonymous with inter-
active media, animations, and games that run embedded inside a Web page. And it has been
Flash’s ability and power to provide what HTML and JavaScript alone could not that has
awarded the Flash plug-in a 99 percent installation rate among all Internet users.

1

4 ❘ chaPter 1 IntroducIng Flash development For mobIle devIces

Fast forward several years. Although Flash is still utilized predominately for browser-based pur-
poses, the overall Flash landscape is becoming more diversified. Flash isn’t just for interactive media
and light apps; you can use it to deploy full-fledged mission-critical applications. In addition to
Flash, its ActionScript “brother” Flex offers a more traditional application development environ-
ment that utilizes both AS3 and Flash run time.

Flash is no longer constrained to a browser window. With the release of AIR in 2007, Flash and
Flex developers could, for the first time, create standalone, cross-platform, rich Internet applications
(RIAs) for Windows, Mac OS X, and Linux platforms. These AIR desktop applications not only
had the look and feel of native apps but could take advantage of native operating system capabilities,
such as local file access, native menus and UI elements, and OS-specific events.

Although Flash’s dominance on the desktop is unquestioned, its entry into the rapidly emerging
mobile phone world has been far more problematic. Apple’s refusal to support the Flash plug-in
in the iPhone in its Mobile Safari browser left Flash Web developers out in the cold. In response,
Adobe engineers came up with a different plan to get Flash-created content and applications onto
iOS devices (iPhone, iPad, iPod touch): bypass the browser and go native. In other words, Adobe
engineers figured out a way to package Flash apps as native iPhone apps — yes, the same apps that
you can download and install from the App Store (see Figure 1-1). Adobe made Packager for iPhone
available in Flash Professional CS5.

fiGure 1-1

Beyond the iOS universe, Adobe also is expanding support for Flash onto other mobile platforms,
particularly Android and BlackBerry. But, unlike the roadblocks that Adobe encountered with
Apple, Adobe has been providing support for both Flash Player and AIR on these other mobile
devices (as shown in Table 1-1). However, a strategic goal for Adobe has been to ensure that you will
be able to take the same Flash project that you use for deploying on the iPhone and outputting it as
an AIR app on Android or BlackBerry.

discovering adobe air ❘ 5

table 1-1: Flash Platform Support

PlatforM broWser native

Windows Flash Player AIR

Mac OS X Flash Player AIR

Linux Flash Player AIR

iOS none Packager for iPhone

Android Flash Player AIR

BlackBerry Flash Player AIR

DiscoverinG aDobe air

Before you begin to tackle Flash-based mobile development, it’s important to have some basic under-
standing of the runtime environment on which you will be developing applications.

building for android
Before you begin to develop Flash-based mobile apps, I wanted to “peek under the hood” for a
moment and explain to you just exactly how Adobe can take a Flash file (.fla) and publish it as
an .apk for Android or .ipa for iOS.

For Android apps, the process is not much different than AIR apps for the desktop. The AIR
for Android run time provides an environment on which developers can build applications using
Flash technologies and deliver it as a standalone application, outside of any browser. Users need
to install the AIR for Android run time on their Android devices, and then Flash-based Android
apps run on top of it.

AIR for Android embeds the cross-platform virtual machine Flash Player used to run media and
apps created using Adobe Flash or Flash Builder. Inside of an AIR app, you have programmatic
access to existing Flash Player API calls as well as some enhanced functionality for vector-based
drawing, multimedia support, and a full networking stack.

AIR for Android also embeds SQLite, a database engine for enabling local database access. It is an
extremely lightweight, open source, cross-platform SQL database engine that is embedded in many
desktop and mobile products. Unlike most SQL databases, it does not require a separate server pro-
cess and uses a standard file to store an entire database (tables, indexes, and so on). For more infor-
mation on SQLite, go to www.sqlite.org.

When you publish a Flash file for Android, your .fla, .as source code, and other source files are
transformed by the ActionScript compiler into a binary format called ActionScript Byte Code
(ABC). The ABC is packaged inside a .swf file (see Figure 1-2). The .swf and supporting resource
files are then packaged together as an Android package (.apk) ready for installation onto a device.

http://www.sqlite.org

6 ❘ chaPter 1 IntroducIng Flash development For mobIle devIces

.swf

ActionScript
Byte Code

(ABC)

.fla

.as Files

Project
Files

Source Files

ActionScript
Compiler

Compile Time (Standard)

fiGure 1-2

At run time, the .swf file inside of the Android app is processed by the ActionScript Virtual
Machine (AVM2), which is part of the AIR for Android run time. The AVM2 loads the ABC file
into memory and decodes it. The bytecodes are then run through an interpreter and executed as
native machine code (see Figure 1-3) by the AIR run time. This process of bytecode compilation by
the AVM2 is specific to the Android platform.

Native
Machine

Code

ActionScript
Virtual Machine

(AVM2)

Run Time (Standard)

ActionScript
Byte Code

(ABC)

.swf

fiGure 1-3

building for ios
So, while Android apps run on top of an AIR runtime environment that is installed separately, iOS
apps wrap the runtime code inside of the app itself, making it self-contained. Not surprisingly, then,
the process in which an iOS app is created, is quite distinct. Let me explain.

When you compile a Flash project for iPhone, the ABC code is compiled by the Low Level Machine
Compiler (LLVM), which is an open source compiler infrastructure that is used to generate machine
code for iOS. (Apple itself uses the LLVM). However, as shown in Figure 1-4, in its Packager for
iPhone, Adobe provides an ActionScript front-end to the LLVM for handling Flash files.

While the AVM2 supports JIT for Web and AIR, LLVM uses Ahead-Of-Time (AOT) compilation to
produce native ARM assembly code wrapped inside of an iPhone executable file. The .ipa also con-
tains a .swf containing assets and a configuration file.

What You Can and Cannot do ❘ 7

During the publishing process, the AIR Developer Tool (ADT) is used to add the .p12 certificate to
the .ipa application file for developer authentication. The resulting .ipa is a native iPhone applica-
tion ready for installation on your iPhone device.

.ipa

Native ARM
Assembly

Code

.swf

AIR Developer
Tool

(ADT)

.fla

.ipa

.as Files

Project
Files

Source Files

ActionScript
Front End
for LLVM

.p12

Compile Time (iOS)

Low Level Virtual
Machine (LLVM

Compiler

Ahead-of-Time (AOT)
Complilation

fiGure 1-4

What you can anD cannot Do

Flash CS5 and Flash Builder allow you to create native Android and iOS apps, but it is important to
understand from the get-go the capabilities and limitations of the types of functionality you develop.

Device support
Support for Android and iOS APIs are similar, but at the time of writing, not identical. Table 1-2
summarizes the API capabilities of Flash apps running on Android and iOS.

8 ❘ chaPter 1 IntroducIng Flash development For mobIle devIces

table 1-2: API Support

aPi anDroiD ios

Touch/Gestures X X

Accelerometer X X

Geolocation Sensor X X

Camera X

Microphone X

StageWebView X

CameraRoll/Photo Library X Add to library only

File I/O X X

SQLite database X X

Ability to launch mobile services via URL protocol, such as
Phone (tel:) and E-mail (mailto:) and SMS (sms:)

X X

As you can see, some core mobile services are unsupported:

Native UI controls ➤➤

Music player and library ➤➤

Bluetooth ➤➤

Contacts ➤➤

Calendar ➤➤

Preferences➤➤

The areas of strongest support center on multitouch and gesture events, Accelerometer, and persis-
tent file and database storage. Both AIR for Android and Packager for iPhone are weaker than their
native SDK counterparts in being able to integrate with other parts of the respective devices — both
hardware and system services. Therefore, as you architect your apps, factor in those constraints.

unsupported as3 aPi objects
When creating mobile applications, you have access to many parts of the core AS3 library and AIR
API extensions. However, not all core and AIR functionality is supported on Android and iOS. The
following is a list of AS3 API objects or members that are not supported:

Accessibility ➤➤

DNSResolver ➤➤

Understanding the air for android security Model ❘ 9

DockIcon ➤➤

DRMManager ➤➤

EncryptedLocalStore ➤➤

HTMLLoader ➤➤

LocalConnection ➤➤

NativeApplication exit()➤➤ , isSetAsDefaultApplication(), menu, and startAtLogin

NativeMenu ➤➤

NativeProcess ➤➤

NativeWindow➤➤ and NativeWindow.notifyUser()

NetworkInfo ➤➤

PDF support➤➤

PrintJob ➤➤

Socket support (➤➤ DatagramSocket, SecureSocket, ServerSocket)

Shader ➤➤

ShaderFilter ➤➤

Socket.bind() ➤➤

StorageVolumeInfo ➤➤

XMLSignatureValidator➤➤

What’s more, although you can use Flash Builder to create AIR for Android apps, the Flex MXML
framework is not officially supported on Android and incompatible with iOS.

unDerstanDinG the air for anDroiD security MoDel

AIR for Android carries over the same basic security model that Adobe created for the desktop ver-
sion of AIR. In the traditional desktop environment, desktop apps get permission in terms of what
they can do and cannot do from the OS and the available permissions of the currently logged in
user. They receive this level of access because the users need to explicitly install the app — effec-
tively telling their computer that they trust the app they are about to launch. As a result, native apps
have access to read and write to the local file system and perform other typical desktop functions.

Web apps, however, are far more restrictive because of the potentially malicious nature of scripting.
As a result, web apps limit all local file access, can only perform web-based actions inside the con-
text of a browser, and restrict data access to a single domain.

The hybrid nature of an AIR for Android application puts it somewhere between the traditional
desktop and restrictive web security models. On the one hand, you can create an Android application

10 ❘ chaPter 1 IntroducIng Flash development For mobIle devIces

that runs on top of the normal Android OS security layer. Therefore, it is able to read and write from
the local file system. However, because AIR utilizes web technologies that, if unchecked, could be
hijacked by a malicious third party and used in harmful ways when accessing the local system, AIR
has a security model to guard against that happening. Specifically, AIR for Android grants permis-
sions to each source or data file in an AIR application based on their origin and places them into one
of two kinds of sandboxes.

The application sandbox contains all content that is installed with the app inside of the home direc-
tory of an application. Only these resources have access to the AIR for Android API and its runtime
environment.

Adobe AIR does allow you to link in other local and remote content not inside the root directory
of the application, but it places this content in a non-application sandbox. Content inside the non-
application sandbox is essentially handled from a security standpoint just like a traditional web app
and is not granted access to the AIR APIs (see Figure 1-5).

Non-Application Sandbox

Remote
Files

Remote
Files

Application Sandbox

AIR API

Root
Directory

Files

Bridge

Local OS
File I/O, Network,

UI, etc.

fiGure 1-5

GettinG to knoW the anDroiD sDk

Apart from using Flash CS5, Flash Builder, or the AIR command-line utilities, the only way to cre-
ate Android applications is by working with the Android Software Developer Kit (SDK). The SDK
is a set of APIs and development tools that developers use to create native Android apps. Although
much of the Android SDK is not directly useful to Flash developers, you will still utilize some of its
tools during your app development process. Therefore, you’ll want to begin by downloading and
installing the latest version at http://developer.android.com before continuing.

http://developer.android.com

summary ❘ 11

GettinG to knoW the ios sDk

Apart from Flash CS5, the only way to create iOS applications is by working with Apple’s iOS
Software Developer Kit (SDK). The SDK is a set of APIs and development tools that are used by
Objective-C developers to create native iOS apps. While much of the iOS SDK is not useful to
Flash developers, you can still utilize some of its profiling and diagnostic tools to debug your apps.
Additionally, it is also a good idea to know what’s in the SDK, particularly as you read Apple refer-
ence materials pertaining to iOS app development.

The core API frameworks include:

Cocoa Touch framework is the core API used for developing iPhone apps. It includes support ➤➤

for multi-touch and gestures, accelerometer, and camera.

The Media API provides support for video, audio, and core animation processes. ➤➤

Core Services are lower level services that provide networking, database, and thread support. ➤➤

OS X Kernel is the lowest level of services providing basic File I/O, TCP/IP, security, and ➤➤

power management.

iOS SDK apps are built using Xcode developer tools. Xcode consists of the following:

Xcode IDE is the Objective-C based development environment. ➤➤

Interface Builder is used to create user interfaces in a visual environment and then link them ➤➤

into the Xcode project.

Instruments is a diagnostic tool that collects disk, memory, and CPU data of an app in real ➤➤

time.

Shark is a companion tool for profiling your app.➤➤

As Chapter 13 explains, you can use Shark and Instruments with your Flash-built apps.

suMMary

In this chapter, you were introduced to Android and iOS application development using Flash CS5
and Flash Builder. You reviewed the API support for both mobile operating systems and explored
what you can and cannot do in your Flash app. After that, you read aspects of the general AIR API
that are available to you as you develop for Android devices. Finally, you took a quick survey of the
Android SDK and iOS SDK. Although you do not need to use many parts of it for Flash apps, it is
helpful to know that it contains support tools that can make your life easier.

setting Up Your development
environment

What’s in this chaPter?

Install the SDKs ➤➤

Install the Flash Extension ➤➤

Create a self-signed digital certifi cate ➤➤

Joining the iPhone Developer Program ➤➤

Although you may be ready to begin coding right now, you’ll need to do a couple of things
before you can begin creating and publishing Android and iOS apps. There are some Software
Development Kits (SDKs) to install and developer programs to join. What’s more, to test and
debug an application that you are developing, you must have the necessary certifi cates that you
can use as part of the publishing process.

This chapter guides you through the process of getting all the necessary gear that you need to
begin application development.

PreParinG for anDroiD DeveloPMent

If you’re preparing to develop for Android, work through this section to set up your develop-
ment environment.

installing the air sDk
If you don’t already have it installed, your fi rst task is to install the Adobe Integrated
Runtime (AIR) 2.5 SDK on top of your existing SDK installation. Exactly where depends
on which tool you’re using.

2

14 ❘ chaPter 2 settIng up Your development envIronment

Before beginning, be sure to download the latest AIR 2.5 SDK from the Adobe website at www.adobe
.com/products/air/tools.

Use the latest version of the AIR SDK, which at the time of writing is 2.5.

Flash Cs5 Professional

If you use Flash CS5 to build AIR applications, you should first update Flash to the latest available
version at www.adobe.com/support/flash/downloads.html.

Once you have the latest update, follow the instructions that follow:

 1 . Exit Flash if it is running.

 2 . Locate the Flash installation folder. For Windows, it is probably C:\Program Files\Adobe\
Adobe Flash CS5, and on Mac OS X, it is /Applications/Adobe Flash CS5.

 3 . Within the installation folder, look for the AIK2.5 folder. If you’re running CS4, it will likely
be the AIK1.5 folder.

 4 . Rename the folder to AIK2.5-old or something like that. You’ll only need it again if there’s
a configuration issue and you have to restore.

 5 . Create a new AIK2.5 folder (or AIK1.5 if you’re using CS4).

 6 . Copy the uncompressed files from the AIR 2.5 SDK download into the new AIK2.5 folder
you just created.

 7 . Copy the airglobal.swc file within the Adobe Flash CS5/AIK2.5/frameworks/
libs/air folder into the Adobe Flash CS5/Common/Configuration/
ActionScript 3.0/AIR2.5/ folder

Flash Professional is now configured to use the AIR 2.5 SDK.

Flex Builder and Flex sdK

If you’re creating Android apps outside of Flash Professional using Flash Builder, Flex Builder, or
just the Flex SDK, you’ll want to overlay the AIR 2.5 SDK onto the Flex SDK.

 1 . Exit Flash Builder or Flex Builder if it is running.

 2 . Locate the Flex SDK folder that you’re using with your tool. For Flash Builder, it is probably
c:\Program Files\Adobe\Adobe Flash Builder 4\sdks\3.5.0 or c:\Program Files\
Adobe\Adobe Flash Builder 4\sdks\4.0.0. For Flex Builder, it is usually c:\Program
Files\Adobe\Flex Builder 3\sdks\3.2.0.

 3 . Back up the current SDK folder under a new name.

 4 . Copy the uncompressed files from the AIR 2.5 SDK download on top of the original Flex
SDK, overriding any files with the same name.

Your Flex SDK is now ready to compile Android apps using the command-line tool.

http://www.adobe.com/products/air/tools
http://www.adobe.com/support/flash/downloads.html

Preparing for android development ❘ 15

creating a code-signing certificate
Before you can publish an AIR for Android app, you need to have the application signed by a code-
signing certificate. There are two types of certificates:

Commercial code-sign certificates ➤➤ — A CA, such as ChosenSecurity, GlobalSign, Thawte,
or VeriSign, purchases these certificates. The CA serves as a trusted third party that authen-
ticates the identity of the developer. A commercial certificate gives you the greatest degree of
“trust” and authenticity for users installing your app.

The cost of commercial certificates varies significantly ($200–500), so be sure to shop
around. If you’re an individual developer, GlobalSign has a special individual certificate for
$99 annually, which is much more reasonable if you are just getting started.

Self-signed certificates ➤➤ — These are make-it-yourself certificates that you can generate with
Flash CS5, Flash Builder, or the AIR SDK. Self-signed certificates provide a minimal degree
of trust for users, because you have no independent confirmation of your authenticity. Self-
signed certificates are intended mainly for internal use when debugging and testing your app.

You don’t need to create a new certificate for each AIR for Android application. You can use one
certificate for multiple apps. What’s more, if you have already created a .p12 certificate for AIR
desktop apps, you’re all set. You can use it for Android apps as well.

Creating a Certificate in Flash Cs5

If you are using Flash CS5, the easiest way to create a self-signed certificate inside the integrated
development environment (IDE) is to do the following:

 1 . Choose File➤➪➤New.

 2 . Click the Templates tab.

 3 . From the Category list, choose AIR for Android.

 4 . Click the OK button.

 5 . In the Properties panel, click the Edit button next to the AIR Android Settings.

The Application & Installer dialog box is displayed.

 6 . Click the Deployment tab.

Figure 2-1 shows the Deployment tab.

 7 . Click the Create button next to the Certificate box.

The Create Self-Signed Digital Certificate dialog box is displayed (see Figure 2-2).

 8 . Fill in the boxes with the appropriate information.

The Type drop-down list specifies the level of security that the certificate carries: 1024-RSA
uses a 1024-bit key, whereas 2048-RSA uses a 2048-bit key (more secure).

16 ❘ chaPter 2 settIng up Your development envIronment

 9 . Enter the filename for your certificate in the Save As box.

 10 . Click OK to create the .p12 file in the location specified.

This .p12 file will be the certificate displayed in the Deployment tab. Click Cancel unless you are
planning to publish the current file.

Creating a Certificate from the Command line

You can also create a self-signed certificate from the command line using the AIR Developer Tool
(ADT) utility, which comes with the AIR SDK. The syntax is as follows:

adt -certificate -cn commonName keyType certificateFile password

For example:

adt -certificate -cn cert1 1024-RSA mycert.p12 2010AN12as

This command creates a certificate with a common name of cert1, a 1024-RSA key type, a filename
of mycert.p12, and a password of 2010AN12as.

The mycert.p12 file is created in the directory where you ran the command.

fiGure 2-1 fiGure 2-2

Preparing for android development ❘ 17

installing the flash cs5 extension for air 2 .5
Before you can use Flash CS5 to publish Android apps, you need to install the Adobe Flash
Professional CS5 Extension for AIR 2.5:

 1 . Exit Flash CS5 if it is running.

 2 . Download the Adobe Flash Professional CS5 Extension for the AIR 2.5 extension from
http://labs.adobe.com/technologies/flashpro_extensionforair/. The file will
have a .zxp extension.

 3 . Double-click the .zxp file to launch the Adobe Extension Manager (see Figure 2-3).

fiGure 2-3

Make sure you’re running the Extension Manager as Administrator.

 4 . Restart Flash CS5.

installing the android sDk
Although you do not need the Android SDK to create compiled AIR for Android apps, you do need
it to install and debug your apps on your Android device or desktop emulator.

 1 . Download the Android SDK from developer.android.com/sdk.

Be sure to read the Quick Start notes on the page before continuing. It provides the latest
installation notes and system requirements.

http://labs.adobe.com/technologies/flashpro_extensionforair/

18 ❘ chaPter 2 settIng up Your development envIronment

 2 . Uncompress the .zip file into C:\Program Files\Android-SDK or wherever you want to
install it.

 3 . Add the tools subdirectory to your system path. See the section “Adding the Android SDK
to Your System Path” for details.

 4 . Double-click the SDK Setup.exe in the Android SDK directory.

 5 . Select the packages you want to install.

For AIR for Android, make sure to download SDK Platform Android 2.2, API8 and higher.

When your downloads are complete, the Android SDK and AVD Manager are displayed, as
shown in Figure 2-4.

fiGure 2-4

 6 . To connect your Android device to a Windows machine, download the USB Driver for
Windows at http://developer.android.com/sdk/win-usb.html. Be sure to follow the
instructions on the website.

 7 . On your Android device, enable USB debugging in the Settings app under
Applications➤➪➤Development.

You’ll want to be aware of various tools that are included with the Android SDK. Following are
three of the ones you’ll use most often:

Android Debug Bridge (➤➤ tools/adb.exe) is used for installing AIR for Android apps
and Android SDK to devices and the emulator.

Android SDK and AVD Manager (➤➤ SDK Setup.exe) for installing and configuring the Android
SDK. You can also set up and run Android emulators through this manager.

Dalvik Debug Monitor (➤➤ tools/ddms.bat) provides log and other debug information about a
connected Android device. (See Figure 2-5.)

http://developer.android.com/sdk/win-usb.html

Preparing for android development ❘ 19

fiGure 2-5

Before continuing, I recommend testing to make sure your Android device is recognized when you
connect it using USB. To do so, type the following at the command prompt:

adb devices

If your device is recognized, you get a response like this:

List of devices attached
HT06CP910453 device

If your connected device is not recognized, make sure USB debugging is enabled on your device.

adding the android sDk to your system Path
You’ll need to be sure to add the Android SDK folder to your system path.

setting the environment Path in Windows

 1 . Press the Windows key and the Pause/Break key at the same time.

If you’re running Windows 7 or Vista, the System section of the Control Panel is displayed.

If you’re running Windows XP, the System Properties dialog box is displayed. Skip ahead
to step 3.

 2 . Click the Advanced System Settings link.

20 ❘ chaPter 2 settIng up Your development envIronment

The System Properties dialog box is displayed.

 3 . Click the Advanced tab in the System Properties dialog box.

 4 . Click the Environment Variables button.

 5 . Edit the system variable named Path.

 6 . At the far right end of the existing path value, type a semicolon (;) and then a path for the
tools subdirectory of the Android SDK folder.

 7 . Test the new path by opening a new Console window and typing adb at the command
prompt.

You should see a listing of the various options available when calling the adb utility. If not, check to
make sure you added the correct directory to the system path.

setting the system Path in Mac os X

If you’re installing the Android SDK on the Mac, follow these steps to add it to your system path:

 1 . Open the Terminal.

By default, you will be in your home directory.

 2 . Enter ls –la at the command prompt.

The terminal displays a list of all files in your home directory.

 3 . Check to see if a file called .profile exists.

If so, go on to step 5. Otherwise, go to step 4.

 4 . If needed, create the .profile file by typing touch .profile at the command prompt.

 5 . Type open -a TextEdit .profile at the command prompt.

 6 . Add your Android SDK tools subdirectory to the export PATH=$PATH: line.

Here’s how mine looks:

export PATH=$PATH:/Users/rich/android-sdk/tools

Or, if you already have an export PATH line, add the Android SDK tools subdirectory to
the far right, separate it with a semicolon (;).

For example:

export PATH=$PATH:/usr/local/bin;/Users/rich/android-sdk/tools

 7 . Save the file.

 8 . Quit the Terminal.

 9 . Restart your computer.

Preparing for android development ❘ 21

 10 . Open the Terminal.

 11 . Type. .profile at the command prompt to load the new settings.

 12 . Confirm the path by typing echo $PATH at the command prompt.

You should see the Android SDK tools path in the output line.

 13 . Test the installation by typing adb at the command prompt.

You should see a listing of the various options available when calling the adb utility. If not, check to
make sure you added the correct directory to the system path.

creating an android virtual Device
After you have the Android SDK installed, you can create and run an emulator of an Android device
on your desktop. The emulator, or Android Virtual Device (AVD), can be invaluable if you don’t
have access to an Android device or you want to test your app on various screen resolutions or
device configurations.

To create an AVD, follow these steps:

 1 . Launch the Android SDK and AVD Manager
(SDK Setup.exe for Windows), which is
located in your Android SDK directory. (See
Figure 2-4.)

 2 . Click the Virtual Devices item on the left side.

 3 . Click the New button to display the Create
New Android Virtual Device (AVD) dialog box
(see Figure 2-6).

 4 . Enter the name of your device in the Name box.

 5 . Select a target Android version from
the Target list. You’ll want to select
Android 2.2 - API Level 8 (or higher).

 6 . Specify the size of the SD Card, such as
1024MB.

 7 . Specify the screen size in the Skin area. I specify
480 × 800.

 8 . Leave the Hardware section as is for now.

 9 . Click the Create AVD button.

The AVD is now displayed in the Virtual Devices list. Click the Start button to launch the emula-
tor. The device goes through a boot-up process and becomes available in a couple of minutes.

fiGure 2-6

22 ❘ chaPter 2 settIng up Your development envIronment

installing the air runtime onto your Device
Before you can install and run AIR for Android apps on your device or emulator, you need to install
the AIR runtime onto it.

The easiest way to do install it is to download and install it from the Android Market. You can find
it by searching for “Adobe AIR”. Once you find it, simply follow instructions on screen to install.

comparing the Development environment options
Adobe provides several options for Flash, ActionScript 3 (AS3), and Flex developers to create AIR
for Android apps. Here’s a brief look at your options.

Flash Cs5

Adobe’s standard way of creating AIR for Android apps is by using Flash CS5 Professional. After
you have the Android extension installed, you can do any of these:

Create a new Android-based ➤➤ .fla based on an AIR for Android template.

Configure AIR for Android settings from a dialog box. ➤➤

Publish Android apps and create the ➤➤ .apk file.

Automatically install and run the app if you have an Android device connected. ➤➤

Flash Builder + Flash Cs5

Flash Builder developers who also have Flash CS5 can create Android apps using a combination of
the two tools. Create the .fla inside of Flash, but use Flash Builder as the AS3 code editor and IDE.

If you have Flash Builder installed, when you edit
the document class, Flash CS5 asks you if you want
to edit the file in Flash Professional or Flash Builder
(see Figure 2-7). If you choose Flash Builder, its IDE
is launched using a workspace you create for this
purpose. You can then use the full Flash Builder
IDE, moving back and forth between Flash as
needed. For larger AS3 apps, this is my preferred development option.

Flash Builder, Flex Builder, or Flex sdK

Because the Flex SDK command-line tools can compile .apk files, you don’t have to have Flash CS5
Professional to create Android apps. You can create AS3-based apps using Flash Builder, Flex Builder,
or your own IDE with the Flex SDK. The downside is that you have to do everything yourself:

You have to structure your own AS3-only app in an environment oriented toward MXML ➤➤

architecture.

You have to compile ➤➤ .apk files using command-line tools.

You install apps to your Android device from the command line using Android SDK tools. ➤➤

fiGure 2-7

Preparing for ios development ❘ 23

using MxMl in android apps
As this book goes to press, Adobe is offering beta support for Flex framework and MXML in AIR
for Android apps. So, if you plan to use MXML to develop Android apps, visit the Adobe website
and look for releases of Flash Builder 4.5 and Flex SDK 4.5.

The issue with earlier versions of the Flex IDEs (Flash Builder 4.0 and Flex Builder 3.x) and 4.0 and
earlier SDKs is that their components were not optimized or designed for a multitouch environment.

PreParinG for ios DeveloPMent

While your AS3 code might look quite similar to Android when creating an iOS app, the process in
which you prepare for installing into the iPhone or other iOS device is quite different.

This section guides you through the process of getting all the necessary certificates you need to
begin application development. Before continuing, make sure you have the latest version of iTunes
installed on your development machine. You use iTunes to install the app on your iPhone as well as
to get your phone’s device ID, which generates a developer certificate.

joining the iPhone Developer Program
Before you can actually publish and install an application onto your iPhone for testing, you need
to join the Apple Developer Program. (Yes, you need to pay for the program before you can even
test a Hello World application.) There are two types of programs; the one you choose to use
depends on your situation. At the time this book went to press, the Standard Program was run-
ning $99 annually, whereas the Enterprise Program was $299 (for developers at companies with
more than 500 employees).

Unfortunately, many of the benefits of using the Apple Developer Program are specifically for the
Objective-C developer; thus, they are largely useless to you as a Flash/AS developer. However, the
Developer Program gives you the keys to the kingdom in the form of the iPhone developer certifi-
cate, which enables you to install and test on your iPhone as well as to submit your application to
the App Store.

To join the Apple Developer Program, follow these steps:

 1 . Go to http://developer.apple.com/iphone/program.

This is your starting point for registering and purchasing the program.

 2 . Click the Enroll Now button to begin.

 3 . Complete the steps of enrollment that follow, and purchase the Developer Program of your
choice.

After you purchase the Developer Program, Apple has to approve you before awarding your
developer certificate. The usual turnaround time is within a couple of hours, although it
might take a day or two. You receive an e-mail, as shown in Figure 2-8, once your applica-
tion has been approved.

http://developer.apple.com/iphone/program

24 ❘ chaPter 2 settIng up Your development envIronment

fiGure 2-8

 4 . Click the activation link in the e-mail you receive from Apple, and then follow the on-screen
instructions to complete the enrollment process.

Getting an iPhone Developer certificate
With Apple’s approval in hand, you’ve joined the club and are ready to log in to the Program Portal
and download your developer certificate. Your iPhone app must be signed by a valid digital certifi-
cate before it can run on an iPhone or iPod touch. This certificate links your developer identity to
your confirmed contact information that you provided during the registration process; it is crucial
to the trust process involved when downloading and installing an application from a previously
unknown source.

The developer certificate is used during testing and debugging and has an expiration date associated
with it. You use a different certificate when submitting your app to the App Store.

To obtain a developer certificate, you need to generate a Certificate Signing Request (CSR) either
from your Mac or Windows computer.

Preparing for ios development ❘ 25

generating a Csr Using Mac os X

To generate a CSR using your Mac:

 1 . Launch the Keychain Access utility from Applications/Utilities.

 2 . Choose Keychain Access➤➪➤Preferences.

 3 . In the Certifi cates pane, set the Online Certifi cate Status Protocol and Certifi cate Revocation
List to Off.

 4 . Close the Preferences dialog box.

 5 . Choose Keychain Access➤➪➤Certifi cate Assistant➤➪➤Request a Certifi cate from a Certifi cate
Authority.

The Certifi cate Assistant is displayed (see Figure 2-9).

fiGure 2-9

 6 . Enter your e-mail address in the space provided.

The e-mail address you enter here must be the same one you previously used to
register with the iPhone Developer Program.

 7 . In the Common Name fi eld, enter a unique name (usually your own name) that you’ll use
later to identify as your private key in the Keychain Access utility.

 8 . Select the Saved to Disk radio option.

 9 . Check the Let Me Specify Key Pair Information check box.

 10 . Click Continue.

26 ❘ chaPter 2 settIng up Your development envIronment

 11 . Save your .certSigningRequest fi le on your desktop or in another appropriate location.

 12 . In the Key Pair Information panel, select 2048 bits in the Key Size combo box.

 13 . Select RSA for the Algorithm.

 14 . Click Continue to generate the certifi cate request.

Skip down to “Submitting Your CSR” to upload the certifi cate request to Apple.

generating a Csr Using Windows

If you don’t have access to a Mac, use the following steps to generate a CSR using your Windows
computer:

 1 . If you don’t have OpenSSL installed, download the latest binaries from www.openssl.org/
related/binaries.html.

 2 . Open a Command window (by running cmd.exe) and change to the OpenSSL bin
subdirectory.

 3 . Before creating a CSR, you need to generate a private key that associates with the CSR. To
do so, enter the following command at the prompt:

openssl genrsa -out devkey.key 2048

The devkey.key is created in the directory where it is run. You use this fi le when creating
the CSR.

You can also specify the devkey.key path in the command line.

 4 . Generate the CSR by entering the following at a command prompt (in your OpenSSL bin
subdirectory), substituting your own information in the parameters:

openssl req -new -key devkey.key -out
CertificateSigningRequest.certSigningRequest -subj
“/emailAddress=myEmailAddress@company.com, CN=Richard Wagner, C=US”

The e-mail address you use must be the same one you previously used to register
with the iPhone Developer Program.

Your certifi cate request is now ready to be submitted to Apple.

submitting Your Csr

After you have created a CSR, you need to submit the request to Apple and have it approved. Once it
is approved, you receive the developer certifi cate.

http://www.openssl.org/related/binaries.html

Preparing for ios development ❘ 27

To submit your CSR, follow these steps:

 1 . Go to the Program Portal section of the iPhone Developer Program website.

The Program Portal (see Figure 2-10) is the main area you’ll work with in the iPhone
Developer Program for testing your apps before submittal to the App Store. You can man-
age team members, certificates, devices, and provisioning profiles.

fiGure 2-10

 2 . Click the Certificates link.

 3 . Click the Request Certificate button.

 4 . Click the Choose File button on the Create iPhone Development Certificate page, and choose
the certificate file from your computer.

 5 . Click the Submit button.

After your certificate request is submitted, you receive the approval (or disapproval) via e-mail. If the
request is approved in the e-mail, you can download your certificate.

28 ❘ chaPter 2 settIng up Your development envIronment

retrieving the Developer certificate
When you receive an acceptance e-mail, you can go to the Program Portal to download the certifi-
cate. The developer certificate file (which is named developer_identity.cer) is downloaded from
Apple’s Program Portal. However, before you can use it with your Flash-based app, you need to con-
vert it from the .cer format to a .p12 certificate file. First, download the .cer file:

 1 . Go to the Program Portal section of the iPhone Developer Program website.

 2 . Click the Certificates link to display the Current Development Certificates list.

As shown in Figure 2-11, you see a certificate in your name (or the name you signed up for
the developer program with).

 3 . Click the Download button to retrieve the developer_identity.cer file.

fiGure 2-11

Next, you need to convert the file to.p12 certificate format so you can sign it in CS5. You can con-
vert the file using one of two methods, depending on whether you’re running Mac or Windows. (If
you have both systems, I recommend the Mac conversion process.)

Preparing for ios development ❘ 29

Converting the Certificate on Mac os X

If you are running Mac OS X, you can convert the certificate to .p12 format using the Keychain
Access application. Here’s how:

 1 . Double-click the developer_identity.cer file to launch the Keychain Access utility
(see Figure 2-12).

fiGure 2-12

 2 . Select the Keys category from the left pane. You’ll see a public and private key listed.

 3 . Right-click the private key and click the Export item from the pop-up menu.

 4 . Save the certificate in the Personal Information Exchange (p.12) format.

Your developer certificate is now ready to go. You’ll need this when you publish your iPhone apps in
Flash CS5, so copy the file to a safe place.

Converting the Certificate on Windows

If you only have access to a Windows computer, you need to use OpenSSL to convert the certificate
to .p12 format. To do so, follow these steps:

 1 . Copy the developer_identity.cer file you download from the Program Portal to the
OpenSSL bin subdirectory on your computer.

 2 . Open a Command window (running cmd.exe) and change to the OpenSSL bin subdirectory.

 3 . Enter the following at the command prompt:

openssl x509 -in developer_identity.cer -inform DER -out developer_identity.pem
-outform PEM

30 ❘ chaPter 2 settIng up Your development envIronment

A .pem file is created. You’ll use this file in combination with the .key file you created ear-
lier to create the .p12 file.

 4 . If the .key file is not in the OpenSSL bin subdirectory, copy it in now.

 5 . Enter the following command to generate the .p12 file:

 openssl pkcs12 -export -inkey devkey.key -in developer_identity.pem
-out developer_identity.p12

Modify the filenames used as parameters if needed.

Your .p12 certificate is now ready to go. You’ll need this when you publish your iPhone apps in
Flash CS5, so copy the file to a safe place.

adding a Device
Your next step is to register one or more devices that you intend to use during the development pro-
cess. You can enter up to 100 devices per year. To add a device:

 1 . Connect your iPhone or iPod touch to your desktop computer and open iTunes.

 2 . Display the Summary page for your iPhone.

 3 . Click the serial number displayed at the top to display the UDID (unique device identifier)
identifier (see Figure 2-13).

fiGure 2-13

Preparing for ios development ❘ 31

 4 . Copy the UDID number to the Clipboard.

 5 . Go to the Program Portal section of the iPhone Developer Program website.

 6 . Click the Devices link, and then click the Add Device button.

 7 . Enter a name you want to give the device, and then paste the UDID into the Device ID box
(see Figure 2-14).

 8 . Click Submit to add your device.

fiGure 2-14

creating an app iD
Although I have not even started covering how to create a Flash-based iPhone app, go ahead and
create an App ID anyway. It’s needed to create a provisioning profile, which is discussed in the next
section. An App ID is a unique identifier for your application that consists of two parts:

Bundle Seed ID➤➤ — is a 10-character prefix that Apple generates.

Bundle Identifier➤➤ — is a reverse-domain style string that you decide upon. It can contain stan-
dard alphanumeric characters (A–z, 0–9), periods, and hyphens.

32 ❘ chaPter 2 settIng up Your development envIronment

For example, a typical App ID might look something like the following:

A1B2C3D4E5.com.richwagner.myapp

Because your Bundle Identifier uniquely identifies a particular app, you can use the string only once.
This is known as an Explicit App ID.

In addition to the standard App ID, you can create a Wildcard App ID if you want to use the same
App ID for all applications. A Wildcard App ID uses the familiar asterisk as the Bundle Identifier or
the last part of it. For example:

A1B2C3D4E5.*

Or:

A1B2C3D4E5.com.richwagner.*

A Wildcard App ID is ideal for getting started, enabling you to work with many sample apps with-
out assigning a unique App ID to each.

To create a Wildcard App ID for use in testing:

 1 . Go to the Program Portal section of the iPhone Developer Program website.

 2 . Click the App IDs link to display the Create App ID page (see Figure 2-15).

 3 . In the Description box, enter a descriptive name for the App ID. Because I am creating a
Wildcard App ID, I am using BookSamples.

 4 . In the Bundle Seed ID combo box, select Generate New (the default item).

 5 . In the Bundle Identifier box, enter an * if you are creating a Wildcard App ID or a reverse-
domain name style string if you are creating an Explicit App ID.

You need to have an Explicit App ID to have In App Purchases and Push Notification services.
Currently, Flash CS5 does not currently support these, but keep in mind you will need one when
support is added in the future.

creating a Provisioning Profile
After you have obtained a developer certificate, registered your device, and created an App ID,
you’re ready for the final credential you need to run an app on a device: a provisioning profile. A
provisioning file binds a developer certificate, an application, and one or more devices. You need to
have a provisioning profile installed on each iPhone device that runs your app, or it will not install
successfully.

There are three types of provisioning profiles: a development provisioning profile is used for testing
on your own iPhone; an ad-hoc provisioning profile is used for more general beta testing on mul-
tiple devices outside of the App Store; and a distribution provisioning file is used for submitting to
the App Store. You can create new provisioning profiles for an application as you move through the
development life cycle.

Preparing for ios development ❘ 33

fiGure 2-15

To create a development provisioning file:

 1 . Go to the Program Portal section of the iPhone Developer Program website.

 2 . Click the Provisioning link.

 3 . Click the New Profile button to display the page shown in Figure 2-16.

 4 . Enter the name of the profile. In my case, I enter BookSamplesProfile.

 5 . The name of your developer certificate appears next to the Certificates label. Click the check
box to assign your developer certificate to this profile.

 6 . Select the App ID you created in the App ID combo box.

 7 . Click the check box next to the device you previously registered.

 8 . Click the Submit button to create the provisioning profile.

Figure 2-17 shows the list of provisioning profiles in my Program Portal.

 9 . Click the Download button beside the provisioning profile you just created to download the
.mobileprovision file to your desktop computer.

34 ❘ chaPter 2 settIng up Your development envIronment

fiGure 2-16

fiGure 2-17

Preparing for ios development ❘ 35

installing the Provisioning Profile
You need to install a provisioning profile on your desktop computer and iPhone. To do so, you can
use either iTunes or the iPhone Configuration Utility.

install Using itunes

To install using iTunes, you can drag the .mobileprovision file on top of your iTunes window.
(Alternatively, you can use the Add to Library command from the File menu.) iTunes adds the provi-
sioning profile to your library.

When you synch your iPhone to iTunes, the development provisioning profile is added onto your
iPhone. You can check to make sure it is on your iPhone by going to the Settings app on your iPhone
and choosing General➤➪➤Profiles. As Figure 2-18 shows, the profile is displayed on the list.

If you select the profile from the list, you see its verification information and its expiration date
(see Figure 2-19). You can also remove the profile from your iPhone if and when you are finished
using it.

install Using iPhone Configuration Utility

You can also install the provisioning profile using the iPhone Configuration Utility (see Figure 2-20).
This free utility is available for both Mac and Windows. To download, go to www.apple.com/
support/iphone/enterprise.

fiGure 2-18 fiGure 2-19

http://www.apple.com/support/iphone/enterprise

36 ❘ chaPter 2 settIng up Your development envIronment

fiGure 2-20

You can use this utility for a variety of configurations, but for your immediate purposes, you only
need to concern yourself with the Provisioning Profiles section of the app. To install:

 1 . Drag the .mobileprovision file on top of the iPhone Configuration Utility window.

If you click the Provisioning Profiles item in the Library tree, you see the file displayed in
the list. (Note that provisioning profiles added via iTunes are not displayed in the list.)

 2 . If your device is not already connected, plug your iPhone into your computer.

 3 . Select your iPhone from the Devices tree on the left-side pane.

 4 . Click the Provisioning Profiles tab.

A list of provisioning profiles associated with your device is shown (see Figure 2-21).

 5 . Click the Install button next to the provisioning profile you created to install the profile onto
your device.

As I mentioned in the previous section, you can check to ensure that your profile was added to your
iPhone by choosing Settings➤➪➤General➤➪➤Profiles.

summary ❘ 37

fiGure 2-21

suMMary

In this chapter, you discovered all the preliminary steps before beginning Android development.
You learned the steps for installation of the AIR SDK, AIR Runtime, and Android SDKs. You
also learned how to create a self-signed .p12 certificate, which Flash CS5 can use when it compiles
Android apps. Finally, you discovered the various ways to use Flash, Flash Builder, and Flex Builder
to create apps.

You also discovered all of the preliminary steps you need to do before you can begin installing
apps you develop with Flash CS5 onto your iPhone. I walked you through the steps needed to
join the iPhone Developer Program and acquire an iPhone Developer Certificate. I then showed
you how to convert that certificate into a .p12 certificate which can then be used by Flash CS5
when it compiles iPhone apps. Finally, I showed you how to create and install a provisioning file
using iTunes and the iPhone Configuration Utility.

Building and installing Vanillaapp

What’s in this chaPter?

Creating your fi rst Android app➤➤

Creating your fi rst iOS app➤➤

Responding to basic touch events➤➤

Installing the app onto your device➤➤

Okay, enough with the intros, it’s time to build your fi rst mobile application. This chapter
walks you through the start-to-fi nish process of building a basic HelloWorld-style application
using Flash CS5 for both Android and iOS. To avoid the typical naming cliché, I’m naming
this simple little app VanillaApp. It displays an image that the user can pan and zoom.

I walk you through the process of building and installing the app for both Android and iOS
devices in separate sections. Follow along on the mobile OS you are most interested in. If you
plan on creating both, be sure to create separate projects to avoid confusion.

vanillaaPP for anDroiD

The actual workings of the Android application are minimal, but this chapter shows you all
the steps required to create and install an Android app using Flash CS5.

To create VanillaApp, you perform the following steps:

 1 . Create a project.

 2 . Create an .fla fi le.

 3 . Create an ActionScript document class.

 4 . Write the application code.

3

40 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

 5 . Add a splash screen.

 6 . Create the application icons.

 7 . Define the Android settings.

 8 . Publish the file.

 9 . Install the app on an Android.

Before you begin, I recommend changing the Flash CS5 workspace to Developer by selecting
Developer from the Workspace toolbar.

creating a Project
Begin by creating a new Flash project. Working within a project is not essential, particularly with a
small app such as this one. However, I recommend it as standard practice because it enables you to
manage your files more easily.

 1 . From the Welcome screen, click the Flash Project under the Create New list. (Or, choose
File➤➪➤New from the menu and select Flash Project from the list.)

The Project panel displays.

 2 . Click the Projects combo box and select the New Project item from the list.

The Create New Project dialog is displayed, as shown in
Figure 3-1.

 3 . Enter VanillaApp in the Project name field.

 4 . Specify a folder in the Root folder field. I am using
d:\android-dev\VanillaApp.

 5 . Keep ActionScript 3.0 as the default ActionScript version.

 6 . Click Create Project. The new blank VanillaApp project is cre-
ated and ready for use.

With your Flash project set, you can begin to add content to it.

creating a flash Document for air for android
When you create a Flash document (.fla) file, you’ll want to create it to have the publishing settings
configured for Android deployment. To do so, follow these steps:

 1 . From the Welcome screen, click AIR for Android under the Create From Template list. (Or,
choose File➤➪➤New from the menu and select AIR for Android from the Templates list.)

The untitled.fla is created and displayed in the Flash window.

 2 . Using File➤➪➤Save, save the document as VanillaApp.fla in your project’s root directory.

When the Project panel refreshes, the .fla extension shows up.

fiGure 3-1

Vanillaapp for android ❘ 41

Figure 3-2 shows the blank document inside the Flash environment.

Properties PanelProject Panel Document Window

fiGure 3-2

Because this is an ActionScript project, you won’t be doing anything more to the .fla document or
its timeline. But you’ll want to keep it open in the Flash CS5 editor to give you access to the com-
mands you need through the Properties panel.

creating an actionscript Document class
Because VanillaApp is an ActionScript project, your next step is to create an ActionScript docu-
ment class. In Flash, the document class serves as the command and control center for the applica-
tion. The document class is also the first code executed when the app is launched. (If you’re a Flex
developer, think of the document class as equivalent to a Flex project’s primary .mxml file, the one
that contains mx:Application or mx:WindowedApplication).

To create a document class, follow these steps:

 1 . Select the stage of the VanillaApp.fla document.

 2 . Press Ctrl+F3 (Windows) or Cmd+F3 (Mac OS X) to activate your Properties panel (if it is
not already visible).

 3 . In the Properties panel, type the name of the class in the Document edit box.

42 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

For this example, I enter VanillaApp. Although the document class can be any name you
want, it’s often helpful to use the same name as the .fla file or something similar, such as
VanillaAppClass.

No matter what name you decide to use, keep in mind an important ActionScript conven-
tion. Class names should be camel case — compound words joined without spaces with
each word’s initial letter capitalized, such as MyClass or MainAppClass.

 4 . Click the pencil icon to edit the class definition.

 5 . In the Edit ActionScript 3.0 Class dialog box, select the application whose class you want
to edit.

Selecting Flash Professional opens the editor inside the existing Flash environment.➤➤

Selecting Flash Builder allows you to open the Flash Builder IDE. If you are a Flex ➤➤

developer or simply want a powerful editor, you’ll definitely prefer this option for
larger projects.

Because this is a small app, choose Flash Professional and click OK.

The shell of the VanillaApp class is created and displayed in the document window. (See
Figure 3-3.)

fiGure 3-3

 6 . Choose File➤➪➤Save to save the file as VanillaApp.as.

Make sure you save it in the same directory as the .fla document.

Vanillaapp for android ❘ 43

coding the Document class
When Flash creates the document class, it provides the shell class structure. An example of the shell
class structure is shown here:

package {

 import flash.display.MovieClip;
 public class VanillaApp extends MovieClip
 {

 public function VanillaApp() {
 // constructor code
 }
.....}

}

Code snippet VanillaApp.as

The VanillaApp class is contained inside the default package and is a subclass of MovieClip. A
document class needs to extend MovieClip or Sprite. Use MovieClip if you need to do anything
involving the timeline, such as animations. If you need an ordinary base class, you can use Sprite,
which requires less memory overhead.

define import statements

For every ActionScript class you reference in your code, you need to import a reference to the class
name. For this example, you’ll want to add the following import statements above the class definition:

 import flash.display.Bitmap;
 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.events.TransformGestureEvent;
 import flash.geom.Matrix;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

Code snippet VanillaApp.as

In normal practice, you won’t know all of these references upfront and add them incrementally as
you develop the class. What’s more, a good short-cut is to press Ctrl+Space after you type in an
ActionScript type and Flash automatically adds the import statement for you.

define Class Properties

Your first step is to define two class properties and four class constants that you will be using in
the document class. The most significant of these definitions is a reference to an external file named
Mini.jpg. (You can find this graphic on the book’s website at wrox.com.) Using the [Embed]

44 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

metadata declarative, you can define a class reference as follows after the opening VanillaApp class
definition and before the constructor:

[Embed(source=”Mini.jpg”)]
private var MiniImage:Class;

The compiler uses the [Embed] tag to embed the file named Mini.jpg into the app and associate it
with the MiniImage variable.

Note that the [Embed] metadata tag requires the Flex SDK. As a result, when you first publish the
app, Flash CS5 prompts you to the Flex SDK path to the Library path of your project.

If you have the Flex SDK (or Flash Builder) already installed on your computer, simply provide your
existing Flex SDK directory. Or, if you don’t have the Flex SDK, it’s a free download at http://
opensource.adobe.com/wiki/display/flexsdk/Downloads.

In addition, you define the following property and constants:

// TextField
private var tfInfo:TextField;

// Constants
private const VIEWPORT_WIDTH:int = 480;
private const VIEWPORT_HEIGHT:int = 800;
private const IMG_WIDTH:uint = 1000;
private const IMG_HEIGHT:uint = 760;

Code snippet VanillaApp.as

The tfInfo property is the TextField I’ll be using in the app. The constants are height and width
values for the Android viewport and the image.

