

Developing Android Applications
with Flex 4.5

Developing Android Applications
with Flex 4.5

Rich Tretola

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Developing Android Applications with Flex 4.5
by Rich Tretola

Copyright © 2011 Rich Tretola. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Developing Android Applications with Flex 4.5, the image of a sereima, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30537-6

[LSI]

1304621129

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Hello World . 1
Create a Flex Mobile Project 1
Debug a Flex Mobile Project 10

2. Application Layouts . 15
Blank Application 15
View-Based Application 17

View Life Cycle 24
Tabbed Application 25

3. Permissions and Configuration Settings . 29
Permissions 29
Other Configuration Settings 32
Automatically Reorient 33
Full Screen 33
Automatically Scale Application for Different Screen Densities 33
Aspect Ratio 33

4. Exploring the APIs . 35
Accelerometer 35
GPS 37
Camera UI 39
Camera Roll 43
Microphone 45
Multitouch 48

GestureEvent 48
TransformGesture 51

Busy Indicator 56

v

5. Working with the File System . 59
File System Access 59

Folder Aliases 59
Read and Write to the File System 61
File Browse for a Single File 64
File Browse for Multiple Files 66

SQLite Databases 69

6. OS Interactions . 75
Open in Browser 75
Create Text Message 77
Create Email 79
Place Call 81
Splash Screen 83
StageWebView 85
Screen Options 87

Layout 87
Full Screen 89
ActionBar 90

7. Publish to Android Installer . 93

vi | Table of Contents

Preface

Introduction to Android
The Android mobile operating system was first introduced in the fall of 2008 as part
of the G1 handset. Android began to gain some momentum as major device manufac-
tures like Motorola, HTC, Sony, and Samsung adopted Android to run on their hard-
ware. As the number of available devices began to grow (allowing mobile customers a
wide range of choices), the number of Android handsets being activated each day in-
creased dramatically. Android’s operating system continued to evolve through versions
1.0, 1.5, 1.6, 2.0, 2.1—and then 2.2, which was the point at which Adobe AIR became
available within the Android market. The number of Android devices running 2.2 or
higher continues to grow, which means that the user base for applications based on the
methods discussed in this book is also expanding.

This book will walk you through the creation of your first Adobe AIR application using
the Flex 4.5 framework, and provides examples of how to interact with the device’s
many components and features. These include GPS, the camera, the gallery, the accel-
erometer, the multitouch display, the StageWebView, operating system interactions, and
more.

Who This Book Is For
Developing Android Applications with Adobe Flex 4.5 is a book targeting all levels of
developers. It starts with a basic Hello World application and then quickly moves to
more complicated examples where the Android APIs are explored.

Who This Book Is Not For
This book is not for developers who are interested in developing native Android ap-
plications with Java. This book will only provide examples of Android application
development using Adobe Flex 4.5 and ActionScript 3.

vii

Conventions Used in This Book
The following typographical conventions are used in this book:

Menu options
Menu options are shown using the → character, such as File→Open.

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
This is used for program listings, as well as within paragraphs, to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
This shows commands or other text that should be typed literally by the developer.

Constant width italic
This shows text that should be replaced with user-supplied values or by values
determined by context.

This Book’s Example Files
You can download the example files for this book from this location:

http://oreilly.com/catalog/9781449305376

Where necessary, multiple code samples are provided for each recipe to correspond
with different development environments. Each sample will be separated into a folder
for the specific environment. Each application should include the necessary code for
your environment, as well as an application descriptor file.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Developing Android Applications with Flex
4.5 by Rich Tretola (O’Reilly). Copyright 2011 Rich Tretola, 978-1-449-30537-6.”

viii | Preface

http://oreilly.com/catalog/9781449305376

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How to Use This Book
Development rarely happens in a vacuum. In today’s world, email, Twitter, blog posts,
coworkers, friends, and colleagues all play a vital role in helping you solve development
problems. Consider this book yet another resource at your disposal to help you solve
the snags you will encounter when developing an application. The content is arranged
in such a way that solutions should be easy to find and easy to understand. And this
book does have another big advantage: it is available any time of the day or night.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920020172/

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920020172/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, I would like to thank my wife and best friend Kim, and my daughters
Skye, Coral, and Trinity for their love and support. I love you all!

I would like to say thank to the Adobe Flex team and the members of the Flex CAB
who provided early access and support to the AIR 2.6 and Flash Builder 4.5 tools and
documentation.

Thank you as well to Mary Treseler from O’Reilly for providing this opportunity.

x | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Hello World

This section will walk you through building your first AIR on Android application using
Adobe Flash Builder 4.5. If you don’t have Flash Builder 4.5, you can get a trial version
from Adobe at http://www.adobe.com/products/flashbuilder/.

Now that you have Flash Builder 4.5 installed, open it, and let’s get started.

Create a Flex Mobile Project
Create a new Flex Mobile Project by choosing File→New→Flex Mobile Project, as
shown in Figure 1-1.

Figure 1-1. Creating a Flex Mobile Project

This will open the New Flex Mobile Project wizard, which will walk you through the
rest of the project creation process. The first screen you are presented with will allow
you to set the project name, location, and Flex SDK. Enter the name HelloWorld as the

1

http://www.adobe.com/products/flashbuilder/

project name, and leave the other settings on their defaults. Click Next, as shown in
Figure 1-2.

Figure 1-2. Establishing a project name and location

The second screen in the new project wizard is where you can select settings specific
to the target platform. Unless you have installed a plug-in to add additional platforms,
you will only have one option—Google Android, which is already selected as the target
platform. Google Android gives you the option of three different application types,
which are Blank, View-Based Application, or Tabbed Application. For this first project,
please select View-Based Application, as shown in Figure 1-3, and leave the other set-
tings on their defaults.

Next, click on the Permissions tab. Within this tab, you will be able to select the per-
missions that your application will need in order to interact with the native Android

2 | Chapter 1: Hello World

APIs. Please be sure to only select the permissions that apply to your application, as
once your application is uploaded to the Android Market, these permissions will be
used to filter the devices that will be able to install your application. For example, if
you select Camera as a required permission and your application doesn’t actually use
a camera, any Android device that doesn’t have a camera will never be able to install
your application. For the purposes of this exercise, leave only the INTERNET permis-
sion selected, as shown in Figure 1-4. Click Next.

Figure 1-3. Selecting an application template

Create a Flex Mobile Project | 3

The next screen allows for the configuration of an application server and output folder.
For this project we will not be using an application server, so leave it set to None/Other,
and click Next as shown in Figure 1-5.

Figure 1-4. Setting Android permissions

4 | Chapter 1: Hello World

The last screen that you will see in the wizard is the Build Paths screen, where you will
be able to set your Application ID. This setting is very important, as Google uses this
to identify your application in the Android Market. To ensure that your application
has a unique identifier, the reverse domain naming convention works best. Fig-
ure 1-6 shows the value of com.domain.mobile.HelloWorld as the application ID. By
replacing the word domain with a domain that you own, you can ensure that your
application ID is unique. Complete this step and click Finish.

Flash Builder will now create your new project, and by default, HelloWorldHome-
View.mxml will be created and opened in the workspace along with the Hello-
World.mxml main application file. This is shown in Figure 1-7.

Figure 1-5. The Server Settings screen

Create a Flex Mobile Project | 5

Figure 1-6. Adding an Application ID

6 | Chapter 1: Hello World

Let’s update the contents of HelloWorldHomeView.mxml by adding a Label:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="HomeView">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="Hello World" fontSize="24"
 horizontalCenter="0" verticalCenter="0"/>

</s:View>

Now we can run the application. To do this, right-click on the HelloWorld.mxml file
within the Package Explorer and select Run As→Mobile Application, as shown in Fig-
ure 1-8. Since this is our first time running this application, the Run Configurations
window will open. To run this using the Flash builder emulator, select “On desktop”
as the Launch method and select a device from the drop-down menu, as shown in
Figure 1-9.

If you have an Android device, you can plug it into a USB port and select
“On device” to run the Hello World application on your phone.

Figure 1-7. A new project has been created

Create a Flex Mobile Project | 7

Now click Apply, and then click Run—you will see the Hello World application launch
within the desktop simulator or on the device. Figure 1-10 shows Hello World running
on a device.

Congratulations: you have just created your first AIR on Android application with
Adobe Flex 4.5.

Figure 1-8. Running an application on a mobile device

8 | Chapter 1: Hello World

Figure 1-10. The Hello World application in action

Figure 1-9. The Run Configurations window

Create a Flex Mobile Project | 9

Debug a Flex Mobile Project
Now that you have created your Hello World application and ran it using the Run
Configurations window, you may wish to debug your application. Fortunately for you,
the workflow for debugging a Flex Mobile application is the same as debugging any
other Adobe Flex or Adobe AIR application.

Update the HelloWorld.mxml file to include a creationComplete handler as shown here:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplicationxmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 firstView="views.HelloWorldHomeView"
 creationComplete="viewnavigatorapplication1_creationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 importmx.events.FlexEvent;

 protectedfunction viewnavigatorapplication1_creationCompleteHandler
 (event:FlexEvent):void
 {
 // TODO Auto-generated method stub
 trace("hello world");
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:ViewNavigatorApplication>

We now need to toggle a breakpoint within the application on line 14, to demonstrate
a debugging session. To do this, right-click on line 14 within Flash Builder and select
Toggle Breakpoint from the context menu. Figure 1-11 shows this process. A small blue
dot will appear in the gutter, showing that the break point is enabled.

We are now ready to debug this application. To do this, right-click on the Hello-
World.mxml file within Package Explorer and select Debug As→Mobile Application, as
shown in Figure 1-12. Since this is our first time debugging this application, the Debug
Configurations window will open. To debug this using the Flash builder emulator,
select “On desktop” as the Launch method and select a device from the drop-down
menu, as shown in Figure 1-13.

