

Flash Development for
Android Cookbook

Over 90 recipes to build exciting Android applications with
Flash, Flex, and AIR

Joseph Labrecque

BIRMINGHAM - MUMBAI

Flash Development for Android Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the Joseph Labrecque, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1100611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849691-42-0

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

Credits

Author
Joseph Labrecque

Reviewers
Fabio Biondi

Sean Moore

Leonardo Risuleo

Acquisition Editor
Wilson D'souza

Development Editor
Neha Mallik

Technical Editors
Shreerang Deshpande

Merwine Machado

Project Coordinator
Jovita Pinto

Proofreader
Aaron Nash

Indexer
Monica Ajmera

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

Mobile is as HOT as a Habanero Chili!
It's taken a few years, but mobile and devices are finally hot. How hot? Like biting into a
freshly ripe, raw, Habanero chili kind-a-HOT. Can you taste the virtual heat on your virtual
tongue yet?

Yowza! The point I'm trying to get across is this. The broader mobile and device industry
has finally gone mainstream. Why else would you be reading this right now? Intellectual
curiosity? Well, maybe, but I'm wagering much more likely, because you want to learn
about the amazing and wonderful world of mobile, today!

Yes, folks, I think you'll agree almost 100 percent that mobile is finally hip, cool, sleek,
and dare I say it: glitzy. Unless you been living in some proverbial cave for the last few
years, you know this for a fact! Like it or not, our modern societies now operate in a world
dominated with internet connected small-screen pocket-sized Smartphone, e-readers,
mid-screen sized Tablets, and large screen digital TVs, and countless other gadgets
and gizmos in all their bountiful and lavish form factors. In fact, with all these devices
and platforms, recently, it occurs to me as if we're all at some gigantic virtual party, and
there's one huge smorgasbord on the dinner table for developers to dig into. Of course,
I'm sure you'll agree the Android dish is one of the main courses you are eyeing to gobble
down, first, right?

As an early adopter to the mobile industry, and one of the brave souls who pioneered
work with Flash and other early mobile technologies on various mobile and device
platforms over the years, it gives me great satisfaction to see what I had been advocating
has finally come to fruition. Yes! That proverbial egg timer has finally rung, and the apps
are flying out of the oven. Careful, boy are they RED HOT!

It strikes me that with all the excitement in developer kitchen these days, it feels a bit like
the explosive growth of the early days of the World Wide Web back in the 90's. There are
some changes now, though. One of the big changes now, is that we now have all these
form factors with various screens instead of those clunky desktop PCs and CRTs!

Smart phones and other devices have turned our cell phones into our pocket sized
computers. Yes, I said computers! Like it or not, for much of the modern world, our
personal computers of today, now fit in our pockets, and they are part of our daily lives
and routines as we move through the world.

Mmmmmm...Yummy! Pocket-sized Android device treats for desert, anyone?!

Android with a dash of Flash
So, how does Adobe fit into all this? Well, Adobe has been hard at work over the past
few years refining their suite of tools and products to help with the growing challenge
of allowing designers and developers to design, develop, and deploy compelling mobile
and device experiences, faster, better, and easier. There is no shortage of exciting and
compelling stream of news and innovations coming from Adobe's Engineering 'kitchen'
these days as I write this passage!

Adobe Flash, Flex, and AIR have been retooled, retrofitted, and enhanced to make it
significantly easier for existing Flash and Flex professionals to start leveraging Adobe
Creative Suite and other tools to target not only Android but also OS, BlackBerry Tablet
OS, and other mobile and device platforms soon to come. To me, the Flash Platform is
like a fork utensil. When it's appropriate, by all means use it to your advantage, especially
when trying to get food into your mouth!

The general idea of write once, tweak, and deploy to as many supported targets as
possible is a very real; and attainable goal when you look at what Adobe can provide
these days. Whether you're a long-time Flash veteran new to the mobile aspects
developing for Android, or whether you're a seasoned native Android developer curious
about the Flash Platform; you'll find recipes to help quench your thirst and fill your belly.
All you have to do is give it a try and see the results!

This book will help you do that! So "What's Cooking" in this Book?

As a famous chef might say in his famous cooking shows in the US, "BAM"!

In this title, Joseph takes you through some recipes on how to leverage your existing Flash
and ActionScript skills to build for Android Platform. I have gotten the unique pleasure
of seeing some of the early material. Strap on your coding apron and get ready to bake
some code recipes very soon, my fellow readers!

In this title, Joseph will explain more than one hundred examples about how to dealing
with things like multi-touch and gesture input, accessing GPS and location features,
leveraging the accelerometer, as well as tying into audio and visual inputs such as
camera and microphone on mobile devices. He'll also cover working with media such as
images, video and audio, and handling device layout and scaling, plus more tasty morsels
of mobile development goodness using ActionScript for AIR using Flash and Flex based
mobile applications on the Android Platform. Although this 'cookbook' assumes you know
at least some ActionScript and Flash basics, most will be able to pick up much of the
code and start running with it, given it's in a nice, juicy, step by step, recipe style format.
You should be able to apply these code snacks to your favorite designer or developer
workflow whether you're using Flash Builder, Flash IDE, or any other piece of popular
Flash authoring environment out there.

Well, are you hungry yet? Yes? Good! Well, time to get your inner-baker on, and cook
some flashy applications! After all, you have all those millions of hungry Android
consumers to feed with your tasty, finger licking good, creations. The oven is pre-heated,
now. Joseph's waiting for you in his coding kitchen. He's got lots of little snacks for you to
try out. Let's meet him in his kitchen and start cooking up some Android based recipes
using ActionScript, shall we?

P.S. Sorry if I made you physically hungry or thirsty while reading this foreword. Why not
grab a beer, or a red bull.

Also, why not put in that phone order in for pizza delivery? Now's the perfect time before
you dig in!

Bon Appétit and happy coding!

Scott Janousek,
Mobile and Device Technologist,
Gadget Geek and CEO/Founder of Hooken Mobile

About the Author

Joseph Labrecque is primarily employed by the University of Denver as a senior
interactive software developer specializing in the Adobe Flash Platform, where he
produces innovative academic toolsets for both traditional desktop environments and
emerging mobile spaces. Alongside this principal role, he often serves as adjunct faculty,
communicating upon a variety of Flash Platform solutions and general web design and
development subjects.

In addition to his accomplishments in higher education, Joseph is the proprietor of
Fractured Vision Media, LLC; a digital media production company, technical consultancy,
and distribution vehicle for his creative works. He is founder and sole abiding member of
the dark ambient recording project 'An Early Morning Letter, Displaced' whose releases
have received international award nominations and underground acclaim.

Joseph has contributed to a number of respected community publications as an article
writer and video tutorialist. He regularly speaks at user group meetings and industry
conferences such as Adobe MAX, FITC, and D2WC. In 2010, he received an Adobe Impact
Award in recognition of his outstanding contribution to the education community. He has
served as an Adobe Education Leader since 2008 and is also a 2011 Adobe
Community Professional.

Visit him on the web at http://memoryspiral.com/.

Special thanks to my wife Leslie, and to our daughters; Paige and Lily, for
bearing with me during the production of this work.

About the Reviewers

Fabio Biondi is a freelancer living in the north east of Italy. Since 2003 he deals almost
exclusively with the Adobe Flash Platform technologies.

He is an Adobe Certified Instructor (ACI) in Flex, AIR, Flash Professional, Flash Catalyst,
and FlashLite (ACE) and lately he has devoted time and resources to the development of
mobile and social networking applications.

Fabio runs a blog (www.fabiobiondi.com/blog) and a YouTube Channel
(http://www.youtube.com/user/BiondiFabio) where he provides free tutorials,
scripts, and news about the latest Adobe Flash Platform technologies.

I would like to thank my girlfriend Lisa, for always supporting and
encouraging me, and the Packt Publishing guys, Jovita and Wilson, for the
opportunity they have given to me.

Sean Moore has been developing web applications since 1998. He's been passionate
about Flash and ActionScript development for over eight years and working with Flex
for over four years. He was chosen to be a Flex Developer Community Champion and
an Adobe Community Professional by Adobe for his hard work and dedication to the
Flash Platform Community. Sean is a certified Flash developer and also a certified Flex
developer. Sean specializes in the development of Adobe AIR applications. He is the
creator of the ActionScript Cheatsheets. Sean has provided development and consulting
services for 2Advanced, Adobe Consulting, and Universal Mind. He's also worked with
many small businesses on Flash, Flex, and AIR applications. Sean has written Flex and
AIR articles for Adobe, O'Reilly, and Flash Magazine. He's provided technical authoring for
Manning Publications, Addison Wesley and O'Reilly. Sean has also given presentations at
various user groups on best practices for Flex development. Sean is also very interested
in BCI technology and Arduino development.

I'd like to thank the author for doing such a great job and also asking me to
be a technical reviewer.

Leonardo Risuleo is a designer and developer with several years experience in mobile,
new media and user experience. He's a highly dedicated professional and passionate
about what he does. He started back in 2003 and during these years he worked on a
variety of different mobile and embedded platforms for a number of well known brands.
Leo designs, prototypes, and develops mobile applications, games, widgets,
and websites.

Apart from being a Flash Platform enthusiast, Leo also contributes to the Flash and
mobile community as an author and blogger, and he's co-founder of the Italian 'Mobile &
Devices Adobe User Group'. From 2008 to 2010, Leo had the honor to be Forum Nokia
Champion—a recognition and reward program for top mobile developer worldwide.

In 2010 he formally founded Small Screen Design, a design and development studio
focused on mobile design and user experience.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
f Fully searchable across every book published by Packt

f Copy and paste, print and bookmark content

f On demand and accessible via web browser

Free Access for Packt account hold-

ers
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Getting Ready to Work with Android: Development
Environment and Project Setup 7

Introduction 8
Using Flash Professional CS5.5 to develop Android applications 8
Targeting AIR for Android with Flash Professional CS5.5 10
Using Flash Builder 4.5 to develop Android applications 13
Enabling Flash Builder 4 or Flex Builder to access Flex Mobile SDKs 15
Using Flash Builder 4 and below to develop Android applications 18
Enabling Powerflasher FDT 4.1 to access Flex Mobile SDKs 21
Using Powerflasher FDT 4.1 and below to develop Android applications 23
Converting a standard Flex project to a Flex Mobile project 26
Configuring the AIR SDK to package AIR for Android applications on Windows 29
Configuring the AIR SDK to package AIR for Android applications on
Linux or Mac OS 30

Chapter 2: Interaction Experience: Multitouch, Gestures, and Other Input 33
Introduction 34
Detecting supported device input types 34
Detecting whether or not a device supports multitouch 36
Verifying specific gesture support for common interactions 38
Using gestures to zoom a display object 41
Using gestures to pan a display object 43
Using gestures to swipe a display object 46
Using gestures to rotate a display object 49
Accessing raw touchpoint data 52
Creating a custom gesture based upon touchPoint data 55
Emulating the Android long-press interaction 59

ii

Table of Contents

Invoking the virtual keyboard programmatically 62
Responding to Android soft-key interactions 66
Responding to trackball and D-Pad events 68

Chapter 3: Movement through Space: Accelerometer and
Geolocation Sensors 73

Introduction 74
Detecting whether or not an Android device supports the accelerometer 74
Detecting Android device movement in 3D space 76
Adjusting the accelerometer sensor update interval 78
Updating display object position through accelerometer events 82
Switching between portrait and landscape based upon device tilt 86
Detecting whether or not a device supports a geolocation sensor 89
Retrieving device geolocation sensor data 93
Adjusting the geolocation sensor update interval 96
Retrieving map data through geolocation coordinates 101

Chapter 4: Visual and Audio Input: Camera and Microphone Access 107
Introduction 107
Detecting camera and microphone support 108
Using the traditional camera API to save a captured image 110
Using the Mobile CameraUI API to save a captured photograph 113
Using the Mobile CameraUI API to save a captured video 118
Using the device microphone to monitor audio sample data 122
Recording Microphone Audio Sample Data 125

Chapter 5: Rich Media Presentation: Working with Images,
Video, and Audio 131

Introduction 131
Loading photographs from the device cameraRoll 132
Applying Pixel Bender Shader effects to loaded images 136
Playing video files from the local filesystem or over HTTP 141
Playing remote video streams over RTMP 146
Playing audio files from the local filesystem or over HTTP 152
Generating an audio spectrum visualizer 156
Generating audio tones for your application 159

Chapter 6: Structural Adaptation: Handling Device Layout and Scaling 163
Introduction 164
Detecting useable screen bounds and resolution 164
Detecting screen orientation changes 166
Scaling visual elements across devices at runtime 169
Scaling visual elements based on stage resize in Flash Professional CS5.5 172

iii

Table of Contents

Employing the Project panel in Flash Professional CS5.5 176
Freezing a Flex application to landscape or portrait mode 179
Defining a blank Flex mobile application 183
Defining a Flex mobile view-based application 185
Defining a Flex mobile tabbed application with multiple sections 188
Using a splash screen within a Flex mobile application 191
Configuring the ActionBar within a Flex mobile project for use with
ViewNavigator 194
Hiding the ActionBar control in a single view for a Flex mobile project 198

Chapter 7: Native Interaction: StageWebView and URI Handlers 201
Introduction 201
Opening a website in the default Android browser 202
Rendering a website within an application 205
Managing the StageWebView history 210
Using StageWebView to load ads using ActionScript 216
Using StageWebView to load ads within a Flex mobile project 219
Making a phone call from an application 225
Sending a text message from an application 228
Invoking Google maps from an application 231
Invoking the Android Market using application URIs 236
Sending e-mail from an application 239

Chapter 8: Abundant Access: File System and Local Database 243
Introduction 243
Opening a local file from device storage 244
Saving a file to device storage 247
Saving data across sessions through local shared object 252
Storing application state automatically by using Flex 257
Creating a local SQLite database 260
Providing a default application database 266
Automating database tasks with FlexORM 271

Chapter 9: Manifest Assurance: Security and Android Permissions 279
Introduction 279
Setting application permissions with the Android Manifest file 280
Preventing the device screen from dimming 283
Establishing Android custom URI schemes 286
Anticipating Android Compatibility Filtering 290
Instructing an application to be installed to Device SDCard 292
Encrypting a local SQLite database 294

iv

Table of Contents

Chapter 10: Avoiding Problems: Debugging and Resource
Considerations 301

Introduction 301
Debugging an application with Flash Professional 302
Debugging an application with Flash Builder 305
Rendering application elements using the device GPU 310
Automating application shutdown upon device interruption events 311
Exiting your application with the device back button 313
Monitoring memory usage and frame rate in an application 314

Chapter 11: Final Considerations: Application Compilation and
Distribution 319

Introduction 320
Generating a code-signing certificate using Flash Professional 320
Generating a code-signing certificate using Flash Builder 322
Generating a code-signing certificate using FDT 323
Generating a code-signing certificate using the AIR Developer Tool 325
Preparing icon files for distribution 327
Compiling an application using Flash Professional 330
Compiling an application using Flash Builder 334
Compiling an application when using FDT 336
Compiling an application using the AIR Developer Tool 337
Submitting an application to the Android Market 339

Index 343

Preface
With the ongoing explosion of the mobile Android operating system and proliferation of
Android powered devices in the smart phone and tablet computing markets, this is the perfect
time to explore the world of Android development using the Flash Platform. Adobe recently
released statistics announcing that by the end of 2011, it is projected that more than 200
million smartphones and tablets will support Adobe AIR applications. For 2011, the company
expects the mobile Flash Player to be supported on more than 132 million units worldwide.
This book provides a variety of fundamental recipes exploring common needs of the mobile
Android developer when utilizing these Flash Platform runtimes.

Many existing Flash application developers are excited with the prospect of building mobile
applications for Android devices, but where to begin? Expand your reach into mobile
application development by using this text as a guide. When possible, the recipes in this book
are written using pure ActionScript 3, allowing the reader to work through each example in
the tool of their choice. In some instances, we demonstrate the power and flexibility of the
mobile Flex framework when dealing with specific layout and structural needs. Jump-start your
experience with mobile Android through the step-by-step examples found within.

Flash Development for Android Cookbook will demonstrate a wide variety of mobile-specific
examples specifically conceived to be direct and useful in the development of applications
for Android devices. Everything you need to get started is included along with suggestions
to further your experience with Flash, Flex, and AIR when developing mobile Android
applications.

Topics covered within this book include development environment configuration, mobile
project creation and conversion, the use of touch and gestures, responding to changes in
location and device movement in 3D space, the capture, generation, and manipulation of
images, video and audio, application layout and structure, tapping into native processes and
hardware, and the manipulation of the file system and managing local application databases.
The book will also cover things such as Android-specific device permissions, application
optimization techniques, and the packaging and distribution options available on the mobile
Android platform.

Preface

2

What this book covers
Chapter 1, Getting Ready to Work with Android: Development Environment and Project Setup,
demonstrates the configuration of a number of development environments and tools which
can be used in developing Flash content for mobile Android.

Chapter 2, Interaction Experience: Multitouch, Gestures, and Other Input, informs the reader
with a variety of unique touch and gesture interactions that can be used across Flash Platform
runtimes.

Chapter 3, Movement through Space: Accelerometer and Geolocation Sensors, empowers
your applications with the ability to pinpoint a user's precise geographic location and even
determine local changes in device shift and tilt through the on-board accelerometer.

Chapter 4, Visual and Audio Input: Camera and Microphone Access, discusses how to capture
still images, video, and audio from integrated device hardware through both Flash based
capture methods and while employing native camera applications.

Chapter 5, Rich Media Presentation: Working with Images, Video, and Audio, takes a look at
a variety of media presentation mechanisms available to us on the Flash Platform including
playback of progressive and streaming video, the use of Pixel Bender shaders, and even audio
generation.

Chapter 6, Structural Adaptation: Handling Device Layout and Scaling, discusses a variety of
methods we can use to gain detailed information regarding device displays, and the usage of
this data when sizing and positioning visual elements along with structured layout through the
mobile Flex framework.

Chapter 7, Native Interaction: Stage WebView and URI Handlers, demonstrates methods of
utilizing native applications such as the Web browser, e-mail, SMS, Telephone, and Maps as
extensions of our Flash based experience.

Chapter 8, Abundant Access: File System and Local Database, provides the readers with
details of the steps necessary to access, open and write to file streams on the device storage,
create and manage local SQLite databases, and preserve application state upon application
interruption.

Chapter 9, Manifest Assurance: Security and Android Permissions, demonstrates the various
Android Manifest permissions and provides examples of Market filtering, encrypted database
support, and other security-minded techniques.

Chapter 10, Avoiding Problems: Debugging and Resource Considerations, looks at ways in
which a developer can streamline the efficiency of an application by tapping into the device
GPU, handling user interaction in responsible ways, and memory management techniques.

Preface

3

Chapter 11, Final Considerations: Application Compilation and Distribution, advises the
reader on project preparation, code signing, release compilation, and distribution through the
global Android Market.

What you need for this book
To make use of the recipes included in this book, you need access to software for developing
Android applications with the Flash Platform. We recommend using Adobe Flash Builder
4.5, Adobe Flash Professional CS5.5, or PowerFlasher FDT 4.2 and above. These Integrated
Development Environments are preferred because of their specific support of a mobile
Android workflow, but you may actually use any application you prefer to write code that will be
compiled for AIR for Android and deployed to mobile devices.

You will, however, need access to the following (if not using these particular IDEs):

f Adobe AIR SDK – for compiling your Flash applications to .APK for Android

f Flex 4.5 SDK – if you want to take advantage of the mobile Flex framework

The Adobe AIR SDK is included with both Flash Professional CS5.5 and Flash Builder 4.5.
The Flex 4.5 SDK is included with Flash Builder 4.5. If using alternative software to develop
Flash based Android applications, these SDKs can be downloaded freely from the Adobe open
source website.

You will also want to be sure to have access to a device running Android 2.2 or above with
AIR for Android 2.5 or above installed for demonstrating the recipes, and testing your
own applications.

Who this book is for
This book contains recipes covering a variety of topics from the very simple, to those which
are more advanced. If you are a seasoned Flash developer, this book will get you quickly up
to speed with what is possible with Android. For those who are new to Flash, welcome to the
world of visual rich, rapid application development for mobile Android devices! If you have any
interest in Flash development for Android, this book has you covered.

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create a new file called recipe1.py to put all of
this recipe's code."

A block of code is set as follows:

streamClient = new Object();
streamClient.onBWDone = onTextData;
streamClient.onTextData = onTextData;
streamClient.onMetaData = onMetaData;
streamClient.onCuePoint = onCuePoint;

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "There are many choices of
IDE (Integrated Development Environment) for developing Flash platform projects for
Android devices".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Ready to

Work with Android:
Development

Environment and
Project Setup

This chapter will cover the following recipes:

f Using Flash Professional CS5.5 to develop Android applications
f Targeting AIR for Android with Flash Professional CS5.5
f Using Flash Builder 4.5 to develop Android applications
f Enabling Flash Builder 4 or Flex Builder to access Flex Mobile SDKs
f Using Flash Builder 4 and below to develop Android applications
f Using Powerflasher FDT 4.2 to develop Android applications
f Enabling Powerflasher FDT 4.1 to access Flex Mobile SDKs
f Using Powerflasher FDT 4.1 and below to develop Android applications
f Converting a Standard Flex project to a Flex Mobile project
f Configuring the AIR SDK to Package AIR for Android applications on Windows
f Configuring the AIR SDK to Package AIR for Android Applications on Linux or Mac OS

Getting Ready to Work with Android: Development Environment and Project Setup

8

Introduction
There are many choices of IDE (Integrated Development Environment) for developing Flash
platform projects for Android devices. We will focus on a few of the most popular: Adobe
Flash Professional, Adobe Flash Builder, and Powerflasher FDT. This chapter will include
recipes geared to getting a new Android project started in each IDE, and making the most of
what is available with regard to workflow and toolsets. You will learn how to configure each
environment in order to develop for the Android operating system.

Flash Builder and FDT, along with the Flex framework have the most to offer for Android
development as there is a streamlined workflow, set of controls, and containers available
especially for the development of mobile Android projects using Adobe AIR for Android as a
development platform.

Flash Professional provides some workflow tools, but the main benefit lies in potential
familiarity with the environment, and the generation of projects not tied to the Flex framework.
This IDE is often used for game development because of its open nature.

For the purists or users of alternative IDEs, it is also possible to generate Android applications
through a command line interface using the free AIR SDK tools.

Using Flash Professional CS5.5 to develop
Android applications

Flash Professional is a good choice for building Android applications that are more lightweight
than their Flex-based counterparts. There is not as robust a workflow in the case of Flash
Professional when compared to what is included with an IDE such as Flash Builder, but
depending upon the application being developed, it may be the better tool for the job.

Flash Professional CS5.5 includes everything needed to target Android already baked in!

How to do it…
Setting up an AIR for Android project in Flash Professional CS5.5 is very direct:

1. We will first create a new project by choosing AIR for Android under the Create New
section of the Flash Professional welcome screen:

Chapter 1

9

2. We can then verify that we are targeting AIR for Android by taking a look at the
document properties under the Properties panel:

Getting Ready to Work with Android: Development Environment and Project Setup

10

3. We can also modify existing Flash documents to target Android by selecting AIR for
Android as the Player option.

4. Now, simply build your Flash project as you normally would. Adobe has made the
process of targeting Android with Flash Professional CS5.5 absolutely painless.

How it works…
With Flash Professional CS5.5, we have more compiler options available to us than ever
before. Taking the steps outlined in the preceding section will ensure that your project is
capable of targeting AIR for Android in place of the desktop Flash Player or AIR for desktop by
adding a number of Android-specific compiler options to our publish settings.

There's more…
If developing for the mobile Flash Player for Android, we will not need to configure anything
for the AIR runtime. To target Flash Player, we must simply keep in mind the limitations and
differences inherent to mobile Android devices.

Targeting AIR for Android with Flash
Professional CS5.5

Flash Professional is a good choice for building Android applications that are more lightweight
than their Flex-based counterparts. There is not as robust a workflow in the case of Flash
Professional when compared to what is included with an IDE such as Flash Builder, but
depending upon the application being developed; it may be the better tool for the job.

How to do it…
There are two ways of targeting AIR for Android with Flash Professional:

1. Firstly, create a new project by choosing AIR for Android under the Create from
Template section of the Flash Professional welcome screen:

Chapter 1

11

2. This will present a choice of several templates targeting AIR for Android. Choose the
appropriate template for your device:

Getting Ready to Work with Android: Development Environment and Project Setup

12

3. Alternatively, create a new ActionScript 3.0 project and open your publish settings by
going to File | Publish Settings.

4. This will open a dialog allowing you to choose your target platform. In this case, we
want to select AIR Android as the appropriate Player:

5. Now you will be able to adjust Application and Installer Settings targeting Android,
and compile projects into .apk files.

How it works…
With recent versions of Flash Professional, we have more compiler options available to us
than ever before. Taking the stepsoutlined abovewill ensure that your project is capable of
targeting AIR for Android in place of the desktop Flash Player or AIR for desktop by adding a
number of Android-specific compiler options to our publish settings.

There's more…
If developing for the mobile Flash Player for Android, we will not need to configure anything
for the AIR runtime. To target Flash Player, we must simply keep in mind the limitations and
differences inherent to mobile Android devices.

See also…
For more information about compiling AIR for Android applications with Flash Professional,
you will want to refer to Chapter 11, Final Considerations: Application Compilation
and Distribution

Chapter 1

13

Using Flash Builder 4.5 to develop Android
applications

Flash Builder 4.5 already comes equipped with everything, we need to begin developing
mobile applications using either ActionScript or the mobile Flex Framework. For those
unfamiliar with the differences between ActionScript and Flex, basically, the Flex framework
provides a set of components, layouts, and data control that is preconfigured for building
Flash applications, whereas when using ActionScript by itself, everything must be written
from scratch. Flex 4.5 includes mobile features such as optimized component skins to
run very well on devices, a new ViewNavigator application type, which is tailored to the
mobile experience, and includes support for touch and gestures across the mobile-optimized
component set.

How to do it…
In place of a normal ActionScript project or Flex project, we must specifically create either an
ActionScript Mobile project or Flex Mobile project:

1. In the Flash Builder Package Explorer, right-click on some empty space and choose
New | Flex Mobile Project or New | ActionScript Mobile Project:

Getting Ready to Work with Android: Development Environment and Project Setup

14

2. We will then provide the mobile project with a name and choose where Flash Builder
should store the project files on the local machine.

3. The next step allows us to choose the target platform, in this case, Google Android,
and define which application template to use (if you are making use of the mobile
Flex framework). We can also set the default View name on this screen through the
Initial view title input..

4. Additionally, we will choose whether or not the application will reorient based upon
device tilt with the Automatically reorient option. We can select to display the
application at full screen by selecting the Full screen checkbox.

5. One last selection to make on this screen is whether we would like to use density
aware skins in our mobile components by selecting the Automatically scale
application for different screen densities checkbox and selecting the appropriate
Application DPI setting.

Chapter 1

15

6. The rest of the project setup is really the same as any other project in Flash Builder.

How it works…
The choices we make when setting up a new project in Flash Builder determine which libraries
are imported, and used in an application. Defining a mobile application will not only include
specific component skins targeted to mobile, but will also restrict us from using components,
which are inappropriate for such use. We will also have full access to mobile-specific
application structures such as the mobile ViewNavigator, ActionBar, or TabBar. These
additions to the mobile Flex framework can be used to greatly speed up the development
of stateful mobile Android applications, as they deal with application structure, navigation
controls, and layout.

See also…
You can actually use previous versions of Flash Builder to compile AIR for Android
applications. Check out the next recipe, Enabling Flash Builder 4 or Flex Builder to access Flex
Mobile SDKs for an example of this.

Enabling Flash Builder 4 or Flex Builder to
access Flex Mobile SDKs

You don't necessarily need to have the latest version of Flash Builder to write applications
for Android. This recipe will demonstrate how to integrate the latest Flex SDK into an older
version of Flash Builder (or even Flex Builder) to take advantage of the mobile framework
improvements.

Even though we will be able to use the new component sets and streamlined
structure for Android, many of the workflow enhancements such as support
for a new mobile application view structure, optimized component skins with
touch and gesture support, and other niceties found in newer versions of
Flash Builder simply will not exist and we will have to compile the application
for distribution using the AIR SDK and command line tools.

How to do it…
The following steps are used for getting an older version of Flash Builder configured for
Android development:

1. Visit the Adobe Open Source website at http://opensource.adobe.com/ and
locate the latest build of the Flex SDK.

Getting Ready to Work with Android: Development Environment and Project Setup

16

2. Download a ZIP file of the latest Adobe Flex SDK and extract it to a hard drive to a
location you will remember. For instance, C:\SDKs\Flex.

3. Launch Flash Builder and go to Window | Preferences.

4. Scroll down the Flash Builder menu item and select Installed Flex SDKs. You will
now see a list of each of the SDKs currently available in your copy of Flash Builder:

5. Click the button labeled Add… and browse to the location of the Flex SDK you
recently downloaded.

6. Provide the dialog with a meaningful name and click OK. For example, Flex 4.5. If
we want to be very specific, we can always name it the full build name, such as: Flex
4.5.0.16076.

7. The Flex 4.5 SDK will now be available for use in your application. To use it in a
project, simply select this SDK when creating a new project or when modifying the
Flex Compiler properties in an existing project.

Chapter 1

17

How it works…
Using a more recent version of the Flex SDK within Flash Builder allows us access to the
mobile theming options and other specific APIs not available in previous SDK releases. This
will also expose mobile classes to code hinting and other IDE workflow constructs.

There's more…
If changing the Flex SDK version to be used in a project, we may receive a number of warnings
or errors due to changes in the framework from version to version. Simply go through the
project files and correct each warning or error that appears within the Problems panel to
correct any issues.

If developing projects that target Flash Player on Android, you simply need to be mindful of
device and operating system constraints.

See also…
It is important to note that versions of Flash Builder prior to Flash Builder 4.5 will not include
the ability to compile projects to .APK (the Android application file extension) and you
will need to compile your project using the freely available AIR SDK. See Chapter 11, for
information on how to do this.

It is also worth a mention that while you can develop your applications for Android using
older versions of Flash Builder, you will not receive many of the benefits provided by a newer
release, such as code completion.

Getting Ready to Work with Android: Development Environment and Project Setup

18

Using Flash Builder 4 and below to develop
Android applications

To develop mobile Android application in Flash Builder 4, we will need to configure Flash
Builder to enable access to a mobile Flex SDK. See the previous recipe if you have not yet
configured Flash Builder or Flex Builder in this manner.

How to do it…
There is no specific mobile workflow or tooling built into versions of Flash Builder prior to
Flash Builder 4.5. By taking the following steps, we can ensure that our project will be mobile-
compatible:

1. In Flash Builder, right-click in the Package Explorer panel and choose New | Flex
Project. Alternatively, we can choose ActionScript Project, but this will not include
any mobile benefits, as the actual Flex SDK components will not be employed.
However, it is useful to note that ActionScript projects will generally perform better
than their Flex counterparts simply due to the fact that they do not rely on such a
heavy framework.

2. The New Flex Project dialog will appear in which you must provide a Project name,
and select whether to create the project targeting Web or Desktop. If this project will
be compiled for AIR for Android, we will want to make sure to choose Desktop, as this
application type will target the Adobe AIR runtime. If creating a project targeting Flash
Player in the browser, we will choose Web.

3. When choosing Desktop, we will also want to be sure to choose a mobile-enhanced
version of the Flex SDK for our Android project. Flex 4.5 and above include everything
we need to begin developing robust Android applications.

Chapter 1

19

4. The last thing we must do is make sure that the mobile-enabled Flex SWCs are going
to be used in our project. In order to declare <s:ViewNavigatorApplication> or
<s:TabbedViewNavigatorApplication> for the main container of our project,
these specific SWCs must be accessible, else Flash Builder will report errors.

5. The final section of the New Flex Project dialog allows us to be sure the mobile
SWCs are included. You will notice that mobilecomponents.swc is not included in
our project. Select the tab labeled Library path and click on the button labeled Add
SWC…:

Getting Ready to Work with Android: Development Environment and Project Setup

20

6. When the Add SWC dialog appears, browse to the location of the selected Flex SDK.
Assuming we unpackaged the SDK to C:\SDKs\Flex4 we will now browse to
C:\SDKs\Flex\frameworks\libs\mobile select the mobilecomponents.
swc file, and click on Open. This will add support for the mobile components to our
application.

7. Complete the project setup. We are now able to use mobile specific containers and
controls without receiving errors from Flash Builder, but we must make a few more
adjustments in order to correctly compile our application.

8. Locate the AIR descriptor file in your project. It is normally named something like
{MyProject}-app.xml and resides at the project root. Open this file and change
the <visible> attribute to true. It may be necessary to uncomment this node, if it
has been commented out.

9. Right-click on your project in the Package Explorer and select Properties.

10. Select the Flex Compiler menu option and add the following to the Additional
compiler arguments: theme=C:\{SDK Location}\frameworks\themes\
Mobile\mobile.swc

11. Finally, switch the root node of your main application file from <s:Application> to
<s:ViewNavigatorApplication>. We can now author and compile applications
using the mobile flex framework components.

How it works…
When specifying which type of project we want to create in Flash Builder, the IDE automatically
makes available certain portions of the Flex framework so that we can work with all the
components necessary for our project. Flash Builder 4 and earlier do not ship with any mobile-
enabled Flex SDK and do not provide a workflow for Android projects. Because of this, we
must explicitly tell Flash Builder to make use of these extra framework components.

The application descriptor file mentioned in the steps in the preceding section is used to
configure an AIR application in various ways: setting the initial window properties, chrome
attributes, and even system icons.

See also…
It is important to note that versions of Flash Builder prior to Flash Builder 4.5 will not include
the ability to compile projects to .APK (the Android application file extension) and you will need
to compile your project using the freely available AIR SDK. See Chapter 11 for information on
how to do this.

It is also worth a mention that while you can develop your applications for Android using
older versions of Flash Builder, you will not receive many of the benefits provided by a newer
release, such as code completion.

Chapter 1

21

Enabling Powerflasher FDT 4.1 to access
Flex Mobile SDKs

Powerflasher FDT is an increasingly popular development environment for authoring
projects for the Flash Platform. FDT 4 comes equipped with everything you'd expect to begin
developing ActionScript and Flex applications, but FDT 4.1 and below do not support any
mobile workflow or ship with the mobile-enabled Flex SDK.

How to do it…
There are only a few steps to getting Powerflasher FDT 4 configured for Android development:

1. Visit the Adobe Open Source website at http://opensource.adobe.com/ and
locate the latest build of the Flex SDK.

2. Download a ZIP file of the latest Adobe Flex SDK and extract it to a hard drive to a
location you will remember. For instance, C:\SDKs\Flex.

3. Launch FDT and go to Window | Preferences.

4. Scroll down the FDT menu item and select Installed SDKs. You will now see a list of
each of the SDKs currently available in your copy of FD:

5. Click on the button labeled Add and browse to the location of the Flex SDK you
recently downloaded.

Getting Ready to Work with Android: Development Environment and Project Setup

22

6. Provide the dialog with a meaningful name and click OK. For example, Flex 4.5:

7. The Flex 4.5 SDK will now be available for use in your application. To use it in a
project, simply select this SDK when creating a new project or when modifying the
Flex Compiler properties in an existing project:

Chapter 1

23

How it works…
Powerflasher FDT 4 is an Eclipse-based IDE (just like Flash Builder) and employs many of the
same methods of extending the application and adding SDK packages. Using a more recent
version of the Flex SDK within FDT allows us access to the mobile theming options and other
specific APIs not available in previous SDK releases.

See also…
It is important to note that versions of Flash Builder prior to Flash Builder 4.5 will not
include the ability to compile projects to .APK (the Android application file extension) and
you will need to compile your project using the freely available AIR SDK. See Chapter 11 for
information on how to do this.

It is also worth a mention that while you can develop your applications for Android using
older versions of Flash Builder, you will not receive many of the benefits provided by a newer
release, such as code completion.

Using Powerflasher FDT 4.1 and below to
develop Android applications

To develop mobile Android application in FDT 4.1, we will need to configure FDT to enable
access to a mobile Flex SDK. See the previous recipe if you have not yet configured FDT in
this manner.

Getting Ready to Work with Android: Development Environment and Project Setup

24

How to do it…
There is no specific mobile workflow or tooling built into versions of FDT prior to FDT 4.2. By
taking the following steps, we can ensure that our project will be mobile-compatible:

1. In FDT, right-click in the Flash Explorer panel and choose NEW | New Flash Project:

2. The New Flash Project dialog will appear in which you must provide a Project name,
and select whether to create the project using ActionScript 3 or Flex. We need to
make sure to choose Flex 4, as this will include Spark components, which can be
mobile-friendly if using a proper version of the Flex SDK.

Chapter 1

25

3. The next section will allow us to choose a specific Flex SDK to use in our project. We
should choose a mobile-enhanced version of the Flex SDK for our Android project.
Flex 4.5 and above include everything we need to begin developing robust Android
applications.

4. The last thing we must do is make sure that the mobile-enabled Flex SWCs are going
to be used in our project. In order to declare <s:ViewNavigatorApplication> or
<s:TabbedViewNavigatorApplication> for the main container of our project,
these specific SWCs must be accessible, else FDT will report errors.

5. The next section allows us to be sure the mobile SWCs are included. Select the tab
labeled SDK Library and click on the button labeled Select SWCs…

6. You will notice that mobile\mobilecomponents.swc is not included in our project.
Select the checkbox next to this SWC and press the OK button to continue:

7. Now we will be able to use mobile specific containers and controls without receiving
errors from FDT.

Getting Ready to Work with Android: Development Environment and Project Setup

26

How it works…
When specifying which type of project we want to create in FDT, the program automatically
makes available certain portions of the Flex Framework, so that we can work with all the
components necessary for our project. FDT 4.1 and earlier do not ship with any mobile-
enabled Flex SDK and do not provide a workflow for Android projects. Because of this, we
must explicitly tell FDT to make use of the following extra framework components:

f ViewNavigatorApplication: This includes a ViewNavigator stack structure, in
which we can push and pop different views to the top of a stack, exposing the
topmost view to the user.

f TabbedViewNavigatorApplication: This includes the ability to have multiple
ViewNavigator stacks within an application, controlled through a TabBar user
interface element.

See also…
It is important to note that versions of Flash Builder prior to Flash Builder 4.5 will not
include the ability to compile projects to .APK (the Android application file extension) and
you will need to compile your project using the freely available AIR SDK. See Chapter 11 for
information on how to do this.

It is also worth a mention that while you can develop your applications for Android using
older versions of Flash Builder, you will not receive many of the benefits provided by a newer
release, such as code completion.

Converting a standard Flex project to a
Flex Mobile project

There is currently no workflow within Flash Builder (or FDT) to convert an existing application
to a mobile Android application. Depending upon the complexity of the application being
converted and the version of Flex, it may be undergoing conversion from this task can range
from the very simple to one that is inordinately complex. In this recipe, we will demonstrate a
simpler example using basic Flex structures.

How to do it…
Create a new mobile project and copy all of the necessary files into it, retaining those portions
of code which are used for mobile projects and modifying any unsupported components.

For this example, we'll use a simple Flex project targeting AIR for desktop consisting of nothing
but a button component at this stage:

Chapter 1

27

<?xml version="1.0" encoding="utf-8"?> <s:WindowedApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:Button x="10" y="10" width="300" height="200" label="Button"/> </
s:WindowedApplication>

To convert this to a new Flex Mobile project, take the following steps:

1. Go to the menu and choose File | New | Flex Mobile Project.

2. Provide the project setup dialog with information about the new mobile project.

The project cannot have the same name as any
existing project within your environment.

3. Copy all of your files from the project folder in your original project into this new mo-
bile project excluding your project descriptor file ({myApp }.xml) and Default
Application files.

4. Now, copy everything within your old Default Application file and paste it into
the Default Application file that was created along with your mobile project.
Once everything has been copied over, right-click on the main application file and
choose Set as Default Application.

5. Change all instances of <s:WindowedApplication> to
<s:ViewNavigatorApplication> (alternatively,
<s:TabbedViewNavigatorApplication>).

Just as with a standard AIR <s:WindowedApplication>, only one
instance of <s:ViewNavigatorApplication> or
<s:TabbedViewNavigatorApplication> can exist within a project.

6. Look within your Problems panel to see whether or not any further modifications
need to be made.

7. If you are not using any of the old Halo components (mx namespace) it
is a good idea to remove the namespace declaration for your opening
<s:ViewNavigatorApplication> tag.

8. Add a firstView attribute to the <s:ViewNavigatorApplication> tag. This
should point to the View automatically created when you set up the mobile project.

9. Since visual UI elements cannot reside directly within a <s:ViewNavigatorApplication />
node, we must wrap the <s:Button /> instance within a <fx:Declarations> </
fx:Declarations> tag set, or move it to a specific View.

Getting Ready to Work with Android: Development Environment and Project Setup

28

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Your Default Application file should now read as follows:

<?xml version="1.0" encoding="utf-8"?> <s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MobileFlexProjectHomeView">
<fx:Declarations>
<s:Button x="10" y="10" width="447" height="106" label="Button"/>
</fx:Declarations> </
s:ViewNavigatorApplication>

Additionally, a view for this application could appear as such:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="MobileFlexProjectHomeView "> </
s:View>

For more information about how Flex Mobile projects are structured, have a look at the
following resource: http://opensource.adobe.com/wiki/display/flexsdk/
Developer+Documentation.

How it works…
When using Flex, the root tag of your application determines largely what APIs and
structures are available to you throughout the project. Making sure that we choose the
correct root tag is very important in regard to the target platform and capabilities of our
project. For AIR on Android, we will want to use either ViewNavigatorApplication or
TabbedViewNavigatorApplication. Desktop applications would use the Application or
WindowedApplication tags. Chances are, if you are building Flash content with Flex that
is to be deployed to Flash Player in the browser, on both mobile and desktop you will use a
straight Application tag for your project.

There's more…
If you don't want to deal with a lot of conversion, and are just starting out with a new project
that will share the same codebase across desktop and mobile, you might consider using a
Flex Library project to allow different projects to share the same underlying codebase.

http://opensource.adobe.com/wiki/display/flexsdk/Developer+Documentation
http://opensource.adobe.com/wiki/display/flexsdk/Developer+Documentation

Chapter 1

29

Read the documentation on Flex 4 Library usage at: http://help.adobe.com/en_US/
flashbuilder/using/WS6f97d7caa66ef6eb1e63e3d11b6c4d0d21-7fe6.html.

Configuring the AIR SDK to package AIR for
Android applications on Windows

If we are using the open source AIR SDK (Software Development Kit) with another IDE or
even editing our project in a simple text editor, we can still compile applications for distribution
on Android through command line tools.

How to do it…
If you do not already have the Adobe AIR SDK, you must first download it from http://www.
adobe.com/products/air/sdk/ and extract the files into a directory on your hard drive,
C:\SDKs\AIR, for example. You must also set a PATH variable in your operating system
pointing to the bin directory underneath the AIR SDK.

If you are using a Windows system, set the environment variable through the following steps:

1. Open the System Properties dialog. You can reach this dialog in many ways, the most
direct being a right-click on My Computer. Then select Properties.

2. Choose Advanced system settings from the left hand menu.

3. Click on the button at the bottom of this window that says Environment Variables…

4. Click upon the PATH variable in this window and select Edit:

http://help.adobe.com/en_US/flashbuilder/using/WS6f97d7caa66ef6eb1e63e3d11b6c4d0d21-7fe6.html
http://help.adobe.com/en_US/flashbuilder/using/WS6f97d7caa66ef6eb1e63e3d11b6c4d0d21-7fe6.html
http://www.adobe.com/products/air/sdk/

Getting Ready to Work with Android: Development Environment and Project Setup

30

5. Now, simply add the location of your bin directory into the set of variables: If the last
item in your variable value list has not been terminated with a semicolon, you must
add one before every new item. For example: C:\SDKs\AIR\bin.

6. That should do it. Hit OK a few times and bring up the command prompt to verify that
we've set this up correctly. Type in adt –version and hit Enter. If all is well, ADT will
spit back a version string that looks something like adt version "2.5.0.00000".

How it works…
Setting a PATH variable on the operating system allows us to be able to invoke the AIR Android
compiler, ADT, from anywhere in our system without having to traverse file directories and
specify long path names.

See also…
If using a Linux or Mac operating system, you can also set specific environment variables from
within the Terminal. See the next recipe Configuring the AIR SDK to Package AIR for Android
Applications on Linux or MacOS for an example of this.

Configuring the AIR SDK to package AIR for
Android applications on Linux or Mac OS

If we are using the open source AIR SDK with another IDE or even editing our project in
a simple text editor, we can still compile applications for distribution on Android through
command line tools.

How to do it…
If you do not already have the Adobe AIR SDK, you must first download it from http://www.
adobe.com/products/air/sdk/ and extract the files into a directory on your hard drive: /
home/joseph/SDKs/AIR, for example. You must also set a PATH variable in your operating
system start up script pointing to the bin directory underneath the AIR SDK.

http://www.adobe.com/products/air/sdk/

Chapter 1

31

We will set the environment variable through the following steps:

1. Open the Terminal.

2. Now we must create the shell configuration profile. Enter the following into the
Terminal window: cat >> .bash_profile on a Mac or cat >> .bashrc for
Ubuntu (each Linux distribution may have its own particular naming convention for
the startup script).

3. Next, enter export PATH=$PATH:/home/joseph/SDKs/AIR/bin to set the
PATH variable pointing to the AIR development tools bin directory. Hit Enter.

4. Enter Ctrl+Shift+D to end this process.

5. Now we will check to be sure everything was added appropriately. Type cat
.bashrc into the Terminal and hit Enter. You should see the PATH command spit
back at you:

6. You may need to log out of your profile and then log back in for the new environment
variable to be picked up by the system.

7. Bring up the Terminal again, after logging back into your profile.

8. Type echo $PATH into the Terminal and hit Enter. This should display everything that
is included in the PATH variable including the location of our AIR bin directory.

Getting Ready to Work with Android: Development Environment and Project Setup

32

9. That should do it. We will now verify that we've set the AIR SDK up correctly. Type in
adt –version and hit Enter. If all is well, ADT will spit back a version string that
looks something like adt version "2.5.0.00000":

How it works…
Setting a PATH variable on the operating system allows us to be able to invoke the AIR Android
compiler, ADT, from anywhere in our system without having to traverse file directories and
specify long path names.

See also…
Note that you may have to log out of your session and then log back in for the new PATH
variables to take effect. If using a Windows operating system, you can also set specific
environment variables. See the previous recipe, Configuring the AIR SDK to package AIR for
Android applications on Windows for an example of this.

2
Interaction

Experience:
Multitouch, Gestures,

and Other Input

This chapter will cover the following recipes:

f Detecting supported device input types

f Detecting whether or not a device supports multitouch

f Verifying specific gesture support for common interactions

f Using gestures to zoom a display object

f Using gestures to pan a display object

f Using gestures to swipe a display object

f Using gestures to rotate a display object

f Accessing raw touchpoint data

f Creating a custom gesture based upon touchpoint data

f Emulating the Android long-press interaction

f Invoking the virtual keyboard programmatically

f Responding to Android soft-key interactions

f Responding to trackball and D-Pad events

Interaction Experience: Multitouch, Gestures, and Other Input

34

Introduction
The ability to interface with a device through touch and gestures is one of the stand-out
features of mobile computing and the Flash platform has full support for both multitouch
and gestures on Android. This chapter will cover different ways of intercepting and reacting
to user interaction whether it be through simple touch points or complex gestures, along with
more traditional physical and virtual keyboard input. Making good use of this is essential to a
smooth experience on mobile Android devices.