Write the Constructor

The constructor of a class is a special type of function that is called at the time an object based on
the class is constructed. For VanillaApp, you create the following display objects in the constructor:

TextField➤➤ to provide information text

Bitmap➤➤ to display the external image file

Sprite➤➤ that contains the bitmap

The TextField receives its formatting rules from the TextFormat class. Begin by creating the
TextFormat instance and providing formatting assignments as follows:

// Format TextField
var tf:TextFormat = new TextFormat();
tf.color = 0xffffff;
tf.font = “Helvetica”;
tf.bold = true;
tf.size = 14;

Code snippet VanillaApp.as

http://opensource.adobe.com/wiki/display/flexsdk/Downloads
http://opensource.adobe.com/wiki/display/flexsdk/Downloads

Vanillaapp for android ❘ 45

When you create the TextField, you assign tf as its defaultTextFormat. You also specify basic
width, dimensions, and starter text:

// Create TextField
tfInfo = new TextField();
tfInfo.width = 310;
tfInfo.defaultTextFormat = tf;
tfInfo.x = 2;
tfInfo.y = 20;
tfInfo.selectable = false;
tfInfo.text = “Welcome to VanillaApp. Zoom or pan to begin.”;

Code snippet VanillaApp.as

Next, you add the tfInfo instance to the stage using the addChild()method of the parent class,
VanillaApp:

addChild(tfInfo);

Although you already defined the image class that references the external image, you need to instan-
tiate an instance of it by performing the following:

var bitmap:Bitmap = new MiniImage();

Because the app allows panning and zooming of the image, you want to avoid choppy image move-
ments by using smoothing:

bitmap.smoothing = true;

Because you will be zooming in and panning around the image, you need a Sprite instance as a
container (the viewport) for the image, which is responsible for dispatching these events. You create
it as a local variable named sprite, add bitmap variable as its child, and add it to the stage:

// Create sprite container for image
var sprite:Sprite = new Sprite();
sprite.addChild(bitmap);
addChild(sprite);

Inside the constructor, you set up the dimensions, positioning, and scaling of the sprite and bitmap:

// Scaling and positioning
var fx:Number = VIEWPORT_WIDTH / IMG_WIDTH;
sprite.scaleX = fx;
sprite.scaleY = fx;
sprite.x = VIEWPORT_WIDTH / 2;
sprite.y = VIEWPORT_HEIGHT / 2;
bitmap.x = (IMG_WIDTH - (IMG_WIDTH / 2)) * -1;
bitmap.y = (IMG_HEIGHT - (IMG_HEIGHT / 2)) *-1;

In this code, sprite is scaled based on the relative width of the viewport and image and is posi-
tioned. The bitmap variable is then positioned inside sprite so that it is displayed in the middle
of the viewport.

46 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

The final task you need to perform in the constructor is setting up the application for responding to
multitouch events. You begin by specifying the Multitouch.inputMode:

Multitouch.inputMode = MultitouchInputMode.GESTURE;

This property specifies the type of touch and gesture events that you want to process. By specifying
MultitouchInputMode.GESTURE (the default, by the way), you are telling the app to dispatch touch
events with multiple points of contact, which is what you need to work with zooming and panning.

You must then assign listeners to the zoom and pan multitouch events that are dispatched by
sprite:

// Assign event handlers
sprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM, zoomHandler);
sprite.addEventListener(TransformGestureEvent.GESTURE_PAN, panHandler);

You can see the full constructor code in Listing 3-1.

defining event handlers

You need to define event handlers to respond to the zoom and pan events. The zoomHandler()
method handles zoom events:

 private function zoomHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Zoom event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.scaleX *= event.scaleX;
 sprite.scaleY *= event.scaleY;
 }

Code snippet VanillaApp.as

In this code, the tfInfo text is updated. The Sprite instance is then scaled by multiplying the exist-
ing scale by the new scale values provided by the event.

The panHandler() method handles pan events:

private function panHandler(event:TransformGestureEvent):void
{
 tfInfo.text = “Pan event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.x += event.offsetX;
 sprite.y += event.offsetY;

}

Code snippet VanillaApp.as

This code changes the x, y position of the Sprite by adding its current position with the offsetX
and offsetY properties of the event.

Go ahead and save changes to the VanillaApp.as file.

Vanillaapp for android ❘ 47

The full code for the document class is provided in Listing 3-1.

listinG 3-1: Vanillaapp.as

package
{
 import flash.display.Bitmap;
 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.events.TransformGestureEvent;
 import flash.geom.Matrix;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

 /**
 * Document class for VanillaApp application.
 * Sample application
 *
 * @author Rich Wagner
 *
 */
 public class VanillaApp extends MovieClip
 {

 // External image
 [Embed(source=”Mini.jpg”)]
 private var MiniImage:Class;

 // TextField
 private var tfInfo:TextField;

 // Constants
 private const VIEWPORT_WIDTH:int = 480;
 private const VIEWPORT_HEIGHT:int = 800;
 private const IMG_WIDTH:uint = 1000;
 private const IMG_HEIGHT:uint = 760;

 /**
 * Constructor
 *
 */
 public function VanillaApp()
 {
 super();

 // Format TextField
 var tf:TextFormat = new TextFormat();
 tf.color = 0xffffff;
 tf.font = “Helvetica”;
 tf.bold = true;

continues

48 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

 tf.size = 20;

 // Create TextField
 tfInfo = new TextField();
 tfInfo.width = 470;
 tfInfo.defaultTextFormat = tf;
 tfInfo.x = 2;
 tfInfo.y = 20;
 tfInfo.selectable = false;
 tfInfo.text = “Welcome to VanillaApp. Zoom or pan to begin.”;
 addChild(tfInfo);

 // Create bitmap
 var bitmap:Bitmap = new MiniImage();
 bitmap.smoothing = true;

 // Create sprite container for image
 var sprite:Sprite = new Sprite();
 sprite.addChild(bitmap);

 // Scaling and positioning
 var fx:Number = VIEWPORT_WIDTH / IMG_WIDTH;
 sprite.scaleX = fx;
 sprite.scaleY = fx;
 sprite.x = VIEWPORT_WIDTH / 2;
 sprite.y = VIEWPORT_HEIGHT / 2;
 bitmap.x = (IMG_WIDTH - (IMG_WIDTH / 2)) * -1;
 bitmap.y = (IMG_HEIGHT - (IMG_HEIGHT / 2)) *-1;

 addChild(sprite);

 // Set input mode
 Multitouch.inputMode = MultitouchInputMode.GESTURE;

 // Assign event handlers
 sprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM,
 zoomHandler);
 sprite.addEventListener(TransformGestureEvent.GESTURE_PAN, panHandler);
 //sprite.addEventListener(TouchEvent.TOUCH_TAP, touchTapHandler);

 }

 /**
 * Handler for Zoom events
 *
 * @param event
 *
 */
 private function zoomHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Zoom event”;

 var sprite:Sprite = event.target as Sprite;

listinG 3-1 (continued)

Vanillaapp for android ❘ 49

 sprite.scaleX *= event.scaleX;
 sprite.scaleY *= event.scaleY;
 }

 /**
 * Handler for Pan events
 *
 * @param event
 *
 */
 private function panHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Pan event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.x += event.offsetX;
 sprite.y += event.offsetY;

 }
 }
}

adding icons
As you’d expect, every Android application is represented on the Android device itself with an icon.
An icon set for an app follows these rules and conventions:

Images are in PNG format. ➤➤

The icon set is a set of image files of three different sizes: 36➤➤ ×36, 48×48, and 72×72. The
36×36 image is displayed on low-density displays, the 48×48 on medium-density devices,
and the 72×72 icon is used for high-density devices.

Icon images are usually placed in an ➤➤ icons or assets subdirectory of the project.

Image files are specified as icons in the Android Settings dialog box (or in the application ➤➤

descriptor XML file).

For VanillaApp, I mocked up a quick set of icons using Photoshop. I then saved the same PNG
image in three different sizes using the following names: 36x36.png, 48x48.png, and 72x72.png.

If you don’t define a set of icons, Flash CS5 supplies a default icon set automatically.

Now that all your images are created and in the right place, you need to assign them to your
Android applications by adding them to the Android OS Settings.

Defining android settings
Your final step before compiling is to configure the Android-related settings for the application. To
do so, you need to have the .fla document active in the Flash CS5 IDE, so click the tab correspond-
ing to that file. Next, in the Properties panel, click the Edit button next to Android OS Settings (or
choose File➤➪➤Android OS Settings from the menu). The Android Settings dialog box is displayed, as
shown in Figure 3-4.

50 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

There are several configuration settings to make across the three tabs of the dialog box.

You can also make these settings manually by editing the application descriptor XML file (named
VanillaApp-app.xml for the sample app). See Appendix A for more details on the application
descriptor file.

general settings

Edit the settings in the General tab (see Figure 3-4) as described here:

Output File — ➤➤ Gives you the option to specify the location of the compiled .apk file. If you
don’t specify, the .apk is created in the root project directory. My personal preference is to
place it in a build subdirectory.

App Name — ➤➤ Enter the name of your app; Flash supplies a suggested name in the box
already. This is the name that Android displays.

App ID — ➤➤ Provide the App ID that you want to use to uniquely identify your application.

Version — ➤➤ Enter the version number of your app. Flash automatically supplies 1.0 for you.
The format should adhere to the xx[.xx[.xx]] format, where x is a digit 0–9. Subversions
inside the brackets are optional.

Version label — ➤➤ Optionally add a label to your version, such as Alpha or Beta.

Aspect Ratio — ➤➤ Indicates the aspect ratio (portrait or landscape) of the app on startup.

VanillaApp is designed as a portrait app, so leave the default portrait as is.

Full Screen — ➤➤ Indicates whether to launch the app in full screen or whether to show the
Android status bar at the top of the screen. I left this unchecked.

Auto Orientation — ➤➤ Specifies whether your app automatically reorients the aspect ratio when
the user shifts the Android device into landscape or portrait mode.

If VanillaApp were more sophisticated, I’d implement orientation. However, at this point,
I will simply leave it unchecked. Therefore, no reorientation is made when a user shifts the
Android device to landscape mode.

Included Files — ➤➤ Use this location to add any additional resource files that your app needs to
include inside the .apk file. Your project’s .swf and application descriptor file (myapp-app
.xml) are automatically added to the Included Files list. You don’t need to include the mini.jpg
image because it is embedded into the application at compile time.

deployment settings

When you click the Deployment tab (see Figure 3-5), you see the following settings displayed:

Certificate — ➤➤ Enter the location of the .p12 certificate file that you created in Chapter 2.

Password — ➤➤ Supply the password for the .p12 file here. I recommend clicking the Remember
Password for This Session check box to save you from re-entering the password multiple
times during a debugging session.

Vanillaapp for android ❘ 51

Android Deployment Type — ➤➤ Used to indicate the type of deployment to make:

Device release — ➤➤ Use if you want to create a release-ready version or want to
preview what the release version will look like. I’m selecting this option for
VanilaApp at this time.

Emulator release — ➤➤ Use if you want to create a version for the desktop Android
emulator.

Debug — ➤➤ Use if you want to debug your app. When this option is selected, Flash
debugger can receive trace() commands from the app.

Install Application on the Connected Android Device — ➤➤ Check this box to have
Flash automatically install the application after compilation.

Launch Application on the Connected Android Device — ➤➤ Check this box to have automati-
cally launch the application to begin testing.

Path to adb.exe — ➤➤ Enter the path of the adb.exe, which is located in the tools subdirectory
in your Android SDK directory. This is required to install the app onto the device.

icons settings

The Icons tab (see Figure 3-6) allows you to specify which icons to use in your app. Select the
appropriate size icon at the top, and then provide the location of the corresponding .png file in
the middle text box.

There are several configuration settings to make across the three tabs of the dialog box.

You can also make these settings manually by editing the application descriptor XML file (named
VanillaApp-app.xml for the sample app). See Appendix A for more details on the application
descriptor file.

general settings

Edit the settings in the General tab (see Figure 3-4) as described here:

Output File — ➤➤ Gives you the option to specify the location of the compiled .apk file. If you
don’t specify, the .apk is created in the root project directory. My personal preference is to
place it in a build subdirectory.

App Name — ➤➤ Enter the name of your app; Flash supplies a suggested name in the box
already. This is the name that Android displays.

App ID — ➤➤ Provide the App ID that you want to use to uniquely identify your application.

Version — ➤➤ Enter the version number of your app. Flash automatically supplies 1.0 for you.
The format should adhere to the xx[.xx[.xx]] format, where x is a digit 0–9. Subversions
inside the brackets are optional.

Version label — ➤➤ Optionally add a label to your version, such as Alpha or Beta.

Aspect Ratio — ➤➤ Indicates the aspect ratio (portrait or landscape) of the app on startup.

VanillaApp is designed as a portrait app, so leave the default portrait as is.

Full Screen — ➤➤ Indicates whether to launch the app in full screen or whether to show the
Android status bar at the top of the screen. I left this unchecked.

Auto Orientation — ➤➤ Specifies whether your app automatically reorients the aspect ratio when
the user shifts the Android device into landscape or portrait mode.

If VanillaApp were more sophisticated, I’d implement orientation. However, at this point,
I will simply leave it unchecked. Therefore, no reorientation is made when a user shifts the
Android device to landscape mode.

Included Files — ➤➤ Use this location to add any additional resource files that your app needs to
include inside the .apk file. Your project’s .swf and application descriptor file (myapp-app
.xml) are automatically added to the Included Files list. You don’t need to include the mini.jpg
image because it is embedded into the application at compile time.

deployment settings

When you click the Deployment tab (see Figure 3-5), you see the following settings displayed:

Certificate — ➤➤ Enter the location of the .p12 certificate file that you created in Chapter 2.

Password — ➤➤ Supply the password for the .p12 file here. I recommend clicking the Remember
Password for This Session check box to save you from re-entering the password multiple
times during a debugging session.

fiGure 3-4 fiGure 3-5

52 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

Permissions

The final tab (see Figure 3-7) is used to specify certain permissions that you need your app to request
to make for accessing certain parts of the Android device, such as the Camera or Geolocator. The
user will then need to grant your app permission during the installation process.

For this app, you don’t need to ask for special permission, so you can leave them all unchecked.

Click OK to save your changes.

Previewing the app inside flash
Before publishing and installing your app on your Android, you can preview it inside Flash CS5 by
using the familiar Control➤➪➤Test Movie or Debug➤➪➤Debug Movie commands. Flash enables you to
test or debug the app in the AIR Debug Launcher (Mobile) window.

However, don’t confuse this preview capability with an Android simulator. Unless your develop-
ment machine supports multitouch input, you can’t simulate Android-specific events or capabilities.
Therefore, exactly how useful the mobile AIR Debug Launcher is depends on the nature of your
app. In the case of VanillaApp (see Figure 3-8), the preview provides a good way to check for obvi-
ous errors, but it does not allow you to test the zoom and pan multitouch event handling. You have
to wait and test that on the Android device or in the Android emulator (discussed in Chapter 13).

fiGure 3-6 fiGure 3-7

Vanillaapp for android ❘ 53

Publishing and installing the application
You are now ready to publish and compile the Flash project into an .apk file that you can use on the
Android. (If you’d like to know more about the compilation process, check out Chapter 1.) To do
so, choose File➤➪➤Publish from the menu (or click the Publish button if you are inside the Android
Settings dialog box)

The compilation process takes a few moments to complete. When you’re done, an .apk file is cre-
ated in the outgoing location that you specified in the Android Settings dialog box. If you checked
the Install and Launch on Device options, your app launches on your Android device.

running the app on an android Device
You’re now ready to test the app on the device itself. The app is shown in Figure 3-9.

fiGure 3-8 fiGure 3-9

54 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

You can perform zoom and pan operations using your fingers, as shown in Figures 3-10 and 3-11.

You can also exit out of the app itself and go to the main screen to view the app icon in the applica-
tion listings (see Figure 3-12).

vanillaaPP for ios

In this section, I’ll walk you through the process of building a basic HelloWorld-style application for
iOS. It’s quite similar to the Android version, but is customized for the iPhone.

To create VanillaApp for iOS, you perform the following steps:

 1 . Create a project.

 2 . Create a .fla file.

fiGure 3-10 fiGure 3-11

Vanillaapp for ios ❘ 55

 3 . Create an ActionScript document class.

 4 . Write the application code.

 5 . Add a splash screen.

 6 . Create application icons.

 7 . Define iPhone settings.

 8 . Publish the file.

 9 . Install the app on an iPhone.

VanillaApp is displayed among all your other apps.

fiGure 3-12

56 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

creating a Project
Begin by creating a new Flash project. Working within a project is not essential, particularly with a
small app such as this one. However, I recommend it as standard practice because it enables you to
more easily manage your files.

 1 . From the Welcome screen, click the Flash Project under the Create New list. (Or, choose
File➤➪➤New from the menu and select Flash Project from the list.)

The Project panel is displayed.

 2 . Click the Projects combo box and select the New Project item from the list.

The Create New Project dialog is displayed, as shown in Figure 3-13.

fiGure 3-13

 3 . Enter VanillaApp in the Project name field.

 4 . Specify a folder in the Root folder field. I am using d:\iphonedev\VanillaApp.

 5 . Keep ActionScript 3.0 as the default ActionScript version.

 6 . Click Create Project.

The new blank VanillaApp project is created and ready for use, as shown in Figure 3-14.

With your Flash project set, you can now begin to add content to it.

Vanillaapp for ios ❘ 57

fiGure 3-14

creating an iPhone-based flash Document
When you create a Flash document (.fla) file, you’ll want to create it to have the publishing settings
configured for iPhone deployment. To do so:

 1 . From the Welcome screen, click iPhone under the Create New list. (Or, choose File➤➪➤New
from the menu and select Flash Project from the list.)

The untitled.fla is created and displayed in the Flash window.

 2 . Using File➤➪➤Save, save the document as VanillaApp.fla into your project’s root directory.

When the Project panel refreshes, the .fla will show up.

Since this is an ActionScript project, you won’t be doing anything more to the .fla document or its
timeline. But you’ll want to keep it open in the Flash CS5 editor to give you access to the commands
you’ll need through the Properties panel.

creating an actionscript Document class
Because VanillaApp is an ActionScript project, your next step is to create an ActionScript
document class. In Flash, the document class serves as the command and control center for the

58 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

application. The document class is also the fi rst code executed when the app is launched. (If you’re a
Flex developer, think of the document class as equivalent to a Flex project’s primary .mxml fi le, the
one that contains mx:Application or mx:WindowedApplication).

To create a document class, you perform these actions:

 1 . Select the stage of the VanillaApp.fla document.

 2 . Press Ctrl+F3 (Windows) or Cmd+F3 (Mac OS X) to activate your Properties panel (if it is
not already visible).

 3 . In the Properties panel, type the name of the class in the Document edit box.

For this example, enter VanillaApp. Although the document class can be any name you
wish, it’s often helpful to use the same name as the .fla fi le or something similar, such as
VanillaAppClass.

Whatever you decide to name it, keep in mind that by convention
ActionScript class names should be camel case.

 4 . Click the pencil icon to edit the class defi nition.

 5 . In the Edit ActionScript 3.0 Class dialog box, select the application in which you wish to edit
the class.

Selecting Flash Professional opens up the editor inside of the existing Flash ➤➤

environment.

Selecting Flash Builder allows you to open up the Flash Builder IDE. If you are a Flex ➤➤

developer or simply want a powerful editor, you’ll defi nitely prefer this option for
larger projects.

Since this is a small app, choose Flash Professional and click OK.

The shell of the VanillaApp class is created and displayed in the document window as
shown in Figure 3-15.

 6 . Choose File➤➪➤Save to save the fi le as VanillaApp.as.

Make sure you save it in the same directory as the .fla document.

coding the Document class
When Flash creates the document class, it provides the shell class structure, such as the code
shown here:

package {

 import flash.display.MovieClip;

 public class VanillaApp extends MovieClip

Vanillaapp for ios ❘ 59

 {

 public function VanillaApp() {
 // constructor code
 }
 }

}

Code snippet VanillaApp.as

fiGure 3-15

The VanillaApp class is contained inside of the default package and is a subclass of MovieClip. A
document class needs to either extend MovieClip or Sprite. Use MovieClip if you need to do any-
thing involving the timeline, such as animations. Or, if you just need an ordinary base class, you can
use Sprite, which requires less memory overhead.

define Class Properties

Your first step is to define two class properties and four class constants that you’ll be using in the
document class. The most significant is a reference to an external file named Mini.jpg. Using the
[Embed] metadata declarative, you can define a class reference as follows:

 [Embed(source=”Mini.jpg”)]
private var MiniImage:Class;

Code snippet VanillaApp.as

60 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

The [Embed] tag is used by the compiler to embed the file named Mini.jpg into the app and associ-
ate it with the MiniImage variable.

Note that the [Embed] metadata tag requires the Flex SDK. As a result, when you first publish the
app, Flash CS5 prompts you to the Flex SDK path to the library path of your project.

If you have Flex installed on your computer, simply provide your existing Flex SDK directory. Or,
if you don’t have the Flex SDK, it’s a free download at http://opensource.adobe.com/wiki/
display/flexsdk/Downloads.

In addition, you must define the following property and constants:

// TextField
private var tfInfo:TextField;

// Constants
private const VIEWPORT_WIDTH:int = 320;
private const VIEWPORT_HEIGHT:int = 480;
private const IMG_WIDTH:uint = 1000;
private const IMG_HEIGHT:uint = 760;

Code snippet VanillaApp.as

The txInfo property is the TextField you use in the app. The constants are height and width val-
ues for the iPhone viewport and the image.

Write the Constructor

For VanillaApp, you create the following display objects in the constructor:

TextField➤➤ to provide information text

Bitmap➤➤ to display the external image file

Sprite➤➤ that contains the bitmap

The TextField receives its formatting rules from the TextFormat class. So, begin by creating the
TextFormat instance and providing formatting assignments:

// Format text field
var tf:TextFormat = new TextFormat();
tf.color = 0xffffff;
tf.font = “Helvetica”;
tf.bold = true;
tf.size = 14;

Code snippet VanillaApp.as

When you create the TextField, assign tf as its defaultTextFormat. Also specify basic width,
dimensions, and starter text:

// Create textfield
tfInfo = new TextField();
tfInfo.width = 310;
tfInfo.defaultTextFormat = tf;

http://opensource.adobe.com/wiki/display/flexsdk/Downloads

Vanillaapp for ios ❘ 61

tfInfo.x = 2;
tfInfo.y = 20;
tfInfo.selectable = false;
tfInfo.text = “Welcome to VanillaApp. Zoom or pan to begin.”;

Code snippet VanillaApp.as

Add the tfInfo instance to the stage using addChild():

addChild(tfInfo);

Although you already defined the image class that references the external image, you need to instan-
tiate an instance of it by performing the following:

var bitmap:Bitmap = new MiniImage();

Code snippet VanillaApp.as

Because the app will allow panning and zooming of the image, you prevent choppy image move-
ments by using smoothing:

bitmap.smoothing = true;

Code snippet VanillaApp.as

A Sprite instance is used as a container for the image, which will be responsible for dispatching
the zoom and pan events. You create it as a local variable named sprite, add bitmap variable as its
child, and add it to the stage:

// Create sprite container for image
var sprite:Sprite = new Sprite();
sprite.addChild(bitmap);
addChild(sprite)

Code note VanillaApp.as

Inside of the constructor, you set up the dimensions, positioning, and scaling of sprite and bitmap:

// Scaling and positioning
var fx:Number = VIEWPORT_WIDTH / IMG_WIDTH;
sprite.scaleX = fx;
sprite.scaleY = fx;
sprite.x = VIEWPORT_WIDTH / 2;
sprite.y = VIEWPORT_HEIGHT / 2;
bitmap.x = (IMG_WIDTH - (IMG_WIDTH / 2)) * -1;
bitmap.y = (IMG_HEIGHT - (IMG_HEIGHT / 2)) *-1;

Coed snippet VanillaApp.as

In this code, sprite is scaled based on the relative width of the viewport and image and is posi-
tioned. The bitmap variable is then positioned inside of sprite so that it is displayed in the middle
of the viewport.

62 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

The final task you need to perform in the constructor is to set up the application for responding to
multitouch events. You begin by specifying the Multitouch.inputMode:

Multitouch.inputMode = MultitouchInputMode.GESTURE;

Code snippet VanillaApp.as

This property is used to specify the type of touch and gesture events that you want to process. By
specifying MultitouchInputMode.GESTURE (the default, by the way), you tell the app to dispatch
touch events with multiple points of contact, which is what is needed to work with zooming and
panning.

You then assign listeners to the zoom and pan multitouch events that are dispatched by sprite:

// Assign event handlers
sprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM, zoomHandler);
sprite.addEventListener(TransformGestureEvent.GESTURE_PAN, panHandler);

Code snippet VanillaApp.as

You can see the full constructor code in Listing 3-2.

defining event handlers

You need to define event handlers to respond to the zoom and pan events. The zoomHandler()
method is used to handle zoom events:

 private function zoomHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Zoom event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.scaleX *= event.scaleX;
 sprite.scaleY *= event.scaleY;
 }

Code snippet VanillaApp.as

In this code, the tfInfo text is updated. The Sprite instance is then scaled by multiplying the exist-
ing scale by the new scale values provided by the event.

The panHandler() method is used to handle pan events:

private function panHandler(event:TransformGestureEvent):void
{
 tfInfo.text = “Pan event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.x += event.offsetX;
 sprite.y += event.offsetY;

}

Code snippet VanillaApp.as

Vanillaapp for ios ❘ 63

This code changes the x, y position of the Sprite by adding its current position with the offsetX
and offsetY properties of the event.

Go ahead and save changes to the VanillaApp.as file.

The full code for the document class is provided in Listing 3-2.

listinG 3-2: Vanillaapp.as

package
{
 import flash.display.Bitmap;
 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.events.TransformGestureEvent;
 import flash.geom.Matrix;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

 /**
 * Document class for VanillaApp application.
 * Sample application
 *
 * @author Rich Wagner
 *
 */
 public class VanillaApp extends MovieClip
 {

 // External image
 [Embed(source=”Mini.jpg”)]
 private var MiniImage:Class;

 // TextField
 private var tfInfo:TextField;

 // Constants
 private const VIEWPORT_WIDTH:int = 320;
 private const VIEWPORT_HEIGHT:int = 480;
 private const IMG_WIDTH:uint = 1000;
 private const IMG_HEIGHT:uint = 760;

 /**
 * Constructor
 *
 */
 public function VanillaApp()
 {

continues

64 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

super();

 // Format text field
 var tf:TextFormat = new TextFormat();
 tf.color = 0xffffff;
 tf.font = “Helvetica”;
 tf.bold = true;
 tf.size = 14;

 // Create textfield
 tfInfo = new TextField();
 tfInfo.width = 310;
 tfInfo.defaultTextFormat = tf;
 tfInfo.x = 2;
 tfInfo.y = 20;
 tfInfo.selectable = false;
 tfInfo.text = “Welcome to VanillaApp. Zoom or pan to begin.”;
 addChild(tfInfo);

 // Create bitmap
 var bitmap:Bitmap = new MiniImage();
 bitmap.smoothing = true;

 // Create sprite container for image
 var sprite:Sprite = new Sprite();
 sprite.addChild(bitmap);

 // Scaling and positioning
 var fx:Number = VIEWPORT_WIDTH / IMG_WIDTH;
 sprite.scaleX = fx;
 sprite.scaleY = fx;
 sprite.x = VIEWPORT_WIDTH / 2;
 sprite.y = VIEWPORT_HEIGHT / 2;
 bitmap.x = (IMG_WIDTH - (IMG_WIDTH / 2)) * -1;
 bitmap.y = (IMG_HEIGHT - (IMG_HEIGHT / 2)) *-1;

 addChild(sprite);

 // Set input mode
 Multitouch.inputMode = MultitouchInputMode.GESTURE;

 // Assign event handlers
 sprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM,
 zoomHandler);
 sprite.addEventListener(TransformGestureEvent.GESTURE_PAN, panHandler);
 //sprite.addEventListener(TouchEvent.TOUCH_TAP, touchTapHandler);

 }

 /**
 * Handler for Zoom events
 *

listinG 3-2 (continued)

Vanillaapp for ios ❘ 65

 * @param event
 *
 */
 private function zoomHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Zoom event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.scaleX *= event.scaleX;
 sprite.scaleY *= event.scaleY;
 }

 /**
 * Handler for Pan events
 *
 * @param event
 *
 */
 private function panHandler(event:TransformGestureEvent):void
 {
 tfInfo.text = “Pan event”;

 var sprite:Sprite = event.target as Sprite;
 sprite.x += event.offsetX;
 sprite.y += event.offsetY;

 }
 }
}

creating a splash screen
A standard component of an iPhone application is an opening splash screen that the app displays
during the loading process. There are some basic conventions for the initial image you plan to use:

The image must be 320px by 480px. The orientation of the splash screen should match the ➤➤

default orientation of your app.

The image must be in PNG format during development/testing and in JPG format when you ➤➤

submit your app to the App Store.

The image must be named ➤➤ Default.png (testing) and Default.jpg (App Store submission).
Note that the filename is case sensitive.

The image must be located in the root project directory (the same folder in which the ➤➤ .fla is
located).

The image must be added as an include file for the project. ➤➤

If you have a Default.png file in the project directory, then it is displayed automatically during
loading. Unlike AIR apps, you don’t need to explicitly code the splash screen display. That’s all
taken care of for you.

66 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

You can choose any image you want: a blank image, a screen-
shot of your running app, or a customized logo and graphic you
create yourself. For VanillaApp, I created a simple splash screen
in Photoshop (see Figure 3-16).

After you add the Default.png to the project directory, you
need to add this file to the Included File list in the iPhone
Settings dialog box. See the “Defining iPhone Settings” section
later in this chapter for more details.

adding icons
Every iPhone application is represented in iTunes and on the
iPhone itself with an icon. An icon set for an app follows these
conventions:

Images are in PNG format. ➤➤

The icon set is a set of image files of three different ➤➤

sizes: 29×29, 56×56, and 512×512. The 29×29 image
is displayed on the iPhone, the 56×56 image is used by
iTunes, and the 512×512 icon is used for testing only.

When you submit the app to the App Store, the 512➤➤ ×512 image is provided separately as a
JPG file (not PNG).

Glassy glare effects are automatically added by the iPhone OS when it prerenders it, so keep ➤➤

the source image flat for best effect.

Icon images are usually placed in an ➤➤ icons or assets subdirectory of the project.

Image files are specified as icons in the iPhone Settings dialog box. ➤➤

For VanillaApp, I mocked up a quick set of icons using Photoshop. I then saved the same PNG
image in the three different sizes using the following names: 29×29.png, 56×56.png, and 512×512
.png. The set is shown in Figure 3-17.

If you don’t define a set of icons, Flash CS5 supplies a default icon set.

You need to assign the files you created in the iPhone Settings dialog box. See the “Defining iPhone
Settings” next for more details.

Defining iPhone settings
Your final step before compiling is to configure the iPhone-related settings for the application. To
do so, you’ll need to have the .fla document active in the Flash CS5 IDE. Next, in the Properties
panel, click the Edit button next to iPhone Settings (or choose File➤➪➤iPhone Settings from the
menu). The iPhone Settings dialog box is displayed, as shown in Figure 3-18.

fiGure 3-16

Vanillaapp for ios ❘ 67

fiGure 3-17

fiGure 3-18

68 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

You can make several configuration settings on the dialog’s box’s three tabs.

These settings can also be made manually by editing the application descriptor xml file (named
VanillaApp-app.xml for the sample app). See Appendix B for more details on the application
descriptor file.

general settings

Edit the settings in the General tab (see Figure 3-18) as shown here:

Output File — ➤➤ Allows you to optionally specify the location of the compiled .ipa file. If you
don’t specify otherwise, the .ipa is created in the root project directory. My personal prefer-
ence is to place it in a build subdirectory.

App Name — ➤➤ Enter the name of your app, although Flash supplies the suggested name in the
box already. This is the name displayed by iPhone and iTunes.

Version — ➤➤ Enter the version number of your app. Flash automatically supplies 1.0 for you. The
format should adhere to the xx[.xx[.xx]] format where x is a digit 0-9. Subversions inside of the
brackets are optional.

Aspect Ratio — ➤➤ Indicates the aspect ratio (portrait or landscape) of the app on startup.

VanillaApp is designed as a portrait app, so leave the default portrait as is.

Full Screen — ➤➤ Indicates whether to launch the app in full screen or whether to show the
iPhone status bar at the top of the screen. I left this unchecked.

Auto Orientation — ➤➤ Specifies whether to have your app automatically reorient the aspect
ratio when the user shifts the iPhone device into landscape or portrait mode.

If VanillaApp were more sophisticated, I’d implement orientation. However, at this point,
I will simply leave it unchecked. Therefore, no reorientation is made when a user shifts the
iPhone device to landscape mode.

Rendering — ➤➤ Select the way in which display objects are rendered:

If you choose CPU, the CPU is used for this task, and no hardware acceleration is ➤➤

utilized.

If you choose GPU, the iPhone uses the GPU for rendering bitmaps. ➤➤

If you choose Auto, Flash examines your app and uses the best rendering mode for ➤➤

your app.

Given the nature of this app, I am selecting GPU. (Try compiling the app with both and
you’ll definitely notice the difference that hardware acceleration can make with bitmap ren-
dering.) See Chapter 5 for more information on CPU vs. GPU rendering.

Included Files — ➤➤ Use this location to add any resource files that your app needs to include
inside of the .ipa file. Your project’s .swf and application descriptor file (myapp-app.xml)
are automatically added to the Included Files list.

Vanillaapp for ios ❘ 69

If you have a Default.png file to be used as the opening splash screen, be sure to add the
file here. If you don’t, the initial image is ignored.

deployment settings

When you click the Deployment tab (shown in
Figure 3-19), the following settings are displayed:

iPhone Digital Certificate — ➤➤ Enter the loca-
tion of the .p12 file that you created back in
Chapter 2.

Password — ➤➤ Supply the password for the
.p12 file here. I recommend clicking the
Remember password for this session check
box to save you from re-entering the pass-
word multiple times during a debugging
session.

Provisioning Profile — ➤➤ Enter the location of
the .mobileprovision file that you down-
loaded from the iPhone Dev Center back in
Chapter 2.

App ID — ➤➤ Provide the App ID that you wish
to use to uniquely identify your application.

If you specified a wildcard ID back in
Chapter 2, then add the Bundle Seed ID (the
alphanumeric string before the .*) followed
by your app name. For example, my App ID for VanillaApp is 5XS34A1JDN.VanillaApp.

If your provisioning file is tied to a specific App ID, Flash automatically adds this ID into
this box and won’t allow you to modify it.

iPhone Deployment Type — ➤➤ Used to indicate the type of deployment you wish to make:

Use Quick Publishing for Device Testing for quick and easy testing purposes. Select ➤➤

this option for VanilaApp at this time.

Use Quick Publishing for Device Debugging to debug your app. When this option is ➤➤

selected, Flash debugger can receive trace() commands from the app.

Use Deployment - Ad Hoc to create an application for non-App Store deployment. ➤➤

Use Deployment - Apple App Store to prepare an ➤➤ .ipa for submittal to the
App Store.

icons settings

The final Icons tab (shown in Figure 3-20) allows you to specify the icons to use in your app.
Select the appropriate size icon at the top and then provide the location of the corresponding
.png file in the middle text box.

fiGure 3-19

70 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

Click OK to save your changes.

Previewing the app inside flash
Before publishing and installing your app on your iPhone, you can preview it inside of Flash CS5 by
using the familiar Control➤➪➤Test Movie or Debug➤➪➤Debug Movie commands. Flash enables you to
test or debug the app in the AIR Debug Launcher (Mobile) window.

However, don’t confuse this preview capability with an iPhone simulator. You can’t simulate
iPhone-specific events or capabilities. Therefore, exactly how useful the mobile AIR Debug
Launcher is depends on the nature of your app. In the case of VanillaApp (see Figure 3-21),
the preview provides a good way to check for obvious errors, but it does not allow you to test
zoom and pan multitouch event handling. You have to wait and test that on the iPhone itself.

Publishing the application
You are now ready to publish and compile the Flash project into an .ipa file ready for use on the
iPhone. (If you’d like to know more about the compilation process, check out Chapter 1.) To do
so, choose File➤➪➤Publish from the menu (or click the Publish button if you are inside of the iPhone
Settings dialog box).

The compilation process will take several minutes to complete. When done, an .ipa file is created in
the outgoing location that you specified in the iPhone Settings dialog box.

fiGure 3-20 fiGure 3-21

Vanillaapp for ios ❘ 71

installing the app on an iPhone
Your final step is to take the .ipa file and install it onto the iPhone. To do so, perform the fol-
lowing steps:

 1 . Drag and drop the .ipa file onto your iTunes window.

iTunes will accept the drop operation only if you drag the file over the Library tree or onto
the Applications view if that is active. Figure 3-22 shows VanillaApp displayed in among
other apps.

VanillaApp icon

fiGure 3-22

 2 . With your iPhone connected to your computer, select the Applications tab of your iPhone
configuration window in iTunes (see Figure 3-23).

 3 . If it is not already selected, check the Sync Applications check box.

 4 . Find VanillaApp in the applications list and make sure its Sync check box is selected.

 5 . Click the Sync button. Your newly added app will be copied over to your iPhone

72 ❘ chaPter 3 buIldIng and InstallIng vanIllaapp

The VanillaApp icon will be displayed at the next available slot on the iPhone home screen, as
shown in Figure 3-24.

You can now launch VanillaApp (see Figures 3-25 and 3-26) and perform zoom and pan operations
using your fingers (as shown in Figures 3-27 and 3-28).

fiGure 3-23

fiGure 3-24 fiGure 3-25

summary ❘ 73

suMMary

In this chapter, you read about how to build and deploy your first mobile app using Flash Professional.
I began by showing you how to create a Flash document for Android or iPhone and create an AS3
document class for the app. I then walked through the basics of coding the document class to provide
some basic functionality. Finally, you discovered how to publish and install the apps onto both devices.

The VanillaApp icon will be displayed at the next available slot on the iPhone home screen, as
shown in Figure 3-24.

You can now launch VanillaApp (see Figures 3-25 and 3-26) and perform zoom and pan operations
using your fingers (as shown in Figures 3-27 and 3-28).

fiGure 3-23

fiGure 3-26 fiGure 3-27 fiGure 3-28

PART II
touch and user interaction

chaPter 4: ⊲ Rethinking ActionScript Programming

chaPter 5: ⊲ Multitouch API

chaPter 6: ⊲ Detecting Motion with Accelerometer

chaPter 7: ⊲ Implementing Auto Orientation

chaPter 8: ⊲ GeoLocation API

chaPter 9: ⊲ Service Integration Using URL Protocols

chaPter 10: ⊲ Android Camera, Camera Roll, and Microphone

rethinking actionscript
Programming

What’s in this chaPter?

Reusing objects ➤➤

Caching bitmaps ➤➤

Optimizing your frame rate➤➤

Using GPU rendering ➤➤

Flash and Flex developers have been working with ActionScript for years now and have cre-
ated a storehouse of ActionScript 3 (AS3) programming techniques and open-source code
libraries. However, when it comes to developing applications for Android and iOS mobile
devices, it helps to borrow the old 90s Apple slogan: Think Different. When you develop for
the Web or desktop environments, you don’t have to be overly concerned about CPU resources
or memory constraints.

That’s not so with smaller mobile devices. Although the latest iPhone and Android offerings
feature faster and faster processors and greater amounts of RAM, their capacities remain small
compared to desktop varieties. As a result, to create an app that performs well, you need to
think different when it comes to your programming techniques and application architecture.

This chapter walks you through key issues to think about as you develop your apps.

conservinG MeMory anD cPu resources

The tips and techniques that you work with in this chapter deal with minimizing both the
memory and the CPU resources that your apps use. Unfortunately, these two objectives can be
at odds with each other. As you’ll see, sometimes when you take a step to decrease memory,
you strain the CPU and vice versa.

4

78 ❘ chaPter 4 rethInkIng actIonscrIpt programmIng

One of the common questions that mobile AS3 developers ask is this: which should I be more con-
cerned about — memory or CPU resources? For better or worse, this is not a simple yes or no ques-
tion. It depends entirely on the nature of the app. However, truth be told, when the performance of
your app is key, it’s better to conserve CPU resources than to conserve memory.

actionscriPt Practices

When you code in AS3, you need to keep in mind several key principles.

reuse objects
Perhaps the single most important AS3 tip is to be sure to reuse objects rather than creating and remov-
ing them. Any time you instantiate an object, it is expensive, making object reuse far more efficient.

If your app requires you to constantly create objects and dispose of them, consider using an object pool.
When you create an object pool, you create a batch of objects when your app launches. Rather than
creating new instances, your app then requests objects from the pool and uses them. When the app is
done with these instances, it deactivates and removes references to them, but it doesn’t set them equal to
null. This technique puts the object back into the pool, making it available for reuse later.

Listing 4-1 shows a sample pool that you could use to reuse Feed objects in an RSS app you are
creating.

listinG 4-1: FeedPool.as

{
 import com.richwagner.feeds.Feed;

 public final class FeedPool
 {
 private static var _pool:Vector.<Feed>;
 private static var _maxCount:int;
 private static var _counter:int;
 private static var _growthValue:int;

 public static function init(initialCount:int, growthValue:int):void
 {
 var i:int = initialCount;

 // Assign initial values to properties
 _maxCount = initialCount;
 _counter = initialCount;
 _growthValue = growthValue;

 // Create pool
 _pool = new Vector.<Feed>(initialCount);

 // Create Feed instances based on maxCount param
 while(--i >= 0)
 {

actionscript Practices ❘ 79

 pool[i] = new Feed();
 }
 }

 public static function getFeed():Feed
 {
 var i:int = _growthValue;

 if (_counter > 0)
 {
 return = pool[--_counter];
 }

 while(--i >= 0)
 {
 pool.unshift (new Feed());
 }

 _counter = _growthValue;

 return getFeed();
 }

 public static function disposeFeed(feed:Feed):void
 {
 pool[_counter++] = feed;
 }

 }
}

General tips for Working with as3
The following are general AS3 tips to consider:

Always use the most efficient data type possible when working with variables. A ➤➤ Number is
less efficient than uint or int, and a Vector is preferred over an Array.

For string searching and management, use string methods (such as ➤➤ indexOf()) rather than
working with less efficient regular expressions.

When you do need to create objects, try to create them outside of loops. ➤➤

Referencing an object using square brackets slows performance. Therefore, notice the mul-➤➤

tiple references using square brackets in the for loop here:

public processFeeds(feeds:Vector.<Feed>):void
{

 var feed:Feed;
 var count:int = feeds.length;

 for (var i:int=0; i<count; i++)
 {

80 ❘ chaPter 4 rethInkIng actIonscrIpt programmIng

 feeds[i].name = “RSSFeed1”;
 feeds[i].url = “www.myfeed.com/rss”
 feeds[i].fetch();
 }
}

A more efficient way to write would be as follows:

public processFeeds(feeds:Vector.<Feed>):void
{

 var feed:Feed;
 var count:int = feeds.length;

 for (var i:int=0; i<count; i++)
 {
 feed = feeds[i];
 feed.name = “RSSFeed1”;
 feed.url = “www.myfeed.com/rss”
 feed.fetch();
 }
}

When you are working with loops, avoid evaluations when possible. A common issue would ➤➤

be when you are iterating through an array and you use this:

for (var i:int=0; i<feeds.length; i++)
{
 // loop
}

Instead, a more efficient way would be to assign the value of the evaluation first to a local
variable, and then use that variable in the loop:

var count:int = feeds.length;
for (var i:int=0; i<count; i++)
{
 // loop
}

Function calls are more expensive than placing all or the majority of your code in one proce-➤➤

dural unit. Minimizing functions improves speeds significantly in certain cases, but it comes at
a significant cost from a code architecture and maintainability standpoint. But if you are strug-
gling with performance and have tried everything else, function calls are your panic button.

Be careful with any kind of timer activity you want to perform. Timers are acceptable for ➤➤

nonanimated apps in which the increment for the timer is fairly long. For animated apps,
consider attaching a listener to the Event.ENTER_FRAME event, which is dispatched for every
new frame.

However, timers do consume more CPU cycles than attaching a listener to an ENTER_FRAME
event, so be prudent in their usage, especially if the timer increment is less than 100 ms. If
you have to use a timer, use a centralized one for all your app’s time-related tasks.

Ui Practices ❘ 81

Keep in mind that asynchronous operations (for example, for file or database access) are pre-➤➤

ferred over synchronous operations for performance, or at least perceived performance.

Avoid using large AS3 code libraries that, despite adding functionality, add bloat to your ➤➤

code base.

event handling
Use these tips to handle events more efficiently:

Use ➤➤ removeEventListener() to free event handlers that you no longer need.

Consider using a callback rather than a normal event to bypass the event model and all ➤➤

its event bubbling. If you don’t need events to propagate throughout the event model, call
Event.stopPropagation in your listener.

ui Practices

Consider each of the following tips related to the UI:

In general, use the least expensive display object that you need for a job. For general pur-➤➤

poses, developers often choose between a MovieClip and a Sprite object. Sprite takes less
memory, so if you don’t need to animate or work with the timeline, use it. Otherwise, use the
MovieClip class.

If you are drawing something that doesn’t require interaction, use a ➤➤ Shape object, which is
much less expensive than a Sprite or MovieClip.

Each visible display object impacts performance. If you don’t need an object, make it invis-➤➤

ible or remove it.

Avoid filters, blends, and other effects. As tempting as they may be to use, they double the ➤➤

size required to render a display object. Instead, put your creativity hat on and figure out
how to achieve the same effect you want to achieve using something else more efficient.

If you don’t need touch interaction with a display object, consider disabling its mouse input ➤➤

to save on event bubbling. To do so, set its mouseChildren and mouseEnabled properties to
false.

Although motion tweens are perfectly acceptable for normal desktop-based Flash tasks, avoid ➤➤

them in your mobile apps. They consume a lot of CPU resources.

When you need to add text, consider using the ➤➤ TextLine object, which is the best object
Flash has for rendering read-only text. If you need to have user input, you can use
TextField.

When assigning text to a ➤➤ TextField object, using appendText() is actually more efficient
than assigning a value to its text property.

82 ❘ chaPter 4 rethInkIng actIonscrIpt programmIng

Avoid assigning a ➤➤ TextField’s text property inside a loop. Instead, assign the value to a
string variable, and then assign it to the text property outside the loop.

If you animate your text, boost performance by removing transparency settings and assigning ➤➤

an opaqueBackground property to a color value, which disables the alpha properties. What’s
more, set the cacheAsBitmap to true so you can cache the text content as bitmaps.

GraPhics Practices

When it comes to rendering graphics, keep the following tips and techniques in mind.

caching
The number-one rule when rendering graphics in your Android or iPhone app is to cache whenever
you can. Redrawing is always costly, so render only when you have to.

You need to understand three key properties to properly cache your bitmaps. These are shown in
Table 4-1. Use this table to determine when to set these properties to true.

table 4-1: Properties for Caching Bitmaps

ProPerty What it Does When to use (=true) When to avoiD (=false)

cacheAsBitmap Caches a bitmap off-
screen so you can reuse
it rather than re-creating
the bitmap multiple times .

Eliminates the need to
rerender a display object .

Enable for display
objects that won’t
have transformations
applied to them .

Don’t use if you are
changing alpha, rota-
tion, or colors . If you
do, the transformation
slows processing down
because it needs to
cache and draw rather
than just draw .

Don’t use if the content
of the display object
changes frequently .

cacheAsSurface Eliminates the need to
rerender a display object .

Matrix transformations,
such as scaling and rotat-
ing, should be applied
outside a cached object,
rather than being done
as children of a cached
object . If so, GPU
(Graphical Processing
Unit) will handle it .

Enable for display
objects that will have
transformations
applied to them .

Enable for the con-
tainer display object
if you are animat-
ing display objects
inside of it .

Don’t use if the content
of the display object
changes frequently or if
a display object descen-
dent also changes
frequently .

general application Practices ❘ 83

ProPerty What it Does When to use (=true) When to avoiD (=false)

cacheAsBit-

mapMatrix

Caches the x, y, rota-
tion, scale, and skew
properties .

Use for display
objects that aren’t
regularly updated .

Don’t use if you modify
alpha or color properties
or the matrix of the chil-
dren sprites . Doing so
slows rendering down
because it needs to
cache and draw rather
than just draw .

Miscellaneous tips
The tips here don’t fit neatly into a category, but they can help you write fast-running apps:

Avoid using the ➤➤ Graphics class for drawing on the fly. Instead, use prerendered objects.

When you are finished with a ➤➤ BitmapData instance, call its dispose() method. That method
instantly clears memory and doesn’t wait for garbage collection.

Rendering vector graphics requires less memory than using bitmaps does, but vector graphics ➤➤

are more expensive in terms of CPU resources. Bitmaps take more memory but require less
processing power to display.

When sizing bitmaps for use in your app, set their size equal to a power of 2 or just under it. ➤➤

For example, 32×32 or 31×31 is recommended over 33×33.

Set the background color of a display object container if you have animation going on ➤➤

inside of it.

General aPPlication Practices

The following are tips and techniques to keep in mind for general application development.

frame rate
The general rule of thumb is to use as low of a frame rate as possible to ensure better performance. If
you have an app with no animation in it, aim to go between 4 and 12 fps (frames per second). If you do
have animation, start out at 20 fps and increase it if needed. However, don’t go more than 30 fps.

Keep in mind that you can adjust the Stage.frameRate property (or in Flex,
WindowsApplication.frameRate) on the fly to optimize different parts of your application.

If your app runs video, you don’t need to worry about adjusting the Stage.frameRate to
account for it. Video takes over the frame rate settings and adjusts it as needed. In fact,
your settings won’t impact it.

84 ❘ chaPter 4 rethInkIng actIonscrIpt programmIng

GPu rendering
Adobe Integrated Runtime (AIR) for Android and Packager for iPhone both support GPU hard-
ware acceleration, which enables you to pass off some kinds of graphical rendering to the GPU for
increased performance. To enable GPU rendering, set the renderingMode property in the applica-
tion descriptor file to the following:

<renderMode>gpu</renderMode>

You can also do that selecting GPU from the Render Mode drop-down list box in the Android or
iPhone Settings dialog boxes, as shown in Figure 4-1.

However, you need to know what you’re doing if you’re going to enable GPU rendering. It handles cer-
tain rendering tasks really well, but it won’t handle certain others. And, if GPU rendering can’t display
the command, it won’t. Your app won’t degrade gracefully and use CPU processing for those tasks.

GPU rendering doesn’t support the following:

Filters.➤➤

PixelBender.➤➤

Blends (alpha, erase, overlay, hardlight, lighten, and darken modes).➤➤

Texture sizes greater than 1024➤➤ ×1024.

Video (not recommended).➤➤

Adjusting the viewport to show text ➤➤

input fields when the software keyboard
is displayed. As a result, you have to
design your UI around that constraint or
programmatically move the page up.

What’s more, GPU rendering for iOS is limited
to rendering bitmaps, solid shapes, and display
objects with the cacheAsBitmap property set
to true.

Garbage collection
If you are an experienced Flash or Flex devel-
oper, chances are you’ve got at least a basic
understanding of garbage collection. Garbage
collection is an automatic memory cleanup pro-
cess that involves clearing out objects that have
been disposed from memory.

However, determining exactly when garbage
collection will occur can be a guessing game. It
occurs only when all references to the object are
removed and the object is set to null. However, fiGure 4-1

summary ❘ 85

even then, the collection may not be immediate, because if your app doesn’t need memory, garbage
collection won’t run immediately. AIR allows you to force a garbage collection cleanup by calling
the following:

System.gc();

However, the garbage collector is not a cure-all. If you call it constantly, you can actually slow
down your app because of the CPU resources required to run it.

kitchen sink tips
The following “kitchen sink” list contains some additional general purpose tips to keep in mind:

Only embed objects (fonts, graphics, and so on) that you are actually using in your app. ➤➤

Don’t leave orphaned content that you’re not utilizing.