10 | Chapter 1: Hello World

Figure 1-12. Debugging an application on a mobile device

Figure 1-11. Toggling a breakpoint

Debug a Flex Mobile Project | 11

As mentioned earlier, if you have an Android device, you can plug it into
your USB port and select “On device” to debug the Hello World appli-
cation on your phone.

When asked if you would like to switch to the Flash Builder debug perspective, select
“Yes” (see Figure 1-14). Figure 1-15 shows the application paused on line 14 within
Flash Builder’s debug perspective. You can see the trace message within the console
panel. To allow the application to complete, click the Resume button.

Congratulations: you have just completed your first Flash Builder debug session for a
Flex Mobile application.

Figure 1-13. The Debug Configurations window

12 | Chapter 1: Hello World

Figure 1-15. The Hello World application paused on line 14

Figure 1-14. Confirming the switch to debug perspective

Debug a Flex Mobile Project | 13

CHAPTER 2

Application Layouts

When creating a Flex Mobile project, you have three choices for your layout. They are
Blank Application, View-Based Application, and Tabbed Application (shown in Fig-
ure 2-1). The selection you make when choosing a layout will determine which files
Flash Builder 4.5 will autogenerate. The View-Based and Tabbed Application types
come with built-in navigation frameworks. Let’s explore each of these.

Blank Application
The Blank Application layout is best used when you are planning to build your own
custom navigation. Choosing this option when creating a new Flex Mobile application
within Flash Builder 4.5 will create only the main application file, as shown in the code
below:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:Application>

In the next code example, I have added a simple Label. You can see the results in
Figure 2-2:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label text="Blank" fontSize="36"
 horizontalCenter="0" verticalCenter="0"/>
</s:Application>

15

Figure 2-1. Layout options

16 | Chapter 2: Application Layouts

Figure 2-2. A Blank Application

View-Based Application
The View-Based Application adds the concept of a navigator, which is a built-in navi-
gation framework specifically built for use within mobile applications. The navigator
will manage the screens within your application. Creating a new View-Based Applica-
tion within Flash Builder 4.5 will result in the generation of two files. These files are
the main application file, as well as the default view that will be shown within your
application. Unlike the Blank Application, where the main application file was created
with the <s:Application> as the parent, a View-Based Application uses the new <s:View
NavigatorApplication> as its parent, as shown below:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 firstView="views.ViewBasedHomeView">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:ViewNavigatorApplication>

View-Based Application | 17

The second file that is created is the default view, which is automatically placed in a
package named views. In this case, it was named ViewBasedHomeView, and was auto-
matically set as the firstView property of ViewNavigatorApplication. The autogener-
ated code for this file is shown below:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="HomeView">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

Figure 2-3 shows the View-Based Application after adding a Label to ViewBasedHome
View. As you can see, the navigation framework automatically provides a header and
places the title of the current view in that header.

Figure 2-3. A View-Based Application

Now let’s explore the navigator a bit. I have created a second view for my application
named SecondView. I updated ViewBasedHomeView to have a Button, and also added a
Button to the SecondView shown below. As you can see, each view contains a Button
with a similar clickHandler. The clickHandler simply calls the pushView function on
the navigator and passes in the view that you wish to have the user navigate to. Home-
View will navigate to Second View, and Second View will navigate to HomeView.

18 | Chapter 2: Application Layouts

Between each view, a transition is automatically played and the title of the view is
reflected in the navigation bar. This can be seen in Figures 2-4 and 2-5:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="HomeView">

 <fx:Script>
 <![CDATA[
 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 navigator.pushView(views.SecondView);
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Button label="Go To Second View"
 horizontalCenter="0" verticalCenter="0"
 click="button1_clickHandler(event)"/>
</s:View>

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="SecondView">

 <fx:Script>
 <![CDATA[
 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 navigator.pushView(views.ViewBasedHomeView);
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Button label="Go To Home View"
 horizontalCenter="0" verticalCenter="0"
 click="button1_clickHandler(event)"/>
</s:View>

View-Based Application | 19

Figure 2-4. The HomeView screen

Figure 2-5. The Second View screen

20 | Chapter 2: Application Layouts

The navigator has additional methods for moving between views within your applica-
tion. They are as follows:

navigator.popAll()
Removes all of the views from the navigator stack. This method changes the display
to a blank screen.

navigator.popToFirstView()
Removes all views except the bottom view from the navigation stack. The bottom
view is the one that was first pushed onto the stack.

navigator.popView()
Pops the current view off the navigation stack. The current view is represented by
the top view on the stack. The previous view on the stack becomes the current view.

navigator.pushView()
Pushes a new view onto the top of the navigation stack. The view pushed onto the
stack becomes the current view.

Each of the methods described above allow for a transition to be passed in. By default,
they will use a Wipe transition. All pop actions will wipe from left to right, while a push
action will wipe from right to left.

Another important item to note on navigator.pushView() is the ability to pass an object
into the method call. I have updated the sample below to demonstrate how to use this
within your applications.

The ViewBasedHomeView shown below now includes a piece of String data (“Hello from
Home View”) within the pushView() method. SecondView has also been updated to include
a new Label, which is bound to the data object. This data object is what will hold the
value of the object passed in through the pushView() method. Figure 2-6 shows how
SecondView is created with the Label showing our new message:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="HomeView">

 <fx:Script>
 <![CDATA[
 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 navigator.pushView(views.SecondView, "Hello from Home View");
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Button label="Go To Second View"
 horizontalCenter="0" verticalCenter="0"
 click="button1_clickHandler(event)"/>
</s:View>

View-Based Application | 21

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="SecondView">

 <fx:Script>
 <![CDATA[
 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 navigator.pushView(views.ViewBasedHomeView);
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label text="{data}" horizontalCenter="0" top="30"/>
 <s:Button label="Go To Home View"
 horizontalCenter="0" verticalCenter="0"
 click="button1_clickHandler(event)"/>
</s:View>

Figure 2-6. pushView() with data passed through

22 | Chapter 2: Application Layouts

The navigation bar at the top of a View-Based Application allows you to set specific
elements. These are navigationContent and actionContent. By setting these elements,
your application can include a common navigation throughout. Here is an example of
the View-Based Application’s main file updated with these new elements. You will
notice that navigationContent, actionContent, and the Spark components are defined
in MXML. Within each, I have included a Button. Each Button has a clickHandler that
includes a call to one of the navigator methods. The Button labeled "Home" has a click
Handler that includes a call to the popToFirstView() method, which will always send
the user back to the view defined in the firstView property of the ViewNavigation
Application. The Button labeled "Back" has a clickHandler that includes a call to the
popView() method, which will always send the user to the previous view in the stack.

When using popView(), you will need to make sure your application is
aware of where it is in the stack, as a call to popView() when the user is
already on the firstView will send the user to a blank screen.

Figure 2-7 shows the application, which now includes the new navigation elements
within the navigation bar:

<?xml version="1.0" encoding="utf-8"?>
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 firstView="views.ViewBasedHomeView">

 <fx:Script>
 <![CDATA[
 protectedfunction homeButton_clickHandler(event:MouseEvent):void
 {
 navigator.popToFirstView();
 }

 protectedfunction backButton_clickHandler(event:MouseEvent):void
 {
 navigator.popView();
 }

]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:navigationContent>

 <s:Button id="homeButton" click="homeButton_clickHandler(event)"
 label="Home"/>

 </s:navigationContent>

View-Based Application | 23

 <s:actionContent>
 <s:Button id="backButton" click="backButton_clickHandler(event)"
 label="Back"/>
 </s:actionContent>
</s:ViewNavigatorApplication>

Although this example utilizes a Button component to demonstrate view
navigation, the best practice when developing Android applications
would be for your application to rely on the device’s native back button
navigation.

Figure 2-7. navigationContent and actionContent

View Life Cycle
The View class includes some new life cycle events specifically added for mobile appli-
cations. These events are important for application memory conservation:

• FlexEvent.VIEW_ACTIVATE is dispatched when the view has been activated:

viewActivate="view1_viewActivateHandler(event)"

24 | Chapter 2: Application Layouts

• FlexEvent.VIEW_DEACTIVATE is dispatched when the view has been deactivated:

viewDeactivate="view1_viewDeactivateHandler(event)"

• FlexEvent.REMOVING is dispatched right before FlexEvent.VIEW_DEACTIVATE, when
the view is about to be deactivated. Calling preventDefault() will cancel the screen
change.

Although this life cycle is great for keeping the application’s memory usage minimal,
the default behavior to deactivate a view also destroys any data associated with that
view. To preserve data so that it will be available if the user returns to that view, you
can save the data to the View.data property.

If you would like to prevent a view from ever being deactivated, you can set the destruc
tionPolicy attribute of the view (which normally defaults to auto) to never:

destructionPolicy="never"

Tabbed Application
The final option for application type is the Tabbed Application. Selecting Tabbed Ap-
plication (see Figure 2-1) when creating a new Flex Mobile project will prompt Flash
Builder to provide some additional functionality. As you can see within Figure 2-8,
choosing Tabbed Application allows you to define your tabs right within the New Flex
Mobile Project interface. In this example, I have added “My Application” and “My
Preferences” tabs. After clicking Finish, Flash Builder will create my new Tabbed Ap-
plication, as well as views for the tabs I defined. The code example below shows the
contents of my main application file, named Tabbed.mxml. It is important to note that
each of the views I defined (My Application and My Preferences) are included as View
Navigator objects. This means that they will have their own navigator objects and can
include their own independent navigation, just as within the View-Based Application
we previously discussed. Figure 2-9 shows the running Tabbed Application. Fig-
ure 2-10 shows the View-Based Application views we previously created, within the
My Application tab of the Tabbed Application:

<?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <s:ViewNavigator label="My Application" width="100%" height="100%"
 firstView="views._MyApplicationView"/>
 <s:ViewNavigator label="My Preferences" width="100%" height="100%"
 firstView="views._MyPreferencesView"/>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:TabbedViewNavigatorApplication>

Tabbed Application | 25

Figure 2-8. Create a new Tabbed Application

26 | Chapter 2: Application Layouts

Figure 2-9. A Tabbed Application

Tabbed Application | 27

Figure 2-10. A Tabbed Application with navigators

28 | Chapter 2: Application Layouts

CHAPTER 3

Permissions and Configuration
Settings

When creating an Android application, it is necessary to select the permissions that
your application will require to operate. As noted in “Create a Flex Mobile Project” in
Chapter 1, it is important that you only select the permissions that your application
needs to operate, because the application permissions requested will be used to filter
which devices can install your application from the Android Market. There are also
several other configuration settings, unique to Android applications, that will be cov-
ered in this chapter.