All of the recipes in this chapter are represented as pure ActionScript 3 classes and are not
dependent upon external libraries or the Flex framework. Therefore, we will be able to use
these examples in any IDE we wish.

Detecting supported device input types
A variety of input types are available across Android devices and depending upon the project
we are working on, we may need to verify that any particular device supports the intended
modes of user interaction. Fortunately, there are a number of ActionScript classes to assist us
in discovering device capabilities in regard to user input.

How to do it...
We will need to use internal classes to detect whether or not multitouch is supported:

1. First, import the following classes into your project in order to check various input
types across devices:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.system.Capabilities;
import flash.system.TouchscreenType;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Keyboard;
import flash.ui.KeyboardType;
import flash.ui.Mouse;

2. Declare a TextField and TextFormat object to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

Chapter 2

35

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 32;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Now, we will simply go through and check the data returned from invoking a number
of properties off of these classes. In the case of the following example, we are
performing this within the following method:
protected function checkInputTypes():void {

traceField.appendText("Touch Screen Type: " +
flash.system.Capabilities.touchscreenType + "\n");

traceField.appendText("Mouse Cursor: " + flash.ui.Mouse.
supportsCursor + "\n");

traceField.appendText("Physical Keyboard Type: " + flash.
ui.Keyboard.physicalKeyboardType + "\n");

traceField.appendText("Virtual Keyboard: " + flash.ui.Keyboard.
hasVirtualKeyboard + "\n");

}

5. The result will appear similar to the following:

Interaction Experience: Multitouch, Gestures, and Other Input

36

How it works...
The Flash platform runtimes are able to report certain device capabilities when invoked. The
data reported will allow us to tailor the user experience, based upon what sort of input types
are detected by the runtime.

Here follows a basic rundown of the four input types that can be reported upon:

flash.system.Capabilities.touchscreenType

Invoking this method will return a String constant of FINGER, STYLUS, or NONE. It informs
us whether some sort of direct screen interaction is available on the device, and if so, what
sort. In the case of Android devices, this will always return FINGER.

flash.ui.Mouse.supportsCursor

Invoking this method will return a Boolean of true or false. It simply informs us whether
a persistent mouse cursor is available on the device. In the case of Android devices, this will
most likely always return false.

flash.ui.Keyboard.physicalKeyboardType

Invoking this method will return a String constant of ALPHANUMERIC, KEYPAD, or NONE. It
informs us whether some sort of dedicated physical keyboard is available on the device, and
if so, what sort. In the case of Android devices, this will most likely always return NONE, even
though certain Android models do have a physical keyboard.

flash.ui.Keyboard.hasVirtualKeyboard

Invoking this method will return a Boolean of true or false. It simply informs us whether a
virtual (software) keyboard is available on the device. In the case of Android devices, this will
most likely always return true.

Detecting whether or not a device supports
multitouch

When developing projects which target the Android operating system, it is always a good idea
to make sure that multitouch is actually supported on the device. In the case of an Android
phone, this will probably always be the case, but what about a Google TV or AIR for TV device?
Many of these are also Android-based yet most televisions do not have any touch control
whatsoever. Never assume the capabilities of any device.

Chapter 2

37

How to do it...
We will need to use internal classes to detect whether or not multitouch is supported:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;

2. Declare a TextField and TextFormat object to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Then, simply invoke Multitouch.supportsGestureEvents and Multitouch.
supportsTouchEvents to check each of these capabilities as demonstrated in the
following method:
protected function checkMultitouch():void {

traceField.appendText(String("Gestures: " + Multitouch.
supportsGestureEvents) + "\n");

traceField.appendText(String("Touch: " + Multitouch.
supportsTouchEvents));
}

Interaction Experience: Multitouch, Gestures, and Other Input

38

5. Each of these properties will return a Boolean value of true or false, indicating
device support as shown here:

How it works...
Detecting whether the device supports either touch or gesture events will determine how
much freedom you, as a developer, have in refining the user experience. If either of these
items returns as false, then it is up to you to provide (if possible) an alternative way for the
user to interact with the application. This is normally done through Mouse events:

f Touch events: Basic interactions such as a single finger tap.

f Gesture events: More complex interpretations of user interaction such as pinch,
zoom, swipe, pan, and so forth.

There's more...
It is important to note that while a specific device may support either gesture events or touch
events, when using Flash Platform tools, we must set the Multitouch.inputMode to one or
the other specifically.

Verifying specific gesture support for
common interactions

When dealing with Android devices, touch and gestures are the main mechanisms with which
the user interacts with the device. If we want to use some of the predefined gestures in Flash
Player and AIR, we can do so in the following manner.

How to do it...
To discover which specific gestures are supported on a device, perform the following actions:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;

Chapter 2

39

import flash.display.Stage;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a TextField and TextFormat object to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Set the specific input mode for the multitouch APIs to support gestures with the
following command:
Multitouch.inputMode = MultitouchInputMode.GESTURE;

5. Invoking Multitouch.supportedGestures will return a Vector of String
objects naming all the supported gestured exposed to Flash on the device:
var supportedGestures:Vector.<String> = Multitouch.
supportedGestures;

6. We can then look for a specific gesture or set of gestures to listen for, or fall back to
other interaction events if necessary.
for(var i:int=0; i < supportedGestures.length; ++i) {

trace(supportedGestures[i]);
}

Interaction Experience: Multitouch, Gestures, and Other Input

40

7. We can perform all of these necessary functions within a single method:
protected function checkGestures():void {

Multitouch.inputMode = MultitouchInputMode.GESTURE;
if(Multitouch.supportedGestures){

var supportedGestures:Vector.<String> =
Multitouch.supportedGestures;

for(var i:int=0; i <supportedGestures.length; ++i) {
traceField.appendText(supportedGestures[i] + "\n");

}
}else{

traceField.appendText("no gesture support!");
}

}

8. The result will appear similar to the following:

How it works...
Flash player and AIR do a marvelous job of distilling information to essential details for an
Android developer. Knowing which particular gestures are supported on a device will allow
us to tailor event interactions on our applications and provide fallback interactions when
necessary.

There's more...
In our example class, we also provide a check to be sure there are at least some gestures
supported through Multitouch.supportedGestures. Chances are, if the device does
provide gesture support, we will want to provide a warning to the user explaining that the
application will not perform optimally because of hardware limitations.

Chapter 2

41

Apart from the more common gestures such as zoom, swipe, rotate, and pan, which
are included in the flash.events.TransformGestureEvent package, there are
additional, yet less common gestures such as two-finger tap, found in the flash.events.
GestureEvent and flash.events.PressAndTapGestureEvent classes. These will all
be referenced by Multitouch.supportedGestures if available on the device.

Using gestures to zoom a display object
Pinching and pulling are gestures that are often used on touch screens that support
multitouch input. Bringing two fingers closer together will shrink an object, while spreading
two fingers apart makes the object larger on the device.

How to do it...
This example draws a square within a Shape object using the Graphics API, adds it to
the Stage, and then sets up listeners for zoom gesture events in order to scale the
Shape appropriately:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.display.Shape;
import flash.events.TransformGestureEvent;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a Shape object, upon which we will perform the gestures:
private var box:Shape;

3. Next, construct a method to handle the creation of our Sprite and add it to the
DisplayList:
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-150,-150,300,300);
box.graphics.endFill();
addChild(box);

}

Interaction Experience: Multitouch, Gestures, and Other Input

42

4. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant the MultitouchInputMode.TOUCH_POINT constant and register
anevent listener for the GESTURE_ZOOM event. In this case, the onZoom method will
fire whenever the application detects a zoom gesture:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener(TransformGestureEvent.

GESTURE_ZOOM, onZoom);
}

5. To use the accepted behavior of pinch and zoom, we can adjust the scale of objects
on stage based upon the scale factor returned by our event listener.
protected function onZoom(e:TransformGestureEvent):void {

box.scaleX *= e.scaleX;
box.scaleY *= e.scaleY;

}

6. The resulting gesture will affect our visual object in the following way:

Illustrations provided by Gestureworks (www.gestureworks.com).

Chapter 2

43

How it works...
As we are setting our Multitouch.inputMode to gestures through
MultitouchInputMode.GESTURE, we are able to listen for and react to a host of
predefined gestures. In this example, we are listening for the TransformGestureEvent.
GESTURE_ZOOM event in order to set the scale of our Shape object. By multiplying the current
scale properties by the scale values reported through our event, we can adjust the scale of
our object based upon this gesture.

There's more...
Note here that we are drawing our square in such a way that the Shape registration
point is located in the center of the visible Shape. It is important that we do this, as the
DisplayObject will scale up and down, based upon the registration point and
transform point.

When using the drawing tools in Flash Professional, be sure to set the registration point of
your MovieClip symbol to be centered in order for this to work correctly.

See also...
TransformGestureEvent.GESTURE_ZOOM is just one of a set of four primary transform
gestures available to us when working with the Flash Platform runtimes and Android devices.
Reference the following recipes for a complete overview of these gestures:

f Using gestures to pan a display object

f Using gestures to swipe a display object

f Using gestures to rotate a display object

Using gestures to pan a display object
Panning a DisplayObject is accomplished by touching the screen with two fingers
simultaneously, and then moving both fingers across the screen in the direction we want to
pan the object. This is normally used upon an object that occupies more real estate than the
screen affords, or an object that has been zoomed in so far that only a portion of it is visible
on the screen at any given time.

How to do it...
This example draws a square within a Shape object using the Graphics API, adds it to
the Stage, and then sets up listeners for pan gesture events in order to scale the Shape
appropriately.

Interaction Experience: Multitouch, Gestures, and Other Input

44

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.display.Shape;
import flash.events.TransformGestureEvent;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a Shape object which we will perform the gestures upon:
private var box:Shape;

3. Next, construct a method to handle the creation of our Shape and add it to the
DisplayList. We have made extra effort to be sure our Shape is much larger than
the screen so that it can be panned effectively:
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-150,-150,300,300);
box.graphics.endFill();
box.graphics.lineStyle(10, 0x440000, 1);
box.graphics.moveTo(0, -800);
box.graphics.lineTo(0, 800);
box.graphics.moveTo(-800, 0);
box.graphics.lineTo(800, 0);
addChild(box);

}

4. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant and register an event listener for the GESTURE_PAN event. In this case, the
onPan method will fire whenever the application detects a zoom gesture:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener(TransformGestureEvent.

GESTURE_PAN, onPan);
}

Chapter 2

45

5. We can now respond to the data being returned by our pan event. In this case, we are
simply shifting the x and y positions of our Shape based upon the pan offset data:
protected function onPan(e:TransformGestureEvent):void {

box.x += e.offsetX;
box.y += e.offsetY;

}

6. The resulting gesture will affect our visual object in the following way:

Illustrations provided by Gestureworks (www.gestureworks.com).

How it works...
As we are setting our Multitouch.inputMode to gestures through
MultitouchInputMode.GESTURE, we are able to listen for and react to a host of
predefined gestures. In this example we are listening for the TransformGestureEvent.
GESTURE_PAN event in order to shift the x and y position of our Shape object. By adjusting
the coordinates of our Shape through the reported offset data, we can adjust the position of
our object in a way that the user expects.

Interaction Experience: Multitouch, Gestures, and Other Input

46

There's more...
Note that this is often a difficult gesture to perform on certain devices (As you must touch the
screen with two fingers, simultaneously), and that other devices may not even support it. For a
fallback, we can always use the startDrag() and stopDrag() methods to simulate a pan.

See also...
TransformGestureEvent.GESTURE_PAN is just one of a set of four primary transform
gestures available to us when working with the Flash Platform runtimes and Android devices.
Reference the following recipes for a complete overview of these gestures:

f Using Gestures to Zoom a DisplayObject

f Using Gestures to Swipe a Display Object

f Using Gestures to Rotate a Display Object

Using gestures to swipe a display object
Swipe is one of the most common gestures on Android devices, and with good reason.
Whether flipping through a series of photographs, or simply moving between states in an
application, the swipe gesture is something users have come to expect. A swipe gesture is
accomplished by simply touching the screen and swiping up, down, left, or right across the
screen quickly in the opposite direction.

How to do it...
This example draws a square within a Shape object using the Graphics API, adds it to the
Stage, and then sets up a listener for swipe gesture events in order to move the Shape
instance against the bounds of our screen in accordance with the direction of swipe:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.display.Shape;
import flash.events.TransformGestureEvent;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

Chapter 2

47

2. Declare a Shape object which we will perform the gestures upon:
private var box:Shape;

3. Next, construct a method to handle the creation of our Shape and add it to the
DisplayList:
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-150,-150,300,300);
box.graphics.endFill();
addChild(box);

}

4. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant and register an event listener for TransformGestureEvent.GESTURE_
SWIPE events:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener(TransformGestureEvent.

GESTURE_SWIPE, onSwipe);
}

5. We can now respond to the data being returned by our swipe event. In this case, we
are simply shifting the x and y position of our Shape based upon the swipe offset
data:
protected function onSwipe(e:TransformGestureEvent):void {

switch(e.offsetX){
case 1:{
box.x = stage.stageWidth - (box.width/2);
break;

}
case -1:{
box.x = box.width/2;
break;

}
}
switch(e.offsetY){

case 1:{
box.y = stage.stageHeight - (box.height/2);
break;

}

Interaction Experience: Multitouch, Gestures, and Other Input

48

case -1:{
box.y = box.height/2;
break;

}
}

}

6. The resulting gesture will affect our visual object in the following way:

Illustrations provided by Gestureworks (www.gestureworks.com).

How it works...
As we are setting our Multitouch.inputMode to gestures through
MultitouchInputMode.GESTURE, we are able to listen for and react to a host of
predefined gestures. In this example we are listening for the TransformGestureEvent.
GESTURE_SWIPE event in order to shift the x and y position of our Shape object. By adjusting
the coordinates of our Shape through the reported offset data, we can adjust the position of
our object in a way that the user expects.

We can see through this example that the offsetX and offsetY values returned by our
event listener will each either be 1 or -1. This makes it very simple for us to determine which
direction the swipe has registered:

f Swipe up: offsetY = -1

f Swipe down: offsetY = 1

Chapter 2

49

f Swipe left: offsetX = -1

f Swipe right: offsetX = 1

There's more...
When reacting to swipe events, it may be a good idea to provide a bit of transition animation,
either by using built in tweening mechanisms, or an external tweening engine. There are many
great tweening engines for ActionScript freely available as open source software. The use of
these engines along with certain gestures can provide a more pleasant experience for the
user of your applications.

We might consider the following popular tweening engines for use in our application:

TweenLite: http://www.greensock.com/tweenlite/

GTween: http://www.gskinner.com/libraries/gtween/

See also...
TransformGestureEvent.GESTURE_SWIPE is just one of a set of four primary transform
gestures available to us when working with the Flash Platform runtimes and Android devices.
Reference the following recipes for a complete overview of these gestures:

f Using gestures to zoom a display object

f Using gestures to pan a display object

f Using gestures to rotate a display object

Using gestures to rotate a display object
Rotation is performed by holding two fingers at different points on an object, and then moving
one finger around the other in a clockwise or counter clockwise motion. This results in the
rotation of the object on screen. Rotation can be used alongside the pan and zoom gestures
to provide full control to the user over an image or other DisplayObject.

http://www.greensock.com/tweenlite/
http://www.greensock.com/tweenlite/
http://www.gskinner.com/libraries/gtween/
http://www.gskinner.com/libraries/gtween/

Interaction Experience: Multitouch, Gestures, and Other Input

50

How to do it...
This example draws a square within a Shape object using the Graphics API, adds it to the
Stage, and then sets up a listener for Rotate gesture events in order to appropriately rotate
the Shape instance around its registration point:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.display.Shape;
import flash.events.TransformGestureEvent;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a Shape object which we will perform the gestures upon:
private var box:Shape;

3. Next, construct a method to handle the creation of our Shape and add it to the
DisplayList.
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-150,-150,300,300);
box.graphics.endFill();
addChild(box);

}

4. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant and register an event listener for the GESTURE_ROTATE event. In this case,
the onRotate method will fire whenever the application detects a rotation gesture:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.GESTURE;
stage.addEventListener(TransformGestureEvent.GESTURE_ROTATE,
onRotate);

}

Chapter 2

51

5. We can now respond to the data being returned by our rotate event. In this case, we
are simply assigning the rotation value returned from our event listener to the
rotation parameter of our Shape in order to perform the appropriate rotation:
protected function onRotate(e:TransformGestureEvent):void {

box.rotation += e.rotation;
}

6. The resulting gesture will affect our visual object in the following way:

Illustrations provided by Gestureworks (www.gestureworks.com).

How it works...
As we are setting our Multitouch.inputMode to gestures through
MultitouchInputMode.GESTURE, we are able to listen for and react to a host of
predefined gestures. In this example we are listening for the TransformGestureEvent.
GESTURE_ROTATE event in order to assign the returned rotation value to our
Shape object.

There is really no further calculation to make upon this data in most cases, but we could
perform more advanced rotation interactions by allowing (for instance) the rotation of one
DisplayObject to affect the rotation of an additional DisplayObject, or even multiple
DisplayObjects on the Stage.

Interaction Experience: Multitouch, Gestures, and Other Input

52

There's more...
Note here that we are drawing our square in such a way that the Shape registration
point is located in the center of the visible Shape. It is important that we do this, as the
DisplayObject will rotate based upon the registration point and transform point.

When using the drawing tools in Flash Professional, be sure to set the registration point of
your MovieClip symbol to be centered in order for this to work correctly.

See also...
TransformGestureEvent.GESTURE_ROTATE is just one of a set of four primary transform
gestures available to us when working with the Flash Platform runtimes and Android devices.
Reference the following recipes for a complete overview of these gestures:

f Using gestures to zoom a display object

f Using gestures to pan a display object

f Using gestures to swipe a display object

Accessing raw touchpoint data
Sometimes the predefined gestures that are baked into Flash Player and AIR are not enough
for certain application interactions. This recipe will demonstrate how to access raw touch data
reported by the operating system through Flash Player or AIR APIs.

How to do it...
To read raw touch data in your project, perform the following steps:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

Chapter 2

53

2. Declare a TextField and TextFormat object to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "left";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant. We will also register a set of listeners for TouchEvent data in the following
method:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
stage.addEventListener(TouchEvent.TOUCH_MOVE, touchMove);
stage.addEventListener(TouchEvent.TOUCH_END, touchEnd);

}

5. To clear out our TextField after each touch interaction ends, we will construct the
following function:
protected function touchEnd(e:TouchEvent):void {

traceField.text = "";
}

6. We can then read the various properties from the touch event to interpret in some
way. Events such as pressure, coordinates, size, and more can be derived from the
event object that is returned:
protected function touchMove(e:TouchEvent):void {

traceField.text = "";

Interaction Experience: Multitouch, Gestures, and Other Input

54

traceField.appendText("Primary: " +
e.isPrimaryTouchPoint + "\n");

traceField.appendText("LocalX: " + e.localX + "\n");
traceField.appendText("LocalY: " + e.localY + "\n");
traceField.appendText("Pressure: " + e.pressure + "\n");
traceField.appendText("SizeX: " + e.sizeX + "\n");
traceField.appendText("SizeY: " + e.sizeY + "\n");
traceField.appendText("StageX: " + e.stageX + "\n");
traceField.appendText("StageY: " + e.stageY + "\n");
traceField.appendText("TPID: " + e.touchPointID + "\n");

}

7. The result will appear similar to the following:

How it works...
Each touch point that is registered in the device has a number of specific properties
associated with it. By registering a set of listeners to detect these interactions, we can read
this data and the application can react appropriately. In our example, we are simply exposing
these values via TextField, but this would be the exact data we would need to build a
pressure-sensitive gaming mechanic or some other custom gesture.

Note that on a device that allows more than one touchpoint, we will be able to read the
data from both touchpoints using the same listener. Multiple touchpoints are differentiated
by location on the stage and by touchPointID. We would use these IDs to differentiate
between touchpoints when devising complex gestures, or simply when we have the need to
keep track of each touchpoint in a precise way.

Chapter 2

55

There's more...
It is important to note that while Multitouch.inputMode is set to
MultitouchInputMode.TOUCH_POINT that we will not be able to take advantage of the
predefined gestures that Flash Player and AIR make available through the simplified gesture
API. Setting the Multitouch.inputMode to MultitouchInputMode.GESTURE will allow
us to take advantage of common, predefined gesture events within our application.

Creating a custom gesture based upon
touchPoint data

Using raw touch data, we can define custom gestures to develop unique interactions used in
our application. We do this by making calculations based upon data delivered through raw
touch events.

How to do it...
In this example, we will create a diagonal swipe gesture that can have four separate values
returned which let us know the direction of a diagonal swipe.

1. First, import the following classes into your project:
import flash.display.Shape;
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a TextField and TextFormat object to allow visible text output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

Interaction Experience: Multitouch, Gestures, and Other Input

56

3. We will set up two additional objects to help track our gestures, a Shape
called drawArea to draw out the gestures through the graphics API, and
trackBeginObject, which is a simple object we can use to preserve our beginning
touch coordinates to compare with the coordinates of our touch end:
private var drawArea:Shape;
private var trackBeginObject:Object;

4. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 32;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

5. Next, we will set up our Shape within which we will draw out gestures using the
Graphics API:
protected function setupDrawArea():void {

drawArea = new Shape();
addChild(drawArea);

}

6. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant. In this example, we will register a set of listeners to detect touch movement
on the Stage. This will serve to provide visual feedback for our gesture tracking and
also preserve our beginning touch coordinates to compare with the coordinates of our
touch end.

7. We will also initialize out tracking Object through this same method:
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
trackBeginObject = new Object();
stage.addEventListener(TouchEvent.TOUCH_BEGIN, touchBegin);
stage.addEventListener(TouchEvent.TOUCH_MOVE, touchMove);

Chapter 2

57

stage.addEventListener(TouchEvent.TOUCH_END, touchEnd);
}

8. Construct a method called touchBegin to initialize the beginning of our gesture and
preserve coordinate data for later comparison. We will make sure that the touchpoint
being registered is the first touchpoint of what could be multiple by testing against
the TouchEvent.isPrimaryTouchPoint boolean property.
protected function touchBegin(e:TouchEvent):void {

if(e.isPrimaryTouchPoint){
drawArea.graphics.clear();
drawArea.graphics.lineStyle(20, 0xFFFFFF, 0.8);
trackBeginObject.x = e.stageX;
trackBeginObject.y = e.stageY;
drawArea.graphics.moveTo(e.stageX, e.stageY);

}
}

9. Construct another method called touchMove to accept the touch movement data
and draw out our visual feedback:
protected function touchMove(e:TouchEvent):void {

if(e.isPrimaryTouchPoint){
drawArea.graphics.lineTo(e.stageX, e.stageY);

}
}

10. Construct a final method called touchEnd to compare the end touch
data coordinates with what we preserved at the beginning through our
trackBeginObject and then determine what sort of gesture it is. In this case, we
output the results as a String to a TextField, previously created:
protected function touchEnd(e:TouchEvent):void {

if(e.isPrimaryTouchPoint){
if(e.stageX > trackBeginObject.x && e.stageY >

trackBeginObject.y){
traceField.text = "Diagonal Gesture: TL -> BR";

}elseif(e.stageX < trackBeginObject.x && e.stageY >
trackBeginObject.y){

traceField.text = "Diagonal Gesture: TR -> BL";

}elseif(e.stageX < trackBeginObject.x && e.stageY <
trackBeginObject.y){

traceField.text = "Diagonal Gesture: BR -> TL";
}elseif(e.stageX > trackBeginObject.x && e.stageY <

trackBeginObject.y){
traceField.text = "Diagonal Gesture: BL -> TR";

}
}

}

Interaction Experience: Multitouch, Gestures, and Other Input

58

11. The result will appear similar to the following:

Illustrations provided by Gestureworks (www.gestureworks.com).

How it works...
As we have access to all of the raw touchpoint data, we can track the life cycle of a touch
interaction from beginning to end with the help of regular ActionScript elements such as
Object, Vector, or Array instances. Based upon the data tracked, such as coordinate
position, touch pressure, and so forth, we can make calculations and determine whether or
not the interaction qualifies as the gesture we are looking to track.

In the case of our preceding example, we are being fairly loose with our determination of a
qualifying gesture. To be more stringent, we could also calculate the distance of different
touch points and even track the time from touch begin to touch end to be sure the gesture is
exactly what we are looking for, and therefor intentional by the user.

There's more...
There are actually quite a few gesture libraries that we can use as alternatives to those built
into the Flash Player and AIR runtimes. Performing a quick web search should allow us access
to these libraries, many of which are free open source software. The most popular 3rd party
gesture library is Gesture Works, which can be downloaded from http://gestureworks.
com/.

http://gestureworks.com/

Chapter 2

59

Emulating the Android long-press interaction
One of the most useful interactions built into the Android operating system is the long
press. This is achieved when a user taps a specific area and holds for a few seconds without
releasing. While neither Flash Player nor AIR for Android have the long-press interaction as
part of the multitouch gesture events library, it is fairly simple to emulate this interaction
through either runtime.

How to do it...
We will emulate the Android long-press interaction through use of an ActionScript Timer
object along with the use of TouchPoint events.

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.events.TimerEvent;
import flash.events.TouchEvent;
import flash.geom.Rectangle;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.utils.Timer;

2. Declare a Sprite object which we will perform the long-press upon, as well as a
Timer object:
private var box:Sprite;
private var lpTimer:Timer;

3. Set up out Timer object to measure the amount of time it should take to register
a long-press; in this case, 1000 milliseconds. Additionally, we will now register a
listener to detect when the Timer cycle has completed:
protected function setupTimer():void {

lpTimer = new Timer(1000,1);
lpTimer.addEventListener(TimerEvent.TIMER_COMPLETE, timerEnd);

}

4. Next, construct a method to handle the creation of our Sprite and add it to the
DisplayList:
protected function setupBox():void {

box = new Sprite();

Interaction Experience: Multitouch, Gestures, and Other Input

60

box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-100,-100,200,200);
box.graphics.endFill();
addChild(box);

}

5. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant. To emulate a long-press, we must start a timer at each instance of a
touch interaction through TouchEvent.TOUCH_BEGIN. The Timer will be stopped
whenever a TouchEvent.TOUCH_END or some other touch cancelling event is fired,
resetting our "long-press".
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
box.addEventListener(TouchEvent.TOUCH_BEGIN, touchBegin);
box.addEventListener(TouchEvent.TOUCH_END, touchEnd);
box.addEventListener(TouchEvent.TOUCH_OUT, touchEnd);
box.addEventListener(TouchEvent.TOUCH_ROLL_OUT, touchEnd);

}

6. Construct a method to modify our Sprite upon the start of our touch interaction.
We will scale the Sprite slightly and change the alpha property to indicate that
something has activated. At this point, we begin measuring the long-press through
our Timer:
protected function touchBegin(e:TouchEvent):void {

box.scaleX += 0.1;
box.scaleY += 0.1;
box.alpha = 0.8;
lpTimer.start();

}

7. The Timer is set to complete after 1000 milliseconds, once fired. Upon this trigger,
we can then perform whatever action is necessary within the application. In this case,
we are making our Sprite dragable:
protected function timerEnd(e:TimerEvent):void {

var dragBounds:Rectangle = new Rectangle(box.width/2,
box.height/2, stage.stageWidth-box.width,
stage.stageHeight-box.height);
box.startDrag(true, dragBounds);

}

Chapter 2

61

8. The method for a touch end should stop our Timer and cancel any drag events
occurring with our Sprite. Here, we also rest the scale and alpha of our Sprite
to return it to a rest state:
protected function touchEnd(e:TouchEvent):void {

lpTimer.stop();
box.stopDrag();
box.scaleX = 1;
box.scaleY = 1;
box.alpha = 1;

}

9. The resulting gesture will affect our visual object in the following way:

Illustrations provided by Gestureworks (www.gestureworks.com).

How it works...
Our example requires a one second press and hold to trigger a function invocation, which
causes a Shape object to become draggable across the Stage. This is accomplished by
listening for a TOUCH_BEGIN event, then monitoring a Timer to decide whether this is an
intentional long-press interaction. If one second goes by without a TOUCH_END event, then
we make the Shape draggable. We have modified the scale and opacity of the Shape once
the Timer is triggered to indicate that it now a draggable object. Releasing the Shape will
complete the interaction.

Interaction Experience: Multitouch, Gestures, and Other Input

62

There's more...
The most common uses of the long-press are to perform a repositioning of certain visual
elements, as we have done here, or to invoke a menu operation as Android users are very
comfortable with using this sort of interaction on their devices.

Invoking the virtual keyboard
programmatically

In most cases, simply giving focus to a text input field will invoke the virtual keyboard. Losing
focus will dismiss the virtual keyboard. Perhaps we require our application to do this without
user interaction, or immediately when entering a certain application state for convenience.

How to do it...
We configure a Shape to toggle the Android virtual keyboard on and off through a Tap touch
event assigned to it.

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.SoftKeyboardEvent;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a Shape alongside a TextField and TextFormat object. These will be
used for interaction and visual feedback.
private var tapBox:Sprite;
private var tapBoxField:TextField;
private var tapBoxFormat:TextFormat;

3. Next, construct a method to handle the creation of our Sprite and add it to the
DisplayList. Tapping this Sprite will allow us to invoke or hide the virtual
keyboard. We will also construct a TextField and associated TextFormat object
within the Sprite to allow us to provide stateful messages to the user.
protected function setupBox():void {

tapBox = new Sprite();

Chapter 2

63

tapBox.graphics.beginFill(0xFFFFFF, 1);
tapBox.x = stage.stageWidth/2;
tapBox.y = stage.stageHeight/2 - 200;
tapBox.graphics.drawRect(-200,-100,400,160);
tapBox.graphics.endFill();
tapBoxFormat = new TextFormat();
tapBoxFormat.bold = true;
tapBoxFormat.font = "_sans";
tapBoxFormat.size = 42;
tapBoxFormat.align = "center";
tapBoxFormat.color = 0x333333;
tapBoxField = new TextField();
tapBoxField.defaultTextFormat = tapBoxFormat;
tapBoxField.selectable = false;
tapBoxField.mouseEnabled = false;
tapBoxField.multiline = true;
tapBoxField.wordWrap = true;
tapBoxField.width = tapBox.width;
tapBoxField.height = tapBox.height;
tapBoxField.x = -200;
tapBoxField.y = -80;
tapBoxField.text = "Tap to Toggle Virtual Keyboard";
tapBox.addChild(tapBoxField);
addChild(tapBox);

}

4. Set the specific input mode for the multitouch APIs to support touch input by
setting Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant and register an event listener on the DisplayObject, which will be used
to trigger the activation and deactivation of the Android virtual keyboard. In this
case, a TouchEvent.TOUCH_TAP event. A touch tap is the touch equivalent of a
mouse click event. We can also register a number of listeners for a set of virtual
keyboard events. In order for a DisplayObject to be able to invoke the virtual
keyboard, we will need to set its needsSoftKeyboard property to true. The
SoftKeyboardEvent listeners we register here are optional.
protected function setupTouchEvents():void {

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
tapBox.needsSoftKeyboard = true;
tapBox.addEventListener(TouchEvent.TOUCH_TAP, touchTap);
tapBox.addEventListener (SoftKeyboardEvent.

SOFT_KEYBOARD_ACTIVATING, vkActivating);
tapBox.addEventListener(SoftKeyboardEvent.

SOFT_KEYBOARD_ACTIVATE, vkActivate);
tapBox.addEventListener(SoftKeyboardEvent.

SOFT_KEYBOARD_DEACTIVATE, vkDeactivate);
}

Interaction Experience: Multitouch, Gestures, and Other Input

64

5. To make use of the SoftKeyboardEvent listeners defined in the preceding point,
we must create a variety of methods to execute once each activity is detected. In
this way, we can monitor, interact with, or even prevent certain events from firing by
intercepting the virtual keyboard while in the midst of activating, or detecting when
the virtual keyboard has completed activation or deactivation completely.
protected function vkActivating(e:SoftKeyboardEvent):void {

trace("Virtual Keyboard ACTIVATING");
}
protected function vkActivate(e:SoftKeyboardEvent):void {

trace("Virtual Keyboard ACTIVATED");
}
protected function vkDeactivate(e:SoftKeyboardEvent):void {

trace("Virtual Keyboard DEACTIVATED");
}

6. To invoke the virtual keyboard, we simply invoke requestSoftKeyboard()on the
DisplayObject, whose needsSoftKeyboard property has been set to true.
Here, we are checking to see whether needsSoftKeyboard is set to true or not,
and toggling this property based upon that.
protected function touchTap(e:TouchEvent):void {

if(tapBox.needsSoftKeyboard == true){
tapBox.requestSoftKeyboard();
tapBoxField.text = "Virtual Keyboard is Up";
tapBox.needsSoftKeyboard = false;

}else{
tapBox.needsSoftKeyboard = true;
tapBoxField.text = "Virtual Keyboard is Down";

}
}

7. To dismiss the virtual keyboard, the user will need to tap upon a DisplayObject,
whose needsSoftKeyboard property has been set to false.

8. The result will appear similar to the following:

Chapter 2

65

How it works...
In order to invoke the Android virtual keyboard through ActionScript, we must set an
interactive DisplayObjects.needsSoftKeyboard property to true. This will allow us to
register a tap touch listener and invoke requestSoftKeyboard() upon the tap touch event
being fired, revealing the virtual keyboard on screen.

Touching any DisplayObject whose needsSoftKeyboard property is set to false (the
default state), will dismiss the virtual keyboard. In our preceding example, we switch this
property from true to false in order to make the DisplayObject function as a
toggle control.

There's more...
While it is not necessary to use the SoftKeyboardEvent class to activate or dismiss the
Android virtual keyboard through ActionScript, it is included in the example class as it allows
us to respond to such events with an additional set of listener functions.

Interaction Experience: Multitouch, Gestures, and Other Input

66

Responding to Android soft-key interactions
AIR for Android does not include support for invoking the native operating system options
menu that often appears at the bottom of the screen. However, there are ways of simulating
the native behaviour, which we will explore in this section.

The normal behaviour of the back button, on Android, is to step back through the application
states until we arrive back home. A further press of the back button will exit the application. By
default, AIR for Android applications behave in this way as well. If we want to override this default
behaviour, we must set up a mechanism to intercept this interaction and then prevent it.

How to do it...
We can respond to soft-key events through standard ActionScript event listeners.

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.KeyboardEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Keyboard;

2. Declare a TextField and TextFormat object to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will then set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 32;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;

Chapter 2

67

traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Now we need to set an event listener on the Stage to respond to keyboard presses:
protected function registerListeners():void {

stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDown);
}

5. We will then write a switch/case statement in our keyDown method that will perform
different actions in response to specific soft-key events. In this case, we output the
name of a specific menu item to our TextField:
protected function keyDown(e:KeyboardEvent):void {

var key:uint = e.keyCode;
traceField.text = key + " pressed!\n";
switch(key){

case Keyboard.BACK:{
e.preventDefault();
traceField.appendText("Keyboard.BACK");
break;

}
case Keyboard.MENU:{
traceField.appendText("Keyboard.MENU");
break;
}
case Keyboard.SEARCH:{
traceField.appendText("Keyboard.SEARCH");
break;
}

}
}

6. The result will appear similar to the following:

Interaction Experience: Multitouch, Gestures, and Other Input

68

How it works...
We register listeners for these Android device soft-keys just as we would for a physical or
virtual keyboard in ActionScript. If developing Android applications using AIR for Android, we
also have access to the BACK, MENU, and SEARCH constants through the Keyboard class.

Registering a keyboard keyDown listener and then responding to specific key values through
a switch/case statement allows us to respond to the interaction appropriately. For instance, if
the MENU soft-key interaction is detected, we can reveal an options menu.

There's more...
There is also a HOME soft-key on Android devices. This key press cannot be captured through
ActionScript as it exists solely to return the user to the Android home screen from any opened
application.

We must use the keyDown event when we want to cancel the
default Android behavior of the BACK key because the keyUp
event will fire too late and not be caught at all.

Responding to trackball and D-Pad events
Some Android devices have additional physical inputs that we can take advantage of. For
instance, the Motorola Droid has a slider keyboard, which includes a directional D-pad and the
HTC Nexus One has a built-in trackball control.

How to do it...
We can respond to trackball and D-pad events through standard ActionScript event listeners.

1. First, import the following classes into your project:
import flash.display.Shape;
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.KeyboardEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Keyboard;

Chapter 2

69

2. Declare a Shape alongside a TextField and TextFormat object. These will be
used for interaction and visual feedback.
private var traceField:TextField;
private var traceFormat:TextFormat;
private var box:Shape;

3. We will then set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 32;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Next, construct a method to handle the creation of our Shape and add it to the
DisplayList.
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-100,-100,200,200);
box.graphics.endFill();
addChild(box);

}

5. Set an event listener on the Stage to respond to keyboard presses:
protected function registerListeners():void {

stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDown);
}

Interaction Experience: Multitouch, Gestures, and Other Input

70

6. Now, we simply need to write a switch/case statement that will perform different
actions in response to D-pad/trackball events. In this case, we change the position of
our Shape and output the keyCode to a TextField:
protected function keyDown(e:KeyboardEvent):void {

var key:uint = e.keyCode;
traceField.text = key + " pressed!";
switch(key){

case Keyboard.UP:{
box.y -= 20;
break;

}
case Keyboard.DOWN:{
box.y += 20;
break;

}
case Keyboard.LEFT:{
box.x -= 20;
break;

}
case Keyboard.RIGHT:{
box.x += 20;
break;

}
case Keyboard.ENTER:{
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
break;

}
}

}

7. The result will appear similar to the following:

Chapter 2

71

How it works...
We register listeners for these special controls just as we would the Keyboard.UP,
Keyboard.DOWN, Keyboard.LEFT, Keyboard.RIGHT, and Keyboard.ENTER keys for
any physical keyboard. In this example, we are shifting the target Shape in each direction and
rest the location based upon the D-pad/trackball being pressed. We are also outputting the
keyCode value to a text field.

There's more...
It is important to note that most Android devices do not have such specialized input
mechanisms. If we do register events mapped to these keys, we should always supply and
alternative as well.

3
Movement through

Space: Accelerometer
and Geolocation

Sensors

This chapter will cover the following recipes:

f Detecting whether or not an Android device supports the accelerometer

f Detecting Android device movement in 3D space

f Adjusting the accelerometer sensor update interval

f Updating display object position through accelerometer sensor

f Switching between portrait and landscape based upon device tilt

f Detecting whether or not a device supports a geolocation sensor

f Detecting whether the geolocation sensor has been disabled by the user

f Retrieving device geolocation sensor data

f Adjusting the geolocation sensor update interval

f Retrieving map data through geolocation coordinates

Movement through Space: Accelerometer and Geolocation Sensors

74

Introduction
Android devices are not only equipped with touch panels, virtual keyboards, and other input
mechanisms, but they also include sensors such as accelerometer for detecting change in 3D
space, and geolocation on both a fine (satellite) and coarse (triangulation) level. This chapter
will examine how to tap into these sensors in meaningful ways within Flash platform-based
Android applications.

All of the recipes in this chapter are represented as pure ActionScript 3 classes and are not
dependent upon external libraries or the Flex framework. Therefore, we will be able to use
these examples in any IDE we wish.

Detecting whether or not an Android device
supports the accelerometer

When developing projects which target the Android operating system, it is always a good idea
to make sure that certain sensors, such as the accelerometer, are actually supported on the
device. In the case of an Android phone, this will probably always be the case, but we should
never assume the capabilities of any device.

How to do it...
We will need to use Accelerometer API classes to detect whether or not an accelerometer
is supported:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.sensors.Accelerometer;

2. Declare a TextField and TextFormat object pair to allow visible output upon
the device:
private var traceField:TextField;
private var traceFormat:TextFormat;

Chapter 3

75

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

4. Then, simply invoke Accelerometer.isSupported to confirm support for this
capability:
protected function checkAccelerometer():void {

traceField.appendText("Accelerometer: " +
Accelerometer.isSupported + "\n");

}

5. This invocation will return a Boolean value of true or false, indicating device
support for this sensor:

How it works...
Detecting whether the device includes an accelerometer sensor will determine whether or not
a user can effectively utilize an application that is dependent upon such data. If our query
returns as false, then it is up to us to notify the user or provide some sort of alternative to
gathering accelerometer data from the device as a form of interaction.

Movement through Space: Accelerometer and Geolocation Sensors

76

Detecting Android device movement in
3D space

The Accelerometer class works in tandem with the device's motion sensor to measure and
report movement and acceleration coordinates as the device is moved through 3D space.
To measure this data and react to these measurements, we must perform certain actions to
allow the gathering of accelerometer data within our application.

How to do it...
We will need to employ certain ActionScript classes to allow monitoring of accelerometer
feedback:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.AccelerometerEvent;
import flash.sensors.Accelerometer;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device, along with an Accelerometer object:
private var traceField:TextField;
private var traceFormat:TextFormat;
private var accelerometer:Accelerometer;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;

Chapter 3

77

traceField.height = stage.stageHeight;
addChild(traceField);

}

4. We must now instantiate an Accelerometer object to register an
AccelerometerEvent listener to. In this case, we will have it invoke a function
called movementDetected. We also first check to see whether or not the
Accelerometer API is actually supported on the device by checking the
Accelerometer.isSupported property:
protected function registerListeners():void {

if(Accelerometer.isSupported) {
accelerometer = new Accelerometer();
accelerometer.addEventListener(AccelerometerEvent.UPDATE,

movementDetected);
}else{

traceField.text = "Accelerometer not supported!";
}

}

5. We are now able to monitor and respond to device movement through the
movementDetected method:
protected function movementDetected(e:AccelerometerEvent):void {

traceField.text = "";
traceField.appendText("Time: " + e.timestamp + "\n");
traceField.appendText("X: " + e.accelerationX + "\n");
traceField.appendText("Y: " + e.accelerationY + "\n");
traceField.appendText("Z: " + e.accelerationZ + "\n");

}

6. The output will look similar to this:

Movement through Space: Accelerometer and Geolocation Sensors

78

How it works...
By registering an event listener to AccelerometerEvent.UPDATE we are able to
detect changes reported by the movement sensor on an Android device. There are four
properties that are reported back through this event: accelerationX, accelerationY,
accelerationZ, and timestamp.

f accelerationX: A Number which measures acceleration along the x-axis, which
runs from left to right when the device is placed in an upright position. A positive
acceleration is indicated when the device is moved to the right. Leftward movement
is presented as a negative number.

f accelerationY: A Number which measures acceleration along the y-axis, which
runs from bottom to top when the device is placed in an upright position. A positive
acceleration is indicated when the device is moved upwards. Downward movement is
presented as a negative number.

f accelerationZ: A Number which measures acceleration along the z-axis, which
runs perpendicular to the face of the device. A positive acceleration is indicated when
the device is moved so that the face points skyward. Movement positioning the face
at an earthward angle will be represented as a negative number.

f timestamp: An int which measures the amount of milliseconds since the
application has been initialized. This can be used to track update events over time.

There's more...
The accelerometer is often used when creating balance-based games on Android such as
having a ball travel through a maze based upon device tilt, but we can use this data in any way
we wish to monitor changes in space, tilt, or other movement-based actions.

Adjusting the accelerometer sensor
update interval

While the default accelerometer sensor update interval may be just fine for most applications,
what if we would like to speed up or slow down this interval for a specific purpose?

Chapter 3

79

How to do it...
We will need to change the accelerometer sensor update interval using methods included with
the Accelerometer class:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.AccelerometerEvent;
import flash.events.TouchEvent;
import flash.sensors.Accelerometer;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We'll now declare a number of objects to use in the example. First, a TextField
and TextFormat object pair to allow visible output upon the device, along with an
Accelerometer object.

3. Then we will need to also employ a Number to keep track of our interval amount.

4. Also needed are two Sprite objects for the user to interact with.
private var traceField:TextField;
private var traceFormat:TextFormat;
private var accelerometer:Accelerometer;
private var accelerometerInterval:Number;
private var boxUp:Sprite;
private var boxDown:Sprite;

5. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0xFFFFFF;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;

Movement through Space: Accelerometer and Geolocation Sensors

80

traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

6. To detect user input through touch, we will create two Sprite instances and add
each to the Stage. To differentiate between Sprite instances in any event listener
we register with these objects, we will provide a unique name property upon each
Sprite:
protected function setupBoxes():void {

boxUp = new Sprite();
boxUp.name = "boxUp";
boxUp.graphics.beginFill(0xFFFFFF, 1);
boxUp.x = 20;
boxUp.y = stage.stageHeight/2;
boxUp.graphics.drawRect(0,0,100,80);
boxUp.graphics.endFill();
addChild(boxUp);
boxDown = new Sprite();
boxDown.name = "boxDown";
boxDown.graphics.beginFill(0xFFFFFF, 1);
boxDown.x = stage.stageWidth - 120;
boxDown.y = stage.stageHeight/2;
boxDown.graphics.drawRect(0,0,100,80);
boxDown.graphics.endFill();
addChild(boxDown);

}

7. We also first check to see whether or not the Accelerometer API is actually supported
on the device by checking the Accelerometer.isSupported property.

8. We will then need to set the specific input mode for the multitouch APIs to support
touch input by setting Multitouch.inputMode to the MultitouchInputMode.
TOUCH_POINT constant.

9. Each Sprite will register a TouchEvent.TOUCH_TAP listener so that it will be able to
invoke a method to shift the update interval upon touch tap.

10. Now, we can instantiate an Accelerometer object and invoke the
setRequestedUpdateInterval method, which requires an interval measured in
milliseconds to be passed into the method call.

11. We'll also register an event listener to respond to any device movement:
protected function registerListeners():void {

if(Accelerometer.isSupported) {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

Chapter 3

81

boxUp.addEventListener(TouchEvent.TOUCH_TAP, shiftInterval);
boxDown.addEventListener(TouchEvent.TOUCH_TAP, shiftInterval);
accelerometer = new Accelerometer();
accelerometerInterval = 100;
accelerometer.setRequestedUpdateInterval

(accelerometerInterval);
accelerometer.addEventListener(AccelerometerEvent.UPDATE,

movementDetected);
}else{

traceField.text = "Accelerometer not supported!";
}

}

12. Our shiftInterval method will now respond to any touch taps intercepted by the
two Sprite boxes we created. We are checking to see what name property has been
given to each Sprite and shift the accelerometerInterval accordingly:
protected function shiftInterval(e:TouchEvent):void {

switch(e.target.name){
case "boxUp":{
accelerometerInterval += 100;
break;

}
case "boxDown":{
accelerometerInterval -= 100;
break;

}
}
if(accelerometerInterval < 0){

accelerometerInterval = 0;
}
accelerometer.setRequestedUpdateInterval(accelerometerInterval);

}

13. The accelerometer sensor update interval will now invoke the following function,
which will output detected movement and interval data through our TextField:
protected function movementDetected(e:AccelerometerEvent):void {

traceField.text = "Interval: " + accelerometerInterval + "\n\n";
traceField.appendText("Time: " + e.timestamp + "\n");
traceField.appendText("X: " + e.accelerationX + "\n");
traceField.appendText("Y: " + e.accelerationY + "\n");
traceField.appendText("Z: " + e.accelerationZ + "\n");

}

Movement through Space: Accelerometer and Geolocation Sensors

82

14. The result will appear similar to the following:

How it works...
By setting the accelerometer update interval through setRequestedUpdateInterval(),
we are able to adjust this interval based upon circumstances in our particular application.
In the preceding demonstration class, we have rendered two Sprites acting as an
increase and decrease TouchEvent.TOUCH_TAP event receptors. Tapping upon these
DisplayObjects will either increase or decrease the accelerometer update interval, which
is monitored through our TextField on the screen.