Compress everything you can in your app. See if you can reduce the size of your JPGs, audio ➤➤

or video compression, and so on.

Use device fonts whenever possible for Android or iOS apps so you don’t have to embed ➤➤

font files.

Create a single Sound instance in your app for each sound you want to play. Then reference ➤➤

that instance anytime you need it.

Silently play any sounds you plan to use when the app is launched so that they are cached in ➤➤

memory. This preloading trick helps eliminate the chance of a lag when the sound is played
the first time.

For benchmarking your code in terms of the memory being used, use the ➤➤ getSize() func-
tion. For example:

var feed:Feed = new Feed();
// Return size of Feed instance
trace(getSize(feed));
// Return total memory available
trace(getSize(System.totalMemory/1024));

suMMary

In this chapter, I walked you through several important principles to keep in mind when developing
mobile applications for Android and iOS devices. It’s important to always keep in mind the some-
times conflicting goals of conserving memory and CPU resources. When performance is most criti-
cal, you’ll often want to optimize CPU resources to provide the smoothest user experience.

Multitouch aPi

What’s in this chaPter?

Understanding the diff erence between touch and gesture events➤➤

Enabling your app to respond to touches and gestures ➤➤

Adding a swipe to your app ➤➤

Zooming and rotating display objects ➤➤

One of the core capabilities of any mobile app is effectively handling multitouch events: a fi n-
ger press, a fi nger swipe, a multifi nger gesture. With its multitouch interface, Android and iOS
devices are designed for that intimate connection with the user. As you develop Flash apps,
you’ll want to pay close attention to this key method of user interaction.

This chapter walks you through touch events available to you and shows you how to listen and
respond to them in your apps.

unDerstanDinG the Multitouch jarGon

Before going into the actual touch API, the next sections highlight the three types of touch-
related events.

Mouse emulation events
Mouse emulation events (MouseEvent) are the events that you are probably quite familiar
with if you worked with ActionScript 3 (AS3) events in Flash. When a user touches a single
fi nger to the device, a MouseEvent is dispatched, which in effect, simulates a mouse clicking a
display object, such as a button. You can decide whether to listen for mouse events or respond
only to touch events.

5

88 ❘ chaPter 5 multItouch apI

touch events
Touch events (TouchEvent) are dispatched when one or more fingers touch the screen. You can lis-
ten for a single finger press or multiple finger touches that occur at different points on the screen at
the same time. (See Table 5-1.)

table 5-1: Touch Events

event DescriPtion

TOUCH_BEGIN Start of a single touch action

TOUCH_END End of a single touch action

TOUCH_MOVE Single touch movement

TOUCH_OUT Touch outside a display object

TOUCH_OVER Touch over a display object

TOUCH_ROLL_OUT Rollout of display object

TOUCH_ROLL_OVER Rollover display object

TOUCH_TAP Tap

You can capture TouchEvent events for finger pressing instead of MouseEvent events. However, as
a general rule, if you’re just listening for basic button clicks and so on, use MouseEvent events when
possible, because they are less expensive.

Gesture events
Gesture events (GestureEvent), on the other hand, are combinations of touch events that also sup-
port such things as scaling and rotation. You can carry out some gestures with one finger, whereas
others need multiple touch points. Table 5-2 displays the available types of gesture events.

table 5-2: Gesture Events

event DescriPtion

TransformGestureEvent.GESTURE_PAN Multi-finger press, hold, and move

TransformGestureEvent.GESTURE_ROTATE Multi-finger rotation

TransformGestureEvent.GESTURE_SWIPE Multi-finger swipe action (left to right, right to left,
top to bottom, bottom to top)

TransformGestureEvent.GESTURE_ZOOM

Working with touch events ❘ 89

event DescriPtion

PressAndTapGestureEvent

.GESTURE_PRESS_AND_TAP

Press a finger and then tap with another finger

GestureEvent.GESTURE_TWO_FINGER_TAP Two finger tap

listening for touch events
The Multitouch.inputMode property tells the app what type of touch-related events the app should
be listening for. There are three possible values.

To listen for mouse events only and not listen for touches and gestures, use this:

Multitouch.inputMode=MultitouchInputMode.NONE

To listen for single touches, use this:

Multitouch.inputMode=MultitouchInputMode.TOUCH_POINT

To listen for gestures, use this:

Multitouch.inputMode=MultitouchInputMode.GESTURE

event bubbling
Beware of event bubbling when you are designing mobile apps. Event bubbling occurs when a child
display object passes on an event to its parent to handle. If this display object has a parent, it contin-
ues to pass it up through the object hierarchy until the topmost parent handles the event. This chain-
ing of events is costly for mobile apps.

You can minimize event bubbling by flattening the display object hierarchy as much as possible.
What’s more, it’s a good practice to handle the event in the intended target display object and then
stop the event bubbling by calling the event object’s stopPropagation() method.

WorkinG With touch events

You’ll learn how to work with the basic touch events with an app called PhotoTouch. This app dis-
plays two photos on the screen and enables you to move them around with your finger across the
viewport. Before diving into the ActionScript code, set up the Flash app as follows:

 1 . Within the desired directory, create a new Flash document based on the Android or iPhone
and name it PhotoTouch.fla.

 2 . In the Properties panel, enter PhotoTouch as the document class and click the pencil button
to edit the class definition in your preferred editor.

90 ❘ chaPter 5 multItouch apI

coding the Document class
As you begin to code your document class, add the import statements that you’ll need just inside the
package:

 import flash.display.Bitmap;
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;
 import flash.display.Loader;
 import flash.events.Event;

Code snippet PhotoTouch.as

You then need to define the necessary properties for working with the two photo images used in the
app. I reference two external JPG files named WaterFrontImage.jpg and RoadImage.jpg. (You can
find these graphics on the book’s website at wrox.com.) Here’s the code:

Embed(source=”waterfront.jpg”)]
private var WaterFrontImage:Class;

Embed(source=”fallroad.jpg”)]
private var RoadImage:Class;

private var pic:Bitmap;
private var pic2:Bitmap;

Code snippet PhotoTouch.as

With the Embed metadata declarative, embed the external file into the app and associate it with the
Class variable just beneath it. As discussed in Chapter 3, the Embed metadata tag requires the Flex
Software Development Kit (SDK). As a result, when you first publish the app, Flash CS5 prompts
you to add the Flex SDK path to the Library path of your project.

You now need to define your constructor. Begin by creating the bitmap instances for the two photos,
and then add sprite containers for both:

// Create bitmap
pic= new WaterFrontImage();
pic.smoothing = true;

pic2= new RoadImage();
pic2.smoothing = true;

// Create sprite container for images
var picSprite:Sprite = new Sprite();
 picSprite.addChild(pic);
var picSprite2:Sprite = new Sprite();
 picSprite2.addChild(pic2);

// Add to stage

Working with touch events ❘ 91

addChild(picSprite);
addChild(picSprite2)

Code snippet PhotoTouch.as

Place both of these images at or near the center of the viewport. I add the first one to the middle:

 // Center first picture
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;

Then offset the second bitmap by 50 pixels:

 // Offset second picture
 pic2.x = pic.x + 50;
 pic2.y = pic.y + 50;

Although your initial user interface (UI) is ready to go, you now need to add listeners for the TOUCH_
BEGIN, TOUCH_MOVE, and TOUCH_END events for both bitmaps. The code is shown here:

 if (Multitouch.supportsTouchEvents)
 {
 // Enable Touch mode
 Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

 // Assign touch event handlers
 picSprite.addEventListener(TouchEvent.TOUCH_BEGIN, touchBeginHandler);
 picSprite2.addEventListener(TouchEvent.TOUCH_BEGIN, touchBeginHandler);

 addEventListener(TouchEvent.TOUCH_MOVE, touchMoveHandler);
 addEventListener(TouchEvent.TOUCH_END, touchEndHandler);

 }

}

Code snippet PhotoTouch.as

First check to see that the device supports touch events. If it does, assign the touch input type by
assigning the Multitouch.inputMode property a value of MultitouchInputMode.TOUCH_POINT,
which tells the app to treat all touch-related events as touches, not gestures or mouse clicks.

The two Sprite instances are assigned listeners for TOUCH_BEGIN events. However, the stage actu-
ally is the better object to respond to TOUCH_MOVE and TOUCH_END events because a user’s finger
could move outside the borders of the objects being dragged.

The next step is to define the three event handlers that respond to the touch events. The TOUCH_
BEGIN handler looks like this:

private function touchBeginHandler(event:TouchEvent)
{
 var sprite:Sprite = event.target as Sprite;
 // Init drag
 sprite.startTouchDrag(event.touchPointID);

92 ❘ chaPter 5 multItouch apI

 // Bring to top
 setChildIndex(sprite, numChildren-1);

}

Code snippet PhotoTouch.as

The Sprite startTouchDrag() method initiates a touch event, much like startDrag()kicks off
drag-and-drop mouse events. Its one required parameter is a unique touchPointID that the Flash
run time assigns to identify the specific point that was touched. The touchPointID enables you to
ensure that your events respond to the correct touch point, not another caused by another finger
somewhere on the screen. So, an entire touch-and-drag sequence, such as the one being added to
PhotoTouch app, will be characterized or identified with a single touchPointID.

Because a user can touch an object that is underneath another in the display order, the
setChildIndex() method sets the sprite being touched to the top.

The TOUCH_MOVE handler comes next:

private function touchMoveHandler(event:TouchEvent)
{
 var sprite:Sprite = event.target as Sprite;
 // Set alpha
 sprite.alpha = 0.7;
}

Code snippet PhotoTouch.as

When the user drags the sprite around on the stage, you’ll want to set its alpha to 0.7 to show a
difference for the object being dragged. You don’t need to add additional code for this event handler,
because Flash run time handles all the movement.

The TOUCH_END listener handles the end of a touch action:

private function touchEndHandler(event:TouchEvent)
{
 var sprite:Sprite = event.target as Sprite;
 sprite.stopTouchDrag(event.touchPointID);
 // Reset alpha
 sprite.alpha = 1;
}

Code snippet PhotoTouch.as

The stopTouchDrag() method ends the drag action using the touchPointID of the event. The final
action you need to take is resetting the alpha property to normal (1).

That’s the end of document class.

running the app
You can compile the Flash project and install the compiled app onto your device. After that, you are
ready to launch it in Android or iOS. Figures 5-1 and 5-2 show the start and end of a touch-and-
drag action.

Working with touch events ❘ 93

Listing 5-1 shows the full source code listing for the PhotoTouch class.

listinG 5-1: Phototouch.as

package {

 import flash.display.Bitmap;
 import flash.display.Sprite;
 import flash.events.TouchEvent;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;
 import flash.display.Loader;
 import flash.events.Event;

 /**
 * Document class for PhotoTouch application.
 * Sample application
 *
 * @author Rich Wagner
 *
 */

fiGure 5-1 fiGure 5-2

continues

94 ❘ chaPter 5 multItouch apI

 public class PhotoTouch extends Sprite
 {

 // External image
 [Embed(source=”waterfront.jpg”)]
 private var WaterFrontImage:Class;

 [Embed(source=”fallroad.jpg”)]
 private var RoadImage:Class;

 private var pic:Bitmap;
 private var pic2:Bitmap;

 /**
 * Constructor
 *
 */
 public function PhotoTouch()
 {

 // Create bitmap
 pic= new WaterFrontImage();
 pic.smoothing = true;

 pic2= new RoadImage();
 pic2.smoothing = true;

 // Create sprite container for images
 var picSprite:Sprite = new Sprite();
 picSprite.addChild(pic);
 var picSprite2:Sprite = new Sprite();
 picSprite2.addChild(pic2);

 // Add to stage
 addChild(picSprite);
 addChild(picSprite2)

 // Center first picture
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;

 // Offset second picture
 pic2.x = pic.x + 50;
 pic2.y = pic.y + 50;

 if (Multitouch.supportsTouchEvents)
 {
 // Enable Touch mode
 Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

 // Assign Touch Event handlers

listinG 5-1 (continued)

Working with touch events ❘ 95

 picSprite.addEventListener(TouchEvent.TOUCH_BEGIN,
touchBeginHandler);
 picSprite2.addEventListener(TouchEvent.TOUCH_BEGIN,
touchBeginHandler);
 addEventListener(TouchEvent.TOUCH_MOVE, touchMoveHandler);
 addEventListener(TouchEvent.TOUCH_END, touchEndHandler);

 }

 }

 /**
 * Handler for TouchBegin events
 *
 * @param event
 *
 */
 private function touchBeginHandler(event:TouchEvent)
 {
 var sprite:Sprite = event.target as Sprite;
 sprite.startTouchDrag(event.touchPointID);
 // Bring to top
 setChildIndex(sprite, numChildren-1);
 }

 /**
 * Handler for TouchMove events
 *
 * @param event
 *
 */
 private function touchMoveHandler(event:TouchEvent)
 {
 var sprite:Sprite = event.target as Sprite;
 // Set alpha
 sprite.alpha = 0.7;

 }

 /**
 * Handler for TouchEnd events
 *
 * @param event
 *
 */
 private function touchEndHandler(event:TouchEvent)
 {
 var sprite:Sprite = event.target as Sprite;
 sprite.stopTouchDrag(event.touchPointID);
 // Reset alpha
 sprite.alpha = 1;
 }

 }

}

96 ❘ chaPter 5 multItouch apI

WorkinG With the sWiPe Gesture

Handling gestures is much like responding to touch events, as you’ll see in a sample app called
PhotoPage. This app demonstrates how you can use the swipe gesture to move to different frames
inside your Flash timeline.

Begin by creating a new Flash document based on the Android or iPhone and naming it PhotoPage
.fla. Before coding the document class, you need to add a set of frames to your timeline.

The image files for this sample app are sized for the default Adobe Integrated Runtime (AIR) for
Android dimensions (480×800). If you’re using these sample images for iOS, resize them accordingly
in a graphics editor before continuing.

setting up the timeline
For this sample app, you’ll add four full-frame portrait-oriented photos to the Flash document, each
displayed within separate frames of the timeline. After opening the Flash timeline (accessible from
Window➤➪➤Timeline), perform the following tasks:

 1 . With the first (and only) layer selected, click the first frame in the Timeline.

 2 . Choose Import➤➪➤Import to Stage from the menu.

 3 . Select an image you want to display on the stage for this frame.

If you’re following along with my example, I chose p1.jpg.

 4 . Click the New Layer button in the Timeline, or choose Insert➤➪➤Timeline➤➪➤Layer from
the menu.

 5 . Select the second frame in the Timeline for that layer.

 6 . Right-click and choose Insert Frame.

 7 . Select that frame with your mouse.

 8 . Select an image you want to display on the stage for this frame. In my case, I chose p2.jpg.

 9 . Repeat steps 4–8 for the next two frames, using p3.jpg and p4.jpg files (or your own).

Figure 5-3 shows the Timeline with all images added. (Note that you optionally can name
the layers accordingly.

adding a sound asset
You also need to add an .mp3 sound file to the .fla that you’ll use to play a swipe sound when a
user performs that gesture. To do so, follow these steps:

 1 . Choose Import➤➪➤Import to Library from the menu.

 2 . Select the sound file in the dialog box. I chose the file Swipe.mp3.

The sound is added as an asset to your library (Window➤➪➤Library). However, before you
can use it inside your AS3 code, you need to export it for use in ActionScript.

Working with the swipe gesture ❘ 97

fiGure 5-3

 3 . Right-click the sound asset in the Library
and choose Properties.

 4 . In the Sound Properties dialog box
(see Figure 5-4), name the sound
asset swipesound.

 5 . Check the Export for ActionScript
check box.

 6 . Enter SwipeSound in the Class text box.

 7 . Click OK.

coding the Document class
With the Timeline set up and the sound asset
added to your Flash document, you are ready to
create and code the AS3 document class. In the
Properties panel, enter PhotoPage as the document
class, and click the pencil button to edit the class
definition in your preferred editor.

fiGure 5-4

98 ❘ chaPter 5 multItouch apI

Inside the package, begin by adding the import statements that you’ll need:

import flash.display.MovieClip;
import flash.events.TransformGestureEvent;
import flash.events.Event;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.media.Sound;

Code snippet PhotoPage.as

Next, add one private property inside the PhotoPage class for the sound asset:

private var swipe:SwipeSound;

Code snippet PhotoPage.as

The SwipeSound class is the class that Flash generated when you exported the asset to ActionScript.

Continuing on, you are ready to create the class constructor:

public function PhotoPage()
{
 // Need to stop playing of movie since
 // we have multiple frames for this app
 stop();

 // Create sound instance
 swipe = new SwipeSound();

 // If support multitouch
 if (Multitouch.supportsTouchEvents)
 {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 stage.addEventListener(TransformGestureEvent.GESTURE_SWIPE,
 swipeHandler);
 }

}

Code snippet PhotoPage.as

As you can see, you’ll want to perform three actions in the constructor. First, stop the Flash movie
from playing by calling stop(). This causes the movie to stop playing at Frame 1. Second, create
an instance of the SwipeSound that you’ll use later. Third, if touch events are supported, assign the
Multitouch.inputMode to respond to gestures. Then add a listener for the GESTURE_SWIPE event.

My idea for the app is to move between frames each time the user performs a swipe action on the
screen. To handle that, the GESTURE_SWIPE event handler is shown here:

private function swipeHandler(event:TransformGestureEvent):void
{

 // Swipe Left
 if (event.offsetX == 1)
 {
 if (currentFrame > 1)

Working with the swipe gesture ❘ 99

 {
 gotoAndStop(currentFrame-1);
 }
 else
 {
 gotoAndStop(totalFrames);
 }

 }
 //Swipe Right
 else if (event.offsetX == -1)
 {
 if (currentFrame < totalFrames)
 {
 gotoAndStop(currentFrame+1);
 }
 else
 {
 gotoAndStop(1);
 }
 }

 swipe.play();

}

Code snippet PhotoPage.as

Use the offsetX property of the TransformGestureEvent object to determine the direction of the
swipe. A value of 1 indicates that the swipe is leftward, whereas a value of –1 indicates a swipe to
the right.

Therefore, if the user performs a right swipe, the intended action is to move to the next frame in the
Timeline using gotoAndStop(currentFrame+1). However, once the user gets to the last frame, the
app should take the user to the first frame.

When the user swipes left, the app should take the user to the previous frame. If the user performs a
leftward swipe on the first frame, it wraps around and takes the user to the final frame of the Timeline.

Once that action is performed, the swipe sound is played.

After you finish entering the code, it should look like what is shown in Listing 5-2. Save the results,
and you’ll be ready to run the app.

listinG 5-2: PhotoPage.as

package {

 import flash.display.MovieClip;
 import flash.events.TransformGestureEvent;
 import flash.events.Event;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;

continues

100 ❘ chaPter 5 multItouch apI

 import flash.media.Sound;

 /**
 * Document class for PhotoPage application.
 * Sample application
 *
 * @author Rich Wagner
 *
 */
 public class PhotoPage extends MovieClip {

 // SwipeSound is a Flash asset
 private var swipe:SwipeSound;

 /**
 * Constructor
 *
 */
 public function PhotoPage()
 {
 // Need to stop playing of movie since
 // we have multiple frames for this app
 stop();

 // Create sound instance
 swipe = new SwipeSound();

 // If support multitouch
 if (Multitouch.supportsTouchEvents)
 {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 stage.addEventListener(TransformGestureEvent.GESTURE_SWIPE,
 swipeHandler);
 }

 }

 /**
 * Handler for Swipe event
 *
 * @param event
 *
 */
 private function swipeHandler(event:TransformGestureEvent):void
 {

 // Swipe Left
 if (event.offsetX == 1)
 {
 if (currentFrame > 1)

listinG 5-2 (continued)

Working with rotate and Zoom gestures ❘ 101

 {
 gotoAndStop(currentFrame-1);
 }
 else
 {
 gotoAndStop(totalFrames);
 }

 }
 //Swipe Right
 else if (event.offsetX == -1)
 {
 if (currentFrame < totalFrames)
 {
 gotoAndStop(currentFrame+1);
 }
 else
 {
 gotoAndStop(1);
 }
 }

 swipe.play();

 }

 }

}

running the app
You have everything ready to publish and install the app. Choose File➤➪➤Publish to compile the Flash
project and install the compiled app onto your Android or iOS device.

WorkinG With rotate anD ZooM Gestures

Another set of gestures that you can perform is rotating and zooming display objects on your stage.
To demonstrate, I’ll create a sample app called GestureMania. Its narrow purpose is to display a
photo on the stage and allow the user to perform rotation and zoom actions on using multifinger
gestures.

This is an AS3-based app for Android or iOS. But before diving into the ActionScript code, set up
the Flash app as follows:

 1 . Within the desired directory, create a new Flash document based on the Android or iPhone
and name it GestureMania.fla.

 2 . In the Properties panel, enter GestureMania as the document class, and click the pencil but-
ton to edit the class definition in your preferred editor.

102 ❘ chaPter 5 multItouch apI

coDinG the DocuMent class

As is usual, start by adding import statements of the packages that you’ll be referencing inside the
package:

 import flash.display.Bitmap;
 import flash.display.Sprite;
 import flash.display.MovieClip;
 import flash.events.TouchEvent;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;
 import flash.display.Loader;
 import flash.events.Event;

Code snippet GestureMania.as

Inside the class, add three private properties:

// External image
[Embed(source=”waterfront.jpg”)]
private var WaterFrontImage:Class;

private var pic:Bitmap;
private var picSprite:Sprite;

Code snippet GestureMania.as

The constructor for the GestureMania class needs to create an instance of the Bitmap, add it to a
Sprite instance, add the Sprite to the stage, and then center the Bitmap instance onto the stage.
Here’s the code:

public function GestureMania()
{

 // Create bitmap
 pic= new WaterFrontImage();
 pic.smoothing = true;
 pic.scaleX = 1.3;
 pic.scaleY = 1.3;

 // Create sprite container for image
 picSprite = new Sprite();
 picSprite.addChild(pic);

 // Add to stage
 addChild(picSprite);

 // Center picture
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;

 // If support multitouch
 if (Multitouch.supportsTouchEvents)
 {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;

Coding the document Class ❘ 103

 picSprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM,
 GestureZoomandler);
 picSprite.addEventListener(TransformGestureEvent.GESTURE_ROTATE,
 GestureRotateHandler);
 }
}

As you can see, the gesture support is added by checking for touch event support. If the support
exists, the gestures are enabled for Multitouch.inputMode and GESTURE_ZOOM, and GESTURE_
ROTATE event listeners are added.

The following function responds to all GESTURE_ZOOM events for the Sprite:

private function GestureZoomHandler(event:TransformGestureEvent):void
{
 // Zoom in proportion to gesture
 pic.scaleX *= event.scaleX;
 pic.scaleY *= event.scaleY;

 // Always reset picture to center
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;
}

Code snippet GestureMania.as

The Bitmap instance is scaled in proportion to the scaleX and scaleY properties of the
TransformGestureEvent instance. It is then recentered in the stage.

The handler for the GESTURE_ROTATE is slightly trickier:

private function GestureRotateHandler(event:TransformGestureEvent):void
{
 var matrix:Matrix = picSprite.transform.matrix;
 var rotatePoint:Point =
 matrix.transformPoint(new Point((picSprite.width/2),
(picSprite.height/2)));
 matrix.translate(-rotatePoint.x, -rotatePoint.y);
 matrix.rotate(event.rotation*(Math.PI/180));
 matrix.translate(rotatePoint.x, rotatePoint.y);
 picSprite.transform.matrix = matrix;
}

Code snippet GestureMania.as

This handler uses a Matrix object to help in the rotation transformation:

 var matrix:Matrix = picSprite.transform.matrix;

The Matrix object serves as a “transformation matrix” that helps map points between different
coordinate spaces:

var rotatePoint:Point =
 matrix.transformPoint(new Point((picSprite.width/2),
(picSprite.height/2)));

104 ❘ chaPter 5 multItouch apI

You can then work with a Matrix instance, attach it to a Transform instance, and then apply that
transformation to the Sprite instance. You’ll need to perform some math to change the radians in
the event.rotation to degrees:

matrix.translate(-rotatePoint.x, -rotatePoint.y);
matrix.rotate(event.rotation*(Math.PI/180));
matrix.translate(rotatePoint.x, rotatePoint.y);
picSprite.transform.matrix = matrix;

Listing 5-3 shows the full source code for GestureMania.as.

listinG 5-3: gestureMania.as

package {

 import flash.display.Bitmap;
 import flash.display.Sprite;
 import flash.display.MovieClip;
 import flash.events.TransformGestureEvent;
 import flash.geom.Matrix;
 import flash.ui.Multitouch;
 import flash.ui.MultitouchInputMode;
 import flash.events.Event;
 import flash.geom.Point;

 /**
 * Document class for GestureMania application.
 * Sample application
 *
 * @author Rich Wagner
 *
 */
 public class GestureMania extends MovieClip
 {

 // External image
 [Embed(source=”waterfront.jpg”)]
 private var WaterFrontImage:Class;

 private var pic:Bitmap;
 private var picSprite:Sprite;

 /**
 * Constructor
 *
 */
 public function GestureMania()
 {

 // Create bitmap
 pic= new WaterFrontImage();
 pic.smoothing = true;

Coding the document Class ❘ 105

 pic.scaleX = 1.3;
 pic.scaleY = 1.3;

 // Create sprite container for image
 picSprite = new Sprite();
 picSprite.addChild(pic);

 // Add to stage
 addChild(picSprite);

 // Center picture
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;

 // If support multitouch
 if (Multitouch.supportsTouchEvents)
 {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 picSprite.addEventListener(TransformGestureEvent.GESTURE_ZOOM,
GestureZoomandler);
 picSprite.addEventListener(TransformGestureEvent.GESTURE_ROTATE,
 GestureRotateHandler);
 }
 }

 /**
 * Handler for Zoom event
 *
 * @param event
 *
 */
 private function GestureZoomHandler(event:TransformGestureEvent):void
 {
 // Zoom in proportion to gesture
 pic.scaleX *= event.scaleX;
 pic.scaleY *= event.scaleY;

 // Always reset picture to center
 pic.x = stage.stageWidth/2 - pic.width/2;
 pic.y = stage.stageHeight/2 - pic.height/2;
 }

 /**
 * Handler for Rotate event
 *
 * @param event
 *
 */
 private function
GestureRotateHandler(event:TransformGestureEvent):void
 {
 var matrix:Matrix = picSprite.transform.matrix;

continues

106 ❘ chaPter 5 multItouch apI

 var rotatePoint:Point = matrix.transformPoint(new
Point((picSprite.width/2), (picSprite.height/2)));
 matrix.translate(-rotatePoint.x, -rotatePoint.y);
 matrix.rotate(event.rotation*(Math.PI/180));
 matrix.translate(rotatePoint.x, rotatePoint.y);
 picSprite.transform.matrix = matrix;
 }

 }
}

running the app
With the document class completed, you are ready to publish your Flash project and install the
compiled app onto your Android or iOS device. Figure 5-5 shows the app in its default state,
whereas Figure 5-6 shows the photo after it has been zoomed in. Figures 5-7 and 5-8 show
two stages of a rotation.

fiGure 5-5 fiGure 5-6

listinG 5-3 (continued)

summary ❘ 107

suMMary

In this chapter, you discovered how to work with touch and gesture events in your Android and
iOS apps. You began by exploring the differences between the various multitouch events and how
to trap them within your apps. You then walked through three sample applications that focused
on different multitouch events. PhotoTouch illustrates how to use TOUCH_START, TOUCH_MOVE, and
TOUCH_END events to touch and drag objects around a screen. PhotoPage explores how to use the
swipe gesture as an intuitive way to switch frames inside a Flash document. Finally, GestureMania
illustrates how to work with rotation and zoom gestures to manipulate a display object on-screen.

 var rotatePoint:Point = matrix.transformPoint(new
Point((picSprite.width/2), (picSprite.height/2)));
 matrix.translate(-rotatePoint.x, -rotatePoint.y);
 matrix.rotate(event.rotation*(Math.PI/180));
 matrix.translate(rotatePoint.x, rotatePoint.y);
 picSprite.transform.matrix = matrix;
 }

 }
}

running the app
With the document class completed, you are ready to publish your Flash project and install the
compiled app onto your Android or iOS device. Figure 5-5 shows the app in its default state,
whereas Figure 5-6 shows the photo after it has been zoomed in. Figures 5-7 and 5-8 show
two stages of a rotation.

fiGure 5-7 fiGure 5-8

detecting Motion with
accelerometer

What’s in this chaPter?

Detecting motions in your app ➤➤

Working with Accelerometer and AccelerometerEvent classes➤➤

Detecting when the user shakes the device➤➤

Android and iOS devices have built-in motion detectors that enable programmers to cap-
ture the motion that occurs on a three-dimensional axis. This capability enables you to
detect all sorts of user motions — tilting the phone, shaking back and forth, and rotating it
in a circular fashion.

This chapter introduces you to the Accelerometer and AccelerometerEvent classes and
shows you how to detect motion in your apps. It walks you through the creation of three apps
that demonstrate different aspects of motion detection:

AccelerateInfo➤➤ , which lists raw data from the motion sensor

SphereAcceleration➤➤ , which uses the Accelerometer to guide a sphere around the
viewport

Shakey➤➤ , which captures a shake event

However, before beginning, it’s important to introduce you to the two classes you’ll work with
to detect motion.

6

110 ❘ chaPter 6 detectIng motIon wIth accelerometer

introDucinG acceleroMeter anD acceleroMeterevent

There are two main classes that you work with to use a mobile device’s motion sensor:
Accelerometer and AccelerometerEvent. Android and iOS enable you to return movement data
of the device along the x, y, and z axes to your app. The data you receive is in Gs. One G is the grav-
itational constant equal to 9.8m/sec2.

The Accelerometer class is used for basic setup purposes: checking for motion sensor support on
the device, assigning a listener for motion sensor updates, and setting the requested interval time
between updates. Its primary method is setRequestedUpdateInterval(), which sets up time inter-
vals (in milliseconds) for updates from the motion sensor. The time you specify is only a request and
can vary based on the OS and motion sensor. If not specified, the default update time is 100 ms.

The AccelerometerEvent class provides the update event that is fired each time the motion sen-
sor updates based on the requested or OS-determined time interval or whenever the motion sensor
updates when the Android wakes from sleep.

The AccelerometerEvent contains the following properties:

accelerationX➤➤ — Acceleration along the x axis (in Gs)

acceleration ➤➤ — Acceleration along the y axis (in Gs)

accelerationZ➤➤ — Acceleration along the z axis (in Gs)

timestamp➤➤ — Time since motion detection began (in milliseconds)

The skeleton code for checking for motion detection support and setting up a listener is shown here:

private function initAccelerator():void
{
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);
 }
 else
 {
 trace(“Motion sensor detection is not supported on this device.”);
 }
}

private function accelerometerUpdateHandler(event:AccelerometerEvent):void
{
 // event.accelerationX available
 // event.accelerationY available
 // event.accelerationZ available
}

listening for accelerometer events ❘ 111

listeninG for acceleroMeter events

To demonstrate basic functionality, this section shows you how to create an app called
AccelerateInfo, which simply displays real-time accelerator data on the screen.

Before diving into the ActionScript code, set up the Flash app as follows:

 1 . Within the desired directory, create a new Flash document based on the Android or iPhone
and name it AccelerateInfo.fla.

 2 . In the Properties panel, enter AccelerateInfo as the document class and click the pencil
button to edit the class definition in your preferred editor.

coding the Document class
As you code your AccelerateInfo class, begin by setting up class properties. You only need two: a
TextField and an Accelerometer instance:

private var tfInfo:TextField;
private var accelerometer:Accelerometer;

Code snippet AccelerateInfo.as

In the constructor, set up and configure the stage and TextField. I set up the Accelerometer and
assigned a handler for the AccelerometerEvent.UPDATE event. Here it is:

public function AccelerateInfo()
{
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Create Text Field
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0xFF5500;
 tfInfo.x = 0;
 tfInfo.y = 0;
 tfInfo.height = stage.stageHeight;
 tfInfo.width = stage.stageWidth;
 addChild(tfInfo);

 // Determine Accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.setRequestedUpdateInterval(500);
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,

112 ❘ chaPter 6 detectIng motIon wIth accelerometer

 accelerometerUpdateHandler);
 }
 else
 {
 tfInfo.text = “Motion sensor detection is not support on “ +
 this device. No Accelerator for you!”;
 }

}

Code snippet AccelerateInfo.as

The event handler gets the values of the accelerationX, accelerationY, and accelerationZ
properties, converts them to string values, and outputs them in the TextField. It is shown here:

private function accelerometerUpdateHandler(event:AccelerometerEvent):void
{

 var s:String = “X:” + event.accelerationX.toString() + “\n” +
 “Y:” + event.accelerationY.toString() + “\n” +
 “Z:” + event.accelerationZ.toString() + “\n” +
 “Duration:” + event.timestamp.toString() + “\n”;

 tfInfo.text = s;

}

Code snippet AccelerateInfo.as

This simple app gives you a feel for a range of values that you can expect working with acceleration.

Listing 6-1 lists the full source code for AccelerateInfo.as.

listinG 6-1: accelerateinfo.as

package
{
 import flash.display.MovieClip;
 import flash.events.AccelerometerEvent;
 import flash.sensors.Accelerometer;
 import flash.text.*;
 import flash.display.*;

 /**
 * Document class for AccelerateInfo application.
 * Sample code for Professional Flash Mobile Development *
 *
 * @author Rich Wagner
 *
 */
 public class AccelerateInfo extends MovieClip
 {

 private var tfInfo:TextField;

listening for accelerometer events ❘ 113

 private var accelerometer:Accelerometer;

 /**
 * Constructor
 *
 */
 public function AccelerateInfo()
 {
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Create Text Field
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0xFF5500;
 tfInfo.x = 0;
 tfInfo.y = 0;
 tfInfo.height = stage.stageHeight;
 tfInfo.width = stage.stageWidth;
 addChild(tfInfo);

 // Determine Accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.setRequestedUpdateInterval(500);
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);
 }
 else
 {
 tfInfo.text = “Motion sensor detection is not support on this” +
 “device. No Accelerator for you!”;
 }

 }

 /**
 * Handler for Accelerometer updates
 */
 private function accelerometerUpdateHandler(event:AccelerometerEvent):void
 {

 var s:String = “X:” + event.accelerationX.toString() + “\n” +
 “Y:” + event.accelerationY.toString() + “\n” +
 “Z:” + event.accelerationZ.toString() + “\n” +

continues

114 ❘ chaPter 6 detectIng motIon wIth accelerometer

 “Duration:” + event.timestamp.toString() + “\n”;

 tfInfo.text = s;

 }

 }
}

running the app
You can compile the Flash project and install the compiled app onto the device. After that, you are
ready to try it out on Android (see Figure 6-1) or iPhone (see Figure 6-2).

resPonDinG to acceleroMeter events

Now that you’ve seen the basic display of acceleration info, it’s time to start responding to that data.
You’ll learn how to create an app that displays a sphere in motion. The sphere responds to the accel-
eration data, going in the direction of the tilt of the Android.

Set up the Flash file by performing the following steps:

 1 . Within the desired directory, create a new Flash document based on the Android/iPhone tem-
plate, and name it SphereAcceleration.fla.

 2 . In the Properties panel, enter SphereAcceleration as the document class, and click the pen-
cil button to edit the class definition in your preferred editor.

Before you actually code the document class, create a support class called Sphere.

fiGure 6-1 fiGure 6-2

listinG 6-1 (continued)

responding to accelerometer events ❘ 115

creating the sphere class
In your preferred code editor (Flash IDE or Flash Builder), create a new ActionScript class
called Sphere. Choose the appropriate package in which to locate it; I placed mine in com
.richwagner.Spheres.

Listing 6-2 shows the class code. Notice that Sphere is a child of Sprite and contains two physi-
cal properties and two properties related to the acceleration of the object. The constructor creates a
circle based on its size and color parameters.

listinG 6-2: sphere.as

package com.richwagner.Spheres
{
 import flash.display.Sprite;

 /**
 * Sphere class for SphereAcceleration application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class Sphere extends Sprite
 {

 public var size:Number = 25;
 public var color:Number = 0x000000;
 public var xSpeed:Number = 0;
 public var ySpeed:Number = 0;

 /**
 * Constructor
 *
 * @param size - diameter of sphere
 * @param color - color of sphere
 *
 */
 public function Sphere(size:Number, color:Number)
 {
 size = size;
 color = color;

 graphics.beginFill(color);
 graphics.drawCircle(0, 0, size/2);
 graphics.endFill();

 }

 }
}

With the Sphere class created, you are ready to return to the document class.

116 ❘ chaPter 6 detectIng motIon wIth accelerometer

coding the Document class
You are ready to fill the SphereAcceleration class shell structure that was created earlier. Begin by
defining two properties:

private var accelerometer:Accelerometer;
private var sphere:Sphere;

Code snippet SphereAcceleration.as

Before creating the constructor, you want to create a helper function called createSphere(). This
method creates the Sphere instance using the size and color parameters and adds it to the stage
in the center. You are creating only one instance in this example, so you could add it inside the con-
structor. However, if you expand the app to include multiple Sphere objects, this helper comes in
handy. Here’s the code:

private function createSphere(size:Number, color:Number):void
{
 sphere = new Sphere(size, color);
 sphere.x = (stage.stageWidth / 2);
 sphere.y = (stage.stageHeight / 2);
 sphere.cacheAsBitmap = true;
 addChild(sphere);
}

Code snippet SphereAcceleration.as

You use the constructor to set up the stage, create a sphere, and set up a listener for motion sensor
updates:

public function SphereAcceleration()
{

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 createSphere(50, 0x65c8c6);

 // Determine Accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);

 addEventListener(Event.ENTER_FRAME, onEnterFrame);

 }
 else
 {
 trace(“Motion sensor detection is not support on this ” +
 “device. No Accelerator for you!”);
 }

 }

Code snippet SphereAcceleration.as

responding to accelerometer events ❘ 117

Notice that you also set up a handler for the ENTER_FRAME event. You get to that later, but first you
need to set up the accelerometerUpdateHandler(). Inside this function, you update the xSpeed
and ySpeed properties of the Sphere object based on the accelerationX and accelerationY prop-
erties from the AccelerometerEvent. Multiplying both of those values by 2 gives a good result to
simulate a speeding sphere on-screen. Here’s the code:

private function accelerometerUpdateHandler(event:AccelerometerEvent):void
{
 sphere.xSpeed += event.accelerationX * 2;
 sphere.ySpeed -= event.accelerationY * 2;
}

Code snippet SphereAcceleration.as

You can use the real-time acceleration data provided by the Accelerometer to animate the ball in
response. To perform the animation, you need to update the sphere position. You do that by trigger-
ing the animation from the ENTER_FRAME event. The handler that you assigned in the constructor
simply references a private method you will define called roll():

private function onEnterFrame(event:Event):void
{
 roll();
}

Code snippet SphereAcceleration.as

You could have also used a timer instead of ENTER_FRAME, but ENTER_FRAME provides smoother ani-
mation of the sphere.

The heart of the SphereAcceleration app is in the roll() method, which animates the sphere
based on the data received from the Accelerometer. The code is shown here:

private function roll():void
{
 var sphereRadius:Number = 25;

 var newX:Number = sphere.x + sphere.xSpeed;
 var newY:Number = sphere.y + sphere.ySpeed;

 // Left side boundary
 if (newX < sphereRadius)
 {
 sphere.x = sphereRadius;
 sphere.xSpeed *= -0.5;
 }
 // Right side boundary
 else if (newX > stage.stageWidth - sphereRadius)
 {
 sphere.x = stage.stageWidth - sphereRadius;
 sphere.xSpeed *= -0.5;
 }
 // Otherwise, go at normal speed
 else
 {
 sphere.x += sphere.xSpeed;

118 ❘ chaPter 6 detectIng motIon wIth accelerometer

 }

 // Top boundary
 if (newY < sphereRadius)
 {
 sphere.y = sphereRadius;
 sphere.ySpeed *= -0.5;
 }
 // Bottom boundary
 else if (newY > stage.stageHeight - sphereRadius)
 {
 sphere.y = stage.stageHeight - sphereRadius;
 sphere.ySpeed *= -0.5;
 }
 // Otherwise, go at normal speed
 else
 {
 sphere.y += sphere.ySpeed;
 }

}

Code snippet SphereAcceleration.as

The newX and newY variables determine the new x, y position of the Sphere object based on the
existing coordinates plus the acceleration values provided by the accelerometerUpdateHandler().
The method then examines the current position of the sphere and determines whether it is in a left,
right, top, or bottom boundary area or whether it is somewhere in the middle of the viewport.

If the sphere is not in a boundary area, the new x, y positions are simply based on the acceleration
data and continue in the sphere’s current direction. But if a boundary area is detected, the xSpeed or
ySpeed property is multiplied by a negative value to send it in the reverse direction, giving the effect
of bouncing off the walls. I used a –0.5 value, which seemed to provide the most natural reverse
speed, although you can alter it if you want to speed up the bouncing effect.

The full source code for the SphereAnimation document class is shown in Listing 6-3.

listinG 6-3: sphereanimation.as

package
{
 import com.richwagner.Spheres.Sphere;

 import flash.display.MovieClip;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.AccelerometerEvent;
 import flash.events.Event;
 import flash.events.TimerEvent;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;

responding to accelerometer events ❘ 119

 import flash.sensors.Accelerometer;
 import flash.utils.Timer;

 /**
 * Document class for SphereAcceleration application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class SphereAcceleration extends MovieClip
 {

 private var accelerometer:Accelerometer;
 private var sphere:Sphere;

 /**
 * Constructor
 *
 */
 public function SphereAcceleration()
 {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 createSphere(50, 0x65c8c6);

 // Determine Accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);

 addEventListener(Event.ENTER_FRAME, onEnterFrame);

 }
 else
 {
 trace(“Motion sensor detection is not support on this “ +
 “device. No Accelerator for you!”);
 }

 }

 /**
 * Creates a Sphere instance and adds to the stage center.
 */
 private function createSphere(size:Number, color:Number):void
 {
 sphere = new Sphere(size, color);

continues

120 ❘ chaPter 6 detectIng motIon wIth accelerometer

 sphere.x = (stage.stageWidth / 2);
 sphere.y = (stage.stageHeight / 2);
 sphere.cacheAsBitmap = true;
 addChild(sphere);
 }

 /**
 * Handler for Accelerometer updates
 */
 private function accelerometerUpdateHandler(event:AccelerometerEvent):void
 {
 sphere.xSpeed += event.accelerationX * 2;
 sphere.ySpeed -= event.accelerationY * 2;
 }

 /**
 * Handler for ENTER_FRAME updates
 */
 private function onEnterFrame(event:Event):void
 {
 roll();
 }

 /**
 * Animates the sphere based on accelerometer data
 */
 private function roll():void
 {
 var sphereRadius:Number = 25;

 var newX:Number = sphere.x + sphere.xSpeed;
 var newY:Number = sphere.y + sphere.ySpeed;

 // Left side boundary
 if (newX < sphereRadius)
 {
 sphere.x = sphereRadius;
 sphere.xSpeed *= -0.5;
 }
 // Right side boundary
 else if (newX > stage.stageWidth - sphereRadius)
 {
 sphere.x = stage.stageWidth - sphereRadius
 sphere.xSpeed *= -0.5;
 }
 // Otherwise, go at normal speed
 else
 {
 sphere.x += sphere.xSpeed;
 }

 // Top boundary

listinG 6-3 (continued)

responding to accelerometer events ❘ 121

 if (newY < sphereRadius)
 {
 sphere.y = sphereRadius;
 sphere.ySpeed *= -0.5;
 }
 // Bottom boundary
 else if (newY > stage.stageHeight - sphereRadius)
 {
 sphere.y = stage.stageHeight - sphereRadius;
 sphere.ySpeed *= -0.5;
 }
 // Otherwise, go at normal speed
 else
 {
 sphere.y += sphere.ySpeed;
 }

 }

 }
}

running the app
After you publish the Flash .fla and install the app onto your mobile device, you can run it. Figures 6-3
and 6-4 show the sphere as it moves around the screen under Android, while Figures 6-5 and 6-6 show
it under iPhone.

fiGure 6-3 fiGure 6-4 fiGure 6-5

122 ❘ chaPter 6 detectIng motIon wIth accelerometer

DetectinG shakinG

One of the real-world motions that application developers fre-
quently want to capture and utilize in their apps is the shake.
Although the Accelerometer class doesn’t explicitly provide a
shake event, you can analyze the data received from the motion
sensor and identify when a shake action occurs.

I’ll show you how I did it in an app I call Shakey, which simply
displays the number of shakes that the app detected since the
app began. To create this project, begin by setting up the Flash
project in a typical fashion:

 1 . Within the desired directory, create a new Flash docu-
ment using the AIR for Android template and name it
Shakey.fl a.

 2 . In the Properties panel, enter Shakey as the document
class and click the pencil button to edit the class defi ni-
tion in your preferred editor.

coding the Document class
As you begin to fi ll out the Shakey class defi nition, you will have several properties to defi ne. Start
with the standard objects that you’ll need: an Accelerometer instance and a TextField component
that will be the sole UI for the app.

private var accelerometer:Accelerometer;
private var tfInfo:TextField;

Code snippet Shakey.as

Then you defi ne several variables that will be used to analyze the motion of the device:

private var deltaX:Number;
 private var deltaY:Number;
 private var deltaZ:Number;
 private var accX:Number;
 private var accY:Number;
 private var accZ:Number;

Code snippet Shakey.as

 I’ll discuss how those are used later in the example.

Next, defi ne one more variable, which is simply a counter to the number of shakes detected:

private var shakes:int = 0;

Code snippet Shakey.as

fiGure 6-6

detecting shaking ❘ 123

The constructor begins with straightforward code to set up the stage and TextField and then
attach a handler for the Accelerometer update event:

public function Shakey()
{
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Create text field
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0x000000;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = false;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Determine accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);
 }
 else
 {
 tfInfo.text = “Motion sensor detection is not support on this ” +
 “device. No shaking for you!”;
 }

}

Code snippet Shakey.as

One of the key purposes of this app is to detect when a shake occurs. To that end, you want to
define a custom shake event that you will write your application to dispatch when your app expe-
riences a shake. To define the custom event, add the [Event] metatag above the Shakey class
definition:

 [Event(“shake”, “flash.events.Event”)]
public class Shakey extends Sprite
{
…
}

Code snippet Shakey.as

Before you leave the constructor code you started earlier, add the following line:

addEventListener(“shake”, shakeHandler);

124 ❘ chaPter 6 detectIng motIon wIth accelerometer

Therefore, when a shake event occurs, the shakeHandler() function is called.

The accelerometerUpdateHandler() contains the key logic that the app uses to determine
whether a shake occurs. Here’s the code:

private function accelerometerUpdateHandler(event:AccelerometerEvent):void
{
 // Constant used to determine whether a movement is strong enough
 // to constitute a “shake”
 var threshold:Number = 0.7;

 // Determine delta for each dimension
 deltaX = Math.abs(accX - event.accelerationX);
 deltaY = Math.abs(accY - event.accelerationY);
 deltaZ = Math.abs(accZ - event.accelerationZ);

 // Algorithm to determine whether a shake occurred.
 if ((deltaX > threshold && deltaY > threshold) ||
 (deltaX > threshold && deltaZ > threshold) ||
 (deltaY > threshold && deltaZ > threshold))
 {
 dispatchEvent(new Event(“shake”));
 }

 // Save acceleration data from this read
 accX = event.accelerationX;
 accY = event.accelerationY;
 accZ = event.accelerationZ;

}

Code snippet Shakey.as

The threshold is a number that determines whether a movement is strong enough to be called a
shake. You may want to experiment with this number slightly. I settled at 0.7. Next, delta values are
obtained for the x, y, and z axes based on the difference between the previous Accelerometer data
and the current data set. These delta values are then compared to the threshold variable. If two of
the three axes register values greater than 0.7, a shake event is dispatched.

The Accelerometer values are then saved with the accX, accY, and accZ variables for the next pass
through.

The shakeHandler() method simply needs to increment the counter variable and display the infor-
mation on-screen:

private function shakeHandler(event:Event):void
 {
 shakes++;
 tfInfo.text = “Shakes detected: “ + shakes.toString();
 }

Code snippet Shakey.as

Listing 6-4 shows the full source code for the document class.

detecting shaking ❘ 125

listinG 6-4: shakey.as

package
{
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.AccelerometerEvent;
 import flash.events.Event;
 import flash.events.EventDispatcher;
 import flash.sensors.Accelerometer;
 import flash.text.TextField;
 import flash.text.TextFormat;

 /**
 * Document class for Shakey application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 [Event(“shake”, “flash.events.Event”)]
 public class Shakey extends Sprite
 {
 // Class properties
 private var accelerometer:Accelerometer;
 private var tfInfo:TextField;

 // Data used to determine a shake
 private var deltaX:Number;
 private var deltaY:Number;
 private var deltaZ:Number;
 private var accX:Number;
 private var accY:Number;
 private var accZ:Number;

 // Number of shakes captured
 private var shakes:int = 0;

 /**
 * Constructor
 *
 */
 public function Shakey()
 {
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Create text field
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0x000000;
 tfInfo.defaultTextFormat = format;

continues

126 ❘ chaPter 6 detectIng motIon wIth accelerometer

 tfInfo.border = false;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Determine accelerator support
 if (Accelerometer.isSupported)
 {
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.UPDATE,
 accelerometerUpdateHandler);
 }
 else
 {
 tfInfo.text = “Motion sensor detection is not supported on
this “ + “device. No shaking for you!”;
 }

 // Add custom shake event
 addEventListener(“shake”, shakeHandler);

 }

 /**
 * Handler for Accelerator updates
 *
 * @param event
 *
 */
 private function accelerometerUpdateHandler(event:AccelerometerEvent):void
 {
 // Constant used to determine whether a movement is strong enough
 // to constitute a “shake”
 var threshold:Number = 0.72;

 // Determine delta for each dimension
 deltaX = Math.abs(accX - event.accelerationX);
 deltaY = Math.abs(accY - event.accelerationY);
 deltaZ = Math.abs(accZ - event.accelerationZ);

 // Algorithm to determine whether a shake occurred.
 if ((deltaX > threshold && deltaY > threshold) ||
 (deltaX > threshold && deltaZ > threshold) ||
 (deltaY > threshold && deltaZ > threshold))
 {
 dispatchEvent(new Event(“shake”));

listinG 6-4 (continued)

summary ❘ 127

 }

 // Save acceleration data from this read
 accX = event.accelerationX;
 accY = event.accelerationY;
 accZ = event.accelerationZ;

 }

 /**
 * Handler for shake event
 *
 * @param event
 *
 */
 private function shakeHandler(event:Event):void
 {
 shakes++;
 tfInfo.text = “Shakes detected: “ + shakes.toString();
 }

 }
}

running the app
Figure 6-7 shows the on-screen results of running the app and
shaking it vigorously. If too many shakes are being dispatched,
you can adjust the time in which the Accelerometer updates with
setRequestedIntervalTime() of the Accelerometer class, or
you can try adjusting the threshold value.

suMMary

In this chapter, you discovered how to use the accelerometer,
one of the core hardware components of any mobile device. I
began by showing you how to listen for accelerometer events
and then walked you through how to respond to these events in
the user interface. Finally, while AS3 doesn’t currently provide
a shake event, I showed how you can combine your own logic
with existing accelerometer events to detect shaking.

fiGure 6-7

implementing auto orientation

What’s in this chaPter?