Permissions
The AIR 2.6 release includes the permission options outlined below, which can be
selected within the new Flex Mobile project interface of Flash Builder 4.5. This is shown
in Figure 3-1. Figure 3-2 shows the warning the user will see when installing an appli-
cation with permission requests. The permissions are:

INTERNET
Allows applications to open sockets and embed HTML content.

WRITE_EXTERNAL_STORAGE
Allows an application to write to external storage.

READ_PHONE_STATE
Allows the AIR Runtime to mute audio from application, in case of incoming call.

ACCESS_FINE_LOCATION
Allows an application to access GPS location.

DISABLE_KEYGUARD, WAKE_LOCK
Allows applications to access screen dimming provision.

CAMERA
Allows applications to access device camera.

29

RECORD_AUDIO
Allows applications to access device microphone.

ACCESS_NETWORK_STATE, ACCESS_WIFI_STATE
Allows applications to access information about network interfaces associated with
the device.

Figure 3-1. Permission selections

30 | Chapter 3: Permissions and Configuration Settings

These permissions are also editable within the application’s XML configuration file.

Manually editing the configurations within the application’s XML con-
figuration file is the only way to make permission changes once you have
created the mobile project.

Here is a sample of what that looks like:

<android>
 <manifestAdditions><![CDATA[
 <manifest installLocation="auto">
 <!--See the Adobe AIR documentation for more information about setting
 Google Android permissions-->
 <!--Removing the permission android.permission.INTERNET will have the
 side effect of preventing you from debugging your application
 on your device-->
 <uses-permission name="android.permission.INTERNET"/>
 <!--<uses-permission name="android.permission.WRITE_EXTERNAL_STORAGE"/>-->
 <!--<uses-permission name="android.permission.READ_PHONE_STATE"/>-->
 <!--<uses-permission name="android.permission.ACCESS_FINE_LOCATION"/>-->
 <!--The DISABLE_KEYGUARD and WAKE_LOCK permissions should be toggled
 together in order to access AIR's SystemIdleMode APIs-->
 <!--<uses-permission name="android.permission.DISABLE_KEYGUARD"/>-->
 <!--<uses-permission name="android.permission.WAKE_LOCK"/>-->
 <!--<uses-permission name="android.permission.CAMERA"/>-->

Figure 3-2. Installer permission warnings

Permissions | 31

 <!--<uses-permission name="android.permission.RECORD_AUDIO"/>-->
 <!--The ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE permissions should be
 toggled together in order to use AIR's NetworkInfo APIs-->
 <!--<uses-permission name="android.permission.ACCESS_NETWORK_STATE"/>-->
 <!--<uses-permission name="android.permission.ACCESS_WIFI_STATE"/>-->
 </manifest>

]]></manifestAdditions>
</android>

Other Configuration Settings
When creating a new Flex Mobile application, there are a few additional settings that
you can choose to configure. These include Automatically reorient; Full screen; and
Automatically scale application for different screen densities. Figure 3-3 shows these
options.

Figure 3-3. Additional configuration settings

32 | Chapter 3: Permissions and Configuration Settings

Automatically Reorient
This option is set to true automatically, unless you uncheck the box during your project
creation. Setting this to true will allow the device to use its accelerometer to automat-
ically switch between portrait and landscape.

This property can be edited at any time within the application’s configuration file. This
setting can also be changed programmatically while the application is running (see
Chapter 5 for more information on this):

<autoOrients>false</autoOrients>

Full Screen
Checking this box during your project creation will force your application to launch in
full screen mode. By default, this is set to false.

This property can be edited at any time within the application’s XML configuration
file. This setting can also be changed programmatically while the application is running
(see Chapter 5 for more information on this):

<fullScreen>false</fullScreen>

Automatically Scale Application for Different Screen Densities
Checking this box will allow your application to automatically scale for different screen
densities. It will also allow you to set the default applicationDPI which will be written
to the main application file. The options for this value are 160, 240, or 320:

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationDPI="320">

Aspect Ratio
You have the option to force an application to only run in portrait or landscape mode.
You can accomplish this by uncommenting the <aspectRatio> node within the appli-
cation’s XML configuration file, and setting its value to either landscape or portrait.
This setting can also be changed programmatically while the application is running (see
Chapter 5 for more information on this):

<aspectRatio>landscape</aspectRatio>

Aspect Ratio | 33

CHAPTER 4

Exploring the APIs

Now that you know how to create a new application with various layout options and
how to request application permissions, it is time to explore the ways in which your
application can interact with the Android operating system. The AIR 2.6 release in-
cludes access to many Android features. These include the accelerometer, the GPS unit,
the camera, the camera roll, the file system and the multitouch screen.

Up until this point, I have compiled the sample applications to the ADL
simulator. However, to demonstrate the API integrations, it is necessary
to run the applications on an Android device. The screenshots in this
section are from an HTC NexusOne phone. Instructions on how to run
an application on an Android device are included in Chapter 1.

Accelerometer
The accelerometer is a device that measures the speed or g-forces created when a device
accelerates across multiple planes. The faster the device is moved through space, the
higher the readings will be across the x, y, and z axes.

35

Let’s review the code below. First, you will notice that there is a private variable named
accelerometer declared, of type flash.sensors.Accelerometer. Within applicationCom
plete of the application, an event handler function is called, which first checks to see
if the device has an accelerometer by reading the static property of the Accelerometer
class. If this property returns as true, a new instance of Accelerometer is created and an
event listener of type AccelerometerEvent.UPDATE is added to handle updates. Upon
update, the accelerometer information is read from the event and written to a Text
Area within the handleUpdate function. The results can be seen within Figure 4-1:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import flash.sensors.Accelerometer;

 import mx.events.FlexEvent;

 privatevar accelerometer:Accelerometer;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 if(Accelerometer.isSupported==true){
 accelerometer = new Accelerometer();
 accelerometer.addEventListener(AccelerometerEvent.
 UPDATE,handleUpdate);
 } else {
 status.text = "Accelerometer not supported";
 }

 }

 privatefunction handleUpdate(event:AccelerometerEvent):void {
 info.text = "Updated: " + new Date().toTimeString() + "\n\n"
 + "acceleration X: "+ event.accelerationX + "\n"
 + "acceleration Y: " + event.accelerationY + "\n"
 + "acceleration Z: " + event.accelerationZ;
 }

]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label id="status" text="Shake your phone a bit" top="10" width="100%"
 textAlign="center"/>
 <s:TextArea id="info" width="100%" height="200" top="40" editable="false"/>
</s:Application>

36 | Chapter 4: Exploring the APIs

Figure 4-1. Accelerometer information

GPS
GPS stands for Global Positioning System. GPS is a space-based satellite navigation
system, which provides reliable location information to your handheld device.

If your application requires the use of the device’s GPS, you will need to select the
ACCESS_FINE_LOCATION permission when you are creating your project. See
Chapter 3 for help with permissions.

Let’s review the code below. First, you will notice that there is a private variable named
geoLocation declared, of type flash.sensors.GeoLocation. Within application
Complete of the application, an event handler function is called, which first checks
to see if the device has an available GPS unit by reading the static property of the
GeoLocation class. If this property returns as true, a new instance of GeoLocation is
created; the data refresh interval is set to 500 milliseconds (.5 seconds) within the
setRequestedUpdateInterval method; and an event listener of type GeoLocation
Event.UPDATE is added to handle updates. Upon update, the GPS information is read
from the event and written to a TextArea within the handleUpdate function.

GPS | 37

There is also some math being done to convert the speed property into
miles per hour and kilometers per hour.

The results can be seen within Figure 4-2:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 import flash.sensors.Geolocation;

 privatevar geoLocation:Geolocation;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 if(Geolocation.isSupported==true){
 geoLocation = new Geolocation();
 geoLocation.setRequestedUpdateInterval(500);
 geoLocation.addEventListener(GeolocationEvent.UPDATE,
 handleLocationRequest);
 } else {
 status.text = "Geolocation feature not supported";
 }
 }

 privatefunction handleLocationRequest(event:GeolocationEvent):void {
 var mph:Number = event.speed*2.23693629;
 var kph:Number = event.speed*3.6;
 info.text = "Updated: " + new Date().toTimeString() + "\n\n"
 + "latitude: " + event.latitude.toString() + "\n"
 + "longitude: " + event.longitude.toString() + "\n"
 + "altitude: " + event.altitude.toString() + "\n"
 + "speed: " + event.speed.toString() + "\n"
 + "speed: " + mph.toString() + " MPH \n"
 + "speed: " + kph.toString() + " KPH \n"
 + "heading: " + event.heading.toString() + "\n"
 + "horizontal accuracy: "
 + event.horizontalAccuracy.toString() + "\n"
 + "vertical accuracy: "
 + event.verticalAccuracy.toString();
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

38 | Chapter 4: Exploring the APIs

 <s:Label id="status" text="Geolocation Info" top="10" width="100%"
 textAlign="center"/>
 <s:TextArea id="info" width="100%" top="40" editable="false"/>
</s:Application>

Figure 4-2. GPS information

Camera UI
A camera is almost ubiquitous on handheld Android devices. In fact, many new An-
droid devices now include both front- and rear-facing cameras.