There's more...
Note that the default accelerometer sensor update interval is dependent upon whichever
device is running our application. This strategy can also be used to try and even out the
interval across devices.

Updating display object position through
accelerometer events

The accelerometer sensor can be used when creating all sorts of games or applications for
an Android device. One of the more frequent uses of this data is to update the position of a
DisplayObject on the Stage in response to accelerometer update event data.

Chapter 3

83

How to do it...
We will need to employ certain ActionScript classes to allow monitoring of accelerometer
feedback through a DisplayObject instance. In this example, we will employ a simple
Shape object and change its position based upon this data:

1. First, import the following classes into your project:
import flash.display.Shape;
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.AccelerometerEvent;
import flash.sensors.Accelerometer;
import flash.text.TextField;
import flash.text.TextFormat;

2. We'll now declare a number of objects to use in the example. First, a TextField and
TextFormat object pair, along with a Shape to allow visible output upon the device.

3. We must also declare an Accelerometer object in order to monitor and respond to
device movement:
private var traceField:TextField;
private var traceFormat:TextFormat;
private var box:Shape;
private var accelerometer:Accelerometer;

4. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {

traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0xFFFFFF;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField);

}

Movement through Space: Accelerometer and Geolocation Sensors

84

5. Create a new Shape object called box, draw a rectangle with the Graphics API, and
add it to the Stage:
protected function setupBox():void {

box = new Shape();
box.graphics.beginFill(0xFFFFFF, 1);
box.x = stage.stageWidth/2;
box.y = stage.stageHeight/2;
box.graphics.drawRect(-100,-100,200,200);
box.graphics.endFill();
addChild(box);

}

6. We must now instantiate an Accelerometer object to register an
AccelerometerEvent listener to. In this case, we will have it invoke a
function called movementDetected. We also first check to see whether or
not the Accelerometer API is actually supported on the device by checking the
Accelerometer.isSupported property:
protected function registerListeners():void {

if(Accelerometer.isSupported) {
accelerometer = new Accelerometer();
accelerometer.addEventListener(AccelerometerEvent.UPDATE,

movementDetected);
}else{

traceField.text = "Accelerometer not supported!";
}

}

7. We are now able to monitor and respond to device movement through the
movementDetected method by adjusting the x and y coordinates of our Shape
object, based upon the accelerationX and accelerationY data reported
through the AccelerometerEvent.UPDATE data being reported.

8. In the following function, we are going to perform a number of checks to be sure our
Shape does not move off of the Stage as the device is tilted. We will also output the
x and y properties of our Sprite to a TextField
protected function movementDetected(e:AccelerometerEvent):void {

traceField.text = "";
var speed:Number = 20;
if(box.x > box.width/2){

box.x -= Math.floor(e.accelerationX*speed);
}else{

box.x = box.width/2;
}
if(box.x < stage.stageWidth-(box.width/2)){

box.x -= Math.floor(e.accelerationX*speed);

Chapter 3

85

}else{
box.x = stage.stageWidth-(box.width/2);

}
if(box.y > box.height/2){

box.y += Math.floor(e.accelerationY*speed);
}else{

box.y = box.height/2;
}
if(box.y < stage.stageHeight-(box.height/2)){

box.y += Math.floor(e.accelerationY*speed);
}else{

box.y = stage.stageHeight-(box.height/2);
}
traceField.appendText("box.x: " + box.x + "\n");
traceField.appendText("box.y: " + box.y + "\n");

}

9. The resulting output will appear similar to the following:

How it works...
By registering an event listener to AccelerometerEvent.UPDATE we are able to detect
changes reported by the movement sensor on an Android device. Using ActionScript, we can
then respond to these changes in movement and tilt, as the code example demonstrates, by
moving a DisplayObject around the screen based upon the reported sensor data.

Movement through Space: Accelerometer and Geolocation Sensors

86

In the example, not only are we moving the Shape object around the screen, but we are also
being mindful to never allow the shape to leave the screen through a number of conditional
statements taking into account object width, height, and detected screen dimensions.

Switching between portrait and landscape
based upon device tilt

Most Android devices will allow both portrait and landscape views for the user to interact
with. The portrait mode is enabled when the device is held with the y-axis aligned from top to
bottom, while landscape mode is enabled by holding the device so that the y-axis is measured
from left to right. By using data reported from the accelerometer sensor, we can know when
these movements have occurred and respond to them within our application.

How to do it...
We will need to employ the Accelerometer API to detect device rotation and tilt:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; import
flash.display.StageScaleMode; import
flash.events.AccelerometerEvent; import
flash.sensors.Accelerometer; import
flash.text.TextField;
import flash.text.TextFormat;

2. We'll now declare a number of objects to use in the example. First, a TextField and
TextFormat object pair to allow visible output upon the device.

3. We must also declare an Accelerometer object in order to monitor and respond to
device movement:
private var traceField:TextField;
private var traceFormat:TextFormat; pri-
vate var accelerometer:Accelerometer;

4. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;

Chapter 3

87

traceFormat.align = "center";
traceFormat.color = 0xFFFFFF;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

5. Then, we must create an Accelerometer instance and assign an event listener of
type AccelerometerEvent.UPDATE to it. This will trigger the movementDetected
method whenever a change in accelerometer data is detected. We also first check
to see whether or not the Accelerometer API is actually supported on the device by
checking the Accelerometer.isSupported property:
protected function registerListeners():void {
if(Accelerometer.isSupported) {
accelerometer = new Accelerometer();
accelerometer.addEventListener(AccelerometerEvent.UPDATE,
movementDetected);
}else{
traceField.text = "Accelerometer not supported!";
} }

6. Within our movementDetected method, we simply need to monitor the acceleration
data reported by the sensor and adjust our application accordingly. We'll also output
data to our TextField to monitor device movement:
protected function movementDetected(e:AccelerometerEvent):void {
traceField.text = "";
traceField.appendText("Time: " + e.timestamp + "\n");
traceField.appendText("X: " + e.accelerationX + "\n");
traceField.appendText("Y: " + e.accelerationY + "\n");
traceField.appendText("Z: " + e.accelerationZ + "\n");
if(e.accelerationY > 0.5){
traceField.appendText("\n\n\nPORTRAIT");
}else{
traceField.appendText("\n\n\nLANDSCAPE");
} }

Movement through Space: Accelerometer and Geolocation Sensors

88

7. The result will appear similar to the following:

How it works...
As the accelerometer movement is detected within our application, the movementDetected
method will report data regarding the x, y, and z axis of the device. If we monitor the
acceleration value that is reported, we can respond to device tilt in a way that takes into
account the vertical orientation and thus know whether or not to adjust elements on the
Stage for portrait or landscape viewing.

There's more...
In this example, we are using pure ActionScript to detect accelerometer senor data and
respond to it. When using the mobile Flex framework in developing our application, we can
allow the framework to handle device orientation for us when setting up our Flex Mobile
Project by choosing the Automatically reorient option in the Mobile Settings dialog.

Chapter 3

89

See also…

Chapter 6, Structural Adaptation: Handling Device Layout and Scaling, also has more
information on adapting to device orientation changes using alternative detection methods.

Detecting whether or not a device supports
a geolocation sensor

When developing projects which target the Android operating system, it is always a good idea
to make sure that certain sensors, such as the geolocation sensor, are actually supported
on the device. In the case of an Android device, this will probably always be the case, but we
should never assume the capabilities of any device.

How to do it...
We will need to use internal classes to detect whether or not the geolocation API is supported:

1. First, import the following classes into your project:
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.Stage;

Movement through Space: Accelerometer and Geolocation Sensors

90

import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat; im-
port flash.sensors.Geolocation;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Then, simply invoke Geolocation.isSupported to confirm support for this
capability:
protected function checkGeolocation():void {
traceField.appendText("Geolocation: " +

Geolocation.isSupported); }

5. This invocation will return a Boolean value of true or false, indicating device
support for this sensor. This result will be output to the TextField we created:

Chapter 3

91

How it works...
Detecting whether the device includes a geolocation sensor will determine whether or not
a user can effectively utilize an application that is dependent upon such data. If our query
returns as false, then it is up to us to notify the user or provide some sort of alternative to
gathering such data from the user. This is normally handled by the user inputting specific
location data manually.

See also…
The availability of the geolocation sensors must be requested by the application developer
through an Android manifest file. In order for our application to use these sensors,
permissions must be stated within the manifest file. See Chapter 9, Manifest Assurance:
Security and Android Permissions, for more information.

Detecting whether the geolocation sensor has been disabled by the user

There are many reasons why the Android geolocation sensor may not be available for use in
our application. The user could have simply switched this sensor off to conserve battery life,
or perhaps we, as developers, did not provide adequate permissions through the Android
manifest file to allow geolocation access. In any case, it is a good idea to check and respond
with a kind prompt if the sensor has been disabled.

How to do it...
We will need to check the muted property included with the Geolocation class:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.StatusEvent;
import flash.sensors.Geolocation;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device along with a Geolocation object:
private var traceField:TextField;
private var traceFormat:TextFormat;
private var geo:Geolocation;

Movement through Space: Accelerometer and Geolocation Sensors

92

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Now, we must instantiate a Geolocation instance and register an event listener to
determine whether geolocation becomes disabled while our application is running.

We could also simply check the muted property at any time now
that we have defined a Geolocation instance.

protected function registerListeners():void {
geo = new Geolocation();
geo.addEventListener(StatusEvent.STATUS,
checkGeolocationMuted);
traceField.appendText("Geolocation Disabled? \n\n" + geo.muted); }

5. Once we invoke the method, check the muted property. If this returns true, we can
access the device geolocation sensor; if it returns false, then we know the sensor
has been disabled:
protected function checkGeolocationMuted(e:StatusEvent):void {
traceField.appendText("Geolocation Disabled? \n\n" + geo.muted); }

Chapter 3

93

6. The result will be output to the device screen as shown in the following screenshot:

How it works...
Once we construct a Geolocation instance, we then are able to access the muted property
of that class. By checking the muted property of a Geolocation object, we can either
disable geolocation features in our application, prompt the user to manually enter their
location, or simply notify the user that they must enable the geolocation sensor on the device
in order to proceed.

There's more...
As demonstrated in our example, the Geolocation object can have a status event
registered to it, which will alert us when the muted property changes. We can use this to
detect changes in the property while running the application and respond accordingly.

See also…
The availability of the geolocation sensors must be requested by the application developer
through an Android manifest file. In order for our application to use these sensors,
permissions must be stated within the manifest file. See Chapter 9 for more information.

Retrieving device geolocation sensor data
The Geolocation class can be used to reveal a full set of properties for tracking device
position on the globe. This is useful for mapping, weather, travel, and other location-aware
applications. To measure this data and react to these measurements, we must perform
certain actions.

How to do it...
We will need to employ certain ActionScript classes to allow monitoring of geolocation
feedback:

Movement through Space: Accelerometer and Geolocation Sensors

94

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.GeolocationEvent;
import flash.sensors.Geolocation;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device along with a Geolocation object:
private var traceField:TextField;
private var traceFormat:TextFormat;
private var geolocation:Geolocation;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions for
us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. We must now instantiate a Geolocation object to register a GeolocationEvent
listener to. In this case, we will have it invoke a function called
geolocationUpdate. We also first check to see whether or not the Geolocation API
is actually supported on the device by checking the Geolocation.isSupported
property:
protected function registerListeners():void {
if(Geolocation.isSupported) {
geolocation = new Geolocation();

Chapter 3

95

geolocation.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdate);
}else{
traceField.text = "Geolocation not supported!";
} }

5. We are now able to monitor and respond to device movement through the
geolocationUpdate method. In this case, we are outputting the collected data to a
TextField:
protected function geolocationUpdate(e:GeolocationEvent):void {
traceField.text = "";
traceField.appendText("altitude: " + e.altitude + "\n");
traceField.appendText("heading: " + e.heading + "\n");
traceField.appendText("horizontal accuracy: " +
e.horizontalAccuracy + "\n");
traceField.appendText("latitude: " + e.latitude + "\n");
traceField.appendText("longitude: " + e.longitude + "\n");
traceField.appendText("speed: " + e.speed + "\n");
traceField.appendText("timestamp: " + e.timestamp + "\n");
traceField.appendText("vertical accuracy: " +

e.verticalAccuracy); }

6. The output will look something like this:

Movement through Space: Accelerometer and Geolocation Sensors

96

How it works...
By registering an event listener to GeolocationEvent.UPDATE we are able to detect
changes reported by the geolocation sensor on an Android device. Note that not every
Android device will be able to report upon all of these properties; it will vary based upon
device being used. There are eight possible properties that are reported back through this
event: altitude, heading, horizontalAccuracy, latitude, longitude, speed,
timestamp, and verticalAccuracy.

f altitude: A Number measuring current altitude, in meters.

f heading: A Number representative of the direction of movement, in degrees.

f horizontalAccuracy: A Number measuring the horizontal accuracy of the sensor
measurement, in meters.

f latitude: A Number representative of the current device latitude, in degrees.

f longitude: A Number representative of the current device longitude, in degrees.

f speed: A Number measuring speed in meters per second.

f timestamp: An int representative of the number of milliseconds since application
initialization.

f verticalAccuracy: A Number measuring the vertical accuracy of the sensor
measurement, in meters.

Adjusting the geolocation sensor update
interval

While the default geolocation sensor update interval may be just fine for most applications,
what if we would like to speed up or slow down this interval for a specific purpose?

How to do it...
We will need to change the geolocation sensor update interval using methods included with
the Geolocation class:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.GeolocationEvent;
import flash.events.TouchEvent; im-
port flash.sensors.Geolocation;

Chapter 3

97

import flash.text.TextField;
import flash.text.TextFormat; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We'll now declare a number of objects to use in the example. First, a TextField
and TextFormat object to allow visible output upon the device, along with an
Geolocation object.

3. Then we will need to also employ a Number to keep track of our interval amount. Also
needed are two Sprite objects for the user to interact with.
private var traceField:TextField;
private var traceFormat:TextFormat;
private var geolocation:Geolocation;
private var geolocationInterval:Number;
private var boxUp:Sprite;
private var boxDown:Sprite;

4. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

5. To detect user input through touch, we will create two Sprite instances and add
each to the Stage. To differentiate between Sprite instances in any event listener
we register with these objects, we will provide a unique name property upon each
Sprite:
protected function setupBoxes():void {
boxUp = new Sprite();
boxUp.name = "boxUp";
boxUp.graphics.beginFill(0xFFFFFF, 0.6);
boxUp.x = 20;

Movement through Space: Accelerometer and Geolocation Sensors

98

boxUp.y = stage.stageHeight/2;
boxUp.graphics.drawRect(0,0,100,80);
boxUp.graphics.endFill();
addChild(boxUp);
boxDown = new Sprite();
boxDown.name = "boxDown";
boxDown.graphics.beginFill(0xFFFFFF, 0.6);
boxDown.x = stage.stageWidth - 120;
boxDown.y = stage.stageHeight/2;
boxDown.graphics.drawRect(0,0,100,80);
boxDown.graphics.endFill();
addChild(boxDown); }

6. We first check to see whether or not the Geolocation API is actually supported on the
device by checking the Geolocation.isSupported property.

7. We will then need to set the specific input mode for the multitouch APIs to support
touch input by setting Multitouch.inputMode to the MultitouchInputMode.
TOUCH_POINT constant. Each Sprite will register a TouchEvent.TOUCH_TAP
listener so that it will be able to invoke a method to shift the update interval upon
touch tap.

8. Now, we can also instantiate a Geolocation object and invoke the
setRequestedUpdateInterval method, which requires an interval measured in
milliseconds to be passed into the method call.

9. We'll register an event listener to respond to any device movement:
protected function registerListeners():void {
if(Geolocation.isSupported) {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
boxUp.addEventListener(TouchEvent.TOUCH_TAP, shiftInterval);
boxDown.addEventListener(TouchEvent.TOUCH_TAP, shiftInterval);
geolocation = new Geolocation();
geolocationInterval = 100;
geolocation.setRequestedUpdateInterval(geolocationInterval);
geolocation.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdate);
}else{
traceField.text = "Geolocation not supported!";
} }

Chapter 3

99

10. Our shiftInterval method will now respond to any touch taps intercepted by the
two Sprite boxes we created. We are checking to see what name property has been
given to each Sprite and shift the accelerometerInterval accordingly:
protected function shiftInterval(e:TouchEvent):void {

switch(e.target.name){
case "boxUp":{
geolocationInterval += 100;
break;

}
case "boxDown":{
geolocationInterval -= 100;
break;

}
}
if(geolocationInterval < 0){

geolocationInterval = 0;
}
geolocation.setRequestedUpdateInterval(geolocationInterval);

}

11. The geolocation sensor update interval will now invoke the following function which
will output detected movement and interval data through our TextField:
protected function geolocationUpdate(e:GeolocationEvent):void {

traceField.text = "Interval: " + geolocationInterval + "\n\n";
traceField.appendText("altitude: " + e.altitude + "\n");
traceField.appendText("heading: " + e.heading + "\n");
traceField.appendText("horizontal accuracy: " +

e.horizontalAccuracy + "\n");
traceField.appendText("latitude: " + e.latitude + "\n");
traceField.appendText("longitude: " + e.longitude + "\n");
traceField.appendText("speed: " + e.speed + "\n");
traceField.appendText("timestamp: " + e.timestamp + "\n");
traceField.appendText("vertical accuracy: " +

e.verticalAccuracy);
}

Movement through Space: Accelerometer and Geolocation Sensors

100

12. The result will appear similar to the following screenshot:

How it works...
By setting the geolocation update interval through setRequestedUpdateInterval(), we
are able to adjust this interval based upon circumstances in our particular application. In the
demonstration class in the preceding section, we have rendered two Sprites acting as
an increase and decrease TouchEvent.TOUCH_TAP event receptors. Tapping upon these
DisplayObjects will either increase or decrease the geolocation update interval, which is
monitored through our TextField on the screen.

There's more...
Note that the default geolocation sensor update interval is dependent upon whichever device
is running our application. This strategy can also be used to try and even out the interval
across devices. Some things, however, are totally out of our control. For instance, if a user is
located deep inside of a building and has a poor GPS signal, the update interval can actually
be well over a minute. Various factors such as this should be kept in mind.

Chapter 3

101

Retrieving map data through geolocation
coordinates

To retrieve a map through the use of geolocation coordinates is one of the fundamental uses
of the ActionScript Geolocation API. In this recipe, we will examine how to render a map on
the Stage and generate a marker based on latitude and longitude coordinates reported by the
device geolocation sensors using the Google Maps API for Flash.

Getting ready...
There are a few steps we will need to take before getting into the recipe itself. These steps will
prepare our project with the proper code libraries and allow us access to the Google Maps
services:

1. First, we must download the Google Maps API for Flash from http://code.
google.com/apis/maps/documentation/flash/

2. The package will include two separate .swc files. One for Flex, and the other for
ActionScript projects. In this example, we will extract the pure AS3 .swc to our local
hard drive.

3. From the same URL (in the first point) click on the link that reads Sign up for a
Google Maps API Key to generate an API key and register a URL. You will need both
of these items to complete the example.

http://code.google.com/apis/maps/documentation/flash/
http://code.google.com/apis/maps/documentation/flash/

Movement through Space: Accelerometer and Geolocation Sensors

102

4. Now, include the Google Maps SDK into your development environment by either
adding the .swc through the ActionScript Build Path properties dialog in the case of
Flash Builder (you can also simply drag the .swc into the libs directory) or FDT or
through the Advanced ActionScript Properties dialog in Flash Professional:

5. We are now ready to proceed with the recipe.

How to do it...
We will need to create our map DisplayObject, generate event listeners for Geolocation
API updates, and adjust map properties based upon our current location:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.GeolocationEvent;
import flash.geom.Point;
import flash.sensors.Geolocation;
import flash.text.TextField;
import flash.text.TextFormat;

2. Next, we will want to import a number of classes included in the Google Maps SDK.
These classes will allow us to render a Map on the Stage, listen for map-specific
events, and render a Marker on our current location:
import com.google.maps.LatLng;
import com.google.maps.Map;
import com.google.maps.MapEvent; import
com.google.maps.MapType;
import com.google.maps.overlays.Marker;

Chapter 3

103

3. We will now create a number of object references to be used in this example. First,
a TextField and TextFormat object pair to allow visible output upon the device,
along with a Geolocation object.

4. Then we will need to also employ Map and LatLng objects to render a map of
our location:
private var traceField:TextField;
private var traceFormat:TextFormat;
private var geolocation:Geolocation;
private var map:Map;
private var coordinates:LatLng;

5. We are now ready to create our Map by passing in the API key and URL we set up
when registering with Google, and adding the Map to the display list: protected
function setupMap():void {
map = new Map();
map.key = "{GOOGLE_MAPS_API_KEY}";
map.url = "{APP_URL}";
map.sensor = "true";
map.setSize(new Point(stage.stageWidth, stage.stageHeight));
addChild(map); }

6. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

Movement through Space: Accelerometer and Geolocation Sensors

104

7. It is important that we register listeners for both geolocation updates, and Map
completion events, so that we are able to read coordinate data, and know when
our Map is ready for interaction. We also first check to see whether or not the Ge-
olocation API is actually supported on the device by checking the Geolocation.
isSupported property:
protected function registerListeners():void {
if(Geolocation.isSupported) {
geolocation = new Geolocation();
geolocation.addEventListener(GeolocationEvent.UPDATE,
geolocationUpdate);
map.addEventListener(MapEvent.MAP_READY, mapReady);
}else{
traceField.text = "Geolocation not supported!";
} }

8. As the geolocation updates are being handled locally, this will most likely be our first
event listener to fire. We will grab the longitude and latitude from data provided
by the device geolocation sensor through this event and create a LatLong object
from this which will be fed into the Map upon initialization:
protected function geolocationUpdate(e:GeolocationEvent):void {
traceField.text = "";
traceField.appendText("latitude:\n" + e.latitude + "\n\n");
traceField.appendText("longitude:\n" + e.longitude);
coordinates = new LatLng(e.latitude, e.longitude); }

9. Once our mapReady listener method fires, we will already have the coordinate
information needed to display our current coordinates through the Map and also
render a simple Marker at this precise location:
protected function mapReady(e:MapEvent):void {
map.setCenter(coordinates, 16, MapType.NORMAL_MAP_TYPE);
var marker:Marker = new Marker(map.getCenter());
map.addOverlay(marker); }

10. The result will look similar to this:

Chapter 3

105

How it works...
By tapping into a mapping service such as Google Maps, we can listen for local device
geolocation updates and feed the necessary data into the mapping service to perform
numerous tasks.

In the case of this example, we simply center the Map to our device coordinates and place a
Marker overlay upon the Map. Whenever you are using a service such as this, it is always a
good idea to thoroughly read the documentation to know both the possibilities and limitation
n of the service.

The url property should be set to an online location where the purpose and scope of the
application is described, as per Google's request.

We are setting the sensor property of our Map instance to true. This
is required if the Map is reacting to data based upon device geolocation
sensors by Google. If we were simply allowing the user to input
coordinates and adjust the Map location in that way, we would set the
sensor property to false.

Movement through Space: Accelerometer and Geolocation Sensors

106

There's more...
In this case, we are using the Google Maps API for Flash. It is quite robust, but you may want
to use another mapping system such as Yahoo! Maps, MapQuest, or some other service. That
is fine since they will all require similar information; only the specific API setup will differ.

4
Visual and Audio

Input: Camera and
Microphone Access

This chapter will cover the following recipes:

f Detecting camera and microphone support

f Using the traditional camera API to save a captured image

f Using the Mobile CameraUI API to save a captured photograph

f Using the Mobile CameraUI API to save a captured video

f Using the device microphone to monitor audio sample data

f Recording microphone audio sample data

Introduction
Camera and microphone are standard accessories on most mobile devices and Android
devices are no exception to this. The present chapter will cover everything from accessing the
camera and taking photos, recording video data, and encoding raw audio captured from the
device microphone and encoding it to WAV or MP3 for use on other platforms and systems.

All of the recipes in this chapter are represented as pure ActionScript 3 classes and are not
dependent upon external libraries or the Flex framework. Therefore, we will be able to use
these examples in any IDE we wish.

Visual and Audio Input: Camera and Microphone Access

108

Detecting camera and microphone support
Nearly all Android devices come equipped with camera hardware for capturing still images
and video. Many devices now have both front and rear-facing cameras. It is important to
know whether the default device camera is usable through our application. We should never
assume the availability of certain hardware items, no matter how prevalent across devices.

Similarly, we will want to be sure to have access to the device microphone as well, when
capturing video or audio data.

How to do it...
We will determine which audio and video APIs are available to us on our Android device:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.media.Camera;
import flash.media.CameraUI;
import flash.media.Microphone;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon
the device:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;

Chapter 4

109

traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Now, we must check the isSupported property of each of these objects. We create
a method here to perform this across all three and write results to a TextField:
protected function checkCamera():void {
traceField.appendText("Camera: " + Camera.isSupported + "\n");
traceField.appendText("CameraUI: " +
CameraUI.isSupported + "\n");
traceField.appendText("Microphone: " +

Microphone.isSupported + "\n"); }

5. We now know the capabilities of video and audio input for a particular device and can
react accordingly:

How it works...
Each of these three classes has a property isSupported, which we may invoke at any time
to verify support on a particular Android device. The traditional Camera and mobile-specific
CameraUI both refer to the same hardware camera, but are entirely different classes for
dealing with the interaction between Flash and the camera itself, as CameraUI relies upon
the default device camera applications to do all the capturing, and Camera works exclusively
within the Flash environment.

The traditional Microphone object is also supported in this manner.

Visual and Audio Input: Camera and Microphone Access

110

There's more...
It is important to note that even though many Android devices come equipped with more than
one camera, only the primary camera (and microphone) will be exposed to our application.
Support for multiple cameras and other sensors will likely be added to the platform as
Android evolves.

Using the traditional camera API to save
a captured image

When writing applications for the web through Flash player, or for a desktop with AIR, we
have had access to the Camera class through ActionScript. This allows us to access different
cameras attached to whatever machine we are using. On Android, we can still use the Camera
class to access the default camera on the device and access the video stream it provides for
all sorts of things. In this example, we will simply grab a still image from the Camera feed and
save it to the Android CameraRoll.

How to do it...
We will construct a Video object to bind the Camera stream to, and use BitmapData
methods to capture and then save our rendered image using the mobile CameraRoll API:

1. At a minimum, we need to import the following classes into our project:
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.media.Camera;
import flash.media.CameraRoll;
import flash.media.Video;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Now we must declare the object instances necessary for camera access and file
reference:
private var video:Video;
private var camera:Camera; private
var capture:BitmapData; private
var cameraRoll:CameraRoll; private
var videoHolder:Sprite;

Chapter 4

111

3. Initialize a Video object, passing in the desired width and height, and add it to the
DisplayList:
protected function setupVideo():void {
videoHolder = new Sprite();
videoHolder.x = stage.stageWidth/2;
videoHolder.y = stage.stageHeight/2;
video = new Video(360, 480);
videoHolder.addChild(video);
video.x = -180;
video.y = -240;
videoHolder.rotation = 90;
addChild(videoHolder); }

4. Initialize a Camera object and employ setMode to specify width, height, and frames
per second before attaching the Camera to our Video on the DisplayList:
protected function setupCamera():void {
camera = Camera.getCamera();
camera.setMode(480, 360, 24);
video.attachCamera(camera); }

5. We will now register a TouchEvent listener of type TOUCH_TAP to the Stage. This
will enable the user to take a snapshot of the camera display by tapping the device
screen:
protected function registerListeners():void {
Multitouch.inputMode =
MultitouchInputMode.TOUCH_POINT;
stage.addEventListener(TouchEvent.TOUCH_TAP, saveImage); }

6. To capture an image from the camera feed, we will initialize our BitmapData object,
matching the width and height of our Video object, and employ the draw method to
translate the Video pixels to BitmapData.

7. To save our acquired image to the device, we must initialize a CameraRoll
object and invoke addBitmapData(), passing in the BitmapData object we
have created using Video object pixels. We will also determine whether or not
this device supports the addBitmapData() method by verifying CameraRoll.
supportsAddBitmapData is equal to true:
protected function saveImage(e:TouchEvent):void {
capture = new BitmapData(360, 480);
capture.draw(video);
cameraRoll = new CameraRoll();

Visual and Audio Input: Camera and Microphone Access

112

if(CameraRoll.supportsAddBitmapData){
cameraRoll.addBitmapData(capture);

}
}

8. If we now check our Android Gallery, we will find the saved image:

Chapter 4

113

How it works...
Most of this is performed exactly as it would be with normal Flash Platform development on
the desktop. Attach a Camera to a Video, add the Video to the DisplayList, and then
do whatever you need for your particular application. In this case, we simply capture what is
displayed as BitmapData.

The CameraRoll class, however, is specific to mobile application development as it will
always refer to the directory upon which the device camera stores the photographs it
produces. If you want to save these images within a different directory, we could use a File
or FileReference object to do so, but this involves more steps for the user.

Note that while using the Camera class, the hardware orientation of the camera is landscape.
We can deal with this by either restricting the application to landscape mode, or through
rotations and additional manipulation as we've performed in our example class. We've applied
a 90 degree rotation to the image in this case using videoHolder.rotation to account
for this shift when reading in the BitmapData. Depending on how any specific application
handles this, it may not be necessary to do so.

There's more...
Other use cases for the traditional Camera object are things such as sending a video stream
to Flash Media Server for live broadcast, augmented reality applications, or real-time peer to
peer chat.

See also...
In order to access the camera and storage, we will need to add some Android permissions
for CAMERA and WRITE_EXTERNAL_STORAGE. Refer to Chapter 11, Final Considerations:
Application Compilation and Distribution for information on how to go about this.

Using the Mobile CameraUI API to save a
captured photograph

Using the new CameraUI API (available in the mobile AIR SDK), we can perform and
alternative capture process to the normal Camera API. The Mobile CameraUI class will
make use of the default Android camera application, alongside our custom app, to capture a
photograph.

Visual and Audio Input: Camera and Microphone Access

114

How to do it...
We will set up a CameraUI object to invoke the native Android camera to capture a
photograph:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.MediaEvent;
import flash.events.TouchEvent;
import flash.media.CameraUI;
import flash.media.MediaType; import
flash.media.MediaPromise; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare aTextField and TextFormat object pair to allow visible output upon the
device. A CameraUI object must also be declared for this example:
private var camera:CameraUI;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 22;
traceFormat.align = "center";
traceFormat.color = 0xFFFFFF;
traceField = newTextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

Chapter 4

115

4. Instantiate a new CameraUI instance, which will be used to launch the device
camera application and return file information back to us. If the CameraUI object
is not supported on a particular device, a message is output to our TextField
indicating this:
protected function setupCamera():void {
if(CameraUI.isSupported) {
camera = new CameraUI();
registerListeners();
}else{
traceField.appendText("CameraUI is not supported...");
} }

5. Add an event listener to the CameraUI object so that we know when the capture is
complete. We will also register a touch event on the Stage to initiate the capture:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
camera.addEventListener(MediaEvent.COMPLETE, photoReady);
stage.addEventListener(TouchEvent.TOUCH_TAP, launchCamera);
}

6. To employ the default camera application on our Android device, we will need to
invoke the launch method, passing in the MediaType.IMAGE constant to specify
that we wish to capture a photograph:
protected function launchCamera(e:TouchEvent):void {
camera.launch(MediaType.IMAGE); }

Visual and Audio Input: Camera and Microphone Access

116

7. Now, the default Android camera will initialize, allowing the user to capture a
photograph. Once the user hits OK, focus will return to our application.

8. Finally, once we complete the capture process, an event of type MediaEvent.
COMPLETE will fire, invoking our photoReady method. From this, we can ascertain
certain details about our captured photograph.
protected function photoReady(e:MediaEvent):void {
var promise:MediaPromise = e.data;
traceField.appendText("mediaType: " + promise.mediaType + "\n");
traceField.appendText("relativePath: " +
promise.relativePath + "\n");
traceField.appendText("creationDate: " +
promise.file.creationDate + "\n");
traceField.appendText("extension: " +
promise.file.extension + "\n");
traceField.appendText("name: " + promise.file.name + "\n");
traceField.appendText("size: " + promise.file.size + "\n");
traceField.appendText("type: " + promise.file.type + "\n");
traceField.appendText("nativePath: " +
promise.file.nativePath + "\n");
traceField.appendText("url: " + promise.file.url + "\n");
}

Chapter 4

117

9. The output will look something like this:

How it works...
Invoking the CameraUI.launch method will request the Android device to open the default
camera application and allow the user to take a photograph. Upon completing the capture
process and confirming the captured photograph, focus is then returned to our application
along with a set of data about the new file contained within the MediaEvent.COMPLETE
event object.

At this point, our application can do all sorts of things with the data returned, or even open the
file within the application, assuming that the file type can be loaded and displayed by
the runtime.

There's more...
The default camera application will not load if the device does not have a storage card
mounted. It is also important to note that if the device becomes low on memory during the
capture process, Android may terminate our application before the process is complete.

See also...

We will discuss the display of images through an AIR for Android application in Chapter 5:
Rich Media Presentation: Working with Images, Video, and Audio.

Visual and Audio Input: Camera and Microphone Access

118

Using the Mobile CameraUI API to save a
captured video

Using the new CameraUI API (available in the mobile AIR SDK) we can perform and
alternative capture process to the normal Camera API. The mobile CameraUI class will make
use of the default Android camera application, alongside our custom app to capture a video.

How to do it...
We will set up a CameraUI object to invoke the native Android camera to capture a video:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.MediaEvent;
import flash.events.TouchEvent;
import flash.media.CameraUI;
import flash.media.MediaPromise;
import flash.media.MediaType; import
flash.text.TextField;
import flash.text.TextFormat; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device. A CameraUI object must also be declared for this example:
private var camera:CameraUI;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 22;
traceFormat.align = "center";
traceFormat.color = 0xFFFFFF;

Chapter 4

119

traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Instantiate a new CameraUI instance, which will be used to launch the device
camera application and return file information back to us. If the CameraUI object
is not supported on a particular device, a message is output to our TextField
indicating this.
protected function setupCamera():void {
if(CameraUI.isSupported) {
camera = new CameraUI();
registerListeners();
}else{
traceField.appendText("CameraUI is not supported...");
} }

5. Add an event listener to the CameraUI object so that we know when the capture is
complete. We will also register a touch event on the Stage to initiate the capture:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
camera.addEventListener(MediaEvent.COMPLETE, videoReady);
stage.addEventListener(TouchEvent.TOUCH_TAP, launchCamera); }

6. To employ the default camera application on our Android device, we will need to
invoke the launch method, passing in the MediaType.VIDEO constant to specify
that we wish to capture a video file:
protected function launchCamera(e:TouchEvent):void {
camera.launch(MediaType.VIDEO); }

Visual and Audio Input: Camera and Microphone Access

120

7. Now, the default Android camera will initialize, allowing the user to take some video.
Once the user hits OK, focus will return to our application:

8. Finally, once we complete the capture process, an event of type MediaEvent.
COMPLETE will fire, invoking our videoReady method. From this, we can ascertain
certain details about our captured video file:
protected function videoReady(e:MediaEvent):void {
var promise:MediaPromise = e.data;
traceField.appendText("mediaType: " + promise.mediaType + "\n");
traceField.appendText("relativePath: " +
promise.relativePath + "\n");
traceField.appendText("creationDate: " +
promise.file.creationDate + "\n");
traceField.appendText("extension: " +
promise.file.extension + "\n");
traceField.appendText("name: " + promise.file.name + "\n");
traceField.appendText("size: " + promise.file.size + "\n");
traceField.appendText("type: " + promise.file.type + "\n");
traceField.appendText("nativePath: " +
promise.file.nativePath + "\n");
traceField.appendText("url: " + promise.file.url + "\n"); }

Chapter 4

121

9. The output will look something like this:

How it works...
Invoking the CameraUI.launch method will request that the Android device open the default
camera application and allow the user to capture some video. Upon completing the capture
process and confirming the captured video file, focus is then returned to our application along
with a set of data about the new file contained within the MediaEvent.COMPLETE
event object.

At this point, our application can do all sorts of things with the data returned, or even open
the file within the application, assuming that the file type can be loaded and displayed by the
runtime. This is very important when it comes to video as certain devices will use a variety of
codecs to encode the captured video, not all of them Flash Platform compatible.

There's more...
The default camera application will not load if the device does not have a storage card
mounted. It is also important to note that if the device becomes low on memory during the
capture process, Android may terminate our application before the process is complete.

Also, there are many other events aside from MediaEvent.COMPLETE that we can use in
such a process. For instance, register an event listener of type Event.CANCEL in order to
react to the user canceling a video save.

Visual and Audio Input: Camera and Microphone Access

122

See also...

We will discuss the playback of video files through an AIR for Android application in Chapter 5.

Using the device microphone to monitor
audio sample data

By monitoring the sample data being returned from the Android device microphone through
the ActionScript Microphone API, we can gather much information about the sound being
captured, and perform responses within our application. Such input can be used in utility
applications, learning modules, and even games.

How to do it...
We will set up an event listener to respond to sample data reported through the
Microphone API:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.SampleDataEvent;
import flash.media.Microphone;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device. A Microphone object must also be declared for this example:
private var mic:Microphone;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";

Chapter 4

123

traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Now, we must instantiate our Microphone object and set it up according to our
needs and preferences with adjustments to codec, rate, silenceLevel, and so
forth. Here we use setSilenceLevel() to determine what the minimum input
level our application should consider to be "sound" and the rate property is set
to 44, indicating that we will capture audio data at a rate of 44kHz. Setting the
setLoopBack () property to false will keep the captured audio from being routed
through the device speaker:
protected function setupMic():void {
mic = Microphone.getMicrophone();
mic.setSilenceLevel(0);
mic.rate = 44;
mic.setLoopBack(false); }

5. Once we have instantiated our Microphone object, we can then register a va-
riety of event listeners. In this example, we'll be monitoring audio sample data
from the device microphone, so we will need to register our listener for the
SampleDataEvent.SAMPLE_DATA constant:
protected function registerListeners():void {
mic.addEventListener(SampleDataEvent.SAMPLE_DATA, onMicData); }

6. As the Microphone API generates sample data from the Android device input, we
can now respond to this in a number of ways, as we have access to information about
the Microphoneobject itself, and more importantly, we have access to the sample
bytes with which we can perform a number of advanced operations:
public function onMicData(e:SampleDataEvent):void {
traceField.text = "";
traceField.appendText("activityLevel: " +
e.target.activityLevel + "\n");
traceField.appendText("codec: " + e.target.codec + "\n");
traceField.appendText("gain: " + e.target.gain + "\n");

Visual and Audio Input: Camera and Microphone Access

124

traceField.appendText("bytesAvailable: " +
e.data.bytesAvailable + "\n");

traceField.appendText("length: " + e.data.length + "\n");
traceField.appendText("position: " + e.data.position + "\n");

}

7. The output will look something like this. The first three values are taken from the
Microphone itself, the second three from Microphone sample data:

How it works...
When we instantiate a Microphone object and register a SampleDataEvent.SAMPLE_
DATA event listener, we can easily monitor various properties of our Android device mi-
crophone and the associated sample data being gathered. We can then respond to that data
in many ways. One example would be to move objects across the Stage based upon the
Microphone.activityLevel property. Another example would be to write the sample data
to a ByteArray for later analysis.

What do all these properties mean?
f activityLevel: This is a measurement indicating the amount of sound being

received

f codec: This indicates the codec being used: Nellymoser or Speex

f gain: This is an amount of boosting provided by the microphone to the sound signal

f bytesAvailable: This reveals the number of bytes from the present position until
the end of our sample data byteArray

Chapter 4

125

f length: Lets us know the total length of our sample data byteArray

f position: This is the current position, in bytes, within our sample data byteArray

See also...
In order to access the microphone, we will need to add some Android permissions for
RECORD_AUDIO. Refer to Chapter 11 for information on how to go about this.

Recording Microphone Audio Sample Data
One of the most fundamental things a developer would want to be able to do with audio
sample data gathered from an Android microphone, would be to capture the data and use it
in some way within an application. This recipe will demonstrate how to preserve and play back
captured microphone audio sample data.

How to do it...
We will employ an event listener to respond to sample data reported through the Mi-
crophone API by writing captured audio data to a ByteArray and then playing it back
internally through the Sound object:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.Stage;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.SampleDataEvent;
import flash.events.TouchEvent;
import flash.media.Microphone; im-
port flash.media.Sound;
import flash.media.SoundChannel;
import flash.utils.ByteArray; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.text.TextField;
import flash.text.TextFormat;

2. Declare a TextField and TextFormat object pair to allow visible output upon the
device. A Microphone object must also be declared for this example. To store and
play back the sample data, we will need to declare a ByteArray, along with a Sound
and SoundChannel pair:
private var mic:Microphone;
private var micRec:ByteArray;

Visual and Audio Input: Camera and Microphone Access

126

private var output:Sound;
private var outputChannel:SoundChannel;
private var traceField:TextField; pri-
vate var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add the TextField
to the DisplayList. Here, we create a method to perform all of these actions for
us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Then, instantiate a Microphone object and set it up according to our needs and
preferences with adjustments to codec, rate, silenceLevel, and so forth. Here
we use setSilenceLevel() to determine what the minimum input level our
application should consider to be "sound" and the rate property is set to
44, indicating that we will capture audio data at a rate of 44kHz. Setting the
setLoopBack () property to false will keep the captured audio from being routed
through the device speaker. We'll also instantiate a ByteArray to hold all of our
audio samples as they are intercepted:
protected function setupMic():void {
mic = Microphone.getMicrophone();
mic.setSilenceLevel(0);
mic.rate = 44;
mic.setLoopBack(false);
micRec = new ByteArray(); }

5. Once we have instantiated our Microphone and ByteArray objects, we can then
register an event listener to enable touch interactions. A simple tap will suffice:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;

Chapter 4

127

stage.addEventListener(TouchEvent.TOUCH_TAP, startRecording);
traceField.text = "Tap to Record"; }

6. Once recording has been invoked by the user, we'll be monitoring audio sample
data from the device microphone, so will need to register our listener for the
SampleDataEvent.SAMPLE_DATA constant:
protected function startRecording(e:TouchEvent):void {
stage.removeEventListener(TouchEvent.TOUCH_TAP, startRecording);
stage.addEventListener(TouchEvent.TOUCH_TAP, stopRecording);
mic.addEventListener(SampleDataEvent.SAMPLE_DATA, onMicData);
traceField.text = "Recording Audio \nTap to Stop"; }

7. As the Microphone API generates sample data from the Android device input, we
have access to the audio sample data bytes, which we can write to a ByteArray for
later use:
protected function onMicData(e:SampleDataEvent):void {
micRec.writeBytes(e.data); }

8. To stop recording, we will need to remove the SampleDataEvent.SAMPLE_DATA
event listener from our Microphone object:
protected function stopRecording(e:TouchEvent):void {
mic.removeEventListener(SampleDataEvent.SAMPLE_DATA, onMicData);
stage.removeEventListener(TouchEvent.TOUCH_TAP, stopRecording);
stage.addEventListener(TouchEvent.TOUCH_TAP, playBackAudio);
traceField.text = "Tap to Playback"; }

9. To prepare for playback, we will instantiate a new Sound object and register a
SampleDataEvent.SAMPLE_DATA event upon it just as we had done for the
Microphone object previously. We will also instantiate a SoundChannel object
and invoke the play() method of our Sound object to play back the captured
Microphone audio:
protected function playBackAudio(e:TouchEvent):void {
stage.removeEventListener(TouchEvent.TOUCH_TAP, playBackAudio);
micRec.position = 0;
output = new Sound();
output.addEventListener(SampleDataEvent.SAMPLE_DATA,
onSampleDataRequest);
outputChannel = output.play();
traceField.text = "Playing Audio"; }

Visual and Audio Input: Camera and Microphone Access

128

10. Once we invoke the play() method upon our Sound object, it will begin gathering
generated sample data from a method called onSampleDataRequest. We need to
create this method now, and allow it to loop over the bytes we previously wrote to our
ByteArray object. This is, effectively, the inverse of our capture process.

11. In order to provide proper playback within our application we must provide between
2048 and 8192 samples of data. It is recommended to use as many samples as
possible, but this will also depend upon the sample frequency.

Note that we invoke writeFloat() twice within the same loop because
we need our data expressed in stereo pairs, one for each channel.

12. When using writeBytes() in this example, we are actually channeling sound data
back out through our SampleDataEvent and through a Sound object, thus enabling
the application to produce sound:
protected function
onSampleDataRequest(e:SampleDataEvent):void {
var out:ByteArray = new ByteArray();
for(var i:int = 0; i < 8192 && micRec.bytesAvailable; i++) {
var micsamp:Number = micRec.readFloat();
// left channel
out.writeFloat(micsamp);
// right channel
out.writeFloat(micsamp);
}
e.data.writeBytes(out); }

13. Output to our TextField will change depending upon the current application state:

Chapter 4

129

How it works...
When we instantiate a Microphone object and register a SampleDataEvent.SAMPLE_
DATA event listener, we can easily monitor the associated sample data being gathered and
write this data to a ByteArray for later playback. As new samples come in, more data is
added to the ByteArray, building up the sound data over time.

By registering a SampleDataEvent.SAMPLE_DATA event listener to a Sound object, we
instruct it to actively seek audio data generated from a specific method as soon as we invoke
play(). In our example, we move through the constructed ByteArray and send audio data
back out through this method, effectively playing back the recorded audio through the Sound
object and associated SoundChannel.

See also...
The use of bytes within ActionScript is a complex subject. To read more about this topic, we
recommend Thibault Imbert's book "What can you do with bytes?", which is freely available
from http://www.bytearray.org/?p=711.

To read recipes concerning the playback of audio files, have a look at Chapter 5. For
information on saving captured audio data to the Android device, refer to Chapter 8:
Abundant Access: File System and Local Database.

5
Rich Media

Presentation:
Working with Images,

Video, and Audio

This chapter will cover the following recipes:

f Loading photographs from the device cameraRoll

f Applying Pixel Bender Shader effects to loaded images

f Playing video files from the local file system or over HTTP

f Playing remote video files over RTMP

f Playing audio files from the local file system or over HTTP

f Generating an audio spectrum visualizer

f Generating audio tones for your application

Introduction
This chapter will include a variety of recipes for the display of image data and playback of
both video and audio streams. Included among these recipes are examples demonstrating
the ability to load images from the device camera repository, applying Pixel Bender Shaders
to loaded images, the playback of audio and video over different protocols, as well as the
generation of visual data from sound and the generation of raw sound data.

Rich Media Presentation: Working with Images, Video, and Audio

132

The Flash platform is well known as the premiere video distribution platform worldwide. In the
following pages, we will see that this experience and reach is in no way confined to desktop
and browser-based computing. With new features such as StageVideo available in AIR 2.6
and Flash Player 10.2, Flash is becoming an even stronger platform for delivering video while
preserving device battery life and providing a better user experience.