Rotating your app automatically ➤➤

Working with StageOrientationEvent➤➤

Detecting an orientation change➤➤

If you are experienced in creating Flash or Flex applications for the Web or for Adobe
Integrated Runtime (AIR) for Desktop, you are probably used to dealing with issues surround-
ing stretched versus fi xed widths to account for different browser sizes or monitor resolutions.
When you’re developing for Android and iOS, it’s a different world, because there is a new
issue to contend with — screen orientation (or rotation).

Android and iOS users can change the orientation of their screens by physically turning the
device with their hands. If an application changes its UI based on this change, it supports auto
orientation. Therefore, application developers must face two key design questions:

Will my app support auto orientation? Or will it stay fi xed at portrait or landscape? ➤➤

If my app supports auto orientation, how should the UI change? ➤➤

This chapter walks you through how to implement auto orientation into your Flash apps by
focusing on how to respond to StageOrientationEvent events.

enablinG your aPP to rotate

Before you can implement auto orientation, you need to enable this feature in your Flash proj-
ect. You can do this through the AIR Android Settings dialog box or by modifying the appli-
cation descriptor XML fi le.

For Android apps, access the Android Settings dialog box (see Figure 7-1) by clicking the
Android OS Settings Edit button in the Properties panel of your .fla document. Check the
Auto Orientation check box and click OK.

7

130 ❘ chaPter 7 ImplementIng auto orIentatIon

For iPhone apps, access the iPhone Settings dialog box (see Figure 7-2) by clicking the iPhone OS
Settings Edit button in the Properties panel. Check the Auto Orientation check box and click OK.

Or, if you prefer to work with the application descriptor XML file, set the <autoOrients> tag to true:

 <initialWindow>
 <autoOrients>true</autoOrients>
 </initialWindow>

Don’t be misled by the “auto” in auto orientation. That setting doesn’t mean that Flash will auto-
matically reorient your app for you. Instead, it simply flips on the switch and allows your app to
listen for StageOrientationEvent events.

staGeorientationevent

When the user rotates the mobile device by hand, the stage dispatches a StageOrientationEvent
event. You can listen for events at two stages of the orientation process:

StageOrientationEvent.ORIENTATION_CHANGE➤➤ is dispatched as the screen changes into
a new orientation. When you’re working with auto orientation, orientationChange is the
primary event you’ll work with.

fiGure 7-1 fiGure 7-2

two essentials for Ui reorientation ❘ 131

StageOrientationEvent.ORIENTATION_CHANGING ➤➤ is triggered before the bounds have
changed. You’ll usually want to trap for this event to perform a task (such as saving the
current state) prior to the new orientation. The StageOrientationEvent has two key
properties:

afterOrientation➤➤ provides a string value of the orientation after the change from a
fixed set of options (the current orientation for an orientationChange event).

beforeOrientation➤➤ provides a string value of the orientation before the change
from the same fixed set of options.

Here’s the basic setup:

stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 myOrientationChangeHandler);

stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGING,
 myOrientationChangingHandler);

public function myOrientationChangeHandler(event:StageOrientationEvent):void
{
 // event.beforeOrientation - indicates previous orientation
 // event.afterOrientaion - indicates current orientation

}

public function myOrientationChangingHandler(event:StageOrientationEvent):void
{
 // event.beforeOrientation - indicates current orientation
 // event.afterOrientation - indicates new orientation
(unless the event is cancelled)
}

The StageOrientationEvent event is not triggered when the app loads. Therefore, to evaluate the
orientation at this start-up, you need to explicitly call the handler function on your own.

tWo essentials for ui reorientation

Before any StageOrientationEvent events occur, you need to set two critical stage properties for
auto orientation to work as intended: align and scaleMode. Specifically, be sure to set these proper-
ties as follows:

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

Both of these ensure that when the screen rotation occurs, the stage is reset to align to the top left
and doesn’t scale to the original setting. Without these two property settings, any reorientation code
you add fails to adjust to your new viewport dimensions.

132 ❘ chaPter 7 ImplementIng auto orIentatIon

DetectinG an orientation chanGe

You can detect an orientation change with the viewport and then perform an action based on the new
orientation. You’ll see a simple example of creating an app that contains a single TextField sized to
the boundaries of the stage. When an orientation occurs, you can adjust the size as needed to match the
new dimensions. What’s more, you put information about the new orientation into the TextField.

Before diving into the AS3 code, perform the following steps to create the project:

 1 . Within the target directory, create a new Flash document based on the desired template and
name it OrientationSimple.fla.

 2 . In the Properties panel, enter OrientationSimple as the document class, and click the pencil
button to edit the class definition in your preferred editor.

Inside your editor, the OrientationSimple class is created as a child of Sprite. You begin by add-
ing a single class property, which is a reference to the TextField:

public var tfInfo:TextField;

Then you set up the stage properties, TextField settings, and event handlers in the constructor:

public function OrientationSimple():void
{
 // Required property assignments if you want to
 // manually orient your app
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Create TextField
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0xFF5500;
 tfInfo.x = 0;
 tfInfo.y = 0;
 tfInfo.height = stage.stageHeight;
 tfInfo.width = stage.stageWidth;
 addChild(tfInfo);

 // Set up stage orientation
 try
 {
 stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 orientationChangeListener);
 print(“Rotate me”);

 }

detecting an orientation Change ❘ 133

 catch(e:Error)
 {
 print(“Stage orientation not supported.”);
 }

}

Code snippet OrientationSimple.as

You begin by setting the key align and scaleMode properties for the stage to ensure that auto ori-
entation works as expected. You then instantiate the TextField, format it, set its x, y coordinates to
the top-left of the stage, and size it the same dimensions as the stage.

Inside the try/catch block, you attempt to add an event listener for the StageOrientationEvent
.ORIENTATION_CHANGE event. If this attempt fails, the user is notified with a call to a custom print()
method:

public function print(obj:Object):void
 {
 tfInfo.text = obj as String;

 }

Code snippet OrientationSimple.as

If you’re creating an Android app, the event handler is defined as follows:

public function orientationChangeListener(event:StageOrientationEvent):void
{

 // Reassign dimensions
 tfInfo.width = stage.stageWidth;
 tfInfo.height = stage.stageHeight

 if (event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT)
 print(“Portrait”);
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT)
 print(“Landscape”);
 }
}

Code snippet OrientationSimple.as

In this function, the dimensions of the TextField are reassigned to be the same as the new stage
width and height. The event.afterOrientation is checked, so the code block inside it is executed
only after the orientation has changed, not before.

The conditional block inside evaluates the screen.orientation property with the
ScreenOrientation object, which provides the possible orientation values:

ScreenOrientation.DEFAULT ➤➤

ScreenOrientation.ROTATED_RIGHT➤➤

134 ❘ chaPter 7 ImplementIng auto orIentatIon

If you’re developing for iOS, you can take advantage of some additional orientation return values.
See the expanded handler code:

public function orientationChangeListener(event:StageOrientationEvent):void
{

 // Reassign dimensions
 tfInfo.width = stage.stageWidth;
 tfInfo.height = stage.stageHeight;

 if(event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT)
 print(“Portrait”);
 else if (stage.orientation == StageOrientation.UPSIDE_DOWN)
 print(“Portrait (upside down)”)
 else if (stage.orientation == StageOrientation.ROTATED_LEFT)
 print(“Landscape (left, screen turned counterclockwise”)
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT)
 print(“Landscape (right, screen turned clockwise)”);
 else
 print(“Where am I? I am totally disoriented”);
 }

 if (event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT)
 print(“Portrait”);
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT)
 print(“Landscape”);
 }
}

Code snippet OrientationSimple.as

Android does not currently support the following ScreenOrientation constants:

ScreenOrientation.ROTATED_LEFT ➤➤

ScreenOrientation.UPSIDE_DOWN➤➤

ScreenOrientation.UNKNOWN➤➤

Listing 7-1 provides the full source code for a version of OrientationSimple.as that would work
under both Android and iOS.

listinG 7-1: orientationsimple.as

package
{
 import flash.display.MovieClip;
 import flash.display.*;

detecting an orientation Change ❘ 135

 import flash.display.Sprite;
 import flash.events.*;
 import flash.text.*;

 /**
 * Document class for OrientationSimple application.
 * Sample code for Professional Flash Mobile Development app
 *
 * @author Rich Wagner
 *
 */
 public class OrientationSimple extends Sprite
 {
 public var tfInfo:TextField;

 /**
 * Constructor
 *
 */
 public function OrientationSimple():void
 {
 // Required property assignments if you want to
 // manually orient your app
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0xFF5500;
 tfInfo.x = 0;
 tfInfo.y = 0;
 tfInfo.height = stage.stageHeight;
 tfInfo.width = stage.stageWidth;
 addChild(tfInfo);

 try
 {
 print(“Rotate me”);
 stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 orientationChangeListener);
 }
 catch(e:Error)
 {
 print(“Stage orientation not supported.”);
 }

 }

 /**

continues

136 ❘ chaPter 7 ImplementIng auto orIentatIon

 * Listener for orientation changes
 *
 * @param event
 *
 */
 public function orientationChangeListener(event:StageOrientationEvent):void
 {

 tfInfo.width = stage.stageWidth;
 tfInfo.height = stage.stageHeight;

 if(event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT ||
 stage.orientation == StageOrientation.UPSIDE_DOWN)
 print(“Portrait”);
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT
|| stage.orientation == StageOrientation.ROTATED_LEFT)
 print(“Landscape”);
 }
 }

 /**
 * Prints specified param to UI
 *
 * @param obj
 *
 */
 public function print(obj:Object):void
 {
 tfInfo.text = obj as String;
 }

 }
}

Listing 7-2 provides an alternative version that provides additional iOS-specific feedback.

listinG 7-2: orientationsimple.as (alternative version)

package
{
 import flash.display.MovieClip;
 import flash.display.*;
 import flash.display.Sprite;

listinG 7-1 (continued)

detecting an orientation Change ❘ 137

 import flash.events.*;
 import flash.text.*;

 /**
 * Document class for OrientationSimple application.
 * Sample code for Professional Flash Mobile Development app
 *
 * @author Rich Wagner
 *
 */
 public class OrientationSimple extends Sprite
 {
 public var tfInfo:TextField;

 /**
 * Constructor
 *
 */
 public function OrientationSimple():void
 {
 // Required property assignments if you want to
 // manually orient your app
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0xFF5500;
 tfInfo.x = 0;
 tfInfo.y = 0;
 tfInfo.height = stage.stageHeight;
 tfInfo.width = stage.stageWidth;
 addChild(tfInfo);

 try
 {
 print(“Rotate me”);

stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 orientationChangeListener);
 }
 catch(e:Error)
 {
 print(“Stage orientation not supported.”);

continues

138 ❘ chaPter 7 ImplementIng auto orIentatIon

 }

 }

 /**
 * Listener for orientation changes
 *
 * @param event
 *
 */
 public function orientationChangeListener(event:StageOrientationEvent):void
 {

 tfInfo.width = stage.stageWidth;
 tfInfo.height = stage.stageHeight;

 if(event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT)
 print(“Portrait”);
 else if (stage.orientation == StageOrientation.UPSIDE_DOWN)
 print(“Portrait (upside down)”)
 else if (stage.orientation == StageOrientation.ROTATED_LEFT)
 print(“Landscape (left, screen turned counterclockwise”)
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT)
 print(“Landscape (right, screen turned clockwise)”);
 else
 print(“Where am I? I am totally disoriented”);
 }
 }

 /**
 * Prints specified param to UI
 *
 * @param obj
 *
 */
 public function print(obj:Object):void
 {
 tfInfo.text = obj as String;
 }

 }
}

Figures 7-3 through 7-6 show the iOS-specific app running in all different orientations.

listinG 7-2 (continued)

Changing Positioning Based on orientation Changes ❘ 139

chanGinG PositioninG baseD on orientation chanGes

Using the StageOrientationEvent event, you can begin to position components of the UI dynami-
cally based on whether the viewport is in portrait or landscape mode.

To illustrate how this is done, this section shows you how to create an app with two objects on the
stage that are repositioned when the screen rotates.

fiGure 7-3

fiGure 7-5

fiGure 7-4

fiGure 7-6

140 ❘ chaPter 7 ImplementIng auto orIentatIon

You begin by setting up the project and calling it OrientExpress, creating a new OrientExpress.fla
based on the AIR for Android template, and then creating the document class of the same name that
extends the Sprite class. You edit the OrientExpress class in your editor.

You define the two UI components to be used in the app:

public var tfInfo:TextField;➤➤

public var btnDefault:Button; ➤➤

The constructor looks similar to the OrientationSimple example, except that a Button object is
added to the stage:

// Manually orient your app
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Set up TextField
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0x7AB900;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Set up Button
 btnDefault = new Button();
 btnDefault.width = stage.stageWidth-20;
 btnDefault.height = 44;
 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;
 addChild(btnDefault);

 try
 {
 tfInfo.text = stage.orientation;
 stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 orientationChangeHandler);
 }
 catch(e:Error)
 {
 print(“Stage orientation not supported.”);
 }

Code snippet OrientExpress.as

Changing Positioning Based on orientation Changes ❘ 141

Note that the TextField is sized to be 80 pixels smaller than the stage height and 20 pixels smaller
than the stage width. The Button y positioning is then set to be 54 pixels smaller than the stage height.

In the orientationChange handler, the width and height properties of tfInfo are set to new sizes
based on the new sizes of the stage. The btnDefault button is then repositioned based on the stage’s
new height, and its width is adjusted relative to the stage.StageWidth value:

public function orientationChangeHandler(event:StageOrientationEvent):void
{

 if(event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT || stage.orientation
== StageOrientation.UPSIDE_DOWN)
 {
 tfInfo.width = stage.stageWidth - 20;
 tfInfo.height = stage.stageHeight - 80;

 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;
 btnDefault.width = stage.stageWidth - 20;

 }
 else if (stage.orientation == StageOrientation.ROTATED_RIGHT ||
stage.orientation == StageOrientation.ROTATED_LEFT)
 {
 tfInfo.width = stage.stageWidth - 20;
 tfInfo.height = stage.stageHeight - 80;

 btnDefault.width = stage.stageWidth - 20;
 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;
 }
 else
 {
 // Do something
 }

 print(“orientation:” + stage.orientation);
 }

Code snippet OrientExpress.as

Listing 7-3 shows the full source code for OrientExpress.as.

listinG 7-3: orientexpress.as

package
{
 import flash.display.*;
 import flash.display.Sprite;
 import flash.events.*;

continues

142 ❘ chaPter 7 ImplementIng auto orIentatIon

 import flash.text.*;
 import fl.controls.Button;
 import fl.controls.Label;
 import fl.controls.LabelButton;

 /**
 * Document class for OrientExpress application
 * Sample code for Professional Flash Mobile Developmentapp
 *
 * @author Rich Wagner
 *
 */
 public class OrientExpress extends Sprite
 {
 public var tfInfo:TextField;
 public var btnDefault:Button;

 /**
 * Constructor
 *
 */
 public function OrientExpress():void
 {
 // Required property assignments if you want to
 // manually orient your app
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Set up TextField
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 26);
 format.color = 0xfffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.background = true;
 tfInfo.backgroundColor = 0x7AB900;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Set up Button
 btnDefault = new Button();
 btnDefault.width = stage.stageWidth-20;
 btnDefault.height = 44;
 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;

listinG 7-3 (continued)

Changing Positioning Based on orientation Changes ❘ 143

 addChild(btnDefault);

 try
 {
 tfInfo.text = stage.orientation;
 stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,
 orientationChangeHandler);
 }
 catch(e:Error)
 {
 print(“Stage orientation not supported.”);
 }
 }

 /**
 * Listener for orientation changes
 *
 * @param event
 *
 */
 public function orientationChangeHandler(event:StageOrientationEvent):void
 {

 if(event.afterOrientation)
 {
 if (stage.orientation == StageOrientation.DEFAULT ||
 stage.orientation == StageOrientation.UPSIDE_DOWN)
 {
 tfInfo.width = stage.stageWidth - 20;
 tfInfo.height = stage.stageHeight - 80;

 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;
 btnDefault.width = stage.stageWidth - 20;

 }
 else if (stage.orientation == StageOrientation.ROTATED_LEFT ||
 stage.orientation == StageOrientation.ROTATED_RIGHT)
 {
 tfInfo.width = stage.stageWidth - 20;
 tfInfo.height = stage.stageHeight - 80;

 btnDefault.width = stage.stageWidth - 20;
 btnDefault.x = 10;
 btnDefault.y = stage.stageHeight - 54;
 }
 else
 {
 // Do something
 }

 print(“orientation:” + stage.orientation);

continues

144 ❘ chaPter 7 ImplementIng auto orIentatIon

 }
 }

 /**
 * Prints specified param to UI
 *
 * @param obj
 *
 */
 public function print(obj:Object):void
 {
 tfInfo.text = obj as String;
 }

 }
}

Figures 7-7 and 7-8 show the app running first in default portrait mode and then shifted left. The
components are resized and positioned when they are in landscape mode.

suMMary

In this chapter, you discovered how to configure your Flash-based Android or iOS application to support
auto orientation. You learned how to listen to and create a handler for the StageOrientationEvent.
You then walked through an example that showed how to detect an orientation change. Finally, you
discovered how to reposition the UI based on the current orientation.

fiGure 7-7 fiGure 7-8

listinG 7-3 (continued)

geolocation aPi

What’s in this chaPter?

Working with the Geolocation class➤➤

Enabling GPS support on Android devices➤➤

Getting speed and altitude info from the Geolocation class➤➤

Where do you want to go today? may have been an old Microsoft advertising campaign, but
with access to the GPS location services of Android and iPhone, you can build apps with a
slightly different slogan: Go where you want, but we can guide you every step of the way.

AIR for Android and Packager for iPhone provide access to mobile location services through
two classes: Geolocation and GeolocationEvent. This chapter shows you how to work with
these two classes to make your apps location aware. It highlights four sample apps that utilize
geolocation:

Geolocate➤➤ — A simple raw display of location data

Poorman Compass➤➤ — A simple compass app

Speedometer➤➤ — A simple speedometer app

FindMeAPizza➤➤ — An app that fi nds the nearest pizza shop

GettinG Geolocation Data

You can use a combination of the Geolocation and GeolocationEvent classes to retrieve
geolocation data into your app. The Geolocation class is the controller that dispatches events
triggered by the Android location sensor. Table 8-1 displays the properties, methods, and
events of Geolocation.

8

146 ❘ chaPter 8 geolocatIon apI

table 8-1: Geolocation Members

tyPe naMe DescriPtion

Property isSupported:Boolean (static) Indicates whether the device sup-
ports geolocation services

Property muted:Boolean Specifies whether the user has
given permission to access geoloca-
tion information in the app

Methods setRequestedUpdateInterval(interval) Sets the time interval for updates
(milliseconds)

Event StatusEvent.Status Dispatched when the user
changes the access permission to
geolocation

Event GeolocationEvent.Update Dispatched when the location sensor
updates the app

However, because your app may or may not be running on a mobile device that doesn’t have built-
in GPS, you first need to check to see whether a geolocation sensor is available using the static
Geolocation method isSupported(), which returns a Boolean value indicating support.

After you establish the fact that geolocation services are available, you can instantiate a
Geolocation object and configure it for use. A typical scenario looks something like this:

if (Geolocation.isSupported)
{
 var geo:Geolocation = new Geolocation();
 geo.setRequestedUpdateInterval(200);
 geo.addEventListener(GeolocationEvent.UPDATE, geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);
}
else
{
 Trace(“Geolocation not available.);
}

The setRequestedUpdateInterval() method sets up a requested time interval (in milliseconds) in
which to receive location updates. However, note the usage of the word requested. The actual time
may vary, because the OS and location sensor ultimately are responsible for determining the interval.

Depending on the OS, the default interval will be around 100 ms when working with geolocation
services. Therefore, you don’t have to specifically call the setRequestedUpdateInterval() method
to get Geolocation to provide updates.

The setRequestedUpdateInterval() method can be helpful for conserving battery power, partic-
ularly if your app doesn’t need constant real-time updates. So, if you would like to request an update
only every one second instead of every tenth of a second, you’d be making 90 percent fewer calls.

enabling gPs support for android ❘ 147

Next, a handler for the GeolocationEvent.UPDATE event is assigned with addEventListener().
The update event is dispatched each time the location sensor provides an update based on the
requested or OS-determined time interval or whenever the location sensor updates following a
device coming back from sleep or from being out of GPS range.

When the update event is dispatched, the GeolocationEvent object returns the geolocation infor-
mation shown in Table 8-2. (Support for GeolocationEvent depends on the device.)

table 8-2: GeolocationEvent Properties

naMe DescriPtion

altitude Altitude (meters) .

heading Direction of movement in degrees (0–359) from north pole (north = 0) .

horizontalAccuracy Horizontal accuracy (meters) .

latitude Latitude in degrees between 90 and –90 . Positive latitude is north,
whereas negative latitude is south .

longitude Longitude in degrees between 180 and –180 . Positive longitude is east,
whereas negative longitude is west .

speed Current speed (meters per second) .

timestamp Amount of time (milliseconds) between the current event and the initial-
ization of the Geolocation instance .

verticalAccuracy Vertical accuracy (meters) .

A final event that you need to listen for is a change in the geolocation’s status. The status event is
dispatched whenever the user changes access permissions to the geolocation sensor. You can use this
event in combination with the muted property to determine whether you have access to the geoloca-
tion sensor.

enablinG GPs suPPort for anDroiD

To enable Geolocation services in your Android app, the application descriptor file of your app
needs to specify permission to use GPS services. You give permission with the android.permission
.ACCESS_FINE_LOCATION parameter inside of the Android manifest section:

<android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />
]]>
 </data>

148 ❘ chaPter 8 geolocatIon apI

 </manifest>
 </manifestAdditions>
 </android>

Without this explicit permission, your app will not have access to geolocation data.

creatinG a basic Geolocation aPPlication

To demonstrate how this all works, I lead you through the process of building an app called
Geolocate that simply accesses geolocation services on the Android and iPhone and periodically
returns current data to the app. The app then logs the incoming data to the UI.

Before diving into the code, here’s how to set up the project:

 1 . Within the target directory, create a new Flash document using the desired template and
name it Geolocate.fla.

 2 . Set the background color of the stage to black (#000000). (I use white text on a black
background.)

 3 . In the Properties panel, enter Geolocate as the document class, and click the pencil button to
edit the class definition in your preferred editor.

coding the Document class
In defining the Geolocate class, you begin by setting up class properties. In this case, you need to
define Geolocation and TextField variables. The app uses the TextField variables to display the
geolocation information it receives from the update event:

private var geo:Geolocation;

private var tfInfo:TextField;

Code snippet Geolocate.as

Geolocate’s constructor instantiates the tfInfo TextField, adds it to the display list, and sets up the
UI. It then tests Geolocation.isSupported to see whether location services are available. If they are
available, the Geolocation object is created and assigned an update event handler. Here’s the code:

public function Geolocate()
{

 // Set up the stage.
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Create TextField.
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 18);
 format.color = 0xffffff;
 tfInfo.defaultTextFormat = format;

Creating a Basic geolocation application ❘ 149

 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 20;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Is geolocation supported?
 if (Geolocation.isSupported)
 {
 // If so, set it up.
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(500);
 geo.addEventListener(GeolocationEvent.UPDATE, geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);

 }
 // If not, let the user know.
 else
 {
 tfInfo.text = “No geolocation services available.”;
 }
}

Code snippet Geolocate.as

You are now ready to set up the listener method for the update event. This Geolocate app provides
only a raw data feed of the information received from the location sensor; just turn it around and
display it on the screen using tfInfo:

private function geolocationUpdateHandler(event:GeolocationEvent):void
{
 tfInfo.text = “Raw Geolocation Data:\n”;
 tfInfo.appendText(“Latitude:” + Math.round(event.latitude).toString() +
 “°\n”);
 tfInfo.appendText(“Longitude:” + Math.round(event.longitude).toString() +
 “°\n”);
 tfInfo.appendText(“Altitude:” + Math.round(event.altitude).toString() +
 “ m\n”);
 tfInfo.appendText(“Speed:” + Math.round(event.speed).toString() + “
 m/s\n”);
 tfInfo.appendText(“Horizontal Accuracy:” +
 Math.round(event.horizontalAccuracy).toString() + “ m\n”);
 tfInfo.appendText(“Vertical Accuracy:” +
 Math.round(event.verticalAccuracy).toString() + “ m\n”);
 tfInfo.appendText(“Heading:” + Math.round(event.heading).toString() +
 “°”);
}

Code snippet Geolocate.as]

For this demo, you round the numbers received to make them easier to read.

150 ❘ chaPter 8 geolocatIon apI

Also watch for status changes, and display appropriate user feedback if access is denied:

 private function geolocationStatusHandler(event:StatusEvent):void
 {
 // If the user is not allowing updates, then display
 if (geo.muted)
 tfInfo.text = “No geolocation services available.”;
 }

Listing 8-1 shows the complete source code for the Geolocate.as document class.

listinG 8-1: geolocate.as

package
{

 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.GeolocationEvent;
 import flash.events.StatusEvent;
 import flash.sensors.Geolocation;
 import flash.text.TextField;
 import flash.text.TextFormat;

 /**
 * Document class for Geolocate application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class Geolocate extends Sprite
 {

 // Geolocation
 private var geo:Geolocation;

 // TextField
 private var tfInfo:TextField;

 /**
 * Constructor
 *
 */
 public function Geolocate()
 {

 // Set up the stage.
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Create TextField.
 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 18);

Creating a Basic geolocation application ❘ 151

 format.color = 0xffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 20;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Is geolocation supported?
 if (Geolocation.isSupported)
 {
 // If so, set it up.
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(500);
 geo.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS,
geolocationStatusHandler);
 }
 // If not, let the user know.
 else
 {
 tfInfo.text = “No geolocation services available.”;
 }
 }

 /**
 * Called each time the geolocation services update app
 *
 * @param event
 *
 */
 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {
 tfInfo.text = “Raw Geolocation Data:\n”;
 tfInfo.appendText(“Latitude:” +
Math.round(event.latitude).toString() +
 “°\n”);
 tfInfo.appendText(“Longitude:” +
Math.round(event.longitude).toString() +
 “°\n”);
 tfInfo.appendText(“Altitude:” +
Math.round(event.altitude).toString() +
 “ m\n”);
 tfInfo.appendText(“Speed:” + Math.round(event.speed).toString() +
 “ m/s\n”);
 tfInfo.appendText(“Horizontal Accuracy:” +
 Math.round(event.horizontalAccuracy).toString() + “ m\n”);
 tfInfo.appendText(“Vertical Accuracy:” +
 Math.round(event.verticalAccuracy).toString() + “ m\n”);
 tfInfo.appendText(“Heading:” +

continues

152 ❘ chaPter 8 geolocatIon apI

Math.round(event.heading).toString() + “°”);
 }

 /**
 * Called each time the status changes
 *
 * @param event
 *
 */
 private function geolocationStatusHandler(event:StatusEvent):void
 {
 // If the user is not allowing updates, then display
 if (geo.muted)
 tfInfo.text = “No geolocation services available.”;
 }

 }

}

testing and running the app
Going back to the .fla document, you can test this app on your computer before installing it on
your Android device by using the Debug feature in Flash CS5. As you would expect, however, AIR’s
debugger tool fails the Geolocation.isSupported test, as shown in Figure 8-1.

After publishing the Flash project and installing the app onto your device, you are ready to try it.
Figure 8-2 shows the app running on iPhone.

fiGure 8-1 fiGure 8-2

listinG 8-1 (continued)

Creating a Compass app ❘ 153

If you’re testing your Android app using the SDK’s Android emulator, you can simulate geographical
location. For details, go to http://developer.android.com/guide/developing/tools/emulator
.html#geo.

creatinG a coMPass aPP

Although Geolocate displays raw geolocation data on the screen, you can use the heading data
from the location sensor to build a compass. The Android Market has plenty of compass apps
already and iPhone comes with one included with the OS, but here you learn how to build a “poor
man’s compass,” telling the user the general direction in which he is pointed: north, south, east, or
west. This app displays one of four bitmap images that offer directional information to the user.

To begin, you set up the project by doing the following:

 1 . Within the target directory, create a new Flash document using the desired template and
name it PoorManCompass.fla.

 2 . In the Properties panel, enter Compass as the document class, and click the pencil button to
edit the class definition in your preferred editor.

coding the Document class
Inside the Compass class, begin by defining several class properties. In addition to a Geolocation
variable, you need to define four image classes and bitmap variables:

 // Geolocation
 private var geo:Geolocation;

 // External images
 [Embed(source=”north.jpg”)]
 private var NorthImage:Class;

 [Embed(source=”south.jpg”)]
 private var SouthImage:Class;

 [Embed(source=”east.jpg”)]
 private var EastImage:Class;

 [Embed(source=”west.jpg”)]
 private var WestImage:Class;

 // Bitmaps for each direction
 private var north:Bitmap;
 private var south:Bitmap;
 private var east:Bitmap;
 private var west:Bitmap;

Code snippet Compass.as

You use the [Embed] tag to embed the four .jpg images into the app and associate it with a vari-
able. As discussed in Chapter 3, the [Embed] metadata tag requires the Flex SDK. As a result, when

http://developer.android.com/guide/developing/tools/emulator.html#geo

154 ❘ chaPter 8 geolocatIon apI

you first publish the app, Flash CS5 prompts you for the Flex SDK path to the Library path of
your project. (If you have Flex installed on your computer, simply provide your existing Flex SDK
directory. Or, if you don’t have the Flex SDK, it’s a free download at www.adobe.com/cfusion/
entitlement/index.cfm?e=flex4sdk

You then associate these image files with the Bitmap variables in the constructor.

You use the constructor to set up the stage and geolocation services as well as create the bitmaps
that the app will use. Here’s the code:

public function Compass()
{

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(200);
 geo.addEventListener(GeolocationEvent.UPDATE, geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);

 // Create bitmaps.
 north = new NorthImage();
 north.smoothing = true;
 north.visible = false;
 addChild(north);

 south = new SouthImage();
 south.smoothing = true;
 south.visible = false;
 addChild(south);

 east = new EastImage();
 east.smoothing = true;
 east.visible = false;
 addChild(east);

 west = new WestImage();
 west.smoothing = true;
 west.visible = false;
 addChild(west);

 }
 else
 {
 noSupportNotify();
 }

}

Code snippet Compass.as

http://www.adobe.com/cfusion/entitlement/index.cfm?e=flex4sdk

Creating a Compass app ❘ 155

If geolocation services are supported, the geolocation instance is instantiated and set up. The
four bitmapped images are created and added to the stage. But the visible property of each is
set to false initially. If geolocation services are not available, the noSupportNotify() method
is called, which informs the user that the location sensor is not available. This private method is
defined as follows:

private function noSupportNotify():void
{
 var tfInfo:TextField = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 22);
 format.color = 0x000000;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = false;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 20;
 tfInfo.width = stage.stageWidth - 20;
 tfInfo.text = “No geolocation services available.”;
 addChild(tfInfo);
}

Code snippet Compass.as

The heart of the app is geolocationUpdateHandler(). The heading property will be evaluated to
determine which bitmap to display. Here’s the logic for the simplified compass. If the heading is:

Above 316 degrees or less than 45, display the north image➤➤

Between 46 and 135, display the east image➤➤

Between 136 and 225, display the south image➤➤

Between 226 and 315, display the west image➤➤

Here’s the code:

private function geolocationUpdateHandler(event:GeolocationEvent):void
{
 var h:Number = event.heading;

 if ((h > 316) || (h < 45))
 updateUI(north)
 else if ((h > 46) && (h < 135))
 updateUI(east)
 else if ((h > 136) && (h < 225))
 updateUI(south)
 else if ((h > 226) && (h < 315))
 updateUI(west)

}

Code snippet Compass.as

156 ❘ chaPter 8 geolocatIon apI

The updateUI() utility function toggles the visibility of the images based on the incoming parameter:

private function updateUI(bitmap:Bitmap):void
{
 north.visible = (north == bitmap);
 south.visible = (south == bitmap);
 east.visible = (east == bitmap);
 west.visible = (west == bitmap);
}

Code snippet Compass.as

Listing 8-2 shows the complete source code for the Compass.as document class.

listinG 8-2: Compass.as

package
{
 import flash.display.Bitmap;
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.display.MovieClip;
 import flash.events.StatusEvent;
 import flash.events.GeolocationEvent;
 import flash.sensors.Geolocation;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;

 /**
 * Document class for PoorManCompass application
 * Sample code for Professional Flash Mobile Development *
 * @author Rich Wagner
 *
 */
 public class Compass extends MovieClip
 {
 // Geolocation
 private var geo:Geolocation;

 // External images
 [Embed(source=”north.jpg”)]
 private var NorthImage:Class;

 [Embed(source=”south.jpg”)]
 private var SouthImage:Class;

 [Embed(source=”east.jpg”)]
 private var EastImage:Class;

 [Embed(source=”west.jpg”)]
 private var WestImage:Class;

 // Bitmaps for each direction

Creating a Compass app ❘ 157

 private var north:Bitmap;
 private var south:Bitmap;
 private var east:Bitmap;
 private var west:Bitmap;

 /**
 * Constructor
 *
 */
 public function Compass()
 {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(200);
 geo.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS,
geolocationStatusHandler);

 // Create bitmaps.
 north = new NorthImage();
 north.smoothing = true;
 north.visible = false;
 addChild(north);

 south = new SouthImage();
 south.smoothing = true;
 south.visible = false;
 addChild(south);

 east = new EastImage();
 east.smoothing = true;
 east.visible = false;
 addChild(east);

 west = new WestImage();
 west.smoothing = true;
 west.visible = false;
 addChild(west);

 }
 else
 {
 noSupportNotify();
 }

 }

 /**

continues

158 ❘ chaPter 8 geolocatIon apI

 * Toggles visibility of bitmaps to display current direction
 *
 * @param bitmap
 *
 */
 private function updateUI(bitmap:Bitmap):void
 {
 north.visible = (north == bitmap);
 south.visible = (south == bitmap);
 east.visible = (east == bitmap);
 west.visible = (west == bitmap);
 }

 /**
 * Called each time the geolocation service updates app
 *
 * @param event
 *
 */
 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {
 var h:Number = event.heading;

 if ((h > 316) || (h < 45))
 updateUI(north)
 else if ((h > 46) && (h < 135))
 updateUI(east)
 else if ((h > 136) && (h < 225))
 updateUI(south)
 else if ((h > 226) && (h < 315))
 updateUI(west)

 }

 /**
 * Notifies the user that no service is available due to lack
 * of geo-awareness of device
 *
 */
 private function noSupportNotify():void
 {
 var tfInfo:TextField = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 22);
 format.color = 0x000000;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = false;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 20;

listinG 8-2 (continued)

Creating a Compass app ❘ 159

 tfInfo.width = stage.stageWidth - 20;
 tfInfo.text = “No geolocation services available.”;
 addChild(tfInfo);
 }

 /**
 * Called each time the status changes
 *
 * @param event
 *
 */
 private function geolocationStatusHandler(event:StatusEvent):void
 {
 // If the user is not allowing updates, then display
 if (geo.muted)
 noSupportNoify();
 }

 }
}

running the app
After you publish the project and install the app onto the device, you can begin to use it (see Figure 8-3).

Figure 8-4 shows the iPhone pointing north.

Figure 8-5 shows the iPhone pointing east.

fiGure 8-3 fiGure 8-4 fiGure 8-5

160 ❘ chaPter 8 geolocatIon apI

creatinG a sPeeDoMeter anD altiMeter

Another popular use case for geolocation services is tracking real-time speed or altitude. This section
covers how to create a simple speedometer and altimeter app that displays the current speed and alti-
tude. However, to give the app a little more pizzazz, you put an automobile dash background image
behind the text and use a special digital-looking font that resembles an LCD readout. Finally, you set
this app only in Landscape mode, so you need to adjust the graphics and app orientation accordingly.

I am using a background image I downloaded from stock.xchng (www.sxc
.hu) and modifi ed in Photoshop to be sized 320×480. I also downloaded the
Digital-7 font from www.dafont.com/. Figure 8-6 shows the landscape-oriented
background to be used in the app.

You begin by creating a new Flash document
using the AIR for Android or iPhone template
and naming it Speedometer.fl a.

embedding a font in your app
Before continuing with coding the document
class, you need to embed the special font to use
for displaying the speed and altitude. You can
do that inside the Speedometer.fla by per-
forming the following steps:

 1 . In the Library panel, click the top-right
menu and choose the New Font item.

The Font Embedding dialog box is displayed, as shown in Figure 8-7.

fiGure 8-7

fiGure 8-6

http://www.sxc.hu
http://www.sxc.hu
http://www.dafont.com/

Creating a speedometer and altimeter ❘ 161

 2 . Click the + button to add a new font.

A new font is added to the font list.

 3 . Enter a name for the font.

I named mine Digital7.

 4 . Select the desired font from the Family combo box.

I am using Digital 7 font, which is available at www.dafont.com/digital-7.font.

 5 . Select the font style from the Style combo box.

 6 . Select the range of characters you’ll need for use in your app by checking the appropriate
check box(s) in the Character Ranges list box.

Select only the range of characters you’ll need to minimize the size that the embedded font
will take. I will be displaying only numbers, so I check only the Numerals check box.

 7 . Click the ActionScript tab.

 8 . Check the Export for ActionScript check box.

The Export in Frame 1 check box will automatically be checked, and the Class and Base
class will be populated.

 9 . Click OK.

The font is embedded into the .fla and can be utilized in ActionScript code.

coding the Document class
With the embedded font ready for use, you can continue by creating the document class. To do so,
you enter Speedometer as the document class in the Properties panel and click the pencil button to
edit the class definition in your preferred editor.

You need to define a few variables at the class level: Geolocation, two TextField instances, and a
reference to the background image you are using:

// Geolocation
private var geo:Geolocation;

// Speed text
private var tfSpeed:TextField;
private var tfAlt:TextField;

// Background image
[Embed(source=”bg.jpg”)]
private var BgImage:Class;

Code snippet Speedometer.as

http://www.dafont.com/digital-7.font

162 ❘ chaPter 8 geolocatIon apI

The constructor allows you to perform a variety of tasks to set up the app UI and geolocation ser-
vices. First, you prepare the stage and bitmap background:

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Add a background.
 var bg:Bitmap = new BgImage();
 bg.smoothing = true;
 addChild(bg);

Code snippet Speedometer.as

Four TextField objects are created and configured — tfSpeed and tfAlt are updated to show
the current data, whereas tfSpeedLabel and tfAltLabel display unit measurements for these
other fields. All four are assigned the Digital7 font. The x and y coordinates of the four objects are
designed to fit exactly into the white boxes of the background image. Here’s the code:

 // Digital7 font
 var digital7Font:Font = new Digital7();

 var format:TextFormat = new TextFormat();
 format.color = 0x000000;
 format.align = “right”;
 format.font = digital7Font.fontName;
 format.size = 35;

 // Create TextFields
 tfSpeed = new TextField();
 tfSpeed.defaultTextFormat = format;
 tfSpeed.selectable = false;
 tfSpeed.antiAliasType = AntiAliasType.ADVANCED;
 tfSpeed.x = 309;
 tfSpeed.y = 182;
 tfSpeed.height = 42;
 tfSpeed.width = 60;
 tfSpeed.text = “25”;
 tfSpeed.embedFonts = true;
 addChild(tfSpeed);

 tfAlt = new TextField();
 tfAlt.defaultTextFormat = format;
 tfAlt.selectable = false;
 tfAlt.antiAliasType = AntiAliasType.ADVANCED;
 tfAlt.x = 89;
 tfAlt.y = 179;
 tfAlt.height = 42;
 tfAlt.width = 66;
 tfAlt.text = “3419”;
 tfAlt.embedFonts = true;
 addChild(tfAlt);

 var format2:TextFormat = new TextFormat();
 format2.color = 0x000000;
 format2.align = “left”;

Creating a speedometer and altimeter ❘ 163

 format2.font = digital7Font.fontName;
 format2.size = 12;

 var tfAltLabel:TextField = new TextField();
 tfAltLabel.defaultTextFormat = format2;
 tfAltLabel.selectable = false;
 tfAltLabel.antiAliasType = AntiAliasType.ADVANCED;
 tfAltLabel.x = 156;
 tfAltLabel.y = 185;
 tfAltLabel.height = 42;
 tfAltLabel.width = 67;
 tfAltLabel.text = “m.”;
 tfAltLabel.embedFonts = true;
 addChild(tfAltLabel);

 var tfSpeedLabel:TextField = new TextField();
 tfSpeedLabel.defaultTextFormat = format2;
 tfSpeedLabel.selectable = false;
 tfSpeedLabel.antiAliasType = AntiAliasType.ADVANCED;
 tfSpeedLabel.x = 369;
 tfSpeedLabel.y = 187;
 tfSpeedLabel.height = 42;
 tfSpeedLabel.width = 63;
 tfSpeedLabel.text = “mph”;
 tfSpeedLabel.embedFonts = true;
 addChild(tfSpeedLabel);

Code snippet Speedometer.as

As should be familiar by now, you configure the geolocation services in the constructor after check-
ing to ensure that the location sensor is available:

 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(300);
 geo.addEventListener(GeolocationEvent.UPDATE, geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);
 }
 else
 {
 tfSpeed.text = “N/A”;
 tfAlt.text = “N/A”;
 }

}

Code snippet Speedometer.as

The geolocationUpdateHandler() method is the listener for update events. When triggered, it
assigns the current speed and altitude to the tfSpeed and tfAlt text fields, respectively. However,
before displaying the speed, you need to convert the speed from meters per second to miles per hour.

164 ❘ chaPter 8 geolocatIon apI

You do that by taking the event.speed property value and multiplying by the constant value of
2.23693629. Here’s the code:

 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {

 // The speed is returned at meters per second multiplied by
 // a constant to give miles per hour.
 var speed:Number = event.speed * 2.23693629;
 // Altitude
 var alt:Number = event.altitude;

 tfSpeed.text = Math.round(speed).toString();
 tfAlt.text = Math.round(alt).toString();

 }

Code snippet Speedometer.as

Listing 8-3 shows the complete source code for the Speedometer document class.

listinG 8-3: speedometer.as

package
{
 import flash.display.Bitmap;
 import flash.display.MovieClip;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.GeolocationEvent;
 import flash.sensors.Geolocation;
 import flash.text.AntiAliasType;
 import flash.text.Font;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.text.engine.FontWeight;
 import flash.events.StatusEvent;

 /**
 * Document class for Speedometer application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class Speedometer extends flash.display.MovieClip {
 // Geolocation
 private var geo:Geolocation;

 // Speed text
 private var tfSpeed:TextField;

Creating a speedometer and altimeter ❘ 165

 private var tfAlt:TextField;

 // Background image
 [Embed(source=”bg.jpg”)]
 private var BgImage:Class;

 [Embed(source=’digital-7.ttf’, fontName=’DigitalSeven’,
fontWeight=”normal”, advancedAntiAliasing=”true”, mimeType=”application/x-
font”)]
 private var digital7:Class;

 /**
 * Constructor
 *
 */
 public function Speedometer()
 {
 Font.registerFont(digital7);

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Digital7 font
 var digital7Font:Font = new Digital7();

 // Add background
 var bg:Bitmap = new BgImage();
 bg.smoothing = true;
 addChild(bg);

 var format:TextFormat = new TextFormat();
 format.color = 0x000000;
 format.align = “right”;
 format.font = digital7Font.fontName;
 format.size = 35;

 // Create TextFields
 tfSpeed = new TextField();
 tfSpeed.defaultTextFormat = format;
 tfSpeed.selectable = false;
 tfSpeed.antiAliasType = AntiAliasType.ADVANCED;
 tfSpeed.x = 520;
 tfSpeed.y = 290;
 tfSpeed.height = 42;
 tfSpeed.width = 60;
 tfSpeed.text = “25”;
 tfSpeed.embedFonts = true;
 addChild(tfSpeed);

 tfAlt = new TextField();
 tfAlt.defaultTextFormat = format;
 tfAlt.selectable = false;
 tfAlt.antiAliasType = AntiAliasType.ADVANCED;

continues

166 ❘ chaPter 8 geolocatIon apI

 tfAlt.x = 185;
 tfAlt.y = 290;
 tfAlt.height = 42;
 tfAlt.width = 66;
 tfAlt.text = “3419”;
 tfAlt.embedFonts = true;
 addChild(tfAlt);

 var format2:TextFormat = new TextFormat();
 format2.color = 0x000000;
 format2.align = “left”;
 format2.font = digital7Font.fontName;
 format2.size = 12;

 var tfAltLabel:TextField = new TextField();
 tfAltLabel.defaultTextFormat = format2;
 tfAltLabel.selectable = false;
 tfAltLabel.antiAliasType = AntiAliasType.ADVANCED;
 tfAltLabel.x = 262;
 tfAltLabel.y = 287;
 tfAltLabel.height = 42;
 tfAltLabel.width = 67;
 tfAltLabel.text = “m.”;
 tfAltLabel.embedFonts = true;
 addChild(tfAltLabel);

 var tfSpeedLabel:TextField = new TextField();
 tfSpeedLabel.defaultTextFormat = format2;
 tfSpeedLabel.selectable = false;
 tfSpeedLabel.antiAliasType = AntiAliasType.ADVANCED;
 tfSpeedLabel.x = 595;
 tfSpeedLabel.y = 287;
 tfSpeedLabel.height = 42;
 tfSpeedLabel.width = 63;
 tfSpeedLabel.text = “mph”;
 tfSpeedLabel.embedFonts = true;
 addChild(tfSpeedLabel);

 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(300);
 geo.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS,
geolocationStatusHandler);
 }
 else
 {
 tfSpeed.text = “N/A”;

listinG 8-3 (continued)

Creating a speedometer and altimeter ❘ 167

 tfAlt.text = “N/A”;
 }

 }

 /**
 * Called each time the geolocation services update app
 *
 * @param event
 *
 */
 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {

 // Speed is returned at meters/second multiplied by
 // constant to give miles per hour
 var speed:Number = event.speed * 2.23693629;
 // Altitude
 var alt:Number = event.altitude;

 tfSpeed.text = Math.round(speed).toString();
 tfAlt.text = Math.round(alt).toString();

 }

 /**
 * Called each time the status changes
 *
 * @param event
 *
 */
 private function geolocationStatusHandler(event:StatusEvent):void
 {
 // If user is not allowing updates, then display
 if (geo.muted)
 {
 tfSpeed.text = “N/A”;
 tfAlt.text = “N/A”;
 }

 }

 }
}

configuring landscape orientation
As mentioned at the start of the chapter, Speedometer is designed to be a landscape-only app.
Therefore, you need to perform a few tasks to configure the app for this orientation depending on
whether you are developing for Android or iPhone.

168 ❘ chaPter 8 geolocatIon apI

landscape orientation with android

 1 . Change dimensions of Speedometer.fla — With the .fla document active, select the
Properties panel and then click the Edit button next to the Size property. In the Document
Settings dialog box, change the size to 800 px (width) and 480 px (height).

 2 . Change AIR Android settings — In the Properties panel of the .fla, click the AIR Android
Settings Edit button. Select Landscape from the Aspect Ratio combo box. Also, click the Full
screen check box, because the background image extends to the complete dimensions of the
viewport. (See Figure 8-8.)

fiGure 8-8

landscape orientation with iPhone

 1 . Change dimensions of Speedometer.fla — With the .fla document active, select the
Properties panel and then click the Edit button next to the Size property. In the Document
Settings dialog box, change the size to 480px (width) and 320px (height).

 2 . Adjust Default.png orientation — Make sure the Default.png splash screen is land-
scape oriented as well to provide a consistent orientation for the user. Figure 8-9 shows the
Speedometer splash screen.

sending geolocation to a Web service ❘ 169

 3 . Change iPhone Settings — In the Properties panel of the .fla, click the iPhone Settings Edit
button. Select Landscape from the Aspect ratio combo box. What’s more, be sure to click
the Full screen check box, because the background image extends to the complete dimensions
of the viewport.

running the app
When the Speedometer app is installed onto your Android or iPhone device, you can run it to dis-
play your current speed and altitude. Figure 8-10 displays the app when I ran it on an iPhone while
driving my car.

senDinG Geolocation to a Web service

A final geolocation use case covers how you can fetch geolocation data from the location sensor and,
rather than displaying any of it, pass that information on to a web service and retrieve location-
specific data from it.

To demonstrate, I’ll walk you through an app called FindMeAPizza. When the user clicks a button
on-screen, the app retrieves the current longitude and latitude readings from the location sensor.
This information is then passed to Yahoo Local web services to retrieve the closest pizza shop. The
user is also passed this information.

Set up the project by performing the following tasks:

 1 . Within the target directory, create a new Flash document using the desired template and
name it FindMeAPizza.fla.

fiGure 8-9 fiGure 8-10

170 ❘ chaPter 8 geolocatIon apI

 2 . Set the background color of the stage to black (#000000). (I’ll use white text on a black
background.)

 3 From the Components panel, add a Button component to the stage. Set its size to be 230 px
(width) by 44 px (height), and position it at the bottom of the stage (see Figure 8-11). Name
it btnFind in the top Name box.

fiGure 8-11

 4 . In the Properties panel, enter FindMeAPizza as the document class and click the pencil but-
ton to edit the class definition in your preferred editor.

coding the Document class
Once you’re inside the editor, you are ready to begin coding the document class. Before filling out
the constructor, add the following class properties:

// Geolocation
private var geo:Geolocation;

// TextField
private var tfInfo:TextField;

// Coordinates
private var longitude:Number;
private var latitude:Number;

Code snippet FindMeAPizza.as

sending geolocation to a Web service ❘ 171

The constructor creates a TextField instance and adds it to the stage. The Geolocation instance is
created and configured:

 public function FindMeAPizza()
 {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 20);
 format.color = 0xffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;
 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Geolocation setup
 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(5000);
 geo.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);

 // Enable the button if a location is provided.
 btnFind.addEventListener(MouseEvent.CLICK,
buttonClickHandler);
 tfInfo.text = “Click the Find button to find your nearest
pizza shop.”;
 }
 else
 {
 tfInfo.text = “Can’t find where you are. No pizza for you.”;
 }
 }

Code snippet FindMeAPizza.as

As you can see, an event handler is added to btnFind if geolocation services are available.