If your application requires the use of the device’s camera, you will need to select the
CAMERA permission when you are creating your project (see Chapter 3 for help with
permissions). The Camera UI tools will allow your application to use the native Camera
interface within the Android device.

Let’s review the code below. First, you will notice there is a private variable named
camera declared, of type flash.media.CameraUI. Within applicationComplete of the ap-
plication, an event handler function is called, which first checks to see if the device has
an available camera by reading the static property of the CameraUI class. If this property
returns as true, a new instance of CameraUI is created and event listeners of type Media
Event.COMPLETE and ErrorEvent.COMPLETE are added to handle a successfully captured
image as well as any errors that may occur.

Camera UI | 39

A Button with an event listener on the click event is used to allow the application user
to launch the CameraUI. When the user clicks the TAKE A PICTURE button, the cap
tureImage method is called, which then opens the camera by calling the launch method
and passing in the MediaType.IMAGE static property. At this point, the user is redirected
from your application to the native camera. Once the user takes a picture and clicks
OK, he is directed back to your application, the MediaEvent.COMPLETE event is triggered,
and the onComplete method is called. Within the onComplete method, the event.data
property is cast to a flash.Media.MediaPromise object. The mediaPromise.file.url
property is then used to populate Label and Image components that display the path to
the image and the actual image to the user.

Utilizing CameraUI within your application is different than the raw
camera access provided by Adobe AIR on the desktop. Raw camera ac-
cess is also available within AIR on Android and works in the same way
as the desktop version.

Figure 4-3 shows the application, Figure 4-4 shows the native camera user interface,
and Figure 4-5 shows the application after a picture was taken and the user clicked OK
to return to the application:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 privatevar camera:CameraUI;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 if (CameraUI.isSupported){
 camera = new CameraUI();
 camera.addEventListener(MediaEvent.COMPLETE, onComplete);
 camera.addEventListener(ErrorEvent.ERROR, onError);
 status.text="CameraUI supported";
 } else {
 status.text="CameraUI NOT supported";
 }
 }

 privatefunction captureImage(event:MouseEvent):void {
 camera.launch(MediaType.IMAGE);
 }

 privatefunction onError(event:ErrorEvent):void {
 trace("error has occurred");
 }

40 | Chapter 4: Exploring the APIs

 privatefunction onComplete(event:MediaEvent):void {
 var mediaPromise:MediaPromise = event.data;
 status.text = mediaPromise.file.url;
 image.source = mediaPromise.file.url;
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label id="status" text="Click Take a Picture button" top="10" width="100%"
 textAlign="center"/>

 <s:Button width="300" height="60" label="TAKE A PICTURE"
 click="captureImage(event)"
 horizontalCenter="0" enabled="{CameraUI.isSupported}"
 top="80"/>

 <s:Image id="image" width="230" height="350" horizontalCenter="0" top="170"/>
</s:Application>

Figure 4-3. The Camera UI Application

Camera UI | 41

Figure 4-4. The native camera UI

Figure 4-5. Application after taking picture

42 | Chapter 4: Exploring the APIs

Camera Roll
The Camera Roll provides access to the camera’s gallery of images.

If your application requires the use of the device’s camera roll, you will need to select
the WRITE_EXTERNAL_STORAGE permission when you are creating your project.
See Chapter 3 for help with permissions.

Let’s review the code below. First, you will notice that there is a private variable named
cameraRoll declared, of type flash.media.CameraRoll. Within applicationComplete of
the application, an event handler function is called, which first checks to see if the device
supports access to the image gallery by reading the static property of the CameraRoll
class. If this property returns as true, a new instance of CameraRoll is created and event
listeners of type MediaEvent.COMPLETE and ErrorEvent.COMPLETE are added to handle a
successfully captured image (as well as any errors that may occur).

A Button with an event listener on the click event is used to allow the user to browse
the image gallery. When the user clicks the BROWSEGALLERY button, the browse
Gallery method is called, which then opens the device’s image gallery. At this point,
the user is redirected from your application to the native gallery application. Once the
user selects an image from the gallery, she is directed back to your application, the
MediaEvent.COMPLETE event is triggered, and the mediaSelected method is called. Within
the mediaSelected method, the event.data property is cast to a flash.Media.MediaPro
mise object. The mediaPromise.file.url property is then used to populate Label and
Image components that display the path to the image and the actual image to the user.
Figure 4-6 shows the application and Figure 4-7 shows the application after a picture
was selected from the gallery and the user has returned to the application:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 privatevar cameraRoll:CameraRoll;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 if(CameraRoll.supportsBrowseForImage){
 cameraRoll = new CameraRoll();
 cameraRoll.addEventListener(MediaEvent.SELECT,
 mediaSelected);
 cameraRoll.addEventListener(ErrorEvent.ERROR, onError);
 } else{
 status.text="CameraRoll NOT supported";
 }
 }

Camera Roll | 43

 privatefunction browseGallery(event:MouseEvent):void {
 cameraRoll.browseForImage();
 }

 privatefunction onError(event:ErrorEvent):void {
 trace("error has occurred");
 }

 privatefunction mediaSelected(event:MediaEvent):void{
 var mediaPromise:MediaPromise = event.data;
 status.text = mediaPromise.file.url;
 image.source = mediaPromise.file.url;
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label id="status" text="Click Browse Gallery to select image" top="10"
 width="100%" textAlign="center"/>

 <s:Button width="300" height="60" label="BROWSE GALLERY"
 click="browseGallery(event)"
 enabled="{CameraRoll.supportsBrowseForImage}"
 top="80" horizontalCenter="0"/>

 <s:Image id="image" width="230" height="350" top="170" horizontalCenter="0"/>
</s:Application>

Figure 4-6. The Browse Gallery application

44 | Chapter 4: Exploring the APIs

Figure 4-7. The Browse Gallery application with a picture selected

Microphone
If your application requires the use of the device’s microphone, you will need to select
the RECORD_AUDIO permission when you are creating your project. See Chapter 3
for help with permissions.

Let’s review the code below. First, you will notice that there is a private variable named
microphone declared, of type flash.media.Microphone. Within applicationComplete of
the application, an event handler function is called, which first checks to see if the device
supports access to the microphone by reading the static property of the Microphone
class. If this property returns as true, an instance of the Microphone is retrieved and set
to the microphone variable, the rate is set to 44, and the setUseEchoSuppression method
is used to set the echo suppression to true. There are also variables of type ByteArray
and Sound declared within this application (instances of these variables will be created
when the application runs).

There are three button components within the application to trigger the record, stop,
and playback functionalities, respectively.

Microphone | 45

Clicking the record button will call the record_clickHandler function, which will create
a new instance of the recording variable of type ByteArray. An event listener of type
SampleDataEvent.SAMPLE_DATA is added to the microphone, which will call the micData
Handler method when it receives data. Within the micDataHandler method, the data is
written to the recording ByteArray.

Clicking the stop button will stop the recording by removing the SampleDataEvent.
SAMPLE_DATA event listener.

Clicking the play button will call the play_clickHandler method, which first sets the
position of the recording ByteArray to 0 so it is ready for playback. It then creates a new
instance of the Sound class and sets it to the sound variable. It also adds an event listener
of type SampleDataEvent.SAMPLE_DATA that will call the playSound method when it re-
ceives data. Finally the play method is called on the sound variable to start playback.

The playSound method loops through the recording ByteArray in memory and writes
those bytes back to the data property of the SampleDataEvent, which then plays through
the device’s speaker.

To extend this sample, you would need to use some open source classes to convert the
recording ByteArray to an .mp3 or .wav file so that it can be saved to disk. See the
application in Figure 4-8:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 privatevar microphone:Microphone;
 privatevar recording:ByteArray;
 privatevar sound:Sound;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void
 {
 if(Microphone.isSupported){
 microphone = Microphone.getMicrophone();
 microphone.rate = 44;
 microphone.setUseEchoSuppression(true);
 } else {
 status.text="Microphone NOT supported";
 }
 }

 privatefunction micDataHandler(event:SampleDataEvent):void{
 recording.writeBytes(event.data);
 }

 protectedfunction record_clickHandler(event:MouseEvent):void
 {

46 | Chapter 4: Exploring the APIs

 recording = new ByteArray();
 microphone.addEventListener(SampleDataEvent.SAMPLE_DATA,
 micDataHandler);
 }

 protectedfunction stop_clickHandler(event:MouseEvent):void
 {
 microphone.removeEventListener(SampleDataEvent.SAMPLE_DATA,
 micDataHandler);
 }

 protectedfunction play_clickHandler(event:MouseEvent):void
 {
 recording.position = 0;
 sound = new Sound();
 sound.addEventListener(SampleDataEvent.SAMPLE_DATA, playSound);
 sound.play();
 }

 privatefunction playSound(event:SampleDataEvent):void
 {
 for (var i:int = 0; i < 8192 && recording.bytesAvailable > 0;
 i++){
 var sample:Number = recording.readFloat();
 event.data.writeFloat(sample);
 event.data.writeFloat(sample);
 }
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label id="status" text="Click Record to grab some audio,
 then Stop and Play it back"
 top="10" width="100%" textAlign="center"/>
 <s:HGrouptop="80" horizontalCenter="0">
 <s:Button id="record" label="Record" click="record_clickHandler(event)" />
 <s:Button id="stop" label="Stop" click="stop_clickHandler(event)" />
 <s:Button id="play" label="Play" click="play_clickHandler(event)" />
 </s:HGroup>
</s:Application>

Microphone | 47

Figure 4-8. The microphone application

Multitouch
One of the navigation methods unique to mobile devices is the ability to interact with
an application via gestures on the device’s touchscreen. Multitouch is defined as the
ability to simultaneously register three or more touch points on the device. Within
Adobe AIR 2.6, there are two event classes used to listen for multitouch events.