Loading photographs from the device
cameraRoll

The Android operating system has a central repository for storing photographs captured by
the variety of camera applications a user may have installed. There are APIs within AIR for
Android, which allows a Flash developer to specifically target and pull from this repository for
display within an application.

How to do it…
We must use the mobile CameraRoll API to browse directly to the device camera roll and
select a photograph for display:

1. First, import the following classes into your project:
import flash.display.Loader;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.MediaEvent;
import flash.events.TouchEvent;
import flash.filesystem.File; import
flash.media.CameraRoll; import
flash.media.MediaPromise; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Declare a CameraRoll object and a Loader, which will be used to display the
photograph, once selected:
private var loader:Loader;
private var cameraRoll:CameraRoll;

3. We will create our Loader object, add it to the Stage, and register an event listener
to properly scale the photo once it has been loaded:
protected function setupLoader():void {
loader = new Loader();

Chapter 5

133

loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
sizePhoto);
stage.addChild(loader); }

4. For the CameraRoll itself, all we need to do is instantiate it and then add an event
listener to fire once the user has selected a photograph to display. We should always
check to see whether the device supports CameraRoll.browseForImage()by
checking the supportsBrowseForImage property:
protected function setupCameraRoll():void {
if(CameraRoll.supportsBrowseForImage){
cameraRoll = new CameraRoll();
cameraRoll.addEventListener(MediaEvent.SELECT, imageSelected);
registerListeners();
}else{
trace("CameraRoll does not support browse for image!");
} }

5. We will now register a TouchEvent listener of type TOUCH_TAP to the Stage. This
will enable the user to invoke a browse dialog in order to select a photograph from
the CameraRoll by tapping the device screen.

We are setting Multitouch.inputMode to the
MultitouchInputMode.TOUCH_POINT constant in order for our
application to accept touch events.

protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
stage.addEventListener(TouchEvent.TOUCH_TAP,

loadFromCameraRoll); }

6. Once the following method is invoked from a user interaction, we can invoke the
browseForImage() method upon the CameraRoll object we had set up earlier.
This will open the default gallery application on an Android device and allow the
user to select a photograph from their collection. If there is more than one gallery
application on the device, the user will first choose which one to use for this event
through a native Android dialog. Our application will lose focus and this will be
handled by the operating system, returning to our application once a selection
is made.
protected function loadFromCameraRoll(e:TouchEvent):void {

Rich Media Presentation: Working with Images, Video, and Audio

134

cameraRoll.browseForImage(); }

7. Here, we can see the default gallery application on Android. A user can spend as
much time as they wish browsing the various collections and photographs before a
selection is made.

8. When the user has performed a valid selection in the native Android gallery appli-
cation, focus returns to our application and an event containing a MediaPromise
object is returned. The Loader class has a specific method called
loadFilePromise() specifically for this sort of thing. We will now pass the
MediaPromise through this method.
protected function imageSelected(e:MediaEvent):void {
var promise:MediaPromise = e.data;
loader.loadFilePromise(promise); }

9. Once we've passed the MediaPromise object through the Loader using
loadFilePromise(), it will load up onto the Stage. We will perform one more
action here to adjust the Loader size to fit within the constraints of our Stage:
protected function sizePhoto(e:Event):void {
loader.width = stage.stageWidth;
loader.scaleY = loader.scaleX; }

10. The resulting image, when loaded upon the Stage, will appear as follows:

Chapter 5

135

How it works…
The ActionScript CameraRoll API specifically targets the on device storage location
for photographs on Android. Whenever a user performs some interaction that invokes a
CameraRoll.browseForImage() method in our application, the default Android gallery
application will launch, allowing the user to select an image file from within their collection.

Once the user has selected a photograph from the gallery application, they will be returned
to our AIR for Android application along with a MediaPromise object with which we can
ascertain certain information about the file, or even load the photograph directly into
our application.

There's more…
In this example, we examine how to load an image from the CameraRoll into a Loader
on the Stage. There are, of course, many things we could do to the photograph once it has
been loaded up. For an example of this, have a look at the next recipe: Applying Pixel Bender
Shader effects to loaded images.

Rich Media Presentation: Working with Images, Video, and Audio

136

Applying Pixel Bender Shader effects to
loaded images

Once we load a visual object into our application, as this is all Flash-based, we can do all sorts
of robust visual manipulation. In this example, we will load a preselected photograph from the
local file system, and then apply a variety of Pixel Bender Shaders to it, drastically changing its
appearance.

Getting ready…
This recipe makes use of Pixel Bender Shaders. You can download .pbj files from the Adobe
Exchange or create your own.

If you decide to write your own Pixel Bender kernels, you can download the Pixel Bender
Toolkit for free from http://www.adobe.com/devnet/pixelbender.html and use it to
compile all sorts of shaders for use in Flash and AIR projects.

The toolkit allows you to write kernels using the Pixel Bender kernel language (formerly known
as Hydra) and provides mechanisms for image preview and separate property manipulation
that can be exposed to ActionScript.

http://www.adobe.com/devnet/pixelbender.html
http://www.adobe.com/devnet/pixelbender.html

Chapter 5

137

For a good resource on writing Pixel Bender Shaders, check out the documentation located at
http://www.adobe.com/devnet/pixelbender.html.

In this recipe, we are also referencing a photograph that exists within the Android image
gallery, which we previously captured with the default camera application. You may do the
same, or simply bundle an image file along with the application for later reference.

How to do it…
We will now load a predetermined image from the local device storage and apply multiple
Pixel Bender Shaders to it:

1. First, import the following classes into your project:
import flash.display.Loader;
import flash.display.Shader;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.TouchEvent;
import flash.filters.ShaderFilter;
import flash.net.URLLoader;
import flash.net.URLLoaderDataFormat;
import flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. For this recipe, we must declare a number of different objects up front. We will de-
clare a String constant to hold the path to our image and a Loader, which will be
used to display the photograph. A URLRequest and URLLoader object pair will be
used to load in our .pbj files. The Array will be set up to hold the names of each
.pbj we will be loading. An int is employed to keep track of the shader we have
currently loaded from our Array set. Finally, a Shader and ShaderFilter pair are
declared to apply the loaded .pbj onto our Loader.
private const photoURL:String = "
{local file path or http address}"; private
var loader:Loader;
private var urlRequest:URLRequest;
private var urlLoader:URLLoader;
private var pbjArray:Array;
private var currentFilter:int;
private var shader:Shader;
private var shaderFilter:ShaderFilter;

Rich Media Presentation: Working with Images, Video, and Audio

138

3. The next step is to initialize our Array and populate it with the Pixel Bender Shader
file references we will be loading into our application. These files can be obtained
through the Adobe Exchange, other locations on the web, or authored using the Pixel
Bender Toolkit:
protected function setupArray():void {
pbjArray = new Array();
pbjArray[0] = "dot.pbj";
pbjArray[1] = "LineSlide.pbj";
pbjArray[2] = "outline.pbj"; }

4. Then, we create our Loader object, add it to the Stage, and register an event
listener to properly scale the photo once it has been loaded:
protected function setupLoader():void {
loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE,
sizePhoto);
stage.addChild(loader); }

5. We will now register a TouchEvent listener of type TOUCH_TAP to the Loader. This
will enable the user to tap the loaded image to cycle through a variety of Pixel Bender
Shaders. We also set the currentFilter int to 0, which will indicate the first
position of our Array:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
loader.addEventListener(TouchEvent.TOUCH_TAP, loadShader);
currentFilter = 0; }

6. To load the photograph into the Loader instance for display within our application,
we will invoke the load() method and pass in a new URLRequest along with the
photoURL String constant that was declared earlier:
protected function loadPhotograph():void {
loader.load(new URLRequest(photoURL)); }

7. Once the file has loaded, we will perform one more action to adjust the Loader size
to fit within the constraints of our Stage:
protected function sizePhoto(e:Event):void {
loader.width = stage.stageWidth;
loader.scaleY = loader.scaleX; }

Chapter 5

139

8. The resulting image, when loaded upon the Stage, without any shaders applied, will
appear as follows:

9. Each time the users performs a touch tap upon the Loader instance, this method
will execute. Basically, we are setting up a URLRequest using values from the Array
of shader locations that was set up earlier, pulling the value from whatever current
index that has been recorded to the currentFilter object.

10. Before we invoke the URLLoader.load() method, we must explicitly set the
dataFormat property to the URLLoaderDataFormat.BINARY constant. This
ensures that when our file is loaded up, it is treated as binary and not text.

11. An Event.COMPLETE listener is registered to invoke the applyFilter method
once our shader has been loaded up.

12. Finally, we can either increment our currentFilter value, or set it back to 0,
depending upon where we are along the length of the Array:
protected function loadShader(e:TouchEvent):void {
urlRequest = new URLRequest(pbjArray[currentFilter]);
urlLoader = new URLLoader();
urlLoader.dataFormat = URLLoaderDataFormat.BINARY;
urlLoader.addEventListener(Event.COMPLETE, applyFilter);

Rich Media Presentation: Working with Images, Video, and Audio

140

urlLoader.load(urlRequest);
if(currentFilter < pbjArray.length-1){

currentFilter++;
}else{

currentFilter = 0;
}

}

13. To actually apply the loaded .pbj onto our Loader, we will first assign the binary
data to a new Shader object. This is subsequently passed through the constructor of
a ShaderFilter, which is then applied to the filters property of our Loader as an
Array:
protected function applyFilter(e:Event):void {

shader = new Shader(e.target.data);
shaderFilter = new ShaderFilter(shader);
loader.filters = [shaderFilter];

}

14. When the user has tapped the image, we cycle through the available Pixel Bender
Shaders and apply then, in turn, to the loaded photograph. The resulting image cycle
can be seen as follows:

Chapter 5

141

How it works…
Using Pixel Bender Shaders is a simple and direct way of enabling some really powerful visual
manipulation within an application. In this recipe, we load an image into a Loader object,
construct an Array of .pbj file references to pass through a URLLoader. When the user
interacts with our loaded image, we will load a .pbj file and construct a Shader based upon
the received data. Finally we can construct a ShaderFilter based off of this object and
pass this onto our image through the Loader.filters property.

There's more…
In this example, we examine how to load an image into a Loader on the Stage and look
at applying Pixel Bender Shaders to it upon user interaction. You can, of course, apply such
shaders to any DisplayObject you like, including video!

A good place to locate a variety of Pixel Bender files to use in such an example, is the Adobe
Exchange. Visit the Exchange website at http://www.adobe.com/exchange.

Playing video files from the local filesystem
or over HTTP

As we have the full Flash Player (and Adobe AIR) on Android devices, playback of video files
is as simple as it normally is on the desktop. The main consideration is whether the video is
optimized for playback on mobile, or not.

Getting ready…
This recipe involves the playback of a video file that has been packaged along with our
application. We could just as easily reference an HTTP address or even local storage on the
Android device, so long as it is a file format and codec, which can be played back through
Flash Platform runtimes. You will want to prepare this file ahead of time.

How to do it…
We will create a Video object, add it to the Stage, and stream a file in through a basic
NetConnection and NetStream pair:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.NetStatusEvent;

Rich Media Presentation: Working with Images, Video, and Audio

142

import flash.media.Video; im-
port flash.net.NetConnection;
import flash.net.NetStream;
import flash.text.TextField;
import flash.text.TextFormat;

2. For this recipe, we must declare a number of different objects up front. We are, in
this case, packaging a video file along with the application itself; we will declare a
String constant referring to this file.

3. The next set of objects pertains to the actual video stream. Declare a Video object to
display the NetStream data coming in over our local NetConnection. We will also
declare an Object to bind specific, necessary functions to for video playback.

4. Finally, we will declare a TextField and TextFormat pair to relay text messages
onto the device display:
private const videoPath:String = "assets/test.m4v";
private var video:Video;
private var streamClient:Object;
private var connection:NetConnection;
private var stream:NetStream; private
var traceField:TextField; private var
traceFormat:TextFormat;

5. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

Chapter 5

143

6. Now to set up our video connection; we will create a new Object called
streamClient, which we will use to bind a number of helper functions to our
stream objects. A Video object must be created and added to the DisplayList
in order for the user to actually view the video stream. Finally, we create a
NetConnection, assign streamClient to its client property, register an event
listener to monitor connection status, and then invoke the connect() method,
passing in null as the connection argument, since we are not using any sort of
media server in this example.

7. We may not always want to set the Video.smoothing property to true; in this
case, since we are unsure exactly how large the video is, we will enable it in order to
smooth any potential artifacting that may occur through scaling:
protected function setupVideoConnection():void {
streamClient = new Object();
streamClient.onTextData = onTextData;
streamClient.onMetaData = onMetaData;
streamClient.onCuePoint = onCuePoint;
video = new Video();
video.smoothing = true;
addChild(video);
connection = new NetConnection();
connection.client = streamClient;
connection.addEventListener(NetStatusEvent.NET_STATUS,
onNetStatus);
connection.connect(null); }

8. The following method will be called from our onNetStatus function once we are
sure the NetConnection has connected successfully. Within this method, create
a new NetStream object to stream the video over our NetConnection. We will
also assign streamClient to the client property and register an event listener
to monitor stream status. To display the stream through our Video object, use the
attachStream() method and pass in our NetStream object. Now, simply invoke
the play() method, passing in our videoPath constant, and pointing to the video
file location:
protected function connectStream():void {
stream = new NetStream(connection);
stream.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);
stream.client = streamClient;
video.attachNetStream(stream);
stream.play(videoPath); }

Rich Media Presentation: Working with Images, Video, and Audio

144

9. The onNetStatus method, as defined in the following code snippet, can be used
with both our NetStream and NetConnection objects in order to make decisions
based upon the different status messages returned. In this example, we are either
firing the connectStream method once a NetConnection is successfully con-
nected, or performing some scaling and layout once we are sure the NetStream is
playing successfully.

10. For a comprehensive list of all supported NetStatusEvent info codes, have a
look at: http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/flash/events/NetStatusEvent.html#info.

protected function onNetStatus(e:NetStatusEvent):void {
traceField.appendText(e.info.code + "\n");
switch (e.info.code) {
case "NetConnection.Connect.Success":
connectStream();
break;
case "NetStream.Buffer.Full":
video.width = stage.stageWidth;
video.scaleY = video.scaleX;
traceField.y = video.height;
break;
} }

11. The next three steps include methods which have been bound to the client property
of either the NetConnection or NetStream. These must exist as part of the client
object, or else errors may be thrown as they are expected methods. The onTextData
method fires whenever text is encountered within the file being streamed:
public function onTextData(info:Object):void {
traceField.appendText("Text!\n"); }

12. The onMetaData method fires when the stream metadata is loaded into the ap-
plication. This provides us with many useful pieces of information, such as stream
width, height, and duration:
public function onMetaData(info:Object):void {
traceField.appendText("Duration: " + info.duration + "\n");
traceField.appendText("Width: " + info.width + "\n");
traceField.appendText("Height: " + info.height + "\n");
traceField.appendText("Codec: " + info.videocodecid + "\n");
traceField.appendText("FPS: " + info.videoframerate + "\n"); }

Chapter 5

145

13. The onCuePoint method fires whenever embedded cue points are encountered
within the file being streamed:
public function onCuePoint(info:Object):void {

traceField.appendText("Cuepoint!\n");
}

14. The resulting application will look similar to the following screen render:

How it works…
The entire workflow is almost exactly what would be used when developing for the desktop.
When playing back video over Flash, we must first establish a NetConnection for our
NetStream to travel across. Once the NetConnection is connected, we create our
NetStream and bind the two of them together. Adding a Video object to the Stage will
enable the stream to be viewable on our device, so long as we attach out NetStream to it.
At this point, we can then play any files we wish over that NetStream by simply invoking the
play() method.

Rich Media Presentation: Working with Images, Video, and Audio

146

When dealing with NetConnection and NetStream, there is always the need to create
a number of helper functions. These functions include the registration of event listeners
to detect particular status events, and the definition of a custom client property with
associated methods that will be expected by the established workflow.

There's more…
In this example, we are playing a file packaged with our application. It would be just as simple
to play a video file from the device gallery (assuming the codec used to compress the video
is supported by Flash and AIR) or progressively stream a video over HTTP from a location
available over a wireless network connection.

The video file we are playing back through Flash player or AIR must be of a type which is
supported by the Flash Platform runtimes.

Valid video file types include:

f FLV

f MP4

f M4V

f F4V

f 3GPP

Flash Platform runtimes support every level and profile of the H.264 standard and retain full
FLV support as well. However, recommended resolutions specific to Android are as follows:

f 4:3 video: 640 × 480, 512 × 384, 480 × 360

f 16:9 video: 640 × 360, 512 x 288, 480 × 272

When packaging such an application, which utilizes files that are distributed as part of the
application package, we will also need to be sure and include them through the use of a GUI
(if your IDE supports this) or as extra files in the command line compilation process.

Playing remote video streams over RTMP
Aside from the playback of video available through the local file system or from a remote HTTP
web address, we also have the ability to stream video files onto Android devices using Flash
Media Server and the RTMP protocol. If a streaming server such as this is available, you can
make great use of this when deploying video across mobile Android devices.

Chapter 5

147

Getting ready…
This recipe involves the playback of a video file that has been deployed to a Flash Media
Server. You can actually set up a developer version of FMS for free if you do not have access
to a production server. To find out more information about streaming video over Real Time
Messaging Protocol (RTMP), you can have a look at the resources available at: http://
www.adobe.com/products/flashmediaserver/

How to do it…
We will create a Video object, add it to the Stage, and stream a file in through a
NetConnection and NetStream pair over RTMP:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.NetStatusEvent;
import flash.media.Video;
import flash.net.NetConnection;
import flash.net.NetStream;
import flash.text.TextField;
import flash.text.TextFormat;

2. For this recipe, we must declare a number of different objects up front. We are, in this
case, using a Flash Media Server to perform a stream over RTMP; we will declare a
String constant referring to the FMS application path.

3. The next set of objects pertains to the actual video stream. Declare a Video object to
display the NetStream data coming in over our local NetConnection. We will also
declare an Object to bind specific, necessary function to for video playback.

4. Finally, we will declare a TextField and TextFormat pair to relay text messages
onto the device display:
private const fmsPath:String = "rtmp://fms/vod";
private var video:Video;
private var streamClient:Object; pri-
vate var connection:NetConnection;
private var stream:NetStream; private
var traceField:TextField; private var
traceFormat:TextFormat;

Rich Media Presentation: Working with Images, Video, and Audio

148

5. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

6. Now to set up our video connection; we will create a new Object called
streamClient, which we will use to bind a number of helper functions to our
stream objects. A Video object must be created and added to the DisplayList in
order for the user to actually view the video stream.

7. Finally, we create a NetConnection, assign streamClient to its client prop-
erty, register an event listener to monitor connection status, and then invoke the
connect() method, passing in the predefined fmsPath constant as the connection
argument. This is because we must make a connection to this application instance
on the Flash Media Server before proceeding.
protected function setupVideoConnection():void {
streamClient = new Object();
streamClient.onBWDone = onTextData;
streamClient.onTextData = onTextData;
streamClient.onMetaData = onMetaData;
streamClient.onCuePoint = onCuePoint;
video = new Video();
video.smoothing = true;
addChild(video);
connection = new NetConnection();
connection.client = streamClient;
connection.addEventListener(NetStatusEvent.NET_STATUS,
onNetStatus);
connection.connect(fmsPath); }

Chapter 5

149

8. The following method will be called from our onNetStatus function once we are
sure the NetConnection has connected successfully. Within this method, create
a new NetStream object to stream the video over our NetConnection. We will al-
so assign streamClient to the client property and register an event listener to
monitor stream status.

9. To display the stream through our Video object, use the attachStream() method
and pass in our NetStream object.

10. Now, simply invoke the play() method, passing in a String identifying the par-
ticular stream or file to play over RTMP. You will notice that since we are using an
H.264 based file format, we must prefix the stream name with mp4:. If streaming live
or via FLV, the prefix is not necessary.
protected function connectStream():void {
stream = new NetStream(connection);
stream.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);
stream.client = streamClient;
video.attachNetStream(stream);
stream.play("mp4:test.m4v"); }

11. The onNetStatus method, as defined in the following code snippet, can be used
with both our NetStream and NetConnection objects in order to make decisions
based upon the different status messages returned. In this example, we are either
firing the connectStream method once a NetConnection is successfully con-
nected, or performing some scaling and layout once we are sure the NetStream is
playing successfully:
protected function onNetStatus(e:NetStatusEvent):void {
traceField.appendText(e.info.code + "\n");
switch (e.info.code) {
case "NetConnection.Connect.Success":
connectStream();
break;
case "NetStream.Buffer.Full":
video.width = stage.stageWidth;
video.scaleY = video.scaleX;
traceField.y = video.height;
break;
} }

Rich Media Presentation: Working with Images, Video, and Audio

150

12. The next three steps include methods which have been bound to the client property
of either the NetConnection or NetStream. These must exist as part of the client
object, else errors may be thrown as they are expected methods. The onBWDone
method is particular to files streamed over RTMP. It fires whenever the streaming
server has completed an estimation of client bandwidth available.
public function onBWDone():void {

traceField.appendText("BW Done!\n");
}

13. The onTextData method fires whenever text is encountered within the file being
streamed.
public function onTextData(info:Object):void {

traceField.appendText("Text!\n");
}

14. The onMetaData method fires when the stream metadata is loaded into the
application. This provides us with many useful pieces of information, such as stream
width, height, and duration:
public function onMetaData(info:Object):void {

traceField.appendText("Duration: " + info.duration + "\n");
traceField.appendText("Width: " + info.width + "\n");
traceField.appendText("Height: " + info.height + "\n");
traceField.appendText("Codec: " + info.videocodecid + "\n");
traceField.appendText("FPS: " + info.videoframerate + "\n");

}

15. The onCuePoint method fires whenever embedded cue points are encountered
within the file being streamed:
public function onCuePoint(info:Object):void {

traceField.appendText("Cuepoint!\n");
}

16. The resulting application will look similar to the following screen render:

Chapter 5

151

How it works…
When playing back RTMP streams, we must first establish a NetConnection for our
NetStream to travel across. The NetConnection will attempt to connect to the specified
application defined on a Flash Media Server address. Once the NetConnection is
connected, we create our NetStream and bind the two of them together. Adding a Video
object to the Stage will enable the stream to be viewable on our device, as long as we attach
out NetStream to it. At this point, we can then play any files we wish over that NetStream by
simply invoking the play() method.

When dealing with NetConnection and NetStream, there is always the need to create
a number of helper functions. These functions include the registration of event listeners
to detect particular status events, and the definition of a custom client property with
associated methods that will be expected by the established workflow.

Rich Media Presentation: Working with Images, Video, and Audio

152

There's more…
In this example, we are streaming a video file through an RTMP location over the Internet
through Flash Media Server. You can use this same technique to stream audio files over RTMP
or write a video chat application using the device camera. While we demonstrate here how
to generate a Video object from scratch, keep in mind that there are various component
solutions available such as the FLVPlayBack control that ships with Flash Professional, and
the VideoDisplay and VideoPlayer components, which are part of the Flex framework.
There are endless possibilities with this technology!

Playing audio files from the local filesystem
or over HTTP

The playback of audio files through Flash Platform runtimes on Android devices is
fairly straightforward. We can point to files bundled with our application, as this recipe
demonstrates, files on the device storage, or files over a remote network connection. No
matter where the file is located, playback is accomplished in the same way.

How to do it…
We must load the audio file into a Sound object and will then have the ability to manipulate
playback, volume, pan, among other properties. In this recipe, we will allow the user to control
volume through the rotation of a basic dial:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode; im-
port flash.events.TransformGestureEvent;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.media.SoundTransform;
import flash.net.URLRequest;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

Chapter 5

153

2. For this recipe, we must declare a number of different objects up front. We will
begin with a sound object group consisting of Sound, SoundChannel, and
SoundTransform. These objects will allow us to take full control over the audio for
this recipe. We will also create a Sprite, which will serve as a user interaction point.
Finally, we will declare a TextField and TextFormat pair to relay text messages
onto the device display:
private var sound:Sound;
private var channel:SoundChannel; pri-
vate var sTransform:SoundTransform;
private var dial:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. To create our volume dial, we will initialize a new Sprite and use the graphics API
to draw a representation of a dial within it. We then add this Sprite to the Stage:
protected function setupDial():void {
dial = new Sprite();
dial.graphics.beginFill(0xFFFFFF, 1);
dial.x = stage.stageWidth/2;
dial.y = stage.stageHeight/2;
dial.graphics.drawCircle(0,0,150);
dial.graphics.endFill();
dial.graphics.lineStyle(5,0x440000);
dial.graphics.moveTo(0, -150);
dial.graphics.lineTo(0, 0);
addChild(dial); }

Rich Media Presentation: Working with Images, Video, and Audio

154

5. Now we will go about setting up our audio related objects. Initialize our Sound and
load a MP3 file into it through URLRequest.

6. Next, we will set the initial volume of the sound to 50% by creating a
SoundTransform and passing in a value of 0.5 as the volume in ActionScript is
registered in a range of 0 – 1.

7. To play the Sound, we will create a SoundChannel object, assign our
SoundTransform to its soundTransform property, and finally set the
SoundChannel through the Sound.Play() method:
protected function setupSound():void {
sound = new Sound();
sound.load(new URLRequest("assets/test.mp3"));
sTransform = new SoundTransform(0.5, 0);
channel = new SoundChannel();
channel.soundTransform = sTransform;
channel = sound.play();
traceField.text = "Volume: " + sTransform.volume; }

8. Set the specific input mode for the multitouch APIs to support touch input by setting
Multitouch.inputMode to the MultitouchInputMode.GESTURE constant.
We will also register a listener for TransformGestureEvent.GESTURE_ROTATE
events upon our Sprite to intercept user interaction:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.GESTURE;
dial.addEventListener(TransformGestureEvent.

GESTURE_ROTATE, onRotate); }

9. When the Sprite is rotated by a user, we want to adjust playback volume accord-
ingly. To accomplish this, we will adjust the Sprite rotation based upon the data
received from our gesture event. We can then convert the Sprite rotation into a
valid volume Number and modify the SoundTransform to reflect this, which will
raise or lower the volume of our audio:
protected function onRotate(e:TransformGestureEvent):void {
dial.rotation += e.rotation;
sTransform.volume = (dial.rotation+180)/360;
channel.soundTransform = sTransform;
traceField.text = "Volume: " + sTransform.volume; }

10. The resulting application will look similar to the following screen render:

Chapter 5

155

How it works…
We load an audio file into a Sound object in ActionScript through a URLRequest to make it
available to our application. Simple playback can be achieved by invoking the play() method
upon the Sound, but we retain a greater amount of control by assigning the sound playback
onto a SoundChannel object, as we can then control things aspects such as pan and volume
through the construction and assignment of a SoundTransform object. In this recipe, we
modify the volume of the SoundTransform and then assign it to the SoundChannel.
soundTransform property upon which our Sound is playing, thus modifying the sound.

There's more…
In this example, we are playing a file packaged with our application. It would be just as simple
to play an audio file from the device file system (assuming the codec used to compress the
audio is supported by Flash and AIR) or progressively stream a file over HTTP from a location
available over a network connection.

The audio file we are playing back through Flash Player or AIR must be of a type that is
supported by the Flash Platform runtimes.

Rich Media Presentation: Working with Images, Video, and Audio

156

Valid audio formats include:

f FLV

f MP3

f AAC+

f HE-AAC

f AAC v1

f AAC v2

When packaging such an application, which utilizes files which are distributed as part of the
application package, we will also need to be sure and include them through the use of a GUI
(if your IDE supports this) or as extra files in the command line compilation process.

Generating an audio spectrum visualizer
The ability to generate some sort of visual feedback when playing audio is very useful to the
user, as they will be able to see that playback occurs even if the device volume has been
muted or turned down. Generating visuals from audio is also useful in certain games, or in
monitoring audio input levels.

How to do it…
We will load a MP3 file into a Sound object. By employing the SoundMixer.
computeSpectrum() method, we can access the actual bytes being played back and
construct visualizations with this data using the Sprite graphics API:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TimerEvent;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.media.SoundMixer;
import flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.utils.ByteArray; import
flash.utils.Timer;

Chapter 5

157

2. For this recipe, we must declare a number of different objects up front. We will begin
with a sound object pair consisting of Sound and SoundChannel. These objects
will allow us to take full control over the audio for this recipe. We will also create a
Sprite, which will serve as a canvas to draw out audio spectrum data. Finally, we
will declare a Timer in order to refresh the sound spectrum visualization every few
milliseconds:
private var sound:Sound;
private var channel:SoundChannel;
private var spectrum:Sprite; pri-
vate var timer:Timer;

3. To construct the canvas within which we will draw out visualization elements, we
must initialize a Sprite, define a particular line style on the graphics API, and add
it to the Stage:
protected function setupSpectrum():void {
spectrum = new Sprite();
addChild(spectrum); }

4. A Timer will be used to determine how often we will refresh the visualization within
our container Sprite. In this case, we will set it to fire a TIMER event every 100
milliseconds, or 10 times every second.
protected function registerTimer():void {
timer = new Timer(100);
timer.addEventListener(TimerEvent.TIMER, onTimer); }

5. Now we will go about setting up our audio related objects. Initialize our Sound and
load a MP3 file into it through URLRequest. To play the Sound, we will create a
SoundChannel object, assign our SoundTransform to its soundTransForm
property, and finally set the SoundChannel through the Sound.Play() method. As
we now have our Sound loaded and ready to go, we can start running our Timer.
protected function setupSound():void {
sound = new Sound();
sound.load(new URLRequest("assets/test.mp3"));
channel = new SoundChannel();
channel = sound.play();
timer.start(); }

Rich Media Presentation: Working with Images, Video, and Audio

158

6. Finally, construct a method similar to the following, which will extract byte data from
the global Flash SoundMixer, and use the graphics API to draw out visualizations
based upon this data. We first initialize a number of variables to be used in this
method and run computeSpectrum() off of the SoundMixer class. This will
populate our ByteArray with all of the sound sample data needed to create our
visuals.

7. In looping through the data, we can use the graphics API to draw lines, circles, or
anything we desire into our Sprite container. In this case, we draw a series of lines
to create a spectrum visualization. As this is set to update every 100 milliseconds, it
becomes an ever-shifting visual indicator of the sound being played back.
protected function onTimer(e:TimerEvent):void {
var a:Number = 0;
var n:Number = 0;
var i:int = 0;
var ba:ByteArray = new ByteArray();
SoundMixer.computeSpectrum(ba);
spectrum.graphics.clear();
spectrum.graphics.lineStyle(4, 0xFFFFFF, 0.8, false);
spectrum.graphics.moveTo(0, (n/2)+150);
for(i=0; i<=256; i++) {
a = ba.readFloat();
n = a*300;
spectrum.graphics.lineTo(i*(stage.stageWidth/256), (n/2)+150);
}
spectrum.graphics.endFill(); }

8. The resulting application will look similar to the following screen render:

Chapter 5

159

How it works…
The SoundMixer class provides access to the computeSpectrum() method, which is able
to take a snapshot of the any sound being played through Flash Player or AIR and write it into
a ByteArray object. There are 512 total Number values written to the ByteArray; the first
256 represent the left channel, and the remaining 256 represent the right. Depending upon
what sort of visualization you need, the full 512 values may not be needed, as in the
case here.

To generate the values which determine where to draw our lines using the graphics API, we
use ByteArray.readFloat(), which reads a 32-bit floating-point value from the byte
stream, and converts it to a Number. As this value indicates the specific sound data for that
particular sample, we can use that to draw out a series of lines through the graphics API and
form our visible spectrum.

There's more…
You can find a large amount of additional methods and formulae online by doing a simple
search. The possibilities for doing this sort of generative visualization are truly endless, but we
must take into account the lower than normal hardware specifications on these devices when
deciding how far to push any visualization engine.

Generating audio tones for your application
Packing a lot of sound files into an application is one method of including audio. Another
method is the runtime generation of sound data. We'll produce some simple sine tones in this
recipe, which vary based upon detected touch pressure.

How to do it…
We will examine how to generate audio sample byte data based upon user touch pressure and
feed this into a Sound object to generate a variety of tones:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.SampleDataEvent;
import flash.events.TouchEvent;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

Rich Media Presentation: Working with Images, Video, and Audio

160

import flash.utils.ByteArray;
import flash.text.TextField;
import flash.text.TextFormat;

2. For this recipe, we must declare a number of different objects up front. We will begin
with a sound object pair consisting of Sound and SoundChannel. These objects
will allow us full control over the audio for this recipe. We will also create a Number,
which will retain pressure information obtained through user touch. Finally, we will
declare a TextField and TextFormat pair to relay text messages onto the device
display:
private var sound:Sound;
private var channel:SoundChannel; pri-
vate var touchPressure:Number; pri-
vate var traceField:TextField; pri-
vate var traceFormat:TextFormat;

3. We will now set up our TextField, apply a TextFormat, and add it to the
DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. Now we will go about setting up our audio related objects. Initialize a Sound and
SoundChannel object pair. These will be employed later on to play back our
generated audio data:
protected function setupSound():void {
sound = new Sound();
channel = new SoundChannel(); }

Chapter 5

161

5. Set the specific input mode for the multitouch APIs to support touch input by set-
ting Multitouch.inputMode to the MultitouchInputMode.TOUCH_POINT
constant. We will also register a listener for SampleDataEvent.SAMPLE_DATA
events, which requests will begin once we set out Sound object to play() through
the previously established SoundChannel:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
stage.addEventListener(TouchEvent.TOUCH_BEGIN, onTouch);
sound.addEventListener(SampleDataEvent.SAMPLE_DATA,
onSampleDataRequest);
channel = sound.play(); }

6. Whenever a touch event is detected, we will monitor it through the following method.
Basically, we modify the touchPressure Number, which will be used to calculate
our sine wave generation:
protected function onTouch(e:TouchEvent):void {
touchPressure = e.pressure;
traceField.text = "Pressure: " + touchPressure; }

7. Our final method will execute whenever the currently playing Sound object requests
new sample data to play back. We will employ the ByteArray.writeFloat()
method to send generated audio data back to our Sound object for playback upon
each sample request:
protected function
onSampleDataRequest(e:SampleDataEvent):void {
var out:ByteArray = new ByteArray();
for(var i:int = 0 ; i < 8192; i++) {
out.writeFloat(Math.sin((Number(i+e.position)/
Math.PI/2))*touchPressure);
out.writeFloat(Math.sin((Number(i+e.position)/
Math.PI/2))*touchPressure);
}
e.data.writeBytes(out); }

Rich Media Presentation: Working with Images, Video, and Audio

162

8. The resulting application will produce a variable tone depending upon the amount
of pressure applied through touch and should look similar to the following screen
render:

How it works…
The ActionScript Sound object, when registered with a SampleDataEvent event listener,
will act as a socket when playback is initiated. We must provide sample data to pass along
to this Sound object through a function, which generates this data, and passes samples to
the waiting Sound object. The number of samples can vary between 2048 and 8192, in this
case, we provide as much sample data as possible. The general formula provided by Adobe
for generating a sine wave is: Math.sin((Number(loopIndex+SampleDataEvent.
position)/Math.PI/2)) multiplied by 0.25. Since we are modifying the formula based
upon recorded touch point pressure, we multiply by this recorded value, instead. This modifies
the generated audio that is produced by the application.

There's more…
For a more controlled library of generated sound tones, there exist ActionScript libraries,
which can be used free of charge, or for a fee, depending on the library. I'd recommend
checking out Sonoport at http://www.sonoport.com/.

6
Structural Adaptation:

Handling Device
Layout and Scaling

This chapter will cover the following recipes:

f Detecting useable screen bounds and resolution

f Detecting screen orientation changes

f Scaling visual elements across devices at runtime

f Scaling visual elements based on stage resize in Flash Professional CS5.5

f Employing the project panel in Flash Professional CS5.5

f Freezing a Flex application to landscape or portrait mode

f Defining a blank Flex mobile application

f Defining a Flex mobile view-based application

f Defining a Flex mobile tabbed application with multiple sections

f Using a splash screen within a Flex mobile application

f Configuring the ActionBar within a Flex mobile project for use with ViewNavigator

f Hiding the ActionBar Control in a single view for a Flex mobile project

f Hiding the ActionBar Control in all views for a Flex mobile project

Structural Adaptation: Handling Device Layout and Scaling

164

Introduction
With such a variety of hardware devices running Android, developing applications that look
and function properly across different resolutions can be a challenge. Thankfully, this is
something the Flash platform is well-suited for. Whether using the default layout mechanisms
as part of the Flex SDK or writing your own layout and scaling logic, there are many things
to consider.

In this chapter we will look at layout mechanisms when dealing with the Flex framework
for mobile application development, and also explore a variety of considerations for pure
ActionScript projects.

Detecting useable screen bounds and
resolution

When producing applications for a desktop or laptop computer, we don't have to give too much
thought on the actual screen real estate we have to work with, or the Pixels Per Inch(PPI)
resolution for that matter. It can be generally assumed that we will have at least a 1024x768
screen to work against, and we can be sure that it is a 72 PPI display. With mobile, that it all
out the window.

With mobile device displays, our applications can basically be full screen or almost full screen;
that is, but for the notification bar. These device screens can vary in size from just a few pixels,
to hundreds. Then we must take into account different aspect ratios and the fact that the
screen will certainly display 250 PPI or above. We must have a new set of checks in place to
perform application layout modifications depending upon the device.

How to do it…
At runtime, we can monitor many device capabilities and react by modifying our various visual
elements across the screen:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.system.Capabilities;
import flash.text.TextField;
import flash.text.TextFormat;

Chapter 6

165

2. We will now declare a TextField and TextFormat pair to relay text messages onto
the device display:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. The final step is to create a method to gather all of the data we need to make any
further modifications to our layout or UI components. In this example, we are reading
both the Stage.stageHeight and Stage.stageWidth to get the usable area. We
can contract this with Capabilities.screenResolutionX and Capabilities.
screenResolutionY to get the actual display resolution.

5. Other important pieces of information are the Capabilities.touchscreenType
to determine whether the touch screen expects a finger or stylus, Capabilities.
pixelAspectRatio to retrieve pixel aspect ratio (though this is generally always
1:1), and most importantly that we use Capabilities.screenDPI to discover the
PPI measurement of our display:
protected function readBounds():void {
traceField.appendText("Stage Width: " +
stage.stageWidth + "\n");
traceField.appendText("Stage Height: " +
stage.stageHeight + "\n");
traceField.appendText("Pixel AR: " +
Capabilities.pixelAspectRatio + "\n");
traceField.appendText("Screen DPI: " +
Capabilities.screenDPI + "\n");
traceField.appendText("Touch Screen Type: " +
Capabilities.touchscreenType + "\n");

Structural Adaptation: Handling Device Layout and Scaling

166

traceField.appendText("Screen Res X: " +
Capabilities.screenResolutionX + "\n");

traceField.appendText("Screen Res Y: " +
Capabilities.screenResolutionY);

}

6. The resulting application will display as shown in the following screenshot:

How it works…
Through the flash.display.Stage and flash.system.Capabilities classes, we
can learn a lot about the particular device display our application is running on and have
the application react to that in some way. In this example, we are outputting the gathered
information to a TextField, but this data could be also used to adjust the location, size, or
arrangement of visual elements based on Stage resolution.

Detecting screen orientation changes
As most Android devices have at least two screen orientations, that is, portrait and landscape,
it is useful when developing for these devices to know what the current orientation is in order
to properly display application user interface elements.

How to do it…
We will register an event listener on our Stage to listen for StageOrientationEvent
changes:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageOrientation;
import flash.display.StageScaleMode;

Chapter 6

167

import flash.events.StageOrientationEvent;
import flash.text.TextField;
import flash.text.TextFormat;

2. We will now declare a TextField and TextFormat pair to relay text messages onto
the device display:
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight;
addChild(traceField); }

4. The next step will be to register an event listener to detect changes in screen ori-
entation. We do this by listening for StageOrientationEvent.ORIENTATION_
CHANGE events on the Stage:
protected function registerListeners():void {
stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,

onOrientationChange); }

5. When a StageOrientationEvent.ORIENTATION_CHANGE event is detected,
it will invoke a method named onOrientationChange. We will create this
method and use it to write a text constant representing the new orientation to the
TextField. We will also invoke a method to adjust our layout at this point:
protected function
onOrientationChange(e:StageOrientationEvent):void {
traceField.appendText(e.afterOrientation+"\n");
reformLayout(); }

Structural Adaptation: Handling Device Layout and Scaling

168

6. Finally, we will use the reformLayout method to adjust any visual components on
screen to match our new Stage dimensions. Here, we simply adjust the sizes of our
TextField object:
protected function reformLayout():void {
traceField.width = stage.stageWidth;
traceField.height = stage.stageHeight; }

7. The resulting application will display as shown in the following screenshot:

How it works…
Basically this is a simple event listener that is tied to devices, which have a variety of
possible orientations. We register an event listener of type StageOrientationEvent.
ORIENTATION_CHANGE on the Stage and receive two important pieces of data back:
StageOrientationEvent.beforeOrientation and StageOrientationEvent.
afterOrientation. The values contained within these event results will report device
orientation constants.

There are four constants that can possibly be reported:

1. StageOrientation.DEFAULT

2. StageOrientation.ROTATED_LEFT

3. StageOrientation.ROTATED_RIGHT

4. StageOrientation.UPSIDE_DOWN

Again, these are simply possibilities. There are some devices which do not support all four of
these constants so we must be cautious and not assume otherwise.

Chapter 6

169

There's more…
There are actually a number of ways in which we could detect screen orientation changes.
One would be to monitor the Stage.orientation through a Timer and react accordingly.
Another would involve testing Accelerometer values for orientation changes. Using
StageOrientationEvent is the most direct way, however, and supplies us with information
about both the orientation before and after the event fires, which can be very useful.

See also…
For an example of how you might go about a similar task through the Accelerometer API,
have a look at Chapter 3, Movement through Space: Accelerometer and Geolocation Sensors.

Scaling visual elements across devices
at runtime

The wide variety of Pixels Per Inch (PPI) measurements and overall screen resolution
differences across Android devices can make it difficult to make sizing and layout decisions
when creating visual elements, especially interactive elements, as these must be large
enough for users to touch with their fingertips easily. It is generally accepted that a
physical measurement of a half inch square is ideal for proper touch. In this recipe, we will
demonstrate how to ensure the same physical specifications across devices.

How to do it…
We will create some visual elements on the screen that are sized to physical measurements
based upon the detected device display PPI:

1. First, import the following classes into your project:
import flash.display.Shape;
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.display.StageOrientation; im-
port flash.events.StageOrientationEvent;
import flash.system.Capabilities;

Structural Adaptation: Handling Device Layout and Scaling

170

2. The next step will be to declare a number of objects to use in our application. We
will create three Shape objects, which will be used to demonstrate this particular
layout and sizing technique. We also set up two Number objects to hold specific
measurements for use when determining size and position across the application:
private var boxTopLeft:Shape;
private var boxTopRight:Shape;
private var boxBottom:Shape;
private var halfInch:Number;
private var fullInch:Number;

3. Now, we must draw out our visual elements onto the Stage. As mentioned earlier,
we are targeting a physical resolution of one half inch as the smallest measurement.
Therefore, we begin by performing a calculation to determine the representation,
measured in pixels, of both half inch and one full inch.

4. We will be creating a box in the upper left, and another in the upper right; each will
be a half inch square and positioned based upon the available Stagewidth and
height. A larger box will be positioned at the very bottom of our screen and will
extend across the width of the Stage:
protected function setupBoxes():void {
halfInch = Capabilities.screenDPI * 0.5;
fullInch = Capabilities.screenDPI * 1;
boxTopLeft = new Shape();
boxTopLeft.graphics.beginFill(0xFFFFFF, 1);
boxTopLeft.x = 0;
boxTopLeft.y = 0;
boxTopLeft.graphics.drawRect(0, 0, halfInch, halfInch);
boxTopLeft.graphics.endFill();
addChild(boxTopLeft);
boxTopRight = new Shape();
boxTopRight.graphics.beginFill(0xFFFFFF, 1);
boxTopRight.x = stage.stageWidth - halfInch;
boxTopRight.y = 0;
boxTopRight.graphics.drawRect(0, 0, halfInch, halfInch);
boxTopRight.graphics.endFill();
addChild(boxTopRight);
boxBottom = new Shape();
boxBottom.graphics.beginFill(0xFFFFFF, 1);
boxBottom.x = 0;
boxBottom.y = stage.stageHeight - fullInch;
boxBottom.graphics.drawRect(0, 0, stage.stageWidth, fullInch);
boxBottom.graphics.endFill();
addChild(boxBottom); }

Chapter 6

171

5. Register an event listener of type StageOrientationEvent.ORIENTATION_
CHANGE upon the Stage. This will detect device orientation changes and alert us so
that we may resize and reposition our visual elements appropriately:
protected function registerListeners():void {
stage.addEventListener(StageOrientationEvent.ORIENTATION_CHANGE,

onOrientationChange); }

6. The following method will fire upon each orientation change detected by our ap-
plication. In this case, we do not care so much what our present orientation actually
is, but will reposition (and resize, when necessary) any visual element on the Stage
to properly reflow the screen. We once again use our numeric measurements to
perform these actions:
protected function
onOrientationChange(e:StageOrientationEvent):void {
boxTopLeft.x = 0;
boxTopLeft.y = 0;
boxTopRight.x = stage.stageWidth - halfInch;
boxTopRight.y = 0;
boxBottom.x = 0;
boxBottom.y = stage.stageHeight - fullInch;
boxBottom.width = stage.stageWidth; }

7. The resulting application will display similar to what we see in the following
screenshot:

Structural Adaptation: Handling Device Layout and Scaling

172

How it works…
A good trick to sizing visual components is to multiply the reported Capabilities.
screenDPI times whatever physical measurement you want to achieve. For instance, if we
want to be sure that certain touch elements are exactly half inch in width across devices, you
can use the following formula:

private var halfInch:Number = Capabilities.screenDPI * 0.5;

In this example, we set up some variables, which represent measurements of physical half-
inch and full-inch calculations, and then apply these upon the creation of our elements for
layout and sizing. If a change in device orientation is detected, we adjust our layout based
upon the new Stage dimensions and also resize visual elements as appropriate. As the two
top Shapes are half inch squares, we simply adjust their x and y coordinates, but the bottom
shape has the additional requirement of adjusting its width upon every orientation change to
fill the width of the screen.

Scaling visual elements based on stage
resize in Flash Professional CS5.5

One of the features introduced in Flash Professional CS5.5 that makes targeting various
device resolutions easier is the ability for Flash to resize and reposition visual elements upon
Stage resize. This allows us to modify our FLA files targeting specific resolutions and devices
quite easily.

How to do it…
We will demonstrate how to employ Scale content with stage in order to target different
screen resolutions:

1. Here we see a demo application laid out at 480x800, targeting a Nexus S device. In
the Properties panel, click upon the wrench icon next to the Size controls:

Chapter 6

173

2. We want to adjust the display resolution to match that of a Droid2 so we change the
Document Settings to reflect a 480x854 display resolution to match this device.
Additionally, we can select Scale content with stage, which will scale our visual
elements proportionately:

Structural Adaptation: Handling Device Layout and Scaling

174

3. Upon hitting the OK button, we can see that the Stage has resized and our visual
elements are now centered upon the Stage. Since we only adjusted the height
of this application, the layout of the visual elements is repositioned according to set-
tings which can be adjusted in Edit | Preferences | General | Scale Content, where
we can choose to Align top left or not. Leaving this box unselected will center our
elements upon rescaling the stage and selecting to scale contents, as we can see
below.