Inside the update handler for the Geolocation instance, you simply assign the current longitude and
latitude readings to the class properties:

private function geolocationUpdateHandler(event:GeolocationEvent):void
{
 latitude = event.latitude;
 longitude = event.longitude;
}

Code snippet FindMeAPizza.as

172 ❘ chaPter 8 geolocatIon apI

The heart of this app, however, is the click handler for btnFind, which only calls the fetch()
command to begin the fetching process from Yahoo local services:

private function buttonClickHandler(event:MouseEvent):void
{
 fetch();
}

Code snippet FindMeAPizza.as

The fetch() method prepares the URL and variables to send to Yahoo local services as a REST request:

public function fetch():void
{

 var url:String “http://local.yahooapis.com/LocalSearchService/V3/
localSearch”;
 var variables:URLVariables = new URLVariables();
 variables.appid=

“x77v8JvV34GL7auv9T_lFPBhWqJIEwk..3DpsJ3Ds0LODlQA1qdshBHMreEbYEI3y_iGUuMGBvVJr
Q”;
 variables.query=”pizza”;
 variables.latitude = latitude;
 variables.longitude = longitude;
 variables.radius = “300”;
 variables.results = “1”;
 sendData(url, variables);
}

Code snippet FindMeAPizza.as

The following variables are passed to the Yahoo web service:

The➤➤ appid is an ID that you receive from Yahoo upon registration. (Note that the appid pro-
vided previously is not usable; you need to register on your own.)

The ➤➤ query variable provides a search term for the locale-specific search, which in this case is
simply pizza.

The ➤➤ latitude and longitude variables provide the location-specific information for this query.

The ➤➤ radius tells Yahoo to search within a 300-mile radius.

The ➤➤ results variable indicates how many results you want to receive from the server. In
most cases, you want to display multiple results. But for this simple case, I am limiting the
result set to 1.

This information is passed to a sendData() method, which makes the server request:

public function sendData(url:String, vars:URLVariables):void
{
 var request:URLRequest = new URLRequest(url);
 var loader:URLLoader = new URLLoader();
 request.data = vars;
 request.method = URLRequestMethod.POST;
 loader.addEventListener(Event.COMPLETE, loaderCompleteHandler);

sending geolocation to a Web service ❘ 173

 loader.addEventListener(IOErrorEvent.IO_ERROR, iOErrorHandler);
 loader.load(request);
}

Code snippet FindMeAPizza.as

The loaderCompleteHandler() method is called when a response is received from the server. It
is responsible for processing the XML data received from the server and displaying key pizza shop
information in the tfInfo TextField. The code for the handler is provided here:

private function loaderCompleteHandler(event:Event):void
{
 // Get the response and convert it to XML.
 var response:String = event.target.data as String;
 try
 {
 var xml:XML = cleanResponse(response);
 }
 catch(error:TypeError)
 {
 writeLn(“The response data was not in valid XML format”);
 }

 // Get all <Result> children. There’s only one in this case, but
 // you could expand to handle multiple results.
 var item:XML;
 var results:XMLList = xml.descendants(“Result”);

 // If no matches, let the user know the bad news.
 if (results.length() == 0)
 {
 writeLn(“You are at least 300 miles from the nearest pizza shop.
No pizza for you. “);
 }
 // Otherwise, write out the closest match.
 else
 {
 for each(item in results)
 {
 var s:String = “Your closest pizza shop is: \n” +
 item.Title + “\n” +
 item.Address + “\n” +
 item.City + “, “ +
 item.State + “\n” +
 item.Phone;
 writeLn(s);
 }
 }

}

Code snippet FindMeAPizza.as

As you can see, the response variable receives the raw XML data, which is then cleaned up and con-
verted to an XML variable by cleanResponse(). The XML fragment is processed and displayed
on-screen.

174 ❘ chaPter 8 geolocatIon apI

The complete source code is provided in Listing 8-4.

listinG 8-4: FindMeaPizza.as

package
{
 import flash.display.SimpleButton;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.*;
 import flash.events.GeolocationEvent;
 import flash.net.*;
 import flash.net.URLVariables;
 import flash.sensors.Geolocation;
 import flash.text.TextField;
 import flash.text.TextFormat;

 /**
 * Document class for FindMeAPizza application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class FindMeAPizza extends Sprite
 {

 // Geolocation
 private var geo:Geolocation;

 // TextField
 private var tfInfo:TextField;

 // Coordinates
 private var longitude:Number;
 private var latitude:Number;

 /**
 * Constructor
 *
 */
 public function FindMeAPizza()
 {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 tfInfo = new TextField();
 var format:TextFormat = new TextFormat(“Helvetica”, 20);
 format.color = 0xffffff;
 tfInfo.defaultTextFormat = format;
 tfInfo.border = true;

sending geolocation to a Web service ❘ 175

 tfInfo.wordWrap = true;
 tfInfo.multiline = true;
 tfInfo.x = 10;
 tfInfo.y = 10;
 tfInfo.height = stage.stageHeight - 80;
 tfInfo.width = stage.stageWidth - 20;
 addChild(tfInfo);

 // Geolocation setup
 if (Geolocation.isSupported)
 {
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(5000);
 geo.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdateHandler);
 geo.addEventListener(StatusEvent.STATUS, geolocationStatusHandler);

 // Enable the button if the location is provided.
 btnFind.addEventListener(MouseEvent.CLICK,
buttonClickHandler);
 tfInfo.text = “Click the Find button to find your nearest
pizza shop.”;
 }
 else
 {
 tfInfo.text = “Can’t find where you are. No pizza for you.”;
 }
 }

 /**
 * Triggers a pizza lookup
 *
 * @param event
 *
 */
 private function buttonClickHandler(event:MouseEvent):void
 {
 fetch();
 }

 /**
 * Main routine for fetching pizza data. Sets up URL params.
 *
 */
 public function fetch():void
 {

 var url:String =
“http://local.yahooapis.com/LocalSearchService/V3/localSearch”;
 var variables:URLVariables = new URLVariables();
 variables.appid=
“x77v8JvV34GL7auv9T_lFPBhWqJIEwk..3DpsJ3Ds0LODlQA1qdshBHMreEbYEI3y_iGUuMGBvVJr
Q”;

continues

176 ❘ chaPter 8 geolocatIon apI

 variables.query=”pizza”;
 variables.latitude = latitude;
 variables.longitude = longitude;
 variables.radius = “300”;
 variables.results = “1”;
 sendData(url, variables);
 }

 /**
 * Helper function that makes the URL request to Yahoo
 *
 * @param url
 * @param vars
 *
 */
 public function sendData(url:String, vars:URLVariables):void
 {
 var request:URLRequest = new URLRequest(url);
 var loader:URLLoader = new URLLoader();
 request.data = vars;
 request.method = URLRequestMethod.POST;
 loader.addEventListener(Event.COMPLETE, loaderCompleteHandler);
 loader.addEventListener(IOErrorEvent.IO_ERROR, iOErrorHandler);
 loader.load(request);
 }

 /**
 * Handler for server response
 *
 * @param event
 *
 */
 private function loaderCompleteHandler(event:Event):void
 {
 // Get the response and convert it to XML.
 var response:String = event.target.data as String;
 try
 {
 var xml:XML = cleanResponse(response);
 }
 catch(error:TypeError)
 {
 writeLn(“The response data was not in valid XML format”);
 }

 // Get all <Result> children. There’s only one in this
 // case, but you could expand to handle multiple results.
 var item:XML;
 var results:XMLList = xml.descendants(“Result”);

 // If no matches, let the user know the bad news.
 if (results.length() == 0)
 {

listinG 8-4 (continued)

sending geolocation to a Web service ❘ 177

 writeLn(“You are at least 300 miles from the nearest pizza
shop. No pizza
for you. “);
 }
 // Otherwise, write out the closest match.
 else
 {
 for each(item in results)
 {
 var s:String = “Your closest pizza shop is: \n” +
 item.Title + “\n” +
 item.Address + “\n” +
 item.City + “, “ +
 item.State + “\n” +
 item.Phone;
 writeLn(s);
 }
 }

 }

 /**
 * Handler for IO errors with server
 *
 * @param event
 *
 */
 private function iOErrorHandler(event:IOErrorEvent):void
 {
 writeLn(“Error loading URL.”);
 }

 /**
 * Called each time the geolocation service updates app
 *
 * @param event
 *
 */
 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {
 latitude = event.latitude;
 longitude = event.longitude;
 }

 /**
 * Helper utility method for writing text to the UI.
 *
 * @param s - text to write
 *
 */
 private function writeLn(s:String):void
 {
 tfInfo.text = s;

continues

178 ❘ chaPter 8 geolocatIon apI

 }

 /**
 * Strips out unneeded namespace and schema definitions
 *
 * @param response - raw XML feed
 *
 * @returns XML instance
 *
 */
 private function cleanResponse(response:String):XML
 {
 const NP1:String = ‘xmlns=”urn:yahoo:lcl”’;
 const NP2:String = ‘xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”’;
 const NP3:String = ‘xsi:schemaLocation=”urn:yahoo:lcl
http://local.yahooapis.com/LocalSearchService/V3/LocalSearchResponse.xsd”’;

 response = response.replace(NP1, ““);
 response = response.replace(NP2, ““);
 response = response.replace(NP3, ““);

 return new XML(response);

 }

 }
}

running the app
After installing the FindMeAPizza app onto your Android or
iPhone device, you can run it to display your local pizza shop
(see Figure 8-12).

suMMary

In this chapter, you discovered how to work with the geographi-
cal sensor of Android and iPhone and the geolocation API. You
looked at four sample apps, each of which uses various aspects
of geolocation services. In one of the examples, you learned
how to work with directional data to create a compass app.
Then you read about measuring speed and altitude. Finally, you
learned how to send the geolocation data to a web service to
create real-time geographical-based apps.

fiGure 8-12

listinG 8-4 (continued)

service integration Using
Url Protocols

What’s in this chaPter?

Make phone calls and send SMS messages➤➤

Send e-mails ➤➤

Use GoogleMaps in your apps ➤➤

Certainly, one of the most potentially exciting aspects of an application that is written specifi -
cally for Android or iPhone is the ability to integrate your app with mobile services, such as
phone, e-mail, and Google Maps. After all, if you can do so, you break out of the solo applica-
tion silo and extend its reach across mobile devices.

There’s two types of integration that’s possible: through AIR API and through URL proto-
cols. Using the AIR API, you can directly access Camera, Camera Roll, and Microphone for
Android devices. I’ll cover that in Chapter 10. (As of the time of writing, iOS devices do not
provide support for Camera, CameraRoll, and Microphone.)

Other Android and iOS services don’t have direct API access through AS3. As a result, you
need to use a special set of URLs to integrate with these services. I’ll cover how to do this in
this chapter.

This chapter shows you how to integrate your app with Android and iOS services using URL
protocols for the following services:

Phone➤➤

SMS ➤➤

Mail ➤➤

Google Maps ➤➤

9

180 ❘ chaPter 9 servIce IntegratIon usIng url protocols

At the same time, it demonstrates how to add an ActionScript wrapper around these protocols to
provide your own custom-made AS3 API for Android and iPhone Services.

abstractinG url Protocols

Rather than work directly with URL protocols in my application code, I decided that I’d rather
create a set of classes that can be called. What’s more, should the access method of calling these
Android services ever change, I’d have the option to alter the underlying implementation of these
classes rather than modify my application source code.

To follow along with this example, you develop the specific classes for each of the services that
you will integrate with throughout the chapter. But you begin by creating an abstract class called
MobileService that implements one static method, executeCommand(). As you can see by the code
shown in Listing 9-1, this method takes the string parameter and sends it as a URL request using
navigateToUrl(). Subclasses of MobileService can then call this method internally.

listinG 9-1: Mobileservice.as

package com.richwagner.mobileservices
{

 import flash.net.URLRequest;
 import flash.net.navigateToURL;

 /**
 * Abstract class for mobile service access
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class MobileService
 {
 /**
 * Performs the specified URL-based command.
 *
 * @param command - URL with special protocol
 *
 */
 protected static function executeCommand(command:String):void
 {
 var request:URLRequest = new URLRequest(command);
 try
 {
 navigateToURL(request);
 }
 catch (e:Error)
 {
 trace(“Error occurred!”);
 }

Making Phone Calls from Your application ❘ 181

 }

 }
}

With that groundwork out of the way, you begin with the phone dialer.

MakinG Phone calls froM your aPPlication

You can initiate a phone call from your app by using the tel: protocol. The basic URL syntax is:

tel:978-555-1212

Here’s how you’d call it ActionScript:

var request:URLRequest = new URLRequest(“tel:812-555-1212”);
navigateToURL(request);

When that code is executed in your app, the mobile OS exits your app and starts the call using the
device phone.

In addition to basic phone number support, Android and iOS provide partial support for the
RFC 2086 protocol (www.ietf.org/rfc/rfc2806.txt), which allows you to use some advanced
telephone-based URLs. The following call, for example, dials the U.S. Postal Service, pauses for
3 seconds, and then presses 2 to get a Spanish version:

tel:1–800-ASK-USPS;ppp2

The p keyword creates a one-second pause. You can stack those as needed to form multisecond
delays.

creating PhoneDialer .as
Next, you create a subclass of MobileService that adds support for phone dialing. The class, which I
am calling PhoneDialer, has a single static method called dial(). The dial() method takes a phone
number as a parameter, adds the tel: protocol to it, and then passes that onto executeCommand(). The
class code is shown in Listing 9-2.

listinG 9-2: Phonedialer.as

package com.richwagner.mobileservices
{
 /**
 * PhoneDialer
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */

continues

http://www.ietf.org/rfc/rfc2806.txt

182 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 public class PhoneDialer extends MobileService
 {
 /**
 * Calls the specified phone number via the phone
 *
 * @param phoneNumber - number to call
 *
 */
 public static function dial(phoneNumber:String):void
 {
 // In a real-world situation, you’d want to add
 // validation to the phone number
 var cmd:String = “tel:” + phoneNumber;
 executeCommand(cmd);
 }
 }
}

using PhoneDialer in an app
To demonstrate how you can add PhoneDialer in an app, I am going to create a simple app that con-
tains two UI components:

TextInput➤➤ for user entry of the phone number to call

Button➤➤ to trigger the call

setting Up Your Project

To set up your project, perform the following steps:

 1 . Within the root project directory, create a new document using the desired template, and
name it PhoneServices.fla.

 2 . Add a com.richwagner.mobileservices package to the project (or you can reference a
common library) that contains MobileService.as and PhoneDialer.as.

 3 . In the Properties panel for the .fla, enter PhoneServices as the document class, and click
the pencil button to edit the class definition in your preferred editor.

Coding the Phoneservices Class

Inside the PhoneServices document class, begin by adding two properties:

public var tiNumber:TextInput;
public var btnPhone:Button;

Code snippet PhoneServices.as

These will serve as the basic UI for my app.

listinG 9-2 (continued)

Making Phone Calls from Your application ❘ 183

Inside the constructor, instantiate the two UI components, two text formatters, and assign the text
formatters to the components using setStyle():

// Formatters
var format:TextFormat = new TextFormat(“Helvetica”, 44);
format.color = 0xfffffff;

var btnFormat:TextFormat = new TextFormat(“Helvetica”, 32);
btnFormat.color = 0x000000;
btnFormat.bold = true;

// Create TextInput
tiNumber = new TextInput();
tiNumber.textField.background = true;
tiNumber.textField.backgroundColor = 0x7AB900;
tiNumber.x = 10;
tiNumber.y = 10;
tiNumber.height = 60;
tiNumber.textField.multiline = true;
tiNumber.textField.wordWrap = true;
tiNumber.width = stage.stageWidth - 20;
tiNumber.text = “978-555-1212
tiNumber.setStyle(“textFormat”, format);
addChild(tiNumber);

// Create Call button
btnPhone = new Button();
btnPhone.width = stage.stageWidth-20;
btnPhone.height = 44;
btnPhone.x = 10;
btnPhone.alpha = 0.9;
btnPhone.label = “Call”;
btnPhone.setStyle(“textFormat”, btnFormat);
btnPhone.y = stage.stageHeight - 54;
btnPhone.addEventListener(MouseEvent.CLICK, btnPhoneMouseClickHandler);
addChild(btnPhone);

Code snippet PhoneServices.as

Although the focus of this app is on phone dialing, I want to make sure the app is easy to use.
Specifically, I want to make it easy for a user to close out the keyboard when he is finished entering
the phone number. To that end, you add a click listener for the stage, prompting a change in focus
from the TextInput to the button, thus hiding the on-screen keyboard:

stage.addEventListener(MouseEvent.CLICK, stageClickHandler);

code snippet PhoneServices.as

You also need to add a handler for the TextInput:

tiNumber.addEventListener(MouseEvent.CLICK, tiNumberClickHandler);

code snippet PhoneServices.as

184 ❘ chaPter 9 servIce IntegratIon usIng url protocols

There are three event handlers to create. Begin with the stageClickHandler(), which simply sets
the focus to btnPhone:

private function stageClickHandler(event:Event):void
{
 btnPhone.setFocus();
}

Code snippet PhoneServices.as

The click handler for the TextInput stops the click event from rippling down to the stage:

private function tiNumberClickHandler(event:Event):void
{
 event.stopPropagation();
 }

code snippet PhoneServices.as

Add the code that you and I are most concerned with here: the handler for the Dial button. When
clicked, it calls the PhoneDialer.dial() command using the text of the TextInput:

private function btnPhoneMouseClickHandler(event:Event):void
{
 event.stopPropagation();
 PhoneDialer.dial(tiNumber.text);
}

code snippet PhoneServices.as

The full source code for PhoneServices.as is shown in Listing 9-3.

listinG 9-3: Phoneservices.as

package
{
 import com.richwagner.mobileservices.PhoneDialer;

 import fl.controls.Button;
 import fl.controls.Label;
 import fl.controls.LabelButton;
 import fl.controls.TextInput;

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.net.URLRequest;
 import flash.net.navigateToURL;
 import flash.text.*;

 /**
 * Document class for PhoneServices application.
 * Sample code for Professional Flash Mobile Development
 *

Making Phone Calls from Your application ❘ 185

 * @author Rich Wagner
 *
 */
 public class PhoneServices extends Sprite
 {

 public var tiNumber:TextInput;
 public var btnPhone:Button;
 public var btnSMS:Button;

 /**
 * Constructor
 *
 */
 public function PhoneServices()
 {

 // Formatters
 var format:TextFormat = new TextFormat(“Helvetica”, 44);
 format.color = 0xfffffff;

 var btnFormat:TextFormat = new TextFormat(“Helvetica”, 32);
 btnFormat.color = 0x000000;
 btnFormat.bold = true;

 // Create TextInput
 tiNumber = new TextInput();
 tiNumber.textField.background = true;
 tiNumber.textField.backgroundColor = 0x7AB900;
 tiNumber.x = 10;
 tiNumber.y = 10;
 tiNumber.height = 60;
 tiNumber.textField.multiline = true;
 tiNumber.textField.wordWrap = true;
 tiNumber.width = stage.stageWidth - 20;
 tiNumber.text = “978-270-1889”;
 tiNumber.setStyle(“textFormat”, format);
 tiNumber.addEventListener(MouseEvent.CLICK, tiNumberClickHandler);
 addChild(tiNumber);

 // Create Service buttons
 btnPhone = new Button();
 btnPhone.width = stage.stageWidth-20;
 btnPhone.height = 44;
 btnPhone.x = 10;
 btnPhone.alpha = 0.9;
 btnPhone.label = “Call”;
 btnPhone.setStyle(“textFormat”, btnFormat);
 btnPhone.y = stage.stageHeight - 54;
 btnPhone.addEventListener(MouseEvent.CLICK, btnPhoneMouseClickHandler);
 addChild(btnPhone);

 // Stage event handler

continues

186 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 stage.addEventListener(MouseEvent.CLICK, stageClickHandler);

 }

 /**
 * Dials phone
 *
 * @param event
 *
 */
 private function btnPhoneMouseClickHandler(event:Event):void
 {
 event.stopPropagation();
 PhoneDialer.dial(tiNumber.text);
 }

 /**
 * Click handler for Text Input
 *
 * @param event
 *
 */
 private function tiNumberClickHandler(event:Event):void
 {
 event.stopPropagation();
 }

 /**
 * Click handler for stage
 *
 * @param event
 *
 */
 private function stageClickHandler(event:Event):void
 {
 btnPhone.setFocus();
 }

 }
}

If you get compiler errors saying that the TextInput or Button classes cannot be
found, go back to the Flash document and drop a TextInput or Button instance
from the Components panel into your library. (Or you can drop them both onto
your document and then delete them — they’ll stay added to your library.)

listinG 9-3 (continued)

sending sMs Messages ❘ 187

android: adding Permissions

You’re done with the AS3 source code, but before you publish for Android, you need to enable your
app for accessing the Internet and using the tel: protocol. To do so, add the android.permission
.INTERNET parameter to your application descriptor file (PhoneServices-app.xml):

 <android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.INTERNET”/>
]]>
 </data>
 </manifest>
 </manifestAdditions>
 </android>

Code snippet PhoneServices-app.xml

Figure 9-1 shows the app being run on my Nexus One. When the Call button is clicked, the Phone
app is activated, as shown in Figure 9-2.

Figure 9-3 shows the app being run on my iPhone. When the Call button is clicked, the iPhone
phone is activated, as shown in Figure 9-4.

senDinG sMs MessaGes

Similar to phone calls, you can send SMS messages using the sms: protocol. The following code
launches your mobile phone’s SMS app, addressing the text to 978-555-1211:

sms:978-545-1211

fiGure 9-1 fiGure 9-2

188 ❘ chaPter 9 servIce IntegratIon usIng url protocols

Inside the SMS app, the user is prompted to enter the actual message using the keyboard and send it
when finished.

You can also launch the SMS app without needing a specific number to text by using a blank sms: call:

sms:

There are a couple of limitations to SMS support. First, you cannot send an SMS directly from
within your app. You can only initiate the process in your app, which you then hand off to an SMS
app. Second, you can’t supply the message, only the number the user wants to text.

creating sMs .as
This example creates a MobileService subclass that supports SMS, which essentially emulates the
same structure as the PhoneDialer but uses the sms: protocol:

listinG 9-4: sMs.as

package com.richwagner.mobileservices
{
 /**
 * SMS
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class SMS extends MobileService
 {
 /**
 * Opens the SMS app to a message window to the specified

fiGure 9-4fiGure 9-3

sending sMs Messages ❘ 189

 * number.
 *
 * @param phoneNumber - number to text
 *
 */
 public static function send(phoneNumber:String):void
 {
 // In a real-world situation, you’d want to add
 // validation to the phone number
 var cmd:String = “sms:” + phoneNumber;
 executeCommand(cmd);
 }
 }
}

adding sMs support to the Phoneservices app
To demonstrate SMS texts from a mobile app, you simply add SMS capabilities to the PhoneServices
app created earlier in the chapter. About the only thing you need to add to the document class is a new
button called btnSMS and have its click handler call the SMS.send() method.

The following code is added to the constructor:

 btnSMS = new Button();
 btnSMS.width = stage.stageWidth-20;
 btnSMS.height = 44;
 btnSMS.x = 10;
 btnSMS.alpha = 0.9;
 btnSMS.label = “Send SMS”;
 btnSMS.setStyle(“textFormat”, btnFormat);
 btnSMS.y = stage.stageHeight - 104;
 btnSMS.addEventListener(MouseEvent.CLICK, btnSMSMouseClickHandler);
 addChild(btnSMS);

code snippet PhoneServies.as

Next, the following event handler is added:

private function btnSMSMouseClickHandler(event:Event):void
{
 event.stopPropagation();
 SMS.send(tiNumber.text);
}

code snippet PhoneServies.as

Therefore, when the SMS button is clicked, the number the user enters in the TextField is passed to
the SMS.send() method.

running the app
When you publish the app and run it on an Android device, a new button appears, as shown in
Figure 9-5.

190 ❘ chaPter 9 servIce IntegratIon usIng url protocols

When you type in a number to text and click the SMS button, a prompt asks you whether to com-
plete the action using the Google Voice or Messaging app, as shown in Figure 9-6.

If you press Messaging, the number is added to the prompt of the Messaging app and sets the
prompt for the user to type a message (see Figure 9-7).

Or, when you recompile the app and reinstall onto your iPhone via iTunes, a new button appears,
as shown in Figure 9-8. When you type in a number to text and click the SMS button, the app
exits and the SMS app displays an open conversion window (Figure 9-9).

fiGure 9-5 fiGure 9-6

fiGure 9-7 fiGure 9-8 fiGure 9-9

sending e-mails ❘ 191

senDinG e-Mails

Your application can also initiate e-mails using the mailto: protocol. Here’s the most basic syntax:

mailto:rich@mycompany.com

When you execute this code, the Android or iPhone Mail app launches, and a new message window
is displayed. If you supplied just the recipient e-mail address, the user could then fill out the subject
and body of the message and send from that window.

As with SMS, you cannot automatically send an e-mail message directly from within your app. Instead,
the mailto: protocol always closes your app and takes the user to a new message window in Mail.

You can provide additional parameters to Mail, however. In this way, you can specify the Subject,
Cc addresses, Bcc addresses, and body of the message. In fact, you can even embed basic HTML
tags inside the body text.

Table 9-1 details the mailto: parameters available to you.

table 9-1: mailto: Protocol Parameters

ParaMeter syntax

Message recipient(s) Add a comma to separate multiple e-mail addresses

Message subject subject=Subject%20Text

Cc recipients cc=myname@mycompany.com

Bcc recipients bcc=myname@mycompany.com

Message text body=Message%20text

creating Mail .as
Before creating a sample app demonstrating the use of the mailto: protocol, I will create a
MobileService subclass called Mail that wraps the mailing functionality into an easy-to-call
abstract method. Unlike the PhoneDialer or SMS classes, the mailto: call is slightly more
involved, as shown by the Mail.as code in Listing 9-5.

listinG 9-5: Mail.as

package com.richwagner.mobileservices
{
 /**
 * Mail
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */

continues

mailto:rich@mycompany.com
mailto:myname@mycompany.com
mailto:myname@mycompany.com

192 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 public class Mail extends MobileService
 {

 public static var recipient:String = null;
 public static var ccList:String = null;
 public static var bccList:String = null;
 public static var subject:String = null;
 public static var body:String = null;

 /**
 * Opens the Mail app and provides message details based on
 * the class static properties.
 *
 */
 public static function sendMail():void
 {
 var cmd:String = “mailto:”;

 var firstParam:Boolean = false;

 if (!recipient)
 {
 trace(“Error: You need to specify one or more recipients.”);
 return;
 }

 // Add recipient list
 cmd += recipient;

 // Add subject
 if (subject)
 {
 var subjectArr:Array=subject.split(‘ ‘);
 subject = subjectArr.join(‘%20’);

 cmd+= “?subject=” + subject;
 firstParam = true;
 }

 if (ccList)
 {
 var ccListArr:Array=ccList.split(‘ ‘);
 ccList = ccListArr.join(‘%20’);

 if (!firstParam)
 cmd += “?cc=” + ccList
 else
 cmd += “&cc=” + ccList;

 firstParam = true;
 }

 if (bccList)

listinG 9-5 (continued)

sending e-mails ❘ 193

 {
 var bccListArr:Array=bccList.split(‘ ‘);
 bccList = bccListArr.join(‘%20’);

 if (!firstParam)
 cmd += “?bcc=” + bccList
 else
 cmd += “&bcc=” + bccList;

 firstParam = true;
 }

 // Add message text
 if (body)
 {

 var bodyArr:Array= body.split(‘ ‘);
 body = bodyArr.join(‘%20’);

 if (!firstParam)
 cmd += “?body=” + body
 else
 cmd += “&body=” + body;

 }

 executeCommand(cmd);

 }
}

You begin this class by defining static properties for each of the mailto: parameters. The only
required parameter is the recipient property. If that property is not present, sendMail() does not
continue. But for each of the other parameters, the method checks for them and adds them to the
command string that will be passed to the executeCommand() method.

Per HTTP conventions (you are building a URL after all), you must precede the initial parameter after
the recipient list with a ? (such as ?subject=) and precede any additional parameters with an &.

Notice, however, that preprocessing is being performed with the string values before they are added
to the command string. Before passing the string via mailto:, you need to escape encode it to get
rid of any spaces. I do the search and replace using a combo of split() and join():

var subjectArr:Array=subject.split(‘ ‘);
subject = subjectArr.join(‘%20’);

code snippet Mail.as

The mailto: protocol calls for line breaks to be supported in the body parameter by using %0A for
a line break and %0A%0A for a line break followed by a new line. Unfortunately, Android ignores the
%0A codes and puts the full string on a single line. There is a workaround for line breaks, however.
Because you can embed HTML inside the message body, you could use a
 tag for a line break.

194 ❘ chaPter 9 servIce IntegratIon usIng url protocols

sending Mail from an app
With the Mail class created, you can now use it to send mail from within an app. To demonstrate,
this example creates a simple mail app called KindaSortMail, which will contain fields for inputting
mailto: parameters and a button that calls Mail.sendMail().

For this app, you create the UI components in Flash and then code the app in the document class.

 1 . Create a new Flash document using the desired template and name it KindaSortaMail.fla.

 2 . Lay out the UI in Flash, adding Label and TextInput components for To, Cc, Bcc, and
Subject parameters. For the Message parameter, use a TextArea. For each of these text entry
components, name them tiRecipient, tiCcAddress, tiBccAddress, tiSubject, and
taMessage respectively. Next, you add a Button component and label it Send.

Figure 9-10 shows the UI in the Flash designer for my Android app, while Figure 9-11 shows
the layout for my iPhone app.

fiGure 9-10

 3 . You are now ready to write the accompanying ActionScript code that powers the app. First,
you want to link to the com.richwagner.mobileservices package or copy it into my proj-
ect so that you can access the Mail class.

 4 . In the Properties panel, enter KindaSortaMail as the document class, and click the pencil
button to edit the class definition in your preferred editor.

sending e-mails ❘ 195

fiGure 9-11

Because the UI is already created, the code needed is minimal. In fact, the only thing you need to
add is a handler for the Send button’s click event. In the constructor, place the following:

btnSend.addEventListener(MouseEvent.CLICK, sendClickHandler);

code snippet KindaSortaMail.as

The sendClickHandler() simply captures the input text from the app and passes it to the Mail
object:

 Mail.recipient = tiRecipient.text;
 Mail.subject = tiSubject.text;
 Mail.ccList = tiCcAddress.text;
 Mail.bccList = tiBccAddress.text;
 Mail.body = taMessage.text;

code snippet KindaSortaMail.as

Listing 9-6 provides the full source code.

listinG 9-6: KindasortMail.as

package
{
 import flash.display.Sprite;
 import flash.events.MouseEvent;

continues

196 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 import flash.events.Event;

 import com.richwagner.mobileservices.Mail;

 /**
 * Document class for KindaSortMail application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class KindaSortMail extends Sprite
 {
 /**
 * Constructor
 *
 */
 public function KindaSortMail()
 {
 btnSend.addEventListener(MouseEvent.CLICK, sendClickHandler);
 }

 /**
 * Handler for Send button click
 *
 * @param event
 *
 */
 private function sendClickHandler(event:Event):void
 {
 Mail.recipient = tiRecipient.text;
 Mail.subject = tiSubject.text;
 Mail.ccList = tiCcAddress.text;
 Mail.bccList = tiBccAddress.text;
 Mail.body = taMessage.text;
 Mail.sendMail();

 }

 }
}

android: adding Permissions
As with PhoneServices, you first need to enable an Android app for accessing the Internet and
using the mailto: protocol. To do so, add the android.permission.INTERNET parameter to your
application descriptor file (KindaSortaMail-app.xml):

 <android>
 <manifestAdditions>
 <manifest>

listinG 9-6 (continued)

sending e-mails ❘ 197

 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.INTERNET”/>
]]>
 </data>
 </manifest>
 </manifestAdditions>
 </android>

code snippet KindaSortaMail-app.xml

running the app
When you install and run the app on your Android device, you can enter the message information in
the text inputs (see Figure 9-12).

When you click Send, a pop-up window appears asking you whether to complete the action using
Compose or Email (see Figure 9-13).

If you choose Email, a message window is pre-populated with the parameters specified in the
KindaSortaMail app (see Figure 9-14).

Alternatively, when you install and run the app on my iPhone, you can enter the message informa-
tion in the text inputs (see Figure 9-15). When you click Send, the app closes and iPhone’s Mail app
is launched. A new message is pre-populated with the parameters specified in the KindaSortaMail
app (see Figure 9-16).

fiGure 9-12 fiGure 9-13 fiGure 9-14

198 ❘ chaPter 9 servIce IntegratIon usIng url protocols

PointinG on GooGle MaPs

Although the Maps app doesn’t have a special URL protocol, Android does optionally route any URL
requests pointing to maps.google.com to the Maps application. Therefore, by composing a URL string,
you can point to a specific place on a map or display driving directions between two places.

The map displayed may be shown in Map or Satellite view, depending on the last view the user
selected.

For example, the following are typical URLs that would be used to display a map, one by address
and one by geographical coordinates:

http://maps.google.com/maps?q=Boston,+MA
http://maps.google.com/maps?q=52.123N,2.456W

For addresses, start with the q= parameter, and then type the address as normal, substituting + (plus
signs) for blank spaces. For example:

http://maps.google.com/maps?q=108+State+Street,Boston,+MA

The label shown in the Maps app defaults to the location info provided in the URL. However, if
you’d like to supply a more descriptive label, you can add one by tagging on a label in parentheses
after the location details. For example:

http://maps.google.com/maps?q=Lapel,+IN+(My+Old+Stomping+Grounds)

To show driving directions, use the saddr= parameter to indicate the starting address and the
daddr= parameter to specify the destination address, as shown in the following example:

http://maps.google.com/maps?saddr=Princeton+MA&daddr=108+State+Street,+Boston,+MA

fiGure 9-15 fiGure 9-16

http://maps.google.com/maps?q=Boston,+MA
http://maps.google.com/maps?q=52.123N,2.456W
http://maps.google.com/maps?q=108+State+Street,Boston,+MA
http://maps.google.com/maps?q=Lapel,+IN+(My+Old+Stomping+Grounds)
http://maps.google.com/maps?saddr=Princeton+MA&daddr=108+State+Street,+Boston,+MA

Pointing on google Maps ❘ 199

Table 9-2 shows the Google Maps parameters that are supported.

table 9–2: Google Maps Parameters

ParaMeter DescriPtion

q= Basic query parameter used for normal addresses, geographical coordinates, and so on

saddr= Source address for driving directions

daddr= Destination address for driving directions

ll= Latitude and longitude points for the center point of the map

sll= Latitude and longitude points to perform a business search

spn= Approximate latitude and longitude span of the map

t= Type of map to display

z= Zoom level of the map

creating GoogleMaps .as
This section demonstrates how you can create a subclass of MobileService that provides basic
mapping support for addresses and latitude and longitude points. However, it would not take much
to enhance it to provide full support for all the Google Maps parameters.

Listing 9-7 shows the source code for the GoogleMaps class.

listinG 9-7: googleMaps.as

package com.richwagner.mobileservices
{

 /**
 * GoogleMaps
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class GoogleMaps extends MobileService
 {

 /**
 * Shows a map in Maps app based on the coordinates.
 *
 * @param longitude to display
 * @param latitude to display
 *
 */

continues

200 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 public static function pointToCoordinates(latitude:Number,
 longitude:Number):void
 {
 var cmd:String = “http://maps.google.com/maps?q=” +
 latitude.toString() + “,” + longitude.toString();
 executeCommand(cmd);
 }

 /**
 * Shows a map in Maps app based on address supplied.
 *
 * @param address - address to display
 *
 */
 public static function pointToAddress(address:String):void
 {
 var addressArr:Array=address.split(‘ ‘);
 address = addressArr.join(‘+’);
 var cmd:String = “http://maps.google.com/maps?q=” + address;
 executeCommand(cmd);
 }

 }
}

The GoogleMaps class provides two static methods. The pointToCoordinates() method takes the
latitude and longitude values and displays the map. The pointToAddress() method takes a basic
address query string and passes it to the Maps app for display.

Notice that the pointToAddress() method converts any spaces in the address to + characters.

using GoogleMaps in an app
With the GoogleMaps wrapper class now completed, you are ready to create an app that utilizes this
to display maps. For this sample, you want the app to do two things:

Display a map by address ➤➤

Display a map based on geolocation data obtained from the phone’s GPS➤➤

To set up your project, perform these steps:

 1 . Create a new Flash document using the desired template, and name it MapServices.fla.

 2 . Add the com.richwagner.mobileservices package to the project (or reference a common
library) that contains MobileService.as and GoogleMaps.as.

 3 . In the Properties panel for the .fla, enter MapServices as the document class, and click the
pencil button to edit the class definition in your preferred editor.

listinG 9-7 (continued)

Pointing on google Maps ❘ 201

In writing the MapServices document class, there are several properties to declare:

public var btnAddress:Button;
public var btnGPS:Button;
public var tiAddress:TextInput;

public var latitude:Number;
public var longitude:Number;
private var geo:Geolocation;

code snippet MapServices.as

The first three properties are UI components that you’ll be creating via ActionScript. The final three
properties are used in gathering GPS information.

In the constructor, create the UI components and their text formatters. You also set up event
handlers for the two buttons as a Geolocation event handler (which is described in full detail in
Chapter 8).

public function MapServices()
{

 // Formatters
 var format:TextFormat = new TextFormat(“Helvetica”, 44);
 format.color = 0xfffffff;

 var btnFormat:TextFormat = new TextFormat(“Helvetica”, 26);
 btnFormat.color = 0x000000;
 btnFormat.bold = true;

 // Create TextInput
 tiAddress = new TextInput();
 tiAddress.textField.background = true;
 tiAddress.textField.backgroundColor = 0x7AB900;
 tiAddress.x = 10;
 tiAddress.y = 10;
 tiAddress.height = 300;
 tiAddress.textField.multiline = true;
 tiAddress.textField.wordWrap = true;
 tiAddress.width = stage.stageWidth - 20;
 tiAddress.text = “Address, City, State, Zip”;
 tiAddress.setStyle(“textFormat”, format);
 tiAddress.addEventListener(MouseEvent.CLICK, tiAddressClickHandler);
 addChild(tiAddress);

 // Create Service buttons
 btnAddress = new Button();
 btnAddress.width = stage.stageWidth-20;
 btnAddress.height = 44;
 btnAddress.x = 10;
 btnAddress.alpha = 0.9;
 btnAddress.label = “Map Address”;
 btnAddress.setStyle(“textFormat”, btnFormat);

202 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 btnAddress.y = tiAddress.y + tiAddress.height + 5;
 btnAddress.addEventListener(MouseEvent.CLICK, btnAddressMouseClickHandler);
 addChild(btnAddress);

 btnGPS = new Button();
 btnGPS.width = stage.stageWidth-20;
 btnGPS.height = 44;
 btnGPS.x = 10;
 btnGPS.alpha = 0.9;
 btnGPS.label = “Map by GPS”;
 btnGPS.setStyle(“textFormat”, btnFormat);
 btnGPS.y = stage.stageHeight - 54;
 btnGPS.addEventListener(MouseEvent.CLICK, btnGPSMouseClickHandler);
 addChild(btnGPS);

 // Stage event handler
 stage.addEventListener(MouseEvent.CLICK, stageClickHandler);

 // Is geolocation supported?
 if (Geolocation.isSupported)
 {
 // If so, set it up
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(500);
 geo.addEventListener(GeolocationEvent.UPDATE,
 geolocationUpdateHandler);
 }

}

code snippet MapServices.as

For the geolocationUpdateHandler(), you want to update the latitude and longitude proper-
ties each time you update the Geolocation object:

 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {
 latitude = event.latitude;
 longitude = event.longitude;
 }

code snippet MapServices.as

For the Map Address button, call GoogleMaps.pointToAddress() using the text that the user
supplies:

 private function btnAddressMouseClickHandler(event:Event):void
 {
 event.stopPropagation();
 GoogleMaps.pointToAddress(tiAddress.text);
 }

code snippet MapServices.as

Pointing on google Maps ❘ 203

For the Map GPS button, pass the latitude and longitude data obtained from the Geolocation
object onto GoogleMaps.pointToCoordinates():

private function btnGPSMouseClickHandler(event:Event):void
{
 event.stopPropagation();
 GoogleMaps.pointToCoordinates(latitude, longitude);
}

code snippet MapServices.as

Listing 9-8 provides the source code for the MapServices.as document class.

listinG 9-8: Mapservices.as

package
{

 import com.richwagner.mobileservices.GoogleMaps;

 import fl.controls.Button;
 import fl.controls.Label;
 import fl.controls.LabelButton;
 import fl.controls.TextInput;
 import flash.events.GeolocationEvent;
 import flash.sensors.Geolocation;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.net.URLRequest;
 import flash.net.navigateToURL;
 import flash.text.*;

 /**
 * Document class for Services application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class MapServices extends Sprite
 {

 public var btnAddress:Button;
 public var btnGPS:Button;
 public var tiAddress:TextInput;

 public var latitude:Number;
 public var longitude:Number;

 // Geolocation
 private var geo:Geolocation;

 /**

continues

204 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 * Constructor
 *
 */
 public function MapServices()
 {

 // Formatters
 var format:TextFormat = new TextFormat(“Helvetica”, 44);
 format.color = 0xfffffff;

 var btnFormat:TextFormat = new TextFormat(“Helvetica”, 26);
 btnFormat.color = 0x000000;
 btnFormat.bold = true;

 // Create TextInput
 tiAddress = new TextInput();
 tiAddress.textField.background = true;
 tiAddress.textField.backgroundColor = 0x7AB900;
 tiAddress.x = 10;
 tiAddress.y = 10;
 tiAddress.height = 300;
 tiAddress.textField.multiline = true;
 tiAddress.textField.wordWrap = true;
 tiAddress.width = stage.stageWidth - 20;
 tiAddress.text = “Address, City, State, Zip”;
 tiAddress.setStyle(“textFormat”, format);
 tiAddress.addEventListener(MouseEvent.CLICK, tiAddressClickHandler);
 addChild(tiAddress);

 // Create Service buttons
 btnAddress = new Button();
 btnAddress.width = stage.stageWidth-20;
 btnAddress.height = 44;
 btnAddress.x = 10;
 btnAddress.alpha = 0.9;
 btnAddress.label = “Map Address”;
 btnAddress.setStyle(“textFormat”, btnFormat);
 btnAddress.y = tiAddress.y + tiAddress.height + 5;
 btnAddress.addEventListener
 (MouseEvent.CLICK, btnAddressMouseClickHandler);
 addChild(btnAddress);

 btnGPS = new Button();
 btnGPS.width = stage.stageWidth-20;
 btnGPS.height = 44;
 btnGPS.x = 10;
 btnGPS.alpha = 0.9;
 btnGPS.label = “Map by GPS”;

listinG 9-8 (continued)

Pointing on google Maps ❘ 205

 btnGPS.setStyle(“textFormat”, btnFormat);
 btnGPS.y = stage.stageHeight - 54;
 btnGPS.addEventListener(MouseEvent.CLICK, btnGPSMouseClickHandler);
 addChild(btnGPS);

 // Stage event handler
 stage.addEventListener(MouseEvent.CLICK, stageClickHandler);

 // Is geolocation supported?
 if (Geolocation.isSupported)
 {
 // If so, set it up
 geo = new Geolocation();
 geo.setRequestedUpdateInterval(500);
 geo.addEventListener(GeolocationEvent.UPDATE,
 geolocationUpdateHandler);
 }

 }

 /**
 * Called each time the geolocation service updates app
 *
 * @param event
 *
 */
 private function geolocationUpdateHandler(event:GeolocationEvent):void
 {
 latitude = event.latitude;
 longitude = event.longitude;
 }

 /**
 * Shows Google map of specified address
 *
 * @param event
 *
 */
 private function btnAddressMouseClickHandler(event:Event):void
 {
 event.stopPropagation();
 GoogleMaps.pointToAddress(tiAddress.text);
 }

 /**
 * Shows Google map based on current latitude, longitude coordinates
 *
 * @param event
 *
 */
 private function btnGPSMouseClickHandler(event:Event):void
 {

continues

206 ❘ chaPter 9 servIce IntegratIon usIng url protocols

 event.stopPropagation();
 GoogleMaps.pointToCoordinates(latitude, longitude);
 }

 /**
 * Click handler for text input
 *
 * @param event
 *
 */
 private function tiAddressClickHandler(event:Event):void
 {
 event.stopPropagation();
 }

 /**
 * Click handler for stage
 *
 * @param event
 *
 */
 private function stageClickHandler(event:Event):void
 {
 btnAddress.setFocus();
 }

 }

android: setting Permissions
You first need to enable your app for accessing the Internet and geolocation services. To do so, add
the android.permission.INTERNET and android.permission.ACCESS-FINE-LOCATION param-
eters to your application descriptor file (MapServices-app.xml):

 <android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.INTERNET”/>
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
]]>
 </data>
 </manifest>
 </manifestAdditions>
 </android>

listinG 9-8 (continued)

Pointing on google Maps ❘ 207

running the app
Figure 9-17 shows the MapServices app running on an Android phone with an address entered,
and Figure 9-18 shows the result when the Map Address is displayed.

For the iPhone app, Figure 9-19 shows the MapServices app running with an address entered, and
Figure 9-20 shows the result when the Map Address is displayed. Figure 9-21 shows my current
location based on the GPS info obtained from iPhone’s geolocation sensor.

fiGure 9-17 fiGure 9-18 fiGure 9-19

fiGure 9-20 fiGure 9-21

208 ❘ chaPter 9 servIce IntegratIon usIng url protocols

suMMary

The focus of this chapter was to integrate with Android and iPhone services using URL protocols. I
began the chapter by showing you how to abstract URL calls through a MobileServices AS3 class. I
then created subclasses of the MobileServices class to add certain functionality, including calling the
phone, sending an SMS message, sending an e-mail message, and pointing to a location on a Google
Map. In the following chapter, I’ll continue the discussion of integration, but look at direct API level
support specifically for Android.

android Camera, Camera roll,
and Microphone

What’s in this chaPter?

Accessing the camera➤➤

Using the camera roll➤➤

Working with the microphone ➤➤

AIR for Android enables you to go beyond the URL-based integration that I discussed back in
Chapter 9. You can also integrate directly with core parts of the Android device. In this chap-
ter, I’ll show you how you can work with the Camera, the Camera Roll, and the Microphone
inside of your Flash apps.

Note that each of the four sample apps I cover are based on the AndroidAppTemplate.fla.
So, to ensure identical results, be sure to download the AndroidAppTemplate.fla from the
book’s website before beginning to code these examples.

At the time of writing this book, Adobe Flash’s iPhone support does not include
support for the features covered in this chapter. However, in the event that
Adobe revises the Packager for iPhone in the future, I am anticipating that the
AIR for Android API discussed in this chapter will be quite similar in support.

10

210 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

caMeraui: launch anD return

You use the CameraUI class to access the still camera and video cam of an Android device. You can
then use this class to launch the built-in camera, enable the user to take a picture, automatically save
the file, and return the user to your app. Table 10-1 shows the details of the CameraUI class.

table 10-1: CameraUI Members

MeMber DescriPtion

CameraUI() Constructor

isSupported() Indicates whether CameraUI is supported
on the device

launch(MediaType.IMAGE | MediaType.VIDEO) Launches the still or video camera, depend-
ing on the parameter

addEventListener(MediaEvent.COMPLETE) Assigning an event listener to dispatch
when the camera returns control to the app

To illustrate the basic interaction between a Flash app and a camera device, this chapter creates an
app that launches the still or video camera and then returns the filename on the SD card that the
camera saved. The next chapter deals with the actual image.

To follow along, start with the AndroidAppTemplate.fla and customize it for this app (by renam-
ing it to SnapAPic.fla and the document class to SnapAPic).

Because this is an ActionScript 3 (AS3)-based app, go ahead and open the SnapAPic class inside
your preferred editor and update the class and constructor names appropriately. Although there is
some boilerplate code from the template, you customize it for your purposes.

To begin, add several import statements inside the package. Most are from the core AS3 packages,
but you can also add an import line to the Android components:

 import com.kevinhoyt.components.*;

 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.events.MouseEvent;
 import flash.media.CameraUI;
 import flash.media.MediaType;
 import flash.display.SimpleButton;
 import flash.events.*;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.filesystem.File;

Code snippet SnapAPic.as

CameraUi: launch and return ❘ 211

Inside the class, you are ready to declare a handful of properties — one a reference to CameraUI and
the others to UI components:

 private var btn:Button;
 private var ftr:Footer;
 private var lbl:Label;
 private var ttl:Title;
 private var txt:TextInput;
 private var cameraUI:CameraUI;

Next, you need to define the constructor. You can customize the existing boilerplate code to work
for your needs of this app. Note that the code snippet here creates Image and Video buttons on the
bottom footer:

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 ttl = new Title(“SnapAPic”);
 addChild(ttl);

 lbl = new Label(“Click a button to snap a picture/video”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 ftr = new Footer(“Image”, “Video”);
 ftr.y = 683;
 addChild(ftr);

Code snippet SnapAPic.as

Once the UI is defined, you are ready to create your CameraUI instance. However, because not all
devices may have a camera, always check using the isSupported() method first. If support is avail-
able, you are ready to create your cameraUI instance and assign event handlers:

// Camera support?
if (CameraUI.isSupported)
{
 cameraUI = new CameraUI();
 cameraUI.addEventListener(MediaEvent.COMPLETE, mediaCompleteHandler);
 cameraUI.addEventListener(ErrorEvent.ERROR, errorHandler);
 cameraUI.addEventListener(Event.CANCEL, errorHandler);

 ftr.addEventListener(FooterEvent.OK, imageButtonClickHandler);
 ftr.addEventListener(FooterEvent.CANCEL, videoButtonClickHandler);

}
else
{
 lbl.text = “Unable to access Camera.”;

Code snippet SnapAPic.as

212 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

In the preceding code, the cameraUI instance is created and listeners are assigned to the key events
associated with the CameraUI class. The Footer’s button handlers are also assigned to respond to the
Image and Video button click events. You begin filling out these handlers, starting with the buttons.

The Footer’s Image and Video button click handlers launch the device’s camera application. The
Image button launches the still camera using launch() and the MediaType.IMAGE parameter:

private function imageButtonClickHandler(event:FooterEvent):void
{
 cameraUI.launch(MediaType.IMAGE);
}

The Video button changes the parameter to MediaType.VIDEO to launch the video cam:

private function videoButtonClickHandler(event:FooterEvent):void
{
 cameraUI.launch(MediaType.VIDEO);
}

Both of these pass control to the camera app to allow the user to interact with the camera as desired.
However, the core part of SnapAPic is to appropriately handle the user returning from the camera
app to your app. When the user takes an image or video shot and returns successfully to SnapAPic,
the MediaEvent.COMPLETE event is dispatched. The mediaCompleteHandler() function is set up to
deal with this event:

private function mediaCompleteHandler(event:MediaEvent):void
{
 var file:File = event.data.file;
 lbl.text = file.url;
}

For this simple example, the handler pulls the File object associated with a MediaPromise object
being returned as event.data. (A MediaPromise object, similar to a FilePromise, is a commitment
that the media file exists without actually checking.) The file’s URL is then assigned to the label.