GestureEvent
The GestureEvent class is used to listen for a two-finger tap on the device. The event
used to listen for this action is GESTURE_TWO_FINGER_TAP. This event will return the reg-
istration points for the x and y coordinates when a two-finger tap occurs for both stage
positioning as well as object positioning.

Let’s review the code below. Within applicationComplete of the application, an event
handler function is called, which first sets the Multitouch.inputMode to Multitouch
InputMode.GESTURE. Next, it checks to see if the device supports multitouch by reading
the static property of the Multitouch class. If this property returns as true, an event
listener is added to the stage to listen for GestureEvent.GESTURE_TWO_FINGER_TAP events.
When this event occurs, the onGestureTwoFinderTap method is called., which will

48 | Chapter 4: Exploring the APIs

capture the localX and localY coordinates as well as the stageX and stageY coordinates.
If you two-finger-tap on an empty portion of the stage, these values will be identical.
If you two-finger-tap on an object on the stage, the localX and localY coordinates will
be the values within the object, and the stageX and stageY will be relative to the stage
itself. See Figure 4-9 for an example of a two-finger tap on the stage and Figure 4-10
for a two-finger tap on the Android image:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 if(Multitouch.supportsGestureEvents){
 stage.addEventListener(GestureEvent.GESTURE_TWO_FINGER_TAP,
 onGestureTwoFingerTap);
 } else {
 status.text="gestures not supported";
 }

 }
 privatefunction onGestureTwoFingerTap(event:GestureEvent):void {
 info.text = "event = " + event.type + "\n" +
 "localX = " + event.localX + "\n" +
 "localX = " + event.localY + "\n" +
 "stageX = " + event.stageX + "\n" +
 "stageY = " + event.stageY;
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label id="status" text="Do a 2 finger tap both on and off the object"
 top="10" width="100%" textAlign="center"/>
 <s:TextArea id="info" width="100%" top="40" editable="false"/>
 <s:Image width="384" height="384" bottom="10" horizontalCenter="0"
 source="@Embed('android_icon.png')"/>
</s:Application>

Multitouch | 49

Figure 4-9. A two-finger tap on the stage

Figure 4-10. A two-finger tap on an image object

50 | Chapter 4: Exploring the APIs

TransformGesture
There are multiple transform gesture events available within AIR 2.6. Each will capture
a unique multitouch event. The example below demonstrates how to listen for
GESTURE_PAN, GESTURE_ROTATE, GESTURE_SWIPE, and GESTURE_ZOOM events.

Let’s review the code below. Within applicationComplete of the application, an event
handler function is called, which first sets the Multitouch.inputMode to Multitouch
InputMode.GESTURE. Next, it checks to see if the device supports multitouch by reading
the static property of the Multitouch class. If this property returns as true, event listeners
are added to the stage to listen for the TransformGestureEvent.GESTURE_PAN, Transform
GestureEvent.GESTURE_ROTATE, TransformGestureEvent.GESTURE_SWIPE, and Transform
GestureEvent.GESTURE_ZOOM events.

When a user grabs an object with two fingers and drags it, the TransformGesture
Event.GESTURE_PAN event is triggered and the onGesturePan method is called. Within the
onGesturePan method, the offsetX and offsetY values of this event are written to the
text property of the TextArea component. Adding the event’s offsetX and offsetY val-
ues sets the object’s x and y to move the object across the stage. The results can be seen
in Figure 4-11.

Figure 4-11. The GESTURE_PAN event

Multitouch | 51

When a user grabs an object with two fingers and rotates it, the TransformGesture
Event.GESTURE_ROTATE event is triggered and the onGestureRotate method is called.
Within the onGestureRotate method, the rotation value of this event is written to the
text property of the TextArea component. To allow the object to rotate around its
center, the object’s transformAround method is called and the event’s rotation value is
added to the object’s rotationZ value. The results can be seen in Figure 4-12.

Figure 4-12. The GESTURE_ROTATE event

When a user swipes across an object with one finger in any direction, the Transform
GestureEvent.GESTURE_SWIPE event is triggered and the onGestureSwipe method is called.
Within the onGestureSwipe method, the values of the event’s offsetX and offsetY are
evaluated to determine the direction in which the user swiped across the object. This
direction is then written to the text property of the TextArea component. The results
can be seen in Figure 4-13.

52 | Chapter 4: Exploring the APIs

Figure 4-13. The GESTURE_SWIPE event

When a user performs a “pinch and zoom” action with two fingers on an object, the
TransformGestureEvent.GESTURE_ZOOM event is triggered and the onGestureZoom method
is called. Within the onGestureZoom method, the values of the event’s scaleX and
scaleY are written to the text property of the TextArea component. The scaleX value
is then used as a multiplier on the object’s scaleX and scaleY property to increase or
decrease the size of the object as the user pinches or expands two fingers on the object.
The results can be seen in Figure 4-14:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void {
 Multitouch.inputMode = MultitouchInputMode.GESTURE;
 if(Multitouch.supportsGestureEvents){
 image.addEventListener(TransformGestureEvent.GESTURE_PAN,
 onGesturePan);

Multitouch | 53

 image.addEventListener(TransformGestureEvent.GESTURE_ROTATE,
 onGestureRotate);
 image.addEventListener(TransformGestureEvent.GESTURE_SWIPE,
 onGestureSwipe);
 image.addEventListener(TransformGestureEvent.GESTURE_ZOOM,
 onGestureZoom);
 } else {
 status.text="gestures not supported";
 }
 }

 privatefunction onGesturePan(event:TransformGestureEvent):void{
 info.text = "event = " + event.type + "\n" +
 "offsetX = " + event.offsetX + "\n" +
 "offsetY = " + event.offsetY;
 image.x += event.offsetX;
 image.y += event.offsetY;
 }

 privatefunction onGestureRotate(event :
 TransformGestureEvent) : void {
 info.text = "event = " + event.type + "\n" +
 "rotation = " + event.rotation;
 image.transformAround(new Vector3D(image.width/2,
 image.height/2, 0),
 null,
 new Vector3D(0,0,image.rotationZ
 + event.rotation));
 }

 privatefunction onGestureSwipe(event :
 TransformGestureEvent) : void {
 var direction:String = "";
 if(event.offsetX == 1) direction = "right";
 if(event.offsetX == −1) direction = "left";
 if(event.offsetY == 1) direction = "down";
 if(event.offsetY == −1) direction = "up";
 info.text = "event = " + event.type + "\n" +
 "direction = " + direction;
 }

 privatefunction onGestureZoom(event :
 TransformGestureEvent) : void {
 info.text = "event = " + event.type + "\n" +
 "scaleX = " + event.scaleX + "\n" +
 "scaleY = " + event.scaleY;
 image.scaleX = image.scaleY *= event.scaleX;
 }

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 image.rotation = 0;
 image.scaleX = 1;
 image.scaleY = 1;

54 | Chapter 4: Exploring the APIs

 image.x = 40;
 image.y = 260;
 info.text = "";
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label id="status" text="Transform Gestures" top="10" width="100%"
 textAlign="center"/>
 <s:HGroup width="100%" top="40" left="5" right="5">
 <s:TextArea id="info" editable="false" width="100%" height="200"/>
 <s:Button label="Reset" click="button1_clickHandler(event)"/>
 </s:HGroup>
 <s:Image id="image" x="40" y="260" width="400" height="400"
 source="@Embed('android_icon.png')"/>
</s:Application>

Figure 4-14. The GESTURE_ZOOM event

Multitouch | 55

Busy Indicator
A new component has been added to provide feedback to the users within your mobile
application. While there is no cursor to show busy status as there is in desktop devel-
opment, the BusyIndicator component was added specifically for this reason. Using
this component is extremely simple.

Let’s review the code below. There is a CheckBox with the label “Show Busy Indica
tor”, which when checked, calls the checkbox1_clickHandler method. There is a Busy
Indicator component with an id of indicator, set to visible (or false). Within the
checkbox1_clickHandler method, the indicator’s visible property is set to the value of
the CheckBox. This simply shows or hides the BusyIndicator. Within the BusyIndica
tor, you can set the height, width, and symbolColor to suit the needs and style of your
application. The results can be seen in Figure 4-15:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 protectedfunction checkbox1_clickHandler(event:MouseEvent):void
 {
 indicator.visible = event.target.selected;
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:CheckBox label="Show Busy Indicator"
 horizontalCenter="0"
 click="checkbox1_clickHandler(event)" top="10"/>
 <s:BusyIndicator id="indicator" height="300" width="300"
 verticalCenter="0"
 horizontalCenter="0"
 visible="false"
 symbolColor="black"/>

</s:Application>

56 | Chapter 4: Exploring the APIs

Figure 4-15. The BusyIndicator component

Busy Indicator | 57

CHAPTER 5

Working with the File System

AIR on Android provides access to the file system to read, write, and update files of all
types. This functionality can be very useful not only for reading existing files, but also
for storing files, media, data, and so on. This chapter will demonstrate how to read and
write text files, browse the file system for media files, and create and write to an SQLite
database.

This chapter has sample applications that require access to the file system, so you will
need to select the WRITE_EXTERNAL_STORAGE permission when you are creating
these projects. See Chapter 3 for help with permissions.

File System Access
Just as in the desktop version of Adobe AIR, AIR on Android gives you access to the
file system. The usage is exactly the same.

Folder Aliases
To access the file system, you can navigate using several folder static alias properties
of the File class.