4. To demonstrate this further, we will resize our Stage to match the resolution of a
fictional Android tablet device. In the Properties panel, once again click upon the
wrench icon next to the Size controls:

5. Our fictional tablet has a resolution of 800x1000, so we will once again adjust the
width and height settings and select Scale content with stage followed by a click of
the button marked OK:

Chapter 6

175

6. The new scaling feature is much more apparent now, and we can even see how
much our application assets have been scaled by referring to the guides, which
were originally marking our initial resolution. At this point, we can make any further
adjustments to our application layout to be sure it appears exactly as we want upon
the target device:

Structural Adaptation: Handling Device Layout and Scaling

176

If we wanted to target a number of devices in a visual way, we could construct an FLA for each
one using this technique, along with a shared codebase. Although many devices would be
able to use an application generated from the exact same .fla, it all depends upon target
device resolution and how much tweaking we want to do for each one.

How it works…
With Flash Professional CS5.5 and above, we now have the added feature of scaling content
on our Stage when we adjust the Stage dimensions. This is excellent for mobile Android
development purposes since there exists such a variety of display resolutions across devices.
The ability to scale our content allows for rapid layout adjustments of FLA documents which,
when compiled to .APK, target certain devices.

There's more…
It is important to note that the scaling of our visual elements will always be done in a way that
preserves their original aspect ratio. If the new aspect ratio differs from the original, there will
be further adjustments, which will be needed to be made in order to make the layout suitable
to whichever device we are targeting.

Employing the Project panel in Flash
Professional CS5.5

It has traditionally been troublesome when attempting to design application layout in Flash
Professional since it required the manual organization of various FLA files, along with some
mechanism of synchronizing changes between them in code and asset management. Flash
Professional CS5.5 attempts to alleviate much of this burden with a new Project structure,
including the ability to share author time Flash Library assets across project documents.

How to do it…
We will configure a Flash Project, which will allow us to target multiple screen resolutions
using the same shared asset pool across device-targeted FLAs:

1. Create a new Flash Professional project by opening the Project panel by selecting
Create New | Flash Project on the welcome screen, or through File | New… | Flash
Project from the application menu:

Chapter 6

177

2. The Create New Project panel will appear, allowing us to configure a new Flash
Project. We will provide a Project name, define a Root folder for the project files to
reside, and choose a Player. In the case of AIR for Android, we will want to be sure to
choose AIR 2.6 or the latest version of AIR you wish to target:

Structural Adaptation: Handling Device Layout and Scaling

178

3. The Flash Project structure allows us to define a number of different FLA documents
within one project, which target a variety of resolutions and layouts. Here, for
example, we have created specific documents targeting the Droid, EVO, and Nexus
One mobile Android devices. In addition to these documents we also have an
AuthortimeSharedAssets.fla file, which is generated for us automatically by
Flash Professional. This will contain any assets which are shared across our
other documents.

4. Now, as we design and develop our application assets, we can mark each one as an
author-time shared asset, which can be linked across all of our documents, making
asset management within this particular project much more organized than it would
be, otherwise. To mark a Library asset as shared, simply click on the checkbox next
to it:

Chapter 6

179

5. While marking a particular asset to be shared across documents in a project does
make it sharable, we must also be sure to include the Library asset within the doc-
ument in question to be able to access it within a particular device document at
author time.

6. For instance, if we have two .fla files that we want to share a MovieClip symbol
called "RedBall", we will first define "RedBall" in one .fla, and mark it as shared
within that Library. This will place the symbol into our
AuthortimeSharedAssets.fla file, but it will not be available to any other .fla
until we actually bring it into the Library of the second .fla. At this point, any mod-
ifications made in either .fla will be shared across both because of the shared
asset linkage in our project.

How it works…
The AuthortimeSharedAssets.fla file contains all of the Flash Library assets that are
shared across our multiple FLA files. This allows us to modify a shared asset in one file, and
have those changes cascade across all project documents in which it is used. The ability
to define a variety of screen resolution layouts through multiple, targeted FLA files allows a
designer great flexibility when structuring the application user interface. Having all of those
interface elements linked through this new project structure keeps the work organized
and clean.

There's more…
Not only does the new Flash Project panel and associated project structure allow for author
time asset sharing and multi-device targeting through multiple FLA files, but the file structure
is now totally compatible with Flash Builder. This allows developers to start a Flash Project
in Flash Professional, and continue editing it in Flash Builder by importing the project folder
within that environment.

Freezing a Flex application to landscape
or portrait mode

It is sometimes desirable to constrain your application layout to a specific aspect ratio,
landscape, or portrait. When building Android projects using the Flex framework, it is a simple
matter to accomplish this.

Structural Adaptation: Handling Device Layout and Scaling

180

How to do it…
We can freeze a particular aspect ratio for our application by modifying the AIR application
descriptor file:

1. By default, when we define a new Flex mobile project, an application descriptor XML
file is created. This file includes a node dedicated to the application initialWindow
configuration. It will appear similar to the following code:
<initialWindow>
<autoOrients>true</autoOrients>
<fullScreen>false</fullScreen>
<visible>true</visible>
<softKeyboardBehavior>none</softKeyboardBehavior>
</initialWindow>

2. We want to modify the contents of this node in two ways. First, set the autoOrients
tag to false. This will prevent the application from re-orienting itself upon device
rotation:
<initialWindow>
<autoOrients>false</autoOrients>
<fullScreen>false</fullScreen>
<visible>true</visible>
<softKeyboardBehavior>none</softKeyboardBehavior>
</initialWindow>

3. Now, we will add an aspectRatio tag and provide it with one of two values,
landscape or portrait:
<initialWindow>
<autoOrients>false</autoOrients>
<aspectRatio>landscape</aspectRatio>
<fullScreen>false</fullScreen>
<visible>true</visible>
<softKeyboardBehavior>none</softKeyboardBehavior>
</initialWindow>

4. When we test this application on our device, even when holding it upright, in portrait
mode, our application remains locked to landscape:

Chapter 6

181

How it works…
The application descriptor file is very powerful as it can define many elements of our
application without even editing any MXML or ActionScript. In this example, we are modifying
tags within the project initialWindow node; setting autoOrients to false and adding an
aspectRation tag, setting the aspect ratio of our application to landscape or portrait.
Performing these edits will ensure that our application runs in a fixed aspect ratio no matter
how the device is rotated by the user.

Structural Adaptation: Handling Device Layout and Scaling

182

There's more…
Users of Flash professional CS5.5 will find that they can easily adjust these properties through
the AIR for Android Settings dialog. This can be accessed from either the Properties panel or
from File | AIR for Android Settings:

See also…

We will explore the application descriptor file in greater depth within Chapter 9, Manifest
Assurance: Security and Android Permissions.

Chapter 6

183

Defining a blank Flex mobile application
When you create a Flex Mobile Project in Flash Builder, there are a number of default
view and layout controls that come along with it, including the ActionBar control and
ViewNavigator container. These are very useful controls for many types of projects, but not
all will benefit from these extra structures. Sometimes it is better to start with a blank project
and build from there.

How to do it…
There are two ways to go about defining a blank Flex Mobile Application.

When creating a New Flex Mobile Project in Flash Builder:

1. Define your Project Location and click Next.

2. Now simply choose Blank in the Application Template area and proceed with your
project setup:

Structural Adaptation: Handling Device Layout and Scaling

184

The second way is to modify an existing Flex Mobile Project to remove certain mobile-related
structures:

1. Your mobile project will initially include the following MXML:
 <?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx=
"http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MainHomeView">
</s:ViewNavigatorApplication>

2. We will now modify this in a number of ways. First, change your
ViewNavigatorApplication tags to read as Application tags:
<?xml version="1.0" encoding="utf-8"?>
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MainHomeView">
</s:Application>

3. Remove all View references in your code:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
</s:Application>

Either of these methods will enable a blank Flex Mobile application:

Chapter 6

185

How it works…
What defines whether the ActionBar and other mobile-related structures are
present within a Flex Mobile Project is whether or not the application is of type
spark.components.ViewNavigatorApplication or spark.components.
TabbedViewNavigatorApplication. When using the more traditional spark.
components.Application for your Flex Mobile project, the ActionBar, TabBar, and
ViewStack are no longer present or usable within the project.

For more information about the structures mentioned above, have a look at the next few
recipes, which describe ways of working in projects with ViewNavigator enabled.

There's more…
It is not a good idea to modify a Flex mobile project after working on it for some time, as you
will most likely be tied deeply into the ViewStack at that point.

Defining a Flex mobile view-based
application

A view-based Flex mobile application provides us with a number of very useful controls and
containers that specifically target the mobile application development layout and structure.
These include an ActionBar along the top of the screen, and the ViewNavigator control.

How to do it…
There are two ways to go about creating a Flex mobile view-based application.

When creating a New Flex Mobile Project in Flash Builder:

1. Define your Project Location and click Next.

Structural Adaptation: Handling Device Layout and Scaling

186

2. Now simply choose View-Based Application in the Application Template area and
proceed with your project setup:

The second way is to modify an existing Flex project to add certain mobile-related structures:

1. Your Flex project will initially include the following MXML:
<?xml version="1.0" encoding="utf-8"?>

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
</s:Application>

2. We will now modify this in a number of ways. First, change your Application tags
to read as ViewNavigatorApplication tags:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
</s:ViewNavigatorApplication>

Chapter 6

187

3. Create a View MXML file within the current project source folder named
MainHomeView.mxml for this example. In this case, we are creating it within
a views package in our project structure.It is important to realize that every
ViewNavigatorApplication includes any number of individual views. A View is a
type of Flex container that can be managed through the ViewNavigator to expose
or dismiss various "screens" within a mobile Flex application:
<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="HomeView">
</s:View>

4. Now, we must point to the file we just created as the firstView property of our
ViewNavigatorApplication:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MainHomeView">
</s:ViewNavigatorApplication>

Either of these methods will define a Flex mobile view-based application.

How it works…
What defines whether the ActionBar is present within a Flex mobile project is whether or not
the application is of type spark.components.ViewNavigatorApplication (or spark.
components.TabbedViewNavigatorApplication). By defining our application as a
ViewNavigatorAppplication, we have access to all of these mobile specific structures
and controls, including the powerful ViewNavigator through which we can manage all of
our application views.

A View defines a specific "screen" within our application and the user will likely switch between
many different views while the application is in use. We can manage all of these views
from the ViewNavigator, which automatically preserves a view history for us when the
application is in use. As a result of this, when the user interacts with the Android back button,
previous views can be revisited.

Structural Adaptation: Handling Device Layout and Scaling

188

Defining a Flex mobile tabbed application
with multiple sections

Setting up a mobile Android project using the Flex framework can be as simple or as
complex as we want it to be. Going one step beyond the ViewNavigatorApplication,
is the TabbedViewNavigatorApplication, which includes the ability to have multiple
sections of content, each with their own ViewNavigator and sets of Views. Defining a
TabbedViewNavigatorApplication will allow us access to the TabBar.

How to do it…
There are two ways to go about configuring a Flex mobile tabbed application.

When creating a New Flex Mobile Project in Flash Builder:

1. Define your Project Location and click Next >

2. Now simply choose Tabbed Application in the Application Template area and
proceed with your project setup:

Chapter 6

189

The second way is to modify an existing Flex project to add certain mobile-related structures:

1. Your Flex project will initially include the following MXML:
<?xml version="1.0" encoding="utf-8"?>

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
</s:Application>

2. We will now modify this in a number of ways. First, change your Application tags
to read as TabbedViewNavigatorApplication tags:
<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
</s:TabbedViewNavigatorApplication>

3. Create a set of View MXML files within the current project source folder. In this case,
we are creating them all within a views package in our project structure:

TabOne.mxml:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" title="Tab
One">
<s:layout>
<s:VerticalLayout paddingBottom="20" paddingLeft="20"
paddingRight="20" paddingTop="20"/>
</s:layout>
<s:Label text="Tab View: #1" />
</s:View>

TabTwo.mxml:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" title="Tab
Two">
<s:layout>
<s:VerticalLayout paddingBottom="20"
paddingLeft="20" paddingRight="20"
paddingTop="20"/>
</s:layout>

<s:Label text="Tab View: #2" />
</s:View>

Structural Adaptation: Handling Device Layout and Scaling

190

TabThree.mxml:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark" title="Tab
Three">

<s:layout>
<s:VerticalLayout paddingBottom="20"

paddingLeft="20" paddingRight="20"
paddingTop="20"/>

</s:layout>
<s:Label text="Tab View: #3" />
</s:View>

4. Now, we must point to the files we just created by nesting a series of
ViewNavigator declarations within our TabbedViewNavigatorApplication
structure. Each will point to one of the unique View MXML files we have just created:

<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<s:ViewNavigator label="Tab One" width="100%"
height="100%" firstView="views.TabOne"/>

<s:ViewNavigator label="Tab Two" width="100%"
height="100%" firstView="views.TabTwo"/>

<s:ViewNavigator label="Tab Three" width="100%"
height="100%" firstView="views.TabThree"/>

</s:TabbedViewNavigatorApplication>

Either of these methods will define a Flex mobile tabbed application:

Chapter 6

191

How it works…
What defines whether the TabBar is present within a Flex Mobile Project is whether or not the
application is of type spark.components.TabbedViewNavigatorApplication. When
using the more traditional spark.components.Application for your Flex mobile project,
the TabBar and ViewStack are no longer present or usable within the project.

There's more…
It is important to note here that when using TabbedViewNavigator, each tab has its own
exclusive ViewNavigator each with its own view stack. The ViewNavigotor instances do
not have a mechanism to share data with one another unless drawn upon from a separate
source, such as a shared data pool, which would be defined by the developer.

Using a splash screen within a Flex mobile
application

Adobe AIR for Android is an excellent runtime for building and distributing Android
applications, but there are some trade-offs in comparison to native development. Depending
upon the size of your application, it may take a few seconds to load everything up for the user.
The mobile Flex framework allows us to define a splash screen to let the user know that the
application is loading once they launch, and to add an extra bit of flourish to the
entire experience.

How to do it…
We will configure our application to display a splash screen while the application loading
process takes place:

1. Upon defining our Flex mobile project, we will need to be sure the
ViewNavigatorApplication or TabbedViewNavigatorApplication
(depending upon your project) is the currently selected MXML tag and enter
Design view.

Structural Adaptation: Handling Device Layout and Scaling

192

2. Next, we will modify a few settings within the Common area of our Properties panel.
Here, browse to an image file to embed a Splash image and set the Splash scale
mode to none, letterbox, stretch, or zoom:

3. Enter Source view and the MXML document will appear as follows:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
applicationDPI="240"
firstView="views.SplashScreenHomeView"
splashScreenImage="@Embed('assets/splash.png')"
splashScreenScaleMode="stretch"
title="Splash!">
</s:ViewNavigatorApplication>

4. You can, of course, modify any of the settings we have just configured from
here by pointing to another file to embed or changing the scale mode.
We will be adding one more property to our main application tag called
splashScreenMinimumDisplayTime and set its value to the minimum duration,
in milliseconds, that we want the splash screen image to display for:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
applicationDPI="240"
firstView="views.SplashScreenHomeView"
splashScreenImage="@Embed('AndroidSplash.png')"
splashScreenScaleMode="stretch"
splashScreenMinimumDisplayTime="2000"
title="Splash!">
</s:ViewNavigatorApplication>

Chapter 6

193

5. When the user runs the application on their device, they will be presented with a
handsome splash screen identifying the application and letting them know that it
is now loading:

How it works…
Setting the splashScreenImage property on our main application file will allow us to dis-
play an embedded custom image to the user while our application is loading. The addition
of a splashScreenMinimumDisplayTime property allows us to define the minimum
length of time (in milliseconds) that our splash screen will display for. If the application
takes longer than this defined time, the splash screen will continue to display
as needed. The splash screen also can accept a specific scale mode behavior by setting the
splashScreenScaleMode property:

f Setting splashScreenScaleMode to none will present our defined image at its
native resolution without any modification. This is probably unacceptable as device
screen resolutions vary so greatly.

f Setting splashScreenScaleMode to letterbox will fit the splash image into the
frame defined by the device display resolution, but will display empty padding in the
areas that the image does not cover.

Structural Adaptation: Handling Device Layout and Scaling

194

f Setting splashScreenScaleMode to stretch will stretch the defined image
into the frame defined by the device display resolution, filling the entire display
area. Some distortion may occur with this setting as the image may be scaled
disproportionately.

f Setting splashScreenScaleMode to zoom will fit the splash image into the frame
defined by the device display resolution without allowing any padding. It will fill
the entire display area by cropping portions of the image from view. This may be
undesirable as portions of the image may not be visible to the user.

Example: a 480x800 pixel image will appear as follows when rendered on a device display
measuring 320x480:

Configuring the ActionBar within a Flex
mobile project for use with ViewNavigator

The Flex mobile ViewNavigatorApplication and TabbedViewNavigatorApplication
contain a special control called the ActionBar, which contains three editable child
containers. We can define the contents of these child containers by modifying the MXML in
our project documents.

How to do it…
Modify the document MXML to customize our ActionBar contents. In this example, we will
define some interactive image controls and provide a rich title image across our application
ViewStack:

1. When we first configure a new Flex mobile project, our main MXML document will
appear as follows:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"

Chapter 6

195

firstView="views.CustomActionBarHomeView">
</s:ViewNavigatorApplication>

2. The ActionBar contains three distinct areas within which we can define additional
controls, they are the navigationContent, titleContent, and actionContent
containers.

3. We will first define a navigationContent node within our main application MXML.
Define a Spark Image control within, embedding a navigation image that will function
as a way for users to get back to the "home" screen of our application:
<s:navigationContent>
<s:Image source="@Embed('images/home.png')"/>
</s:navigationContent>

4. Now, define the titleContent container and create an Image control within it
embedding an image used as the title of our application:
<s:titleContent>
<s:Image source="@Embed('images/title.png')"/>
</s:titleContent>

5. Finally, define a actionContent node and embed another image within it, just as
we did for our navigationContent container. This will function as a close button:
<s:actionContent>
<s:Image source="@Embed('images/close.png')"/>
</s:actionContent>

6. We will then set up a script block in our MXML to contain any functions we will be
writing:
<fx:Script>
<![CDATA[
]]>
</fx:Script>

7. Define a method within our script block that will return the user to our initial
View when the navigationContent child Image is pressed by invoking the
ViewNavigator.popToFirstView() method.
private function goHome(e:MouseEvent):void {
navigator.popToFirstView();
}

Structural Adaptation: Handling Device Layout and Scaling

196

8. Define a second method to exit the application when the actionContent child
Image is pressed by the user:
private function closeApp(e:MouseEvent):void {
NativeApplication.nativeApplication.exit();
}

9. Now, we will complete this example by assigning click events to each of our inter-
active ActionBarImage controls, registering them with the methods we created
previously:
<s:navigationContent>
<s:Image click="goHome(event)"
source="@Embed('images/home.png')"/>
</s:navigationContent>
<s:actionContent>
<s:Image click="closeApp(event)"
source="@Embed('images/close.png')"/>
</s:actionContent>

10. We will also define our two View mxml files in such a way that these ActionBar
controls will be clearly functional for this example. The initial View will include a
Button in order to navigate to the secondary View using the ViewNavigator.
push() method. When invoking this method, we simply need to pass in a reference
to the particular the application should enable for the user to interact with. We can
optionally pass in a second argument, which contains data to feed the View.

11. From the secondary View, a user can either exit the application through clicking the
ActionBar exit Image, press the Android back button, or click the ActionBarhome
Image to invoke the ViewNavigator.popToFirstView() method and return to
the initial application state:

CustomAction BarHomeView.mxml:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" title="Home
View">
<s:layout>
<s:VerticalLayout paddingBottom="20" paddingLeft="20"
paddingRight="20" paddingTop="20"/>
</s:layout>
<fx:Script>
<![CDATA[
protected function switchView():void {
this.navigator.pushView(views.CustomActionBarSecondaryView);
}
]]>
</fx:Script>

Chapter 6

197

<s:Label text="Home View: Hit the EXIT icon to exit." />
<s:Button label="Go to Secondary View"

click="switchView()"/>
</s:View>

CustomActionBarSecondaryView.mxml
<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
title="Secondary View">

<s:layout>
<s:VerticalLayout paddingBottom="20" paddingLeft="20"

paddingRight="20" paddingTop="20"/>
</s:layout>
<s:Label text="Secondary View: Hit the HOME icon to pop to

the first view or the EXIT icon to exit." />
</s:View>

12. When we run the application upon our device, the ActionBar will appear as follows:

How it works…
The Flex mobile ActionBar is an excellent structural element that can be used across a
variety of mobile Android applications. The three container areas; navigationContent,
titleContent, and actionContent behave much like any other Flex container. The
contents of the ActionBar and the functions they perform are really up to the application
developer and what makes sense for the target user. We must be sure to consider the amount
of space available to us and how this can change across devices.

When dealing with the ViewNavigator, there are a number of important methods that
mobile developers should be familiar with. We will briefly touch upon them here.

popToFirstView() removes all views from the ViewNavigator except the bottom view,
essentially having the application return to the "home" view. popView()pops the current view
off the navigation stack, exposing the previous view to the user.

Structural Adaptation: Handling Device Layout and Scaling

198

pushView()pushed a new view to the top of the ViewNavigator navigation stack, making
it the current view. For this to function, a valid View object reference must be passed in as an
argument of this method.

There's more…
We can also manage the view transitions by passing a transition reference through as the
final argument in any of the ViewNavigator methods outlined in the previous section. For
example, if we wanted to replace the normal sliding transition with a cube flipping up, we
could do so through these steps:

1. Import the following classes:
import spark.transitions.FlipViewTransition;
import spark.transitions.FlipViewTransitionMode;
import spark.transitions.ViewTransitionDirection;

2. Invoke a method to create our transition and pass it along as an argument of
ViewNavigator.popView(). When creating our transition, we can define things
such as duration, the direction of movement, and whether the ActionBar control is
animated along with the view content or not:

protected function removeViews():void {
var androidTransition:FlipViewTransition =
new FlipViewTransition();
androidTransition.duration = 500;
androidTransition.direction = ViewTransitionDirection.UP;
androidTransition.transitionControlsWithContent = false;
androidTransition.mode = FlipViewTransitionMode.CUBE;
this.navigator.popView(androidTransition); }

There are a number of different transition types for us to explore when developing mobile Flex
projects. This is just an example of how to go about using one of them.

Hiding the ActionBar control in a single
view for a Flex mobile project

You may want to use the ViewNavigator structure and functionality of the
ViewNavigatorApplication container, but simply want to hide the ActionBar in a
specific application View.

Chapter 6

199

How to do it…
Set the View actionBarVisible property to true. The following example shows how to
toggle the ActionBar off and on for a particular View based on a button click:

1. Define a new Flex mobile view-based application:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.MainHomeView">
</s:ViewNavigatorApplication>

2. Create a new MXML file called MainHomeView.mxml within a views package that
will define our primary view for this application:
<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="HomeView">
</s:View>

3. Define a Button component within the MXML file we just created, which constitutes
our ViewNavigatorApplicationfirstView:
<s:Button x="10" y="10" label="Toggle"/>

4. We will then set up a script block in our MXML to contain any functions we will be
writing:
<fx:Script>
<![CDATA[
]]>
</fx:Script>

5. Now, create a function called toggleActionBar and within it, we will create an if
statement checking whether the actionBarVisible property of our View is true
or false. Depending upon the current Boolean value, we will toggle to the opposite
value:
protected function toggleActionBar():void {
if(actionBarVisible){
actionBarVisible = false;
}else{
actionBarVisible = true;
}
}

Structural Adaptation: Handling Device Layout and Scaling

200

6. Finally, we simply need to create a click event handler on our Button component to
invoke the function just created:

<s:Button x="10" y="10" label="Toggle"
click="toggleActionBar()"/>

7. This Button will now toggle the ActionBar off and on when toggled:

How it works…
Each View of your application has an actionBarVisible property. Setting
actionBarVisible = false; will hide the ActionBar control for those particular Views
it is set on. This is really quite flexible, as we can turn the ActionBar control on and off as
needed, depending upon which View we are currently on.

There's more…
The mechanism with which we have removed the ActionBar control from our
View is similar to the one with which we can use to remove the TabBar from a
TabbedViewNavigatorApplication project by setting the following:

tabbedNavigator.tabBar.visible = false;
tabbedNavigator.tabBar.includeInLayout = false;

7
Native Interaction:
StageWebView and

URI Handlers

This chapter will cover the following recipes:

f Opening a website in the default Android browser

f Rendering a website within an application

f Managing the StageWebView history

f Using StageWebView to load ads using ActionScript

f Using StageWebView to load ads within a Flex mobile project

f Making a phone call from an application

f Sending a text message from an application

f Invoking Google maps from an application

f Invoking the Android market using application URIs

f Sending e-mail from an application

Introduction
Traditionally, Flash platform developers have not had access to render HTML websites as
part of their applications; that all changes with the introduction of StageWebView in AIR for
Android. This chapter includes tips on what makes such a mechanism different from normal
display list objects, and how to use it effectively. We will also look at URI handling functions,
which allow us to tap into native applications on an Android device such as the web browser,
e-mail client, maps, and telephone.

Native Interaction: StageWebView and URI Handlers

202

Opening a website in the default Android
browser

Similar to desktop Flash and AIR applications, the default system Web browser can be invoked
through classes in the flash.net package based upon some user interaction. On Android,
since all applications take up a full window, we must be extra mindful of any disruption this
may cause while the user is interacting with our application. For instance, when the user
received a phone call or text message and must exit the application.

How to do it...
Having the application invoke navigateToURL and passing in a new URLRequest will open
the default web browser. In this example, we will open a website once a TOUCH_TAP event is
detected:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.net.navigateToURL; import
flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;

Chapter 7

203

traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke Browser";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,

traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton);

}

4. If we now run the application on our device, the interactive Sprite should appear
as follows:

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

Native Interaction: StageWebView and URI Handlers

204

6. Once a touch tap, is detected our onTouchTap method will fire, invoking
navigateToURL and passing in a URLRequest containing the HTTP or HTTPS
address we want to open up from our application:
protected function onTouchTap(e:TouchEvent):void {
navigateToURL(newURLRequest("http://memoryspiral.com/")); }

7. When we run the application upon our device, a simple touch tap upon our button will
invoke the native web browser application and load up our URL request:

How it works...
When a user of our application touch taps the interactive Sprite we've created, they are
taken out of our application and into the default Android web browser, as the URL we've
supplied is loaded over the network, displaying the requested web site. This is accomplished
by passing a URLRequest through the navigateToURL method, which is very similar to the
way we accomplish the same thing with a desktop application.

Chapter 7

205

There's more...
While invoking the Android web browser from within our application can be very useful. It is
much more interesting to be able to load web pages into an application without having to
jump between applications. The user can, of course, use the Android back button to return
to our application from the browser (if it is still open), but there are ways to ensure a more
seamless experience. The next few recipes will describe how to accomplish this.

Rendering a website within an application
With Flash content, it is traditionally not possible to display a fully rendered HTML website
within an application. Adobe AIR initially changed this by allowing web pages to be loaded into
the application on the desktop and interpreted through the internal AIR build of the web kit
rendering engine through the desktop only HTMLLoader class. On Android, AIR allows us to
do similar things through the use of StageWebView.

How to do it...
We will construct a new StageWebView instance to display a web page within our mobile
Android application:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.TouchEvent;
import flash.geom.Rectangle;
import flash.media.StageWebView;
import flash.net.URLRequest;
import flash.net.navigateToURL;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label. Additionally, declare a
StageWebView instance along with a Rectangle to define our view port:
private var fauxButton:Sprite;
private var swv:StageWebView;
private var swvRect:Rectangle;
private var traceField:TextField;
private var traceFormat:TextFormat;

Native Interaction: StageWebView and URI Handlers

206

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "none";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Load Website";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton); }

4. Create a method to construct our StageWebView object by defining a new
Rectangle with the position and size we want the StageWebView view port to
appear within our application. In this example, we determine the properties of our
Rectangle based upon the position of the previously created Sprite, and the
dimensions of the application Stage.

5. It is good practice to check whether StageWebView is supported by invoking
StageWebView.isSupported before constructing our StageWebView instance.
To actually create a StageWebView object, we do a simple instantiation and assign
the application stage to StageWebView.stage. Now assign the previously
constructed Rectangle to the StageWebView viewport property:
protected function setupStageWebView():void {

Chapter 7

207

swvRect = new Rectangle(0,fauxButton.y+fauxButton.
height+40,stage.stageWidth,stage.
stageHeight-fauxButton.y+fauxButton.height+40);

if(StageWebView.isSupported){
swv = new StageWebView();
swv.stage = this.stage;
swv.viewPort = swvRect;

}
}

6. If we now run the application upon our device, the interactive Sprite with
accompanying StageWebView should appear as follows:

Native Interaction: StageWebView and URI Handlers

208

7. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which will instantiate a page load. We will also register an event of type Event.
COMPLETE upon our StageWebView object to determine when a page load has been
completed:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap);
swv.addEventListener(Event.COMPLETE, locationChanged); }

8. When a touch tap is detected, our onTouchTap method will fire, invoking
navigateToURL; it will begin to load a web page using StageWebView.
loadURL(), passing in the page address as a String argument: pro-
tected function onTouchTap(e:TouchEvent):void {
swv.loadURL("http://memoryspiral.com/"); }

9. Once the page load has been completed, we can gather information about the loaded
content, such as the page title. In this case, we assign the page title to our
TextField as an example:
protected function locationChanged(e:Event):void {
traceField.text = e.target.title; }

10. The resulting application, once the web page has been completely loaded, will appear
as follows:

Chapter 7

209

How it works...
The StageWebView class will use whichever web control is default on the host operating
system to render any HTML that is displayed in the view port. It is important to note that
StageWebView is not part of the traditional Flash DisplayList and cannot be added to
our application in the normal way visual elements are added to the DisplayList (through
addChild()).

As StageWebView is not part of the traditional DisplayList, we must use an alternative
way of defining where it will appear on the stage and what space it will occupy. This is
done through the use of a Rectangle object assigned to the StageWebView.viewPort
property. The StageWebView class also requires a stage property to which is assigned the
present application stage. So long as these two properties are correctly assigned, a viewport
will appear within our application.

Native Interaction: StageWebView and URI Handlers

210

As StageWebView is not a part of the DisplayList, we should
always call the dispose() method upon it once we have finished
using it to allow complete removal from our application.

There's more...
As mentioned in the preceding section, AIR for Android will use the native WebKit rendering
engine when invoking StageWebView. WebKit is used by a number of popular web browsers,
including the Android browser, Apple Safari, and Google Chrome. Also of note: WebKit is
actually a part of the Adobe AIR desktop runtime. For more information about WebKit, visit
http://www.webkit.org/.

Managing the StageWebView history
When developing applications for Android, AIR allows us to render complete websites through
the use of theStageWebView class. We also can tap into the navigation history of our
StageWebView instance and apply that in different ways within our application.

How to do it...
Once a user has loaded a number of pages within our StageWebView instance, we will be
able to navigate back and forth through the navigation history:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.LocationChangeEvent;
import flash.events.TouchEvent;
import flash.geom.Rectangle;
import flash.media.StageWebView;
import flash.net.URLRequest;
import flash.net.navigateToURL;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

Chapter 7

211

2. We will now declare two Sprite objects to act as our interactive elements,
along with a TextField and TextFormat pair to serve as an address indicator.
Additionally, declare a StageWebView instance along with a Rectangle to define
our viewport:
private var prevButton:Sprite;
private var nextButton:Sprite; pri-
vate var swv:StageWebView; private
var swvRect:Rectangle; private var
addressField:TextField; private var
addressFormat:TextFormat;

3. Now we will create two methods, which will build our previous and next history
controls and add them to the stage. Instantiate a new Sprite for each and add
a unique name property, specifying the desired function of the interaction. We will
be able to read this later off our touch tap event to determine which Sprite was
tapped. Draw a basic background using the graphics API and perform positioning
upon the stage before adding each Sprite to the DisplayList:
protected function setupPrevButton():void {
prevButton = new Sprite();
prevButton.name = "prev";
prevButton.graphics.beginFill(0xFFFFFF, 1);
prevButton.graphics.drawRect(0, 0, 50, 50);
prevButton.graphics.endFill();
prevButton.x = 0;
prevButton.y = 0;
addChild(prevButton);
}
protected function setupNextButton():void {
nextButton = new Sprite();
nextButton.name = "next";
nextButton.graphics.beginFill(0xFFFFFF, 1);
nextButton.graphics.drawRect(0, 0, 50, 50);
nextButton.graphics.endFill();
nextButton.x = stage.stageWidth - 50;
nextButton.y = 0;
addChild(nextButton); }

4. To complete our address indicator, we will continue to set up our TextField and
apply a TextFormat object. In this example, we center the TextField upon the
stage (between our two interactive Sprites) to simulate a web browser address
bar. Create a method to perform all of these actions along with some stylistic
enhancements and assign the default String of Loading… to the TextField in
order to let the user know something is going on.

Native Interaction: StageWebView and URI Handlers

212

protected function setupAddressBar():void {
addressFormat = new TextFormat();
addressFormat.bold = true;
addressFormat.font = "_sans";
addressFormat.size = 26;
addressFormat.align = "center";
addressFormat.color = 0xFFFFFF;
addressField = new TextField();
addressField.defaultTextFormat = addressFormat;
addressField.autoSize = "left";
addressField.selectable = false;
addressField.mouseEnabled = false;
addressField.text = "Loading...";
addressField.x = 60;
addressField.y = 8;
addChild(addressField); }

5. Create a method to construct our StageWebView object by defining a new Rec-
tangle with the position and size we want the StageWebView to appear within our
application. In this example, we determine the properties of our Rectangle based
upon the position of the previously created Sprite and TextField objects as
well as the dimensions of the application Stage.

6. It is good practice to check whether StageWebView is supported by invoking
StageWebView. is supported before constructing our StageWebView in-
stance. To actually create a StageWebView object, we do a simple instantiation
and assign the application stage to StageWebView.stage. Now assign the
previously constructed Rectangle to the StageWebViewviewport property:
protected function setupStageWebView():void {
swvRect = new Rectangle(0,addressField.y+addressField.
height+40,stage.stageWidth ,stage.stageHeight-addressField.
y+addressField.height+40);
if(StageWebView.isSupported){
swv = new StageWebView();
swv.stage = this.stage;
swv.viewPort = swvRect;
} }

Chapter 7

213

7. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon both of our Sprite buttons. This
will detect any touch tap events initiated by the user and invoke a method called
onTouchTap, which will determine whether to go back or forward in the navigation
history depending upon which Sprite was tapped. We will also register an event
of type LocationChangeEvent.LOCATION_CHANGE upon our StageWebView
object to determine when a page load has been completed. Finally, we can invoke
StageWebView.loadURL, passing in a web address as the only argument. This will
begin to load our default location:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
prevButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap);
nextButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap);
swv.addEventListener(LocationChangeEvent.LOCATION_CHANGE,
locationChanged);
swv.loadURL("http://memoryspiral.com/"); }

8. If we were to run the application at this point, we would see all of our interactive
elements appear on the stage and the desired Web page would render within our
StageWebView instance:

Native Interaction: StageWebView and URI Handlers

214

9. As Sprite interactions are detected, we determine which particular Sprite was
tapped by examining the name attribute that was provided directly after instantiation.
In this way, we know whether to attempt to move forward or backward through
the StageWebView history through the use of either the historyBack() or
historyForward() methods. In order to detect whether we can actually do so, we
can first check to see whether the back or forward history is enabled on the device as
shown in the following code snippet:
protected function onTouchTap(e:TouchEvent):void {
switch(e.target.name){
case "prev":
if(swv.isHistoryBackEnabled){
swv.historyBack();
}
break;
case "next":
if(swv.isHistoryForwardEnabled){
swv.historyForward();
}
break;
} }

10. As the current location being rendered by our StageWebView instance changes,
we update our TextField with the present URL much in the way a standard web
browser address bar would do:
protected function locationChanged(e:LocationChangeEvent):void {
addressField.text = e.location; }

11. The user will now be able to navigate back and forth through the StageWebView
history as they begin to click on various hyperlinks as shown in the following
screenshot:

Chapter 7

215

How it works...
The StageWebView class will use whichever web control is default on the host operating
system to render any HTML that is displayed in the view port. It is important to note that
StageWebView is not part of the traditional Flash DisplayList and cannot be added to
our application in the normal way visual elements are added to the DisplayList (through
addChild()).

To manage the StageWebView history, we can use either the historyBack() or
historyForward() methods to navigate along the user history within our application.

Neither of these methods will do anything unless the user has
begun clicking on hyperlinks and performing actual navigation
within the StageWebView instance. We have basically just
created our own little web browser.

Native Interaction: StageWebView and URI Handlers

216

Using StageWebView to load ads using
ActionScript

One of the most sought after features of mobile Android development using the Flash platform
has been the ability to include advertisements from services such as Google AdSense or
AdMob within applications. This allows developers to distribute their applications for no
charge to users, but still receive revenue from advertisements displayed within the
application itself.

How to do it...
StageWebView opens up a lot of possibilities for mobile application development, one
of which is the ability to load HTML-based advertisements in running applications. In the
following example, we will examine how simple it is to manage this:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.TimerEvent; im-
port flash.geom.Rectangle;
import flash.media.StageWebView;
import flash.utils.Timer;

2. We will now declare a StageWebView instance along with a Rectangle to define
our viewport. Lastly, set up a Timer, which will serve as a mechanism to refresh our
ads.
private var swv:StageWebView;
private var swvRect:Rectangle;
private var adTimer:Timer;

3. Create a method to construct our StageWebView object by defining a new Rec-
tangle with the position and size we want the StageWebView to appear within our
application. It is good practice to check whether StageWebView is supported by
invoking StageWebView.isSupported before constructing our StageWebView
instance.

4. To actually create a StageWebView object, we do a simple instantiation and assign
the application stage to StageWebView.stage. Now assign the previously con-
structed Rectangle to the StageWebViewviewport property, and alternatively
load up a web page using loadURL(), passing in the page address as a String:
protected function setupStageWebView():void {

Chapter 7

217

swvRect = new Rectangle(0, 0, stage.StageWidth, 70);
if(StageWebView.isSupported){
swv = new StageWebView();
swv.stage = this.stage;
swv.viewPort = swvRect;
swv.loadURL("http://memoryspiral.com/admob.html");
} }

5. If we have not done so already, in order for this to function correctly, we must set up
a web page on our server to interface with the ad service we have chosen. In this
example, we are using AdMob (http://www.admob.com/) because the ads are
tuned for and directed at mobile web and mobile device applications.

6. One important thing here is to be sure and set the bodymargin and padding to 0
through CSS to avoid any space around our ad. StageWebView is essentially just
running HTML, so if we don't modify things slightly, the default HTML rendering
engine (in the case of Android, this is web Kit) will simply interpret all stylistic
elements through its default settings.

7. You will want to replace the pubid attribute with your own, or register with a different
ad service. Use this snippet as a reference to create your own HTML file to store
upon a server and invoke through your particular application as we have done in this
example:
<html>
<head>
<style type="text/css">
body {
background-color: #333;
margin: 0px;
padding: 0px;
}
</style>
</head>
<body>
<script type="text/javascript">
var admob_vars = {pubid: 'xxxxxxxxxxx',bgcolor:
'000000',text: 'FFFFFF',ama: false,test: true};
</script>
<script type="text/javascript"
src="http://mmv.admob.com/static/iphone/iadmob.js"></script>
</body>
</html>

http://www.admob.com/

Native Interaction: StageWebView and URI Handlers

218

8. The next step is to set up our Timer to switch out ads every 10 seconds. We do
this by instantiating a new Timer object, and passing 10000 milliseconds (or your
preferred amount of time). Now, register an event listener of type TimerEvent.
Timer to fire off a method of our construction every time the Timer hits 10 seconds.
To start the Timer, we invoke Timer.start():
protected function setupTimer():void {
adTimer = new Timer(10000);
adTimer.addEventListener(TimerEvent.TIMER, onTimer);
adTimer.start(); }

9. All that remains is to create our onTimer method to reload the StageWebView
instance every time the Timer hits 10 seconds. This will make a new call to the web,
pulling the HTML down again, thus invoking the ad serving script anew.
protected function onTimer(e:TimerEvent):void {
swv.reload(); }

10. The page will refresh every time our Timer is fired, revealing a new advertisement in
our application:

How it works...
The StageWebView class will use whichever web control is default on the host operating
system to render any HTML that is displayed in the view port. It is important to note that
StageWebView is not part of the traditional Flash DisplayList and cannot be added to
our application in the normal way visual elements are added to the DisplayList (through
addChild()).

To actually render advertisements within the application, we can initially load up a web
page using loadURL(), passing in the page address as a String. This address should
point to an HTML document that interfaces with an ad service of our choosing, for which we
have previously registered for. Normally, these services simple provide you with a chunk of
JavaScript to place into your HTML, which will invoke ads for you upon page load. To refresh
our view port and load up a new add, we can simply invoke StageWebView.reload(). In
the case of our example, we employ a Timer to perform this action every 10 seconds.

Chapter 7

219

There's more...
While we decided to use AdMob for this example, a developer can generally include any ad
system they prefer. In the following screenshot, I am ingesting ads from Google AdSense in
the very same way. You will notice though, that with the normal version of AdSense (when not
using mobile content units), the ads do not conform to the screen in an intelligent way. AdMob
is tailored for mobile, so works much better in these situations. In the future, there should be
plenty of new opportunities in this space beyond the two ad providers mentioned here. We
must also keep in mind that these are third-party services, and may change at any time.

Using StageWebView to load ads within a
Flex mobile project

As StageWebView instances are not part of the DisplayList, we could have a perceived
problem when it comes to using it within a ViewNavigatorApplication. The main
problem being that the StageWebView will always remain an overlay above all other objects,
and that it will not be able to transition along with other items within a particular view. In this
recipe, we will examine this and demonstrate some techniques for coping with the inordinate
behaviour of the StageWebView object.

Native Interaction: StageWebView and URI Handlers

220

Getting ready…
For this example, we'll be using Google AdSense Mobile content | Ad units. You will need to
sign up for an AdSense account at https://www.google.com/adsense/ and configure a
Mobile content Ad unit:

If you already have an AdMob account (or some other service), you can always use that
instead, or even a simple ad of your own creation for this demonstration.

How to do it...
We will create a new ViewNavigatorApplication with two distinct views, demonstrating
how the StageWebView exists outside of this structure, how to remove the StageWebView
from view, and provide reference to an additional ad serving system.

There will be a number of files involved in this example; we will approach their assembly using
different sections for clarity.

Creating the HTML file to display our ads
If we have not done so already, in order for this to function correctly, we must set up a web
page on our server to interface with Google AdSense. You will want to replace the client
attribute from the following example with your own. Use this snippet as a reference to create
your own HTML file to store upon a server and invoke through your particular application:

<html>
<head>
<style type="text/css">
body {
background-color: #333;
margin: 0px;

Chapter 7

221

padding: 0px;
}
</style>
</head>
<body>
<script type="text/javascript"><!--
// XHTML should not attempt to parse these strings, declare
them CDATA.
/* <![CDATA[*/
window.googleAfmcRequest = {
client: 'your-id-goes-here',
format: '320x50_mb',
output: 'html',
slotname: '5725525764',
};
/*]]> */
//--></script>
<script type="text/javascript" src="http://pagead2.
googlesyndication.com/pagead/show_afmc_ads.js"></script>
</body>
</html>

Creating the MXML files for our ViewNavigatorApplication
1. First, we create our main application file with a root node of

ViewNavigatorApplication in order to take advantage of the view-based
layout it provides. We can set the applicationDPI, if need be, and employ the
firstView attribute to reference the initial View. We will define this View a bit later
on in the recipe. Before moving on, let's register a method called init() to fire once
our application completes:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/
mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
applicationDPI="160"
firstView="views.FlexAdsHomeView"
applicationComplete="init()">
</s:ViewNavigatorApplication>

2. Create a script block to hold all of the ActionScript for our application. The code for
doing so will be defined in another step for clarity.
<fx:Script>
<![CDATA[
]]>
</fx:Script>

Native Interaction: StageWebView and URI Handlers

222

3. Now we will add some functionality to our ActionBar by adding two Button
controls to the navigationContent node. Each of these Button controls will
invoke the ViewNavigator.pushView() method. This method accepts a View
reference as an argument, and when invoked, will bring that View to the top of our
view stack:
<s:navigationContent>
<s:Button label="V1"
click="navigator.pushView(views.FlexAdsHomeView)"/>
<s:Button label="V2"
click="navigator.pushView(views.FlexAdsOtherView);"/>
</s:navigationContent>

4. Now we will assemble our two views for this example. Place a Button control in each
View along with a click event handler, which will invoke a method in our main
application file to toggle the ads on and off:

FlexAdsHomeView.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Primary View" >
<s:Button y="120" label="Toggle Ads"
horizontalCenter="0"
click="this.parentApplication.toggleAds()"/>
</s:View>

FlexAdsOtherView.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Secondary View">
<s:Button y="120" label="Toggle Ads" horizontalCenter="0"
click="this.parentApplication.toggleAds()"/>
</s:View>

Generating the ActionScript code to tie it all together
This code will exist within our main application file script block, which we had
previously defined:

1. First, import the following classes into the project:
import flash.events.TimerEvent;
import flash.geom.Rectangle; im-
port flash.media.StageWebView;
import flash.utils.Timer;

Chapter 7

223

2. We will now declare a StageWebView instance along with a Rectangle to define
our view port. Lastly, set up a Timer, which will serve as a mechanism to refresh
our ads:
private var swv:StageWebView;
private var swvRect:Rectangle;
private var adTimer:Timer;

3. Set up the initialization function referred to earlier, which will simply invoke the
methods we will construct to set up the StageWebView instance and our ad refresh
Timer:
protected function init():void {
setupStageWebView();
setupTimer(); }

4. Create a method to construct our StageWebView object by defining a new Rec-
tangle with the position and size we want the StageWebView to appear within our
application. It is good practice to check whether StageWebView is supported by
invoking StageWebView.isSupported before constructing our StageWebView
instance.