If the user cancels the process while accessing the camera or something goes awry, trap for these
cases using the errorHandler() function:

public function errorHandler(event:Event):void
{
 lbl.text = event.type;
}

The SnapAPic document class is now good to go. Save it and return to the SnapAPic.fla file.

You are now ready to publish the app. Although you need to add a
<uses-permission android:name=”android.permission.CAMERA” /> permission
statement in the app descriptor file if you want to directly access the camera, launching the
CameraUI doesn’t require this same permission. Therefore, no additional permission is required.

CameraUi: launch and return ❘ 213

Figure 10-1 shows the SnapAPic app when it is launched. Once you click the Image button, the
Camera app is displayed (see Figure 10-2). The user can then take a picture and, once satisfied, click
OK to return to the SnapAPic app. The name of the image file is shown in the user interface (UI).
See Figure 10-3.

Listing 10-1 shows the full source code to the SnapAPic.as.

fiGure 10-1 fiGure 10-2

fiGure 10-3

214 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

listinG 10-1: snapaPic.as

package
{
 import com.kevinhoyt.components.*;

 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.events.MouseEvent;
 import flash.media.CameraUI;
 import flash.media.MediaType;
 import flash.display.SimpleButton;
 import flash.events.*;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.filesystem.File;

 /**
 * Document class for SnapAPic application.
 * AIR for Android sample app
 *
 * @author Rich Wagner
 *
 */
 public class SnapAPic extends Sprite
 {
 private var btn:Button;
 private var ftr:Footer;
 private var lbl:Label;
 private var ttl:Title;
 private var txt:TextInput;
 private var cameraUI:CameraUI;

 /**
 * Constructor
 *
 */
 public function SnapAPic()
 {

 super();

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 ttl = new Title(“SnapAPic”);
 addChild(ttl);

 lbl = new Label(“Click a button to snap a picture/video”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 ftr = new Footer(“Image”, “Video”);

CameraUi: launch and return ❘ 215

 ftr.y = 683;
 addChild(ftr);

 // Camera support?
 if (CameraUI.isSupported)
 {
 cameraUI = new CameraUI();
 cameraUI.addEventListener(MediaEvent.COMPLETE,
 mediaCompleteHandler);
 cameraUI.addEventListener(ErrorEvent.ERROR, errorHandler);
 cameraUI.addEventListener(Event.CANCEL, errorHandler);

 ftr.addEventListener(FooterEvent.OK, imageButtonClickHandler);
 ftr.addEventListener(FooterEvent.CANCEL, videoButtonClickHandler);

 }
 else
 {
 lbl.text = “Unable to access Camera.”;
 }

 }

 /**
 * Launches the image camera
 *
 * @param event
 *
 */
 private function imageButtonClickHandler(event:FooterEvent):void
 {
 cameraUI.launch(MediaType.IMAGE);
 }

 /**
 * Launches the video camera
 *
 * @param event
 *
 */
 private function videoButtonClickHandler(event:FooterEvent):void
 {
 cameraUI.launch(MediaType.VIDEO);
 }

 /**
 * Displays media file name in the label
 *
 * @param event
 *
 */
 private function mediaCompleteHandler(event:MediaEvent):void

continues

216 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 {
 var file:File = event.data.file
 lbl.text = file.url;
 }

 /**
 * Displays error details
 *
 * @param event
 *
 */
 public function errorHandler(event:Event):void
 {
 lbl.text = event.type;
 }

 }
}

caMera: creatinG a live viDeo feeD

In addition to launching the Camera app, you can get tighter integration by actually bringing the
camera into your own application and capturing video using the Camera object. You’ll learn how
you can use Camera, in combination with the Video object, to create a live video feed in your app
without embedding the video into your app.

One important note about capturing video in your app: to use Camera inside your app, you need to
use landscape orientation. Otherwise, your video feed is displayed at a –90 degree angle, no matter
what you do.

You begin the app by doing the following:

 1 . Create a new Flash project, name it LiveFeed, and assign it to your d:\android-dev\
LiveFeed directory.

 2 . Add a copy of the AndroidAppTemplate.fla template to the LiveFeed subdirectory.

 3 . Customize the AndroidAppTemplate.fla for this app — renaming it to LiveFeed.fla and
changing the name of the document class to LiveFeed.

 4 . For reasons that will be explained in a moment, you change the dimensions to landscape ori-
entation (800×480px) by adjusting the size via the Properties panel.

 5 . In the AIR Android Settings dialog (accessible from the Properties panel), change the Aspect
ratio to Landscape and check the Fullscreen check box.

Because this is an AS3-based app, you open the LiveFeed class inside your preferred editor and
update the class and constructor names. There is boilerplate code from the template, but most is not
too relevant for this project.

listinG 10-1 (continued)

Camera: Creating a live Video Feed ❘ 217

You start by adding several import statements just inside the package:

 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.TimerEvent;
 import flash.media.Camera;
 import flash.media.Video;
 import flash.utils.Timer;

Code snippet LiveFeed.as

Next, you declare two class properties inside the LiveFeed class:

 private var lbl:Label;
 private var timer:Timer;

In the constructor, you create the basic UI shell:

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var ttl:Title = new Title(“Live Feed”);
 addChild(ttl);

 lbl = new Label(“”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

Code snippet LiveFeed.as

You then check to see if Ca camera is available on the device using the Camera.isSupported()
method:

 // Camera support?
 if (Camera.isSupported)
 {
 timer = new Timer(1000);
 timer.addEventListener(TimerEvent.TIMER, timerHandler);

 var camera:Camera = Camera.getCamera();
 // Create a video object, enhancing its normal size
 // to fill more of the screen
 var video:Video = new Video(camera.width*2.6, camera.height*2.6);
 video.x = 320;
 video.y = 52;
 video.attachCamera(camera);
 video.smoothing = true;
 addChild(video);

 timer.start();
 }
 else
 {

218 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 lbl.text = “Camera is not supported on this device.”;
 }

}

Code snippet LiveFeed.as

If the device supports a camera, you create a timer that will constantly update the label with statisti-
cal information about the camera feed. You also get a pointer to the camera through Camera
.getCamera(), which you can then use in combination with the Video component to display in the
app UI. The two are connected by using the Video object’s attachCamera() method to attach the
device’s camera to the video and play it within the dimensions of the Video object’s rectangular box.

The live video feed is already set to go, but you can add a handler for the timer to update the label
with information about the camera feed:

private function timerHandler(event:TimerEvent):void
{
 lbl.text = “Camera Specifications:” + “\n” +
 “activityLevel: “ + camera.activityLevel + “\n” +
 “bandwidth: “ + camera.bandwidth + “\n” +
 “currentFPS: “ + Math.round(camera.currentFPS) + “\n” +
 “fps: “ + camera.fps + “\n” +
 “height: “ + camera.height + “\n” +
 “index: “ + camera.index + “\n” +
 “keyFrameInterval: “ + camera.keyFrameInterval + “\n” +
 “loopback: “ + camera.loopback + “\n” +
 “motionlevel: “ + camera.motionLevel + “\n” +
 “muted: “ + camera.muted+ “\n” +
 “name: “ + camera.name + “\n” +
 “quality: “ + camera.quality+ “\n” +
 “width: “ + camera.width + “\n”;
}

Code snippet LiveFeed.as

That’s all that’s necessary for the LiveFeed document class. Save and return to the .fla document.

Before publishing, you need to add the camera permission tag to your app descriptor file in the
Android permissions section:

 <android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.CAMERA” />
]]>
 </data>
 </manifest>
 </manifestAdditions>
 </android>

Code snippet LiveFeed-app.xml

You are now ready to publish and run the LiveFeed app. Figure 10-4 shows the app capturing live
video.

Camera: Creating a live Video Feed ❘ 219

fiGure 10-4

Listing 10-2 shows the full source code listing for LiveFeed.as.

listinG 10-2: liveFeed.as

package
{
 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.TimerEvent;
 import flash.media.Camera;
 import flash.media.Video;
 import flash.utils.Timer;

 /**
 * Document class for LiveFeed application.
 * AIR for Android sample app
 *
 * @author Rich Wagner
 *
 */
 public class LiveFeed extends Sprite
 {
 private var lbl:Label;
 private var timer:Timer;

 /**
 * Constructor
 *

continues

220 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 */
 public function LiveFeed()
 {
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 var ttl:Title = new Title(“Live Feed”);
 addChild(ttl);

 lbl = new Label(“”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 // Camera support?
 if (Camera.isSupported)
 {
 timer = new Timer(1000);
 timer.addEventListener(TimerEvent.TIMER, timerHandler);

 var camera:Camera = Camera.getCamera();
 // Create a video object, enhancing its normal size to
 // fill more of the screen
 var video:Video = new Video(camera.width*2.6, camera.height*2.6);
 video.x = 320;
 video.y = 52;
 video.attachCamera(camera);
 video.smoothing = true;
 addChild(video);

 timer.start();
 }
 else
 {
 lbl.text = “Camera is not supported on this device.”;
 }

 }

 /**
 * Listener for timer routine
 *
 * @param event
 *
 */
 private function timerHandler(event:TimerEvent):void
 {
 lbl.text = “Camera Specifications:” + “\n” +
 “activityLevel: “ + camera.activityLevel + “\n” +
 “bandwidth: “ + camera.bandwidth + “\n” +
 “currentFPS: “ + Math.round(camera.currentFPS) + “\n” +

listinG 10-2 (continued)

tapping into the Camera roll ❘ 221

 “fps: “ + camera.fps + “\n” +
 “height: “ + camera.height + “\n” +
 “index: “ + camera.index + “\n” +
 “keyFrameInterval: “ + camera.keyFrameInterval + “\n” +
 “loopback: “ + camera.loopback + “\n” +
 “motionlevel: “ + camera.motionLevel + “\n” +
 “muted: “ + camera.muted+ “\n” +
 “name: “ + camera.name + “\n” +
 “quality: “ + camera.quality+ “\n” +
 “width: “ + camera.width + “\n”;
 }
 }

}

taPPinG into the caMera roll

AIR for Android enables you to access not just the device’s camera, but its camera roll (image media
library) through the CameraRoll class. Table 10-2 lists the key members for the CameraRoll class:

table 10-2: Key CameraRoll Members

MeMber DescriPtion

CameraRoll() Constructor

supportsBrowseForImage Indicates whether the device allows image browsing

browseForImage() Opens CameraRoll image dialog to allow a user to select
an image

supportsAddBitmapData Indicates whether you can save images on the camera roll

addBitmapData(bitmapData:

BitmapData)

Saves a bitmap image to the camera roll

addEventListener(MediaEvent

.CSELECT)

Assigns an event listener to dispatch when an image is
selected from the camera roll .

To demonstrate how to access the camera roll, you create a sample app that allows a user to select
an image from the camera roll and then display that image inside your app. You begin by doing the
following:

 1 . Create a new Flash project and name it GetThatImage, and then assign it to your d:\
android-dev\GetThatImage directory.

 2 . Add a copy of the AndroidAppTemplate.fla template to the GetThatImage subdirectory.

 3 . Customize the AndroidAppTemplate.fla for this app — renaming it to GetThatImage.fla
and changing the name of the document class to GetThatImage.

222 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

Like the others in this chapter, this app is an AS3 app, so the core programming logic is added to the
document class GetThatImage, which you can open in your preferred editor to update the class and
constructor names appropriately.

You begin by adding several import statements inside the package:

 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.events.MouseEvent;
 import flash.media.CameraRoll;
 import flash.media.MediaType;
 import flash.media.MediaPromise;
 import flash.display.SimpleButton;
 import flash.display.Sprite;
 import flash.events.*;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.filesystem.File;
 import flash.display.Loader;
 import flash.display.Bitmap;

Code snippet GetThatImage.as

Several class properties need to be added inside the GetThatImage class, related to both the UI and
the camera-related aspects of the app:

 private var btn:Button;
 private var ftr:Footer;
 private var lbl:Label;
 private var ttl:Title;
 private var cameraRoll:CameraRoll;
 private var loader:Loader;
 private var image:Bitmap;

Code snippet GetThatImage.as

The constructor both defines the UI and sets up the core functionality of the app. The core UI is cre-
ated with the following code:

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 ttl = new Title(“Title”);
 addChild(ttl);

 lbl = new Label(“Click a button to begin your session”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 ftr = new Footer(“Load”, “Cancel”);
 ftr.y = 680;
 ftr.addEventListener(FooterEvent.OK, loadButtonClickHandler);
 addChild(ftr);

Code snippet GetThatImage.as

tapping into the Camera roll ❘ 223

The app uses the Kevin Hoyt components to create a title bar, label, and footer with two buttons. These
UI components are added to the stage using addChild(). The Load button on the footer is assigned an
event handler to respond when the user wants to load an image from the camera roll onto the stage.

The next part of the constructor sets up the core functionality of the app as long as the
CameraRoll.supportsBrowseForImage property returns true:

 if (CameraRoll.supportsBrowseForImage)
 {

 loader = new Loader();
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 contentLoadedHandler);
 image = new Bitmap();

 cameraRoll = new CameraRoll();
 cameraRoll.addEventListener(MediaEvent.SELECT, mediaSelectHandler);
 cameraRoll.addEventListener(ErrorEvent.ERROR, errorHandler);
 cameraRoll.addEventListener(Event.CANCEL, errorHandler);

 }
 else
 {
 lbl.text = “Unable to access Camera Roll.”;
 }

Code snippet GetThatImage.as

In this code, a Loader instance is created, and you add an event listener to the contentLoaderInfo
property. The Loader instance loads the image data it receives from the camera roll. A Bitmap instance
is created, which will be used later. Next, the CameraRoll instance is created and has several listeners
assigned to it based on what the user does in the CameraRoll app.

If the user selects an image, the mediaSelectHandler() function is called. If the user cancels or
some other error occurs, the errorHandler() function is called.

You now need to define the event handlers that were specified in the constructor. First, add the Load
button click handler, which launches the CameraRoll app when called:

private function loadButtonClickHandler(event:FooterEvent):void
{
 cameraRoll.browseForImage();
}

Once the user selects an image in the CameraRoll app, the mediaSelectHandler() function is called:

private function mediaSelectHandler(event:MediaEvent):void
{

 var mediaPromise:MediaPromise = event.data;

 var imageFile:File = mediaPromise.file;
 lbl.text = imageFile.url;

 loader.unload();

224 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 loader.loadFilePromise(mediaPromise);

}

In this code, the data property of the MediaEvent object is cast to a MediaPromise object. This
object can then be used to discover properties of the image that was selected. The URL of the image
file is assigned to the label.

To load an image selected from the camera roll, use the loader.loadFilePromise() method, with
MediaPromise as the parameter.

If you recall, you assigned a handler to the loader.contentLoaderInfo’s Event.COMPLETE event:

 private function contentLoadedHandler(event:Event):void
 {

 if (stage.contains(image))
 {
 stage.removeChild(image);
 }

 image.bitmapData = Bitmap(event.currentTarget.content).bitmapData
 image.scaleX = 0.15;
 image.scaleY = 0.15;
 image.x = 10;
 image.y = 80;
 stage.addChild(image);
 }

Code snippet GetThatImage.as

The first thing that you do in this function is check
whether the image is currently on the stage. If it is, you
want to remove it to prevent multiple images from being
displayed.

Next, the event.currentTarget.content is cast as a
Bitmap, so you can get its bitmapData, which is assigned
to the bitmapData of your image variable. You then reduce
the scale of the image so that it can fit inside the viewport.
After giving it an x, y coordinate value, you add image to
the stage. After saving the document class, you are ready
to publish.

When you publish and run the app, Figure 10-5 shows the
GetThatPic after launching. When you click the Load but-
ton, the camera roll is displayed, as shown in Figure 10-6.
If your device has multiple image library managers,
you are prompted to select which one you want to use.
Figure 10-7 displays the results in the GetThatPic app
after you select an image.

Listing 10-3 lists the full source code for
GetThatImage.as. fiGure 10-5

tapping into the Camera roll ❘ 225

listinG 10-3: getthatimage.as

package
{
 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.events.MouseEvent;
 import flash.media.CameraRoll;
 import flash.media.MediaType;
 import flash.media.MediaPromise;
 import flash.display.SimpleButton;
 import flash.display.Sprite;
 import flash.events.*;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.filesystem.File;
 import flash.display.Loader;
 import flash.display.Bitmap;

 /**
 * Document class for SnapAPic application.
 * AIR for Android sample app
 *
 * @author Rich Wagner

fiGure 10-6 fiGure 10-7

continues

226 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 *
 */
 public class GetThatImage extends Sprite
 {
 private var btn:Button;
 private var ftr:Footer;
 private var lbl:Label;
 private var ttl:Title;
 private var cameraRoll:CameraRoll;
 private var loader:Loader;
 private var image:Bitmap;

 /**
 * Constructor
 *
 */
 public function GetThatImage()
 {
 super();

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 ttl = new Title(“Title”);
 addChild(ttl);

 lbl = new Label(“Click a button to begin your session”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 ftr = new Footer(“Load”, “Cancel”);
 ftr.y = 680;
 ftr.addEventListener(FooterEvent.OK, buttonClickHandler);
 addChild(ftr);

 // Camera support?
 if (CameraRoll.supportsBrowseForImage)
 {

 loader = new Loader();
 image = new Bitmap();

 cameraRoll = new CameraRoll();
 cameraRoll.addEventListener(MediaEvent.SELECT, mediaSelectHandler);
 cameraRoll.addEventListener(ErrorEvent.ERROR, errorHandler);
 cameraRoll.addEventListener(Event.CANCEL, errorHandler);

 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
contentLoadedHandler);

 }
 else

listinG 10-3 (continued)

tapping into the Camera roll ❘ 227

 {
 lbl.text = “Unable to access Camera Roll.”;
 }
 }

 /**
 * Launches the camera
 *
 * @param event
 *
 */
 private function buttonClickHandler(event:FooterEvent):void
 {
 cameraRoll.browseForImage();
 }

 /**
 * Called when an image is selected from the camera roll
 *
 * @param event
 *
 */
 private function mediaSelectHandler(event:MediaEvent):void
 {

 var mediaPromise:MediaPromise = event.data;

 var imageFile:File = mediaPromise.file;
 lbl.text = imageFile.url;

 loader.unload();
 loader.loadFilePromise(mediaPromise);

 }

 /**
 * Called when content is done loading by loader
 *
 * @param event
 *
 */
 private function contentLoadedHandler(event:Event):void
 {

 if (stage.contains(image))
 {
 stage.removeChild(image);
 }

 image.bitmapData = Bitmap(event.currentTarget.content).bitmapData
 image.scaleX = 0.15;
 image.scaleY = 0.15;

continues

228 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 image.x = 10;
 image.y = 80;
 stage.addChild(image);

 }

 /**
 * Called when an error occurs
 *
 * @param event
 *
 */
 public function errorHandler(event:Event):void
 {
 lbl.text = event.type;
 }

 }
}

caPturinG sounDs With the MicroPhone

The microphone is another important hardware feature on a mobile device that you can take advan-
tage of in your AIR for Android applications. To capture audio from a microphone, you’ll use the
AIR Microphone class.

By creating an app called SpeakItHearIt, you will learn how to capture audio data in an Android app
and play it back in the same session. This example works with the audio locally. However, if you want
to pass this audio data to a Flash Media Server, use the NetConnection and NetStream classes.

The setup for the app may be a familiar process by now:

 1 . Create a new Flash project named SpeakItHearIt, and assign it to the d:\android-dev\
SpeakItHearIt directory.

 2 . Add a copy of the AndroidAppTemplate.fla template to the SpeakItHearIt subdirectory.

 3 . Customize AndroidAppTemplate.fla for this app by renaming it to SpeakItHearIt.fla and
changing the name of the document class to SpeakItHearIt.

Given that it is an AS3-based app, you open the SpeakItHearIt class inside your preferred editor
and update the class and constructor names to SpeakItHearIt.

Inside the document class, begin by adding several import statements just inside the package:

 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.*;
 import flash.events.MouseEvent;
 import flash.events.SampleDataEvent;

listinG 10-3 (continued)

Capturing sounds with the Microphone ❘ 229

 import flash.media.MediaType;
 import flash.media.Microphone;
 import flash.media.Sound;
 import flash.utils.ByteArray;

Code snippet SpeakItHearIt.as

Five class properties are defined inside the SpeakItHearIt class declaring the UI and core objects
that the app uses:

private var ftr:Footer;
private var ttl:Title;
private var lbl:Label;
private var microphone:Microphone;
private var soundBytes:ByteArray;

Code snippet SpeakItHearIt.as

Inside the constructor, you need to define the UI, initiate the microphone, and assign event handlers
for the app. The UI definition is standard, based on the AndroidAppTemplate.fla template with
labels customized for this app:

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

ttl = new Title(“SpeakItHearIt”);
addChild(ttl);

lbl = new Label(“Record something, then hear it”);
lbl.x = 9;
lbl.y = 52;
addChild(lbl);

ftr = new Footer(“Speak It”, “Hear It”);
ftr.y = 683;
ftr.addEventListener(FooterEvent.OK, speakItHandler);
ftr.addEventListener(FooterEvent.CANCEL, hearItHandler);
addChild(ftr);

Code snippet SpeakItHearIt.as

Like the Camera object, the Microphone object has an isSupported property that you can use to
test whether the device has a useable microphone. If true, the Microphone object is instantiated
using the Microphone.getMicrophone() method:

if (Microphone.isSupported)
{
 microphone = Microphone.getMicrophone();
 microphone.setSilenceLevel(0, 3000);
 microphone.gain = 100;
 microphone.rate = 44;
 soundBytes= new ByteArray();
 lbl.text = “Ready to record and play”;
}
else
{
 lbl.text = “Unable to access Microphone.”;
}

Code snippet SpeakItHearIt.as

230 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

The setSilenceLevel() method determines silence levels. The first parameter specifies the mini-
mum audio level to be considered a sound. I set mine to 0 to pick up everything. The second param-
eter specifies the amount of silence (in ms) to determine when silence has begun. The gain and rate
properties of the Microphone instance are also set.

A ByteArray is created to capture the audio stream when the app records.

With the constructor ready to go, turn your attention to the event handlers. When you click the
Speak It button, the speakItHandler() function is triggered:

private function speakItHandler(event:FooterEvent):void
{
 microphone.addEventListener(SampleDataEvent.SAMPLE_DATA, sampleDataHandler)
}

It adds a SampleDataEvent event handler that receives all sounds that are captured from the micro-
phone. The handler retrieves all the data it receives from the SampleDataEvent and writes it to the
soundBytes ByteArray:

private function sampleDataHandler(event:SampleDataEvent):void
{
 while(event.data.bytesAvailable)
 {
 var sample:Number = event.data.readFloat();
 soundBytes.writeFloat(sample);
 }
}

Code snippet SpeakItHearIt.as

The Hear It button has a second handler that plays everything recorded so far:

private function hearItHandler(event:FooterEvent):void
{
 microphone.removeEventListener(SampleDataEvent.SAMPLE_DATA,
 sampleDataHandler);
 soundBytes.position = 0;
 var sound:Sound = new Sound();
 sound.addEventListener(SampleDataEvent.SAMPLE_DATA, playbackSampleHandler);
 sound.play();
 }

Code snippet SpeakItHearIt.as

When called, it stops the sound collection by removing the event listener. It then resets soundByte’s
position to the start, creates a new Sound object, and then plays it. The sound’s SampleDataEvent
handler is triggered when the sound is played back:

private function playbackSampleHandler(event:SampleDataEvent):void
{
 for (var i:int = 0; i < 8192 && soundBytes.bytesAvailable > 0; i++)
 {
 var sample:Number = soundBytes.readFloat();

Capturing sounds with the Microphone ❘ 231

 event.data.writeFloat(sample);
 event.data.writeFloat(sample);
 }

Code snippet SpeakItHearIt.as

The SpeakItHearIt document class is complete. However, before publishing, you need to add the
RECORD_AUDIO permission to the app descriptor file:

 <android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.RECORD_AUDIO” />
]]>
 </data>
 </manifest>
 </manifestAdditions>
 </android>

Code snippet SpeakItHearIt-app.xml

Figure 10-8 shows the app when it is run.

fiGure 10-8

232 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

Listing 10-4 shows the full source code listing for the SpeakItHearIt app.

listinG 10-4: speakithearit.as

package
{
 import com.kevinhoyt.components.*;
 import flash.display.Sprite;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.*;
 import flash.events.MouseEvent;
 import flash.events.SampleDataEvent;
 import flash.media.MediaType;
 import flash.media.Microphone;
 import flash.media.Sound;
 import flash.utils.ByteArray;

 /**
 * Document class for SpeakItHearIt application.
 * iPhone Development with Flash sample app
 *
 * @author Rich Wagner
 *
 */
 public class SpeakItHearIt extends Sprite
 {
 private var ftr:Footer;
 private var ttl:Title;
 private var lbl:Label;
 private var microphone:Microphone;
 private var soundBytes:ByteArray;

 /**
 * Constructor
 *
 */
 public function SpeakItHearIt()
 {
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 ttl = new Title(“SpeakItHearIt”);
 addChild(ttl);

 lbl = new Label(“Record something, then hear it”);
 lbl.x = 9;
 lbl.y = 52;
 addChild(lbl);

 ftr = new Footer(“Speak It”, “Hear It”);
 ftr.y = 683;
 ftr.addEventListener(FooterEvent.OK, speakItHandler);

Capturing sounds with the Microphone ❘ 233

 ftr.addEventListener(FooterEvent.CANCEL, hearItHandler);
 addChild(ftr);

 // Camera support?
 if (Microphone.isSupported)
 {
 microphone = Microphone.getMicrophone();
 microphone.setSilenceLevel(0, 4000);
 microphone.gain = 100;
 microphone.rate = 44;
 soundBytes= new ByteArray();
 lbl.text = “Ready to record and play”;
 }
 else
 {
 lbl.text = “Unable to access Microphone.”;
 }

 }

 /**
 * Called when Speak button is clicked
 *
 * @param event
 *
 */
 private function speakItHandler(event:FooterEvent):void
 {
 microphone.addEventListener(SampleDataEvent.SAMPLE_DATA,
sampleDataHandler)
 }

 /**
 * Called when Hear button is clicked
 *
 * @param event
 *
 */
 private function hearItHandler(event:FooterEvent):void
 {
 microphone.removeEventListener(SampleDataEvent.SAMPLE_DATA,
 sampleDataHandler);
 soundBytes.position = 0;
 var sound:Sound = new Sound();
 sound.addEventListener(SampleDataEvent.SAMPLE_DATA,
 playbackSampleHandler);
 sound.play();
 }

 /**
 * Begins recording session

continues

234 ❘ chaPter 10 androId camera, camera roll, and mIcrophone

 *
 * @param event
 *
 */
 private function sampleDataHandler(event:SampleDataEvent):void
 {
 while(event.data.bytesAvailable)
 {
 var sample:Number = event.data.readFloat();
 soundBytes.writeFloat(sample);
 }
 }

 /**
 * Plays back audio data in stored in memory
 *
 * @param event
 *
 */
 private function playbackSampleHandler(event:SampleDataEvent):void
 {
 for (var i:int = 0; i < 8192 && soundBytes.bytesAvailable > 0; i++)
 {
 var sample:Number = soundBytes.readFloat();
 event.data.writeFloat(sample);
 event.data.writeFloat(sample);
 }
 }

 }
}

suMMary

In this chapter, you explored the nuts and bolts of working with the camera, camera roll, and the
microphone of Android devices. You began by creating an app that launched the camera, allowed
a user to take a picture, and then returned to your app. You next created a live video feed app, fol-
lowed by an app that accessed the camera roll. The chapter concludes with a look at how to capture
audio using the phone microphone.

listinG 10-4 (continued)

PART III
Data

chaPter 11: ⊲ File Management

chaPter 12: ⊲ Local Databases

File Management

What’s in this chaPter?

Exploring File I/O in Android and iOS ➤➤

Identifying the I/O diff erences between Android and iOS ➤➤

Read and write fi les ➤➤

A critical part of any native OS application, whether on the desktop or on a mobile device, is
the ability to read and write fi les and work with the local fi le system. This chapter introduces
you to working with fi les and directories in your Android or iOS application. It shows you
the File object and what you can use it for in Android/iOS, such as performing standard fi le
operations. The chapter then discusses how to read and write data to a fi le by creating a plain
vanilla text editor.

unDerstanDinG the anDroiD file anD
Directory structure

When you work with fi les in your Android app, you can access fi les and directories on both
internal and external storage (such as an SD [Secure Digital] card). For internal storage, there
are several system directories (such as /acct, /dev, or /etc) that you normally do not have
to concern yourself with. However, when your application is installed onto the device, it is
installed into the /data/data directory by default. Your application storage and temporary
storage are there as well.

Every Android device also supports external storage that your app and potentially other apps can
read. In addition, users may copy fi les from an external storage medium to a desktop computer.

11

238 ❘ chaPter 11 FIle management

Beyond application-specific directories that you may want to add to external storage, you can use
public directories that are not specific to any application. These include the following:

/sdcard/Music/➤➤ for music files

/sdcard/Podcasts/➤➤ for podcasts

/sdcard/Ringtones/➤➤ for ringtones

/sdcard/Alarms/ ➤➤ for alarm clock sounds

/sdcard/Notifications/➤➤ for notification sounds

/sdcard/Pictures/➤➤ for photos (not including those taken with the device’s camera)

/sdcard/Movies/➤➤ for videos for photos (not including those taken with the device’s
video camera)

/sdcard/Download/➤➤ for downloads

Since iOS devices do not have an external storage SD card, you don’t deal with these extra directo-
ries in the same way, as shown in the next section.

WorkinG With Directories, files, anD file streaMs

When you’re working with files and file input/output (IO), you work primarily with two classes:
File and FileStream. File represents a file or a directory on the file system and is used for basic
file and directory management tasks. On the other hand, FileStream is used for actually reading
and writing data from a file. Both are contained in the flash.filesystem package.

Working with Directories
There is no “Directory” class in AS3. Instead, a File object points to either a directory or a file.
You have access to several special directories through alias-style properties of the File object (see
Table 11-1). These are the directories you would typically work with.

As you can see from the table, iOS provides much less support for directories than does Android.
You have access to the application directory and the application storage directory, but not to other
standard AIR directories, such as desktop or documents directory.

table 11-1: Special Directories Available through the Alias-Style Properties of the File Object

ProPerty/MethoD Directory anDroiD ios suPPort

File.applicationDirectory Directory in
which the app
is installed
(read-only)

/data/data/app

.appID/app/assets

Supported

File.application

StorageDirectory

Private stor-
age directory
for the app

/data/data/app

.appID/AppName/

Local Store

Supported

Working with directories, Files, and File streams ❘ 239

ProPerty/MethoD Directory anDroiD ios suPPort

File.userDirectory User’s home
directory

/sdcard Not supported

File.documentsDirectory User’s
document
directory

/sdcard Not supported

File.desktopDirectory User’s desk-
top directory

/sdcard Not supported

File.createTempDirectory() Temporary
storage
directory

Created in /data/
data/app.appId/

cache

Supported

File.createTempFile() Temporary
file

Created in /data/
data/app.appId/

cache

Supported

For example, if you wanted to get the application storage directory, you’d use this:

private var storeDir:File = File.applicationStorageDirectory;

Once there, you can use the resolvePath() method to access a subdirectory or file inside of it. So,
for example, to point to a preferences.xml file, you’d enter this:

private var storeDir:File = File.applicationStorageDirectory;
private var prefXML:File = storeDir.resolvePath(“preferences.xml”);

Because File is a static object, you can write more simply:

private var prefXML:File =
 File.applicationStorageDirectory.resolvePath(“preferences.xml”);

Using these alias properties is usually much easier than working with the specific directory paths.
Also, it enables you to avoid writing OS-specific code. However, if you need to, you can work with
the native file system directly using File.nativePath. For example:

private var sdpath:File = new File();
sdpath.nativePath = “/sdcard/mypath”;

You can also point to directories and files using the File.url property. For local files, use the
file:/// protocol. So, to assign a url property instead of nativePath, you would use this:

private var sdpath:File = new File();
sdpath.url = “file:///sdcard/mypath”;

Because the url property returns the path as a URI-encoded string, be sure to substitute spaces
with %20.

file:///protocol
file:///sdcard/mypath%E2%80%9D

240 ❘ chaPter 11 FIle management

AIR also supports some URL-based shortcuts when referencing special AIR directories. The app:/
notation points to the application directory, whereas app-storage:/ points to the application stor-
age directory for your app. For example:

app:/default.sql
app-storage:/preferences.xml

To demonstrate these directory references, you’ll create a simple app that outputs the special alias
directories in a TextField. Begin by setting up the project:

 1 . Within the target source directory, create a new Flash document using the Android or iOS
template and name it DirFile.fla.

 2 . In the Properties panel, enter DirFile as the document class, and click the pencil button to
edit the class definition in your preferred editor.

 3 . Inside the package and above the DirFile class definition, add the following import state-
ments for each of the AS3 classes you’ll be referencing:

import flash.display.MovieClip;
import flash.filesystem.File;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.text.TextField;
import flash.text.TextFormat;

 4 . Next, inside the DirFile() constructor, set up the stage and create a TextField that covers
most of the stage:

// Set up the stage
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

// Create TextField
tfInfo = new TextField();
var format:TextFormat = new TextFormat(“Helvetica”, 24);
format.color = 0x000000;
tfInfo.defaultTextFormat = format;
tfInfo.border = true;
tfInfo.wordWrap = true;
tfInfo.multiline = true;
tfInfo.x = 10;
tfInfo.y = 10;
tfInfo.height = stage.stageHeight - 20;
tfInfo.width = stage.stageWidth - 20;
addChild(tfInfo);

 5 . Finally, add the following calls, which output the nativePath and url values for several of
the special aliases:

tfInfo.text = “applicationDirectory: “ + File.applicationDirectory.nativePath
 + “\n\n”;
tfInfo.appendText(“applicationStorageDirectory: “ +
 File.applicationStorageDirectory.nativePath + “\n\n”);
tfInfo.appendText(“userDirectory: “ + File.userDirectory.nativePath + “\n\n”);

Working with directories, Files, and File streams ❘ 241

tfInfo.appendText(“documentsDirectory: “ + File.documentsDirectory.nativePath
 + “\n\n”);
tfInfo.appendText(“desktopDirectory: “ + File.desktopDirectory.nativePath
 + “\n\n”);

tfInfo.appendText(“applicationDirectory URL: “ + File.applicationDirectory.url
 + “\n\n”);
tfInfo.appendText(“desktopDirectory URL: “ + File.desktopDirectory.url +

“\n\n”);

If you are creating an iOS app, then you can edit out the aliases not supported:

tfInfo.text = “applicationDirectory: “ + File.applicationDirectory.nativePath + “\n\n”;
tfInfo.appendText(“applicationStorageDirectory: “ + File.applicationStorageDirectory.
nativePath + “\n\n”);
tfInfo.appendText(“applicationDirectory URL: “ + File.applicationDirectory.url +
“\n\n”);

You can save the file and return to the Flash document to publish it. When you run the file, you’ll
see what’s shown in Figure 11-1 (if you run under Android).

file system operations
The File object provides several methods for performing file system operations.

Creating a directory

You can use the File.createDirectory() method to create a new directory. You first need to use
resolvePath(), passing in the new directory location, to identify where you want to create, and
then you must call the createDirectory() method. For example, the following code snippet cre-
ates a data subdirectory inside the applicationStorage directory:

var dataDir:File = File.applicationStorageDirectory.resolvePath(“data”);
dataDir.createDirectory();

Before you create the new directory, File.createDirectory() checks to see if that directory
already exists. If it does, the call is ignored. If it’s not there, the directory is created.

Creating a temporary directory or File

You can also create a temporary directory or file using two methods of the File object. The File
.createTempDirectory() creates a uniquely named subdirectory inside the app’s temporary direc-
tory. (For Android apps, that will be located in /data/data/app.appId/cache.) For example:

var tmpDir:File = File.createTempDirectory();

In this example, the tmpDir variable is assigned a pointer to the new directory.

You can also create a temporary file in the same location (/data/data/app.appId/cache for
Android apps) using the File.createTempFile() method. In this example, the tmpFile variable
points to the new file created:

var tmpFile:File = File.createTempFile();

242 ❘ chaPter 11 FIle management

A few usage notes on these two methods:

These methods are intended as time-saver rou-➤➤

tines. This way you don’t have to ensure that you
have a unique name for the file or directory you
want to create.

File.createTempFile()➤➤ or any other new file
object simply points to a file reference; it doesn’t
create a file with actual data in it. You have to do
that yourself, such as through use of FileStream
(discussed later in this chapter).

Be sure to clean up your temporary files and ➤➤

directories when you are finished with them
or when the app closes. They aren’t removed
automatically.

Copying and Moving

The File object supports copy and move operations. You
can perform these operations either synchronously or
asynchronously, depending on your needs. If you set the
operation to be synchronous, your app suspends execu-
tion until it receives word from the OS that the task has
been completed. In contrast, if you set the operation to
be asynchronous, your app continues executing and dis-
patches an event when the OS has completed the task.

Synchronous Operations
You can synchronously copy a file or an entire directory using the File.copyTo() method.
For example, if you’re developing for Android, suppose you want to copy a directory from
your applicationStorage directory to the documents directory:

var sourceFolder:File = File.applicationStorageDirectory.resolvePath(“data”);
// Note: documentDirectory not supported under iOS
var targetFolder:File = File.documentsDirectory.resolvePath(“data”);
sourceFolder.copyTo(targetFolder);

In this code, the data subdirectory is copied synchronously to a new location inside the document
folder. If there is an existing data directory in that target location, the process stops. However, if
you prefer to overwrite the existing directory, add an optional overwrite flag to the copyTo()
method:

sourceFolder.copyTo(targetFolder, true);

fiGure 11-1

Working with directories, Files, and File streams ❘ 243

When the overwrite parameter is set to true, the call deletes the target file or directory and copies
the one you specify.

The moveTo() method works much the same way, except that the source directory is removed once
the copy operation has been performed. The following example moves the images directory from
applicationDirectory to a subdirectory under applicationStorageDirectory:

var sourceFolder:File = File.applicationDirectory.resolvePath(“images”);
var targetFolder:File =
 File.applicationStorageDirectory.resolvePath(“assets/images”);
sourceFolder.moveTo(targetFolder)

When you want to copy or move files synchronously, you do so in the same way that you do direc-
tories. The following example copies a template file from the application directory to the user’s
applicationStorage directory:

var sourceFile = File.applicationDirectory.resolvePath(“templates/sample-
template.xml”);
var targetFile =
File.applicationStorageDirectory.resolvePath(“templates/sample-template.xml”);
sourceFile.copyTo(targetFile);

Asynchonous Operations
You can also copy and move asynchronously using the copyToAsync() and moveToAsync() meth-
ods. Once these operations are finished, an event is dispatched letting your app know. Typically, you
would add listeners to these events to determine what to do once the process completes successfully
or how to deal with a failed operation.

For example, the following sample creates a backup copy of the application’s main database file:

public function createBackupCopy():void
{
 // Note: documentDirectory not supported under iOS
 var originalFile:File = File.documentDirectory.resolvePath(“MyApp/data.sql”);
 var backupCopy:File =
 File.applicationStorageDirectory.resolvePath(“Backup/backup01.sql”);

 originalFile.addEventListener(Event.COMPLETE, copyCompleteHandler);
 originalFile.addEventListener(IOErrorEvent.IO_ERROR, copyErrorHandler);
 originalFile.copyToAsync(backupCopy);
}

public function copyCompleteHandler(event:Event):void
{
 trace(“Backup operation completed successfully”);
}

public function copyErrorHandler(event:IOErrorEvent):void
{
 trace(“Operation failed.”);
}

244 ❘ chaPter 11 FIle management

deleting Files and directories

When using AIR for desktop operating systems, you have the option of deleting a file
(deleteFile() and deleteFileAsynch()) or sending it to the Trash/Recycle Bin (moveToTrash()
and moveToTrashAsync()). However, because there is no Trash/Recycle Bin concept in the Android
OS or iOS, the moveToTrash() and moveToTrashAsync() methods behave in the same manner as
their delete counterparts.

The following code evaluates a file to determine if it’s a file or directory. It then issues the appropri-
ate delete command:

var tempFile:File = File.createTempFile();
// do something with tempFile, then…

if (tempFile.isDirectory() == true)
 tempFile.deleteDirectory(true)
else
 tempFile.deleteFile();

Or, if you use deleteFileAsync(), you should assign a handler to the complete event when the
deletion process is finished.

reaDinG anD WritinG files

So far, this chapter has talked about how to work with files, but it has not discussed what you
can do with the data inside of them. The FileStream class is used for read and write opera-
tions with files. As with other file operations, you can work with a file stream synchronously or
asynchronously.

Whenever you read or write to a file stream, you open it by using the open() or openAsync()
method. These methods take two parameters: File and FileMode. FileMode is a static class that
specifies the permissions open to the FileStream object during the operation. There are four pos-
sible file modes:

FileMode.READ➤➤ indicates that the file is open for reading only.

FileMode.WRITE➤➤ specifies that the file is open for write access. If the file already exists, its
contents are deleted. If the file does not exist, it is created.

FileMode.APPEND➤➤ specifies that the file is to be opened in “append mode” — in other words,
new data is added to the end of the file rather than overwriting existing data. If the file does
not exist, it is created.

FileMode.UPDATE➤➤ indicates that the file is open for both reading and writing. This mode
is used when you need random read/write access to the file. When you write to the file,
only the bytes at the current location are overwritten, not the entire file. If the file does
not exist, it is created.

reading and Writing Files ❘ 245

Table 11-2 summarizes the differences between these four file modes.

table 11-2: Possible File Modes

MoDes reaDable Writeable if file exists if file Doesn’t exist

FileMode.READ X

FileMode.WRITE X X Contents are
deleted .

File is created .

FileMode.APPEND X X Contents are
preserved .
Writing begins
at end of file .

File is created .

FileMode.UPDATE X X Contents are
preserved .
Writing occurs
at current
position .

File is created .

For example, consider the following code snippet, which opens a synchronous read/write stream to
a preferences file:

var file:File = File.applicationStorageDirectory.resolvePath(“preferences.xml”);
var fileStream:FileStream = new FileStream();
fileStream.open(file, FileMode.WRITE);

reading a file
When you read from a file, you often choose the manner to use based on the type of data you
are reading:

If you are working with ordinary text files that use a UTF-8 character set, use ➤➤ readUTFBytes().

If you need multibyte support, use ➤➤ readMultiByte(), which reads based on a character set
specified as a parameter.

If you are working with a byte array, use the more generic ➤➤ readBytes().

If you are working with AMF serialized objects, use ➤➤ readObject().

If you are working with a particular numeric data type, consider ➤➤ readDouble(), readFloat(),
readInt(), readShort(), readUnsignedInt(), or readUnsignedShort().

To synchronously read a file and assign the data to a variable using readMultiByte(), consider the
following code:

var file:File = File.documentsDirectory.resolvePath(“myapp/text1.txt”);
var fileStream:FileStream = new FileStream();

246 ❘ chaPter 11 FIle management

fileStream.open(file, FileMode.READ);
var s:String = fileStream.readMultiByte(file.size, File.systemCharset);
trace(s);
fileStream.close();

In this example, the FileStream open() method opens the text1.txt fi le for reading. Using
FileMode.READ specifi es that the FileStream instance can read from the fi le but not write to it.

The readMultiByte() method reads a multibyte string from the FileStream using the character set
specifi ed by File.systemCharset, which returns the default encoding used by Android. The total
size of the fi le stream is indicated by the file.size property. The close() method closes the fi le
stream when it’s fi nished.

Writing to a file
You can also write to a fi le using a set of write-related counterpart methods to the read methods
discussed in the previous section. These include writeUTFBytes(), writeMultiByte(),
writeBytes(), writeObject(), writeDouble(), writeFloat(), writeInt(), writeShort(),
writeUnsignedInt(), and writeUnsignedShort().

To demonstrate, the following code synchronously writes a multibyte string to a fi le:

var file:File= File.documentDirectory. resolvePath(“myApp/text1.txt”);
var fileStream:FileStream = new FileStream();
fileStream.open(file, FileMode.WRITE);
var s:String = “This text is being written.”
fileStream.writeMultiByte(s, File.systemCharset);
fileStream.close();

android case study: jots
To provide a fuller demonstration of how you can read and write fi les in an Android app, this sec-
tion walks through creating a basic text editor called Jots. Jots provides a TextArea for inputting
text, a Save button for saving onto the Android device, and an Open button for loading the fi le
saved previously.

Before diving into the ActionScript code, you need to set up the Flash project as follows:

 1 . Within the target directory, create a new Flash document based on the AIR for Android tem-
plate and name it Jots.fla.

 2 . In the Properties panel, enter Jots as the document class.

While the UI portion of this example is Android-specifi c, the File I/O portions
of the Jots document class will function as is under iOS.

reading and Writing Files ❘ 247

adding Minimal Comps set

This app also demonstrates how to use a set of open-source Flash-based UI components called
Minimal Comps, which you can download from www.minimalcomps.com. Although these are not
necessarily targeted for Android, they provide an alternate example of UI implementation beyond
what you’ve seen elsewhere in this book.

Although this section doesn’t fully “Androidize” the components, you do need to tweak the default
font and size before you can use them on Android devices. Therefore, follow these steps to add and
customize the component set for the purposes of Jots:

 1 . Download the Minimal Comps lightweight third-party components from
www.minimalcomps.com.

 2 . Unzip the file into a master backup directory.

 3 . Copy the assets and com subdirectories (under src), and paste them into your Jots
project directory.

 4 . Locate the DroidSans.ttf font file and add it to the assets directory for embedding in
your application.

 5 . Open the Component.as file in the com.bit101.components package in your editor of
choice.

 6 . Comment out the Flex 4 Embed reference to the PF Ronda Seven font, and add the following
just below it:

// Standard Minimal Comps font
//[Embed(source=”/assets/pf_ronda_seven.ttf”, embedAsCFF=”false”,
fontName=”PF Ronda
 Seven”, mimeType=”application/x-font”)]
// Replacing with Droid Sans for Android deployment
[Embed(source=”/assets/DroidSans.ttf”, embedAsCFF=”false”,
fontName=”Droid Sans”,
 mimeType=”application/x-font”)]

 7 . Save and close the Component.as file.

 8 . Open the Style.as in the same package inside of your favorite editor.

 9 . Change the fontName and fontSize properties to the following:

public static var fontName:String = “Droid Sans”;
public static var fontSize:Number = 22;

 10 . Save and close the Style.as file.

Therefore, although the Minimal Comps components are not optimized for Android, now they are
at least usable on Android devices for your sample app purposes — and they make life a little easier.

You can return to the .fla document and then, in the Properties panel, click the pencil button to
edit the Jots class definition in your preferred editor.

http://www.minimalcomps.com
http://www.minimalcomps.com

248 ❘ chaPter 11 FIle management

coding the Document class
As you begin to edit the Jots document class, the first thing you might want to do is add several
import statements for both the Minimal Comps components you intend to use as well as the file-
related classes you want to use for reading and writing. Here’s the list needed for this example:

// Base
import flash.display.MovieClip;

// Events
import flash.events.MouseEvent;
import flash.events.IOErrorEvent;
import flash.events.Event;

// Minimal Comps components
import com.bit101.components.PushButton;
import com.bit101.components.TextArea;

// File-related
import flash.filesystem.File;
import flash.filesystem.FileMode;
import flash.filesystem.FileStream;

// Stage setup
import flash.display.StageAlign;
import flash.display.StageScaleMode;

Code snippet Jots.as

Inside the Jots class, begin by declaring four private properties for UI and file-related purposes:

private var ta:TextArea;
private var openBtn:PushButton;
private var saveBtn:PushButton;
public var file:File;

Code snippet Jots.as

Filling the Constructor Function

Next, inside the constructor function, create your user interface. Then create a pointer to the text
file you will be reading and writing from. Here’s the code:

public function Jots() {

// Set up the stage
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

// Create TextField
ta = new TextArea();
ta.x = 10;
ta.y = 10;
ta.height = stage.stageHeight - 120;
ta.width = stage.stageWidth - 20;

reading and Writing Files ❘ 249

addChild(ta);

// Create Open button
openBtn = new PushButton();
openBtn.label = “Open”;
openBtn.x = 10;
openBtn.y = stage.stageHeight - 100;
openBtn.height = 70;
openBtn.width = 200;
openBtn.addEventListener(MouseEvent.CLICK, openBtnClickHandler);
addChild(openBtn);

 // Create Save button
 saveBtn = new PushButton();
 saveBtn.label = “Save”;
 saveBtn.x = 240;
 saveBtn.y = stage.stageHeight - 100;
 saveBtn.height = 70;
 saveBtn.width = 200;
 saveBtn.addEventListener(MouseEvent.CLICK, saveBtnClickHandler);
 addChild(saveBtn);

 // Create pointer to file
 file = File.applicationStorageDirectory.resolvePath(“MyDataFile.txt”);
}

Code snippet Jots.as

In this code, you can begin by setting up the stage, followed by creating a TextArea (Minimal
Comps version, not built-in version) instance. Assign it to take up all but 120 pixels of the height
and all but 20 pixels of the width of the viewport.

Continue by creating two PushButton instances: one for opening the file and one for saving it.
Assign MouseEvent handlers to these buttons to respond to user clicks.

Finally, create a pointer to the file MyDataFile.txt, which is located in the applicationStorage
directory.

saving a File

You want the Jots app to save the contents of the TextArea to a file when you click the Save button.
File saving is handled through the saveBtnClickHandler() method, which is the event handler for
the saveBtn click event. The code is shown here:

private function saveBtnClickHandler(event:MouseEvent):void
{
 var fileStream:FileStream = new FileStream();
 fileStream.open(file, FileMode.WRITE);
 fileStream.addEventListener(IOErrorEvent.IO_ERROR, ioWriteErrorHandler);
 var s:String = ta.text;
 s = s.replace(/\r/g, “\n”);
 s = s.replace(/\n/g, File.lineEnding);
 fileStream.writeUTFBytes(s);
 fileStream.close();
}

250 ❘ chaPter 11 FIle management

You open a file stream for writing using the synchronous open() method. You then assign the
content of the TextArea to the s variable. Before calling writeUTFBytes(), replace any new line
characters (\n) with a platform-specific line ending character using File.lineEnding. Once the
file stream is written to the MyDataFile.txt, call its close() method to close it.