Let’s review the code below. On applicationComplete, the application1_application
CompleteHandler method is called, and the static File properties are read and written
to a String variable. This String variable is written to the text property of a TextArea
component. Figure 5-1 shows the results. You will notice that many of the aliases return
the same value, which is a path to the device’s external storage card:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete="application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

59

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void
 {
 var s:String = "";
 s += "File.applicationDirectory : " +
 File.applicationDirectory.nativePath + "\n\n";
 s += "File.applicationStorageDirectory : " +
 File.applicationStorageDirectory.nativePath + "\n\n";
 s += "File.desktopDirectory: " +
 File.desktopDirectory.nativePath + "\n\n";
 s += "File.documentsDirectory : " +
 File.documentsDirectory.nativePath + "\n\n";
 s += "File.userDirectory : " +
 File.userDirectory.nativePath + "\n\n";
 info.text = s;
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="File System Paths" top="10" width="100%" textAlign="center"/>

 <s:TextArea id="info" width="100%" height="100%" top="40" editable="false"/>

</s:Application>

Figure 5-1. File System Paths

60 | Chapter 5: Working with the File System

Read and Write to the File System
Adobe AIR provides you with the ability to read and write files to the file system. The
following example will create a new file and then read it back.

Let’s review the code below. There are two TextArea and two Button components that
make up this sample. The first TextArea (with an id of contents) will hold the contents
of what is to be written to the file. The second (with an id of results) will output the
file contents when read back. The application can be seen in Figure 5-2.

Figure 5-2. The File Save application

Clicking on the Button labeled Save will call the button1_clickHandler method. Within
the button1_clickHandler method, an instance of File is created with the name file,
the path is resolved to the userDirectory, and "samples/test.txt" is passed in to the
resolvePath method. An instance of FileStream named stream is created to write the
data to the file. The open method is then called on the stream object, and the file and
FileMode.WRITE are passed in, which will open the file with write permissions. Next,
the writeUTFBytes method is called and contents.text is passed in. Finally, the stream
is closed. Figure 5-3 shows the new file within the File Manager application after it has
been created.

File System Access | 61

Clicking on the Button labeled Load will call the button2_clickHandler method. Within
the button2_clickHandler method, an instance of File is created with the name file,
the path is resolved to the userDirectory, and "samples/test.txt" is passed in to the
resolvePath method. An instance of FileStream named stream is created to read the
data from the file. The open method is called on the stream object, and the file and
FileMode.READ are passed in, which will open the file with write permissions. Next, the
readUTFBytes method is called, the stream.bytesAvailable is passed in, and the results
are set to the results.text property of the second TextArea. Finally, the stream is closed.
Figure 5-4 shows the contents of the file within the results TextArea:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 var file:File = File.userDirectory.resolvePath
 ("samples/test.txt");
 var stream:FileStream = new FileStream()
 stream.open(file, FileMode.WRITE);
 stream.writeUTFBytes(contents.text);
 stream.close();
 }

 protectedfunction button2_clickHandler(event:MouseEvent):void
 {
 var file:File = File.userDirectory.resolvePath
 ("samples/test.txt");
 varstream:FileStream = new FileStream()
 stream.open(file, FileMode.READ);
 results.text = stream.readUTFBytes(stream.bytesAvailable);
 stream.close();
 }

]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:TextArea id="contents" left="10" right="10" top="10" height="100"/>
 <s:Button right="10" top="120" label="Save" click="button1_clickHandler(event)"/>

 <s:Button left="10" top="200" label="Load" click="button2_clickHandler(event)"/>
 <s:TextArea id="results" left="10" right="10" top="280" height="100"
 editable="false"/>
</s:Application>

62 | Chapter 5: Working with the File System

Figure 5-3. A new file shown within File Manager

Figure 5-4. File contents loaded into the results TextArea

File System Access | 63

File Browse for a Single File
The browse for file functionality of the File class works a bit differently in Android as
compared to the desktop. Within Android, the browseForOpen method will open up a
specific native file selector that will allow you to open a file of type Audio, Image, or
Video.

Let’s review the code below. The Button with the Browse label will call the button1_click
Handler when clicked. Within this function, an instance of File is created with the
variable name file. An event listener is added for Event.SELECT with the responding
method of onFileSelect, and the browseForOpen method is called. The application can
be seen in Figure 5-5. When browseForOpen is called, the Android file selector is
launched. This can be seen in Figure 5-6. After selecting a file within the Android file
selector, the event is fired and the onFileSelect method is called. The event.current
Target is cast to a File object, and its nativePath, extension, and url properties are
used to display the nativePath and the image in the example (shown in Figure 5-7):

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 var file:File = new File();
 file.addEventListener(Event.SELECT, onFileSelect);
 file.browseForOpen("Open");
 }

 privatefunction onFileSelect(event:Event):void {
 var file:File = File(event.currentTarget);
 filepath.text = file.nativePath;
 if(file.extension == "jpg"){
 image.source = file.url;
 }
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Button horizontalCenter="0" top="10" label="Browse"
 click="button1_clickHandler(event)"/>
 <s:Label id="filepath" left="10" right="10" top="100"/>
 <s:Image id="image" width="230" height="350" top="150" horizontalCenter="0"/>
</s:Application>

64 | Chapter 5: Working with the File System

Figure 5-5. The Browse for File application

Figure 5-6. The file selector

File System Access | 65

File Browse for Multiple Files
Within Android, the browseForOpenMultiple method will open up a specific native file
selector that will allow you to open multiple files of type Audio, Image, or Video.

Let’s review the code below. The Button with the Browse label will call the button1_click
Handler when clicked. Within this function, an instance of File is created with the
variable name file. An event listener is added for FileListEvent.SELECT_MULTIPLE with
the responding method of onMultipleFileSelect, and the browseForOpen method is
called. When browseForOpen is called, the Android file selector is launched. This can be
seen in Figure 5-8. After selecting the files within the Android file selector, the event is
fired and the onMultipleFileSelect method is called. Within this method, the array of
files included in the event is looped over—and if the file type is an image, it is added
as a new element. The results can be seen in Figure 5-9:

Figure 5-7. The Browse for File application with an image selected

66 | Chapter 5: Working with the File System

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 import spark.components.Image;

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 var file:File = new File();
 file.addEventListener(FileListEvent.SELECT_MULTIPLE,
 onMultipleFileSelect);
 file.browseForOpenMultiple("Open");
 }

 privatefunction onMultipleFileSelect(event:FileListEvent):void {
 holder.removeAllElements();
 for (var i:int=0; i<event.files.length; i++){
 var f:File = event.files[i] as File;
 if(f.extension == "jpg"){
 var image:Image = new Image();
 image.source = f.url;
 image.scaleX = .1;
 image.scaleY = .1;
 holder.addElement(image);
 }
 }
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Button horizontalCenter="0" top="10" label="Browse" click=
 "button1_clickHandler(event)"/>
 <s:Label id="filepath" left="10" right="10" top="100"/>
 <s:Scroller top="150" horizontalCenter="0" bottom="0">
 <s:VGroup id="holder"/>
 </s:Scroller>

</s:Application>

File System Access | 67

Figure 5-8. Browse for multiple files

Figure 5-9. Multiple images selected

68 | Chapter 5: Working with the File System

SQLite Databases
Just as with Adobe AIR on the desktop, you can use an SQLite database to store data
on a mobile device. The example below will create a database, use a simple form to
save data to that database, and retrieve and display the stored data.

Let’s review the code below. At the top, you will see the database file defined as a file
called users.db within the userDirectory. Next, the SQLConnection is defined. Finally,
there are several SQLStatements declared and SQL strings defined, which will be used
for working with the database.

Within the applicationComplete event handler, the SQLConnection is initiated; two event
listeners are added to listen for SQLEvent.OPEN and SQLErrorEvent.ERROR; and finally,
the openAsync method is called and the db file is passed in.

After the database is opened, the openHandler function is called. Within this function,
the SQLEvent.OPEN event listener is removed. Next, createTableStmt is created, config-
ured, and executed. This statement will create a new table called Users (if it doesn’t yet
exist). If it is successful, then the createResult method is called. Within the create
Result method, the SQLEvent.RESULT event is removed and the selectUsers method is
called.

Within the selectUsers method, selectStmt is created, configured, and executed. This
statement will return all rows within the Users table. This data is then stored within
the selectStmt. If it is successful, the selectResult method is called. Within the
selectResult method, the data is read from the selectStmt using the getResults
method. It is then cast to an ArrayCollection and set to the dataProvider of a
DataGroup, where it is shown on screen by formatting within an itemRenderer named
UserRenderer.

All of the processes just described occur as chained events when the application loads
up. So if there is any data in the database from previous uses, it will automatically
display when the application is loaded. This can be seen in Figure 5-10.

The only remaining functionality is the ability to add a new user. There are two text
fields with the ids of firstName and lastName, and a Button that when clicked will call
the button1_clickHandler function. Within the button1_clickHandler function,
insertStmt is created, configured, and executed. Notice that within the insertStmt
configuration, the parameters firstName and lastName (which were defined in
insertSQL) are set to the text properties of the firstName and lastName TextInput
components. If it is successful, the insertResult method is called. Within the insert
Result method, the selectUsers method is called and the DataGroup is updated, showing
the newly-added data. This can be seen in Figure 5-11.