5. To actually create a StageWebView object, we do a simple instantiation and assign
the application stage to StageWebView.stage. Now assign the previously con-
structed Rectangle to the StageWebViewviewport property, and alternatively
load up a web page using loadURL(), passing in the page address as a String:
protected function setupStageWebView():void {
swvRect = new Rectangle(0, 68, stage.stageWidth, 76);
if(StageWebView.isSupported){
swv = new StageWebView();
swv.stage = this.stage;
swv.viewPort = swvRect;
swv.loadURL("http://memoryspiral.com/adsense.html");
} }

6. To toggle the ads on and off from within the individual views, we simply check
whether the StageWebView.viewPort is null or not and based upon this re-
sult, either set it to a Rectangle object or assign upon it a value of null. If the
viewPort is null, the ad will no longer be visible to the user:
public function toggleAds():void {
if(swv.viewPort != null){
swv.viewPort = null;
}else{
swv.viewPort = swvRect;
} }

Native Interaction: StageWebView and URI Handlers

224

7. The next step is to set up our Timer to switch out ads every 8 seconds. We do this
by instantiating a new Timer object, passing in 8000 milliseconds (or your preferred
amount of time). Now, register an event listener of type TimerEvent.Timer to fire
off a method of our construction every time the Timer hits 8 seconds. To start the
Timer, we invoke Timer.start():
protected function setupTimer():void {
adTimer = new Timer(8000);
adTimer.addEventListener(TimerEvent.TIMER, onTimer);
adTimer.start(); }

8. All that remains is to create our onTimer method to reload the StageWebView
instance every time the Timer hits 10 seconds. This will make a new call to the web,
pulling the HTML down again, thus invoking the ad serving script anew:
protected function onTimer(e:TimerEvent):void {
swv.reload(); }

9. When the application is run, an ad will immediately be displayed within the
StageWebView instance and our initial View is made present to the user. At this
point, the user can interact with the ActionBar and switch between each View. The
StageWebView instance will remain in place even though the View contents shift
as the application ViewNavigator shuffles views. At any point, the user can toggle
the ads off or on through the Button instances in either View:

Chapter 7

225

How it works...
Using StageWebView within a ViewNavigatorApplication may seem troublesome at
first, if we keep in mind some of the limitations of this particular object, and manage the
StageWebView in a mindful way, it isn't that difficult to produce a workable implementation.

There's more...
If ever we want to completely remove a StageWebView object from our application, we can
invoke StageWebView.dispose(),which will remove the StageWebView object and allow
it to be processed by the garbage collector. Even if we remove a StageWebView instance in
this way, we can always create a new one, if necessary.

Making a phone call from an application
With all the great features and sheer power of the Android operating system, it is easy to
forget that these devices are primarily telephones. In this recipe, we will demonstrate how to
invoke the native Android telephone utility from within an application, passing along a phone
number to dial.

How to do it...
Having the application invoke navigateToURL and passing in a new URLRequest with the
correct URI of tel: will open the default telephone application along with the specified phone
number loaded up and ready to be dialed. In this example, we will perform this action once a
TOUCH_TAP event is detected:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.net.navigateToURL; import
flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

tel:

Native Interaction: StageWebView and URI Handlers

226

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke Phone";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton); }

4. If we now run the application upon our device, the interactive Sprite should appear
as the following screenshot:

Chapter 7

227

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

6. Once a touch tap is detected, our onTouchTap method will fire, invoking
navigateToURL and passing in a URLRequest containing the tel: URI prefix
followed by the phone number we want to dial from our application: protected
function onTouchTap(e:TouchEvent):void {
navigateToURL(new URLRequest("tel:15555554385")); }

7. When we run the application upon our device, a simple touch tap on our button will
invoke the native telephone application along with our specified phone number
already entered:

Native Interaction: StageWebView and URI Handlers

228

How it works...
When a user of our application touch taps the interactive Sprite we've created, they
are taken out of our application and into the default Android telephone utility. Along with
this invocation is supplied a phone number, which was assigned to this call by passing a
URLRequest with a tel: URI prefix through the navigateToURL method. In this way, we
can easily allow users of our application access to a phone number without their even having
to dial it.

Sending a text message from an application
With Flash on Android, we have the ability to invoke the native Android SMS utility through
classes in the flash.net package based upon user interaction. We do not have the ability to
supply any content for the text message, unfortunately. On Android, since all applications take
up a full window, we must be extra mindful of any disruption this may cause while the user is
interacting with our application.

How to do it...
Having the application invoke navigateToURL and passing in a new URLRequest with the
correct URI prefix of sms: will open the default SMS utility along with the specified phone
number loaded up, ready to text. In this example, we will perform this action once a TOUCH_
TAP event is detected:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.TouchEvent; im-
port flash.text.TextField;
import flash.text.TextFormat; import
flash.net.navigateToURL; import
flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

tel:

Chapter 7

229

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke SMS";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton); }

4. If we now run the application upon our device, the interactive Sprite should appear
as follows:

Native Interaction: StageWebView and URI Handlers

230

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

6. Once a touch tap is detected, our onTouchTap method will fire, invoking
navigateToURL and passing in a URLRequest containing the tel: URI prefix
followed by the phone number we want to dial from our application: protected
function onTouchTap(e:TouchEvent):void {
navigateToURL(new URLRequest("sms:15555554385")); }

7. At this point, we will lose application focus and be presented with the Android SMS
utility, prepopulated with our desired phone number and ready to compose a text
message:

Chapter 7

231

8. Finally, once we hit Send, our text message is transmitted to the targeted recipient
specified through the phone number used. In this example, it is not a real phone
number, of course:

How it works...
When a user of our application touch taps the interactive Sprite we've created, they
are taken out of our application and into the default Android SMS utility. Along with this
invocation is supplied a phone number, which was assigned to this text message by passing
a URLRequest with a sms: URI prefix through the navigateToURL method. In this way, we
can easily allow users of our application access to a phone number for texting without their
even having to input a numeric sequence.

Invoking Google maps from an application
Being that most Android devices are mobile, the ability to tap into some sort of mapping
is expected by both developers and users. The Android OS is managed by Google, and the
company has a long history of great mapping technologies on the web. This is great for
developers because we can piggyback on the very cool Maps application on Android and pass
in all sorts of coordinates from our application.

How to do it...
Have the application detect the device geolocation coordinates, invoke navigateToURL,
and pass in a new URLRequest with a correctly formatted URL to access the Android maps
application:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;

Native Interaction: StageWebView and URI Handlers

232

import flash.events.TouchEvent; im-
port flash.events.GeolocationEvent;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.net.navigateToURL;
import flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;
import flash.sensors.Geolocation;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label. We will be employing the
Geolocation API, and so declare an object for this purpose along with Number
variables to hold latitude and longitude data values:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;
private var geo:Geolocation; pri-
vate var longitude:Number; private
var latitude:Number;

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us, along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke Maps";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);

Chapter 7

233

fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);

fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton);

}

4. If we now run the application upon our device, the interactive Sprite should appear
as in the following screenshot:

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

6. Upon the detection of a touch tap event, we will set up a Geolocation object and
assign an event listener to it, listening specifically for a GeolocationEvent.
UPDATE event. We will no longer need to listen for our TouchEvent.TOUCH_TAP
event, so may remove it to allow for garbage collection:
protected function onTouchTap(e:TouchEvent):void {
fauxButton.removeEventListener(TouchEvent.TOUCH_TAP,
onTouchTap);
geo = newGeolocation();
geo.addEventListener(GeolocationEvent.UPDATE, onGeoEvent); }

Native Interaction: StageWebView and URI Handlers

234

7. Once Geolocation data is gathered and reported back to our application, the
onGeoEvent method will fire, providing us with the longitude and latitude data
we need to pass in to the native Android maps application.

8. To complete our sequence, we will invoke navigateToURL and pass in a
URLRequest containing the http://maps.google.com/ URL followed by a query
string containing the latitude and longitude values from our Geolocation
update event data. Since we now have all the data we need, remove the
GeolocationEvent.UPDATE event listener:

protected function onGeoEvent(e:GeolocationEvent):void {
geo.removeEventListener(GeolocationEvent.UPDATE, onGeoEvent);
longitude = e.longitude;
latitude = e.latitude;
navigateToURL(new URLRequest("http://maps.google.com/?q="+

String(latitude)+", "+String(longitude))); }

9. As the URI prefix used in this example is simply http://, a model dialog will appear
over our application, asking whether we would like to open the URLRequest using
the Browser or Maps application. We will choose Maps. Selecting the Use by default
for this action checkbox will prevent this dialog from appearing in the future:

Chapter 7

235

10. Finally, the Maps application will appear and present the user with a view based upon
the detected latitude and longitude Geolocation coordinates that our application was
able to detect:

How it works...
When a user of our application touch taps the interactive Sprite we've created, we configure
a Geolocation object to listen for location data. Once this data is acquired, we can then
pass a URLRequest with the http:// URI prefix through the navigateToURL method
to summon maps.google.com. We also append a query string formed from the collected
Geolocation latitude and longitude data, informing the Maps application the exact
coordinates to navigate to on our map.

Native Interaction: StageWebView and URI Handlers

236

There's more...
An alternative to detecting Geolocation data from device sensors would be to store a
variety of coordinates within the application and then present the user with a number of
choices. This would be useful for a specialized restaurant application, allowing users to easily
view locations on a map, for instance.

Invoking the Android Market using
application URIs

The Android Market is unique to the Android platform and there is a dedicated application
which allows users to easily search for, find, and install applications on their devices. Android
allows a developer to tap into the Market application by passing in certain search terms.

How to do it...
We will build a small application to invoke navigateToURL and pass a predefined search
term through a URLRequest object with the market: URI prefix. This will open the Android
Market application and have it perform a search for us. In this example, we will open a new
request once a TOUCH_TAP event is detected:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.net.navigateToURL; import
flash.net.URLRequest;
import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

Chapter 7

237

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke Market";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton); }

4. If we now run the application upon our device, the interactive Sprite should appear
as shown in the following screenshot:

Native Interaction: StageWebView and URI Handlers

238

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic.
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

6. Once a touch tap is detected, our onTouchTap method will fire, invoking
navigateToURL and passing in a URLRequest with a URI prefix of market:
containing the search terms we want to have the application perform against the
Market inventory:
protected function onTouchTap(e:TouchEvent):void {
navigateToURL(new URLRequest("market://search?q=Fractured

Vision Media, LLC")); }

7. When we run the application upon our device, a simple touch tap upon our button will
invoke the Android Market application and perform a search for the terms that we've
passed over from our application:

Chapter 7

239

How it works...
When a user of our application touch taps the interactive Sprite we've created, they are
taken out of our application and into the Android Market application, where a search is
instantly performed against the search terms specified in our request. The Android Market
application will reveal to the user whatever applications it finds in the current inventory. For
instance, passing in the exact title of our application will allow a user to manually check for
updates from within the application. Passing in our company or developer name will bring up
all of the applications we have made available for the user to browse.

If further specificity is required, there are additional search queries that can be performed.

To search for a specific application, we can use the format:

navigateToURL(new URLRequest("market://search?q=pname:air.com.
fracturedvisionmedia.SketchNSave"));v

To search for a specific publisher, we use the following (notice we are escaping quotes by
using the "\" character in our query string):

navigateToURL(new URLRequest("market://search?q=pub:\"Fractured
Vision Media, LLC\""));

Sending e-mail from an application
Similar to desktop Flash and AIR applications, the default system e-mail client can be invoked
through classes in the flash.net package based upon some user interaction. On Android,
since all applications take up a full window, we must be extra mindful of any disruption this
may cause while the user is interacting with our application.

How to do it...
Having the application invoke navigateToURL and passing an e-mail address through a new
URLRequest with the mailto: URI prefix will open the default e-mail utility. In this example,
we will open a new e-mail once a TOUCH_TAP event is detected:

1. First, import the following classes into your project:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.TouchEvent;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.net.navigateToURL; import
flash.net.URLRequest;

Native Interaction: StageWebView and URI Handlers

240

import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will now declare a Sprite as our interactive element, along with a TextField
and TextFormat pair to serve as a button label:
private var fauxButton:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 42;
traceFormat.align = "center";
traceFormat.color = 0x333333;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.autoSize = "left";
traceField.selectable = false;
traceField.mouseEnabled = false;
traceField.text = "Invoke Email";
traceField.x = 30;
traceField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(traceField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, traceField.width+60,
traceField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = 60;
addChild(fauxButton); }

4. If we now run the application upon our device, the interactive Sprite should appear
as follows:

Chapter 7

241

5. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

6. Once a touch tap is detected, our onTouchTap method will fire, invoking
navigateToURL and passing in aURLRequest with a URI prefix of mailto: con-
taining the e-mail address we want to open up from our application, along with a
subject parameter, if desired:
protected function onTouchTap(e:TouchEvent):void {
navigateToURL(new URLRequest("mailto:info@fracturedvisionmedia.

com?subject=Email%20From%20Adobe%20AIR%20on%20Android!")); }

Native Interaction: StageWebView and URI Handlers

242

7. When we run the application on our device, a simple touch tap upon our button will
invoke the native e-mail client and populate it with the values that we've passed over
from our application.

How it works...
When a user of our application touch taps the interactive Sprite we've created, they are
taken out of our application and into the default Android e-mail client. This is accomplished
by passing the desired e-mail address through a URLRequest with a URI prefix of mailto:
along with a set of appended parameters through the navigateToURL method, which is very
similar to the way we accomplish the same thing with a desktop or web application.

There's more...
Of course, we could always write an application that handles e-mail internally, just as we
would on a web application. So long as we have access to a server with e-mail capability; this
may be preferred for some applications.

8
Abundant Access:

File System and
Local Database

This chapter will cover the following recipes:

f Opening a local file from device storage

f Saving a file to device storage

f Saving data across sessions through Local Shared Object

f Storing application state automatically by using Flex

f Creating a local SQLite database

f Providing a default application database

f Automating database tasks with FlexORM

Introduction
Many file system attributes are shared between desktop and mobile, yet there are specific
use cases on Android devices for handling application state preservation in case of session
interruption, or to simply preserve data across sessions. This chapter will cover tips for loading
and saving individual files, creating and managing local databases, dealing with local shared
objects, and preserving navigation state using the mobile Flex framework.

Abundant Access: File System and Local Database

244

Opening a local file from device storage
Oftentimes, we may want to read certain files from the application storage or from some other
location on our Android device. In the following example, we will perform this action upon
a simple text file, but this can also be used to read in all sorts of files from image data to
encoded MP3 audio bytes.

How to do it...
Employ a variety of classes within the flash.filesystem package to open local file data
within an application:

1. First, we will need to import the following classes:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.filesystem.File; import
flash.filesystem.FileMode; import
flash.filesystem.FileStream; import
flash.text.TextField;
import flash.text.TextFormat;

2. We will now go about defining a set of constants and variables to be used throughout
the application. Initialize a String constant to retain the file path, which will be used
within the example. We will also require a File and accompanying FileStream
in order to open the text file within our application, along with a TextField and
TextFormat pair to serve as our final output display:
private const PATH:String = "android.txt";
private var file:File;
private var stream:FileStream;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;

Chapter 8

245

traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 20;
traceField.width = stage.stageWidth-40;
traceField.height = stage.stageHeight-40;
addChild(traceField); }

4. To actually open the file within our application, we will first instantiate our
File object and assign it to the current application directory through File.
applicationDirectory. We can then specify a file within that location by passing
in the constant, which declares it through the File.resolvePath() method.

5. The second portion of this process involves instantiating a FileStream, which
will allow us to perform the remainder of our processes. Register an event listener
of type Event.COMPLETE upon the FileStream. Finally, invoke FileStream.
openAsync() passing in the previously defined File as the first parameter followed
by the FileMode. We are going to simply read in the bytes of this file, so use
FileMode.READ:
protected function beginFileOpen():void {
file = new File();
file = File.applicationDirectory;
file = file.resolvePath(path);
stream = new FileStream();
stream.addEventListener(Event.COMPLETE, fileOpened);
stream.openAsync(file, FileMode.READ); }

6. Once the FileStream has completed its work, our fileOpened method will
fire, allowing us to read in the File bytes as plain text (specified by File.
systemCharset) and assign the text to our TextField. Whenever we are finished
working with a FileStream object, we must invoke close() upon it:
protected function fileOpened(e:Event):void {
traceField.text =
stream.readMultiByte(stream.bytesAvailable, File.systemCharset);
stream.close(); }

Abundant Access: File System and Local Database

246

7. When we compile and run our application upon a device, it should appear as follows:

How it works...
We can open a file within our application by creating a File reference and opening that
reference through a FileStream. Once the process is complete, we can then work with
the contents of the file itself, either through direct assignment or through the processing of
the bytes within. In this example, we are reading in the contents of a text file and outputting
that to a basic TextField in our application. The FileStream class has many different
methods and properties, which can be used more or less effectively on different file types and
processes. For example, we use the FileStream.openAsync() method here to actually
open the FileStream. We could have also used use the FileStream.open() method just
as well, but using openAsync() will allow us to employ an event listener so that we can react
to the data that is loaded with confidence. The important thing is to read up on these through
the documentation and use what is best for your particular situation.

There are a number of static properties that we can leverage with the flash.filesystem.
File class for quick access to a variety of storage locations. These are listed as follows:

f File.applicationStorageDirectory: Unique application storage directory
[read/write]

f File.applicationDirectory: Application installation directory [read only]

f File.desktopDirectory: Maps to the SD card root[read/write]

f File.documentsDirectory: Maps to the SD card root[read/write]

f File.userDirectory: Maps to the SD card root[read/write]

For a comprehensive look at the File class, please refer to the Adobe LiveDocs:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
flash/filesystem/File.html

Chapter 8

247

There's more...
While we are opening a text file in this example, any file can be opened and processed in a
similar fashion. However, reading the bytes of a complex file type can be incredibly difficult if
you do not have a good background on how such things work, and for larger files, the process
can be slow on mobile devices due to the amount of processing you may be performing upon
the loaded bytes.

Saving a file to device storage
There are a number of ways in which we can save data from an application to local device
storage. Audio, images, and text data can all be created by the user and saved to either an
application-defined location, or the user can be allowed to choose, which specific location to
store the file upon within an Android device. In this example, we will demonstrate this through
the generation of a simple text file.

How to do it...
We will allow the user to select the location and name of a basic text file that they will
generate within our application and save to their Android device:

1. First, we will need to import the following classes:
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.TouchEvent;
import flash.filesystem.File; import
flash.text.TextField;
import flash.text.TextFormat; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will need to declare a number of objects for use within this application. A String
constant will serve to define our file name. Next, we declare a File object, which
will be used eventually to save our text file to disk. A TextField and TextFormat
pair will relay text messages onto the device display. Finally, declare a Sprite as our
interactive element, along with an additional TextField and TextFormat pair to
serve as a button label:
private const FILE_NAME:String = "airandroid.txt";
private var file:File;
private var traceField:TextField;
private var traceFormat:TextFormat;

Abundant Access: File System and Local Database

248

private var fauxButton:Sprite;
private var buttonField:TextField;
private var buttonFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us.
Be sure to set the TextField.type to input in order to allow the user to type!
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 44;
traceFormat.align = "center";
traceFormat.color = 0x000000;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.type = "input";
traceField.border = true;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.background = true;
traceField.border = true;
traceField.x = 20;
traceField.y = 20;
traceField.width = stage.stageWidth-40;
traceField.height = 250;
addChild(traceField); }

4. Now; we will continue to set up our TextField, apply a TextFormat object, and
construct a Sprite with a simple background fill using the graphics API. The final
step in the construction of our button is to add the TextField to our Sprite and
then add the Sprite to the DisplayList. Here, we create a method to perform all
of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
buttonFormat = new TextFormat();
buttonFormat.bold = true;
buttonFormat.font = "_sans";
buttonFormat.size = 42;
buttonFormat.align = "center";
buttonFormat.color = 0x333333;
buttonField = new TextField();
buttonField.defaultTextFormat = buttonFormat;
buttonField.autoSize = "left";

Chapter 8

249

buttonField.selectable = false;
buttonField.mouseEnabled = false;
buttonField.text = "Save as File";
buttonField.x = 30;
buttonField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(buttonField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, buttonField.width+60,

buttonField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) (fauxButton.width/2);
fauxButton.y = traceField.y+traceField.height+40;
addChild(fauxButton);

}

5. If we run our application, we can see how everything lays out on the display. We can
also, at this point, freely edit the TextField, which serves as input for our text file:

Abundant Access: File System and Local Database

250

6. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap,
which contains the remainder of our logic:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, onTouchTap); }

7. As the user interacts with the application and performs a touch tap upon the button
to save any text input as a file, the following method is fired. Within this function,
we first create a new File object and register an event listener of type Event.
COMPLETE before invoking File.save(). The File.Save() method expects two
arguments, the contents of the file to create, and the name of the file:
protected function onTouchTap(e:TouchEvent):void {
file = new File();
file.addEventListener(Event.COMPLETE, fileSaved);
file.save(traceField.text, FILE_NAME); }

8. Once the user inputs some text and hits the button to save it as a file, Android will
produce an overlay requesting confirmation to perform the save. The user, at this
point, can rename the file or save to an alternate location. By default, the file is saved
to the root of the device SD card. If we want to avoid a save dialog, we can employ a
flash.filesystem.FileStream class to do so:

Chapter 8

251

9. Once the save has completed successfully, we can remove our event listeners, clear
out the input TextField and change the button label TextField to let the user
know everything has saved correctly:
protected function fileSaved(e:Event):void {
fauxButton.removeEventListener(TouchEvent.TOUCH_TAP,
onTouchTap);
file.removeEventListener(Event.COMPLETE, fileSaved);
traceField.text = "";
buttonField.text = "File Saved!"; }

10. The following image illustrates what the user will see upon a successful save:

11. The user can now use a file browser or some other application to open the text file
within the default Android text viewer, as seen in the following screenshot:

Abundant Access: File System and Local Database

252

How it works...
Writing a plain text file to the device storage is fairly straightforward. The process involves
creating a File object and then invoking the save() method upon that object. Using this
method, we pass over the contents of the file to save, along with the desired file name. Note
that while we are passing over simple text in this case, we can also save bytes in the form
of audio files or images. If we require more control over the entire process, we can also use
a FileStream object to set various encodings and write the bytes in a greater variety of
ways. Using a FileStream will also allow us to append a previously created file with new
information, and avoids the save dialog seen in this example.

There's more...
You will need to provide any application which writes local files access to write to the local
file system through the Android manifest file. For more information on this, see Chapter 9,
Manifest Assurance: Security and Android Permissions.

Saving data across sessions through local
shared object

Shared objects have been used for years in browser-based Flash applications. They are
sometimes referred to as "Flash Cookies" or "Super Cookies" and do provide much of the
same functionality as normal browser-based cookies, but are tailored more to the Flash
environment. Normally explicit permissions are needed to save such data using a Flash
application on the web; however, using AIR frees us of many of these restrictions.

How to do it...
Create a local SharedObject to preserve specific application data across sessions. We will
use an interactive Sprite to illustrate this visually:

1. First, we will need to import the following classes:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode; im-
port flash.events.Event;
import flash.events.TouchEvent;
import flash.geom.Point;
import flash.net.SharedObject;
import flash.net.SharedObjectFlushStatus;
import flash.text.TextField;
import flash.text.TextFormat;

Chapter 8

253

import flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. Then we will need to declare a number of objects for use within this application.
Declare a SharedObject, which will be used to preserve session data. The Point
object will be used to write coordinates onto the SharedObject. A Sprite will serve
as the user interaction element and visual reference for this example. Finally, declare
a TextField and TextFormat pair to relay text messages onto the device display:
private var airSO:SharedObject;
private var ballPoint:Point; pri-
vate var ball:Sprite;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us:
protected function setupTextField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "center";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 20;
traceField.width = stage.stageWidth-40;
traceField.height = stage.stageHeight-40;
addChild(traceField); }

4. We will need to set up an interactive object for the user to move around based on
touch. The coordinates of this object will eventually be preserved across application
sessions. Let's create a basic circular Sprite with the graphics API:
protected function setupBall():void {
ball = new Sprite();
ball.graphics.beginFill(0xFFFFFF);
ball.graphics.drawCircle(0, 0, 60);
ball.graphics.endFill();

Abundant Access: File System and Local Database

254

ball.x = stage.stageWidth/2;
ball.y = 260;
addChild(ball); }

5. Before moving too far into this example, we must perform some actions
upon the SharedObject we've declared. First, invoke SharedObject.
getLocal("airandroid") upon our SharedObject instance. This will read in
the SharedObject called airandroid, if it exists. If the SharedObject does not
yet exist, this invocation will create it for us.

6. Now we can check to see whether the ballPoint object exists within the
SharedObjectdata property. If so, this means we have gone through and com-
pleted a session previously and can assign the ballPoint x and y properties to
our ballSprite:
protected function setupSharedObject():void {
airSO = SharedObject.getLocal("airandroid");
if(airSO.data.ballPoint != undefined){
ball.x = airSO.data.ballPoint.x;
ball.y = airSO.data.ballPoint.y;
traceField.text = "Existing Shared Object!";
}else{
traceField.text = "No Shared Object Found!";
} }

7. When we run the application for the first time, we are told that no shared object is
detected and the ball is placed in the default position:

Chapter 8

255

8. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register two event
listeners of type TouchEvent.TOUCH_MOVE and TouchEvent.TOUCH_END upon
the circular Sprite. This will detect any touch events initiated by the user and invoke
certain methods to deal with each:
protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
ball.addEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
ball.addEventListener(TouchEvent.TOUCH_END, onTouchEnd); }

9. As TouchEvent.TOUCH_MOVE events are detected upon our Sprite, the
onTouchMove method fires, allowing us to change the x and y coordinates of the
Sprite to allow the user to drag it around the Stage:
protected function onTouchMove(e:TouchEvent):void {
ball.x = e.stageX;
ball.y = e.stageY; }

10. When our application detects a TouchEvent.TOUCH_END event upon the Sprite
object, we will use this opportunity to wrap the Sprite x and y coordinates in a
Point object, and assign it to our SharedObject. To perform this action, we first
assign the Sprite coordinates to our Point object, which is then assigned to our
SharedObjectdata property.

11. In order to write the SharedObject to the local file system, we must invoke
SharedObject.flush(). We can assign the flush() commands return value to
a String in order to monitor and respond to its status. In this example, we simply
use a switch/case statement to check SharedObjectFlushStatus and write a
message into our TextField, letting the user know what is happening: protect-
ed function onTouchEnd(e:Event):void {
ballPoint = new Point(ball.x, ball.y);
airSO.data.ballPoint = ballPoint;
var flushStatus:String;
flushStatus = airSO.flush();
if(flushStatus != null) {
switch(flushStatus) {
case SharedObjectFlushStatus.FLUSHED:
traceField.text = "Ball location x:" + ball.x +
"/y:" + ball.y + " saved!";
break;
default:
traceField.text = "There was a problem :(";
break;
}
} }

Abundant Access: File System and Local Database

256

12. The user can now interact with the ball by touching and moving it around the display.
When the user stops interacting with the ball, these coordinates are saved to our
local shared object:

If the user exists and at some future time opens the application again,
the local shared object is read in and the ball is repositioned based
upon this preserved data. In order to truly test this upon a device,
a developer will need to kill the application using the application
management features under the Android Settings menu, or employ a
third party "task killer" to ensure the application is completely stopped.

Chapter 8

257

How it works...
A SharedObject in Flash is a lot like the cookie implementation used in web browsers.
It was initially implemented in browser-based Flash to allow for a similar experience when
developers wanted to preserve small pieces of data across user sessions. Luckily, this also
works in AIR and cam be used as simple storage within our Android applications.

To read a SharedObject, simply invoke the getLocal() method upon it, passing in the
name of the SharedObject we wish to retrieve. To save a SharedObject, we assign it with
new data and invoke the flush() method, which saves the new information to disk.

There's more...
We use a local SharedObject in this instance, but could also save such data to a local or
remote database, a text or XML file, or even use a remote SharedObject depending upon
our needs.

Storing application state automatically
by using Flex

While there are many times in which we will need to store specific application parameters in
the case that our session is interrupted by other device functions (such as an incoming phone
call), the mobile Flex framework does provide a good level of session preservation, which can
be handled automatically for us.

How to do it...
Instruct Flex to preserve application state for us automatically by enabling
persistNavigatorState:

1. We will first set up a new mobile Flex project with two views, these we simply call
first and second. Our initial ViewNavigatorApplication file will appear as
such:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/

2009"
xmlns:s="library://ns.adobe.com/flex/spark"

firstView="views.first">
</s:ViewNavigatorApplication>

Abundant Access: File System and Local Database

258

2. Add a button to our first view that will enable us to push the second view from
there:
<s:Button label="Engage Second State"
click="navigator.pushView(views.second);"/>

3. Add a button to our second view allowing us to return to the first view. Now we
can navigate back and forth, building up our ViewNavigator history:
<s:Button label="Engage First State"
click="navigator.pushView(views.first)"/>

4. In order to allow Flex to preserve both our ViewNavigator history and retain
our current place within that history in the event that our session is interrupted,
we will modify the ViewNavigatorApplication to include an attribute called
persistNavigatorState and we will set this to true. Let's also declare a
creationComplete event, which will invoke a function called init(). We will use
this to set up some additional functionality:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/
mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" firstView="views.
first"
persistNavigatorState="true" creationComplete="init()">
</s:ViewNavigatorApplication>

5. Create a Script tag within the MXML and import the FlexEvent class:
<fx:Script>
<![CDATA[
import mx.events.FlexEvent;
]]> </
fx:Script>

6. Now, we must declare our init() method, which will be invoked upon
creationComplete. Within this method, we will register an event listener of type
FlexEvent.NAVIGATOR_STATE_SAVING on our application:
public function init():void {
this.addEventListener(FlexEvent.NAVIGATOR_STATE_SAVING,
stateSaving);

}

7. Whenever our application begins to save the application state upon application exit
through the Flex persistence manager, our stateSaving method will fire, allowing
us to perform additional actions, or even invoke preventDefault() upon the
FlexEvent to allow our own logic to take command before exiting. In development
and testing, we can easily place a breakpoint within this method in order to introspect
our application state.

Chapter 8

259

protected function stateSaving(e:FlexEvent):void {
// Interception Code }

8. When we compile and run our application, it will appear as shown in the next
screenshot. Flipping from our first to second view and back a number of times will
populate the application ViewNavigator history:

9. If our application session is interrupted by a phone call, or some other event, the
navigation history and current view will be preserved. When the application is run
again, the user will be able to continue exactly where the interruption occurred:

How it works...
When using the mobile Flex framework, we have the option of enabling
persistNavigatorState within the application. This will automatically preserve our
ViewNavigator history, as well as remember which view we were interacting with upon
application session interruption. It does this by saving session information to a local Shared
Object on the device. The data which is saved includes information about the application
version number, the full navigation stack, and the current navigation view.

Abundant Access: File System and Local Database

260

Additionally, we can intercept the FlexEvent.NAVIGATOR_STATE_SAVING event when the
application begins to exit and perform our own desired actions in its place, such as saving
critical application data to the file system, a Local Shared Object, or even an SQLite database.

Creating a local SQLite database
Adobe AIR has had support for embedded SQLite databases from the beginning. This is one
of the best ways of storing structured information within our Android applications. SQLite is a
software library that implements a self-contained, serverless, zero-configuration, transactional
SQL database engine. The database files it creates are simply individual .db files, which can
be transported across a network, copied, and deleted just like any other file type.

How to do it...
We will create a mobile application along with a local SQLite database, which can employ
the SQL query language to allow the user access to add new records and run a simple query
based upon these entries:

1. First, import the following classes necessary for this example:
import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.data.SQLResult;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.Event;
import flash.events.TouchEvent;
import flash.filesystem.File; import
flash.text.TextField;
import flash.text.TextFormat; import
flash.ui.Multitouch;
import flash.ui.MultitouchInputMode;

2. We will need to declare a number of objects for use within this application. A
SQLConnection will allow us to interact with a local SQLite database. The first
TextField and TextFormat pair will serve as an input field for the user to type
into. Another TextField and TextFormat pair will relay text messages onto the
device display. Finally, declare a Sprite as our interactive element, along with a final
TextField and TextFormat pair to serve as a button label:
private var sqlConnection:SQLConnection;
private var itemField:TextField;
private var itemFormat:TextFormat;
private var fauxButton:Sprite;

Chapter 8

261

private var buttonField:TextField;
private var buttonFormat:TextFormat;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will continue to set up our TextField, apply a TextFormat, and add it to
the DisplayList. Here, we create a method to perform all of these actions for us.
Be sure to set the TextField.type to input in order to allow the user to type!
protected function setupTextField():void {
itemFormat = new TextFormat();
itemFormat.bold = true;
itemFormat.font = "_sans";
itemFormat.size = 44;
itemFormat.align = "center";
itemFormat.color = 0x000000;
itemField = new TextField();
itemField.defaultTextFormat = itemFormat;
itemField.type = "input";
itemField.border = true;
itemField.multiline = true;
itemField.wordWrap = true;
itemField.background = true;
itemField.border = true;
itemField.x = 20;
itemField.y = 20;
itemField.width = stage.stageWidth-40;
itemField.height = 60;
addChild(itemField); }

4. For our interactive Sprite, we will set up a TextField, apply a TextFormat
object, and construct a Sprite with a simple background fill using the graphics
API. The final step in the construction of our button is to add the TextField to our
Sprite and then add the Sprite to the DisplayList. Here, we create a method
to perform all of these actions for us along with some stylistic enhancements:
protected function setupTextButton():void {
buttonFormat = new TextFormat();
buttonFormat.bold = true;
buttonFormat.font = "_sans";
buttonFormat.size = 42;
buttonFormat.align = "center";
buttonFormat.color = 0x333333;
buttonField = new TextField();
buttonField.defaultTextFormat = buttonFormat;

Abundant Access: File System and Local Database

262

buttonField.autoSize = "left";
buttonField.selectable = false;
buttonField.mouseEnabled = false;
buttonField.text = "Insert to DB";
buttonField.x = 30;
buttonField.y = 25;
fauxButton = new Sprite();
fauxButton.addChild(buttonField);
fauxButton.graphics.beginFill(0xFFFFFF, 1);
fauxButton.graphics.drawRect(0, 0, buttonField.width+60,
buttonField.height+50);
fauxButton.graphics.endFill();
fauxButton.x = (stage.stageWidth/2) - (fauxButton.width/2);
fauxButton.y = itemField.y+itemField.height+40;
addChild(fauxButton); }

5. Our final visual element involves another TextField and TextFormat pair to
display database records upon the device:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = fauxButton.y+fauxButton.height+40;
traceField.width = stage.stageWidth-40;
traceField.height =stage.stageHeight - traceField.y;
addChild(traceField); }

6. We will now assign the Multitouch.inputMode to respond to raw touch events
through the MultitouchInputMode.TOUCH_POINT constant. Register an event
listener of type TouchEvent.TOUCH_TAP upon the Sprite button. This will detect
any touch tap events initiated by the user and invoke a method called onTouchTap
to perform additional actions.

Chapter 8

263

protected function registerListeners():void {
Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
fauxButton.addEventListener(TouchEvent.TOUCH_TAP, insertDBItem); }

7. To create the application database, we must first initialize our SQLConnection ob-
ject and pass a File.db reference into the SQLConnection.open() method to
establish the connection. If the database file does not exist, it will be automatically
created. In order to write SQL syntax to interact with our database, we must initialize
a SQLStatement object and assign our established SQLConnection
to the SQLStatement.sqlConnection property. At this point, we can pass in
a String of SQL statements into the SQLStatement.text property and invoke
SQLConnection.execute() to actually execute the statement. This syntax will
create a table within our database with two columns, name and time. If the table
already exists, the statement will be ignored:
protected function createDB():void {
sqlConnection = new SQLConnection();
sqlConnection.open(File.applicationStorageDirectory.
resolvePath("airandroid.db"));
var sqlStatement:SQLStatement = new SQLStatement();
sqlStatement.sqlConnection = sqlConnection;
sqlStatement.text = "CREATE TABLE IF NOT EXISTS items
(name TEXT, time TEXT)";
sqlStatement.execute();
getDBItems(); }

8. To retrieve existing records from the database, we will again initialize
a SQLStatement and assign the established SQLConnection to the
SQLStatement.sqlConnection property. We will then pass in a String of SQL
statements into the SQLStatement.text property and invoke SQLConnection.
execute() to retrieve all records from the database.

9. To write out the returned data to a TextField, we simply initialize a new Array
to contain the returned records by assigning the data property (which is itself an
Array) of SQLStatement.getResult() to the Array. Now create a for loop to
parse the results, outputting the various properties assigned to each record to our
TextField. This visually exposes the query results on an Android device:
protected function getDBItems():void {
traceField.text = "";
var sqlStatement:SQLStatement = new SQLStatement();
sqlStatement.sqlConnection = sqlConnection;
sqlStatement.text = "SELECT * FROM items";
sqlStatement.execute();
var sqlArray:Array = new Array();

Abundant Access: File System and Local Database

264

var sqlResult:SQLResult = sqlStatement.getResult();
if(sqlResult.data != null){
sqlArray = sqlResult.data;
}
var itemCount:int = sqlArray.length;
for(var i:int=0; i<itemCount; i++){
traceField.appendText("NAME: " + sqlArray[i].name + "\n");
traceField.appendText("DATE: " + sqlArray[i].time + "\n");
traceField.appendText("\n");
}

}

10. The final method we need to write will allow the user to insert records to the
database. A lot of this is very similar to how we have established and executed
SQLStatement objects in the past two methods. An insertion, however, can be a bit
more complex and structured, so we are making use of the inbuilt SQLStatement.
parametersArray in assigning values to our record. For the name value, we
read from the input TextField value provided by the user. In order to generate a
timestamp to populate the value of time, we instantiate a new Date object and
invoke toUTCString(). Following the execution of this fully-formed statement, we
invoke getDBItems() once again to return the new database results, letting the
user see immediately that the record has been inserted correctly:
protected function insertDBItem(e:TouchEvent):void {

var date:Date = new Date();
var sqlStatement:SQLStatement = new SQLStatement();
sqlStatement.sqlConnection = sqlConnection;
sqlStatement.text = "INSERT into items values(:name, :time)";
sqlStatement.parameters[":name"] = itemField.text;
sqlStatement.parameters[":time"] = date.toUTCString();
sqlStatement.execute();
getDBItems();
itemField.text = "";

}

11. Running the application on our Android device allows us to input a name using the
native virtual keyboard touch tap the Insert to DB button, which will create a new
entry in our database consisting of the input text and current timestamp.

Chapter 8

265

12. Each time we enter a new name into the application, the new entry is inserted and a
query is made to trace all entries out into the TextField, along with the timestamp
from when they were inserted:

Abundant Access: File System and Local Database

266

How it works...
SQLite is a local, self-contained database, which can be used within AIR for Android
applications for a variety of tasks, ranging from simple to complex. In order to use this
functionality, we must establish a SQLConnection to a local .db file on the device. Once this
connection is established, we can use a set of SQLStatements to perform table creation and
management tasks, selection, insertion, and deletion queries through standard SQL syntax.
In this example, a user can insert records and perform a general selection query upon a
database file within the application storage directory.

In this demonstration, we make use of flash.data.SQLStatement to perform both
INSERT and SELECT operations. For further exploration of this, and related classes, we refer
you to the Adobe LiveDocs:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
flash/data/SQLStatement.html

Providing a default application database
Allowing the user to add and remove items from an application database, directly or indirectly,
can be very useful in all sorts of scenarios. Perhaps though, we want to start the user out with
a standard data set, or maybe provide some default settings for the user to manipulate down
the road? These scenarios call for the ability of the application to provide itself with a default
database. In this recipe, we will demonstrate how to handle this intelligently through the
file system.

Getting ready...
In this recipe, we will be bundling an already established SQLite database file within our
application directory. If you do not have access to a SQLite database file already, you can
either use some of the other recipes in this chapter to generate one, else use any one of a
variety of other freely available mechanisms for creating these portable little database files.

How to do it...
We will package a default SQLite database along with our application, check to see whether a
user defined database exists, and provide the user with our default if need be:

1. First, import the following classes necessary for this example:
import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.display.Sprite;

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/SQLStatement.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/SQLStatement.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/SQLStatement.html

Chapter 8

267

import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.filesystem.File; import
flash.text.TextField;
import flash.text.TextFormat;

2. We will need to declare a few objects for use within this application. A
SQLConnection will allow us to interact with a local SQLite database and a
TextField and TextFormat pair will relay text messages onto the device display:
private var sqlConnection:SQLConnection;
private var traceField:TextField;
private var traceFormat:TextFormat;

3. Now, we will set up our TextField, apply a TextFormat, and add it to the
DisplayList along with some stylistic enhancements. Here, we create a method to
perform all of these actions for us:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 20;
traceField.width = stage.stageWidth-40;
traceField.height = stage.stageHeight-40;
addChild(traceField); }

4. This method will fire as soon as the TextField has been established, as we will
be outputting messages to this visual element as each step in the copy process is
completed.

Abundant Access: File System and Local Database

268

5. The first thing to do is establish whether or not an application database exists, as
this will determine whether or not we need to copy the default database over. To do
this, we will instantiate a new File object and reference a file called products.db
within the application installation directory. If this file does not exist, we must create
another File object, referencing the file name and location we wish to copy the file
to.

6. Once this is established, use the File.copyTo() method upon the source File,
passing in the destination File. If all goes well, you should now have an exact copy
of the default database within the application storage directory:
protected function checkDefaultDB():void {
traceField.appendText("Checking if DB exists...\n\n");
var dbFile:File = File.applicationStorageDirectory;
dbFile = dbFile.resolvePath("products.db");
if(dbFile.exists){
traceField.appendText("Application DB Okay!\n\n");
}else{
traceField.appendText("Application DB Missing!\n\n");
traceField.appendText("Copying Default DB...\n\n");
var sourceFile:File = File.applicationDirectory;
sourceFile = sourceFile.resolvePath("default.db");
var destination:File = File.applicationStorageDirectory;
destination = destination.resolvePath("products.db");
sourceFile.copyTo(destination, true);
traceField.appendText("Database Copy Completed!\n\n");
}
connectDB(); }

7. To open the application database, we must first initialize our SQLConnection
object and pass a File.db reference into the SQLConnection.open() method
to establish the connection. Now that we have a connection to the newly copied
database, we invoke the getDBItems() method to retrieve the records for display:
protected function connectDB():void {
sqlConnection = new SQLConnection();
sqlConnection.open(File.applicationStorageDirectory.
resolvePath("products.db"));
getDBItems(); }

8. To retrieve all of the records from the copied database, we will initialize
a SQLStatement and assign the established SQLConnection to the
SQLStatement.sqlConnection property. We will then pass in a String of SQL
statements into the SQLStatement.text property and invoke SQLConnection.
execute() to retrieve all records from the database.

Chapter 8

269

9. To write out the returned data to a TextField, we simply initialize a new Array
to contain the returned records by assigning the data property (which is itself an
Array) of SQLStatement.getResult() to the Array. Now create a for loop to
parse the results, outputting the various properties assigned to each record to our
TextField. This visually exposes the query results on an Android device:
protected function getDBItems():void {
traceField.appendText("Gathering items from application DB...\
n\n");
var sqlStatement:SQLStatement = new SQLStatement();
sqlStatement.sqlConnection = sqlConnection;
sqlStatement.text = "SELECT * FROM Products";
sqlStatement.execute();
var sqlArray:Array = sqlStatement.getResult().data;
var itemCount:int = sqlArray.length;
traceField.appendText("Database Contains:\n");
for(var i:int=0; i<itemCount; i++){
traceField.appendText("PRODUCT: " + sqlArray[i].ProductName +
"\n");
} }

10. The first time the application is run, a database is not found within the application
storage directory. The default database is then copied into the expected position and
then records are retrieved and displayed for the user to view:

Abundant Access: File System and Local Database

270

11. If the user runs this application subsequent times, the database is now in the
expected location and the application simply performs a query and displays the
records without any need to copy files from one location to another:

How it works...
In this recipe, we use a combination of File and SQLConnection/SQLStatement objects
to determine whether or not a database exists, followed by either a simple query and record
display, or a more involved file copy from the application install directory into the application
storage directory using File.copyTo().This method will copy a file reference, which is
passed in as an initial argument into the specified location. There are many other similar
methods for file manipulation. We will list some of these as follows:

f File.copyTo(): Copies the file or directory to a new location

f File.moveTo(): Moves the file or directory to a new location

f File.deleteFile()XE "default application database:File.deleteFile() method" :
Deletes the specified file

f File.createDirectory(): Creates a directory as well as any needed parent
directories

f File.deleteDirectory(): Deletes the specified directory

For a comprehensive look at the File class, please refer to the Adobe LiveDocs:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
flash/filesystem/File.html

Chapter 8

271

The database file, being just a regular file, can easily be manipulated through ActionScript just
like any other file. It is important though to have a fair understanding of which directories the
application does or does not have permission to write to, in such a case. For instance,
File.applicationDirectory is read only. We cannot write files to this directory.

If you require a tool to create or manage SQLite database files, you may be interested in
a software project such as SQLite Database browser, freely downloaded from http://
sqlitebrowser.sourceforge.net/.

Automating database tasks with FlexORM
While we certainly do have full control over application databases through supported SQLite
syntax, there are libraries of code to make things a bit easier. One such library is called
FlexORM, and as the name suggests, it can only be used within a Flex project so pure
ActionScript is out.

FlexORM is an Object Relational Mapping framework, which avoids having the developer write
any database code or SQL for a project. Objects are made to be persistent, and any database
transitions are handled by the framework itself, behind the scenes.

Getting ready...
When preparing this application example, you will want to take some additional steps to get
ready as there is some setup involved in regard to acquiring the FlexORM library and setting it
up within a project:

1. First, we must open a web browser and go to http://flexorm.riaforge.org/
the project page for FlexORM.

2. Download the files either through the ZIP package at the bottom of the screen, or
through the SVN repository.

3. Once the files are on your system, we will want to navigate to trunk | flexorm | src
and grab everything under src. This is the package we must import into Flash Builder
in order to use FlexORM.

4. Create a new Mobile Flex Project and drag the files from src under the Flex project src
folder. We can now begin to use FlexORM within our application.

http://sqlitebrowser.sourceforge.net/
http://sqlitebrowser.sourceforge.net/

Abundant Access: File System and Local Database

272

5. Your project will look very similar to the one shown in the following screenshot:

How to do it...
Using the FlexORM framework, we will define a persistent object structure and manage the
creation and deletion of object entries through a simple Flex mobile project:

1. The first thing we will do is create a class within a vo [Value Object] package called
Product. This will serve as the declaration of our bindable object and is a reflection
of what we will be inserting and reading from our database. Using metadata specific
to FlexORM, we declare a table called Products with an ID column named id and
an additional column called ProductName. These objects act as interfaces to our
actual table structure and allow us to manage SQL commands through a familiar
object-oriented paradigm:
package vo {
[Bindable]
[Table(name="Products")]
public class Product {
[Id]public var id:int;
[Column]public var ProductName:String;

}
}

Chapter 8

273

2. The next step will be to write a ViewNavigatorApplication MXML file to serve
as our main application file. We can include both a firstView attribute pointing
to a specific View, and an applicationComplete attribute, which will invoke an
initialization function for us:
<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx=
"http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.FlexORMHomeView"
applicationComplete="init()">
</s:ViewNavigatorApplication>

3. Now we will declare a Script block and perform a set of imports, which are
necessary for this portion of our application. All we need from FlexORM is the
EntityManager. This is what is used to read from and write to our database.
We must also import our vo object class for use with FlexORM, along with
ArrayCollection to hold any records that are produced:
<fx:Script>
<![CDATA[
import nz.co.codec.flexorm.EntityManager;
import vo.Product;
import mx.collections.ArrayCollection;
]]>
</fx:Script>

4. Here, we will instantiate both the EntityManager and the ArrayCollection for
use in the application. Invoking EntityManager.getInstance() will allow us to
begin using FlexORM:
protected var entityManager:EntityManager =
EntityManager.getInstance();
[Bindable] public var productArrayCollection:ArrayCollection;

5. We must define the initialization method referred to in our
ViewNavigatorApplication tag. Within this method, use the File class to
refer to the database file to create within the application storage directory. Create
a new SQLConnection and open the previously defined File reference with it.
The SQLConnection can now be bound to the sqlConnection property of our
EntityManager, allowing us to interact with the database using FlexORM:
protected function init():void {
var databaseFile:File =
File.applicationStorageDirectory.resolvePath("products.db");
var connection:SQLConnection = new SQLConnection();
connection.open(databaseFile);
entityManager.sqlConnection = connection;
loadProducts(); }

Abundant Access: File System and Local Database

274

6. This method can be invoked whenever we want to refresh our collection from the
database. Simply invoking findAll() upon the EntityManager and passing in the
class name we want to retrieve from will return all the records from the table bound
to that class:
protected function loadProducts():void {
productArrayCollection = entityManager.findAll(Product);
productArrayCollection.refresh(); }

7. We will need to set up methods to insert and delete records from the application
database. To save a record, we create an object based upon the class corresponding
to the table we wish to save to. Now, we will assign properties to this class based up-
on the fields we are writing values to for this insertion. Invoking EntityManager.
save() while passing in this object will instruct FlexORM to insert a new record into
the database:
public function saveProduct(e:String):void {
var ProductEntry:Product = new Product();
ProductEntry.ProductName = e;
entityManager.save(ProductEntry);
loadProducts(); }

8. Deleting a record from the database is just as simple. Invoke EntityManager.
remove() while passing along the object within our collection, which corresponds to
the specific record to remove from our database will ensure that FlexORM deletes
the true record for us:
public function deleteProduct(index:int):void {
entityManager.remove(productArrayCollection.getItemAt(index));
loadProducts(); }

9. Now to construct our application view. Create a new View MXML file with whatever
properties suits your specific project view. In this case, we are assigning it with a
VerticalLayout with some generous padding:
<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark" title="Product
Catalog">
<s:layout>
<s:VerticalLayout gap="20" paddingBottom="20" paddingLeft="20"
paddingRight="20" paddingTop="20"/>
</s:layout>
</s:View>

Chapter 8

275

10. The controls in our application which a user is able to interact with will consist of a
TextInput to type in, a Button to submit from, and a List to display all of our
database records. We will invoke a function called addProduct() on button click,
and another function called removeProduct(), which is tied to our list change
event. The final modification will be to bind our ListdataProvider to the defined
productArrayCollection within our main MXML file.