As shown in the example, an event listener is added to the FileStream instance to deal with any IO
errors. You can handle them using a trace() call:

private function ioWriteErrorHandler(evt:Event):void
{
 trace(“Unable to save”);
}

opening a File

Jots needs to be able to open a previously saved MyDataFile.text file. Clicking the Open button
calls the openBtnClickHandler() method. This function uses openAsync() to open the file stream
asynchronously. Because you are opening asynchronously, define handlers to be called when the file
has been read or an IO error occurs:

private function openBtnClickHandler(event:MouseEvent):void
{
 var fileStream:FileStream = new FileStream();
 fileStream.openAsync(file, FileMode.READ);
 fileStream.addEventListener(Event.COMPLETE, completeHandler);
 fileStream.addEventListener(IOErrorEvent.IO_ERROR, ioReadErrorHandler);
}

Code snippet Jots.as

The file is being read asynchronously, so place the FileStream’s read routine inside the
Event.COMPLETE handler. Specifically, call readUTFBytes(), which assigns the contents
of the file stream to the s variable. This string’s value is assigned to the text property of
the TextArea. Here’s the code:

 private function completeHandler(event:Event):void
{
 var fileStream:FileStream = event.target as FileStream;
 var s:String = fileStream.readUTFBytes(fileStream.bytesAvailable);
 ta.text = s;
 fileStream.close();
}

Code snippet Jots.as

Finally, add an event handler in case an IO error occurs in the open process:

private function ioReadErrorHandler(event:Event):void
{
 trace(“Unable to open” + file.nativePath);
}

Listing 11-1 shows the complete listing for Jots.as.

reading and Writing Files ❘ 251

listinG 11-1: Jots.as

package {

 import flash.display.MovieClip;

 // Events
 import flash.events.MouseEvent;
 import flash.events.IOErrorEvent;
 import flash.events.Event;

 // Minimal Comps components
 import com.bit101.components.PushButton;
 import com.bit101.components.TextArea;

 // File-related
 import flash.filesystem.File;
 import flash.filesystem.FileMode;
 import flash.filesystem.FileStream;

 // Stage setup
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;

 /**
 * Document class for Jots application.
 * Sample code for Professional Flash Mobile Development
 *
 * @author Rich Wagner
 *
 */
 public class Jots extends MovieClip {

 private var ta:TextArea;
 private var openBtn:PushButton;
 private var saveBtn:PushButton;
 public var file:File;

 public function Jots() {

 // Set up the stage
 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_LEFT;

 // Create TextField
 ta = new TextArea();
 ta.x = 10;
 ta.y = 10;
 ta.height = stage.stageHeight - 120;
 ta.width = stage.stageWidth - 20;
 addChild(ta);

 // Create Open button
 openBtn = new PushButton();

continues

252 ❘ chaPter 11 FIle management

 openBtn.label = “Open”;
 openBtn.x = 10;
 openBtn.y = stage.stageHeight - 100;
 openBtn.height = 70;
 openBtn.width = 200;
 openBtn.addEventListener(MouseEvent.CLICK, openBtnClickHandler);
 addChild(openBtn);

 // Create Save button
 saveBtn = new PushButton();
 saveBtn.label = “Save”;
 saveBtn.x = 240;
 saveBtn.y = stage.stageHeight - 100;
 saveBtn.height = 70;
 saveBtn.width = 200;
 saveBtn.addEventListener(MouseEvent.CLICK, saveBtnClickHandler);
 addChild(saveBtn);

 // Create pointer to file
 file = File.applicationStorageDirectory.resolvePath(“MyDataFile.txt”);

 }

 private function openBtnClickHandler(event:MouseEvent):void
 {
 var fileStream:FileStream = new FileStream();
 fileStream.openAsync(file, FileMode.READ);
 fileStream.addEventListener(Event.COMPLETE, completeHandler);
 fileStream.addEventListener(IOErrorEvent.IO_ERROR, ioReadErrorHandler);
 }

 private function completeHandler(event:Event):void
 {
 var fileStream:FileStream = event.target as FileStream;
 var str:String =
 fileStream.readUTFBytes(fileStream.bytesAvailable);
 ta.text = str;
 fileStream.close();
 }

 private function ioReadErrorHandler(event:Event):void
 {
 trace(“Unable to open” + file.nativePath);
 }

 private function saveBtnClickHandler(event:MouseEvent):void
 {
 var fileStream:FileStream = new FileStream();
 fileStream.openAsync(file, FileMode.WRITE);
 fileStream.addEventListener(IOErrorEvent.IO_ERROR, onIOWriteError);
 var str:String = ta.text;
 str = str.replace(/\r/g, “\n”);

listinG 11-1 (continued)

summary ❘ 253

 str = str.replace(/\n/g, File.lineEnding);
 fileStream.writeUTFBytes(str);
 fileStream.close();
 }

 private function ioWriteErrorHandler(event:Event):void
 {
 trace(“Unable to save”);
 }

 }

}

running jots
Once you compile the Flash project and install the .apk
file onto your Android device, you can run it. Figure 11-2
shows the Jots app with notes in it.

suMMary

In this chapter, you explored how to work with file I/O
inside of your Android and iOS applications. You discov-
ered how to work with the File object. You also learned
how the directories you can access differ between Android
and iOS devices. Finally, I walked you through a sample
application that showed how to read and write to a text file.

fiGure 11-2

local databases

What’s in this chaPter?

Introducing SQLite ➤➤

Opening a database connection ➤➤

Selecting records from the database ➤➤

Inserting or updating records ➤➤

Although you can use XML or binary fi les to store application or user data, you also can make
full use of relational SQL databases right inside your Android and iOS applications. This chapter
introduces you to working with local relational databases in your Android and iOS apps.

All operations you perform on the database are not done with AS3, but SQL (Structured
Query Language), which is the standard query and data management language for relational
databases. Using SQL, you can create tables, perform queries, and insert or modify records.

WorkinG With a sQlite Database

One component of the underlying Adobe Integrated Runtime (AIR) engine that is part of AIR
for Android run time and compiled into Flash-based iOS apps is SQLite, a SQL relational
database engine. As a result, you can use the SQL database library API that is part of AIR to
work with a local database in your mobile application.

SQLite is a lightweight open-source database engine that stores relational database data in a
local fi le (often with a .db extension) that you can specify. (For more information on SQLite,
go to www.sqlite.org.)

For example, using SQLite, you can create database-oriented apps that run offl ine and sync with
a back-end server periodically when the user is connected to the Internet. You may also want to
use the database as an alternative to storing application data in a local XML or binary fi le.

12

http://www.sqlite.org

256 ❘ chaPter 12 local databases

oPen a Database connection

To work with a local database in your Android or iOS app, you need to establish a connection to the
database file using the SQLConnection object. Much like file input/output (see Chapter 11), you can
connect to the database synchronously or asynchronously.

When you open a synchronous connection, the SQL statements you specify are executed sequen-
tially based on the order in which they occur in your AS3 code. The application waits on the data-
base operations to finish before processing more code.

On the other hand, when you open an asynchronous connection, SQL statements are passed to the
database engine, which in turn executes the commands on the database. In this case, however, the
application doesn’t wait for the results of the SQL operation before continuing. Instead, event listen-
ers are set up to handle results when they are completed.

Be thoughtful when selecting the type of connection you want to establish with the database. If
you are working with a lot of data or are executing a complex query, you will probably want to use
an asynchronous connection so you don’t tie up the rest of the application while you’re waiting on
results. However, if your data set is modest and your queries are simple, a synchronous connection
may be your smartest move, because it is easier to maintain and debug.

No matter which option you choose, be sure that you place any code that depends on the results of the
database operation in the right location. For synchronous connections, you just need to have it appear
below the SQL statements you perform in logical sequence. For asynchronous connections, be sure
dependent code is placed in the event handler that is dispatched when the operation is completed.

creating a synchronous connection
To create a synchronous connection, you use the SQLConnection.open() method. To illustrate, the
following code opens a synchronous connection to a database file called vheissu.db, located in the
application storage directory of my application:

var sqlConnection:SQLConnection = new SQLConnection();
var databaseFile:File = File.applicationStorageDirectory.resolvePath(“vheissu.db”);
sqlConnection.open(databaseFile);

After the SQLConnection instance is instantiated, vheissu.db is assigned to the databaseFile
object. The databaseFile variable is passed as the parameter to the open() method.

When you call open(), your app looks for the specified file and opens a connection with it. If your
app can’t find that file, it creates the file for you automatically unless you specify otherwise.

creating an asynchronous connection
To open an asynchronous connection to the database, use the openAsynch() of the SQLConnection
object. For example:

private var sqlConnection:SQLConnection;

private function initDatabase(): void
{

Creating tables ❘ 257

 var databaseFile:File =
 File.applicationStorageDirectory.resolvePath(‘vheissu.db’);
 sqlConnection = new SQLConnection();
 sqlConnection.addEventListener(SQLEvent.OPEN, databaseOpenHandler);
 sqlConnection.addEventListener(SQLErrorEvent.ERROR, databaseErrorHandler);
 sqlConnection.openAsync(databaseFile);

 // Code not dependent on database could be placed here

}

private function databaseOpenHandler(event:SQLEvent): void
{
 // Add dependent code here
}

private function databaseErrorHandler(event:SQLErrorEvent): void
{
 trace(event.error.message, “Details:”, event.error.details);
}

The two event listeners are assigned to be triggered either when the database is opened or in
the case of a database error. The openAsynch() method is then called to open the Vheissu.db
database file. Once the connection is established, you can place any dependent code inside the
databaseOpenHandler() function, such as performing a SELECT statement on a table within
the database.

creatinG tables

Because the database may or may not exist when you try to open it, you can’t assume that the tables
you want to work with exist. Therefore, the first initialization routine that I perform when accessing
a database is issuing a CREATE TABLE statement to the database.

To illustrate, consider the following code:

// Create connection to SQLite database. Create, if not found.
_connection = new SQLConnection();
//var dbFile:File = File.applicationStorageDirectory.resolvePath(‘Vheissu.db’);
var dbFile:File = File.applicationDirectory.resolvePath(‘Vheissu.db’);
_connection.open(dbFile, “create”);

// Create tables if they don’t exist

// Feeds table
var createTable1: SQLStatement = new SQLStatement();
createTable1.sqlConnection = _connection;
createTable1.text =
 “CREATE TABLE IF NOT EXISTS feeds (“ +
 “ uid INTEGER PRIMARY KEY, “ +
 “ url TEXT UNIQUE, “ +
 “ name TEXT, “ +
 “ logoUrl TEXT, “ +
 “ lastFetched DATE “ +

258 ❘ chaPter 12 local databases

 “)”;
createTable1.execute();

// Feed entries table
var createTable2: SQLStatement = new SQLStatement();
createTable2.sqlConnection = _connection;
createTable2.text =
 “CREATE TABLE IF NOT EXISTS feedEntries (“ +
 “ guid TEXT PRIMARY KEY, “ +
 “ url TEXT, “ +
 “ feedId INTEGER, “ +
 “ title TEXT, “ +
 “ text TEXT, “ +
 “ timestamp DATE, “ +
 “ thumbnailUrl TEXT, “ +
 “ author TEXT, “ +
 “ authorUrl TEXT, “ +
 “ category TEXT, “ +
 “ wasRead BOOLEAN “ +
 “)”;
createTable2.execute();

Code snippet LocalFeedStore.as (though structured differently)

As shown in the previous code, a connection is opened to a database called Vheissu.db. If
the database is not found, a new file is created. A SQLStatement instance is created, and a
CREATE TABLE SQL command is assigned to its text property. This SQL statement is sent to
the database engine using execute(). The SQL command checks to see if the feeds table
exists. If it does exist, nothing is executed. If it doesn’t exist, the table is created. A similar
procedure is performed for the feedEntries table.

In the example, text, integer, and date fields are defined. However, as Table 12-1 shows, you can
actually use several types of data.

table 12-1: SQLite Data Types

tyPe DescriPtion

TEXT normal text .

NUMERIC Real, integer, or null values .

INTEGER Integer values .

REAL Floating point numbers .

BOOLEAN True or false values .

DATE Date values .

XML XML text . (Use XML() to typecast the incoming data into an XML object .)

XMLLIST XML list . (Use XMLList() to typecast the incoming data into an XML list .)

Creating tables ❘ 259

tyPe DescriPtion

OBJECT For storing JavaScript or ActionScript object instances . Data is serialized in
AMF3 format .

NONE Data is inserted into the field without conversion .

Next, you need to create indexes if they don’t exist using the following code:

var createIndex1: SQLStatement = new SQLStatement();
createIndex1.sqlConnection = _connection;
createIndex1.text =
 “CREATE INDEX IF NOT EXISTS idxFeedEntriesById ON feedEntries
(feedId, wasRead, timestamp)”;
createIndex1.execute();

var createIndex2: SQLStatement = new SQLStatement();
createIndex2.sqlConnection = _connection;
createIndex2.text =
“CREATE INDEX IF NOT EXISTS idxFeedEntriesByUrl ON feedEntries (url)”;
createIndex2.execute();

As you can see from the tables, this database stores RSS feeds and feed entries (articles). There is a one-
to-many relationship between the tables linked by feedId as the foreign key in the feedEntries table.
The source code has matching AS3 classes, as shown in Listings 12-1 and 12-2.

listinG 12-1: Feed.as

package com.richwagner.feed
{

 /**
 * Feed is a model class for RSS feeds.
 *
 * @author Rich Wagner
 *
 */
 public class Feed
 {

 private var _uid:int;
 private var _url:String;
 private var _entries:Vector.<FeedEntry>;
 private var _lastFetched:Date;
 private var _logoUrl:String;
 private var _name:String;

 /**
 * Constructor
 *
 */

continues

260 ❘ chaPter 12 local databases

 public function Feed()
 {
 _entries = new Vector.<FeedEntry>();
 }

 /**
 *
 * Getters and Setters
 *
 */

 public function get uid():int
 {
 return _uid;
 }

 public function set uid(value:int):void
 {
 _uid = value;
 }

 public function get entries():Vector.<FeedEntry>
 {
 return _entries;
 }

 public function set entries(value:Vector.<FeedEntry>):void
 {
 _entries = value;
 }

 public function get url():String
 {
 return _url;
 }

 public function set url(value:String):void
 {
 _url = value;
 }

 public function get lastFetched():Date
 {
 return _lastFetched;
 }

 public function set lastFetched(value:Date):void
 {
 _lastFetched = value;
 }

 public function get logoUrl():String
 {

listinG 12-1 (continued)

Creating tables ❘ 261

 return _logoUrl;
 }

 public function set logoUrl(value:String):void
 {
 _logoUrl = value;
 }

 public function get name():String
 {
 return _name;
 }

 public function set name(value:String):void
 {
 _name = value;
 }

 }
}

listinG 12-2: Feedentry.as

package com.maark.feed
{

 /**
 * FeedEntry is a model class for an RSS feed entry
 *
 * @author Rich Wagner
 *
 */
 public class FeedEntry
 {
 public var guid:String;
 public var url:String;
 public var feedId:int;
 public var title:String;
 public var text:String;
 public var timestamp:Date;
 public var thumbnailUrl:String;
 public var author:String;
 public var authorUrl:String;
 public var category:String;
 public var wasRead:Boolean = false;

 /**
 * Constructs a feed item from a generic
 * object with fields corresponding to the
 * names of the various item properties.
 */
 public function FeedEntry(itemInfo:Object)
 {
 if (itemInfo)

continues

262 ❘ chaPter 12 local databases

 {
 guid = itemInfo.guid;
 url = itemInfo.url;
 title = itemInfo.title;
 text = itemInfo.text;
 timestamp = itemInfo.timestamp;
 thumbnailUrl = itemInfo.thumbnailUrl;
 author = itemInfo.author;
 authorUrl = itemInfo.authorUrl;
 category = itemInfo.category;
 wasRead = itemInfo.wasRead;
 }
 }

 }
}

MakinG a sQl Query

When you run a SELECT query on your database, you execute a SQLStatement in a process similar to
the one you used when you created a table in the first place. However, what’s different about a query is
that you need to process the resulting records that are returned to your program from the database.

Suppose, for example, that you want to retrieve all the entries for a given feed. You could do that
with a SELECT statement like this:

SELECT * FROM feedEntries WHERE feedId = 100

However, to make the call more generic, you would want to use a parameter to represent the feedId:

SELECT * FROM feedEntries WHERE feedId = :feedId

You can then assign a value to the feedId in your AS3 code and use that for your SELECT query.

To use that SELECT query in your app, you can use the following code:

public function fetch(feed:Feed):void
{
 const SELECT_ENTRIES_BY_FEED_ID:String =
 “SELECT * FROM feedEntries WHERE feedId = :feedId”;

var sqlStatement:SQLStatement = new SQLStatement();
sqlStatement.sqlConnection = _connection;
sqlStatement.text = SELECT_ENTRIES_BY_FEED_ID;
sqlStatement.parameters[“:feedId”] = feed.uid;
sqlStatement.execute();

// For each record in result set, add as a feedEntry instance
 var sqlResult:SQLResult = sqlStatement.getResult();
 var entries:Array = sqlResult.data;
 var entry:FeedEntry;

listinG 12-2 (continued)

inserting and Updating records ❘ 263

 if (entries)
 {
 for (var i:int=0; i<entries.length; i++)
 {
 entry = new FeedEntry(entries[i]);
 entry.feedId = feed.uid;
 feed.entries.push(entry);
 }
 }
}

In this code, the SQLStatement instance is assigned the SELECT query defined in the SELECT_
ENTRIES_BY_FEED_ID constant. As you can see, the :feedId is defined as a parameter in the SQL
command. As a result, you need to assign a value to it before the query is executed. To do so, assign
the value through the SQLStatement instance’s parameter property.

After the query is executed, the results are assigned to a SQLResult instance. You can then assign its
data property to an Array instance called entries. Finally, iterate through the entries array and
create new FeedEntry instances and assign them to the Feed object’s entries property.

insertinG anD uPDatinG recorDs

When you want to insert new records in a database, execute an INSERT INTO statement. For example:

INSERT INTO feeds (uid, url, name, logoUrl, lastFetched)
VALUES (100, ‘www.me.com/rss.xml’,’My Feed’, ‘www.me.com/logo.png’, ‘03/31/2011’)

Or, if the record may or may not already exist (based on its primary key), use REPLACE INTO. When
you use it in a SQL statement, the database attempts to insert a record using the values provided.
But if the key already exists, it replaces the existing values of that record with the new values. (You
can also use the UPDATE command to update a record, but it does not do anything unless the record
already exists in the table.)

The following code does an insert/replace into the feeds and feedEntries tables:

public function save(feed:Feed):void
{
 const ADD_FEED:String =
 “REPLACE INTO feeds (uid, url, name, logoUrl, lastFetched) “ +
 “VALUES (:uid, :url, :name, :logoUrl, :lastFetched)”;

 const ADD_ENTRY:String =
 “REPLACE INTO feedEntries (guid, url, feedId, title, text,
timestamp, thumbnailUrl, author, authorUrl, category, wasRead) “
 +”VALUES (:guid, :url, :feedId, :title, :text, :timestamp
 :thumbnailUrl, :author,
:authorUrl, :category, :wasRead)”;

 // Batch up all the following updates.
 _connection.begin();

 // Insert Feed record

264 ❘ chaPter 12 local databases

 var is1:SQLStatement = new SQLStatement();
 is1.sqlConnection = _connection;
 is1.text = ADD_FEED;
 is1.parameters[“:uid”] = feed.uid;
 is1.parameters[“:url”] = feed.url;
 is1.parameters[“:name”] = feed.name;
 is1.parameters[“:logoUrl”] = feed.logoUrl;
 is1.parameters[“:lastFetched”] = feed.lastFetched.toUTCString();
 is1.execute();

 // Insert feedEntry records
 var is2:SQLStatement = new SQLStatement();
 is2.sqlConnection = _connection;
 is2.text = ADD_ENTRY;
 var feedEntry:FeedEntry;

 // For each enty
 for (var i:int=0; i<feed.entries.length; i++)
 {
 feedEntry = feed.entries[i];
 is2.parameters[“:guid”] = feedEntry.guid;
 is2.parameters[“:url”] = feedEntry.url;
 is2.parameters[“:feedId”] = feedEntry.feedId;
 is2.parameters[“:title”] = feedEntry.title;
 is2.parameters[“:text”] = feedEntry.text;
 is2.parameters[“:timestamp”] = feedEntry.timestamp.toUTCString();
 is2.parameters[“:thumbnailUrl”] = feedEntry.thumbnailUrl;
 is2.parameters[“:author”] = feedEntry.author;
 is2.parameters[“:authorUrl”] = feedEntry.authorUrl;
 is2.parameters[“:category”] = feedEntry.category;
 is2.parameters[“:wasRead”] = feedEntry.wasRead;
 is2.execute();
 }

 _connection.commit();
}

The first SQLStatement uses the ADD_FEED constant to define its REPLACE INTO statement. It
assigns the values of the incoming feed variable’s properties as the query parameters. The com-
mand then executes.

The second SQLStatement iterates through the entries property of the feed instance and adds each
FeedEntry instance as a record using the REPLACE statement defined in the ADD_ENTRY constant.

Listing 12-3 shows the full source code listing for the LocalFeedStore class.

listinG 12-3: localFeedstore.as

package com.richwagner.store
{
 import com.richwagner.feed.Feed;
 import com.richwagner.feed.FeedEntry;

 import flash.data.SQLConnection;

inserting and Updating records ❘ 265

 import flash.data.SQLResult;
 import flash.data.SQLStatement;
 import flash.filesystem.File;

 /**
 * LocalFeedStore is a database access class for storing and
 * retrieving RSS feeds.
 *
 * @author Rich Wagner
 *
 */
 public class LocalFeedStore
 {
 // SQL Connection
 private var _connection:SQLConnection;

 /**
 * Constructor
 *
 */
 public function LocalFeedStore()
 {
 initialize();
 }

 /**
 * Initializes database engine and creates database as needed
 *
 */
 public function initialize():void
 {
 // Create connection to SQLite database. Create, if not found.
 _connection = new SQLConnection();
 //var dbFile:File =
 File.applicationStorageDirectory.resolvePath(‘Vheissu.db’);
 var dbFile:File = File.applicationDirectory.resolvePath(‘Vheissu.db’);
 _connection.open(dbFile, “create”);
 // Create tables if they don’t exist
 createTables();

 }

 /**
 * Fetches the entries of the Feed from the database
 *
 * @param feed - Feed instance to fetch the entries
 *
 */
 public function fetch(feed:Feed):void
 {
 const SELECT_ENTRIES_BY_FEED_ID:String =
 “SELECT * FROM feedEntries WHERE feedId = :feedId”;

 var sqlStatement:SQLStatement = new SQLStatement();

continues

266 ❘ chaPter 12 local databases

 sqlStatement.sqlConnection = _connection;
 sqlStatement.text = SELECT_ENTRIES_BY_FEED_ID;
 sqlStatement.parameters[“:feedId”] = feed.uid;
 sqlStatement.execute();

 // For each record in result set, add as a feedEntry instance
 var sqlResult:SQLResult = sqlStatement.getResult();
 var entries:Array = sqlResult.data;
 var entry:FeedEntry;

 if (entries)
 {
 for (var i:int=0; i<entries.length; i++)
 {
 entry = new FeedEntry(entries[i]);
 entry.feedId = feed.uid;
 feed.entries.push(entry);
 }
 }
 }

 /**
 * Saves the feed and all of its entries to the database
 *
 * @param feed - Feed instance to save
 *
 */
 public function save(feed:Feed):void
 {
 const ADD_FEED:String =
 “REPLACE INTO feeds (uid, url, name, logoUrl, lastFetched) “ +
 “VALUES (:uid, :url, :name, :logoUrl, :lastFetched)”;

 const ADD_ENTRY:String =
 “REPLACE INTO feedEntries (guid, url, feedId, title, text,
timestamp, thumbnailUrl, author, authorUrl, category, wasRead) “ +
“VALUES (:guid, :url, :feedId, :title, :text, :timestamp, :thumbnailUrl,
 :author, :authorUrl, :category, :wasRead)”;

 // Batch up all the following updates.
 _connection.begin();

 // Insert Feed record
 var is1:SQLStatement = new SQLStatement();
 is1.sqlConnection = _connection;
 is1.text = INSERT_FEED;
 is1.parameters[“:uid”] = feed.uid;
 is1.parameters[“:url”] = feed.url;
 is1.parameters[“:name”] = feed.name;
 is1.parameters[“:logoUrl”] = feed.logoUrl;
 is1.parameters[“:lastFetched”] = feed.lastFetched.toUTCString();

listinG 12-3 (continued)

inserting and Updating records ❘ 267

 is1.execute();

 // Insert feedEntry records
 var is2:SQLStatement = new SQLStatement();
 is2.sqlConnection = _connection;
 is2.text = INSERT_ENTRY;
 var feedEntry:FeedEntry;

 // For each enty
 for (var i:int=0; i<feed.entries.length; i++)
 {
 feedEntry = feed.entries[i];
 is2.parameters[“:guid”] = feedEntry.guid;
 is2.parameters[“:url”] = feedEntry.url;
 is2.parameters[“:feedId”] = feedEntry.feedId;
 is2.parameters[“:title”] = feedEntry.title;
 is2.parameters[“:text”] = feedEntry.text;
 is2.parameters[“:timestamp”] = feedEntry.timestamp.toUTCString();
 is2.parameters[“:thumbnailUrl”] = feedEntry.thumbnailUrl;
 is2.parameters[“:author”] = feedEntry.author;
 is2.parameters[“:authorUrl”] = feedEntry.authorUrl;
 is2.parameters[“:category”] = feedEntry.category;
 is2.parameters[“:wasRead”] = feedEntry.wasRead;
 is2.execute();
 }

 _connection.commit();
 }

 /**
 * Wipes the feed and all entries of the specified feed from the
 local cache
 *
 * @param feed - Feed instance to wipe
 *
 */
 public function wipe(feed:Feed):void
 {

 // Batch up all the following updates.
 _connection.begin();

 // Delete the feed and its items from the database.
 var deleteFeed:SQLStatement = new SQLStatement();
 deleteFeed.sqlConnection = _connection;
 deleteFeed.text = “DELETE FROM feedEntries WHERE feedId = :feedId”;
 deleteFeed.parameters[“:feedId”] = feed.uid;
 deleteFeed.execute();

 // Delete the feed and its items from the database.
 var deleteFeed2:SQLStatement = new SQLStatement();
 deleteFeed2.sqlConnection = _connection;
 deleteFeed2.text = “DELETE FROM feeds WHERE uid = :uid”;

continues

268 ❘ chaPter 12 local databases

 deleteFeed2.parameters[“:uid”] = feed.uid;
 deleteFeed2.execute();

 // Batch up all the following updates.
 _connection.commit();

 }

 /**
 * Creates tables (if needed) in the database
 *
 */
 private function createTables():void
 {
 // Create our tables if they don’t already exist.

 // Feeds table
 var createTable1: SQLStatement = new SQLStatement();
 createTable1.sqlConnection = _connection;
 createTable1.text =
 “CREATE TABLE IF NOT EXISTS feeds (“ +
 “ uid INTEGER PRIMARY KEY, “ +
 “ url TEXT UNIQUE, “ +
 “ name TEXT, “ +
 “ logoUrl TEXT, “ +
 “ lastFetched DATE “ +
 “)”;
 createTable1.execute();

 // Feed entries table
 var createTable2: SQLStatement = new SQLStatement();
 createTable2.sqlConnection = _connection;
 createTable2.text =
 “CREATE TABLE IF NOT EXISTS feedEntries (“ +
 “ guid TEXT PRIMARY KEY, “ +
 “ url TEXT, “ +
 “ feedId INTEGER, “ +
 “ title TEXT, “ +
 “ text TEXT, “ +
 “ timestamp DATE, “ +
 “ thumbnailUrl TEXT, “ +
 “ author TEXT, “ +
 “ authorUrl TEXT, “ +
 “ category TEXT, “ +
 “ wasRead BOOLEAN “ +
 “)”;
 createTable2.execute();

 var createIndex1: SQLStatement = new SQLStatement();
 createIndex1.sqlConnection = _connection;
 createIndex1.text =

listinG 12-3 (continued)

summary ❘ 269

“CREATE INDEX IF NOT EXISTS idxFeedEntriesById ON feedEntries
(feedId, wasRead, timestamp)”;
 createIndex1.execute();

 var createIndex2: SQLStatement = new SQLStatement();
 createIndex2.sqlConnection = _connection;
 createIndex2.text =
“CREATE INDEX IF NOT EXISTS idxFeedEntriesByUrl ON feedEntries (url)”;
 createIndex2.execute();
 }

 }
}

suMMary

Because of the capabilities of AIR for Android and Packager for iPhone, you can work with data-
bases right inside your app without requiring external library support. In this chapter, you explored
how to work with SQLite databases inside your Android and iOS applications. You began by con-
necting to databases and then performed common database operations, including creating tables,
selecting records, and inserting and updating records.

PART IV
testing and Debugging

chaPter 13: ⊲ Remote Debugging

chaPter 14: ⊲ Submitting Your App to the App Store

remote debugging

What’s in this chaPter?

Debugging on your mobile device ➤➤

Enabling Android devices for debugging ➤➤

Remote debugging inside of the Flash IDE ➤➤

One of the major operations of any application development project is debugging. However,
mobile apps pose a special problem on this ubiquitous development task — your runtime environ-
ment is located on a different machine from your development IDE. Therefore, you need to set up
your debugging environment before you can debug on your Android and iOS devices.

In this chapter, I’ll walk you through the steps you need to take to set up your development
environment and devices for remote debugging.

establishinG a Wifi connection

Although your Android or iOS device will already be connected to your development com-
puter via USB, remote debugging is actually done over WIFI. However, there’s one condition
for WIFI remote debugging to work — you’ll need to connect both your development com-
puter and device to the same WIFI network.

Some developers who have problems connecting to an existing WIFI network have had suc-
cess by turning their Android device into a WIFI hotspot and then connect their development
computer to it. To enable, go to Settings➤➪➤Wireless And Networks➤➪➤Tethering & Portable
Hotspot and confi gure your device according to your needs.

You’ll also need to know the IP address (or hostname) of your development computer. You
can fi nd it in Windows by running ipconfi g in a Windows command line window. Or, if
you’re running a Mac, go to System Preferences➤➪➤Network. The Network Settings page
displays your IP address.

13

274 ❘ chaPter 13 remote debuggIng

usinG the air DebuG launcher

If you’re using Flash Professional, you can perform a quick debug on your development machine
right inside of the IDE. While it won’t be the same as testing on the device itself, the AIR Debug
Launcher is a handy first pass debugging tool. Then, once you’ve got the kinks worked out, you
can move on to remote debugging on the device itself.

To run, open your .fla file in the Flash IDE and then choose Debug➤➪➤Debug Movie➤➪➤In AIR
Debug Mobile Launcher (Mobile). The app is launched in a separate window. (See Figure 13-1.)

anDroiD DebuGGinG

When you debug your Android apps on your Android device, you first need to make sure your phone is
enabled for debugging. Therefore, in order enable remote debug, you need to do the following:

 1 . On your Android device, enable debugging by going to Settings➤➪➤Applications➤➪➤Development
and enabling USB debugging. (See Figure 13-2.)

 2 . If it is not already enabled, make sure that USB Storage is enabled for your device.

The Android device will need to connect to TCP port 7935.

remote Debugging inside the flash iDe
The easiest way of debugging your Android app is to remote debug directly from inside of the Flash
IDE. To do so:

 1 . Click the AIR Android Settings dialog box on the Properties panel.

 2 . Click the Deployment panel. (See Figure 13-3.)

fiGure 13-1 fiGure 13-2

android debugging ❘ 275

 3 . Select Debug for the Android deployment type.

 4 . Select the Install Application On The Connected Android Device check box.

 5 . Deselect the Launch Application On The Connected Android Sevice check box.

 6 . Click the Permissions tab.

 7 . Select the INTERNET Permissions check box to enable the android:permission.INTERNET
permission in your app descriptor file.

 8 . Click Publish.

The app is compiled, published, and installed onto your device. But has not yet been
launched on your device.

 9 . Close out the dialog box.

 10 . Select the Debug➤➪➤Begin Remote Debug Session➤➪➤ActionScript 3 from the menu.

The Flash Professional IDE enters debug mode and displays a “Waiting for Player to
connect” message in the Output panel.

 11 . Launch your app on the Android device.

 12 . If prompted, enter the IP address or hostname of your development computer (see
Figure 13-4) and click OK.

You are now in debug mode. You can now trace or step through your code as needed.

fiGure 13-3 fiGure 13-4

276 ❘ chaPter 13 remote debuggIng

remote Debugging from the command line
You can also use the command line Flash Debugger (fdb.exe) which is included with Flash Builder
and the Flex SDK. Before you begin, you should make sure that your Flex SDK bin directory is in
your environment path. If not, you’ll need to add the directory information to each of the com-
mands line used in this section.

To do so, follow these steps:

 1 . In your application descriptor file (e.g., MyApp-app.xml), enable INTERNET permissions by
adding following XML code:

 <android>
 <manifestAdditions>
 <manifest>
 <data><![CDATA[<uses-permission
android:name=”android.permission.INTERNET” />]]></data>
 </manifest>
 </manifestAdditions>
 </android>

 2 . In a command prompt window, change to the directory in which your application source
code is located.

 3 . Compile the application with the amxmlc (amxmlc.bat) tool (located in the Flex SDK’s bin
directory) using amxmlc -debug MyApp.as.

The amxmlc tool will compile and create an .apk file.

 4 . Package the .apk you just created using the adt command-line tool. (See Appendix B for
more details on publishing with the command-line ADT tool.)

You’ll want to include a -connect option to specify the IP address or hostname of your
development machine. Type the following: adt -package -target apk-debug -connect
192.168.1.9 -storetype pkcs12 -keystore MyCert.p12 MyApp.apk MyApp-app.xml

MyApp.swf.

 5 . Use the adt tool to install the application onto your device: adt -installApp -platform
android -platformsdk /programs/android-sdk -package MyApp.apk

Keep this command line window open as you’ll come back to it in Step 6.

 6 . In a new command line window, launch the command-line debugger tool by typing fdb.

The Flash Debug window is displayed, and will show the status message “Waiting for Player
to connect.”

 7 . From your first command line window, launch the application using the adt tool by typing
adt -launchApp -platform android -platformsdk /programs/android-sdk -appid

MyApp.

Your app will launch on your Android device.

 8 . If prompted, enter the IP address or hostname of your development computer (refer to
Figure 13-4) and click OK.

ios debugging ❘ 277

Debugging with android sDk’s logcat
You can also use the Android SDK logcat utility to view the trace() output of your app. To do so,
make sure you create, install, and launch a debug version of your app by following the instructions
of the previous section. Then, you can run logcat with the following command:

adb logcat

(This assumes your Android SDK tool directory is in your environment path.)

In the Logcat window your trace output will be displayed, alongside other Android statements. You can
also access the Logcat window from the Dalvik Debug Monitor. To do so, choose Device➤➪➤Run logcat.

ios DebuGGinG

If you’re using Flash Professional, you can debug on your iOS device following a similar process to
what you use for Android. However, iOS does have a special diagnostic tool that comes in handy.
I’ll explain both in this section.

remote Debugging inside the flash iDe
To debug your iOS app from inside of Flash Professional, follow these steps:

 1 . Click the iPhone Settings dialog box on the Properties panel.

 2 . Click the Deployment panel (see Figure 13-5).

 3 . Select Quick publishing for device debugging
as the iPhone deployment type.

 4 . Click Publish.

The app is published and installed onto your
device.

 5 . Close out the dialog box.

 6 . Select the Debug➤➪➤Begin Remote Debug
Session➤➪➤ActionScript 3 from the menu.

The Flash Professional IDE enters debug
mode and displays a “Waiting for Player to
connect” message in the Output panel.

 7 . Launch your app on your iPhone or other iOS
device.

 8 . If prompted, enter the IP address or hostname
of your development computer and click OK.

You are now in debug mode. You can now
trace or step through your code as needed. fiGure 13-5

278 ❘ chaPter 13 remote debuggIng

viewing GPu rendering Diagnostics
One of the handiest debugging tricks that you can perform with iOS apps is being able to view GPU
rendering diagnostics. If you have an application that uses GPU rendering, you can use this debug-
ging feature to assess the extent to which your app uses hardware acceleration.

To use this debugging tool, you need to compile the app from the command line (see Appendix B for
full details), but include the -renderdiagnostics parameter just after the -package parameter. For
example:

pfi -package -renderingdiagnostics -target ipa-debug -connect 192.168.1.9 -
storetype pkcs12 -keystore RichWagnerDev.p12” -storepass gh0stQ21a
“build\CatMan.ipa” “CatMan-app.xml” “CatMan.swf” “Default.png”
“icons\29x29.png” “icons\57x57.png” “icons\512x512.png”

When enabled, the GPU rendering diagnostic transforms the app UI into a diagnostic environment.
Display objects have color-coded rectangular masks on top of them for the initial four screen refresh
cycles. Colors include:

A blue rectangle indicates a display object that is being rendered. ➤➤

A green rectangle is a display object that is a bitmap (or is being cached as a bitmap) and is ➤➤

being uploaded to the GPU.

A red rectangle signifies a display object that is a bitmap (or cached as bitmap) and is being ➤➤

re-uploaded to the GPU.

You can use this diagnostic information to help optimize your app. For example, if you see blue
being used for an object that doesn’t change, you can optimize by caching as a bitmap. If green
keeps reappearing for a display object, then your code might be re-creating identical objects when
it doesn’t need to. If red, then enable the cacheAsBitmapMatrix property for normal 2D display
objects so that they don’t need re-rendering during scale or rotation operations.

suMMary

Debugging a mobile app can be more challenging to perform than when developing for the Web
or desktop AIR. However, once you get your device properly connected with your development
machine over WIFI, then you can set breakpoints, step through your code, and evaluate your code
just like you’re used to. In this chapter, you learned how to configure your development environment
for debugging Android and iOS applications.

submitting Your app to the
app store

What’s in this chaPter?

Preparing your Android app ➤➤

Submitting to the Android Market➤➤

Getting iOS Credentials ➤➤

Submitting to the Apple App Store➤➤

You’ve designed and programmed your app, as well as tested and debugged it. You’ve got an
.apk or .ipa that you’ve signed with your digital certifi cate. Now, you’re ready to distribute
your app to others.

Maybe you’ve got a great app that will make you the next Bill Gates. Or maybe you just put
together an app you want to share with a few people who have interests similar to yours.
Whatever the case, your last step is to publish your app to the Android Market or Apple
App Store.

PreParinG your anDroiD aPP

Before you submit your app to the Android Market or distribute it on the Web, keep the fol-
lowing requirements in mind:

Make sure that you have the following items in your app descriptor XML fi le: ➤➤

<android:versionCode> and an <android:versionName> attribute in the
<manifest> element of its manifest. The server uses <android:versionCode>

14

280 ❘ chaPter 14 submIttIng Your app to the app store

as the basis for identifying the application internally and handling updates, and it displays
<android:versionName> to users as the application’s version.

Your application must define both an ➤➤ android:icon and an android:label attribute in
the <application> element of its manifest.

Getting a screenshot
When you submit your app to the Android Market, you’re asked to present screenshots. The easiest
way to get a screenshot is to do the following:

 1 . Connect your Android device to your computer using a USB cord.

 2 . Start the Dalvik Debug Monitor (tools/ddms.bat in your Android SDK directory).

Figure 14-1 displays the monitor.

fiGure 14-1

 3 . Select your device from the list.

 4 . Select Device➤➪➤Screen Capture from the top menu.

A Device Screen Capture window appears and displays a screenshot of your Android device.
(See Figure 14-2.)

 5 . On your device, launch your app and set it up for a screenshot.

submitting Your app to the android Market ❘ 281

 6 . Click the Refresh button in the Device Screen
Capture window to refresh the image.

 7 . If you’re satisfied with the screenshot, click the
Save button.

 8 . Repeat Steps 5–7 for each screenshot you want
to take.

 9 . Click Done when you’ve finished.

If you are submitting to the Android Market, you
need to upload in one of two sizes:

320➤➤ ×480

480➤➤ ×854

If your screenshot is a different size, you’ll need to
scale it in Photoshop or another image editing tool to
one of these two sizes.

subMittinG your aPP to the
anDroiD Market

The Android Market is the storefront for Android
apps. Android users can easily search for and down-
load apps to their Android devices through the
Android Market. If you are familiar with iPhone’s
popular App Store, think of the Android Market as the equivalent.

registering your Developer Profile
To register your developer profile, follow these steps:

 1 . Go to market.android.com/publish.

To submit your app to the Android Market, first register with Google and pay the $25
registration fee.

Then create the developer profile that identifies you.

 2 . Enter your name and contact info in the boxes provided, and click Continue. (See
Figure 14-3.)

 3 . You’re asked to pay for your registration using Google Checkout in the next two steps.

After your transaction is complete, you’re asked to return to the Android Market Developer
Site to complete the registration process.

as the basis for identifying the application internally and handling updates, and it displays
<android:versionName> to users as the application’s version.

Your application must define both an ➤➤ android:icon and an android:label attribute in
the <application> element of its manifest.

Getting a screenshot
When you submit your app to the Android Market, you’re asked to present screenshots. The easiest
way to get a screenshot is to do the following:

 1 . Connect your Android device to your computer using a USB cord.

 2 . Start the Dalvik Debug Monitor (tools/ddms.bat in your Android SDK directory).

Figure 14-1 displays the monitor.

fiGure 14-1

 3 . Select your device from the list.

 4 . Select Device➤➪➤Screen Capture from the top menu.

A Device Screen Capture window appears and displays a screenshot of your Android device.
(See Figure 14-2.)

 5 . On your device, launch your app and set it up for a screenshot.

fiGure 14-2

282 ❘ chaPter 14 submIttIng Your app to the app store

fiGure 14-3

 4 . Click the Android Market Developer Site link to continue.

The Android Market Developer Distribution Agreement is displayed. You’re asked to agree
to the agreement and to associate your credit card and account registration with the terms
of service.

 5 . Click the check box, and then click the I Agree, Continue link to continue.

You are taken to the Android Market home page, as shown in Figure 14-4.

After you complete this registration, you’re ready to upload and publish your apps.

submitting your app
Once you have an approved developer profile and have a debugged, tested, and finished app, you are
ready to submit it to the Android Market.

 1 . Go to market.android.com/publish.

 2 . Click the Upload an Application link.

The Upload an Application page is displayed, as shown in Figure 14-5.

submitting Your app to the android Market ❘ 283

fiGure 14-4

fiGure 14-5

284 ❘ chaPter 14 submIttIng Your app to the app store

 3 . Upload your .apk file by selecting it from your hard drive and clicking the Upload button.

The file is uploaded, and app info is displayed. The page also highlights the permissions that
users will be warned about. Be sure to check these over and remove any that are not essen-
tial to the running of the application. (See Figure 14-6.)

fiGure 14-6

Your app must be signed with a .p12 digital certificate that has a validity period ending
after October 22, 2033.

 4 . Upload two screenshots of your app in the Screenshots section.

See the “Getting a Screenshot” section earlier in this chapter for details on how to obtain
screenshots of your Android device. You need to specify either 0 or 2 screenshots.

Preparing Your ios app ❘ 285

 5 . If desired, add an optional promotional image.

 6 . If you choose to opt out of any third-party marketing activities, check Marketing Opt-Out.

 7 . Enter the name, description, promotional text, type, and category in the Listing Details
section.

The Price field is marked as free unless you have a Merchant Account with Google Checkout.
(You can click the Merchant Account link to get started with the sign-up process.)

 8 . Choose whether to have copy protection in the Publishing Options section.

It’s not recommended that you use this option. Google recommends using its newer licens-
ing service instead. Click the Licensing Service link to get started.

 9 . Check the Locations in which you want to list.

 10 . Enter contact information in the Contact Information box.

 11 . Read the Android Content Guidelines. If you’re satisfied that your app meets these guide-
lines, check the box.

 12 . Check the box indicating your agreement that your app is subject to U.S. export and
related laws.

 13 . Click the Save button to save your work without publishing. Or click the Publish button to
upload your submittal to the Android Market.

PreParinG your ios aPP

Before you submit, check out Apple’s App Store Review Guidelines, which is a plainly worded docu-
ment that tells you what Apple considers when determining whether to approve an app. You can find the
guidelines at https://developer.apple.com/appstore/resources/approval/guidelines.html.

When you’re satisfied that your app meets these guidelines, you’re ready to begin.

Getting a Distribution certificate
Similar to what you did when you obtained a developer certificate to develop and install your apps
on your own device for testing, for a final release, you need to get a distribution certificate that Flash
uses when it compiles the app into an .ipk file. To do so, follow these steps:

 1 . Log in to the iOS Dev Center at developer.apple.com.

 2 . Click the iOS Provisioning Portal link.

The iOS Provisioning Portal page is displayed, as shown in Figure 14-7.

 3 . Click the Certificates link on the left sidebar.

 4 . Click the Distribution tab.

A list of current certificates is displayed, as shown in Figure 14-8.

https://developer.apple.com/appstore/resources/approval/guidelines.html

286 ❘ chaPter 14 submIttIng Your app to the app store

fiGure 14-7

fiGure 14-8

Preparing Your ios app ❘ 287

 5 . If you have a certificate ready, click the Download button.

If you don’t, follow the on-screen instructions to create a certificate. Once it is created, then
you can download the .cer file and continue.

 6 . After you download the .cer file, you need to convert the file to a .p12 certificate format
so you can sign it in Flash CS5. To do so, see the instructions provided in Chapter 2 (in the
“Getting an iPhone Developer Certificate” section).

You now have the .p12 certificate ready for use when you publish your distribution version.

creating a Distribution Provisioning Profile
Once you have the .p12 file, you are ready to obtain a distribution provisioning profile. To do so,
follow these steps:

 1 . Log in to the iOS Dev Center at developer.apple.com.

 2 . Click the iOS Provisioning Portal link.

The iOS Provisioning Portal page is displayed. (Refer to Figure 14-7.)

 3 . Click the Provisioning link on the left sidebar.

 4 . Click the Distribution tab to display the list of distribution provisioning profiles.

If this is the first time you’ve selected this tab, this area is blank.

 5 . Click the New Profile button.

The Create iOS Distribution Provisioning Profile is displayed (see Figure 14-9).

fiGure 14-9

288 ❘ chaPter 14 submIttIng Your app to the app store

 6 . Fill out the profile form for the application you want to submit, and click the Submit button
when you are satisfied with the inputs.

Your provisioning profile is added to the list, with a Pending status.

 7 . Refresh the browser in a minute a two, and you should see the status changed to Active and a
Download button displayed.

 8 . Click the Download button to download the .mobileprovision file.

 9 . Save this in a handy location on your hard drive.

Publishing a Distribution release of your app
Now that you have all the preliminaries completed, you are ready to publish the final distribution
release of your iOS app. Follow these steps:

 1 . Open your app in Flash Professional.

 2 . In the iPhone Settings dialog box, click the Deployment tab.

 3 . Update the certificate used in the publishing process to point to the newly created .p12 distri-
bution file.

 4 . Update the Provisioning profile file to point to your new .mobileprovision file.

 5 . Select the Deployment➤➪➤Apple App Store option in the iPhone Deployment Type group.

 6 . Click the Publish button to publish the app using these settings.

 7 . Before submitting to the App Store, you need to rename the .ipa extension to .zip. Go
ahead and do it now so you’re ready to go later.

subMittinG your aPP to the aPPle aPP store

Once you have your app compiled and ready to go, follow these steps to submit your app to the
Apple App Store.

 1 . Log in to the iOS Dev Center at developer.apple.com.

 2 . Click the iTunes Connect link.

You are taken to the iTunes Connect website, as shown in Figure 14-10. This is the website
that you use for managing your store content.

 3 . Click the Manage Your Applications link.

 4 . Click the Add a New App link.

 5 . Follow the series of instructions in the wizard-like format to submit your app to the App
Store.

summary ❘ 289

fiGure 14-10

When you fill out the submission forms for your app, be sure to be as open and complete as pos-
sible. Doing so lessens the chance of red flags or roadblocks that might delay or block your app from
being approved by Apple.

Now just be patient and wait for Apple to review your app. Some approvals take a few days,
whereas others take a few weeks.

suMMary

In this final chapter, I walked you through the final steps to take for your app by submitting it to the
Android Market and the Apple App Store. You discovered the process of preparing, registering your
developer profile with Google, and submitting your app. I then showed you how to get the necessary
credentials in place for iOS apps as well as how to submit it to the Apple App Store.

application descriptor settings

What’s in this aPPenDix?

Application Descriptor Settings for Android ➤➤

Application Descriptor Settings for iPhone ➤➤

If you have created AIR apps using Flash or Flex, you are probably familiar with the applica-
tion descriptor fi le for your project. The application descriptor fi le is an XML fi le that pro-
vides metadata — such as application name and version — about your project. The compiler
reads and uses this data during the compilation process.

By convention, the application descriptor fi lename is projectName-app.xml. For example, the
application descriptor fi le for the FindMeAPizza project is named FindMeAPizza-app.xml.

In this appendix, I’ll describe the application descriptor settings for both Android and iPhone.

anDroiD aPPlication DescriPtor settinGs

Flash CS5 automatically creates and maintains the app descriptor fi le for you inside the envi-
ronment. You can modify several of the properties of the fi le via the AIR for Android dialog
box (see Figure A-1) or you can do it manually working with the app descriptor fi le.

When you manually modify the application descriptor fi le, don’t open the AIR for Android
dialog box until you have closed the fi le.

A

292 ❘ aPPenDix a applIcatIon descrIptor settIngs

fiGure a-1

sample android application Descriptor file
Listing A-1 provides a sample application descriptor file.

listinG a-1: sample application descriptor file

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<application xmlns=”http://ns.adobe.com/air/application/2.5”>

 <id>example.FindMeAPizza</id>

 <versionNumber>1.0.0</versionNumber>

 <versionLabel>Beta</versionLabel>

 <filename>FindMeAPizza</filename>

 <description>Finds the nearest Pizza shop based on your location.</description>

 <name>FindMeAPizza</name>

android application descriptor settings ❘ 293

 <copyright>Copyright ©2010, Rich Wagner</copyright>

 <initialWindow>
 <content>FindMeAPizza.swf</content>
 <systemChrome>standard</systemChrome>
 <transparent>false</transparent>
 <visible>true</visible>
 <fullScreen>false</fullScreen>
 <aspectRatio>portrait</aspectRatio>
 <renderMode>auto</renderMode>
 <autoOrients>false</autoOrients>
 </initialWindow>

 <icon>
 <image36x36>assets/36x36.png</image36x36>
 <image48x48>assets/48x48.png</image48x48>
 <image72x72>assets/72x72.png</image72x72>
 </icon>

 <customUpdateUI>false</customUpdateUI>

 <allowBrowserInvocation>false</allowBrowserInvocation>
<android>
 <manifestAdditions>
 <manifest>

 <!-- Define permissions -->
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.INTERNET” />
 <uses-permission
android:name=”android.permission.ACCESS_FINE_LOCATION” />
 <uses-permission android:name=”android.permission.WAKE_LOCK” />
 <uses-permission android:name=”android.permission.DISABLE_KEYGUARD” />
 <uses-permission android:name=”android.permission.READ_PHONE_STATE” />
 <uses-permission android:name=”android.permission.CAMERA” />
 <uses-permission android:name=”android.permission.RECORD_AUDIO” />
 <uses-permission
android:name=”android.permission.WRITE_EXTERNAL_STORAGE” />
]]>
 </data>

 <!-- Install on external card -->
 <!--attribute name=”android:installLocation” value=”preferExternal”/-->

 <!-- Not display on installation -->
 <application>
 <!--attribute name=”android:enabled” value=”false”/-->
 </application>

 <launcherActivity>

 <!-- Exclude from recently ran apps list -->

continues

294 ❘ aPPenDix a applIcatIon descrIptor settIngs

 <!--attribute name=”android:excludeFromRecents” value=”true”/-->

 <!-- Optionally specify invoke actions -->
 <data>
 <![CDATA[
 <intent-filter>
 <action android:name=”android.intent.action.EDIT”/>
 <category android:name=”android.intent.category.BROWSABLE”/>
 <category android:name=”android.intent.category.DEFAULT”/>
 <data android:scheme=”fmap”/>
 </intent-filter>
]]>
 </data>
 </launcherActivity>

 </manifest>
 </manifestAdditions>
</android>

</application>

basic Properties
The following list discusses the properties you are most likely to use:

<application>

Root element of the application descriptor file. For Android apps, it needs to have the AIR 2.0
namespace.