SQLite Databases | 69

Here is the code for the main application:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete=
 "application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import mx.events.FlexEvent;

 privatevar db:File = File.userDirectory.resolvePath("users.db");
 privatevar conn:SQLConnection;

 privatevar createTableStmt:SQLStatement;
 privatevar createTableSQL:String =
 "CREATE TABLE IF NOT EXISTS User (" +
 "userId INTEGER PRIMARY KEY AUTOINCREMENT," +
 "firstName TEXT," + "lastName TEXT)";

 privatevar selectStmt:SQLStatement;
 privatevar selectSQL:String = "SELECT * FROM User";

 privatevar insertStmt:SQLStatement;
 privatevar insertSQL:String =
 "INSERT INTO User (firstName, lastName)" +
 "VALUES (:firstName, :lastName)";

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void
 {
 conn = new SQLConnection();
 conn.addEventListener(SQLEvent.OPEN, openHandler);
 conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);
 conn.openAsync(db);
 }

 privatefunction openHandler(event:SQLEvent):void {
 log.text += "Database opened successfully";
 conn.removeEventListener(SQLEvent.OPEN, openHandler);
 createTableStmt = new SQLStatement();
 createTableStmt.sqlConnection = conn;
 createTableStmt.text = createTableSQL;
 createTableStmt.addEventListener(SQLEvent.RESULT, createResult);
 createTableStmt.addEventListener(SQLErrorEvent.ERROR,
 errorHandler);
 createTableStmt.execute();
 }

 privatefunction createResult(event:SQLEvent):void {
 log.text += "\nTable created";
 conn.removeEventListener(SQLEvent.RESULT, createResult);
 selectUsers();
 }

70 | Chapter 5: Working with the File System

 privatefunction errorHandler(event:SQLErrorEvent):void {
 log.text += "\nError message: " + event.error.message;
 log.text += "\nDetails: " + event.error.details;
 }

 privatefunction selectUsers():void{
 selectStmt = new SQLStatement();
 selectStmt.sqlConnection = conn;
 selectStmt.text = selectSQL;
 selectStmt.addEventListener(SQLEvent.RESULT, selectResult);
 selectStmt.addEventListener(SQLErrorEvent.ERROR, errorHandler);
 selectStmt.execute();
 }

 privatefunction selectResult(event:SQLEvent):void {
 log.text += "\nSelect completed";
 var result:SQLResult = selectStmt.getResult();
 users.dataProvider = new ArrayCollection(result.data);
 }

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 insertStmt = new SQLStatement();
 insertStmt.sqlConnection = conn;
 insertStmt.text = insertSQL;
 insertStmt.parameters[":firstName"] = firstName.text;
 insertStmt.parameters[":lastName"] = lastName.text;
 insertStmt.addEventListener(SQLEvent.RESULT, insertResult);
 insertStmt.addEventListener(SQLErrorEvent.ERROR, errorHandler);
 insertStmt.execute();
 }

 privatefunction insertResult(event:SQLEvent):void {
 log.text += "\nInsert completed";
 selectUsers();
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="First name" top="35" left="10"/>
 <s:TextInput id="firstName" left="150" top="10" width="300"/>

 <s:Label text="Last name" top="95" left="10"/>
 <s:TextInput id="lastName" left="150" top="70" width="300"/>

 <s:Button label="Save" click="button1_clickHandler(event)" top="130" left="150"/>

 <s:Scroller height="200" width="100%" left="10" right="10" top="200">
 <s:DataGroup id="users" height="100%" width="95%"
 itemRenderer="UserRenderer">

SQLite Databases | 71

 <s:layout>
 <s:VerticalLayout/>
 </s:layout>
 </s:DataGroup>
 </s:Scroller>

 <s:TextArea id="log" width="100%" bottom="0" height="250"/>

</s:Application>

The code for the UserRenderer:

<?xml version="1.0" encoding="utf-8"?>
<s:ItemRenderer xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">
 <s:Label text="{data.lastName}, {data.firstName}"/>
</s:ItemRenderer>

Figure 5-10. SQLite sample application

72 | Chapter 5: Working with the File System

Figure 5-11. The application after adding a record

SQLite Databases | 73

CHAPTER 6

OS Interactions

Open in Browser
From within your application, you can open a link using the device’s native browser in
the same manner as you would in a traditional browser-based Flex application. This is
accomplished with the URLRequest class. Simply creating a new URLRequest and passing
it into the navigateToURL method will invoke the user’s browser to handle the request.
Figure 6-1 shows the sample application running and Figure 6-2 shows the results of
clicking on the Open button:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 protectedfunction sendIt_clickHandler(event:MouseEvent):void
 {
 var s:String = "";
 s+= address.text;
 navigateToURL(new URLRequest(s));

 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="URL" top="40" left="50"/>
 <s:TextInput id="address" top="30" left="160" text="http://www.happytoad.com"
 width="250"/>
 <s:Button id="sendIt" label="Open" click="sendIt_clickHandler(event)" top="110"
 left="160"/>
</s:Application>

75

Figure 6-1. Open a link in a browser

Figure 6-2. Clicking the link launches the browser selector

76 | Chapter 6: OS Interactions

Create Text Message
The URLRequest class can be used to open the Messaging application to send text mes-
sages. By prepending the request with sms:, you will tell Android to launch the
Messaging application when the navigateToURL method is called. Figure 6-3 shows
the sample application running and Figure 6-4 shows the Messaging application with
the phone number pre-populated. Unfortunately, at this time it is not possible to send
a message along with the phone number when using the Messaging application:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 protectedfunction sendIt_clickHandler(event:MouseEvent):void
 {
 var s:String = "";
 s += "sms:";
 s+= sendTo.text;
 navigateToURL(new URLRequest(s));

 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="Send To" top="40" left="50"/>
 <s:TextInput id="sendTo" top="30" left="160" text="2125559999" width="250"/>
 <s:Button id="sendIt" label="Send" click="sendIt_clickHandler(event)" top="110"
 left="160"/>
</s:Application>

Create Text Message | 77

Figure 6-3. Open a text message in the Messaging application

Figure 6-4. The Messenging application has opened

78 | Chapter 6: OS Interactions

Create Email
The URLRequest class can be used to open the Messaging application to send text mes-
sages. By prepending the request with mailto:, you will tell Android to launch the Email
application when the navigateToURL method is called. There are several properties that
can be passed into the URLRequest to set the “send to” email address, the email subject,
and the email message.

Figure 6-5 shows the sample application running, Figure 6-6 shows the email selection
window being launched after the Send button has been clicked, and Figure 6-7 shows
the properties being pre-populated in the Gmail application:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 protectedfunction sendIt_clickHandler(event:MouseEvent):void
 {
 vars:String = "";
 s += "mailto:";
 s+= sendTo.text;
 s+= "?";
 s+= "subject=";
 s+= subject.text;
 s+= "&";
 s+= "body=";
 s+= message.text;
 navigateToURL(new URLRequest(s));

 }
]]>
 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="Send To" top="40" left="50"/>
 <s:TextInput id="sendTo" top="30" left="160" text="rtretola@gmail.com"
 width="250"/>
 <s:Label text="Subject" top="100" left="50"/>
 <s:TextInput id="subject" top="90" left="160" text="hello" width="250"/>
 <s:Label text="Message" top="160" left="50"/>
 <s:TextInput id="message" top="150" left="160" width="250"/>
 <s:Button id="sendIt" label="Send" click="sendIt_clickHandler(event)" top="210"
 left="160"/>
</s:Application>

Create Email | 79

Figure 6-5. A sample Email application

Figure 6-6. The email selector after clicking Send

80 | Chapter 6: OS Interactions

Figure 6-7. Message properties set within Gmail

Place Call
The URLRequest class can be used to open the Phone application to place a call. By
prepending the request with tel:, you will tell Android to launch the Phone application
when the navigateToURL method is called. Figure 6-8 shows the sample application
running and Figure 6-9 shows the Phone application with the phone number
pre-populated:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark">

 <fx:Script>
 <![CDATA[
 protectedfunction sendIt_clickHandler(event:MouseEvent):void
 {
 var s:String = "";
 s += "tel:";
 s+= call.text;
 navigateToURL(new URLRequest(s));

 }
]]>

Place Call | 81

 </fx:Script>

 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:Label text="Phone #" top="40" left="50"/>
 <s:TextInput id="call" top="30" left="160" text="2125559999" width="250"/>
 <s:Button id="sendIt" label="Send" click="sendIt_clickHandler(event)" top="110"
 left="160"/>
</s:Application>

Figure 6-8. A sample Phone application

82 | Chapter 6: OS Interactions

Figure 6-9. The Phone application with number pre-populated

Splash Screen
Adobe has made it very easy to add a splash screen to your application. A splash screen
is an image that loads first and displays while the application is loading. There are
several options for the display of this splash screen, but let’s look at a basic sample,
which shows the splashScreenImage property being set to a .png image. Figure 6-10
shows a splash screen with the default settings:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 splashScreenImage="@Embed('happytoad.png')">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:Application>

Splash Screen | 83

Figure 6-10. Splash screen with splashScreenScaleMode set to none

There are also some options that can be set on the splash screen. Applying the splash
ScreenMinimumDisplayTime and splashScreenScaleMode properties to the Application,
ViewNavigatorApplication, or TabbedViewNavigatorApplication tags sets these options.
The example below sets the display time to 3 seconds and the scale mode to stretch.

The available options for the splashScreenScaleMode property are letterbox, none,
stretch, and zoom. Figure 6-11 shows a splash screen with the splashScreenScaleMode
set to stretch:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 splashScreenImage="@Embed('happytoad.png')"
 splashScreenMinimumDisplayTime="3000"
 splashScreenScaleMode="stretch">
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>
</s:Application>

84 | Chapter 6: OS Interactions

Figure 6-11. Splash screen with splashScreenScaleMode set to stretch

StageWebView
The StageWebView allows for web (HTML and Flash on supported devices) and video
content to be loaded into a Flex application. StageWebView will utilize the native browser
to load HTML into your application.

Let’s review the code below. First, you will notice there is a private variable named
stageWebView declared, of type flash.media.StageWebView. Within application
Complete of the application, an event handler function is called, which first checks to
see if the device supports StageWebView by reading the static property of the StageWeb
View class. If this property returns as true, a new instance of StageWebView and a new
Rectangle (sized to fill the remaining screen and set to the viewport property of the
stageWebView) are created.

There is a TextInput component with the id of urlAddress, which holds the address
that will be shown in the StageWebView and a Button labeled GO.

Clicking on the GO button will call the button1_clickHandler method. Within the but
ton1_clickHandler method, the loadURL method is called with the urlAddress.text
property passed in. This triggers the StageWebView to load the URL.