We are using parentApplication as a convenience in this
example. Depending upon the structure of your application, you
may not want to do this, as it creates an oftentimes unwanted
relationship between the application and its various modules.

<s:TextInput id="entry" width="100%"/>
<s:Button click="addProduct(event)" width="100%"
label="Insert New Product"/>
<s:List id="productList" change="removeProduct(event)"
dataProvider="{this.parentApplication.productArrayCollection}"
labelField="ProductName" width="100%"
height="100%"></s:List>

11. Create a Script block and import the IndexChangeEvent class needed for our
List change event to properly fire:
<fx:Script>
<![CDATA[
import spark.events.IndexChangeEvent;
]]>
</fx:Script>

12. Now all that is left to do is to create some local functions to pass along information to
our main MXML file and perform local cleanup duty. First we create the method for
our Button click event, which passes data along to the saveProduct() method
we created previously. We will pass along the entered text and then clear out our
TextInput to allow for further records to be defined:
protected function addProduct(e:MouseEvent):void {
this.parentApplication.saveProduct(entry.text);
entry.text = ""; }

13. Finally, write the function to handle removal of records based upon change events
generated from the List. Any index change detected upon the List will pass index
data along to the deleteProduct() method we created previously. We then set our
ListselectedIndex to -1, signifying that no items are selected:
protected function removeProduct(e:IndexChangeEvent):void {
this.parentApplication.deleteProduct(e.newIndex);

Abundant Access: File System and Local Database

276

productList.selectedIndex = -1;
}

14. When the user runs our application upon a device, they are able to type in data
through the native Android virtual keyboard. Tapping the Insert New Product button
will add their information to the database:

15. The user will be able to add multiple records to the database and they will
immediately appear within the List control. Tapping an item within the List will
cause a change event to fire and consequently remove the corresponding record from
the application database:

Chapter 8

277

How it works...
FlexORM takes some initial setup to get the framework functioning in a way that is beneficial
for us when developing an application, but once everything is in place, it can be a huge time
saver with less complex databases. Whereas SQL is nothing at all such as ActionScript in
syntax or usage. FlexORM provides an interface through which we can manage database
records in an object-oriented manner through the use of the same language we are using for
the rest of our application, ActionScript!

There is more...
FlexORM is great for simple transactions, but does not fully support everything that SQLite
offers. For example, we cannot create and manage an encrypted database using FlexORM.
For such specific activities, it is best to write your queries by hand.

9
Manifest Assurance:
Security and Android

Permissions

This chapter will cover the following recipes:

f Setting application permissions with the Android Manifest file

f Preventing the device screen from dimming

f Establishing Android Custom URI Schemes

f Anticipating Android Compatibility Filtering

f Instructing an Application to be installed to Device SDCard

f Encrypting a Local SQLite Database

Introduction
Android has in place a very specific permissions and security system based around manifest
file declarations which allow or restrict applications from accessing various device capabilities.
This chapter will detail how to enable your Flash Platform applications to correctly identify the
permissions needed to take advantage of the Android Market filtering, apply local application
database encryption, and other useful tidbits!

Manifest Assurance: Security and Android Permissions

280

Setting application permissions with the
Android Manifest file

When users choose to install an application on Android, they are always presented with a
warning about which permissions the application will have within their particular system.
From Internet access to full Geolocation, Camera, or External Storage permissions; the user
is explicitly told what rights the application will have on their system. If it seems as though the
application is asking for more permissions than necessary, the user will usually refuse the
install and look for another application to perform the task they need. It is very important to
only require the permissions your application truly needs, or else users might be suspicious of
you and the applications you make available.

How to do it...
There are three ways in which we can modify the Android Manifest file to set application
permissions for compiling our application with Adobe AIR.

Using Flash Professional:
Within an AIR for Android project, open the Properties panel and click the little wrench icon
next to Player selection:

The AIR for Android Settings dialog window will appear. You will be presented with a list
of permissions to either enable or disable for your application. Check only the ones your
application will need and click OK when finished.

Chapter 9

281

Using Flash Builder:
1. When first setting up your AIR for Android project in Flash Builder, define everything

required in the Project Location area, and click Next.

2. You are now in the Mobile Settings area of the New Flex Mobile Project dialog.
Click the Permissions tab, making sure that Google Android is the selected platform.
You will be presented with a list of permissions to either enable or disable for your
application. Check only the ones your application will need and continue along with
your project setup:

Manifest Assurance: Security and Android Permissions

282

3. To modify any of these permissions after you've begun developing the application,
simply open the AIR descriptor file and edit it as is detailed in the following sections.

Using a simple text editor:
1. Find the AIR Descriptor File in your project. It is normally named something like

{MyProject}-app.xml as it resides at the project root.

2. Browse the file for a node named <android> within this node will be another called
<manifestAdditions>which holds a child node called <manifest>. This section
of the document contains everything we need to set permissions for our Android
application.

3. All we need to do is either comment out or remove those particular permissions
that our application does not require. For instance, this application needs Internet,
External Storage, and Camera access. Every other permission node is commented
out using the standard XML comment syntax of <!-- {comment here} -->:

<uses-permission name="android.permission.INTERNET"/>
<uses-permission name="android.permission.WRITE_EXTERNAL_

STORAGE"/>
<!--<uses-permission name="android.permission.READ_PHONE_

STATE"/>-->
<!--<uses-permission name="android.permission.ACCESS_FINE_

LOCATION"/>-->
<!--<uses-permission name="android.permission.DISABLE_

KEYGUARD"/>-->
<!--<uses-permission name="android.permission.WAKE_LOCK"/>--

>
<uses-permission name="android.permission.CAMERA"/>
<!--<uses-permission name="android.permission.RECORD_

AUDIO"/>-->
<!--<uses-permission name="android.permission.ACCESS_

NETWORK_STATE"/>-->
<!--<uses-permission name="android.permission.ACCESS_WIFI_

STATE"/>-->

How it works...
The permissions you define within the AIR descriptor file will be used to create an Android
Manifest file to be packaged within the .apk produced by the tool used to compile the project.
These permissions restrict and enable the application, once installed on a user's device, and
also alert the user as to which activities and resources the application will be given access
to prior to installation. It is very important to provide only the permissions necessary for an
application to perform the expected tasks once installed upon a device.

Chapter 9

283

The following is a list of the possible permissions for the Android manifest document:

f ACCESS_COARSE_LOCATION: Allows the Geoloctaion class to access WIFI and
triangulated cell tower location data.

f ACCESS_FINE_LOCATION: Allows the Geolocation class to make use of the
device GPS sensor.

f ACCESS_NETWORK_STATE: Allows an application to access the network state
through the NetworkInfo class.

f ACCESS_WIFI_STATE: Allows and application to access the WIFI state through the
NetworkInfo class.

f CAMERA: Allows an application to access the device camera.

f INTERNET: Allows the application to access the Internet and perform data transfer
requests.

f READ_PHONE_STATE: Allows the application to mute audio when a phone call is in
effect.

f RECORD_AUDIO: Allows microphone access to the application to record or monitor
audio data.

f WAKE_LOCK: Allows the application to prevent the device from going to sleep using
the SystemIdleMode class. (Must be used alongside DISABLE_KEYGUARD.)

f DISABLE_KEYGUARD: Allows the application to prevent the device from going to
sleep using the SystemIdleMode class. (Must be used alongside WAKE_LOCK.)

f WRITE_EXTERNAL_STORAGE: Allows the application to write to external memory.
This memory is normally stored as a device SD card.

Preventing the device screen from dimming
The Android operating system will dim, and eventually turn off the device screen after a certain
amount of time has passed. It does this to preserve battery life, as the display is the primary
power drain on a device. For most applications, if a user is interacting with the interface, that
interaction will prevent the screen from dimming. However, if your application does not involve
user interaction for lengthy periods of time, yet the user is looking at or reading something upon
the display, it would make sense to prevent the screen from dimming.

Manifest Assurance: Security and Android Permissions

284

How to do it...
There are two settings in the AIR descriptor file that can be changed to ensure the screen
does not dim. We will also modify properties of our application to complete this recipe:

1. Find the AIR descriptor file in your project. It is normally named something like
{MyProject}-app.xml as it resides at the project root.

2. Browse the file for a node named <android> within this node will be another called
<manifestAdditions>, which holds a child node called <manifest>. This
section of the document contains everything we need to set permissions for our
Android application.

3. All we need to do is make sure the following two nodes are present within this section
of the descriptor file. Note that enabling both of these permissions is required to
allow application control over the system through the SystemIdleMode class.
Uncomment them if necessary.
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.DISABLE_
KEYGUARD" />

4. Within our application, we will import the following classes:
import flash.desktop.NativeApplication;
import flash.desktop.SystemIdleMode;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.text.TextField;
import flash.text.TextFormat;

5. Declare a TextField and TextFormat pair to trace out messages to the user:
private var traceField:TextField;
private var traceFormat:TextFormat;

6. Now, we will set the system idle mode for our application by assigning the
SystemIdleMode.KEEP_AWAKE constant to the NativeApplication.
nativeApplication.systemIdleMode property:
protected function setIdleMode():void {
NativeApplication.nativeApplication.systemIdleMode =

SystemIdleMode.KEEP_AWAKE; }

Chapter 9

285

7. We will, at this point, continue to set up our TextField, apply a TextFormat, and
add it to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 20
traceField.width = stage.stageWidth-40;
traceField.height = stage.stageHeight - traceField.y;
addChild(traceField); }

8. Here, we simply output the currently assigned system idle mode String to our
TextField, letting the user know that the device will not be going to sleep:
protected function checkIdleMode():void {
traceField.text = "System Idle Mode: " + NativeApplication.

nativeApplication.systemIdleMode; }

Manifest Assurance: Security and Android Permissions

286

9. When the application is run on a device, the System Idle Mode will be set and the
results traced out to our display. The user can leave the device unattended for as
long as necessary and the screen will not dim or lock. In the following example, this
application was allowed to run for five minutes without user intervention:

How it works...
There are two things that must be done in order to get this to work correctly and both are
absolutely necessary. First, we have to be sure the application has correct permissions
through the Android Manifest file. Allowing the application permissions for WAKE_LOCK and
DISABLE_KEYGUARD within the AIR descriptor file will do this for us. The second part involves
setting the NativeApplication.systemIdleMode property to keepAwake. This is best
accomplished through use of the SystemIdleMode.KEEP_AWAKE constant. Ensuring that
these conditions are met will enable the application to keep the device display lit and prevent
Android from locking the device after it has been idle.

See also...
In this recipe, we have edited the AIR descriptor file through a basic text editor. For other ways
of setting these permissions in a variety of environments, refer to the previous recipe.

Establishing Android custom URI schemes
Android exposes a number of useful URI protocols to AIR for standard operations such as
mapping, sms, and telephone. Defining a custom URI for our application allows it to be
invoked from anywhere on the system: through the web browser, email, or even a native
application. Custom URIs provides an alternative method of invoking an AIR application.

Chapter 9

287

How to do it...
We will create an application that can be opened from the device web browser using a custom
URI. We define the URI intent settings through modification of the AIR descriptor file:

1. Find the AIR descriptor file in your project. It is normally named something like
{MyProject}-app.xml as it resides at the project root.

2. Browse the file for a node named <android>; within this node will be another called
<manifestAdditions>, which holds a child node called <manifest>. This section
of the document contains everything we need to set permissions for our Android
application.

3. We will now add the highlighted <intent-filter> node to our descriptor file. The
portion of the intent which defines our URI is <data android:scheme="fvm"/>.
This will enable our application to use the fvm:// URI. Note that "fvm" is being
used for this example; when authoring an application based on such an example, we
are free to change this value to whatever is suited to a particular application:
<application android:enabled="true">
<activity android:excludeFromRecents="false"> <intent-
filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.BROWSABLE"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:scheme="fvm"/>
</intent-filter>
</activity>
</application>

4. Within our application, we will import the following classes:
import flash.desktop.NativeApplication;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.InvokeEvent;
import flash.text.TextField;
import flash.text.TextFormat;

5. Declare a TextField and TextFormat pair to trace out messages to the user:
private var traceField:TextField;
private var traceFormat:TextFormat;

Manifest Assurance: Security and Android Permissions

288

6. We will, at this point, continue to set up our TextField, apply a TextFormat, and
add it to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 40;
traceField.width = stage.stageWidth-40;
traceField.height =stage.stageHeight - traceField.y;
addChild(traceField); }

7. Register an event listener of type InvokeEvent.INVOKE upon the NativeApplication.
This will detect any application invocation events initiated by the user employing our
defined URI:
protected function registerListeners():void {
NativeApplication.nativeApplication.

addEventListener(InvokeEvent.INVOKE, onInvoke); }

8. When the application is opened from our URI, the following method will be
processed. We can gather a certain amount of information from our invoke event,
such as the reason property. This property will have a value of either "login" or
"standard". If the application is launched automatically at system login, the value
will read "login". In the case of URI invocation, it will read "standard". We can
also access the currentDirectory. The app may have been invoked from within
the file system, or access any arguments passed through the URI. Note that in
the case of a URI invocation from a web browser, as we have here, the arguments
property will only contain the full URL from the selected link. This is a way in which we
can pass in data to our application at launch.
protected function onInvoke(e:InvokeEvent):void {
traceField.text = "";

Chapter 9

289

traceField.text = "Invoke Reason: " + e.reason + "\n";
traceField.appendText("Directory URL: " + e.currentDirectory.
url + "\n\n");
var args:Array = e.arguments;
if (arguments.length > 0) {
traceField.appendText("Message: " + args.toString() + "\n");
} }

9. For this example, let us set up a simple web page which includes a link with our
defined fvm:// URI:O
pen AIR Android App!. If a user has the application already installed and
clicks this link, the application should open as our URI intent is registered on the
device:

10. Once the user clicks upon the link which uses our defined URI, the AIR application will
open and detect an InvokeEvent, which displays the following information upon the
device display. We can see here that the directory URL is empty, as the application
was not invoked from within the device file system:

Manifest Assurance: Security and Android Permissions

290

How it works...
When we define the URI intent within our application descriptor file, this gets compiled into
the Android manifest file along with our application. Installing this application on a device
informs the operating system of the URI intent we have defined. This makes the OS aware of
that specific URI and instructs it to open the application when that URI is encountered. We can
place the URI in a number of different locations, including native Android applications upon
the system. This allows native applications to open AIR for Android applications. In the earlier
example, we embed the URI within HTML and use the Android web browser to open
our application.

See also...

For more on working with URI protocols in AIR for Android, have a look through Chapter 7,
Native Interaction: StageWebView and URI Handlers.

Anticipating Android Compatibility Filtering
Depending upon which APIs is used in a particular application, some Android devices may
not be able to provide access to expected sensors or hardware hooks. If a user downloads an
application which does not work as expected, that user will become frustrated and will most
likely provide us with a poor rating and perhaps even a nasty comment. Luckily, there is a bit
of filtering that the Android Market can perform, on our behalf, to ensure that only devices
which support our application will be served the option to download and install it.

How to do it...
Modify the Android Manifest file to specify which particular features are required by our
application:

1. Find the AIR descriptor file in your project. It is normally named something like
{MyProject}-app.xml as it resides at the project root.

2. Browse the file for a node named <android>; within this node will be another called
<manifestAdditions>, which holds a child node called <manifest>. This section
of the document will contain everything we need to declare compatibility for our
Android application.

3. We will add certain tags based upon our needs. See the following information layout
to determine what you should add within the manifest node for a particular feature
dependency. Setting android:required="false" makes a feature optional.

Chapter 9

291

When using features of the Android camera:
<uses-feature android:name="android.hardware.camera"
android:required="false"/>

<uses-feature android:name="android.hardware.camera.autofocus"
android:required="false"/>

<uses-feature android:name="android.hardware.camera.flash"
android:required="false"/>

When using features of the Android microphone:
<uses-feature android:name="android.hardware.microphone"
android:required="false"/>

When using the Geolocation Sensor:
<uses-feature android:name="android.hardware.location"
android:required="false"/>
<uses-feature android:name="android.hardware.location.network"
android:required="false"/>
<uses-feature android:name="android.hardware.location.gps"
android:required="false"/>

When using the Accelerometer Sensor:
<uses-feature android:name="android.hardware.accelerometer"
android:required="false"/>

How it works...
By specifying certain required or optional features of the camera and microphone, we can
ensure that only users whose devices meet these specific requirements will be presented
with the option to download and install our application. We make these specifications known
through the modification of the Android manifest file through additions to our AIR description
file as demonstrated in this recipe. Compiling our application with these modifications will
ensure that these specifications are encoded along with our .APK and exposed through the
Android Market once our application is published.

See also...
For more on working with the camera and microphone in AIR for Android, have a look at
Chapter 4, Visual and Audio Input: Camera and Microphone Access.

Manifest Assurance: Security and Android Permissions

292

Instructing an application to be installed
to Device SDCard

By slightly modifying the Android manifest instructions within our AIR application descriptor
file, we can inform the device operating system that our application should, if possible, be
installed on the external SD card rather than internal storage. This will help reserve internal
device storage for the operating system and associated files.

How to do it...
Modify the Android Manifest file to determine installation location options:

1. Find the AIR Descriptor File in your project. It is normally named something like
{MyProject}-app.xmland resides at the project root.

2. Browse the file for a node named <android>; within this node will be another called
<manifestAdditions>, which holds a child node called <manifest>.

3. We will add the installLocation attribute to our <manifest> node. To set the
application to install at the discretion of Android:

<manifest android:installLocation="auto"/>

4. To set the application to prefer the device SD card:

<manifest android:installLocation="preferExternal"/>

There is no guarantee that setting
installLocation="preferExternal will actually install the
application to the device SD card.

The user can also move the application, if allowed, via the following steps:

1. First, navigate to the application management screen on the device where our
AIR application is installed. The location of this screen on most Android devices is
Settings | Applications | Manage Applications. Now choose an AIR application you
have created from this screen.

2. To move the application to the device SD card, simply click the button labeled Move
to SD card:

Chapter 9

293

How it works...
It is a good idea to allow the user some degree of choice as to where they can install their
application. On Android, there are only two options: the device storage area or external SD
card. Taking into consideration that most devices have a lot more storage on the SD card than
internal; it is probably best to prefer the SD card by setting android:installLocation=
"preferExternal" on our manifest node within the AIR descriptor file. While there is no
guarantee that Android will use the external SD card when installing our application, this will
at least let the system know that location is preferred. Whether or not Android is able to install
applications to external storage has mostly to do with the operating system version. Generally,
if the device can install and run the AIR for Android runtime, it should have the capability to
do this.

As we've seen earlier, the user can always move the application from internal storage to
external storage and back again if they wish. Also of note: the application storage directory,
local shared objects, and any temporary files are still written to internal storage even when
the application is installed on the device SD card. If we intend to save lots of data with our
application, then we will use File.documents directory or File.user directory to store
this data onto the external SD card.

See also...

For more on working with the local file system, have a look through Chapter 8, Abundant
Access: File System and Local Database.

Manifest Assurance: Security and Android Permissions

294

Encrypting a local SQLite database
Normally, a local SQLite database does not require any security or encryption. However, if our
application contains sensitive data stored within the local application database files, we would
want to ensure that an intruder or thief cannot access this information. Thankfully, we can
encrypt the databases available to us on AIR for Android to ensure that even if a user's device
is lost or stolen, their private information remains secure.

Getting ready...
In order to properly encrypt a database file, we will need to use an encryption library. In this
example, we will use the as3crypto package available at http://code.google.com/p/
as3crypto/. Download the .SWC to follow along with this example.

We need to make the .SWC available within our project. Depending upon the tool being used,
the procedure to do this does vary.

Instructions to include a .SWC package into a Flash Builder
project

1. Within your project, select the File menu and choose Properties.

2. In the left column, click ActionScript Build Path and choose the Library path tab.
Locate the button labeled Add SWC… within this screen and click it.

3. A dialog window will appear. Choose the Browse to SWC option, locate the .SWC
containing our encryption library, and hit OK.

4. The encryption library will now appear within the Build path libraries section of
this screen. Verify that this is correct and exit out of the Properties window. The
encryption library is now ready to be used within our mobile Android project.

http://code.google.com/p/as3crypto/

Chapter 9

295

Instructions to include a .SWC package into a Flash Professional
project

1. Within your Flash project, navigate to the Properties panel and click the little wrench
icon next to the Script selection box:

2. This will open the Advanced ActionScript 3.0 Settings dialog window. Choose the
Library path tab. Locate the Browse to SWC file icon within this screen and click it. It
appears as a white and red box and is the only icon which is not grayscale upon this
screen:

Manifest Assurance: Security and Android Permissions

296

3. A file browse dialog window will appear. Locate the .SWC containing our encryption
library, and hit OK.

4. The encryption library will now appear within the Library path section of this screen.
Verify that this is correct and exit out of the Advanced ActionScript 3.0 Settings
window. The encryption library is now ready to be used within our mobile Android
project:

How to do it...
In order to encrypt an application database, we will declare a password and encrypt it using
an external encryption library. This will be used when creating and opening our database
connection:

1. Within our application, we will import the following classes. Be sure to import the MD5
class or an equivalent for proper key encryption:
import com.hurlant.crypto.hash.MD5;
import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.data.SQLStatement;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.SQLEvent; import
flash.filesystem.File; import
flash.text.TextField;

Chapter 9

297

import flash.text.TextFormat;
import flash.utils.ByteArray;

2. We must now declare a number of objects for use within this application. A String
constant will hold our plain text password for later encryption. Normally, this would
be supplied by the user and is hard-coded here for simplicity. We will need a
SQLConnection to create or open our database file along with a set of ByteArray
objects and a MD5 object to perform the actual encryption. Finally, we declare a
TextField and TextFormat pair to trace out messages to the user:
private const pass:String = "AIR@ndr0idIsKo0l";
private var sqlConnection:SQLConnection;
private var encryptionPass:ByteArray;
private var encryptionKey:ByteArray;
private var md5:MD5;
private var traceField:TextField; pri-
vate var traceFormat:TextFormat;

3. We will, at this point, continue to set up our TextField, apply a TextFormat, and
add it to the DisplayList for textual output. Here, we create a method to perform
all of these actions for us:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 40;
traceField.width = stage.stageWidth-40;
traceField.height =stage.stageHeight - traceField.y;
addChild(traceField); }

Manifest Assurance: Security and Android Permissions

298

4. To perform the encryption of our database, we will first instantiate a ByteArray
and invoke the writeUTFBytes() method, passing in our predefined password
constant. This will write our String to the byte stream.

5. Now, instantiate a new MD5 object along with another ByteArray, assigning the
ByteArray to the result of the MD5.hash() method, passing in the previous
ByteArray holding the password bytes.

6. Instantiate an SQLConnection and register an event listener of type SQLEvent.
OPEN. This will fire an event once the database is either created or opened
successfully.

7. Finally, invoke the SQLConnection.open() method, passing in the path to the
database as a File object, the open mode constant of SQLMode.CREATE, an auto-
compact Boolean, default page size of 1024, and most importantly for this example,
our MD5-encrypted ByteArray:
protected function encryptDB():void {
encryptionPass = new ByteArray();
encryptionPass.writeUTFBytes(pass);
md5 = new MD5();
encryptionKey = new ByteArray();
encryptionKey = md5.hash(encryptionPass);
sqlConnection = new SQLConnection();
sqlConnection.addEventListener(SQLEvent.OPEN, dbOpened);
sqlConnection.open(File.applicationStorageDirectory.
resolvePath("encrypted.db"), SQLMode.CREATE, false, 1024,
encryptionKey); }

8. So long as the database is created (or opened) successfully along with valid en-
cryption, the following method will fire, outputting information about the encrypted
database to our display:
protected function dbOpened(e:SQLEvent):void {
traceField.appendText("Encrypted DB Created!\n\n");
traceField.appendText("Pass: " + pass + "\n\n");
traceField.appendText("Key: " + encryptionKey.toString()); }

9. When the application is run on our Android device, it will appear as follows. As the
key is a truly MD5-encrypted ByteArray, it appears as garbled characters in the
TextField, for it is no longer a plain text String:

Chapter 9

299

How it works...
If an application requires encryption on a database, the encryption key must be applied when
our database is created. Implementing the SQLConnection.open() or SQLConnection.
openAsync() methods require us to pass in an encrypted ByteArray key created using
as3Crypto or a similar encryption library. If we ever need to modify the encryption key, we can
use the SQLConnection.reencrypt() to do so, generating the key in the same manner as
demonstrated in this recipe. Note that a valid encryption key must be 16 bytes in length.

See also...
For more on working with local databases in AIR for Android, have a look through
Chapter 8, Abundant Access: File System and Local Database.

10
Avoiding Problems:

Debugging
and Resource

Considerations

This chapter will cover the following recipes:

f Debugging an application with Flash Professional

f Debugging an application with Flash Builder

f Rendering application Elements using the Device GPU

f Automating application Shutdown upon Device Interruption Events

f Exiting your application with the Device Back Button

f Monitoring Memory Usage and Frame Rate in an Application

Introduction
Being that Android is a mobile operating system, it presents a new set of specific challenges
in regard to optimizing both for performance and user experience. This is something Flash
Platform developers must take into consideration when developing applications with AIR
for Android and mobile Flash Player. This chapter will provide an overview of debugging and
optimization techniques along with user experience tweaks to make our AIR for Android
applications behave as nicely as possible.

Avoiding Problems: Debugging and Resource Considerations

302

Debugging an application with Flash
Professional

Debugging AIR for Android applications using Flash Professional is very similar to debugging
desktop AIR or Flash projects, with some notable exceptions.

Getting ready…
Be sure your AIR for Android project is open in Flash Professional and that your Player is AIR
for Android. This can be verified through the Properties panel:

How to do it...
Use the mobile debug launcher or debug on the device itself through USB:

1. In the application menu, choose Debug and hover over the option labeled Debug
Movie. This will cause a submenu of debug options to appear:

Chapter 10

303

2. When choosing to debug in AIR Debug Launcher (Mobile), Flash Professional
will switch to the full Debug Console and launch the application within the device
debugger. This is useful for performing quick debugging of your application when
multi-touch, accelerometer, or other device-specific inputs and sensors are not in-
volved. Breakpoints, trace statements, and other debug tools will function exactly
the same as within a normal desktop project.

3. Once we have performed our preliminary tests in the debug player and are ready to
debug on the device through USB, we can switch to that option in the Debug menu. If
we have never configured the AIR for Android Settings for this project, a dialog window
will appear, allowing us to do so. This window should not appear during subsequent
debug sessions. Be sure to choose the Debug option under Android deployment
type and have the Install and Launch options selected in the After publishing
section.

Avoiding Problems: Debugging and Resource Considerations

304

4. You will notice there are fields for determining a certificate to sign your application at
this point. To learn more about the code-signing process, please refer to Chapter 11,
Final Considerations: Application Compilation and Distribution.

5. After initiating a debug session to deploy on our device, Flash Professional will take a
few seconds to compile and deploy the application. As the application begins to load
upon the device, AIR will launch a small dialog letting us know that it is attempting to
connect to the debugger on our computer. Once this connection occurs, the window will
go away and our full application will launch, allowing us to test and debug as normal.

Chapter 10

305

How it works...
Debugging applications through breakpoints and variable inspection is on par with the course
when developing applications using any Flash Platform technology. With AIR for Android, we
are dealing with external hardware and a few extra steps must be taken to ensure that we
are able to debug within our normal environment, while also interacting with an application
running on a real device. This recipe demonstrates the steps necessary to get this all
functioning within our present workflow.

See also...

For more information about project setup using Flash Professional, you may refer to Chapter 1,
Getting Ready to Work with Android: Development Environment and Project Setup.

Debugging an application with Flash Builder
The ability to define debug configurations in Flash Builder is an excellent workflow improvement
that we should take advantage of when setting up a new mobile project or preparing to test a
project we have been working on for some time. We are able to set up multiple configurations for
the same project using the Flash Builder Debug Configurations panel.

How to do it…
We are going to explore the Debug Configurations panel to configure a custom set of launch
settings for our mobile project:

1. Select a mobile project and click the arrow next to the Debug button in the Flash
Builder toolbar. Choose the Debug Configurations… option from this menu. The
Debug Configurations dialog window will open up:

Avoiding Problems: Debugging and Resource Considerations

306

2. Double click on the left-hand menu entry labeled MobileApp to edit the particular
settings for this selected project. From this window, we can select another project
to configure, specify the default Application file for the project, set a Target
platform (Google Android, in our case), and configure a Launch method. If debugging
on the desktop, we can also select from a variety of device profiles and even
configure our own. In the next screenshot , we have chosen to debug using the
dimensions and resolution present on the Motorola Droid:

3. If it is necessary to define additional devices, we can click the Configure… button to
launch the Device Configurations screen, which allows us to Import device profiles,
or even add our own:

Chapter 10

307

4. When adding a custom device profile, we are given options for specifying width and
height of our display along with supported pixels per inch. Google Android has a
standard platform UI that can differ between devices depending upon how much
customization the manufacturer performs over the standard display elements. The
notifications bar, for instance, always appears unless the device is in full screen
mode. If the notifications bar was taller or shorter on a specific device, we can
account for it here.

While resolution and PPI can be simulated here, unless the de-
velopment machine has a multi-touch interface, we will have to
test any touch or gesture input on an actual device. Of course,
device performance is not part of the simulation either.

Avoiding Problems: Debugging and Resource Considerations

308

5. When choosing to debug on actual physical hardware, we can choose to debug on
a device through USB or over a wireless network. USB debugging is often the more
direct way and is recommended for most situations. Within the following screenshot,
you can see that we have now defined one configuration for desktop debug and one
for debugging on a USB-connected device:

6. When finished, click Apply and then Close. We can now access any of the defined
configurations from the Flash Builder debug icon or the project context menu:

Chapter 10

309

7. Once we choose to launch a debug session for our project, it will open within the
Flash Builder mobile debug player when debugging on the desktop, or in the case
of USB device debug; it will be compiled, pushed to the device, and installed. For
a device debug session, AIR will launch a small dialog letting us know that it is at-
tempting to connect to the debugger on our computer. Once this connection occurs,
the window will go away and our full application will launch, allowing us to test and
debug as normal.

How it works...
If you choose to launch on desktop, you will be able to debug locally within Flash Builder. You
can also emulate a variety of Android devices by choosing from a set of profiles. If you wish to
create your own profile, you can do so by clicking the Configure button.

When choosing to launch on a device, you also have the option of debugging on the device,
through Flash Builder. This is, by far, the best way of debugging your mobile application,
because it is tested on true Android hardware.

See also...

For more information about project setup using Flash Builder, you may refer to Chapter 1,
Getting Ready to Work with Android: Development Environment and Project Setup.

Avoiding Problems: Debugging and Resource Considerations

310

Rendering application elements using the
device GPU

While older Android devices must rely on the CPU for everything being rendered within a
mobile Adobe AIR project, many of the newer devices on the market have full support for
Graphics Processing Unit (GPU) rendering and providing necessary hooks for our applications
to take advantage of this. This recipe will demonstrate the necessary steps we must take to
enable GPU acceleration upon application elements.

How to do it...
We will modify settings in the AIR descriptor file and enable DisplayObject instances to
take advantage of these modifications:

1. Locate the AIR descriptor file in your project. It is normally named something like
{MyProject}-app.xml and resides at the project root.

2. Browse the file for a node named <initialWindow> near the beginning of this
document. This node contains many default settings dealing with the visual aspects
of our application window.

3. We now must locate the child node named <renderMode>. If this node does not
exist, we can easily add it here. The renderMode value determines whether the
application will use the CPU or GPU for rendering content. There are three possible
values for application renderMode:

� AUTO: The application will attempt to use the device GPU to render visual
display objects:
<renderMode>auto</renderMode>

� GPU: The application will be locked to GPU mode. If the device does not
support GPU rendering within Adobe AIR, problems will ensue:
<renderMode>gpu</renderMode>

� CPU: The application will use the device CPU for rendering all visual display
objects. This is the safest setting, but provides the fewest benefits:

<renderMode>cpu</renderMode>

4. Now, whenever we want to take advantage of this with DisplayObject in-
stances within our application, we must set both the DisplayObject instances
cacheAsBitmap property to true and assign the cacheAsBitmapMatrix
property to a new Matrix object. This will enable 2D content rendering for these
individual objects through the device GPU. When using objects in 2.5D space, they
will automatically be rendered using the GPU and do not require these additional
settings.

Chapter 10

311

displayObject.cacheAsBitmap = true;
displayObject.cacheAsBitmapMatrix =new Matrix();

How it works...
Setting the application renderMode within the AIR descriptor file to gpu will force the
application to render visual objects using the GPU. However, individual objects not being
rendered in 2.5D space will require that both the cacheAsBitmap property be set to true
and the cacheAsBitmapMatix property be assigned to a Matrix object. When setting
renderMode to auto, the application will attempt to render these objects through the GPU,
and will fall back to CPU rendering if GPU acceleration is not supported on a particular device.
We can also set the renderMode to cpu, which simply renders everything through the CPU,
bypassing any GPU rendering altogether.

When used appropriately, setting the application renderMode can greatly speed up visual
object rendering within an application. It is important to realize that many devices will not have
full GPU support available through AIR for Android, in which case forcing GPU may actually be
quite problematic for the application and may even render it unusable on particular devices.
There are also a number of limitations present when using the GPU. For instance: filters,
PixelBender blends, and a variety of standard blend modes are not supported.

There's more...
If using Flash Professional, we can also set the Render mode through the AIR for Android
Settings panel. This is accessible through the Properties panel. Click the little wrench icon
next to Player selection to configure these settings.

Automating application shutdown upon
device interruption events

When an application is running on an Android device, there is a good chance that a user
session can be interrupted by a telephone call, or some other unforeseen event. When
a situation like this occurs, we should consider whether it may be appropriate to exit the
application and free up system resources for other tasks.

Avoiding Problems: Debugging and Resource Considerations

312

How to do it...
We will listen to the application to fire a deactivate event and exit the application in response:

1. To begin, we will need to import the following classes into our application:
import flash.desktop.NativeApplication:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;

2. We must register an event listener of type Event.DEACTIVATE upon our
NativeApplication.nativeApplication object. This event will fire in response
to the application losing focus on the device in the event of a telephone call or some
other interruption:
protected function registerListeners():void {
NativeApplication.nativeApplication.addEventListener(Event.

DEACTIVATE, appDeactivate); }

3. Within the following function, we will invoke the exit() method upon the
NativeApplication.nativeApplication object, closing the application
completely. This will free up resources for other device applications:

protected function appDeactivate(e:Event):void {
NativeApplication.nativeApplication.exit(); }

How it works...
We want to be good stewards of the resources set aside for our application to run while active
on a user's device. An effective way to do this is to make sure to release any memory that our
application is using when not in an active state. Listening for a deactivate event will allow us
to know when some other application receives focus. At this point, we can exit the application
completely which frees up the resources being used for whatever the user is currently doing.

See also…
Before actually exiting the application, we have a chance to preserve any session data through
local shared objects or local databases. For more information on how to do this, take a look at
Chapter 8, Abundant Access: File System and Local Database.

Chapter 10

313

Exiting your application with the device
back button

Android devices generally have a set of four soft-keys along one side of the device which are
always present to the user. Two of these keys involve navigation—the back and home keys.
When a user activates an event such as when pressing the back button, we should consider
whether it may be appropriate to fully exit the application and free up system resources for
other tasks.

The home button will always return the user to the Android desktop,
thus deactivating our application. To see how to close an application
in such an event, refer the previous recipe.

How to do it...
We will listen to the dedicated Android back button to be pressed and exit the application
in response:

1. To begin, we will need to import the following classes into our application.
import flash.desktop.NativeApplication;
import flash.display.Sprite;
import flash.display.StageAlign; im-
port flash.display.StageScaleMode;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;

2. We must register an event listener of type KeyboardEvent.KEY_DOWN upon our
NativeApplication.nativeApplication object. This event will fire in response
to the user activating the dedicated Android back key:
protected function registerListeners():void {
NativeApplication.nativeApplication.

addEventListener(KeyboardEvent.KEY_DOWN, onBackPressed); }

In the event of the back key being pressed by the user, we will invoke the exit() method
upon the NativeApplication.nativeApplication object, closing the application
completely. This will free up resources for other device applications:

protected function onBackPressed(e:KeyboardEvent):void {
if(e.keyCode == Keyboard.BACK){
NativeApplication.nativeApplication.exit();
} }

Avoiding Problems: Debugging and Resource Considerations

314

How it works...
We want to be good stewards of the resources set aside for our application to run while active
on a user's device. An effective way to do this is to make sure to release any memory that our
application is using when not in an active state. One way of doing this is to listen for keyboard
events and intercepting a back key press. At this point, we can exit the application completely
which frees up the resources being used for whatever the user is currently doing.

Depending upon the current state of our application, we can choose whether it is appropriate
to exit the application or simply return to some previous state. When performing such actions
within a Flex-based mobile project, we would probably only exit the application if our current
view was the initial view within our application ViewNavigator.

There's more…
It is also possible to prevent the Android back button from doing anything at all by using
KeyboardEvent.preventDefault():

protected function onBackPressed(e:KeyboardEvent):void {
if(e.keyCode == Keyboard.BACK){

KeyboardEvent.preventDefault();
}

}

See also…
Note that before actually exiting the application, we have a chance to preserve any session
data through local shared objects or local databases. For more information on how to do this,
take a look at Chapter 8, Abundant Access: File System and Local Database.

Monitoring memory usage and frame rate in
an application

Android devices generally have a lot less memory and much less CPU power than a traditional
desktop or laptop machine. We have to be very careful when building Android applications so
as not to create something so power-hungry, that the frame rate drops to unacceptable levels
or the application becomes unresponsive. To assist us in troubleshooting and monitoring
these issues, we can keep track of the memory consumption and calculated frame rate of the
running application which should respond accordingly.

Chapter 10

315

How to do it...
We can monitor many system properties through use of the flash.system package along
with the flash.utils.getTimer class for calculating the present application frame rate:

1. To begin, we will need to import the following classes into our application:
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.system.Capabilities;
import flash.system.System;
import flash.text.TextField;
import flash.text.TextFormat; import
flash.utils.getTimer;

2. We need to declare a set of Number objects to hold persistent timing values in order
to calculate the application frame rate. Also, declare a TextField and TextFormat
pair to trace out this and other device messages to the user:
private var prevTime:Number;
private var numFrames:Number; pri-
vate var frameRate:Number; private
var traceField:TextField; private
var traceFormat:TextFormat;

3. We will, at this point, continue to set up our TextField, apply a TextFormat, and
add it to the DisplayList. Here, we create a method to perform all of these actions
for us:
protected function setupTraceField():void {
traceFormat = new TextFormat();
traceFormat.bold = true;
traceFormat.font = "_sans";
traceFormat.size = 24;
traceFormat.align = "left";
traceFormat.color = 0xCCCCCC;
traceField = new TextField();
traceField.defaultTextFormat = traceFormat;
traceField.selectable = false;
traceField.multiline = true;
traceField.wordWrap = true;
traceField.mouseEnabled = false;
traceField.x = 20;
traceField.y = 40;
traceField.width = stage.stageWidth-40;

Avoiding Problems: Debugging and Resource Considerations

316

traceField.height = stage.stageHeight - traceField.y;
addChild(traceField); }

4. The next step entails creation of the mechanism which handles our frame rate cal-
culation. We will set the prevTimeNumber to the current elapsed milliseconds as
the application has been initialized. We'll also set the numFrames variable to 0 for
the moment. This provides us with a base set of numbers to work off. Finally, we
register an event listener of type Event.ENTER_FRAME upon our application to
periodically perform new frame rate calculations for us:
protected function registerListeners():void {
prevTime = getTimer();
numFrames = 0;
this.addEventListener(Event.ENTER_FRAME, onEnterFrame); }

5. This lengthy method will refresh everything within our TextField, every time a frame
is entered. First, we will write out some information about the CPU architecture, man-
ufacturer, and the memory available to our application. The memory is the important
bit in this step.

6. To calculate the running frame rate, we will first increment our frame counter and
once again gather the number of milliseconds elapsed from the initialization of our
application. The previous reading of this can be then subtracted, giving us the time
that has elapsed since this function last ran.

7. If the time elapsed is over 1000, a second has transpired and we can then perform
some calculations to determine our actual frames per second. We will retrieve the
frames per minute by dividing the number of frames we are dealing with in this cycle
by the variable holding our previous time, multiplied by 1000. Setting the previous
time variable to the present time elapsed, and resetting our frame count to 0, will
begin a new cycle:
protected function onEnterFrame(e:Event):void {
traceField.text = "CPU Arch: " + Capabilities.cpuArchitecture +
"\n";
traceField.appendText("Manufacturer: " + Capabilities.
manufacturer + "\n");
traceField.appendText("OS: " + Capabilities.os + "\n\n");
traceField.appendText("Free Memory: " + System.freeMemory +
"\n");
traceField.appendText("Total Memory: " + System.totalMemory +
"\n\n");
numFrames++;
var timeNow:Number = getTimer();
var timePast:Number = timeNow - prevTime;

Chapter 10

317

if(timePast > 1000){
var fpm:Number = numFrames/timePast;
frameRate = Math.floor(fpm * 1000);
prevTime = timeNow;
numFrames = 0;

}

traceField.appendText("Framerate: " + frameRate);
}

8. When we run the application upon a device, we can see the CPU and OS information,
along with memory usage and the calculated frame rate:

How it works...
There is a wealth of information which can be accessed through the Capabilities and System
classes regarding CPU and memory use. We can gather additional information about the
current frame rate by calculating actual FPS based upon data gathered from the getTimer()
utility method. Using all of this together will provide us with a reasonable set of data to
determine how well our application is running upon a particular device. We can then use
this data to make smart decisions while the application is running by modifying application
properties, changing the way we are rendering content, or even alerting the user that there
may be a problem.

Avoiding Problems: Debugging and Resource Considerations

318

There's more...
If the frame rate becomes too sluggish, we may want to consider lowering the frame rate or
even dropping the rendering quality of our application to improve performance. This can be
done using the following code snippets:

this.stage.frameRate = 10;
this.stage.quality = StageQuality.LOW;

See also...
We can also recommend the use of a package like Hi-ReS-Stats which can be downloaded
from https://github.com/mrdoob/Hi-ReS-Stats and used on mobile Android
applications to monitor resource usage. Usage of this class will produce a graph overlay within
our application to monitor application performance.

11
Final Considerations:

Application
Compilation and

Distribution

This chapter will cover the following recipes:

f Generating a code-signing certificate using Flash Professional

f Generating a code-signing certificate using Flash Builder

f Generating a code-signing certificate using FDT

f Generating a code-signing certificate using the AIR Developer Tool

f Preparing Icon Files for distribution

f Compiling an application using Flash Professional

f Compiling an application using Flash Builder

f Compiling an application using FDT

f Compiling an application using the AIR Developer Tool

f Submitting an application to the Android Market

Final Considerations: Application Compilation and Distribution

320

Introduction
When deploying a mobile Flash application (.swf) to the Web, the process is very similar to
what it is on desktop; embed your .swf into an HTML container, and you are done. Deploying
an AIR application to the Android Market, however, is quite a different experience. In this
chapter, we will discover how to prepare an application for distribution to the Android Market,
the generation of appropriate code signing certificates, and details around the compilation
and submission process.

Generating a code-signing certificate using
Flash Professional

Applications distributed on the Android Market are required to have been digitally signed with
a 25 year code signing certificate. There are a number of different ways we can go about
generating a code signing certificate for Android applications. We will demonstrate how to
generate such a certificate using Flash Professional within this recipe.

How to do it...
In Flash Professional, perform the following actions to create a self-signed digital certificate:

1. With a project open which targets AIR for Android, open the Properties panel and
click the little wrench icon beside the Player selection box. This will open the AIR for
Android Settings dialog:

2. Within the AIR for Android Settings dialog, click the Create… button to open the
Create Self-Signed Digital Certificate dialog window:

Chapter 11

321

3. Now that the Create Self-Signed Digital Certificate dialog is before us, we will enter
the required information and choose a name and location for the certificate. When
everything has been entered properly, we will click OK to have Flash Professional
generate the certificate. Be sure to enter 25 years in the Validity period input for
Android:

How it works...
By generating a valid digital code signing certificate, we are able to correctly sign our Android
application for submission to the Android Market. Flash Professional provides a simple way to
generate the appropriate certificate type and apply it to our applications for distribution.

Final Considerations: Application Compilation and Distribution

322

Generating a code-signing certificate
using Flash Builder

Applications distributed on the Android Market are required to have been digitally signed with
a 25 year code signing certificate. There are a number of different ways we can go about
generating a code signing certificate for Android applications. We will demonstrate how to
generate such a certificate using Flash Builder within this recipe.

How to do it...
In Flash Builder, perform the following actions to create a self-signed digital certificate:

1. With a mobile project selected in the Package Explorer, enter the File menu and
select Properties. The Properties dialog will appear for this project.

2. Within the Properties dialog, scroll down the Flex Build Packaging or ActionScript
Build Packaging item (depending upon the type of project selected) and choose
Google Android. With the Digital Signature tab selected, click the Create… button to
open the Create Self-Signed Digital Certificate dialog:

3. All that is now needed is to enter the required information and choose a name and
location for the certificate. When everything has been entered properly, we will click
OK to have Flash Builder generate the certificate:

Chapter 11

323

How it works...
By generating a valid digital code signing certificate, we are able to correctly sign our Android
application for submission to the Android Market. Flash Professional provides a simple way to
generate the appropriate certificate type and apply it to our applications for distribution.