Value➤➤ — String

Example➤➤ — <application xmlns=”http://ns.adobe.com/air/application/2.5”>

<id>

This is the application ID of your application. The typical App ID is often a reverse-domain string.

Value➤➤ — String

Example — ➤➤ <id>com.richwagner.myapp</id>

<versionnumber>

This is the version number of the application and is required. The format should adhere to xx[.xx[.xx]],
where x is a digit 0–9. Subversions inside the brackets are optional. This property is used to determine
application upgrades, as an upgrade must have a higher version number than the earlier version.

Value➤➤ — String

Example➤➤ — <versionNumber>1.0.12</versionNumber>

listinG a-1 (continued)

android application descriptor settings ❘ 295

<versionlabel>

This is an optional tag that enables you to display a string value to the user and associate it with the
version.

Value➤➤ — String

Example➤➤ — <versionLabel>Alpha</versionLabel>

<filename>

This is the filename of the compiled .apk file. Don’t add an extension. The compiler supplies that.

Value➤➤ — String

Example➤➤ — <filename>FindMeAPizza</filename>

<name>

The official name of the application is the name your Android device uses.

Value➤➤ — String

Example ➤➤ — <name>FindMeAPizza</name>

<copyright>

Use this standard copyright line to protect your intellectual property.

Value➤➤ — String

Example➤➤ — <copyright>Copyright ©2010, Rich Wagner</copyright>

<description>

Here you provide a helpful description of the application and what it does.

Value➤➤ — String

Example➤➤ — <description>Finds the nearest pizza shop.</description>

<initialWindow>

This is the container of several child elements that indicate the settings for the initial display at
startup.

The <systemChrome>, <transparent>, and <visible> elements, used when compiling desktop
AIR apps, are not applicable for AIR for Android apps.

Here is an example:

 <initialWindow>
 <aspectRatio>portrait</aspectRatio>
 <autoOrients>false</autoOrients>

296 ❘ aPPenDix a applIcatIon descrIptor settIngs

 <content>FindMeAPizza.swf</content>
 <fullScreen>true</fullScreen>
 <renderMode>auto</renderMode>
 </initialWindow>

<aspectRatio>
Here you indicate the initial aspect ratio (portrait or landscape) of the application. Its value is either
portrait or landscape.

<autoOrients>
Here you indicate whether auto-orientation support is enabled. (See Chapter 7 for more informa-
tion) Its possible values are true or false.

<content>
This is the main SWF that the compiler uses for the application. Its value is

String.

<fullScreen>
Here you indicate whether to display the application in the entire viewport of the Android device or
whether to display the top bar. Its possible values are

true or false.

<renderMode>
This setting determines the way display objects are rendered. If the default auto is used, the compiler
makes the call. If gpu is used, hardware graphics acceleration is explicitly used. See Chapter 5 for more
details on how and when to use hardware acceleration. Its possible values are auto or gpu.

<supportedProfiles>

By defining supported files, you can limit the project to be compiled only for specific platforms. For
Android apps, either don’t add the element or use mobileDevice.

Value➤➤ — mobileDevice (desktop or extendedDesktop available for AIR contexts)

Example➤➤ — <supportedProfiles>mobileDevice</ supportedProfiles>

<icon>

This contains the child elements that define the icon files for the application, as shown in this
example:

 <icon>
 <image36x36>assets/36x36.png</image36x36>
 <image48x48>assets/48x48.png</image48x48>
 <image72x72>assets/72x36.png</image72x72>
 </icon>

android application descriptor settings ❘ 297

These are the image options:

<image36x36>➤➤ — This image is used for low-density Android devices. It has the value
String.

<image48x48>➤➤ — Image used for medium-density Android devices. Its value is String.

<image72x72>➤➤ — Image used for high-density Android devices. Its value is String.

android settings
The Permissions tab (see Figure A-2) of the AIR Android Application & Installer Settings dialog box
contains several Android specific permissions settings that you can enable for your application.

fiGure a-2

requesting device Permissions

The Android security model specifies that each application must ask for permission from the OS to
use the security or privacy-related features of the device. You have to ask for these up front when the
application is installed, not when the application is running.

298 ❘ aPPenDix a applIcatIon descrIptor settIngs

Inside of an AIR for Android application, you request permission inside of the <android> element,
which itself has descendants that must also be specified: <manifestAdditions> and <data>.

Here’s the basic structure:

<android>
 <manifestAdditions>
 <manifest>
 <data>
 <![CDATA[
 <uses-permission android:name=”android.permission.NAME_OF_PERMISSION” />
]]>
 </data>
 </manifest>
 </manifestAdditions>
</android>

Inside of the <data> element, you can add permission tags. These tags must be enclosed in a
CDATA tag.

Enabling internet access➤➤ — To enable internet access, use
<uses-permission android:name=”android.permission.INTERNET” />.

To perform remote debugging, make sure your descriptor file has this enabled.

Enabling geolocation services➤➤ — To enable GPS support and utilize the Geolocation class, use
<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />.

Disabling sleep➤➤ — To disable the device from sleeping (when playing video or using the
SystemIdleMode class). For example, <uses-permission android:name=”android
.permission.WAKE_LOCK” /> and <uses-permission android:name=”android
.permission.DISABLE_KEYGUARD” />.

Muting audio for phone call➤➤ — To mute audio when an incoming phone call is received use
<uses-permission android:name=”android.permission.READ_PHONE_STATE” />.

Enabling camera access — ➤➤ To enable access to the camera, use
<uses-permission android:name=”android.permission.CAMERA” />.

Enabling microphone access➤➤ — To enable your app to access the device’s microphone, use
<uses-permission android:name=”android.permission.RECORD_AUDIO” />.

Writing to external memory card➤➤ — To enable write access to the device’s external memory
card, use <uses-permission android:name=”android.permission.WRITE_EXTERNAL_
STORAGE” />.

installing to an external Card

You can also specify additional settings for your application inside of the <manifest> element.
While applications are normally installed to the device’s internal memory, you can also request to
install to external storage instead (for larger apps, for example):

<android>
 <manifestAdditions>
 <manifest>

android application descriptor settings ❘ 299

 <attribute name=”android:installLocation” value=”preferExternal”/>
 </manifest>
 </manifestAdditions>
</android>

not displaying an application on install

If you have an application that should not be displayed when it is installed, then set the value of the
android:enabled attribute to false:

<android>
 <manifestAdditions>
 <manifest>
 <application>
 <attribute name=”android:enabled” value=”false”/>
 </application>
 </manifest>
 </manifestAdditions>
</android>

adding launcher settings

You can specify certain application-specific settings related to the Android Launcher.

Excluding an application from recently ran lists➤➤ — If you want to disable your
application’s entry into the Launcher’s recently ran application list, use the
android:excludeFromRecents attribute:

<android>
 <manifestAdditions>
 <manifest>
 <launcherActivity>
 <attribute name=”android:excludeFromRecents” value=”true”/>
 </launcherActivity>
 </manifest>
 </manifestAdditions>
</android>

Enabling your application to be launchable from other applications — ➤➤ The
<launcherActivity> element also can contain an optional <data> section that enables
you to specify a custom URI for launching from other Android apps or a browser. To do so:

 1 . Specify the data URI using the <data android:scheme/> tag.

 2 . Specify the action that should be performed using the <action> tag.

Add additional info about which components handle the activity using a <category> tag.

For example, to open up my application to edit data using an rwapp:// protocol:

<android>
 <manifestAdditions>
 <manifest>
 <launcherActivity>
 <data>

rwapp://protocol:

300 ❘ aPPenDix a applIcatIon descrIptor settIngs

<![CDATA[
<intent-filter>
 <data android:scheme=”rwapp”/>
 <action android:name=”android.intent.action.EDIT”/>
 <category android:name=”android.intent.category.BROWSABLE”/>
 <category android:name=”android.intent.category.DEFAULT”/>
</intent-filter>
]]>
 </data>
 </launcherActivity>
 </manifest>
 </manifestAdditions>
</android>

For more info on intents, go to http://developer.android.com/guide/topics/
intents/intents-filters.html.

iPhone aPPlication DescriPtor settinGs

Flash CS5 automatically creates and maintains the application descriptor file for you inside of the
environment. You can modify the properties of the file via the iPhone OS Settings dialog box, shown
in Figure A-3.

fiGure a-3

http://developer.android.com/guide/topics/intents/intents-filters.html

iPhone application descriptor settings ❘ 301

However, there are also some properties in the application descriptor file that are not visible in the
iPhone OS Settings dialog box. Use this appendix as a guide to each property.

When you manually modify the application descriptor file, don’t open the iPhone OS Settings dialog
box until you have first closed the file.

sample iPhone application Descriptor file
Listing A-2 provides a sample application descriptor file.

listinG a-2: sample application descriptor file

<?xml version=”1.0” encoding=”UTF-8” standalone=”no” ?>
<application xmlns=”http://ns.adobe.com/air/application/2.0”>

 <id>DDK533SVDK.FindMeAPizza</id>

 <version>1.0</version>

 <filename>FindMeAPizza</filename>

 <name>FindMeAPizza</name>

 <copyright>Copyright ©2010, Rich Wagner</copyright>

 <description> Finds the nearest pizza shop.</description>

 <initialWindow>
 <content>FindMeAPizza.swf</content>
 <systemChrome>standard</systemChrome>
 <transparent>false</transparent>
 <visible>true</visible>
 <fullScreen>true</fullScreen>
 <aspectRatio>portrait</aspectRatio>
 <renderMode>auto</renderMode>
 <autoOrients>false</autoOrients>
 </initialWindow>

 <icon>
 <image29x29>assets/29x29.png</image29x29>
 <image57x57>assets/57x57.png</image57x57>
 <image512x512>assets/512x512.png</image512x512>
 </icon>

 <iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>AutoLogin</key>
 <string>true</string>
 <key>Username</key>
 <string>John Doe</string>
]]>

continues

302 ❘ aPPenDix a applIcatIon descrIptor settIngs

 </InfoAdditions>
 </iPhone>

</application>

Properties
The following sections show the properties of the iPhone OS application descriptor file.

<application>

This is the root element of the application descriptor file. For iPhone applications, it needs to have
the AIR 2.0 (or higher) namespace.

Value➤➤ — String

Example➤➤ — <application xmlns=”http://ns.adobe.com/air/application/2.0”>

<id>

Typically the application ID of your application is a reverse-domain string. See Chapter 2 for full
details on determining the application ID.

Value➤➤ — String

Example ➤➤ — <id>com.richwagner.myapp</id>

<version>

The format of the version of the application should adhere to the xx[.xx[.xx]] format where x is a
digit 0-9. Subversions inside of the brackets are optional.

Value ➤➤ — String

Example➤➤ — <version>1.0.12</version>

<filename>

This is the filename of the .ipa file. Don’t add an extension. That’s supplied by the compiler.

Value➤➤ — String

Example➤➤ — <filename>FindMeAPizza</filename>

<name>

This is the official name of the appLication that is the one used by iPhone and iTunes.

Value➤➤ — String

Example ➤➤ — <name>FindMeAPizza</name>

listinG a-2 (continued)

iPhone application descriptor settings ❘ 303

<copyright>

Use the standard copyright line to protect your intellectual property.

Value➤➤ — String

Example➤➤ — <copyright>Copyright ©2010, Rich Wagner</copyright>

<description>

Here you provide a helpful description of the application and what it does.

Value➤➤ — String

Example➤➤ — <description> Finds the nearest pizza shop.</description>

<initialWindow>

This is a container of several child elements that indicate the settings for the initial display at
startup.

The <systemChrome>, <transparent>, and <visible> elements, used when compiling AIR apps,
are not applicable for iPhone applications. Here is an example:

 <initialWindow>
 <aspectRatio>portrait</aspectRatio>
 <autoOrients>false</autoOrients>
 <content>FindMeAPizza.swf</content>
 <fullScreen>true</fullScreen>
 <renderMode>auto</renderMode>
 </initialWindow>

<aspectRatio>
This indicates the initial aspect ratio (portrait or landscape) of the application.

portrait or landscape are its only possible values.

<autoOrients>
Here you indicate whether auto-orientation support is enabled. (See Chapter 7). Possible values are
true or false.

<content>
This is the main SWF used by the compiler for the application. Its value is

String.

<fullScreen>
This indicates whether to display the application in the entire viewport of iPhone device or whether
to display the top bar. Its possible values are

true or false.

304 ❘ aPPenDix a applIcatIon descrIptor settIngs

<renderMode>
This determines the way display objects are rendered. If the CPU is used, the CPU is used for render-
ing. If the GPU is used, hardware acceleration is used. See Chapter 5 for more details on how and
when to use hardware acceleration. The possible values are CPU or GPU.

<profiles>

If defined, this setting allows you to limit the project to be compiled for only specific platforms. For
iPhone applications, either don’t add the element or use mobileDevice.

Value

Use mobileDevice (desktop or extendedDesktop available for AIR contexts) as shown here:
<profiles>mobileDevice</profiles>

<icon>

This is the container of child elements that define the icon files for the application. Here is an example:

 <icon>
 <image29x29>assets/29x29.png</image29x29>
 <image57x57>assets/57x57.png</image57x57>
 <image512x512>assets/512x512.png</image512x512>
 </icon>

You have the following options:

<image29x29>➤➤ — Image used in iPhone’s Spotlight search list. Its value is String.

<image57x57> ➤➤ — Image used as the main icon on the iPhone main screen. Its value is String.

<image512x512> ➤➤ — Image displayed in iTunes. (For testing use only). Its value is String.

<iPhone>

This contains elements used to define iPhone settings during installation, as shown here:

 <iPhone>
 <InfoAdditions>
 <![CDATA[
 <key>AutoLogin</key>
 <string>true</string>
 <key>Username</key>
 <string>John Doe</string>
]]>
 </InfoAdditions>
 </iPhone>

<InfoAdditions>
Within <iPhone> the container <InfoAdditions> holds the key-value pairs used in the application’s
Info.plist preferences file. Children inside of it must be enclosed in a CDATA tag. The <key> and
<string> elements define a key-value pair.

Compiling applications from
the Command line

If you are working solely in Flash Builder or simply prefer to use the command line, you can
compile Android and iOS applications directly from the command line.

coMPilinG anDroiD aPPlications

To compile .apk fi les, you use the Adobe Integrated Runtime (AIR) ADT tool from the com-
mand line and supply several parameters to it. The ADT (adt.bat on Windows) is located in
the bin subdirectory, inside of the AIR SDK folder.

Here’s the basic syntax:

adt -package
 -target apk|apk-debug
 -storetype keyType
 -keystore p12File
 -storepass password
 outputPackage
 appDescriptorXMLFile
 inputPackage

If you plan to use the ADT from command line, you’ll want to be sure to add its path as an
environment variable. Table B-1 shows the ADT parameters.

B

306 ❘ aPPenDix b compIlIng applIcatIons From the command lIne

table b-1: ADT Parameters

ParaMeter DescriPtion

-package Tells ADT that you want to create a package

-target apk for a final version of your app

apk-debug for a debug version to install on your Android device

-storetype keyType Type of key (e .g ., pkcs12)

-keystore p12File Path and filename of your .p12 certificate

-storepass password Password of your .p12 certificate

“outputPackage” Filename of your output .apk package

“appDescriptorXMLFile” Path and filename of your application descriptor XML file

“inputPackage” name of your .swf file that will be packaged as a .apk file, along
with any other files (such as, icons) that you wish to be added to
the package

Here’s an example:

adt
 -package
 -target apk-debug
 -storetype pkcs12
 -keystore “D:\iphonedev\RichWagnerDev.p12”
 -storepass gh0stQ21a
 “build\CatMan.apk” “CatMan-app.xml”
 “CatMan.swf” “icons\36x36.png”
 “icons\48x48.png” “icons\72x72.png”

runninG the PackaGer for iPhone

To compile .ipa files for iOS, you call the PFI Packager for iPhone (PFI) tool directly from the com-
mand line and supply several parameters to it. The PFI command-line tool (pfi.jar) is located in
the PFI/lib subdirectory, inside of the Flash CS5 folder.

Here’s the basic syntax:

java -jar pfiFile
 -package
 -target ipa-test|ipa-debug|ipa-ad-hoc|ipa-app-store
 -provisioning-profile mobileProvisionFile
 -storetype keyType
 -keystore p12File
 -storepass password
 ipaFile
 appDescriptorXMLFile
 sourceFileList

running the Packager for iPhone ❘ 307

For each of the files in the command string, you must specify the full path name. Also, make sure
java.exe is available in your path, or else reference the full path name in your command line
instruction. Table B-2 shows the PFI parameters.

table b-2: PFI Parameters

ParaMeter DescriPtion

-jar “pfiFile” Path and filename of the pfi.jar file .

-target ipa-test—for a test version to install on your iPhone .

ipa-debug—for a debug version to install on your iPhone .

ipa-ad-hoc—for use in ad hoc deployment .

ipa-app-store—for use when deploying to App Store .

-provisioning-profile

“mobileProvisionFile”

Path and filename of your .mobileprovision file .

-storetype keyType Type of key (e .g ., pkcs12) .

-keystore p12File Path and filename of your .p12 certificate .

-storepass password Password of your .p12 certificate .

“ipaFile” Path and filename of your output .ipa file .

“appDescriptorXMLFile” Path and filename of your application descriptor XML file .

sourceFileList Path and filename of all of the source files of your application,
including .swf, default.png, icon files . Put each in quotes and
separate with spaces (not commas) .

Here’s an example:

java
 -jar “C:\programs\Adobe\Creative Suite 5\Adobe Flash CS5\PFI\lib\pfi”
 -package
 -target ipa-test
 -storetype pkcs12
 -keystore “D:\iphonedev\RichWagnerDev.p12”
 -storepass gh0stQ21a
 “build\CatMan.ipa” “CatMan-app.xml” “CatMan.swf”
 “Default.png” “icons\29x29.png” “icons\57x57.png”
 “icons\512x512.png”

309

symbols
, (comma), email, 191
& (ampersand), HTTP, 193
? (question mark), HTTP, 193
[] (square brackets), objects, 79
%20, 239

a
ABC. See ActionScript Byte Code
AccelerateInfo, 109, 111–114
AccelerateInfo.as, 112–114
accelerationX, 110, 112, 117
accelerationY, 110, 112, 117
accelerationZ, 110, 112
Accelerometer, 109–127
AccelerometerEvent, 109–127
Accelerometer.Event.

UPDATE, 111–112
accelerometerUpdate-

Handler(), 117, 118, 124
Accessibility, 8
accX, 124
accY, 124
accZ, 124
ActionScript 3 (AS3), 4, 78–85

AIR, 8–9
Android, 22

document class
VanillaApp for

Android, 41–49
VanillaApp for iOS, 57

event handlers, 46–49, 81
.fla, 57
GoogleMaps, 201
import, 210
LiveFeed, 216
phone calls, 181

ActionScript Byte Code (ABC), 5–6
ActionScript Virtual Machine

(AVM2), 6
adb, 20, 21
adb.exe, 51
addBitmapData(), 221
addChild(), 45, 61, 222
ADD_ENTRY, 264
addEventListener(), 147,

210, 221
ADD_FEED, 264
ad-hoc provisioning profiles, 32
Adobe Extension Manager, 17
Adobe Integrated Runtime (AIR),

4, 5–7, 22
Android, 22

CameraRoll, 221–228
development preparation,

13–23
.fla, 40–41
Flash Builder, 5
GPU, 84
Microphone, 228–234
MXML, 23
security, 9–10
SQLite, 5

Android Settings, 168, 216,
297

API, 179
AS3, 8–9
Auto Orientation, 129
Debug Launcher, 70, 274
directories, 240
SDK, 13–14
swipe gestures, 96

ADT. See AIR Developer Tool
adt, 276
adt.bat, 305
afterOrientation, 131

Ahead-Of-Time (AOT), 6
AIR. See Adobe Integrated Runtime
AIR Developer Tool (ADT), 7, 16,

305
aliases, 239–240
align, 131, 133
altitude, 147
AMF, 245
amxmlc, 276
Android, 4–5

AIR, 5–6, 22, 221–228
development preparation,

13–23
.fla, 40–41
Flash Builder, 5
GPU, 84
Microphone, 228–234
MXML, 23
security, 9–10
SQLite, 5

application descriptor settings,
291–300

Auto Orientation, 129
Camera, 8, 179, 210–221
CameraRoll, 179, 221–228
command line, 305–306
debugging, 274
device support, 7–8
Flex, 14
Geolocation, 147–148
GoogleMaps, 198
import, 210
Jots, 246–253
Landscape, 168
Microphone, 8
Minimal Comps, 247
permissions, 297–299

CameraUI, 212
email, 196–197

inDex

310

android (continued) – Certificate

Android (continued)
LiveFeed, 218
MapServices, 206
PhoneServices, 187

Properties panel, 168
RFC 2086, 181
ScreenOrientation, 134
SDK, 10, 277

installation, 17–19
Mac OS X, 20–21

service integration, 179
swipe gestures, 96
VanillaApp, 39–54

AS3 document class, 41–49
constructors, 44–46
devices, 53–54
document class, 41–49
event handlers, 46–49
icons, 49
previewing, 52

WIFI, 273
<android>, 298
Android Debug Bridge, 18
Android Launcher, 299–300
Android Market, 279–285
Android Market Developer Site,

281–282
Android Settings, 49–52

AIR, 168
Aspect Ratio, 216
Permissions tab, 297

Auto Orientation, 129
General tab, 168, 216

Android Virtual Device (AVD), 21
AndroidAppTemplate.fla,

209, 210, 216, 228
android:enabled, 299
android.permission.

ACCESS-FINE-LOCATION,
206

android.permission
.ACCESS_FINE_LOCATION,
147–148

android.permission.
INTERNET, 187, 196–197, 206

<android:versionCode>,
279–280

<android:versionName>,
279–280

AOT. See Ahead-Of-Time
.apk, 5, 22, 53, 276, 305
App ID, 31–32, 50, 69
App Name, 50, 68
App Purchases, 31
“appDescriptorXMLFile”,

305, 307
appendText(), 81
appid, 172
Apple App Store, 69, 285–289
Apple Developer Program, 23–24
application, 243
<application>, 294, 302
application descriptor settings,

291–304
application sandbox, 10
applicationStorage, 243
Array, 263
AS3. See ActionScript 3
Aspect Ratio, 50, 68, 168, 216
<aspectRatio>, 296, 303
asynchronous connection, 256–257
asynchronous operations, 81, 243
attachCamera(), 218
Auto Orientation, 129–144

Android, 50
iPhone Settings General tab, 68

<autoOrients>, 130, 296, 303
AVD. See Android Virtual Device
AVD Manager, 18
AVM2. See ActionScript Virtual

Machine

b
bcc=myname@mycompany.com,

191
beforeOrientation, 131
benchmarking, 85
bin, 305
Bitmap, 44, 60, 102, 223
bitmap, 45, 61, 221
BitmapData, 83
bitmapData, 223
Blackberry, 4–5

blends, 84
Bluetooth, 8
bntSMS, 189
body=Message%20text, 191
BOOLEAN, 258

, 193
browseForImage(), 221
btnDefault, 140
btnFind, 171, 172
btnPhone, 184
Bundle Identifier, 31
Bundle Seed ID, 31
Button, 182, 186, 194
ByteArray, 230

c
ca, 217
cache, 82–83
cacheAsBitmap, 82
cacheAsBitmapMatrix, 83
cacheAsSurface, 82
calendar, 8
callbacks, 81
Camera

AIR API, 179
Android, 8, 179, 210–221

permissions, 298
iOS, 8, 179
iPhone, 209

Camera.getCamera(), 218
Camera.isSupported(), 217
CameraRoll, 179, 221–228

iPhone, 209
CameraRoll(), 221
CameraRoll.

supportsBrowseForImage,
223

CameraUI, 210–216
cameraUI, 211
CameraUI(), 210
<category>, 299
cc:myname@mycompany.com,

191
CDATA tags, 298, 304
.cer, 287
Certificate, 50

mailto:myname@mycompany.com
mailto:myname@mycompany.com

311

Certificate signing request – event.afterorientation

Certificate Signing Request (CSR),
24–27, 29–30

Mac OS X, 29
certificates

code-signing, 15–16
developer, 24–30
distribution, 285–287
iPhone Digital Certificate, 69
self-signed, 15–16

ChosenSecurity, 15
cleanResponse(), 173
click, 172, 183, 184, 189, 212
clock sounds, 238
close(), 250
code-signing certificates, 15–16
color, 115, 116
command line, 16, 276, 305–308
Compass.as, 156–159
compiler errors, 186
compression, 85
-connect, 276
constructors, 154, 171, 248–249

AS3 document classes, 44–46
CameraRoll, 221, 222
CameraUI, 210
Geolocate, 148
LiveFeed, 217
Shakey, 123
SpeakItHearIt, 229
swipe gestures, 98
VanillaApp

Android, 44–46
iOS, 60–62

contacts, 8
<content>, 296, 303
contentLoaderInfo, 223
<copyright>, 295, 303
copyTo(), 242
copyToAsync(), 243
CPU resource conservation, 77–78
CREATE TABLE, 257–262
createDirectory(), 241
createSphere(), 116
createTempDirectory(),

241–242
CSR. See Certificate Signing Request

D
daddr=, 198–199
Dalvik Debug Monitor, 18, 277, 280
<data>, 298, 299
data types, 79, 258–259
databaseFile, 256
databaseOpenHandler(), 257
DatagramSo9cket, 9
DATE, 258
Debug, 51
Debug Launcher, 70, 274
debugging

Android Debug Bridge, 18
Dalvik Debug Monitor, 18,

277, 280
Flash Debugger, 276
remote, 273–277
USB, 19

Default.jpg, 65
Default.png, 65–66, 168
defaultTextFormat, 45, 60
deleteFile, 244
deleteFileAsync(), 244
Deployment tab, 50–51, 69, 288
Deployment-Ad Hoc, 69
Deployment-Apple App

Store, 69
<description>, 295, 303
developer certificates, 24–30
developer profile, 281–282
developer.android.com/

sdk, 17
developer.apple.com, 285,

288
development provisioning profiles,

32–34
Device release, 51
Device Screen Capture, 280
devices, 30–31, 53–54
dial(), 181
directories, 239–241, 244
DirFile, 240
DirFile(), 240
dispose(), 83
distribution certificate, 285–287
distribution provisioning profiles,

32, 287–288

DNSResolver, 8
DockIcon, 9
document class, 170–178, 248–253

AccelerateInfo, 111–114
AS3, 41–49
Geolocate, 148–152
LiveFeed, 218
Shakey, 122–127
Speedometer, 161–167
SphereAcceleration,

116–121
swipe gestures, 97–101
touch events, 90–92
VanillaApp for Android,

41–49
downloads, 238
DRMManager, 9

e
echo $PATH, 21
email, 191–198
Embed, 90
[Embed], 44, 59–60, 153–154
embedded objects, 85
Emulator release, 51
EncryptedLocalStore, 9
ENTER_FRAME, 117
entries, 263, 264
errorHandler(), 212, 223
[Event], 123
event bubbling, 89
event handlers, 46–49, 81, 91–92,

189
Auto Orientation, 132
btnFind, 171
CameraUI, 211
cameraUI, 212
TextInput, 183–184
VanillaApp for Android,

46–49
VanillaApp for iOS, 62–65

event listeners, 149, 210, 257
CameraRoll, 221
contentLoaderInfo, 223
touch events, 89

event.afterOrientation, 133

312

event.CoMPlete – graphics

Event.COMPLETE, 223, 250
event.currentTarget

.content, 223
Event.ENTER_FRAME, 80
event.speed, 164
Event.stopPropagation, 81
executeCommand(), 180,

181, 193
Explicit App ID, 31
external memory cards, 298

f
fdb, 276
fdb.exe, 276
Feed, 78
feed, 264
Feed.as, 259
feedEntries, 259, 263–264
FeedEntry, 263
feedId, 259, 262
FeedPool.as, 78–79
fetch(), 172
File, 212, 239, 242–243
file, 244
file:///, 239
file I/O, 8
file management, 237–253

copying and moving files,
242–243

deleting files, 244
directories, 238–241
reading and writing files,

244–246
File.application-

Directory, 238
File.applicationStorage-

Directory, 238
File.copyTo(), 242–243
File.createDirectory(), 241
File.createTemp-

Directory(), 239
File.createTempFile(), 239,

241–242
File.desktopDirectory, 239
File.documents-

Directory, 239

File.lineEnding(), 250
FileMode.APPEND, 244–245
FileMode.READ, 244–245
FileMode.UPDATE, 244–245
FileMode.WRITE, 244–245
<filename>, 295, 302
File.nativePath, 239
FilePromise, 212
FileStream, 244–245, 250
FileStream open(), 246
File.userDirectory, 239
filters, 84
FindMeAPizza, 145, 169–178
.fla, 5, 39

Actionscript, 57
AIR for Android, 40–41
GoogleMaps, 200
iPhone, 57
Speedometer, 168

Flash Builder, 5, 22, 276
Flash Debugger, 276
Flash document. See .fla
Flash Media Server, 228
Flash Player, 5
Flex, 4, 14, 22, 129

SDK, 44, 60, 153–154
Embed, 90
Flash Debugger, 276

Font Embedding dialog box, 160
fonts, 85, 160–161
Footer’s button, 212
frame rate, 83
Full Screen, 50, 68, 216
<fullScreen>, 296, 303
functions, 80

G
gain, 230
garbage collection, 84–85
General tab, 50, 68–69, 168
Geolocate, 145–178
Geolocate.as, 150–152
geolocation, 8, 169–178
Geolocation, 146

Android, 147–148
permissions, 298

geolocationUpdate-
Handler(), 202

GoogleMaps, 201
Speedometer, 161
update, 171

geolocation, 155
GeolocationEvent, 145–178
GeolocationEvent-

.UPDATE, 147
GeolocationEvent-

.Update, 146
Geolocation-

.isSupported, 148
geolocationUpdate-

Handler(), 155, 163, 202
gesture events, 88–89

rotate, 101–107
swipe, 96–101
touch, 8
zoom, 101–107

GestureEvent, 88–89
GestureEvent.GESTURE_TWO_

FINGER_TAP, 89
GESTURE_ROTATE, 102
GESTURE_SWIPE, 98–99
GESTURE_ZOOM, 102
getSize(), 85
GetThatImage, 221–228
GetThatPic.as, 223–228
GlobalSign, 15
Google Voice, 190
GoogleMaps, 198–207

Android, 198
AS3, 201
.fla, 200
Geolocation, 201
UI, 201

GoogleMaps.as, 199–200
GoogleMaps.

pointToAddress(), 202
GoogleMaps.

pointToCoordinates(),
203

gotoAndStop(), 99
GPS. See geolocation
GPU, 84, 278
graphics, 82–83

313

heading – loader.loadFile-Promise

h
heading, 147
Hear It button, 230
height, 140
horizontalAccuracy, 147
hostname, 273, 276
Hoyt, Kevin, 222
HTML, 193
HTMLLoader, 9
HTTP, 193

i
<icon>, 296–297, 304
icons, 49, 66
Icons tab, 51, 69–70
<id>, 294, 302
IDE. See integrated development

environment
image, 223
Image button, 212
<image29x29>, 304
<image36x36>, 297
<image48x48>, 297
<image57x57>, 304
<image512x512>, 304
import, 210, 240

CameraRoll, 222
LiveFeed, 217
Microphone, 228–229

Included Files, 50, 69
indexOf(), 79
<InfoAdditions>, 304
Info.plist, 304
<initialWindow>, 295–296, 303
“inputPackage”, 305
INSERT INTO, 263
Install Application on the Connected

Android Device, 51
INTEGER, 258
integrated development environment

(IDE), 15–16, 22, 274–275, 277
iOS, 4–5

AIR, 6–7
App ID, 31–32
Auto Orientation, 129
Camera, 8, 179

CameraRoll, 179
debugging, 277
Dev Center, 288
development preparation,

23–37
device support, 7–8
devices, 30–31
GPU, 278
Microphone, 8, 179
Provisioning Portal, 285
provisioning profiles, 31–37
RFC 2086, 181
SDK, 11
swipe gestures, 96
VanillaApp, 54–73

AS3 document class, 57
constructors, 60–62
event handlers, 62–65
icons, 66
installation, 71–73
iPhone Settings, 66–70
previewing, 70
splash screen, 65–66

IP address, 273, 276
.ipa, 5, 6, 70, 288, 306
“ipaFile”, 307
iPhone, 4

ABC, 6
Apple Developer Program,

23–24
application descriptor settings,

300–304
Camera, 209
CameraRoll, 209
developer certificates, 24–30
.fla, 57
icons, 66
Landscape, 168–169
Microphone, 209
service integration, 179
SMS, 190
splash screen, 65–66

<iPhone>, 304
iPhone Configuration Utility, 35–37
iPhone Deployment Type, 69
iPhone Developer Program, 23–27
iPhone Digital Certificate, 69

iPhone Settings, 66–70, 130, 169,
277, 288

.ipk, 285
isSetAsDefault-

Application(), 9
IsSupported(), 146
isSupported(), 210, 211
isSupported, 229
isSupported:Boolean(), 146
iTunes, 35, 190
iTunes Connect, 288

j
-jar “pfiFile”, 307
java.exe, 307
join(), 193
Jots, 246–253
.jpg, 153

k
<key>, 304
Keychain Access, 25, 29
-keystore p12File, 305, 307
KindaSortMail, 194–198

l
Label, 194
Landscape, 167–169, 216
latitude, 147, 172, 202
launch(), 210, 212
<launcherActivity>, 299
line breaks, 193
Linux, 4–5
LiveFeed, 216–221
ll=, 199
LLVM. See Low Level Machine

Compiler
Load button, 222
Loader, 223
loaderCompleteHandler, 173
loader.contentLoader-

Info, 223
loader.loadFile-

Promise(), 223

314

local databases – permissions

local databases, 255–269
LocalConnection, 9
LocalFeedStore.as, 264–269
longitude, 147, 172, 202
loops, 79–80
Low Level Machine Compiler

(LLVM), 6

M
Mac OS X, 4–5, 20–21, 25–26, 29
Mail, 195
mail, 191
Mail.as, 191–193
Mail.sendMail(), 194
mailto:, 191–198
<manifest>, 279, 298
<manifestAdditions>, 298
MapServices, 200–201, 206
MapServices.as, 203–206
Matrix, 103–104
mediaCompleteHandler(), 212
MediaEvent, 223
MediaEvent.COMPLETE, 212
MediaPromise, 212, 223
mediaSelectHandler(), 223
MediaType.IMAGE, 212
MediaType.VIDEO, 212
memory conservation, 77–78
menu, 9
Microphone

AIR
Android, 228–234
API, 179

Android, 8, 179, 228–234
permissions, 298

iOS, 8, 179
iPhone, 209

Microphone.
getMicrophone(), 229

Mini.jpg, 43–44, 59–60
Minimal Comps, 247
Mobile safari, 4
mobileDevice, 304
.mobileprovision, 35, 36,

288, 307

MobileService, 180, 181,
191, 199

MobileService.as, 180–181
mouse

emulation events, 87
events, 92

mouseChildren, 81
mouseEnabled, 81
MouseEvent, 87, 249
moveTo(), 243
moveToAsync(), 243, 244
moveToTrash(), 244
MovieClip, 59, 81
multitouch API, 87–107
Multitouch.inputMode, 46,

62, 89, 98
MultitouchInputMode.

GESTURE, 89
Multitouch.InputMode

.NONE, 89
MultitouchInputMode

.TOUCH_POINT, 89, 91
music

files, 238
player and library, 8

muted:Boolean, 146
MXML, 23
mycert.p12, 16
MyDataFile.txt, 250

n
<name>, 295, 302
native UI commands, 8
NativeApplication exit(), 9
NativeMenu, 9
nativePath, 239–241
NativeWindow, 9
NativeWindow.notify-

User(), 9
NetConnection, 228
NetStream, 228
Network Settings, 273
NetworkInfo, 9
New Font Item, 160
newX, 118

newY, 118
NONE, 259
noSupportNotify(), 155
notification sounds, 238
NUMERIC, 258

o
%OA, 193
%OA%OA, 193
OBJECT, 259
objects, 79–80

embedded, 85
reusing, 78–79

offsetX, 46, 63, 99
offsetY, 46, 63
opaqueBackground, 82
open(), 250, 256
openAsync(), 250, 256–257
orientationChange, 140
OrientationSimple, 132
OrientationSimple.as,

134–138
Output File, 50, 68
“outputPackage”, 305
overwrite, 242

P
p, 181
.p12, 7, 15–16, 28, 287, 288, 305
-package, 278, 305
Packager for iPhone (PFI), 84, 209,

306–307
panHandler(), 62
parameter, 263
Password, 50, 69
Path to adb.exe, 51
PDF, 9
permissions

AIR for Android, 9–10
Android, 297–299

AIR, 9–10
CameraUI, 212
email, 196–197
GPS, 147–148

315

Permissions tab – setstyle()

LiveFeed, 218
MapServices, 206
PhoneServices, 187

Permissions tab, 52, 297
PFI. See Packager for iPhone
pfi.jar, 306
phone calls, 181–187
PhoneDialer, 182, 188–189
PhoneDialer.as, 181–182
PhoneDialer.dial(), 184
PhoneServices, 182–186,

187, 189
PhoneServices.as, 184–186
photo files, 238
PixelBender, 84
podcasts, 238
pointToAddress(), 200
pointToCoordinates(), 200
Poorman Compass, 145, 153–159
preferences.xml, 239
PressAndTapGestureEvent

.GESTURE_PRESS
_AND_TAP, 89

PrintJob, 9
.profile, 20–21
<profiles>, 304
Properties panel, 168, 169
property, 155
provisioning profiles, 287–288

iOS, 31–37
iPhone Configuration Utility,

35–37
iPhone Settings Deployment

tab, 69
iTunes, 35

-provisioning-profile
“mobileProvisionFile”,
307

Push Notification, 31
PushButton, 249

Q
q=, 199
query, 172

Quick Publishing for
Device Debugging, 69

Quick Publishing for
Device Testing, 69

r
radius, 172
rate, 230
readBytes(), 245
readDouble(), 245
readFloat(), 245
readInt(), 245
readMultiByte(), 245
readObject(), 245
readShort(), 245
readUnsignedInt(), 245
readUnsignedShort(), 245
readUTFBytes(), 245, 250
REAL, 258
recipient, 193
RECORD_AUDIO, 231
remote debugging, 273–277
removeEventListener(), 81
-renderdiagnostics, 278
Rendering, 68–69
renderingMode, 84
<renderMode>, 296, 304
REPLACE, 264
REPLACE INTO, 263
resolvePath(), 239, 241
REST, 172
results, 172
RFC 2086, 181
RIAs. See rich Internet applications
rich Internet applications (RIAs), 4
ringtones, 238
roll(), 117
root directory, 10, 182
rotate gestures, 101–107
rwapp://, 299

s
saddr=, 198–199
SampleDataEvent, 230, 231

saveBtn, 249
saveBtnClickHandler(), 249
scaleMode, 131, 133
scaleX, 102
scaleY, 102
ScreenOrientation, 134
screen.orientation, 133
ScreenOrientation

.DEFAULT, 133
ScreenOrientation.

ROTATED_LEFT, 134
ScreenOrientation.

ROTATED_RIGHT, 133
ScreenOrientation

.UNKNOWN, 134
ScreenOrientation.UPSIDE_

DOWN, 134
screenshots, 280–281
SD. See Secure Digital card
/sdcard/Alarms/, 238
/sdcard/Download/, 238
/sdcard/Movies/, 238
/sdcard/Music/, 238
/sdcard/Notification/, 238
/sdcard/Pictures?, 238
/sdcard/Podcasts/, 238
/sdcard/Ringtones/, 238
SDK. See Software Developer Kit
Secure Digital card (SD), 237–238
SecureSocket, 9
security, 9–10. See also permissions
SELECT, 257, 262–263
SELECT_ENTRIES_BY

_FEED_ID, 263
self-signed certificates, 15–16
Send, 194
sendClickHandler(), 195
sendData(), 172
sendMail(), 191, 193, 194
ServerSocket, 9
service integration, 179–207
setChildIndex(), 92
setRequestedUpdate-

Interval(), 110, 146
setSilenceLevel(), 230
setStyle(), 183

316

shader – textinput

Shader, 9
ShaderFilter, 9
Shake, 122
shake, 109, 124
shakeHandler(), 124
Shakey, 109, 122–127
size, 115, 116
sleep, 298
sll=, 199
sms:, 187–190
SMS messages, 187–190
SMS.as, 188–189
SMS.send(), 189
SnapAPic, 212
SnapAPic.as, 213–216
SnapAPic.fla, 210
Socket.bind(), 9
Software Developer Kit (SDK)

AIR, 13–14
Android, 10, 277

installation, 17–19
Mac OS X, 20–21

Flex, 44, 60, 153–154
Embed, 90
Flash Debugger, 276

iOS, 11
Sound, 231
sound, 231
sounds, 85, 96–97
soundByte, 231
sourceFileList, 307
speakItHandler(), 230
SpeakItHearIt, 228–234
SpeakItHearIt.as, 231–234
speed, 147
Speedometer, 145, 160–169
Speedometer.as, 164–167
Speedometer.fla, 168
Sphere, 114–121
SphereAcceleration, 109,

114–121
SphereAnimation.as, 118–121
splash screen, 65–66, 168
split(), 193
spn=, 199

Sprite, 44, 46, 59, 60–61, 62,
63, 81
Bitmap, 102
OrientationSimple, 132
Sphere, 115
startTouchDrag(), 92
TOUCH_BEGIN, 91

sprite, 45, 61
SQL queries, 262–263
SQLConnection, 256–257
SQLConnection.open(), 256
SQLite, 255–262

AIR for Android, 5
Android, 8

AIR, 5
CREATE TABLE, 257–262
data types, 258–259
iOS, 8
SQLConnection, 256–257

SQLResult, 263
SQLStatement, 262–263, 264
Stage, 131, 132, 171
stage, 91, 130, 131
stageClickHandler(), 184
Stage.frameRate, 83
StageOrientationEvent, 129,

130–131, 138
StageOrientationEvent.

ORIENTATION_CHANGE,
130, 133

StageOrientationEvent.
ORIENTATION
_CHANGING, 131

stage.StageWidth, 140
StageWebView, 8
startAtLogin, 9
startDrag(), 92
startTouchDrag(), 92
StatusEvent.Status, 146
stop(), 98
stopPropagation(), 89
stopTouchDrag(), 92
StorageVolumeInfo, 9
-storepass password,

305, 307
-storetype keyType, 305, 307

<string>, 304
strings, 79
subject=Subject%20Text, 191
<supportedProfiles>, 296
supportsAddBitmapData, 221
supportsBrowser-

ForImage, 221
.swf, 6
swipe gestures, 96–101
SwipeSound, 98
sxc.hu, 160
synchronous connection,

SQLConnection, 256
synchronous operations, File,

242–243
system path, Android SDK, 19–21
<systemChrome>, 295

t
t=, 199
taMessage, 194
-target, 305, 307
tel:, 181
TEXT, 258
text, 81–82, 250
text1.txt, 246
TextArea, 194, 249, 250
TextField, 44–45, 60, 81–82, 133

Auto Orientation, 132
directory aliases, 240
DirFile(), 240
Geolocate, 148
Shakey, 122
Speedometer, 161–162
stage, 132, 171
tfAlt, 162
tfInfo, 148, 173
tfSpeed, 162
update, 148

TextFormat, 44
TextInput, 183–184

compiler errors, 186
PhoneDialer, 182
UI, 194

317

textline – writeshort()

TextLine, 81
texture, 84
tfAlt, 162, 163
tfInfo, 44–46, 61–62, 140,

148, 173
tfSpeed, 162, 163
Thawte, 15
threshold, 124
tiBccAddress, 194
tiCcAddress, 194
Timeline, 96
timers, 80
timestamp, 110, 147
tiRecipient, 194
tiSubject, 194
tmpDir, 241
touch events, 88, 89–95
touch gestures, 8
touch-and-drag actions, 92–95
TOUCH_BEGIN, 88, 91
TOUCH_END, 88, 91
TouchEvent, 88
TOUCH_MOVE, 88, 91, 92
TOUCH_OUT, 88
TOUCH_OVER, 88
touchPointID, 92
TOUCH_ROLL_OUT, 88
TOUCH_ROLL_OVER, 88
TOUCH_TAP, 88
trace(), 51, 277
Transform, 104
TransformGestureEvent,

99, 102
TransformGestureEvent

.GESTURE_PAN, 88
TransformGestureEvent

.GESTURE_ROTATE, 88
TransformGestureEvent

.GESTURE_SWIPE, 88
TransformGestureEvent

.GESTURE_ZOOM, 88
<transparent>, 295
try..catch, 133

u
UDID. See unique device identifier
UI. See user interface
unique device identifier (UDID),

30–31
untitled.fla, 57
UPDATE, 263
Update, 147, 148, 171
update, 110, 149, 163
updateUI(), 156
url, 239, 240–241
URL protocols

email, 191–198
GoogleMaps, 198–207
phone calls, 181–187
service integration, 179–207
SMS messages, 187–190

USB debugging, 19
user interface (UI)

AS3, 81–82
Auto Orientation, 129
CameraRoll, 222
CameraUI, 211
GoogleMaps, 201
Label, 194
sendMail(), 194
SpeakItHearIt, 229
StatgeOrientation-
Event, 138

TextInput, 194
Video, 218

UTF-8, 245

v
VanillaApp, 39–73

AIR for Android, 40–41
Android, 39–54

AIR, 40–41
AS3 document class, 41–49
constructors, 44–46
devices, 53–54
document class, 41–49
event handlers, 46–49

icons, 49
previewing, 52

document class, 41–49
iOS, 54–73

AS3 document class, 57
constructors, 60–62
event handlers, 62–65
icons, 66
installation, 71–73
iPhone Settings, 66–70
previewing, 70
splash screen, 65–66

XML, 50
VanillaApp.as, 63–65
VeriSign, 15
Version, 50, 68
<version>, 302
<versionLabel>, 295
<versionNumber>, 294
verticalAccuracy, 147
Video, 216–221
Video button, 212
video files, 238
viewport, 84
Virtual Devices, 21
virtual machine, 5
visible, 155
<visible>, 295

W
Web services, 169–178
width, 140
WIFI, 273
Wildcard App ID, 31
Windows, 4–5, 26–27, 29–30
WindowsApplication.

frameRate, 83
writeBytes(), 246
writeDouble(), 246
writeFloat(), 246
writeInt(), 246
writeMultiByte(), 246
writeObject(), 246
writeShort(), 246

318

writeUnsignedint() – zoomhandler()

writeUnsignedInt(), 246
writeUnsignedShort(), 246
writeUTFBytes(), 246, 250

x
XML, 50, 129, 130, 173
XML, 258
XMLLIST, 258
XMLSignatureValidator, 9
xSpeed, 117, 118

y
ySpeed, 117, 118

Z
z=, 199
.zip, 288
zoom gestures, 101–107
zoomHandler(), 62

	Flash Mobile Development
	Dedication
	Credits
	About the Author
	Acknowledgments
	Contents

	Introduction
	Who This Book Is For
	What This Book Covers
	iOS or iPhone?
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Getting Started
	Chapter 1: Introducing Flash Development for Mobile Devices
	Expanding to the Mobile World
	Discovering Adobe AIR
	What You Can and Cannot Do
	Understanding the AIR for Android Security Model
	Getting to Know the Android SDK
	Getting to Know the iOS SDK
	Summary

	Chapter 2: Setting Up Your Development Environment
	Preparing for Android Development
	Preparing for iOS Development
	Summary

	Chapter 3: Building and Installing VanillaApp
	VanillaApp for Android
	VanillaApp for iOS
	Summary

	Part II: Touch and User Interaction
	Chapter 4: Rethinking ActionScript Programming
	Conserving Memory and CPU Resources
	ActionScript Practices
	UI Practices
	Graphics Practices
	General Application Practices
	Summary

	Chapter 5: Multitouch API
	Understanding the Multitouch Jargon
	Working with Touch Events
	Working with the Swipe Gesture
	Working with Rotate and Zoom Gestures
	Coding the Document Class
	Summary

	Chapter 6: Detecting Motion with Accelerometer
	Introducing Accelerometer and AccelerometerEvent
	Listening for Accelerometer Events
	Responding to Accelerometer Events
	Detecting Shaking
	Summary

	Chapter 7: Implementing Auto Orientation
	Enabling Your App to Rotate
	StageOrientationEvent
	Two Essentials for UI Reorientation
	Detecting an Orientation Change
	Changing Positioning Based on Orientation Changes
	Summary

	Chapter 8: Geolocation API
	Getting Geolocation Data
	Enabling GPS Support for Android
	Creating a Basic Geolocation Application
	Creating a Compass App
	Creating a Speedometer and Altimeter
	Sending Geolocation to a Web Service
	Summary

	Chapter 9: Service Integration Using URL Protocols
	Abstracting URL Protocols
	Making Phone Calls from Your Application
	Sending SMS Messages
	Sending E-mails
	Pointing on Google Maps
	Summary

	Chapter 10: Android Camera, Camera Roll, and Microphone
	CameraUI: Launch and Return
	Camera: Creating a Live Video Feed
	Tapping into the Camera Roll
	Capturing Sounds with the Microphone
	Summary

	Part III: Data
	Chapter 11: File Management
	Understanding the Android File and Directory Structure
	Working with Directories, Files, and File Streams
	Reading and Writing Files
	Summary

	Chapter 12: Local Databases
	Working with a SQLite Database
	Open a Database Connection
	Creating Tables
	Making a SQL Query
	Inserting and Updating Records
	Summary

	Part IV: Testing and Debugging
	Chapter 13: Remote Debugging
	Establishing a WIFI Connection
	Using the AIR Debug Launcher
	Android Debugging
	iOS Debugging
	Summary

	Chapter 14: Submitting Your App to the App Store
	Preparing Your Android App
	Submitting Your App to the Android Market
	Preparing Your iOS App
	Submitting Your App to the Apple App Store
	Summary

	Appendix A: Application Descriptor Settings
	Android Application Descriptor Settings
	iPhone Application Descriptor Settings

	Appendix B: Compiling Applications from the Command Line
	Compiling Android Applications
	Running the Packager for iPhone

	Index
	WroxBooks