StageWebView | 85

The results can be seen within Figure 6-12:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationComplete=
 "application1_applicationCompleteHandler(event)">
 <fx:Script>
 <![CDATA[
 import mx.events.FlexEvent;

 privatevar stageWebView:StageWebView;
 privatevar rect:Rectangle;

 protectedfunction application1_applicationCompleteHandler
 (event:FlexEvent):void
 {
 if(StageWebView.isSupported==true){
 stageWebView = new StagewebView();
 stageWebView.viewPort = new Rectangle(5,80,stage.width-10,
 stage.height-90);
 stageWebView.stage = this.stage;
 } else {
 urlAddress.text = "StageWebView not supported";
 }
 }

 protectedfunction button1_clickHandler(event:MouseEvent):void
 {
 stageWebView.loadURL(urlAddress.text);
 }

]]>
 </fx:Script>
 <fx:Declarations>
 <!-- Place non-visual elements (e.g., services, value objects) here -->
 </fx:Declarations>

 <s:TextInput id="urlAddress" left="5" right="80" top="15"
 text="http://www.google.com"/>
 <s:Button right="5" top="5" label="GO" click="button1_clickHandler(event)"/>

</s:Application>

86 | Chapter 6: OS Interactions

Figure 6-12. StageWebView with the Google homepage loaded

Screen Options
There are several options available to programmatically control several areas of the
screen layout. These options include the layout of the application; whether or not to
show the action bar in View-Based or Tabbed Applications; and whether or not to show
the application in full screen mode. A sample application can be seen in Figure 6-13.

Layout
The options for your application layout are portrait (where the application is displayed
vertically on the device) or landscape (where the application is displayed horizontally).
Setting the aspect ratio by calling the setAspectRatio method on the stage can change
the application’s layout. The StageAspectRatio class contains two static values that
should be used to set the aspect ratio.

Screen Options | 87

Figure 6-13. The Screen Options application

The code below includes a RadioGroup with the id of orientation. There are two
RadioButton components in this group, with values of portrait and landscape. When
clicking on one of these radio buttons, the radiobutton1_clickHandler method is called.
Within this method, the orientation.selectedValue is tested. If orientation.selected
Value is equal to portrait, the stage.setAspectRatio method is called and StageAspec
tRatio.PORTRAIT is passed in. If orientation.selectedValue is equal to landscape, the
stage.setAspectRatio method is called and StageAspectRatio.LANDSCAPE is passed in.
The results can be seen in Figure 6-14.

88 | Chapter 6: OS Interactions

Figure 6-14. Landscape mode

Full Screen
Utilizing the entire screen for your mobile application is an option that you can set
within your application, and there are a few choices when this change is requested. To
put an application in full screen mode, you will need to set the displayState property
on the stage. There are several static properties within the StageDisplayState class that
can be used for this.

The code below includes a CheckBox with the label "FullScreen". This CheckBox is not
selected by default, as that is the normal state of the application. When clicking on this
CheckBox to check or uncheck the value, the checkbox1_clickHandler is called. If
the checkbox is checked, the stage.displayState is set to StageDisplayState.
FULL_SCREEN_INTERACTIVE. If the checkbox is not checked, the stage.displayState is set
to StageDisplayState.NORMAL.

The StageDisplayState also has a static property of StageDisplay
State.FULL_SCREEN. This property can be used to put the application in
full screen mode when the keyboard is unnecessary. The results can be
seen in Figure 6-15.

Screen Options | 89

Figure 6-15. Full Screen mode

ActionBar
The ActionBar is the built-in navigation system that comes along with the View-Based
or Tabbed Application layouts. This bar does consume significant screen real estate.
Therefore, the option to hide and show this bar programmatically is available to you
as the developer.

The code below includes a CheckBox with the label "Show ActionBar". This CheckBox is
selected by default, as that is the normal state of the ActionBar. When clicking on this
CheckBox to check or uncheck the value, the checkbox2_clickHandler is called. The
actionBarVisible property of this View is set to the value of the CheckBox. The results
can be seen in Figure 6-16, which shows a full screen application with the ActionBar
hidden:

<?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="HomeView">

90 | Chapter 6: OS Interactions

 <fx:Script>
 <![CDATA[
 protectedfunction checkbox1_clickHandler(event:MouseEvent):void
 {
 if(event.target.selected){
 stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 } else {
 stage.displayState = StageDisplayState.NORMAL;
 }
 }

 protectedfunction checkbox2_clickHandler(event:MouseEvent):void
 {
 this.actionBarVisible = event.target.selected;
 }

 protectedfunctionradiobutton1_clickHandler(event:MouseEvent):void
 {
 if(orientation.selectedValue == "portrait"){
 stage.setAspectRatio(StageAspectRatio.PORTRAIT);
 } elseif(orientation.selectedValue == "landscape"){
 stage.setAspectRatio(StageAspectRatio.LANDSCAPE);
 }
 }

]]>
 </fx:Script>

 <fx:Declarations>
 <s:RadioButtonGroup id="orientation"/>
 </fx:Declarations>

 <s:VGroup top="20" left="10">
 <s:CheckBox click="checkbox1_clickHandler(event)" label="Full Screen"/>
 <s:CheckBox click="checkbox2_clickHandler(event)" label="Show ActionBar"
 selected="true"/>
 <s:RadioButton groupName="orientation" value="portrait" label="Portrait"
 click="radiobutton1_clickHandler(event)"
 selected="true"/>
 <s:RadioButton groupName="orientation" value="landscape" label="Landscape"
 click="radiobutton1_clickHandler(event)"/>
 </s:VGroup>

</s:View>

Screen Options | 91

Figure 6-16. Full Screen mode with ActionBar hidden

92 | Chapter 6: OS Interactions

CHAPTER 7

Publish to Android Installer

Now that you have created your new application, it is time to publish it to an Android
installer file, which is an archive file with an .apk extension. Flash Builder provides all
of the tools to accomplish this task.

To demonstrate how to compile an application to an Android installer, let’s walk
through this process with the following steps:

1. First, click on File→Export within Flash Builder’s main menu (see Figure 7-1).

2. Next, select Flash Builder→Release Build (see Figure 7-2).

3. Within the Export Release Build window, select the Project and Application that
you would like to compile (see Figure 7-3).

4. If you already have a certificate compiled, select that certificate, enter its password,
and click the Finish button to compile the Android installer file (.apk). If you do
not yet have a certificate, click the Create button (see Figure 7-4).

To create a new certificate, complete the Create Self-Signed Digital Certificate form
and click on the OK button (see Figure 7-5).

5. To compile the Android installer file (.apk), click on the Finish button (see
Figure 7-6).

Congratulations: you have just compiled your first Android application. To
publish your new application to the Android Market, just visit https://market.android
.com/publish.

93

https://market.android.com/publish
https://market.android.com/publish

Figure 7-1. Selecting File→Export

94 | Chapter 7: Publish to Android Installer

Figure 7-2. Selecting Flash Builder→Release Build

Figure 7-3. The Export Release Build screen

Publish to Android Installer | 95

Figure 7-4. Selecting or creating a certificate

Figure 7-5. Creating a new certificate

96 | Chapter 7: Publish to Android Installer

Figure 7-6. Completing the export

Publish to Android Installer | 97

About the Author
Rich Tretola, an award-winning Flex developer, is the Applications Development Man-
ager at Herff Jones Inc. He has been building Internet applications for over a decade,
and has worked with Flex since the original Royale beta was introduced in 2003. Out-
side of Flex, Rich builds applications using ColdFusion, Flash, and Java. He is highly
regarded in the Flex community as an expert in RIA, and is also a five-time Adobe
Community Professional.

He is the lead author of Professional Flex 2 (Wrox) and sole author of Beginning AIR
(Wrox). He is also a contributing author on Adobe AIR 1.5 Cookbook (O’Reilly) and
Flex 4 Cookbook (O’Reilly). He runs a popular Flex and AIR blog at Everything-
Flex.com, was the community manager of InsideRIA.com for over three years, and has
also been a speaker at over 10 Adobe MAX sessions.

Recently, Rich has re-engaged the RIA development community by founding
RIARockStars.com, and has been a principal partner in a new social polling service at
twittapolls.com. For a non-technical escape, Rich is also a co-owner of a chocolate
company in Hawaii named WowWee Maui.

http://oreilly.com/catalog/9780596522506/
http://oreilly.com/catalog/9780596805616/
http://everythingflex.com
http://everythingflex.com
http://riarockstars.com
http://twittapolls.com
http://www.wowweemaui.com

	Copyright
	Table of Contents
	Preface
	Introduction to Android
	Who This Book Is For
	Who This Book Is Not For
	Conventions Used in This Book
	This Book’s Example Files
	Using Code Examples
	How to Use This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Hello World
	Create a Flex Mobile Project
	Debug a Flex Mobile Project

	Chapter 2. Application Layouts
	Blank Application
	View-Based Application
	View Life Cycle

	Tabbed Application

	Chapter 3. Permissions and Configuration Settings
	Permissions
	Other Configuration Settings
	Automatically Reorient
	Full Screen
	Automatically Scale Application for Different Screen Densities
	Aspect Ratio

	Chapter 4. Exploring the APIs
	Accelerometer
	GPS
	Camera UI
	Camera Roll
	Microphone
	Multitouch
	GestureEvent
	TransformGesture

	Busy Indicator

	Chapter 5. Working with the File System
	File System Access
	Folder Aliases
	Read and Write to the File System
	File Browse for a Single File
	File Browse for Multiple Files

	SQLite Databases

	Chapter 6. OS Interactions
	Open in Browser
	Create Text Message
	Create Email
	Place Call
	Splash Screen
	StageWebView
	Screen Options
	Layout
	Full Screen
	ActionBar

	Chapter 7. Publish to Android Installer