Generating a code-signing certificate
using FDT

Applications distributed on the Android Market are required to have been digitally signed with
a 25 year code signing certificate. There are a number of different ways we can go about
generating a code signing certificate for Android applications. We will demonstrate how to
generate such a certificate using PowerFlasher FDT within this recipe.

Final Considerations: Application Compilation and Distribution

324

How to do it...
In FDT, perform the following actions to create a self-signed digital certificate:

1. Click upon the small arrow next to the Run icon in the top menu and choose
Run Configurations… from the sub menu that appears. This will open the Run
Configurations dialog:

2. With the Run Configurations dialog window now open, double-click the FDT
AIR Application Release menu item to create a new configuration. Choose the
Certificate tab and to enter the required information, choosing a name and location
for the certificate. Once everything has been entered properly, we will click Create
Certificate to have FDT generate the certificate for us:

Chapter 11

325

How it works...
By generating a valid digital code signing certificate, we are able to correctly sign our Android
application for submission to the Android Market. FDT provides a simple way to generate the
appropriate certificate type and apply it to our applications for distribution.

Generating a code-signing certificate
using the AIR Developer Tool

Applications distributed on the Android Market are required to have been digitally signed with
a 25 year code signing certificate. There are a number of different ways we can go about
generating a code signing certificate for Android applications. We will demonstrate how to
generate such a certificate using ADT command line tool within this recipe.

Getting ready…

For steps on configuring ADT within your particular environment, take a look at Chapter 1,
Getting Ready to Work with Android: Development Environment and Project Setup.

How to do it...
Using the ADT command line tool, perform the following actions to create a self-signed
digital certificate:

1. For this example, we will assume the following:
Publisher Name: "Joseph Labrecque"
Validity Period: 25 (years)
Key Type: 1024-RSA
PFX File: C:\Users\Joseph\Documents\airandroid.p12
Password: airAndroidPass

2. Open a command prompt or terminal (depending upon the operating system) and
type in the command string to generate our certificate:
adt -certificate -cn "Joseph Labrecque" -validityPeriod 25 1024-
RSA C:\Users\Joseph\Documents\airandroid.p12 airAndroidPass

Final Considerations: Application Compilation and Distribution

326

3. The ADT utility will now process the command and complete the certificate generation
process. If there is a problem with our command, ADT will print out error messages
here, letting us know something went wrong:

4. We can now browse to the location specified within the command string to locate our
newly created certificate and can use this to sign our AIR for Android applications:

How it works...
By generating a valid digital code signing certificate, we are able to correctly sign our Android
application for submission to the Android Market. Using the ADT tools bundled with the AIR
SDK, we can generate the appropriate certificate type for distribution.

Chapter 11

327

Preparing icon files for distribution
When we compile an application for distribution in the Android Market, we must include a set
of standard icon images along with our application. The locations for these icons are defined
within our AIR application descriptor file. Android expects a set of three icons: 36x36, 48x48,
and 72x72. Each icon is used for a different screen density and should all be included as
standard PNG files.

How to do it...
Depending on which tool is being used, this task can be approached in different ways. We will
demonstrate how to include these icons within an application with Flash Professional CS5.5
and through direct modification of the AIR application descriptor file.

Using Flash Professional CS5.5
1. With a project open which targets AIR for Android, open the Properties panel and

click the little wrench icon beside the Player selection box. This will open the AIR for
Android Settings dialog:

Final Considerations: Application Compilation and Distribution

328

2. Within the AIR for Android Settings dialog, click the Icon tab. To specify specific
icons for our project, we simply need to select each icon entry in the list and
to browse to locate a file to be used for each one through use of the folder and
magnifying glass icon:

Direct modification of the AIR descriptor file
1. Locate the AIR descriptor file in your project. It is normally named something like

{MyProject}-app.xml and resides at the project root.

2. Browse the file for a node named <icon>within this document. This node contains
many default settings dealing with the visual aspects of our application window. If it
has been commented out, we must uncomment it before proceeding.

3. We now must now make sure that the following three child nodes exist within the
<icon> node. Be sure that the paths to our icon files are correct. If they are not
correct, the compiler will let us know once we attempt to compile this application:
<image36x36>assets/icon_36.png</image36x36>
<image48x48>assets/icon_48.png</image48x48>
<image72x72>assets/icon_72.png</image72x72>

Chapter 11

329

As an example, here is a set of three icons that are valid for use in an Android application,
along with their pixel measurements:

How it works...
Including a set of icons within an Android application package is essential when distributing
the application through the Android Market. It also adds an easily recognizable visual cue for
the user once the application is installed upon a device. Take some time to come up with a set
of icons that really reflect the application they will represent.

There's more...
If the application is to be published onto the Android Market, there are also a variety of other
images that we will need to produce to properly brand our application. Check the Android Market
for details on what images are currently required at https://market.android.com/.

Final Considerations: Application Compilation and Distribution

330

Compiling an application using Flash
Professional

Compiling a project to an Android release version .apk file is the final step before distributing
an application to the Android Market or some other channel. There are many methods
of doing this depending upon what tool is being used. In this recipe, we will use the tools
available within Flash Professional to compile and package our application.

How to do it...
To compile an .apk from Flash Professional, we will take the following steps:

1. With a project open which targets AIR for Android, open the Properties panel and
click the Publish Settings… button. This will open the Publish Settings dialog:

2. We can look over our settings here and even simply click Publish if we know for cer-
tain everything is configured appropriately. To verify all of the settings are in place to
publish to Android, click the little wrench icon for our Player selection box, which
should be set to AIR for Android. This will provide access to the AIR for Android
Settings dialog:

Chapter 11

331

3. With the AIR for Android Settings dialog now open, we can go about verifying our
specific configuration options before deciding to publish. The General tab contains
a number of important inputs including the path to the generated .apk file, the ap-
plication name, version, ID, and other required configuration settings. We can also
choose to include files other than the compiled .swf and AIR descriptor file, such
as external image assets. The Icons tab allows us to include icon files with a basic
GUI, and the Permissions tab will allow us to set application permissions specific to
Android.

Final Considerations: Application Compilation and Distribution

332

These settings all modify the application descriptor file, which in turn
generates the Android manifest document. We can think of these
settings as a GUI for these files.

4. As a final step, click on the Deployment tab:

5. Within the Deployment tab exists a setting for deployment type and the chance to
sign our application with a self-signed certificate. This is very important because the
Android Market will not accept unsigned applications or applications which to not
fulfill the requirements set for by Android Market terms.

6. Be sure to provide both App name, used to identify the application by a user once
installed upon a device, and a unique App ID. The App ID is very important, as this
is the primary identifier for your application within the Android Market. It must be
unique in order for application updates to function correctly and it is recommended
that developers take special care to use reverse domain notation to retain this
uniqueness.

Chapter 11

333

7. We will need to be sure that the Get AIR runtime from selection indicates the partic-
ular distribution market we are targeting. For the general Android Market,
we choose Google Android Market. This dialog also provides us with the option of
compiling an application build for different purposes through the Android deployment
type settings:

� Device release: This is the option we will need to select when we want to
distribute our application through the Android Market

� Emulator release: Generates a release compatible with the Android SDK
emulator and the emulator build of the AIR runtime

� Debug: This option generates a release specifically for debugging the
application

8. Once we are satisfied with all of our configuration settings, we can exit back out to the
Publish Settings dialog and hit Publish, or simply click the Publish button here. We
can also publish using traditional methods available in Flash Professional, so long as
we've previously gone through these configuration steps.

We now have a fully compiled, validly signed .apk file ready for distribution.

Final Considerations: Application Compilation and Distribution

334

How it works...
The configuration settings we change through the Flash Professional GUI dialogs are
actually modifying the AIR descriptor file behind-the-scenes. Once we choose to publish our
application, Flash Professional will use this file to compile and package everything into a valid
.apk ready for distribution on the Android Market.

Compiling an application using Flash Builder
Compiling a project to an Android release version .apk file is the final step before distributing
an application over the Android Market or some other channel. There are many methods
of doing this depending upon what tool is being used. In this recipe, we will use the tools
available within Flash Builder to compile and package our application.

How to do it...
To compile an .apk from Flash Builder, take the following steps:

1. Within a mobile ActionScript or Flex project, navigate to the Flash Builder menu and
choose the Project menu item. This will reveal a submenu with a number of options.
From this menu, choose Export Release Build… opening the Export Release Build
dialog window:

2. Within this window, we are given the option to specify the project and specific
application within that project we wish to perform a release build upon, decide which
platforms to target, specify the path, and filename of our build, and choose what sort
of application to export as. For Android, we will choose Signed packages for each
target platform. So long as we have selected Google Android as a target platform,
this will open the Packaging Settings dialog once we click Next:

Chapter 11

335

3. Now, we are able to configure some advanced properties for the build. Click on the
Package Contents tab to verify that all required files are to be included in the build.
If we want to package additional files, or even exclude certain assets, we can do so
through use of the checkboxes aside each item. Click the Digital Signature tab to
continue:

Final Considerations: Application Compilation and Distribution

336

4. The final task will be to choose a signing certificate in order to digitally sign our
application for distribution on the Android Market. Select a certificate and type in
the associated password. Clicking Finish will perform the build and save a compiled
.apk into the location we had previously chosen. If we wish, we can include external
files through the Package Contents tab and choose to deploy to any connected
devices through the Deployment tab:

We now have a fully compiled, validly signed .apk file ready for distribution.

How it works...
Flash Builder provides the concept of a target platform when exporting the release build of
a project. If we choose Google Android for a target platform, we are given additional options
specific to Android that we can modify based on the needs of our particular project. The
additional dialog elements allow us to compile and package everything into a valid .apk
ready for distribution on the Android Market.

Compiling an application when using FDT
Compiling a project to an Android release version .apk file is the final step before distributing
an application over the Android Market or some alternate channel. There are many methods
of doing this depending upon what tool is being used. In this recipe, we will discuss three
popular methods available to us when using Powerflasher FDT to compile and package
our application.

Chapter 11

337

How to do it...
As of this writing, FDT does not support working with AIR for Android in a direct way. There
are, however, three main methods in which FDT users can compile their projects for Android
distribution.

Using a mobile project template
The FDT community has produced a number of mobile project templates that support AIR for
Android. These templates work with the new template system used by all FDT projects and add
varying levels of functionality to the workflow. Most of these also include ANT scripts, which
compile an .apk using the AIR Developer Tool.

Using ANT
This is by far the most flexible method of compiling a project for Android, as it is actually IDE-
agnostic and can be used by anyone. ANT comes packaged along with a standard installation
of FDT and many starter scripts deploying AIR for Android can be found online through the
community. To get started using ANT with FDT, have a look at http://fdt.powerflasher.
com/docs/FDT_Ant_Tasks.

Using ADT through CLI
The most basic method is to simply develop a mobile project using FDT and then package it
as an .apk using the AIR Developer Tool through command line interface. The next recipe
actually details how this is accomplished.

How it works...
Whichever method is chosen, the goal is the same—compile and package everything into a
valid .apk ready for distribution on the Android Market. One of the strengths of FDT is that it
does not restrict developers to do things in one specific way. When producing release builds
for Android, we have many choices with which to do so.

Compiling an application using the AIR
Developer Tool

Compiling a project to an Android release version .apk file is the final step before distributing
an application over the Android Market or some other channel. There are many methods
of doing this depending upon what tool is being used. In this recipe, we will use the AIR
Developer Tool (ADT) command line utility to compile and package our application.

Final Considerations: Application Compilation and Distribution

338

How to do it...
To compile an .apk from a mobile AIR project using the ADT command line tools, we will take
the following steps:

1. For this example, we will assume the following:

� Certificate: android.p12

� Desired APK: mobileAIR.apk

� AIR Descriptor: mobileAIR\src\mobileAIR-app.xml

� SWF File: mobileAIR\src\mobileAIR.swf

2. Open a command prompt or terminal (depending upon the operating system) and
type in the command string to generate our certificate. In this case, we will set the
target type to .apk for a release build. We could also set this to apk-debug for a
debug build, or apk-emulator for installation on an emulator:
-package -target apk -storetype pkcs12 -keystore android.p12
mobileAIR.apkmobileAIR\src\mobileAIR-app.xml mobileAIR\src\
mobileAIR.swf

3. Any other files such as assets or icons can be included after the .swf entry, delimited
by whitespaces:
-package -target apk -storetype pkcs12 -keystore android.p12
mobileAIR.apkmobileAIR\src\mobileAIR-app.xml mobileAIR\src\
mobileAIR.swf mobileAIR\src\assets\icon_32.pngmobileAIR\src\
assets\icon_36.pngmobileAIR\src\assets\icon_72.png

4. The ADT utility will now process the command and complete the .apk compilation
process. If there is a problem with our command, ADT will print out error messages
here, letting us know something went wrong. Normally, if something does go wrong,
it will be a problem with the AIR descriptor file or an incorrect file path to an expected
input file.

Chapter 11

339

5. We can now browse to the result location specified within the command string to
locate our newly created .apk file, which can be installed directly upon an Android
device or distributed through the Android Market:

We now have a fully compiled, validly signed .apk file ready for distribution.

How it works...
Assuming we have configured our application properly, ADT will compile, sign, and package
all of our project files into an .apk for us. ADT has many different utilities and configuration
options available to perform many actions upon a project. Have a look at http://help.
adobe.com/en_US/air/build/ and click AIR Developer Tool (ADT) in the menu for full
documentation.

See also…

For steps on configuring ADT within your particular environment, take a look at Chapter 1,
Getting Ready to Work with Android: Development Environment and Project Setup.

Submitting an application to the
Android Market

Google makes it very easy to register as an Android Developer and publish applications to
the Android Market. This recipe will detail the steps necessary to do so, after compiling a
completed .apk.

Final Considerations: Application Compilation and Distribution

340

Getting ready...
Before a developer is able to submit anything to the Android Market, a developer account
must be created. The process can be completed in minutes, is simple, and inexpensive.

To register as an Android developer:

1. Use a web browser and go to http://market.android.com/publish/signup.

2. Sign in with your Google Account (or create a new account).

3. Complete the registration form and pay the one time setup fee of $25.

4. Congratulations on becoming an Android Developer!

How to do it...
1 Upload a compiled and signed .apk file to the Android Market for worldwide

distribution.

2. Sign in to the Android Market at https://market.android.com/publish/ using
your Android Developer credentials.

3. Click on the button in the lower right that says Upload Application:

4. We are now presented with a rather lengthy form which allows us to include all
sorts of information about our application. We can categorize our application, add
descriptive and promotional text, update release notes, and choose whether we will
charge users for the application or allow free downloads. If we decide to require
payment, we must first establish a Google Merchant account from the provided link
on this page.

Chapter 11

341

5. In addition to textual entries and other input choices, we also have the opportunity
to upload a wide variety of images which will represent our application in the Android
Market. Specific image attributes are detailed within this form:

6. At the bottom of this page are three buttons. We can click Save to save our appli-
cation profile for later editing. Clicking the Delete button will allow us to remove an
application from the Android Market completely. To publish our application, we will
click the Publish button.

Once you publish an application, this button will read as Unpublish,
and the Delete button will no longer appear as an option if users
have installed the application.

The application has now been published to the Android Market and is available to millions of
users worldwide.

How it works...
Uploading and publishing an application to the Android Market will allow users to download
and install the application. We have full control over the application description, versioning
information, and associated image assets. We are also able to track rating and comments
from the developer area, as well as manage a merchant account, if necessary to our
application. Publication to the Android Market is immediate. There is no approval and
disapproval process like there is with other application marketplaces.

Final Considerations: Application Compilation and Distribution

342

There's more...
Updating an application to a new version is much simpler than setting up an entirely
new application:

1. Once in the Android Market, click the name of an existing application. This will allow
you to edit any of the images or text associated with it.

2. To actually publish a new version of the application, we must click the link [Upload
Upgrade]. This will cause a new set of form controls to appear.

3. Click Choose File and browse for the new .apk file. Now click Upload to submit the
file to Google servers.

4. The new file will be parsed for versioning information and to verify the contents are
valid. Any changes to the version number, application icon, requested permissions,
and so forth will be reflected in the draft.

5. The version number defined within the application descriptor file must be of a higher
version than that of the previously submitted build in order to have a valid upgrade.
We can also perform additional edits to the general application information on this
page, if necessary. Clicking Publish at the bottom of the page will make the new
version immediately available in the Android Market.

Index
Symbols
3D space

Android device movement, detecting 76-78

A
accelerationX 78
accelerationY 78, 84
accelerationZ 78
Accelerometer API 77
Accelerometer class 76, 79
AccelerometerEvent listener 77, 84
accelerometer events

used, for updating display object position
82-86

AccelerometerEvent.UPDATE data 84
Accelerometer.isSupported property 77, 80,

84
Accelerometer object 77, 79, 83
accelerometer sensor update interval

Accelerometer.isSupported property 80
Accelerometer class 79
Accelerometer object 79
adjusting 78-82
MultitouchInputMode.TOUCH_POINT constant

80
name property 80
setRequestedUpdateInterval method 80
shiftInterval method 81
Sprite objects 79
TouchEvent.TOUCH_TAP event receptors 82
TouchEvent.TOUCH_TAP listener 80

accelerometer support
of Android device, detecting 74, 75

ACCESS_COARSE_LOCATION 283

ACCESS_FINE_LOCATION 283
ACCESS_NETWORK_STATE 283
ACCESS_WIFI_STATE 283
ActionBar control

configuring, within Flex mobile project 194-
198

hiding, in single view for Flex mobile project
198-200

actionBarVisible property 199
ActionScript Sound object 162
activityLevel 124
addBitmapData() method 111
addChild() 215, 218
After publishing section 303
AIR

targeting for Android, with flash professional
CS5 10-12

AIR descriptor file
direct modification 328, 329

AIR Developer Tool (ADT)
used, for compiling application 337, 339
used, for generating code-signing certificate

325, 326
AIR SDK

configuring to package AIR, for Android ap-
plications on Linux 30-32

configuring to package AIR, for Android ap-
plications on Mac OS 30-32

configuring to package AIR, for Android ap-
plications on Windows 29, 30

Android
AIR, targeting with Flash Professional CS5

10-12
Android applications

building, Flash Professional CS5.5 used 8, 9,
10

344

developing, Flash Builder 4.5 used 13-15
developing, Flash Builder 4 used 18-20
developing, Powerflasher FDT 4.1 used 23-26

Android browser
flash.net package 202
Multitouch.inputMode 203
navigateToURL method 204
onTouchTap method 204
website, opening in 202-204

Android compatibility filtering
Accelerometer Sensor 291
Android camera, features 291
Android microphone, features 291
anticipating 290
Geolocation Sensor 291

Android Custom URI Schemes
establishing 286-290

Android device
about 74
accelerationX 78
accelerationY 78
accelerationZ 78
Accelerometer class 76
Accelerometer object 77
accelerometer support, detecting 74, 75
geolocation sensor support, detecting 89
movementDetected method 77
movement in 3D space, detecting 76-78
TextField object 76
TextFormat object 76
timestamp 78

Android long-press interaction
emulating 59-61

Android manifest file
application permissions, setting 280

Android Market
application, submitting to 339, 341
invoking, application URIs used 236, 239
onTouchTap method 238
Sprite button 238
TOUCH_TAP event 236

Android Settings panel 311
Android soft-key interactions

responding to 66-68
application

compiling, AIR developer tool (ADT) used 337,
339

compiling, FDT used 336
compiling, Flash builder used 334-336
compiling, Flash professional used 330-333
debugging, Flash Builder used 305-309
debugging, Flash Professional used 302-305
elements rendering., device GPU used 310,

311
e-mail, sending from 239-241
frame rate, monitoring 314-318
Google maps, invoking 231-235
instructing, for installing to device SDCard

292, 293
memory usage, monitoring 314-318
phone call, making 225
submitting, to Android market 339, 341
text message, sending 228-230
website, rendering 205-210

applicationComplete attribute 273
application permissions

Flash Builder, using 281, 282
Flash Professional, using 280
setting, with Android manifest file 280
simple text editor, using 282

application shutdown
automating, device interruption events used

311, 312
application state

FlexEvent.NAVIGATOR_STATE_SAVING event
260

init() method 258
persistNavigatorState 257
stateSaving method 258
storing automatically, Flex used 257
ViewNavigatorApplication file 257
ViewNavigator history 258, 259

applyFilter method 139
arguments property 288
Array set 137
audio files

displaying, from local file system 152-156
displaying, over HTTP 152-156

audio sample data
monitoring, device microphone used 122-125

audio spectrum visualizer
generating 156-158

audio tones
generating, for application 159-162

345

B
back button 66
BitmapData method 110
BitmapData object 111
blank Flex mobile application

defining 183-185
browseForImage() method 133
ByteArray 129
ByteArray object 128, 159
ByteArrayobject 126
ByteArray.writeFloat() method 161
bytesAvailable 124

C
cacheAsBitmapMatix property 311
camera

CameraUI 109
isSupported property 109
Microphone object 109
support, detecting 108-110
TextField object 108
TextFormat object 108

CAMERA 283
camera API

traditional camera API, using to save captured
image 110-113

Camera class 110, 113
Camera feed 110
Camera object 111
CameraRoll 133
CameraRoll API 132, 135
CameraRoll.browseForImage() method 135
CameraRoll class 113
cameraRoll device

photos, loading from 132-135
CameraRoll object 111, 132
CameraUI 109
CameraUI instance 115
CameraUI.launch method 117, 121
CameraUI object 114
captured photograph

saving, Mobile CameraUI API used 113, 114
captured video

saving, Mobile CameraUI API used 118-121
client property 143
codec 124

code-signing certificate
creating, AIR developer tool used 325, 326
creating, FDT used 323-325
creating, Flash builder used 322, 323
creating, Flash professional used 320, 321

computeSpectrum() method 156, 159
connect() method 143
connectStream method 144
currentFilter object 139
currentFilter value 139

D
data

flush() command 255
flush() method 257
getLocal() method 257
MultitouchInputMode.TOUCH_POINT constant

255
Point object 253
saving across sessions, local shared object

used 252, 253
SharedObject 252
SharedObjectdata property 254
TouchEvent.TOUCH_MOVE event 255

database tasks
automating, with FlexORM 271, 272

dataFormat property 139
Debug Configurations panel 305
default application database

about 270
File.copyTo() method 270
File.createDirectory() method 270
File.deleteDirectory() method 270
getDBItems() method 268
providing 266-268
SQLConnection.open() method 268
SQLStatement.text property 268

deleteProduct() method 275
device

multitouch detection, checking 36-38
device back button

used, for exiting application 313, 314
Device Configurations screen 306
device geolocation sensor data

altitude 96
Geolocation class 93

346

Geolocation object 94
geolocationUpdate method 95
heading 96
horizontalAccuracy 96
latitude 96
longitude 96
retrieving 93-96
speed 96
timestamp 96
verticalAccuracy 96

device GPU
used, for rendering application elements 310,

311
device interruption events

used, for automating application shutdown
311, 312

device microphone
using, to monitor audio sample data 122-125

device screen
preventing, from dimming 283-286

Device SDCard
applicating, instructing for installation 292,

293
device storage

file, saving to 247-250
local file. opening from 244, 246

DISABLE_KEYGUARD 283
DisplayList 248
display object

panning, gestures used 43-45
rotating, gestures used 49-52
swiping, gestures used 46-49
zooming, gestures used 41-43

DisplayObject function 43, 65
DisplayObject instance 83
display object position

accelerationY data 84
AccelerometerEvent listener 84
DisplayObject instance 83
movementDetected 84
movementDetected method 84
updating, through accelerometer events 82-

86
DisplayObjectsneedsSoftKeyboard property

65
D-Pad events

responding to 68-71

drawArea 56

E
e-mail

MultitouchInputMode.TOUCH_POINT constant
241

navigateToURL method 242
onTouchTap 241
sending, from application 239
TextFormat object 240
TOUCH_TAP event 239

EntityManager.getInstance() 273
EntityManager.remove() 274
EntityManager.save() 274
Event.COMPLETE 245
Event.COMPLETE listener 139
exit() method 312

F
FDT

ANT, using 337
ANT, using through CLI 337
mobile project template, using 337
used, for compiling application 336
used, for generating code-signing certificate

323, 325
file

DisplayList 248
File.Save() method 250
flash.filesystem.FileStream class 250
MultitouchInputMode.TOUCH_POINT constant

250
onTouchTap 250
save() method 252
saving, to device storage 247
String constant 247
TextField, editing 249

File.applicationDirectory 246
File.applicationStorageDirectory 246
File.createDirectory() method 270
File.deleteDirectory() method 270
File.deleteFile() method 270
File.desktopDirectory 246
File.documentsDirectory 246
File.resolvePath() method 245
File.Save() method 250

347

FileStream class 246
FileStream.openAsync() method 246
FileStream.open() method 246
File.systemCharset 245
File.userDirectory 246
firstView property 187
Flash Builder

used, for compiling application 334-336
used, for debugging application 305-309
used, for generating code-signing certificate

322, 323
Flash Builder 4

enabling, to access Flex Mobile SDKs 15-17
using, to develop Android applications 18-20

Flash Builder 4.5
used, to develop Android applications 13-15

flash.display.Stage class 166
flash.events.GestureEvent class 41
flash.events.PressAndTapGestureEvent class

41
flash.filesystem.File class 246
flash.filesystem.FileStream class 250
flash.filesystem package 244
flash.net package 202
Flash Professional

used, for compiling application 330-333
used, for debugging application 302-305
used, for generating code-signing certificate

320, 321
Flash Professional CS5

AIR, targeting for Android 10-12
Flash Professional CS5.5

project panel, employing 176-179
used, for developing Android applications

8-10
using 327
visual elements scaling, stage resize based

172-176
flash.system.Capabilities class 166
flash.utils.getTimer class 315
Flex

used, for storing application state 257
Flex application

freezing, to landscape mode 179-182
freezing, to portrait mode 179-182

Flex Builder
enabling, to access Flex Mobile SDKs 15-17

FlexEvent.NAVIGATOR_STATE_SAVING event
260

Flex mobile
defining, view-based application based 185-

187
Flex mobile application

splash screen, using 191-194
Flex mobile project

ActionBar, configuring for use with ViewNavi-
gator 194, 195

actionBarVisible property 199
ActionScript code, generating 222, 224
converting, steps 27
HTML file, creating to display ads 220, 221
MXML files, creating for ViewNavigatorApplica-

tion 221, 222
onTimer method 224
popToFirstView() 197
pushView() 198
StageWebView from view 220
StageWebView instance 223
StageWebView object 219, 223
StageWebView, using to load ads 219
StageWebViewviewport property 223
TimerEvent.Timer 224
ViewNavigatorApplication 220, 225
ViewNavigator method 198
ViewNavigator.popToFirstView() 196

Flex Mobile SDKs
accessing, Flash Builder 4 enabled 15-17
accessing, Flash Builder enabled 15-17
accessing, Powerflasher FDT 4.1 enabled

21-23
Flex mobile tabbed application

defining, with multiple sections 188-191
FlexORM

applicationComplete attribute 273
deleteProduct() method 275
EntityManager.getInstance() 273
EntityManager.remove() 274
EntityManager.save() 274
IndexChangeEvent class 275
productArrayCollection 275
ProductName 272
Product package 272
Products 272
Script block 273

348

used, for automating database tasks 271,
272

ViewNavigatorApplication tag 273
Flex project

standard Flex project, converting to Flex Mo-
bile project 26, 27, 28

flush() command 255
flush() method 257
frame rate

monitoring, in application 314-318

G
gain 124
Geolocation API 232
Geolocation class 91, 93, 96
geolocation coordinates

map data, retrieving through 101-106
GeolocationEvent listener 94
GeolocationEvent.UPDATE event 233
GeolocationEvent.UPDATE event listener 234
Geolocation instance 92
Geolocation.isSupported 90
Geolocation.isSupported, invoking 90
Geolocation.isSupported property 94, 98
Geolocation object 94, 97, 103
geolocation sensor support

disability, detecting 91, 92
Geolocation instance 92
Geolocation.isSupported, invoking 90
muted property 92
of Android device, detecting 89
TextFormat object 90
user disability, detecting 91

geolocation sensor update interval
adjusting 96-100
Geolocation object 97
MultitouchInputMode.TOUCH_POINT constant

98
setRequestedUpdateInterval() 100
setRequestedUpdateInterval method 98
shiftInterval method 99
TouchEvent.TOUCH_TAP event receptors 100

geolocationUpdate 94
geolocationUpdate method 95
gesture events 38
gestures

custom gesture creating, touchPoint data
based 55-58

display object panning, gestures used 43-45
display object rotating, gestures used 49, 51
display object swiping, gestures used 46-48
display object zooming, gestures used 41-43
specific gesture support, verifying for common

interactions 38
GESTURE_ZOOM event 42
getDBItems() 264
getDBItems() method 268
getLocal() method 257
getTimer() utility method 317
Globally recognized avatars. See Gravatars
Google maps

Geolocation API 232
GeolocationEvent.UPDATE event 233
invoking, from application 231, 236
MultitouchInputMode.TOUCH_POINT constant

233
navigateToURL 231
Number variables 232
onGeoEvent method 234
onTouchTap 233

Graphics API 41, 46, 50
GTween

URL 49

H
historyBack() method 214, 215
historyForward() method 214, 215
HTMLLoader class 205
HTTP

audio files, playing over 152-156
video files, playing over 141-146

I
icon files

AIR Descriptor File, direct modification 328,
329

Flash Professional CS5.5 used 327, 328
preparing, for distribution 327

IDE 8
images

Pixel Bender Shader effects, applying to
loaded images 136-141

349

in AIR Debug Launcher (Mobile) 303
IndexChangeEvent class 275
init() method 258
INSERT operation 266
Install and Launch option 303
Integrated Development Environment. See

IDE
INTERNET 283
isSupported property 109

K
keyDown event 68
keyDown listener 68
keyDown method 67
keyUp event 68

L
landscape

and portrait switching between, device tilt
based 86-88

mode, Flex application freezing to 179-182
LatLong object 104
launch method 119
length 125
Loader.filters property 141
Loader instance 138
Loader object 141
loadFilePromise() 134
loadFilePromise() 134
load() method 138
local file

Event.COMPLETE 245
File.applicationDirectory 246
File.applicationStorageDirectory 246
File.desktopDirectory 246
File.documentsDirectory 246
File.resolvePath() method 245
FileStream class 246
FileStream.openAsync() method 246
FileStream.open() method 246
File.systemCharset 245
File.userDirectory 246
flash.filesystem.File class 246
flash.filesystem package 244
opening, from device storage 244
String constant 244

local file system
audio files, playing from 152-156
video files, playing from 141-146

local shared object
used, for saving data across sessions 252,

253
local SQLite database

.SWC package including into Flash Builder
project, instructions 294

.SWC package including into Flash Profession-
al project, instructions 295, 296

creating 260
encrypting 294
getDBItems() 264
INSERT operation 266
MultitouchInputMode.TOUCH_POINT constant

262
SELECT operation 266
SQLConnection.open() method 263
SQLStatement.getResult() 263
SQLStatement.sqlConnection property 263
SQLStatement.text property 263
steps 296-298
TextFormat 261
TextFormat pair 262
toUTCString() 264
working 299

M
map data

retrieving, through geolocation coordinates
101-106

mapReady listener method 104
MD5 class 296
MediaEvent.COMPLETE 120
MediaEvent.COMPLETE event object 117,

121
MediaPromise object 134
MediaType.IMAGE constant 115
memory usage

monitoring, in application 314-318
microphone

about 126
support, detecting 108-110
TextField object 108
TextFormat object 108

350

Microphone API 127
microphone audio sample data

ByteArray 127
ByteArray object 128
play() method 127
recording 125
SampleDataEvent 128
SampleDataEvent.SAMPLE_DATA event lis-

tener 127, 129
setLoopBack () property 126
setSilenceLevel() 126
writeFloat() 128

Microphone object 109
Mobile CameraUI API

using, to save captured photograph 113, 114
using, to save captured video 118-121

Mobile CameraUI class 113
movementDetected method 77, 84, 87
MovieClip symbol 43, 52
multiple sections

Flex mobile tabbed application, defining 188,
189

multitouch detection
checking 36-38

Multitouch.inputMode 38, 42, 43, 161, 203,
227

MultitouchInputMode.GESTURE 43
MultitouchInputMode.GESTURE constant

154
MultitouchInputMode.TOUCH_POINT 55
MultitouchInputMode.TOUCH_POINT constant

42, 80, 98, 133, 213, 227, 230, 233,
241, 250, 255, 262

Multitouch.supportsGestureEvents 37
Multitouch.supportsTouchEvents 37
muted property 91, 92

N
name property 80, 81
NativeApplication.nativeApplication object

313
navigateToURL 231
navigateToURL method 204, 228, 242
needsSoftKeyboard property 63-65
NetConnection object 144
NetStream 145

NetStream data 142
NetStream object 143, 144
Number variables 232

O
onCuePoint method 145
onGeoEvent method 234
onMetaData method 144
onNetStatus function 143
onNetStatus method 144
onRotate method 50
onTextData method 144
onTimer method 224
onTouchTap 213, 233, 241, 250
onTouchTap method 204, 227, 230, 238
onZoom method 42

P
PATH variable 30
persistNavigatorState 257
phone call

making, from application 225
Multitouch.inputMode 227
MultitouchInputMode.TOUCH_POINT constant

227
navigateToURL method 228
onTouchTap method 227
TOUCH_TAP event 225

photoReady method 116
photos

loading, from cameraRoll device 132-135
photoURL String constant 138
Pixel Bender Shader effect

applying, to loaded images 136-140
Pixels Per Inch(PPI) 164
Player option 10
play() method 127, 143, 145
Point object 253
popToFirstView() 197
portrait

and landscape switching between, device tilt
based 86-88

mode, Flex application freezing to 179-182
position 125
Powerflasher FDT 4.1

351

enabling, to access Flex Mobile SDKs 21-23
used, for develop Android applications 23-26

productArrayCollection 275
project panel

in Flash professional CS5.5, employing 176-
179

pushView() 198

Q
query string 235

R
rate property 126
raw touchpoint data

accessing 52- 55
READ_PHONE_STATE 283
RECORD_AUDIO 283
reformLayout method 168
remote video streams

playing, over RTMP 146-152
Render mode 311
requestSoftKeyboard() 65
resolution

detecting 164-166
rotation parameter 51
RTMP

remote video streams, playing over 146-152

S
SampleDataEvent 128
SampleDataEvent.SAMPLE_DATA constant

127
SampleDataEvent.SAMPLE_DATA event lis-

tener 127, 129
save() method 252
screen orientation changes

detecting 166-168
reformLayout method 168
StageOrientationEvent 169
StageOrientationEvent changes 166
StageOrientationEvent.ORIENTATION_CHANGE

event 167
StageOrientationEvent.ORIENTATION_CHANGE

events 167
Script block 273

SDK (Software Development Kit) 29
SELECT operation 266
setLoopBack () property 123, 126
setRequestedUpdateInterval() 82, 100
setRequestedUpdateInterval method 80, 98
setSilenceLevel() 123, 126
Shader object 140
Shape instance 46
Shape object 41, 43, 46, 50
SharedObject 252
SharedObjectdata property 254
shiftInterval method 81, 99
SoftKeyboardEvent class 65
SoftKeyboardEvent listeners 63, 64
Sonoport

URL 162
SoundChannel object 157
SoundChannel object 155
SoundChannel object pair 160
SoundMixer class 159
Sound object 125, 159
Sound.Play() method 154, 157
soundTransform property 154
specific gesture support

for common interactions, verifying 38, 40
splash screen

splashScreenMinimumDisplayTime property
193

splashScreenScaleMode property 193
using, with Flex mobile application 191, 192,

193
splashScreenMinimumDisplayTime property

193
splashScreenScaleMode property 193
Sprite button 238
Sprite instances 80
Sprite object 59
SQLConnection.open() method 263, 268
SQLStatement.getResult() 263
SQLStatement.sqlConnection property 263
SQLStatement.text property 263, 268
Stage dimensions 172
StageOrientationEvent 169
StageOrientationEvent changes 166
StageOrientationEvent.ORIENTATION_CHANGE

event 167
stage property 209

352

Stage.stageHeight 165
Stage.stageWidth 165
StageWebView 209

using to load ads, within Flex mobile project
219

StageWebView class 209, 215
StageWebView from view 220
StageWebView history

addChild() 215
historyBack() method 214, 215
historyForward() method 214, 215
managing 210
MultitouchInputMode.TOUCH_POINT constant

213
onTouchTap 213
Sprite objects 211
StageWebView class 215
StageWebView instance 210, 214
StageWebView object 212
TextField 211
TextFormat object 211
TextFormat pair 211

StageWebView instance 205, 206, 210, 213,
214

StageWebView.loadURL() 208
StageWebView object 206, 208, 216, 219
StageWebView viewport property 206
StageWebViewviewport property 212, 223
StageWebView.viewPort property 209
standard Flex project

converting, to Flex multiple project 26-28
stateSaving method 258
String constant 36, 137, 244
String object 39
supported device input types

detecting 34-36
SystemIdleMode class 284
SystemIdleMode.KEEP_AWAKE constant 286

T
TabbedViewNavigatorApplication 26
Tap touch 62
TextField object 34, 53, 74, 168
TextFormat object 34, 39, 53, 55, 69, 74, 79,

90, 206, 240

TextFormat pair 153, 262
text message

flash.net package 228
MultitouchInputMode.TOUCH_POINT constant

230
onTouchTap method 230
sending, from application 228-231
TOUCH_TAP event 228
URLRequest 228

Timer cycle 59
TimerEvent.Timer 218, 224
Timer object 59
timestamp 78
touchBegin 57
touchEnd 57
TOUCH_END event 61
TouchEvent data 53
TouchEvent.isPrimaryTouchPoint boolean

property 57
TouchEvent listener 111, 133, 138
touch events 38
TouchEvent.TOUCH_END 60
TouchEvent.TOUCH_MOVE event 255
TouchEvent.TOUCH_TAP event receptors 82,

100
TouchEvent.TOUCH_TAP listener 80, 98
touchPoint data based

custom gesture, creating 55-58
TouchPoint event 59
touchPointID 54
TOUCH_TAP event 225, 228, 236, 239
toUTCString() 264
trackball

responding to 68-71
trackBeginObject 56
TransformGestureEvent.GESTURE_ROTATE

event 51
TransformGestureEvent.GESTURE_ROTATE

events 154
TransformGestureEvent.GESTURE_SWIPE 49
TransformGestureEvent.GESTURE_SWIPE

event 48
TransformGestureEvent.GESTURE_ZOOM

event 43
TweenLite

URL 49

353

U
URLLoaderDataFormat.BINARY constant 139
URLLoader object 137
url property 105
URLRequest object 137
useable screen bounds

detecting 164-166
flash.system.Capabilities class 166
Stage.stageHeight 165
Stage.stageWidth 165
TextField pair 165
TextFormat pair 165

V
Vector object 39
video files

displaying, from local file system 141-146
displaying, over HTTP 141-146
playing, from local file system 144, 145
playing, over HTTP 144, 145

Video object 110, 141, 143, 145
videoPath constant 143
videoReady method 120
Video.smoothing property 143
view-based Flex mobile application

defining 185-187
firstView property 187
ViewNavigatorApplication 187
ViewNavigator control 185

ViewNavigatorApplication 26, 187, 220, 225
ViewNavigatorApplication file 257

ViewNavigatorApplication tag 273
ViewNavigator application type 13
ViewNavigator control 185
ViewNavigator history 258, 259
ViewNavigator method 198
ViewNavigator.popToFirstView() 196
virtual keyboard

invoking, programmatically 62-65
visual elements

scaling across devices, at runtime 169-172
scaling, stage resize in Flash Professional

CS5.5 based 172-176
Stage dimensions 172

W
WAKE_LOCK 283
website

opening, in default Android browser 202,
203, 204

rendering, within application 205-208
Sprite button 208
stage property 209
StageWebView 209
StageWebView class 209
StageWebView instance 205, 206
StageWebView.loadURL() 208
StageWebView object 206, 208
StageWebView viewport property 206
StageWebView.viewPort property 209
TextFormat object 206

WRITE_EXTERNAL_STORAGE 283
writeFloat() 128

Thank you for buying
Flash Development for Android Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android User Interface
Development:
Beginner's Guide
ISBN: 978-1-849514-48-4 Paperback: 304 pages

Quickly design and develop compelling user interfaces
for your Android applications

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces

2. Build compelling, user-friendly applications that
will look great on any Android device

3. Make your application stand out from the rest with
styles and themes

4. A practical Beginner's Guide to take you step-
by-step through the process of developing user
interfaces to get your applications noticed!

Flash Multiplayer Virtual
Worlds
ISBN: 978-1-849690-36-2 Paperback: 412 pages

Build immersive, full-featured interactive worlds for
games, online communities, and more

1. Build virtual worlds in Flash and enhance them
with avatars, non player characters, quests, and
by adding social network community

2. Design, present, and integrate the quests to the
virtual worlds

3. Create a whiteboard that every connected user
can draw on

4. A practical guide filled with real-world examples of
building virtual worlds

Please check www.PacktPub.com for information on our titles

Flash 10 Multiplayer Game
Essentials
ISBN: 978-1-847196-60-6 Paperback: 336 pages

Create exciting real-time multiplayer games using Flash

1. A complete end-to-end guide for creating fully
featured multiplayer games

2. The author's experience in the gaming industry
enables him to share insights on multiplayer game
development

3. Walk-though several real-time multiplayer game
implementations

4. Packed with illustrations and code snippets
with supporting explanations for ease of
understandingl

Cocos2d for iPhone 0.99
Beginner's Guide
ISBN: 978-1-849513-16-6 Paperback: 368 pages

Make mind-blowing 2D games for iPhone with this fast,
flexible, and easy-to-use framework!

1. A cool guide to learning cocos2d with iPhone to
get you into the iPhone game industry quickly

2. Learn all the aspects of cocos2d while building
three different games

3. Add a lot of trendy features such as particles and
tilemaps to your games to captivate your players

4. Full of illustrations, diagrams, and tips for building
iPhone games, with clear step-by-step instructions
and practical examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Ready to Work with Android: Development Environment and Project Setup
	Introduction
	Using Flash Professional CS5.5 to develop Android applications
	Targeting AIR for Android with Flash
Professional CS5.5
	Using Flash Builder 4.5 to develop Android applications
	Enabling Flash Builder 4 or Flex Builder to access Flex Mobile SDKs
	Using Flash Builder 4 and below to develop Android applications
	Enabling Powerflasher FDT 4.1 to access Flex Mobile SDKs
	Using Powerflasher FDT 4.1 and below to
develop Android applications
	Converting a standard Flex project to a
Flex Mobile project
	Configuring the AIR SDK to package AIR for Android applications on Windows
	Configuring the AIR SDK to package AIR for Android applications on Linux or Mac OS

	Chapter 2: Interaction Experience: Multitouch, Gestures, and Other Input
	Introduction
	Detecting supported device input types
	Detecting whether or not a device supports multitouch
	Verifying specific gesture support for
common interactions
	Using gestures to zoom a display object
	Using gestures to pan a display object
	Using gestures to swipe a display object
	Using gestures to rotate a display object
	Accessing raw touchpoint data
	Creating a custom gesture based upon touchPoint data
	Emulating the Android long-press interaction
	Invoking the virtual keyboard
programmatically
	Responding to Android soft-key interactions
	Responding to trackball and D-Pad events

	Chapter 3: Movement through Space: Accelerometer and Geolocation Sensors
	Introduction
	Detecting whether or not an Android device supports the accelerometer
	Detecting Android device movement in
3D space
	Adjusting the accelerometer sensor
update interval
	Updating display object position through
accelerometer events
	Switching between portrait and landscape based upon device tilt
	Detecting whether or not a device supports a geolocation sensor
	Retrieving device geolocation sensor data
	Adjusting the geolocation sensor update
interval
	Retrieving map data through geolocation
coordinates

	Chapter 4: Visual and Audio Input: Camera and Microphone Access
	Introduction
	Detecting camera and microphone support
	Using the traditional camera API to save
a captured image
	Using the Mobile CameraUI API to save a captured photograph
	Using the Mobile CameraUI API to save a captured video
	Using the device microphone to monitor
audio sample data
	Recording Microphone Audio Sample Data

	Chapter 5: Rich Media Presentation:
Working with Images, Video, and Audio
	Introduction
	Loading photographs from the device
cameraRoll
	Applying Pixel Bender Shader effects to loaded images
	Playing video files from the local file
system or over HTTP
	Playing remote video streams over RTMP
	Playing audio files from the local file
system or over HTTP
	Generating an audio spectrum visualizer
	Generating audio tones for your application

	Chapter 6: Structural Adaptation: Handling Device Layout and Scaling
	Introduction
	Detecting useable screen bounds and
resolution
	Detecting screen orientation changes
	Scaling visual elements across devices
at runtime
	Scaling visual elements based on stage
resize in Flash Professional CS5.5
	Employing the Project panel in Flash
Professional CS5.5
	Freezing a Flex application to landscape
or portrait mode
	Defining a blank Flex mobile application
	Defining a Flex mobile view-based
application
	Defining a Flex mobile tabbed application with multiple sections
	Using a splash screen within a Flex mobile application
	Configuring the ActionBar within a Flex
mobile project for use with ViewNavigator
	Hiding the ActionBar control in a single
view for a Flex mobile project

	Chapter 7: Native Interaction: StageWebView and URI Handlers
	Introduction
	Opening a website in the default Android browser
	Rendering a website within an application
	Managing the StageWebView history
	Using StageWebView to load ads using
ActionScript
	Using StageWebView to load ads within a Flex mobile project
	Making a phone call from an application
	Sending a text message from an application
	Invoking Google maps from an application
	Invoking the Android Market using
application URIs
	Sending e-mail from an application

	Chapter 8: Abundant Access:
File System and
Local Database
	Introduction
	Opening a local file from device storage
	Saving a file to device storage
	Saving data across sessions through local shared object
	Storing application state automatically
by using Flex
	Creating a local SQLite database
	Providing a default application database
	Automating database tasks with FlexORM

	Chapter 9: Manifest Assurance: Security and Android Permissions
	Introduction
	Setting application permissions with the
Android Manifest file
	Preventing the device screen from dimming
	Establishing Android custom URI schemes
	Anticipating Android Compatibility Filtering
	Instructing an application to be installed
to Device SDCard
	Encrypting a local SQLite database

	Chapter 10: Avoiding Problems: Debugging and Resource Considerations
	Introduction
	Debugging an application with Flash
Professional
	Debugging an application with Flash Builder
	Rendering application elements using the device GPU
	Automating application shutdown upon
device interruption events
	Exiting your application with the device back button
	Monitoring memory usage and frame rate in an application

	Chapter 11: Final Considerations: Application Compilation and Distribution
	Introduction
	Generating a code-signing certificate using Flash Professional
	Generating a code-signing certificate
using Flash Builder
	Generating a code-signing certificate
using FDT
	Generating a code-signing certificate
using the AIR Developer Tool
	Preparing icon files for distribution
	Compiling an application using Flash
Professional
	Compiling an application using Flash Builder
	Compiling an application when using FDT
	Compiling an application using the AIR
Developer Tool
	Submitting an application to the
Android Market

	Index

